]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
memcg: killed threads should not invoke memcg OOM killer
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 static inline bool should_force_charge(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
256 {
257 return (memcg == root_mem_cgroup);
258 }
259
260 #ifndef CONFIG_SLOB
261 /*
262 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
263 * The main reason for not using cgroup id for this:
264 * this works better in sparse environments, where we have a lot of memcgs,
265 * but only a few kmem-limited. Or also, if we have, for instance, 200
266 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
267 * 200 entry array for that.
268 *
269 * The current size of the caches array is stored in memcg_nr_cache_ids. It
270 * will double each time we have to increase it.
271 */
272 static DEFINE_IDA(memcg_cache_ida);
273 int memcg_nr_cache_ids;
274
275 /* Protects memcg_nr_cache_ids */
276 static DECLARE_RWSEM(memcg_cache_ids_sem);
277
278 void memcg_get_cache_ids(void)
279 {
280 down_read(&memcg_cache_ids_sem);
281 }
282
283 void memcg_put_cache_ids(void)
284 {
285 up_read(&memcg_cache_ids_sem);
286 }
287
288 /*
289 * MIN_SIZE is different than 1, because we would like to avoid going through
290 * the alloc/free process all the time. In a small machine, 4 kmem-limited
291 * cgroups is a reasonable guess. In the future, it could be a parameter or
292 * tunable, but that is strictly not necessary.
293 *
294 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
295 * this constant directly from cgroup, but it is understandable that this is
296 * better kept as an internal representation in cgroup.c. In any case, the
297 * cgrp_id space is not getting any smaller, and we don't have to necessarily
298 * increase ours as well if it increases.
299 */
300 #define MEMCG_CACHES_MIN_SIZE 4
301 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
302
303 /*
304 * A lot of the calls to the cache allocation functions are expected to be
305 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
306 * conditional to this static branch, we'll have to allow modules that does
307 * kmem_cache_alloc and the such to see this symbol as well
308 */
309 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
310 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311
312 struct workqueue_struct *memcg_kmem_cache_wq;
313
314 #endif /* !CONFIG_SLOB */
315
316 /**
317 * mem_cgroup_css_from_page - css of the memcg associated with a page
318 * @page: page of interest
319 *
320 * If memcg is bound to the default hierarchy, css of the memcg associated
321 * with @page is returned. The returned css remains associated with @page
322 * until it is released.
323 *
324 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
325 * is returned.
326 */
327 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
328 {
329 struct mem_cgroup *memcg;
330
331 memcg = page->mem_cgroup;
332
333 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
334 memcg = root_mem_cgroup;
335
336 return &memcg->css;
337 }
338
339 /**
340 * page_cgroup_ino - return inode number of the memcg a page is charged to
341 * @page: the page
342 *
343 * Look up the closest online ancestor of the memory cgroup @page is charged to
344 * and return its inode number or 0 if @page is not charged to any cgroup. It
345 * is safe to call this function without holding a reference to @page.
346 *
347 * Note, this function is inherently racy, because there is nothing to prevent
348 * the cgroup inode from getting torn down and potentially reallocated a moment
349 * after page_cgroup_ino() returns, so it only should be used by callers that
350 * do not care (such as procfs interfaces).
351 */
352 ino_t page_cgroup_ino(struct page *page)
353 {
354 struct mem_cgroup *memcg;
355 unsigned long ino = 0;
356
357 rcu_read_lock();
358 memcg = READ_ONCE(page->mem_cgroup);
359 while (memcg && !(memcg->css.flags & CSS_ONLINE))
360 memcg = parent_mem_cgroup(memcg);
361 if (memcg)
362 ino = cgroup_ino(memcg->css.cgroup);
363 rcu_read_unlock();
364 return ino;
365 }
366
367 static struct mem_cgroup_per_node *
368 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
369 {
370 int nid = page_to_nid(page);
371
372 return memcg->nodeinfo[nid];
373 }
374
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_node(int nid)
377 {
378 return soft_limit_tree.rb_tree_per_node[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_from_page(struct page *page)
383 {
384 int nid = page_to_nid(page);
385
386 return soft_limit_tree.rb_tree_per_node[nid];
387 }
388
389 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
390 struct mem_cgroup_tree_per_node *mctz,
391 unsigned long new_usage_in_excess)
392 {
393 struct rb_node **p = &mctz->rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct mem_cgroup_per_node *mz_node;
396 bool rightmost = true;
397
398 if (mz->on_tree)
399 return;
400
401 mz->usage_in_excess = new_usage_in_excess;
402 if (!mz->usage_in_excess)
403 return;
404 while (*p) {
405 parent = *p;
406 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
407 tree_node);
408 if (mz->usage_in_excess < mz_node->usage_in_excess) {
409 p = &(*p)->rb_left;
410 rightmost = false;
411 }
412
413 /*
414 * We can't avoid mem cgroups that are over their soft
415 * limit by the same amount
416 */
417 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418 p = &(*p)->rb_right;
419 }
420
421 if (rightmost)
422 mctz->rb_rightmost = &mz->tree_node;
423
424 rb_link_node(&mz->tree_node, parent, p);
425 rb_insert_color(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = true;
427 }
428
429 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
430 struct mem_cgroup_tree_per_node *mctz)
431 {
432 if (!mz->on_tree)
433 return;
434
435 if (&mz->tree_node == mctz->rb_rightmost)
436 mctz->rb_rightmost = rb_prev(&mz->tree_node);
437
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440 }
441
442 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
443 struct mem_cgroup_tree_per_node *mctz)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
448 __mem_cgroup_remove_exceeded(mz, mctz);
449 spin_unlock_irqrestore(&mctz->lock, flags);
450 }
451
452 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453 {
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462 }
463
464 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465 {
466 unsigned long excess;
467 struct mem_cgroup_per_node *mz;
468 struct mem_cgroup_tree_per_node *mctz;
469
470 mctz = soft_limit_tree_from_page(page);
471 if (!mctz)
472 return;
473 /*
474 * Necessary to update all ancestors when hierarchy is used.
475 * because their event counter is not touched.
476 */
477 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
478 mz = mem_cgroup_page_nodeinfo(memcg, page);
479 excess = soft_limit_excess(memcg);
480 /*
481 * We have to update the tree if mz is on RB-tree or
482 * mem is over its softlimit.
483 */
484 if (excess || mz->on_tree) {
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
488 /* if on-tree, remove it */
489 if (mz->on_tree)
490 __mem_cgroup_remove_exceeded(mz, mctz);
491 /*
492 * Insert again. mz->usage_in_excess will be updated.
493 * If excess is 0, no tree ops.
494 */
495 __mem_cgroup_insert_exceeded(mz, mctz, excess);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498 }
499 }
500
501 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
502 {
503 struct mem_cgroup_tree_per_node *mctz;
504 struct mem_cgroup_per_node *mz;
505 int nid;
506
507 for_each_node(nid) {
508 mz = mem_cgroup_nodeinfo(memcg, nid);
509 mctz = soft_limit_tree_node(nid);
510 if (mctz)
511 mem_cgroup_remove_exceeded(mz, mctz);
512 }
513 }
514
515 static struct mem_cgroup_per_node *
516 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
517 {
518 struct mem_cgroup_per_node *mz;
519
520 retry:
521 mz = NULL;
522 if (!mctz->rb_rightmost)
523 goto done; /* Nothing to reclaim from */
524
525 mz = rb_entry(mctz->rb_rightmost,
526 struct mem_cgroup_per_node, tree_node);
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 if (!soft_limit_excess(mz->memcg) ||
534 !css_tryget_online(&mz->memcg->css))
535 goto retry;
536 done:
537 return mz;
538 }
539
540 static struct mem_cgroup_per_node *
541 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542 {
543 struct mem_cgroup_per_node *mz;
544
545 spin_lock_irq(&mctz->lock);
546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
547 spin_unlock_irq(&mctz->lock);
548 return mz;
549 }
550
551 /*
552 * Return page count for single (non recursive) @memcg.
553 *
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
559 * a periodic synchronization of counter in memcg's counter.
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
569 * common workload, threshold and synchronization as vmstat[] should be
570 * implemented.
571 *
572 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
573 */
574
575 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
576 int event)
577 {
578 unsigned long val = 0;
579 int cpu;
580
581 for_each_possible_cpu(cpu)
582 val += per_cpu(memcg->stat->events[event], cpu);
583 return val;
584 }
585
586 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
587 struct page *page,
588 bool compound, int nr_pages)
589 {
590 /*
591 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
592 * counted as CACHE even if it's on ANON LRU.
593 */
594 if (PageAnon(page))
595 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
596 else {
597 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
598 if (PageSwapBacked(page))
599 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
600 }
601
602 if (compound) {
603 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
604 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
605 }
606
607 /* pagein of a big page is an event. So, ignore page size */
608 if (nr_pages > 0)
609 __this_cpu_inc(memcg->stat->events[PGPGIN]);
610 else {
611 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
612 nr_pages = -nr_pages; /* for event */
613 }
614
615 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
616 }
617
618 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
619 int nid, unsigned int lru_mask)
620 {
621 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
622 unsigned long nr = 0;
623 enum lru_list lru;
624
625 VM_BUG_ON((unsigned)nid >= nr_node_ids);
626
627 for_each_lru(lru) {
628 if (!(BIT(lru) & lru_mask))
629 continue;
630 nr += mem_cgroup_get_lru_size(lruvec, lru);
631 }
632 return nr;
633 }
634
635 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
636 unsigned int lru_mask)
637 {
638 unsigned long nr = 0;
639 int nid;
640
641 for_each_node_state(nid, N_MEMORY)
642 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
643 return nr;
644 }
645
646 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
647 enum mem_cgroup_events_target target)
648 {
649 unsigned long val, next;
650
651 val = __this_cpu_read(memcg->stat->nr_page_events);
652 next = __this_cpu_read(memcg->stat->targets[target]);
653 /* from time_after() in jiffies.h */
654 if ((long)(next - val) < 0) {
655 switch (target) {
656 case MEM_CGROUP_TARGET_THRESH:
657 next = val + THRESHOLDS_EVENTS_TARGET;
658 break;
659 case MEM_CGROUP_TARGET_SOFTLIMIT:
660 next = val + SOFTLIMIT_EVENTS_TARGET;
661 break;
662 case MEM_CGROUP_TARGET_NUMAINFO:
663 next = val + NUMAINFO_EVENTS_TARGET;
664 break;
665 default:
666 break;
667 }
668 __this_cpu_write(memcg->stat->targets[target], next);
669 return true;
670 }
671 return false;
672 }
673
674 /*
675 * Check events in order.
676 *
677 */
678 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
679 {
680 /* threshold event is triggered in finer grain than soft limit */
681 if (unlikely(mem_cgroup_event_ratelimit(memcg,
682 MEM_CGROUP_TARGET_THRESH))) {
683 bool do_softlimit;
684 bool do_numainfo __maybe_unused;
685
686 do_softlimit = mem_cgroup_event_ratelimit(memcg,
687 MEM_CGROUP_TARGET_SOFTLIMIT);
688 #if MAX_NUMNODES > 1
689 do_numainfo = mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_NUMAINFO);
691 #endif
692 mem_cgroup_threshold(memcg);
693 if (unlikely(do_softlimit))
694 mem_cgroup_update_tree(memcg, page);
695 #if MAX_NUMNODES > 1
696 if (unlikely(do_numainfo))
697 atomic_inc(&memcg->numainfo_events);
698 #endif
699 }
700 }
701
702 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
703 {
704 /*
705 * mm_update_next_owner() may clear mm->owner to NULL
706 * if it races with swapoff, page migration, etc.
707 * So this can be called with p == NULL.
708 */
709 if (unlikely(!p))
710 return NULL;
711
712 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
713 }
714 EXPORT_SYMBOL(mem_cgroup_from_task);
715
716 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
717 {
718 struct mem_cgroup *memcg = NULL;
719
720 rcu_read_lock();
721 do {
722 /*
723 * Page cache insertions can happen withou an
724 * actual mm context, e.g. during disk probing
725 * on boot, loopback IO, acct() writes etc.
726 */
727 if (unlikely(!mm))
728 memcg = root_mem_cgroup;
729 else {
730 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
731 if (unlikely(!memcg))
732 memcg = root_mem_cgroup;
733 }
734 } while (!css_tryget_online(&memcg->css));
735 rcu_read_unlock();
736 return memcg;
737 }
738
739 /**
740 * mem_cgroup_iter - iterate over memory cgroup hierarchy
741 * @root: hierarchy root
742 * @prev: previously returned memcg, NULL on first invocation
743 * @reclaim: cookie for shared reclaim walks, NULL for full walks
744 *
745 * Returns references to children of the hierarchy below @root, or
746 * @root itself, or %NULL after a full round-trip.
747 *
748 * Caller must pass the return value in @prev on subsequent
749 * invocations for reference counting, or use mem_cgroup_iter_break()
750 * to cancel a hierarchy walk before the round-trip is complete.
751 *
752 * Reclaimers can specify a zone and a priority level in @reclaim to
753 * divide up the memcgs in the hierarchy among all concurrent
754 * reclaimers operating on the same zone and priority.
755 */
756 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
757 struct mem_cgroup *prev,
758 struct mem_cgroup_reclaim_cookie *reclaim)
759 {
760 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
761 struct cgroup_subsys_state *css = NULL;
762 struct mem_cgroup *memcg = NULL;
763 struct mem_cgroup *pos = NULL;
764
765 if (mem_cgroup_disabled())
766 return NULL;
767
768 if (!root)
769 root = root_mem_cgroup;
770
771 if (prev && !reclaim)
772 pos = prev;
773
774 if (!root->use_hierarchy && root != root_mem_cgroup) {
775 if (prev)
776 goto out;
777 return root;
778 }
779
780 rcu_read_lock();
781
782 if (reclaim) {
783 struct mem_cgroup_per_node *mz;
784
785 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
786 iter = &mz->iter[reclaim->priority];
787
788 if (prev && reclaim->generation != iter->generation)
789 goto out_unlock;
790
791 while (1) {
792 pos = READ_ONCE(iter->position);
793 if (!pos || css_tryget(&pos->css))
794 break;
795 /*
796 * css reference reached zero, so iter->position will
797 * be cleared by ->css_released. However, we should not
798 * rely on this happening soon, because ->css_released
799 * is called from a work queue, and by busy-waiting we
800 * might block it. So we clear iter->position right
801 * away.
802 */
803 (void)cmpxchg(&iter->position, pos, NULL);
804 }
805 }
806
807 if (pos)
808 css = &pos->css;
809
810 for (;;) {
811 css = css_next_descendant_pre(css, &root->css);
812 if (!css) {
813 /*
814 * Reclaimers share the hierarchy walk, and a
815 * new one might jump in right at the end of
816 * the hierarchy - make sure they see at least
817 * one group and restart from the beginning.
818 */
819 if (!prev)
820 continue;
821 break;
822 }
823
824 /*
825 * Verify the css and acquire a reference. The root
826 * is provided by the caller, so we know it's alive
827 * and kicking, and don't take an extra reference.
828 */
829 memcg = mem_cgroup_from_css(css);
830
831 if (css == &root->css)
832 break;
833
834 if (css_tryget(css))
835 break;
836
837 memcg = NULL;
838 }
839
840 if (reclaim) {
841 /*
842 * The position could have already been updated by a competing
843 * thread, so check that the value hasn't changed since we read
844 * it to avoid reclaiming from the same cgroup twice.
845 */
846 (void)cmpxchg(&iter->position, pos, memcg);
847
848 if (pos)
849 css_put(&pos->css);
850
851 if (!memcg)
852 iter->generation++;
853 else if (!prev)
854 reclaim->generation = iter->generation;
855 }
856
857 out_unlock:
858 rcu_read_unlock();
859 out:
860 if (prev && prev != root)
861 css_put(&prev->css);
862
863 return memcg;
864 }
865
866 /**
867 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
868 * @root: hierarchy root
869 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
870 */
871 void mem_cgroup_iter_break(struct mem_cgroup *root,
872 struct mem_cgroup *prev)
873 {
874 if (!root)
875 root = root_mem_cgroup;
876 if (prev && prev != root)
877 css_put(&prev->css);
878 }
879
880 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
881 {
882 struct mem_cgroup *memcg = dead_memcg;
883 struct mem_cgroup_reclaim_iter *iter;
884 struct mem_cgroup_per_node *mz;
885 int nid;
886 int i;
887
888 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
889 for_each_node(nid) {
890 mz = mem_cgroup_nodeinfo(memcg, nid);
891 for (i = 0; i <= DEF_PRIORITY; i++) {
892 iter = &mz->iter[i];
893 cmpxchg(&iter->position,
894 dead_memcg, NULL);
895 }
896 }
897 }
898 }
899
900 /*
901 * Iteration constructs for visiting all cgroups (under a tree). If
902 * loops are exited prematurely (break), mem_cgroup_iter_break() must
903 * be used for reference counting.
904 */
905 #define for_each_mem_cgroup_tree(iter, root) \
906 for (iter = mem_cgroup_iter(root, NULL, NULL); \
907 iter != NULL; \
908 iter = mem_cgroup_iter(root, iter, NULL))
909
910 #define for_each_mem_cgroup(iter) \
911 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
912 iter != NULL; \
913 iter = mem_cgroup_iter(NULL, iter, NULL))
914
915 /**
916 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
917 * @memcg: hierarchy root
918 * @fn: function to call for each task
919 * @arg: argument passed to @fn
920 *
921 * This function iterates over tasks attached to @memcg or to any of its
922 * descendants and calls @fn for each task. If @fn returns a non-zero
923 * value, the function breaks the iteration loop and returns the value.
924 * Otherwise, it will iterate over all tasks and return 0.
925 *
926 * This function must not be called for the root memory cgroup.
927 */
928 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
929 int (*fn)(struct task_struct *, void *), void *arg)
930 {
931 struct mem_cgroup *iter;
932 int ret = 0;
933
934 BUG_ON(memcg == root_mem_cgroup);
935
936 for_each_mem_cgroup_tree(iter, memcg) {
937 struct css_task_iter it;
938 struct task_struct *task;
939
940 css_task_iter_start(&iter->css, 0, &it);
941 while (!ret && (task = css_task_iter_next(&it)))
942 ret = fn(task, arg);
943 css_task_iter_end(&it);
944 if (ret) {
945 mem_cgroup_iter_break(memcg, iter);
946 break;
947 }
948 }
949 return ret;
950 }
951
952 /**
953 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
954 * @page: the page
955 * @zone: zone of the page
956 *
957 * This function is only safe when following the LRU page isolation
958 * and putback protocol: the LRU lock must be held, and the page must
959 * either be PageLRU() or the caller must have isolated/allocated it.
960 */
961 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
962 {
963 struct mem_cgroup_per_node *mz;
964 struct mem_cgroup *memcg;
965 struct lruvec *lruvec;
966
967 if (mem_cgroup_disabled()) {
968 lruvec = &pgdat->lruvec;
969 goto out;
970 }
971
972 memcg = page->mem_cgroup;
973 /*
974 * Swapcache readahead pages are added to the LRU - and
975 * possibly migrated - before they are charged.
976 */
977 if (!memcg)
978 memcg = root_mem_cgroup;
979
980 mz = mem_cgroup_page_nodeinfo(memcg, page);
981 lruvec = &mz->lruvec;
982 out:
983 /*
984 * Since a node can be onlined after the mem_cgroup was created,
985 * we have to be prepared to initialize lruvec->zone here;
986 * and if offlined then reonlined, we need to reinitialize it.
987 */
988 if (unlikely(lruvec->pgdat != pgdat))
989 lruvec->pgdat = pgdat;
990 return lruvec;
991 }
992
993 /**
994 * mem_cgroup_update_lru_size - account for adding or removing an lru page
995 * @lruvec: mem_cgroup per zone lru vector
996 * @lru: index of lru list the page is sitting on
997 * @zid: zone id of the accounted pages
998 * @nr_pages: positive when adding or negative when removing
999 *
1000 * This function must be called under lru_lock, just before a page is added
1001 * to or just after a page is removed from an lru list (that ordering being
1002 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1003 */
1004 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1005 int zid, int nr_pages)
1006 {
1007 struct mem_cgroup_per_node *mz;
1008 unsigned long *lru_size;
1009 long size;
1010
1011 if (mem_cgroup_disabled())
1012 return;
1013
1014 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1015 lru_size = &mz->lru_zone_size[zid][lru];
1016
1017 if (nr_pages < 0)
1018 *lru_size += nr_pages;
1019
1020 size = *lru_size;
1021 if (WARN_ONCE(size < 0,
1022 "%s(%p, %d, %d): lru_size %ld\n",
1023 __func__, lruvec, lru, nr_pages, size)) {
1024 VM_BUG_ON(1);
1025 *lru_size = 0;
1026 }
1027
1028 if (nr_pages > 0)
1029 *lru_size += nr_pages;
1030 }
1031
1032 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1033 {
1034 struct mem_cgroup *task_memcg;
1035 struct task_struct *p;
1036 bool ret;
1037
1038 p = find_lock_task_mm(task);
1039 if (p) {
1040 task_memcg = get_mem_cgroup_from_mm(p->mm);
1041 task_unlock(p);
1042 } else {
1043 /*
1044 * All threads may have already detached their mm's, but the oom
1045 * killer still needs to detect if they have already been oom
1046 * killed to prevent needlessly killing additional tasks.
1047 */
1048 rcu_read_lock();
1049 task_memcg = mem_cgroup_from_task(task);
1050 css_get(&task_memcg->css);
1051 rcu_read_unlock();
1052 }
1053 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1054 css_put(&task_memcg->css);
1055 return ret;
1056 }
1057
1058 /**
1059 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1060 * @memcg: the memory cgroup
1061 *
1062 * Returns the maximum amount of memory @mem can be charged with, in
1063 * pages.
1064 */
1065 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1066 {
1067 unsigned long margin = 0;
1068 unsigned long count;
1069 unsigned long limit;
1070
1071 count = page_counter_read(&memcg->memory);
1072 limit = READ_ONCE(memcg->memory.limit);
1073 if (count < limit)
1074 margin = limit - count;
1075
1076 if (do_memsw_account()) {
1077 count = page_counter_read(&memcg->memsw);
1078 limit = READ_ONCE(memcg->memsw.limit);
1079 if (count <= limit)
1080 margin = min(margin, limit - count);
1081 else
1082 margin = 0;
1083 }
1084
1085 return margin;
1086 }
1087
1088 /*
1089 * A routine for checking "mem" is under move_account() or not.
1090 *
1091 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1092 * moving cgroups. This is for waiting at high-memory pressure
1093 * caused by "move".
1094 */
1095 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1096 {
1097 struct mem_cgroup *from;
1098 struct mem_cgroup *to;
1099 bool ret = false;
1100 /*
1101 * Unlike task_move routines, we access mc.to, mc.from not under
1102 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1103 */
1104 spin_lock(&mc.lock);
1105 from = mc.from;
1106 to = mc.to;
1107 if (!from)
1108 goto unlock;
1109
1110 ret = mem_cgroup_is_descendant(from, memcg) ||
1111 mem_cgroup_is_descendant(to, memcg);
1112 unlock:
1113 spin_unlock(&mc.lock);
1114 return ret;
1115 }
1116
1117 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1118 {
1119 if (mc.moving_task && current != mc.moving_task) {
1120 if (mem_cgroup_under_move(memcg)) {
1121 DEFINE_WAIT(wait);
1122 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1123 /* moving charge context might have finished. */
1124 if (mc.moving_task)
1125 schedule();
1126 finish_wait(&mc.waitq, &wait);
1127 return true;
1128 }
1129 }
1130 return false;
1131 }
1132
1133 unsigned int memcg1_stats[] = {
1134 MEMCG_CACHE,
1135 MEMCG_RSS,
1136 MEMCG_RSS_HUGE,
1137 NR_SHMEM,
1138 NR_FILE_MAPPED,
1139 NR_FILE_DIRTY,
1140 NR_WRITEBACK,
1141 MEMCG_SWAP,
1142 };
1143
1144 static const char *const memcg1_stat_names[] = {
1145 "cache",
1146 "rss",
1147 "rss_huge",
1148 "shmem",
1149 "mapped_file",
1150 "dirty",
1151 "writeback",
1152 "swap",
1153 };
1154
1155 #define K(x) ((x) << (PAGE_SHIFT-10))
1156 /**
1157 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1158 * @memcg: The memory cgroup that went over limit
1159 * @p: Task that is going to be killed
1160 *
1161 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1162 * enabled
1163 */
1164 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1165 {
1166 struct mem_cgroup *iter;
1167 unsigned int i;
1168
1169 rcu_read_lock();
1170
1171 if (p) {
1172 pr_info("Task in ");
1173 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1174 pr_cont(" killed as a result of limit of ");
1175 } else {
1176 pr_info("Memory limit reached of cgroup ");
1177 }
1178
1179 pr_cont_cgroup_path(memcg->css.cgroup);
1180 pr_cont("\n");
1181
1182 rcu_read_unlock();
1183
1184 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->memory)),
1186 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1187 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1188 K((u64)page_counter_read(&memcg->memsw)),
1189 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1190 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->kmem)),
1192 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1193
1194 for_each_mem_cgroup_tree(iter, memcg) {
1195 pr_info("Memory cgroup stats for ");
1196 pr_cont_cgroup_path(iter->css.cgroup);
1197 pr_cont(":");
1198
1199 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1200 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1201 continue;
1202 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1203 K(memcg_page_state(iter, memcg1_stats[i])));
1204 }
1205
1206 for (i = 0; i < NR_LRU_LISTS; i++)
1207 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1208 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1209
1210 pr_cont("\n");
1211 }
1212 }
1213
1214 /*
1215 * This function returns the number of memcg under hierarchy tree. Returns
1216 * 1(self count) if no children.
1217 */
1218 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1219 {
1220 int num = 0;
1221 struct mem_cgroup *iter;
1222
1223 for_each_mem_cgroup_tree(iter, memcg)
1224 num++;
1225 return num;
1226 }
1227
1228 /*
1229 * Return the memory (and swap, if configured) limit for a memcg.
1230 */
1231 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1232 {
1233 unsigned long limit;
1234
1235 limit = memcg->memory.limit;
1236 if (mem_cgroup_swappiness(memcg)) {
1237 unsigned long memsw_limit;
1238 unsigned long swap_limit;
1239
1240 memsw_limit = memcg->memsw.limit;
1241 swap_limit = memcg->swap.limit;
1242 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1243 limit = min(limit + swap_limit, memsw_limit);
1244 }
1245 return limit;
1246 }
1247
1248 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1249 int order)
1250 {
1251 struct oom_control oc = {
1252 .zonelist = NULL,
1253 .nodemask = NULL,
1254 .memcg = memcg,
1255 .gfp_mask = gfp_mask,
1256 .order = order,
1257 };
1258 bool ret;
1259
1260 if (mutex_lock_killable(&oom_lock))
1261 return true;
1262 /*
1263 * A few threads which were not waiting at mutex_lock_killable() can
1264 * fail to bail out. Therefore, check again after holding oom_lock.
1265 */
1266 ret = should_force_charge() || out_of_memory(&oc);
1267 mutex_unlock(&oom_lock);
1268 return ret;
1269 }
1270
1271 #if MAX_NUMNODES > 1
1272
1273 /**
1274 * test_mem_cgroup_node_reclaimable
1275 * @memcg: the target memcg
1276 * @nid: the node ID to be checked.
1277 * @noswap : specify true here if the user wants flle only information.
1278 *
1279 * This function returns whether the specified memcg contains any
1280 * reclaimable pages on a node. Returns true if there are any reclaimable
1281 * pages in the node.
1282 */
1283 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1284 int nid, bool noswap)
1285 {
1286 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1287 return true;
1288 if (noswap || !total_swap_pages)
1289 return false;
1290 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1291 return true;
1292 return false;
1293
1294 }
1295
1296 /*
1297 * Always updating the nodemask is not very good - even if we have an empty
1298 * list or the wrong list here, we can start from some node and traverse all
1299 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1300 *
1301 */
1302 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1303 {
1304 int nid;
1305 /*
1306 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1307 * pagein/pageout changes since the last update.
1308 */
1309 if (!atomic_read(&memcg->numainfo_events))
1310 return;
1311 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1312 return;
1313
1314 /* make a nodemask where this memcg uses memory from */
1315 memcg->scan_nodes = node_states[N_MEMORY];
1316
1317 for_each_node_mask(nid, node_states[N_MEMORY]) {
1318
1319 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1320 node_clear(nid, memcg->scan_nodes);
1321 }
1322
1323 atomic_set(&memcg->numainfo_events, 0);
1324 atomic_set(&memcg->numainfo_updating, 0);
1325 }
1326
1327 /*
1328 * Selecting a node where we start reclaim from. Because what we need is just
1329 * reducing usage counter, start from anywhere is O,K. Considering
1330 * memory reclaim from current node, there are pros. and cons.
1331 *
1332 * Freeing memory from current node means freeing memory from a node which
1333 * we'll use or we've used. So, it may make LRU bad. And if several threads
1334 * hit limits, it will see a contention on a node. But freeing from remote
1335 * node means more costs for memory reclaim because of memory latency.
1336 *
1337 * Now, we use round-robin. Better algorithm is welcomed.
1338 */
1339 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1340 {
1341 int node;
1342
1343 mem_cgroup_may_update_nodemask(memcg);
1344 node = memcg->last_scanned_node;
1345
1346 node = next_node_in(node, memcg->scan_nodes);
1347 /*
1348 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1349 * last time it really checked all the LRUs due to rate limiting.
1350 * Fallback to the current node in that case for simplicity.
1351 */
1352 if (unlikely(node == MAX_NUMNODES))
1353 node = numa_node_id();
1354
1355 memcg->last_scanned_node = node;
1356 return node;
1357 }
1358 #else
1359 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1360 {
1361 return 0;
1362 }
1363 #endif
1364
1365 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1366 pg_data_t *pgdat,
1367 gfp_t gfp_mask,
1368 unsigned long *total_scanned)
1369 {
1370 struct mem_cgroup *victim = NULL;
1371 int total = 0;
1372 int loop = 0;
1373 unsigned long excess;
1374 unsigned long nr_scanned;
1375 struct mem_cgroup_reclaim_cookie reclaim = {
1376 .pgdat = pgdat,
1377 .priority = 0,
1378 };
1379
1380 excess = soft_limit_excess(root_memcg);
1381
1382 while (1) {
1383 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1384 if (!victim) {
1385 loop++;
1386 if (loop >= 2) {
1387 /*
1388 * If we have not been able to reclaim
1389 * anything, it might because there are
1390 * no reclaimable pages under this hierarchy
1391 */
1392 if (!total)
1393 break;
1394 /*
1395 * We want to do more targeted reclaim.
1396 * excess >> 2 is not to excessive so as to
1397 * reclaim too much, nor too less that we keep
1398 * coming back to reclaim from this cgroup
1399 */
1400 if (total >= (excess >> 2) ||
1401 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1402 break;
1403 }
1404 continue;
1405 }
1406 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1407 pgdat, &nr_scanned);
1408 *total_scanned += nr_scanned;
1409 if (!soft_limit_excess(root_memcg))
1410 break;
1411 }
1412 mem_cgroup_iter_break(root_memcg, victim);
1413 return total;
1414 }
1415
1416 #ifdef CONFIG_LOCKDEP
1417 static struct lockdep_map memcg_oom_lock_dep_map = {
1418 .name = "memcg_oom_lock",
1419 };
1420 #endif
1421
1422 static DEFINE_SPINLOCK(memcg_oom_lock);
1423
1424 /*
1425 * Check OOM-Killer is already running under our hierarchy.
1426 * If someone is running, return false.
1427 */
1428 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1429 {
1430 struct mem_cgroup *iter, *failed = NULL;
1431
1432 spin_lock(&memcg_oom_lock);
1433
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter->oom_lock) {
1436 /*
1437 * this subtree of our hierarchy is already locked
1438 * so we cannot give a lock.
1439 */
1440 failed = iter;
1441 mem_cgroup_iter_break(memcg, iter);
1442 break;
1443 } else
1444 iter->oom_lock = true;
1445 }
1446
1447 if (failed) {
1448 /*
1449 * OK, we failed to lock the whole subtree so we have
1450 * to clean up what we set up to the failing subtree
1451 */
1452 for_each_mem_cgroup_tree(iter, memcg) {
1453 if (iter == failed) {
1454 mem_cgroup_iter_break(memcg, iter);
1455 break;
1456 }
1457 iter->oom_lock = false;
1458 }
1459 } else
1460 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1461
1462 spin_unlock(&memcg_oom_lock);
1463
1464 return !failed;
1465 }
1466
1467 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1468 {
1469 struct mem_cgroup *iter;
1470
1471 spin_lock(&memcg_oom_lock);
1472 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1473 for_each_mem_cgroup_tree(iter, memcg)
1474 iter->oom_lock = false;
1475 spin_unlock(&memcg_oom_lock);
1476 }
1477
1478 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1479 {
1480 struct mem_cgroup *iter;
1481
1482 spin_lock(&memcg_oom_lock);
1483 for_each_mem_cgroup_tree(iter, memcg)
1484 iter->under_oom++;
1485 spin_unlock(&memcg_oom_lock);
1486 }
1487
1488 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1489 {
1490 struct mem_cgroup *iter;
1491
1492 /*
1493 * When a new child is created while the hierarchy is under oom,
1494 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1495 */
1496 spin_lock(&memcg_oom_lock);
1497 for_each_mem_cgroup_tree(iter, memcg)
1498 if (iter->under_oom > 0)
1499 iter->under_oom--;
1500 spin_unlock(&memcg_oom_lock);
1501 }
1502
1503 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1504
1505 struct oom_wait_info {
1506 struct mem_cgroup *memcg;
1507 wait_queue_entry_t wait;
1508 };
1509
1510 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1511 unsigned mode, int sync, void *arg)
1512 {
1513 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1514 struct mem_cgroup *oom_wait_memcg;
1515 struct oom_wait_info *oom_wait_info;
1516
1517 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1518 oom_wait_memcg = oom_wait_info->memcg;
1519
1520 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1521 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1522 return 0;
1523 return autoremove_wake_function(wait, mode, sync, arg);
1524 }
1525
1526 static void memcg_oom_recover(struct mem_cgroup *memcg)
1527 {
1528 /*
1529 * For the following lockless ->under_oom test, the only required
1530 * guarantee is that it must see the state asserted by an OOM when
1531 * this function is called as a result of userland actions
1532 * triggered by the notification of the OOM. This is trivially
1533 * achieved by invoking mem_cgroup_mark_under_oom() before
1534 * triggering notification.
1535 */
1536 if (memcg && memcg->under_oom)
1537 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1538 }
1539
1540 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1541 {
1542 if (!current->memcg_may_oom)
1543 return;
1544 /*
1545 * We are in the middle of the charge context here, so we
1546 * don't want to block when potentially sitting on a callstack
1547 * that holds all kinds of filesystem and mm locks.
1548 *
1549 * Also, the caller may handle a failed allocation gracefully
1550 * (like optional page cache readahead) and so an OOM killer
1551 * invocation might not even be necessary.
1552 *
1553 * That's why we don't do anything here except remember the
1554 * OOM context and then deal with it at the end of the page
1555 * fault when the stack is unwound, the locks are released,
1556 * and when we know whether the fault was overall successful.
1557 */
1558 css_get(&memcg->css);
1559 current->memcg_in_oom = memcg;
1560 current->memcg_oom_gfp_mask = mask;
1561 current->memcg_oom_order = order;
1562 }
1563
1564 /**
1565 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1566 * @handle: actually kill/wait or just clean up the OOM state
1567 *
1568 * This has to be called at the end of a page fault if the memcg OOM
1569 * handler was enabled.
1570 *
1571 * Memcg supports userspace OOM handling where failed allocations must
1572 * sleep on a waitqueue until the userspace task resolves the
1573 * situation. Sleeping directly in the charge context with all kinds
1574 * of locks held is not a good idea, instead we remember an OOM state
1575 * in the task and mem_cgroup_oom_synchronize() has to be called at
1576 * the end of the page fault to complete the OOM handling.
1577 *
1578 * Returns %true if an ongoing memcg OOM situation was detected and
1579 * completed, %false otherwise.
1580 */
1581 bool mem_cgroup_oom_synchronize(bool handle)
1582 {
1583 struct mem_cgroup *memcg = current->memcg_in_oom;
1584 struct oom_wait_info owait;
1585 bool locked;
1586
1587 /* OOM is global, do not handle */
1588 if (!memcg)
1589 return false;
1590
1591 if (!handle)
1592 goto cleanup;
1593
1594 owait.memcg = memcg;
1595 owait.wait.flags = 0;
1596 owait.wait.func = memcg_oom_wake_function;
1597 owait.wait.private = current;
1598 INIT_LIST_HEAD(&owait.wait.entry);
1599
1600 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1601 mem_cgroup_mark_under_oom(memcg);
1602
1603 locked = mem_cgroup_oom_trylock(memcg);
1604
1605 if (locked)
1606 mem_cgroup_oom_notify(memcg);
1607
1608 if (locked && !memcg->oom_kill_disable) {
1609 mem_cgroup_unmark_under_oom(memcg);
1610 finish_wait(&memcg_oom_waitq, &owait.wait);
1611 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1612 current->memcg_oom_order);
1613 } else {
1614 schedule();
1615 mem_cgroup_unmark_under_oom(memcg);
1616 finish_wait(&memcg_oom_waitq, &owait.wait);
1617 }
1618
1619 if (locked) {
1620 mem_cgroup_oom_unlock(memcg);
1621 /*
1622 * There is no guarantee that an OOM-lock contender
1623 * sees the wakeups triggered by the OOM kill
1624 * uncharges. Wake any sleepers explicitely.
1625 */
1626 memcg_oom_recover(memcg);
1627 }
1628 cleanup:
1629 current->memcg_in_oom = NULL;
1630 css_put(&memcg->css);
1631 return true;
1632 }
1633
1634 /**
1635 * lock_page_memcg - lock a page->mem_cgroup binding
1636 * @page: the page
1637 *
1638 * This function protects unlocked LRU pages from being moved to
1639 * another cgroup.
1640 *
1641 * It ensures lifetime of the returned memcg. Caller is responsible
1642 * for the lifetime of the page; __unlock_page_memcg() is available
1643 * when @page might get freed inside the locked section.
1644 */
1645 struct mem_cgroup *lock_page_memcg(struct page *page)
1646 {
1647 struct mem_cgroup *memcg;
1648 unsigned long flags;
1649
1650 /*
1651 * The RCU lock is held throughout the transaction. The fast
1652 * path can get away without acquiring the memcg->move_lock
1653 * because page moving starts with an RCU grace period.
1654 *
1655 * The RCU lock also protects the memcg from being freed when
1656 * the page state that is going to change is the only thing
1657 * preventing the page itself from being freed. E.g. writeback
1658 * doesn't hold a page reference and relies on PG_writeback to
1659 * keep off truncation, migration and so forth.
1660 */
1661 rcu_read_lock();
1662
1663 if (mem_cgroup_disabled())
1664 return NULL;
1665 again:
1666 memcg = page->mem_cgroup;
1667 if (unlikely(!memcg))
1668 return NULL;
1669
1670 if (atomic_read(&memcg->moving_account) <= 0)
1671 return memcg;
1672
1673 spin_lock_irqsave(&memcg->move_lock, flags);
1674 if (memcg != page->mem_cgroup) {
1675 spin_unlock_irqrestore(&memcg->move_lock, flags);
1676 goto again;
1677 }
1678
1679 /*
1680 * When charge migration first begins, we can have locked and
1681 * unlocked page stat updates happening concurrently. Track
1682 * the task who has the lock for unlock_page_memcg().
1683 */
1684 memcg->move_lock_task = current;
1685 memcg->move_lock_flags = flags;
1686
1687 return memcg;
1688 }
1689 EXPORT_SYMBOL(lock_page_memcg);
1690
1691 /**
1692 * __unlock_page_memcg - unlock and unpin a memcg
1693 * @memcg: the memcg
1694 *
1695 * Unlock and unpin a memcg returned by lock_page_memcg().
1696 */
1697 void __unlock_page_memcg(struct mem_cgroup *memcg)
1698 {
1699 if (memcg && memcg->move_lock_task == current) {
1700 unsigned long flags = memcg->move_lock_flags;
1701
1702 memcg->move_lock_task = NULL;
1703 memcg->move_lock_flags = 0;
1704
1705 spin_unlock_irqrestore(&memcg->move_lock, flags);
1706 }
1707
1708 rcu_read_unlock();
1709 }
1710
1711 /**
1712 * unlock_page_memcg - unlock a page->mem_cgroup binding
1713 * @page: the page
1714 */
1715 void unlock_page_memcg(struct page *page)
1716 {
1717 __unlock_page_memcg(page->mem_cgroup);
1718 }
1719 EXPORT_SYMBOL(unlock_page_memcg);
1720
1721 /*
1722 * size of first charge trial. "32" comes from vmscan.c's magic value.
1723 * TODO: maybe necessary to use big numbers in big irons.
1724 */
1725 #define CHARGE_BATCH 32U
1726 struct memcg_stock_pcp {
1727 struct mem_cgroup *cached; /* this never be root cgroup */
1728 unsigned int nr_pages;
1729 struct work_struct work;
1730 unsigned long flags;
1731 #define FLUSHING_CACHED_CHARGE 0
1732 };
1733 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1734 static DEFINE_MUTEX(percpu_charge_mutex);
1735
1736 /**
1737 * consume_stock: Try to consume stocked charge on this cpu.
1738 * @memcg: memcg to consume from.
1739 * @nr_pages: how many pages to charge.
1740 *
1741 * The charges will only happen if @memcg matches the current cpu's memcg
1742 * stock, and at least @nr_pages are available in that stock. Failure to
1743 * service an allocation will refill the stock.
1744 *
1745 * returns true if successful, false otherwise.
1746 */
1747 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1748 {
1749 struct memcg_stock_pcp *stock;
1750 unsigned long flags;
1751 bool ret = false;
1752
1753 if (nr_pages > CHARGE_BATCH)
1754 return ret;
1755
1756 local_irq_save(flags);
1757
1758 stock = this_cpu_ptr(&memcg_stock);
1759 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1760 stock->nr_pages -= nr_pages;
1761 ret = true;
1762 }
1763
1764 local_irq_restore(flags);
1765
1766 return ret;
1767 }
1768
1769 /*
1770 * Returns stocks cached in percpu and reset cached information.
1771 */
1772 static void drain_stock(struct memcg_stock_pcp *stock)
1773 {
1774 struct mem_cgroup *old = stock->cached;
1775
1776 if (stock->nr_pages) {
1777 page_counter_uncharge(&old->memory, stock->nr_pages);
1778 if (do_memsw_account())
1779 page_counter_uncharge(&old->memsw, stock->nr_pages);
1780 css_put_many(&old->css, stock->nr_pages);
1781 stock->nr_pages = 0;
1782 }
1783 stock->cached = NULL;
1784 }
1785
1786 static void drain_local_stock(struct work_struct *dummy)
1787 {
1788 struct memcg_stock_pcp *stock;
1789 unsigned long flags;
1790
1791 /*
1792 * The only protection from memory hotplug vs. drain_stock races is
1793 * that we always operate on local CPU stock here with IRQ disabled
1794 */
1795 local_irq_save(flags);
1796
1797 stock = this_cpu_ptr(&memcg_stock);
1798 drain_stock(stock);
1799 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1800
1801 local_irq_restore(flags);
1802 }
1803
1804 /*
1805 * Cache charges(val) to local per_cpu area.
1806 * This will be consumed by consume_stock() function, later.
1807 */
1808 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1809 {
1810 struct memcg_stock_pcp *stock;
1811 unsigned long flags;
1812
1813 local_irq_save(flags);
1814
1815 stock = this_cpu_ptr(&memcg_stock);
1816 if (stock->cached != memcg) { /* reset if necessary */
1817 drain_stock(stock);
1818 stock->cached = memcg;
1819 }
1820 stock->nr_pages += nr_pages;
1821
1822 if (stock->nr_pages > CHARGE_BATCH)
1823 drain_stock(stock);
1824
1825 local_irq_restore(flags);
1826 }
1827
1828 /*
1829 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1830 * of the hierarchy under it.
1831 */
1832 static void drain_all_stock(struct mem_cgroup *root_memcg)
1833 {
1834 int cpu, curcpu;
1835
1836 /* If someone's already draining, avoid adding running more workers. */
1837 if (!mutex_trylock(&percpu_charge_mutex))
1838 return;
1839 /*
1840 * Notify other cpus that system-wide "drain" is running
1841 * We do not care about races with the cpu hotplug because cpu down
1842 * as well as workers from this path always operate on the local
1843 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1844 */
1845 curcpu = get_cpu();
1846 for_each_online_cpu(cpu) {
1847 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1848 struct mem_cgroup *memcg;
1849
1850 memcg = stock->cached;
1851 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1852 continue;
1853 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1854 css_put(&memcg->css);
1855 continue;
1856 }
1857 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1858 if (cpu == curcpu)
1859 drain_local_stock(&stock->work);
1860 else
1861 schedule_work_on(cpu, &stock->work);
1862 }
1863 css_put(&memcg->css);
1864 }
1865 put_cpu();
1866 mutex_unlock(&percpu_charge_mutex);
1867 }
1868
1869 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1870 {
1871 struct memcg_stock_pcp *stock;
1872
1873 stock = &per_cpu(memcg_stock, cpu);
1874 drain_stock(stock);
1875 return 0;
1876 }
1877
1878 static void reclaim_high(struct mem_cgroup *memcg,
1879 unsigned int nr_pages,
1880 gfp_t gfp_mask)
1881 {
1882 do {
1883 if (page_counter_read(&memcg->memory) <= memcg->high)
1884 continue;
1885 mem_cgroup_event(memcg, MEMCG_HIGH);
1886 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1887 } while ((memcg = parent_mem_cgroup(memcg)));
1888 }
1889
1890 static void high_work_func(struct work_struct *work)
1891 {
1892 struct mem_cgroup *memcg;
1893
1894 memcg = container_of(work, struct mem_cgroup, high_work);
1895 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1896 }
1897
1898 /*
1899 * Scheduled by try_charge() to be executed from the userland return path
1900 * and reclaims memory over the high limit.
1901 */
1902 void mem_cgroup_handle_over_high(void)
1903 {
1904 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1905 struct mem_cgroup *memcg;
1906
1907 if (likely(!nr_pages))
1908 return;
1909
1910 memcg = get_mem_cgroup_from_mm(current->mm);
1911 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1912 css_put(&memcg->css);
1913 current->memcg_nr_pages_over_high = 0;
1914 }
1915
1916 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1917 unsigned int nr_pages)
1918 {
1919 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1920 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1921 struct mem_cgroup *mem_over_limit;
1922 struct page_counter *counter;
1923 unsigned long nr_reclaimed;
1924 bool may_swap = true;
1925 bool drained = false;
1926
1927 if (mem_cgroup_is_root(memcg))
1928 return 0;
1929 retry:
1930 if (consume_stock(memcg, nr_pages))
1931 return 0;
1932
1933 if (!do_memsw_account() ||
1934 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1935 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1936 goto done_restock;
1937 if (do_memsw_account())
1938 page_counter_uncharge(&memcg->memsw, batch);
1939 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1940 } else {
1941 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1942 may_swap = false;
1943 }
1944
1945 if (batch > nr_pages) {
1946 batch = nr_pages;
1947 goto retry;
1948 }
1949
1950 /*
1951 * Unlike in global OOM situations, memcg is not in a physical
1952 * memory shortage. Allow dying and OOM-killed tasks to
1953 * bypass the last charges so that they can exit quickly and
1954 * free their memory.
1955 */
1956 if (unlikely(should_force_charge()))
1957 goto force;
1958
1959 /*
1960 * Prevent unbounded recursion when reclaim operations need to
1961 * allocate memory. This might exceed the limits temporarily,
1962 * but we prefer facilitating memory reclaim and getting back
1963 * under the limit over triggering OOM kills in these cases.
1964 */
1965 if (unlikely(current->flags & PF_MEMALLOC))
1966 goto force;
1967
1968 if (unlikely(task_in_memcg_oom(current)))
1969 goto nomem;
1970
1971 if (!gfpflags_allow_blocking(gfp_mask))
1972 goto nomem;
1973
1974 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1975
1976 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1977 gfp_mask, may_swap);
1978
1979 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1980 goto retry;
1981
1982 if (!drained) {
1983 drain_all_stock(mem_over_limit);
1984 drained = true;
1985 goto retry;
1986 }
1987
1988 if (gfp_mask & __GFP_NORETRY)
1989 goto nomem;
1990 /*
1991 * Even though the limit is exceeded at this point, reclaim
1992 * may have been able to free some pages. Retry the charge
1993 * before killing the task.
1994 *
1995 * Only for regular pages, though: huge pages are rather
1996 * unlikely to succeed so close to the limit, and we fall back
1997 * to regular pages anyway in case of failure.
1998 */
1999 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2000 goto retry;
2001 /*
2002 * At task move, charge accounts can be doubly counted. So, it's
2003 * better to wait until the end of task_move if something is going on.
2004 */
2005 if (mem_cgroup_wait_acct_move(mem_over_limit))
2006 goto retry;
2007
2008 if (nr_retries--)
2009 goto retry;
2010
2011 if (gfp_mask & __GFP_NOFAIL)
2012 goto force;
2013
2014 if (fatal_signal_pending(current))
2015 goto force;
2016
2017 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2018
2019 mem_cgroup_oom(mem_over_limit, gfp_mask,
2020 get_order(nr_pages * PAGE_SIZE));
2021 nomem:
2022 if (!(gfp_mask & __GFP_NOFAIL))
2023 return -ENOMEM;
2024 force:
2025 /*
2026 * The allocation either can't fail or will lead to more memory
2027 * being freed very soon. Allow memory usage go over the limit
2028 * temporarily by force charging it.
2029 */
2030 page_counter_charge(&memcg->memory, nr_pages);
2031 if (do_memsw_account())
2032 page_counter_charge(&memcg->memsw, nr_pages);
2033 css_get_many(&memcg->css, nr_pages);
2034
2035 return 0;
2036
2037 done_restock:
2038 css_get_many(&memcg->css, batch);
2039 if (batch > nr_pages)
2040 refill_stock(memcg, batch - nr_pages);
2041
2042 /*
2043 * If the hierarchy is above the normal consumption range, schedule
2044 * reclaim on returning to userland. We can perform reclaim here
2045 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2046 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2047 * not recorded as it most likely matches current's and won't
2048 * change in the meantime. As high limit is checked again before
2049 * reclaim, the cost of mismatch is negligible.
2050 */
2051 do {
2052 if (page_counter_read(&memcg->memory) > memcg->high) {
2053 /* Don't bother a random interrupted task */
2054 if (in_interrupt()) {
2055 schedule_work(&memcg->high_work);
2056 break;
2057 }
2058 current->memcg_nr_pages_over_high += batch;
2059 set_notify_resume(current);
2060 break;
2061 }
2062 } while ((memcg = parent_mem_cgroup(memcg)));
2063
2064 return 0;
2065 }
2066
2067 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2068 {
2069 if (mem_cgroup_is_root(memcg))
2070 return;
2071
2072 page_counter_uncharge(&memcg->memory, nr_pages);
2073 if (do_memsw_account())
2074 page_counter_uncharge(&memcg->memsw, nr_pages);
2075
2076 css_put_many(&memcg->css, nr_pages);
2077 }
2078
2079 static void lock_page_lru(struct page *page, int *isolated)
2080 {
2081 struct zone *zone = page_zone(page);
2082
2083 spin_lock_irq(zone_lru_lock(zone));
2084 if (PageLRU(page)) {
2085 struct lruvec *lruvec;
2086
2087 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2088 ClearPageLRU(page);
2089 del_page_from_lru_list(page, lruvec, page_lru(page));
2090 *isolated = 1;
2091 } else
2092 *isolated = 0;
2093 }
2094
2095 static void unlock_page_lru(struct page *page, int isolated)
2096 {
2097 struct zone *zone = page_zone(page);
2098
2099 if (isolated) {
2100 struct lruvec *lruvec;
2101
2102 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2103 VM_BUG_ON_PAGE(PageLRU(page), page);
2104 SetPageLRU(page);
2105 add_page_to_lru_list(page, lruvec, page_lru(page));
2106 }
2107 spin_unlock_irq(zone_lru_lock(zone));
2108 }
2109
2110 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2111 bool lrucare)
2112 {
2113 int isolated;
2114
2115 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2116
2117 /*
2118 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2119 * may already be on some other mem_cgroup's LRU. Take care of it.
2120 */
2121 if (lrucare)
2122 lock_page_lru(page, &isolated);
2123
2124 /*
2125 * Nobody should be changing or seriously looking at
2126 * page->mem_cgroup at this point:
2127 *
2128 * - the page is uncharged
2129 *
2130 * - the page is off-LRU
2131 *
2132 * - an anonymous fault has exclusive page access, except for
2133 * a locked page table
2134 *
2135 * - a page cache insertion, a swapin fault, or a migration
2136 * have the page locked
2137 */
2138 page->mem_cgroup = memcg;
2139
2140 if (lrucare)
2141 unlock_page_lru(page, isolated);
2142 }
2143
2144 #ifndef CONFIG_SLOB
2145 static int memcg_alloc_cache_id(void)
2146 {
2147 int id, size;
2148 int err;
2149
2150 id = ida_simple_get(&memcg_cache_ida,
2151 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2152 if (id < 0)
2153 return id;
2154
2155 if (id < memcg_nr_cache_ids)
2156 return id;
2157
2158 /*
2159 * There's no space for the new id in memcg_caches arrays,
2160 * so we have to grow them.
2161 */
2162 down_write(&memcg_cache_ids_sem);
2163
2164 size = 2 * (id + 1);
2165 if (size < MEMCG_CACHES_MIN_SIZE)
2166 size = MEMCG_CACHES_MIN_SIZE;
2167 else if (size > MEMCG_CACHES_MAX_SIZE)
2168 size = MEMCG_CACHES_MAX_SIZE;
2169
2170 err = memcg_update_all_caches(size);
2171 if (!err)
2172 err = memcg_update_all_list_lrus(size);
2173 if (!err)
2174 memcg_nr_cache_ids = size;
2175
2176 up_write(&memcg_cache_ids_sem);
2177
2178 if (err) {
2179 ida_simple_remove(&memcg_cache_ida, id);
2180 return err;
2181 }
2182 return id;
2183 }
2184
2185 static void memcg_free_cache_id(int id)
2186 {
2187 ida_simple_remove(&memcg_cache_ida, id);
2188 }
2189
2190 struct memcg_kmem_cache_create_work {
2191 struct mem_cgroup *memcg;
2192 struct kmem_cache *cachep;
2193 struct work_struct work;
2194 };
2195
2196 static void memcg_kmem_cache_create_func(struct work_struct *w)
2197 {
2198 struct memcg_kmem_cache_create_work *cw =
2199 container_of(w, struct memcg_kmem_cache_create_work, work);
2200 struct mem_cgroup *memcg = cw->memcg;
2201 struct kmem_cache *cachep = cw->cachep;
2202
2203 memcg_create_kmem_cache(memcg, cachep);
2204
2205 css_put(&memcg->css);
2206 kfree(cw);
2207 }
2208
2209 /*
2210 * Enqueue the creation of a per-memcg kmem_cache.
2211 */
2212 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 struct kmem_cache *cachep)
2214 {
2215 struct memcg_kmem_cache_create_work *cw;
2216
2217 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2218 if (!cw)
2219 return;
2220
2221 css_get(&memcg->css);
2222
2223 cw->memcg = memcg;
2224 cw->cachep = cachep;
2225 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2226
2227 queue_work(memcg_kmem_cache_wq, &cw->work);
2228 }
2229
2230 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2231 struct kmem_cache *cachep)
2232 {
2233 /*
2234 * We need to stop accounting when we kmalloc, because if the
2235 * corresponding kmalloc cache is not yet created, the first allocation
2236 * in __memcg_schedule_kmem_cache_create will recurse.
2237 *
2238 * However, it is better to enclose the whole function. Depending on
2239 * the debugging options enabled, INIT_WORK(), for instance, can
2240 * trigger an allocation. This too, will make us recurse. Because at
2241 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2242 * the safest choice is to do it like this, wrapping the whole function.
2243 */
2244 current->memcg_kmem_skip_account = 1;
2245 __memcg_schedule_kmem_cache_create(memcg, cachep);
2246 current->memcg_kmem_skip_account = 0;
2247 }
2248
2249 static inline bool memcg_kmem_bypass(void)
2250 {
2251 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2252 return true;
2253 return false;
2254 }
2255
2256 /**
2257 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2258 * @cachep: the original global kmem cache
2259 *
2260 * Return the kmem_cache we're supposed to use for a slab allocation.
2261 * We try to use the current memcg's version of the cache.
2262 *
2263 * If the cache does not exist yet, if we are the first user of it, we
2264 * create it asynchronously in a workqueue and let the current allocation
2265 * go through with the original cache.
2266 *
2267 * This function takes a reference to the cache it returns to assure it
2268 * won't get destroyed while we are working with it. Once the caller is
2269 * done with it, memcg_kmem_put_cache() must be called to release the
2270 * reference.
2271 */
2272 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2273 {
2274 struct mem_cgroup *memcg;
2275 struct kmem_cache *memcg_cachep;
2276 int kmemcg_id;
2277
2278 VM_BUG_ON(!is_root_cache(cachep));
2279
2280 if (memcg_kmem_bypass())
2281 return cachep;
2282
2283 if (current->memcg_kmem_skip_account)
2284 return cachep;
2285
2286 memcg = get_mem_cgroup_from_mm(current->mm);
2287 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2288 if (kmemcg_id < 0)
2289 goto out;
2290
2291 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2292 if (likely(memcg_cachep))
2293 return memcg_cachep;
2294
2295 /*
2296 * If we are in a safe context (can wait, and not in interrupt
2297 * context), we could be be predictable and return right away.
2298 * This would guarantee that the allocation being performed
2299 * already belongs in the new cache.
2300 *
2301 * However, there are some clashes that can arrive from locking.
2302 * For instance, because we acquire the slab_mutex while doing
2303 * memcg_create_kmem_cache, this means no further allocation
2304 * could happen with the slab_mutex held. So it's better to
2305 * defer everything.
2306 */
2307 memcg_schedule_kmem_cache_create(memcg, cachep);
2308 out:
2309 css_put(&memcg->css);
2310 return cachep;
2311 }
2312
2313 /**
2314 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2315 * @cachep: the cache returned by memcg_kmem_get_cache
2316 */
2317 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2318 {
2319 if (!is_root_cache(cachep))
2320 css_put(&cachep->memcg_params.memcg->css);
2321 }
2322
2323 /**
2324 * memcg_kmem_charge: charge a kmem page
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 * @memcg: memory cgroup to charge
2329 *
2330 * Returns 0 on success, an error code on failure.
2331 */
2332 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2333 struct mem_cgroup *memcg)
2334 {
2335 unsigned int nr_pages = 1 << order;
2336 struct page_counter *counter;
2337 int ret;
2338
2339 ret = try_charge(memcg, gfp, nr_pages);
2340 if (ret)
2341 return ret;
2342
2343 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2344 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2345 cancel_charge(memcg, nr_pages);
2346 return -ENOMEM;
2347 }
2348
2349 page->mem_cgroup = memcg;
2350
2351 return 0;
2352 }
2353
2354 /**
2355 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2356 * @page: page to charge
2357 * @gfp: reclaim mode
2358 * @order: allocation order
2359 *
2360 * Returns 0 on success, an error code on failure.
2361 */
2362 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2363 {
2364 struct mem_cgroup *memcg;
2365 int ret = 0;
2366
2367 if (memcg_kmem_bypass())
2368 return 0;
2369
2370 memcg = get_mem_cgroup_from_mm(current->mm);
2371 if (!mem_cgroup_is_root(memcg)) {
2372 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2373 if (!ret)
2374 __SetPageKmemcg(page);
2375 }
2376 css_put(&memcg->css);
2377 return ret;
2378 }
2379 /**
2380 * memcg_kmem_uncharge: uncharge a kmem page
2381 * @page: page to uncharge
2382 * @order: allocation order
2383 */
2384 void memcg_kmem_uncharge(struct page *page, int order)
2385 {
2386 struct mem_cgroup *memcg = page->mem_cgroup;
2387 unsigned int nr_pages = 1 << order;
2388
2389 if (!memcg)
2390 return;
2391
2392 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2393
2394 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2395 page_counter_uncharge(&memcg->kmem, nr_pages);
2396
2397 page_counter_uncharge(&memcg->memory, nr_pages);
2398 if (do_memsw_account())
2399 page_counter_uncharge(&memcg->memsw, nr_pages);
2400
2401 page->mem_cgroup = NULL;
2402
2403 /* slab pages do not have PageKmemcg flag set */
2404 if (PageKmemcg(page))
2405 __ClearPageKmemcg(page);
2406
2407 css_put_many(&memcg->css, nr_pages);
2408 }
2409 #endif /* !CONFIG_SLOB */
2410
2411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2412
2413 /*
2414 * Because tail pages are not marked as "used", set it. We're under
2415 * zone_lru_lock and migration entries setup in all page mappings.
2416 */
2417 void mem_cgroup_split_huge_fixup(struct page *head)
2418 {
2419 int i;
2420
2421 if (mem_cgroup_disabled())
2422 return;
2423
2424 for (i = 1; i < HPAGE_PMD_NR; i++)
2425 head[i].mem_cgroup = head->mem_cgroup;
2426
2427 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2428 HPAGE_PMD_NR);
2429 }
2430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2431
2432 #ifdef CONFIG_MEMCG_SWAP
2433 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2434 int nr_entries)
2435 {
2436 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2437 }
2438
2439 /**
2440 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2441 * @entry: swap entry to be moved
2442 * @from: mem_cgroup which the entry is moved from
2443 * @to: mem_cgroup which the entry is moved to
2444 *
2445 * It succeeds only when the swap_cgroup's record for this entry is the same
2446 * as the mem_cgroup's id of @from.
2447 *
2448 * Returns 0 on success, -EINVAL on failure.
2449 *
2450 * The caller must have charged to @to, IOW, called page_counter_charge() about
2451 * both res and memsw, and called css_get().
2452 */
2453 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2454 struct mem_cgroup *from, struct mem_cgroup *to)
2455 {
2456 unsigned short old_id, new_id;
2457
2458 old_id = mem_cgroup_id(from);
2459 new_id = mem_cgroup_id(to);
2460
2461 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2462 mem_cgroup_swap_statistics(from, -1);
2463 mem_cgroup_swap_statistics(to, 1);
2464 return 0;
2465 }
2466 return -EINVAL;
2467 }
2468 #else
2469 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2470 struct mem_cgroup *from, struct mem_cgroup *to)
2471 {
2472 return -EINVAL;
2473 }
2474 #endif
2475
2476 static DEFINE_MUTEX(memcg_limit_mutex);
2477
2478 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2479 unsigned long limit)
2480 {
2481 unsigned long curusage;
2482 unsigned long oldusage;
2483 bool enlarge = false;
2484 int retry_count;
2485 int ret;
2486
2487 /*
2488 * For keeping hierarchical_reclaim simple, how long we should retry
2489 * is depends on callers. We set our retry-count to be function
2490 * of # of children which we should visit in this loop.
2491 */
2492 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2493 mem_cgroup_count_children(memcg);
2494
2495 oldusage = page_counter_read(&memcg->memory);
2496
2497 do {
2498 if (signal_pending(current)) {
2499 ret = -EINTR;
2500 break;
2501 }
2502
2503 mutex_lock(&memcg_limit_mutex);
2504 if (limit > memcg->memsw.limit) {
2505 mutex_unlock(&memcg_limit_mutex);
2506 ret = -EINVAL;
2507 break;
2508 }
2509 if (limit > memcg->memory.limit)
2510 enlarge = true;
2511 ret = page_counter_limit(&memcg->memory, limit);
2512 mutex_unlock(&memcg_limit_mutex);
2513
2514 if (!ret)
2515 break;
2516
2517 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2518
2519 curusage = page_counter_read(&memcg->memory);
2520 /* Usage is reduced ? */
2521 if (curusage >= oldusage)
2522 retry_count--;
2523 else
2524 oldusage = curusage;
2525 } while (retry_count);
2526
2527 if (!ret && enlarge)
2528 memcg_oom_recover(memcg);
2529
2530 return ret;
2531 }
2532
2533 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2534 unsigned long limit)
2535 {
2536 unsigned long curusage;
2537 unsigned long oldusage;
2538 bool enlarge = false;
2539 int retry_count;
2540 int ret;
2541
2542 /* see mem_cgroup_resize_res_limit */
2543 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2544 mem_cgroup_count_children(memcg);
2545
2546 oldusage = page_counter_read(&memcg->memsw);
2547
2548 do {
2549 if (signal_pending(current)) {
2550 ret = -EINTR;
2551 break;
2552 }
2553
2554 mutex_lock(&memcg_limit_mutex);
2555 if (limit < memcg->memory.limit) {
2556 mutex_unlock(&memcg_limit_mutex);
2557 ret = -EINVAL;
2558 break;
2559 }
2560 if (limit > memcg->memsw.limit)
2561 enlarge = true;
2562 ret = page_counter_limit(&memcg->memsw, limit);
2563 mutex_unlock(&memcg_limit_mutex);
2564
2565 if (!ret)
2566 break;
2567
2568 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2569
2570 curusage = page_counter_read(&memcg->memsw);
2571 /* Usage is reduced ? */
2572 if (curusage >= oldusage)
2573 retry_count--;
2574 else
2575 oldusage = curusage;
2576 } while (retry_count);
2577
2578 if (!ret && enlarge)
2579 memcg_oom_recover(memcg);
2580
2581 return ret;
2582 }
2583
2584 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2585 gfp_t gfp_mask,
2586 unsigned long *total_scanned)
2587 {
2588 unsigned long nr_reclaimed = 0;
2589 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2590 unsigned long reclaimed;
2591 int loop = 0;
2592 struct mem_cgroup_tree_per_node *mctz;
2593 unsigned long excess;
2594 unsigned long nr_scanned;
2595
2596 if (order > 0)
2597 return 0;
2598
2599 mctz = soft_limit_tree_node(pgdat->node_id);
2600
2601 /*
2602 * Do not even bother to check the largest node if the root
2603 * is empty. Do it lockless to prevent lock bouncing. Races
2604 * are acceptable as soft limit is best effort anyway.
2605 */
2606 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2607 return 0;
2608
2609 /*
2610 * This loop can run a while, specially if mem_cgroup's continuously
2611 * keep exceeding their soft limit and putting the system under
2612 * pressure
2613 */
2614 do {
2615 if (next_mz)
2616 mz = next_mz;
2617 else
2618 mz = mem_cgroup_largest_soft_limit_node(mctz);
2619 if (!mz)
2620 break;
2621
2622 nr_scanned = 0;
2623 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2624 gfp_mask, &nr_scanned);
2625 nr_reclaimed += reclaimed;
2626 *total_scanned += nr_scanned;
2627 spin_lock_irq(&mctz->lock);
2628 __mem_cgroup_remove_exceeded(mz, mctz);
2629
2630 /*
2631 * If we failed to reclaim anything from this memory cgroup
2632 * it is time to move on to the next cgroup
2633 */
2634 next_mz = NULL;
2635 if (!reclaimed)
2636 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2637
2638 excess = soft_limit_excess(mz->memcg);
2639 /*
2640 * One school of thought says that we should not add
2641 * back the node to the tree if reclaim returns 0.
2642 * But our reclaim could return 0, simply because due
2643 * to priority we are exposing a smaller subset of
2644 * memory to reclaim from. Consider this as a longer
2645 * term TODO.
2646 */
2647 /* If excess == 0, no tree ops */
2648 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2649 spin_unlock_irq(&mctz->lock);
2650 css_put(&mz->memcg->css);
2651 loop++;
2652 /*
2653 * Could not reclaim anything and there are no more
2654 * mem cgroups to try or we seem to be looping without
2655 * reclaiming anything.
2656 */
2657 if (!nr_reclaimed &&
2658 (next_mz == NULL ||
2659 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2660 break;
2661 } while (!nr_reclaimed);
2662 if (next_mz)
2663 css_put(&next_mz->memcg->css);
2664 return nr_reclaimed;
2665 }
2666
2667 /*
2668 * Test whether @memcg has children, dead or alive. Note that this
2669 * function doesn't care whether @memcg has use_hierarchy enabled and
2670 * returns %true if there are child csses according to the cgroup
2671 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2672 */
2673 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2674 {
2675 bool ret;
2676
2677 rcu_read_lock();
2678 ret = css_next_child(NULL, &memcg->css);
2679 rcu_read_unlock();
2680 return ret;
2681 }
2682
2683 /*
2684 * Reclaims as many pages from the given memcg as possible.
2685 *
2686 * Caller is responsible for holding css reference for memcg.
2687 */
2688 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2689 {
2690 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2691
2692 /* we call try-to-free pages for make this cgroup empty */
2693 lru_add_drain_all();
2694 /* try to free all pages in this cgroup */
2695 while (nr_retries && page_counter_read(&memcg->memory)) {
2696 int progress;
2697
2698 if (signal_pending(current))
2699 return -EINTR;
2700
2701 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2702 GFP_KERNEL, true);
2703 if (!progress) {
2704 nr_retries--;
2705 /* maybe some writeback is necessary */
2706 congestion_wait(BLK_RW_ASYNC, HZ/10);
2707 }
2708
2709 }
2710
2711 return 0;
2712 }
2713
2714 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2715 char *buf, size_t nbytes,
2716 loff_t off)
2717 {
2718 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2719
2720 if (mem_cgroup_is_root(memcg))
2721 return -EINVAL;
2722 return mem_cgroup_force_empty(memcg) ?: nbytes;
2723 }
2724
2725 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2726 struct cftype *cft)
2727 {
2728 return mem_cgroup_from_css(css)->use_hierarchy;
2729 }
2730
2731 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2732 struct cftype *cft, u64 val)
2733 {
2734 int retval = 0;
2735 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2736 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2737
2738 if (memcg->use_hierarchy == val)
2739 return 0;
2740
2741 /*
2742 * If parent's use_hierarchy is set, we can't make any modifications
2743 * in the child subtrees. If it is unset, then the change can
2744 * occur, provided the current cgroup has no children.
2745 *
2746 * For the root cgroup, parent_mem is NULL, we allow value to be
2747 * set if there are no children.
2748 */
2749 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2750 (val == 1 || val == 0)) {
2751 if (!memcg_has_children(memcg))
2752 memcg->use_hierarchy = val;
2753 else
2754 retval = -EBUSY;
2755 } else
2756 retval = -EINVAL;
2757
2758 return retval;
2759 }
2760
2761 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2762 {
2763 struct mem_cgroup *iter;
2764 int i;
2765
2766 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2767
2768 for_each_mem_cgroup_tree(iter, memcg) {
2769 for (i = 0; i < MEMCG_NR_STAT; i++)
2770 stat[i] += memcg_page_state(iter, i);
2771 }
2772 }
2773
2774 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2775 {
2776 struct mem_cgroup *iter;
2777 int i;
2778
2779 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2780
2781 for_each_mem_cgroup_tree(iter, memcg) {
2782 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2783 events[i] += memcg_sum_events(iter, i);
2784 }
2785 }
2786
2787 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2788 {
2789 unsigned long val = 0;
2790
2791 if (mem_cgroup_is_root(memcg)) {
2792 struct mem_cgroup *iter;
2793
2794 for_each_mem_cgroup_tree(iter, memcg) {
2795 val += memcg_page_state(iter, MEMCG_CACHE);
2796 val += memcg_page_state(iter, MEMCG_RSS);
2797 if (swap)
2798 val += memcg_page_state(iter, MEMCG_SWAP);
2799 }
2800 } else {
2801 if (!swap)
2802 val = page_counter_read(&memcg->memory);
2803 else
2804 val = page_counter_read(&memcg->memsw);
2805 }
2806 return val;
2807 }
2808
2809 enum {
2810 RES_USAGE,
2811 RES_LIMIT,
2812 RES_MAX_USAGE,
2813 RES_FAILCNT,
2814 RES_SOFT_LIMIT,
2815 };
2816
2817 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2818 struct cftype *cft)
2819 {
2820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2821 struct page_counter *counter;
2822
2823 switch (MEMFILE_TYPE(cft->private)) {
2824 case _MEM:
2825 counter = &memcg->memory;
2826 break;
2827 case _MEMSWAP:
2828 counter = &memcg->memsw;
2829 break;
2830 case _KMEM:
2831 counter = &memcg->kmem;
2832 break;
2833 case _TCP:
2834 counter = &memcg->tcpmem;
2835 break;
2836 default:
2837 BUG();
2838 }
2839
2840 switch (MEMFILE_ATTR(cft->private)) {
2841 case RES_USAGE:
2842 if (counter == &memcg->memory)
2843 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2844 if (counter == &memcg->memsw)
2845 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2846 return (u64)page_counter_read(counter) * PAGE_SIZE;
2847 case RES_LIMIT:
2848 return (u64)counter->limit * PAGE_SIZE;
2849 case RES_MAX_USAGE:
2850 return (u64)counter->watermark * PAGE_SIZE;
2851 case RES_FAILCNT:
2852 return counter->failcnt;
2853 case RES_SOFT_LIMIT:
2854 return (u64)memcg->soft_limit * PAGE_SIZE;
2855 default:
2856 BUG();
2857 }
2858 }
2859
2860 #ifndef CONFIG_SLOB
2861 static int memcg_online_kmem(struct mem_cgroup *memcg)
2862 {
2863 int memcg_id;
2864
2865 if (cgroup_memory_nokmem)
2866 return 0;
2867
2868 BUG_ON(memcg->kmemcg_id >= 0);
2869 BUG_ON(memcg->kmem_state);
2870
2871 memcg_id = memcg_alloc_cache_id();
2872 if (memcg_id < 0)
2873 return memcg_id;
2874
2875 static_branch_inc(&memcg_kmem_enabled_key);
2876 /*
2877 * A memory cgroup is considered kmem-online as soon as it gets
2878 * kmemcg_id. Setting the id after enabling static branching will
2879 * guarantee no one starts accounting before all call sites are
2880 * patched.
2881 */
2882 memcg->kmemcg_id = memcg_id;
2883 memcg->kmem_state = KMEM_ONLINE;
2884 INIT_LIST_HEAD(&memcg->kmem_caches);
2885
2886 return 0;
2887 }
2888
2889 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2890 {
2891 struct cgroup_subsys_state *css;
2892 struct mem_cgroup *parent, *child;
2893 int kmemcg_id;
2894
2895 if (memcg->kmem_state != KMEM_ONLINE)
2896 return;
2897 /*
2898 * Clear the online state before clearing memcg_caches array
2899 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2900 * guarantees that no cache will be created for this cgroup
2901 * after we are done (see memcg_create_kmem_cache()).
2902 */
2903 memcg->kmem_state = KMEM_ALLOCATED;
2904
2905 memcg_deactivate_kmem_caches(memcg);
2906
2907 kmemcg_id = memcg->kmemcg_id;
2908 BUG_ON(kmemcg_id < 0);
2909
2910 parent = parent_mem_cgroup(memcg);
2911 if (!parent)
2912 parent = root_mem_cgroup;
2913
2914 /*
2915 * Change kmemcg_id of this cgroup and all its descendants to the
2916 * parent's id, and then move all entries from this cgroup's list_lrus
2917 * to ones of the parent. After we have finished, all list_lrus
2918 * corresponding to this cgroup are guaranteed to remain empty. The
2919 * ordering is imposed by list_lru_node->lock taken by
2920 * memcg_drain_all_list_lrus().
2921 */
2922 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2923 css_for_each_descendant_pre(css, &memcg->css) {
2924 child = mem_cgroup_from_css(css);
2925 BUG_ON(child->kmemcg_id != kmemcg_id);
2926 child->kmemcg_id = parent->kmemcg_id;
2927 if (!memcg->use_hierarchy)
2928 break;
2929 }
2930 rcu_read_unlock();
2931
2932 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2933
2934 memcg_free_cache_id(kmemcg_id);
2935 }
2936
2937 static void memcg_free_kmem(struct mem_cgroup *memcg)
2938 {
2939 /* css_alloc() failed, offlining didn't happen */
2940 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2941 memcg_offline_kmem(memcg);
2942
2943 if (memcg->kmem_state == KMEM_ALLOCATED) {
2944 memcg_destroy_kmem_caches(memcg);
2945 static_branch_dec(&memcg_kmem_enabled_key);
2946 WARN_ON(page_counter_read(&memcg->kmem));
2947 }
2948 }
2949 #else
2950 static int memcg_online_kmem(struct mem_cgroup *memcg)
2951 {
2952 return 0;
2953 }
2954 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2955 {
2956 }
2957 static void memcg_free_kmem(struct mem_cgroup *memcg)
2958 {
2959 }
2960 #endif /* !CONFIG_SLOB */
2961
2962 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2963 unsigned long limit)
2964 {
2965 int ret;
2966
2967 mutex_lock(&memcg_limit_mutex);
2968 ret = page_counter_limit(&memcg->kmem, limit);
2969 mutex_unlock(&memcg_limit_mutex);
2970 return ret;
2971 }
2972
2973 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2974 {
2975 int ret;
2976
2977 mutex_lock(&memcg_limit_mutex);
2978
2979 ret = page_counter_limit(&memcg->tcpmem, limit);
2980 if (ret)
2981 goto out;
2982
2983 if (!memcg->tcpmem_active) {
2984 /*
2985 * The active flag needs to be written after the static_key
2986 * update. This is what guarantees that the socket activation
2987 * function is the last one to run. See mem_cgroup_sk_alloc()
2988 * for details, and note that we don't mark any socket as
2989 * belonging to this memcg until that flag is up.
2990 *
2991 * We need to do this, because static_keys will span multiple
2992 * sites, but we can't control their order. If we mark a socket
2993 * as accounted, but the accounting functions are not patched in
2994 * yet, we'll lose accounting.
2995 *
2996 * We never race with the readers in mem_cgroup_sk_alloc(),
2997 * because when this value change, the code to process it is not
2998 * patched in yet.
2999 */
3000 static_branch_inc(&memcg_sockets_enabled_key);
3001 memcg->tcpmem_active = true;
3002 }
3003 out:
3004 mutex_unlock(&memcg_limit_mutex);
3005 return ret;
3006 }
3007
3008 /*
3009 * The user of this function is...
3010 * RES_LIMIT.
3011 */
3012 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3013 char *buf, size_t nbytes, loff_t off)
3014 {
3015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3016 unsigned long nr_pages;
3017 int ret;
3018
3019 buf = strstrip(buf);
3020 ret = page_counter_memparse(buf, "-1", &nr_pages);
3021 if (ret)
3022 return ret;
3023
3024 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3025 case RES_LIMIT:
3026 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3027 ret = -EINVAL;
3028 break;
3029 }
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3033 break;
3034 case _MEMSWAP:
3035 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3036 break;
3037 case _KMEM:
3038 ret = memcg_update_kmem_limit(memcg, nr_pages);
3039 break;
3040 case _TCP:
3041 ret = memcg_update_tcp_limit(memcg, nr_pages);
3042 break;
3043 }
3044 break;
3045 case RES_SOFT_LIMIT:
3046 memcg->soft_limit = nr_pages;
3047 ret = 0;
3048 break;
3049 }
3050 return ret ?: nbytes;
3051 }
3052
3053 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3054 size_t nbytes, loff_t off)
3055 {
3056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3057 struct page_counter *counter;
3058
3059 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3060 case _MEM:
3061 counter = &memcg->memory;
3062 break;
3063 case _MEMSWAP:
3064 counter = &memcg->memsw;
3065 break;
3066 case _KMEM:
3067 counter = &memcg->kmem;
3068 break;
3069 case _TCP:
3070 counter = &memcg->tcpmem;
3071 break;
3072 default:
3073 BUG();
3074 }
3075
3076 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3077 case RES_MAX_USAGE:
3078 page_counter_reset_watermark(counter);
3079 break;
3080 case RES_FAILCNT:
3081 counter->failcnt = 0;
3082 break;
3083 default:
3084 BUG();
3085 }
3086
3087 return nbytes;
3088 }
3089
3090 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3091 struct cftype *cft)
3092 {
3093 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3094 }
3095
3096 #ifdef CONFIG_MMU
3097 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3098 struct cftype *cft, u64 val)
3099 {
3100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3101
3102 if (val & ~MOVE_MASK)
3103 return -EINVAL;
3104
3105 /*
3106 * No kind of locking is needed in here, because ->can_attach() will
3107 * check this value once in the beginning of the process, and then carry
3108 * on with stale data. This means that changes to this value will only
3109 * affect task migrations starting after the change.
3110 */
3111 memcg->move_charge_at_immigrate = val;
3112 return 0;
3113 }
3114 #else
3115 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3116 struct cftype *cft, u64 val)
3117 {
3118 return -ENOSYS;
3119 }
3120 #endif
3121
3122 #ifdef CONFIG_NUMA
3123 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3124 {
3125 struct numa_stat {
3126 const char *name;
3127 unsigned int lru_mask;
3128 };
3129
3130 static const struct numa_stat stats[] = {
3131 { "total", LRU_ALL },
3132 { "file", LRU_ALL_FILE },
3133 { "anon", LRU_ALL_ANON },
3134 { "unevictable", BIT(LRU_UNEVICTABLE) },
3135 };
3136 const struct numa_stat *stat;
3137 int nid;
3138 unsigned long nr;
3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3140
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3143 seq_printf(m, "%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3145 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3146 stat->lru_mask);
3147 seq_printf(m, " N%d=%lu", nid, nr);
3148 }
3149 seq_putc(m, '\n');
3150 }
3151
3152 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3153 struct mem_cgroup *iter;
3154
3155 nr = 0;
3156 for_each_mem_cgroup_tree(iter, memcg)
3157 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3158 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3159 for_each_node_state(nid, N_MEMORY) {
3160 nr = 0;
3161 for_each_mem_cgroup_tree(iter, memcg)
3162 nr += mem_cgroup_node_nr_lru_pages(
3163 iter, nid, stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
3167 }
3168
3169 return 0;
3170 }
3171 #endif /* CONFIG_NUMA */
3172
3173 /* Universal VM events cgroup1 shows, original sort order */
3174 unsigned int memcg1_events[] = {
3175 PGPGIN,
3176 PGPGOUT,
3177 PGFAULT,
3178 PGMAJFAULT,
3179 };
3180
3181 static const char *const memcg1_event_names[] = {
3182 "pgpgin",
3183 "pgpgout",
3184 "pgfault",
3185 "pgmajfault",
3186 };
3187
3188 static int memcg_stat_show(struct seq_file *m, void *v)
3189 {
3190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3191 unsigned long memory, memsw;
3192 struct mem_cgroup *mi;
3193 unsigned int i;
3194
3195 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3196 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3197
3198 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3199 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3200 continue;
3201 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3202 memcg_page_state(memcg, memcg1_stats[i]) *
3203 PAGE_SIZE);
3204 }
3205
3206 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3207 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3208 memcg_sum_events(memcg, memcg1_events[i]));
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3213
3214 /* Hierarchical information */
3215 memory = memsw = PAGE_COUNTER_MAX;
3216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3217 memory = min(memory, mi->memory.limit);
3218 memsw = min(memsw, mi->memsw.limit);
3219 }
3220 seq_printf(m, "hierarchical_memory_limit %llu\n",
3221 (u64)memory * PAGE_SIZE);
3222 if (do_memsw_account())
3223 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3224 (u64)memsw * PAGE_SIZE);
3225
3226 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3227 unsigned long long val = 0;
3228
3229 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3230 continue;
3231 for_each_mem_cgroup_tree(mi, memcg)
3232 val += memcg_page_state(mi, memcg1_stats[i]) *
3233 PAGE_SIZE;
3234 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3235 }
3236
3237 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3238 unsigned long long val = 0;
3239
3240 for_each_mem_cgroup_tree(mi, memcg)
3241 val += memcg_sum_events(mi, memcg1_events[i]);
3242 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3243 }
3244
3245 for (i = 0; i < NR_LRU_LISTS; i++) {
3246 unsigned long long val = 0;
3247
3248 for_each_mem_cgroup_tree(mi, memcg)
3249 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3250 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3251 }
3252
3253 #ifdef CONFIG_DEBUG_VM
3254 {
3255 pg_data_t *pgdat;
3256 struct mem_cgroup_per_node *mz;
3257 struct zone_reclaim_stat *rstat;
3258 unsigned long recent_rotated[2] = {0, 0};
3259 unsigned long recent_scanned[2] = {0, 0};
3260
3261 for_each_online_pgdat(pgdat) {
3262 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3263 rstat = &mz->lruvec.reclaim_stat;
3264
3265 recent_rotated[0] += rstat->recent_rotated[0];
3266 recent_rotated[1] += rstat->recent_rotated[1];
3267 recent_scanned[0] += rstat->recent_scanned[0];
3268 recent_scanned[1] += rstat->recent_scanned[1];
3269 }
3270 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3271 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3272 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3273 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3274 }
3275 #endif
3276
3277 return 0;
3278 }
3279
3280 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3281 struct cftype *cft)
3282 {
3283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3284
3285 return mem_cgroup_swappiness(memcg);
3286 }
3287
3288 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3289 struct cftype *cft, u64 val)
3290 {
3291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3292
3293 if (val > 100)
3294 return -EINVAL;
3295
3296 if (css->parent)
3297 memcg->swappiness = val;
3298 else
3299 vm_swappiness = val;
3300
3301 return 0;
3302 }
3303
3304 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3305 {
3306 struct mem_cgroup_threshold_ary *t;
3307 unsigned long usage;
3308 int i;
3309
3310 rcu_read_lock();
3311 if (!swap)
3312 t = rcu_dereference(memcg->thresholds.primary);
3313 else
3314 t = rcu_dereference(memcg->memsw_thresholds.primary);
3315
3316 if (!t)
3317 goto unlock;
3318
3319 usage = mem_cgroup_usage(memcg, swap);
3320
3321 /*
3322 * current_threshold points to threshold just below or equal to usage.
3323 * If it's not true, a threshold was crossed after last
3324 * call of __mem_cgroup_threshold().
3325 */
3326 i = t->current_threshold;
3327
3328 /*
3329 * Iterate backward over array of thresholds starting from
3330 * current_threshold and check if a threshold is crossed.
3331 * If none of thresholds below usage is crossed, we read
3332 * only one element of the array here.
3333 */
3334 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3335 eventfd_signal(t->entries[i].eventfd, 1);
3336
3337 /* i = current_threshold + 1 */
3338 i++;
3339
3340 /*
3341 * Iterate forward over array of thresholds starting from
3342 * current_threshold+1 and check if a threshold is crossed.
3343 * If none of thresholds above usage is crossed, we read
3344 * only one element of the array here.
3345 */
3346 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3347 eventfd_signal(t->entries[i].eventfd, 1);
3348
3349 /* Update current_threshold */
3350 t->current_threshold = i - 1;
3351 unlock:
3352 rcu_read_unlock();
3353 }
3354
3355 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3356 {
3357 while (memcg) {
3358 __mem_cgroup_threshold(memcg, false);
3359 if (do_memsw_account())
3360 __mem_cgroup_threshold(memcg, true);
3361
3362 memcg = parent_mem_cgroup(memcg);
3363 }
3364 }
3365
3366 static int compare_thresholds(const void *a, const void *b)
3367 {
3368 const struct mem_cgroup_threshold *_a = a;
3369 const struct mem_cgroup_threshold *_b = b;
3370
3371 if (_a->threshold > _b->threshold)
3372 return 1;
3373
3374 if (_a->threshold < _b->threshold)
3375 return -1;
3376
3377 return 0;
3378 }
3379
3380 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3381 {
3382 struct mem_cgroup_eventfd_list *ev;
3383
3384 spin_lock(&memcg_oom_lock);
3385
3386 list_for_each_entry(ev, &memcg->oom_notify, list)
3387 eventfd_signal(ev->eventfd, 1);
3388
3389 spin_unlock(&memcg_oom_lock);
3390 return 0;
3391 }
3392
3393 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3394 {
3395 struct mem_cgroup *iter;
3396
3397 for_each_mem_cgroup_tree(iter, memcg)
3398 mem_cgroup_oom_notify_cb(iter);
3399 }
3400
3401 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3403 {
3404 struct mem_cgroup_thresholds *thresholds;
3405 struct mem_cgroup_threshold_ary *new;
3406 unsigned long threshold;
3407 unsigned long usage;
3408 int i, size, ret;
3409
3410 ret = page_counter_memparse(args, "-1", &threshold);
3411 if (ret)
3412 return ret;
3413
3414 mutex_lock(&memcg->thresholds_lock);
3415
3416 if (type == _MEM) {
3417 thresholds = &memcg->thresholds;
3418 usage = mem_cgroup_usage(memcg, false);
3419 } else if (type == _MEMSWAP) {
3420 thresholds = &memcg->memsw_thresholds;
3421 usage = mem_cgroup_usage(memcg, true);
3422 } else
3423 BUG();
3424
3425 /* Check if a threshold crossed before adding a new one */
3426 if (thresholds->primary)
3427 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3428
3429 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3430
3431 /* Allocate memory for new array of thresholds */
3432 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3433 GFP_KERNEL);
3434 if (!new) {
3435 ret = -ENOMEM;
3436 goto unlock;
3437 }
3438 new->size = size;
3439
3440 /* Copy thresholds (if any) to new array */
3441 if (thresholds->primary) {
3442 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3443 sizeof(struct mem_cgroup_threshold));
3444 }
3445
3446 /* Add new threshold */
3447 new->entries[size - 1].eventfd = eventfd;
3448 new->entries[size - 1].threshold = threshold;
3449
3450 /* Sort thresholds. Registering of new threshold isn't time-critical */
3451 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3452 compare_thresholds, NULL);
3453
3454 /* Find current threshold */
3455 new->current_threshold = -1;
3456 for (i = 0; i < size; i++) {
3457 if (new->entries[i].threshold <= usage) {
3458 /*
3459 * new->current_threshold will not be used until
3460 * rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
3463 ++new->current_threshold;
3464 } else
3465 break;
3466 }
3467
3468 /* Free old spare buffer and save old primary buffer as spare */
3469 kfree(thresholds->spare);
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
3473
3474 /* To be sure that nobody uses thresholds */
3475 synchronize_rcu();
3476
3477 unlock:
3478 mutex_unlock(&memcg->thresholds_lock);
3479
3480 return ret;
3481 }
3482
3483 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3484 struct eventfd_ctx *eventfd, const char *args)
3485 {
3486 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3487 }
3488
3489 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3490 struct eventfd_ctx *eventfd, const char *args)
3491 {
3492 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3493 }
3494
3495 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3496 struct eventfd_ctx *eventfd, enum res_type type)
3497 {
3498 struct mem_cgroup_thresholds *thresholds;
3499 struct mem_cgroup_threshold_ary *new;
3500 unsigned long usage;
3501 int i, j, size;
3502
3503 mutex_lock(&memcg->thresholds_lock);
3504
3505 if (type == _MEM) {
3506 thresholds = &memcg->thresholds;
3507 usage = mem_cgroup_usage(memcg, false);
3508 } else if (type == _MEMSWAP) {
3509 thresholds = &memcg->memsw_thresholds;
3510 usage = mem_cgroup_usage(memcg, true);
3511 } else
3512 BUG();
3513
3514 if (!thresholds->primary)
3515 goto unlock;
3516
3517 /* Check if a threshold crossed before removing */
3518 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3519
3520 /* Calculate new number of threshold */
3521 size = 0;
3522 for (i = 0; i < thresholds->primary->size; i++) {
3523 if (thresholds->primary->entries[i].eventfd != eventfd)
3524 size++;
3525 }
3526
3527 new = thresholds->spare;
3528
3529 /* Set thresholds array to NULL if we don't have thresholds */
3530 if (!size) {
3531 kfree(new);
3532 new = NULL;
3533 goto swap_buffers;
3534 }
3535
3536 new->size = size;
3537
3538 /* Copy thresholds and find current threshold */
3539 new->current_threshold = -1;
3540 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3541 if (thresholds->primary->entries[i].eventfd == eventfd)
3542 continue;
3543
3544 new->entries[j] = thresholds->primary->entries[i];
3545 if (new->entries[j].threshold <= usage) {
3546 /*
3547 * new->current_threshold will not be used
3548 * until rcu_assign_pointer(), so it's safe to increment
3549 * it here.
3550 */
3551 ++new->current_threshold;
3552 }
3553 j++;
3554 }
3555
3556 swap_buffers:
3557 /* Swap primary and spare array */
3558 thresholds->spare = thresholds->primary;
3559
3560 rcu_assign_pointer(thresholds->primary, new);
3561
3562 /* To be sure that nobody uses thresholds */
3563 synchronize_rcu();
3564
3565 /* If all events are unregistered, free the spare array */
3566 if (!new) {
3567 kfree(thresholds->spare);
3568 thresholds->spare = NULL;
3569 }
3570 unlock:
3571 mutex_unlock(&memcg->thresholds_lock);
3572 }
3573
3574 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3575 struct eventfd_ctx *eventfd)
3576 {
3577 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3578 }
3579
3580 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3581 struct eventfd_ctx *eventfd)
3582 {
3583 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3584 }
3585
3586 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3587 struct eventfd_ctx *eventfd, const char *args)
3588 {
3589 struct mem_cgroup_eventfd_list *event;
3590
3591 event = kmalloc(sizeof(*event), GFP_KERNEL);
3592 if (!event)
3593 return -ENOMEM;
3594
3595 spin_lock(&memcg_oom_lock);
3596
3597 event->eventfd = eventfd;
3598 list_add(&event->list, &memcg->oom_notify);
3599
3600 /* already in OOM ? */
3601 if (memcg->under_oom)
3602 eventfd_signal(eventfd, 1);
3603 spin_unlock(&memcg_oom_lock);
3604
3605 return 0;
3606 }
3607
3608 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3609 struct eventfd_ctx *eventfd)
3610 {
3611 struct mem_cgroup_eventfd_list *ev, *tmp;
3612
3613 spin_lock(&memcg_oom_lock);
3614
3615 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3616 if (ev->eventfd == eventfd) {
3617 list_del(&ev->list);
3618 kfree(ev);
3619 }
3620 }
3621
3622 spin_unlock(&memcg_oom_lock);
3623 }
3624
3625 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3626 {
3627 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3628
3629 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3630 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3631 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3632 return 0;
3633 }
3634
3635 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3636 struct cftype *cft, u64 val)
3637 {
3638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3639
3640 /* cannot set to root cgroup and only 0 and 1 are allowed */
3641 if (!css->parent || !((val == 0) || (val == 1)))
3642 return -EINVAL;
3643
3644 memcg->oom_kill_disable = val;
3645 if (!val)
3646 memcg_oom_recover(memcg);
3647
3648 return 0;
3649 }
3650
3651 #ifdef CONFIG_CGROUP_WRITEBACK
3652
3653 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654 {
3655 return &memcg->cgwb_list;
3656 }
3657
3658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659 {
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661 }
3662
3663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664 {
3665 wb_domain_exit(&memcg->cgwb_domain);
3666 }
3667
3668 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669 {
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671 }
3672
3673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674 {
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681 }
3682
3683 /**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
3694 *
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
3700 */
3701 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
3704 {
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
3707
3708 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
3711 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
3715
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3721 memcg = parent;
3722 }
3723 }
3724
3725 #else /* CONFIG_CGROUP_WRITEBACK */
3726
3727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728 {
3729 return 0;
3730 }
3731
3732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733 {
3734 }
3735
3736 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737 {
3738 }
3739
3740 #endif /* CONFIG_CGROUP_WRITEBACK */
3741
3742 /*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
3755 /*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3760 static void memcg_event_remove(struct work_struct *work)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
3764 struct mem_cgroup *memcg = event->memcg;
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
3768 event->unregister_event(memcg, event->eventfd);
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
3775 css_put(&memcg->css);
3776 }
3777
3778 /*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
3783 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3784 int sync, void *key)
3785 {
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
3788 struct mem_cgroup *memcg = event->memcg;
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
3801 spin_lock(&memcg->event_list_lock);
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
3810 spin_unlock(&memcg->event_list_lock);
3811 }
3812
3813 return 0;
3814 }
3815
3816 static void memcg_event_ptable_queue_proc(struct file *file,
3817 wait_queue_head_t *wqh, poll_table *pt)
3818 {
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824 }
3825
3826 /*
3827 * DO NOT USE IN NEW FILES.
3828 *
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
3834 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
3836 {
3837 struct cgroup_subsys_state *css = of_css(of);
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 struct mem_cgroup_event *event;
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
3844 const char *name;
3845 char *endp;
3846 int ret;
3847
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
3851 if (*endp != ' ')
3852 return -EINVAL;
3853 buf = endp + 1;
3854
3855 cfd = simple_strtoul(buf, &endp, 10);
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
3858 buf = endp + 1;
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
3864 event->memcg = memcg;
3865 INIT_LIST_HEAD(&event->list);
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3899 *
3900 * DO NOT ADD NEW FILES.
3901 */
3902 name = cfile.file->f_path.dentry->d_name.name;
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
3921 /*
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
3925 */
3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3927 &memory_cgrp_subsys);
3928 ret = -EINVAL;
3929 if (IS_ERR(cfile_css))
3930 goto out_put_cfile;
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
3933 goto out_put_cfile;
3934 }
3935
3936 ret = event->register_event(memcg, event->eventfd, buf);
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
3949 return nbytes;
3950
3951 out_put_css:
3952 css_put(css);
3953 out_put_cfile:
3954 fdput(cfile);
3955 out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957 out_put_efile:
3958 fdput(efile);
3959 out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963 }
3964
3965 static struct cftype mem_cgroup_legacy_files[] = {
3966 {
3967 .name = "usage_in_bytes",
3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3969 .read_u64 = mem_cgroup_read_u64,
3970 },
3971 {
3972 .name = "max_usage_in_bytes",
3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3974 .write = mem_cgroup_reset,
3975 .read_u64 = mem_cgroup_read_u64,
3976 },
3977 {
3978 .name = "limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "failcnt",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3992 .write = mem_cgroup_reset,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "stat",
3997 .seq_show = memcg_stat_show,
3998 },
3999 {
4000 .name = "force_empty",
4001 .write = mem_cgroup_force_empty_write,
4002 },
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
4008 {
4009 .name = "cgroup.event_control", /* XXX: for compat */
4010 .write = memcg_write_event_control,
4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4012 },
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
4023 {
4024 .name = "oom_control",
4025 .seq_show = mem_cgroup_oom_control_read,
4026 .write_u64 = mem_cgroup_oom_control_write,
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
4029 {
4030 .name = "pressure_level",
4031 },
4032 #ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
4035 .seq_show = memcg_numa_stat_show,
4036 },
4037 #endif
4038 {
4039 .name = "kmem.limit_in_bytes",
4040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4041 .write = mem_cgroup_write,
4042 .read_u64 = mem_cgroup_read_u64,
4043 },
4044 {
4045 .name = "kmem.usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4047 .read_u64 = mem_cgroup_read_u64,
4048 },
4049 {
4050 .name = "kmem.failcnt",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4052 .write = mem_cgroup_reset,
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.max_usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4058 .write = mem_cgroup_reset,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4062 {
4063 .name = "kmem.slabinfo",
4064 .seq_start = memcg_slab_start,
4065 .seq_next = memcg_slab_next,
4066 .seq_stop = memcg_slab_stop,
4067 .seq_show = memcg_slab_show,
4068 },
4069 #endif
4070 {
4071 .name = "kmem.tcp.limit_in_bytes",
4072 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4073 .write = mem_cgroup_write,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.tcp.usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.tcp.failcnt",
4083 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.tcp.max_usage_in_bytes",
4089 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
4093 { }, /* terminate */
4094 };
4095
4096 /*
4097 * Private memory cgroup IDR
4098 *
4099 * Swap-out records and page cache shadow entries need to store memcg
4100 * references in constrained space, so we maintain an ID space that is
4101 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4102 * memory-controlled cgroups to 64k.
4103 *
4104 * However, there usually are many references to the oflline CSS after
4105 * the cgroup has been destroyed, such as page cache or reclaimable
4106 * slab objects, that don't need to hang on to the ID. We want to keep
4107 * those dead CSS from occupying IDs, or we might quickly exhaust the
4108 * relatively small ID space and prevent the creation of new cgroups
4109 * even when there are much fewer than 64k cgroups - possibly none.
4110 *
4111 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4112 * be freed and recycled when it's no longer needed, which is usually
4113 * when the CSS is offlined.
4114 *
4115 * The only exception to that are records of swapped out tmpfs/shmem
4116 * pages that need to be attributed to live ancestors on swapin. But
4117 * those references are manageable from userspace.
4118 */
4119
4120 static DEFINE_IDR(mem_cgroup_idr);
4121
4122 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4123 {
4124 if (memcg->id.id > 0) {
4125 idr_remove(&mem_cgroup_idr, memcg->id.id);
4126 memcg->id.id = 0;
4127 }
4128 }
4129
4130 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4131 {
4132 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4133 atomic_add(n, &memcg->id.ref);
4134 }
4135
4136 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4137 {
4138 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4139 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4140 mem_cgroup_id_remove(memcg);
4141
4142 /* Memcg ID pins CSS */
4143 css_put(&memcg->css);
4144 }
4145 }
4146
4147 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4148 {
4149 mem_cgroup_id_get_many(memcg, 1);
4150 }
4151
4152 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4153 {
4154 mem_cgroup_id_put_many(memcg, 1);
4155 }
4156
4157 /**
4158 * mem_cgroup_from_id - look up a memcg from a memcg id
4159 * @id: the memcg id to look up
4160 *
4161 * Caller must hold rcu_read_lock().
4162 */
4163 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4164 {
4165 WARN_ON_ONCE(!rcu_read_lock_held());
4166 return idr_find(&mem_cgroup_idr, id);
4167 }
4168
4169 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4170 {
4171 struct mem_cgroup_per_node *pn;
4172 int tmp = node;
4173 /*
4174 * This routine is called against possible nodes.
4175 * But it's BUG to call kmalloc() against offline node.
4176 *
4177 * TODO: this routine can waste much memory for nodes which will
4178 * never be onlined. It's better to use memory hotplug callback
4179 * function.
4180 */
4181 if (!node_state(node, N_NORMAL_MEMORY))
4182 tmp = -1;
4183 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4184 if (!pn)
4185 return 1;
4186
4187 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4188 if (!pn->lruvec_stat) {
4189 kfree(pn);
4190 return 1;
4191 }
4192
4193 lruvec_init(&pn->lruvec);
4194 pn->usage_in_excess = 0;
4195 pn->on_tree = false;
4196 pn->memcg = memcg;
4197
4198 memcg->nodeinfo[node] = pn;
4199 return 0;
4200 }
4201
4202 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4203 {
4204 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4205
4206 if (!pn)
4207 return;
4208
4209 free_percpu(pn->lruvec_stat);
4210 kfree(pn);
4211 }
4212
4213 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4214 {
4215 int node;
4216
4217 for_each_node(node)
4218 free_mem_cgroup_per_node_info(memcg, node);
4219 free_percpu(memcg->stat);
4220 kfree(memcg);
4221 }
4222
4223 static void mem_cgroup_free(struct mem_cgroup *memcg)
4224 {
4225 memcg_wb_domain_exit(memcg);
4226 __mem_cgroup_free(memcg);
4227 }
4228
4229 static struct mem_cgroup *mem_cgroup_alloc(void)
4230 {
4231 struct mem_cgroup *memcg;
4232 size_t size;
4233 int node;
4234
4235 size = sizeof(struct mem_cgroup);
4236 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4237
4238 memcg = kzalloc(size, GFP_KERNEL);
4239 if (!memcg)
4240 return NULL;
4241
4242 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4243 1, MEM_CGROUP_ID_MAX,
4244 GFP_KERNEL);
4245 if (memcg->id.id < 0)
4246 goto fail;
4247
4248 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4249 if (!memcg->stat)
4250 goto fail;
4251
4252 for_each_node(node)
4253 if (alloc_mem_cgroup_per_node_info(memcg, node))
4254 goto fail;
4255
4256 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4257 goto fail;
4258
4259 INIT_WORK(&memcg->high_work, high_work_func);
4260 memcg->last_scanned_node = MAX_NUMNODES;
4261 INIT_LIST_HEAD(&memcg->oom_notify);
4262 mutex_init(&memcg->thresholds_lock);
4263 spin_lock_init(&memcg->move_lock);
4264 vmpressure_init(&memcg->vmpressure);
4265 INIT_LIST_HEAD(&memcg->event_list);
4266 spin_lock_init(&memcg->event_list_lock);
4267 memcg->socket_pressure = jiffies;
4268 #ifndef CONFIG_SLOB
4269 memcg->kmemcg_id = -1;
4270 #endif
4271 #ifdef CONFIG_CGROUP_WRITEBACK
4272 INIT_LIST_HEAD(&memcg->cgwb_list);
4273 #endif
4274 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4275 return memcg;
4276 fail:
4277 mem_cgroup_id_remove(memcg);
4278 __mem_cgroup_free(memcg);
4279 return NULL;
4280 }
4281
4282 static struct cgroup_subsys_state * __ref
4283 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4284 {
4285 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4286 struct mem_cgroup *memcg;
4287 long error = -ENOMEM;
4288
4289 memcg = mem_cgroup_alloc();
4290 if (!memcg)
4291 return ERR_PTR(error);
4292
4293 memcg->high = PAGE_COUNTER_MAX;
4294 memcg->soft_limit = PAGE_COUNTER_MAX;
4295 if (parent) {
4296 memcg->swappiness = mem_cgroup_swappiness(parent);
4297 memcg->oom_kill_disable = parent->oom_kill_disable;
4298 }
4299 if (parent && parent->use_hierarchy) {
4300 memcg->use_hierarchy = true;
4301 page_counter_init(&memcg->memory, &parent->memory);
4302 page_counter_init(&memcg->swap, &parent->swap);
4303 page_counter_init(&memcg->memsw, &parent->memsw);
4304 page_counter_init(&memcg->kmem, &parent->kmem);
4305 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4306 } else {
4307 page_counter_init(&memcg->memory, NULL);
4308 page_counter_init(&memcg->swap, NULL);
4309 page_counter_init(&memcg->memsw, NULL);
4310 page_counter_init(&memcg->kmem, NULL);
4311 page_counter_init(&memcg->tcpmem, NULL);
4312 /*
4313 * Deeper hierachy with use_hierarchy == false doesn't make
4314 * much sense so let cgroup subsystem know about this
4315 * unfortunate state in our controller.
4316 */
4317 if (parent != root_mem_cgroup)
4318 memory_cgrp_subsys.broken_hierarchy = true;
4319 }
4320
4321 /* The following stuff does not apply to the root */
4322 if (!parent) {
4323 root_mem_cgroup = memcg;
4324 return &memcg->css;
4325 }
4326
4327 error = memcg_online_kmem(memcg);
4328 if (error)
4329 goto fail;
4330
4331 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4332 static_branch_inc(&memcg_sockets_enabled_key);
4333
4334 return &memcg->css;
4335 fail:
4336 mem_cgroup_id_remove(memcg);
4337 mem_cgroup_free(memcg);
4338 return ERR_PTR(-ENOMEM);
4339 }
4340
4341 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4342 {
4343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344
4345 /* Online state pins memcg ID, memcg ID pins CSS */
4346 atomic_set(&memcg->id.ref, 1);
4347 css_get(css);
4348 return 0;
4349 }
4350
4351 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4352 {
4353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4354 struct mem_cgroup_event *event, *tmp;
4355
4356 /*
4357 * Unregister events and notify userspace.
4358 * Notify userspace about cgroup removing only after rmdir of cgroup
4359 * directory to avoid race between userspace and kernelspace.
4360 */
4361 spin_lock(&memcg->event_list_lock);
4362 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4363 list_del_init(&event->list);
4364 schedule_work(&event->remove);
4365 }
4366 spin_unlock(&memcg->event_list_lock);
4367
4368 memcg->low = 0;
4369
4370 memcg_offline_kmem(memcg);
4371 wb_memcg_offline(memcg);
4372
4373 mem_cgroup_id_put(memcg);
4374 }
4375
4376 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4377 {
4378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4379
4380 invalidate_reclaim_iterators(memcg);
4381 }
4382
4383 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4384 {
4385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4386
4387 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4388 static_branch_dec(&memcg_sockets_enabled_key);
4389
4390 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4391 static_branch_dec(&memcg_sockets_enabled_key);
4392
4393 vmpressure_cleanup(&memcg->vmpressure);
4394 cancel_work_sync(&memcg->high_work);
4395 mem_cgroup_remove_from_trees(memcg);
4396 memcg_free_kmem(memcg);
4397 mem_cgroup_free(memcg);
4398 }
4399
4400 /**
4401 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4402 * @css: the target css
4403 *
4404 * Reset the states of the mem_cgroup associated with @css. This is
4405 * invoked when the userland requests disabling on the default hierarchy
4406 * but the memcg is pinned through dependency. The memcg should stop
4407 * applying policies and should revert to the vanilla state as it may be
4408 * made visible again.
4409 *
4410 * The current implementation only resets the essential configurations.
4411 * This needs to be expanded to cover all the visible parts.
4412 */
4413 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4414 {
4415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4416
4417 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4418 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4419 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4420 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4421 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4422 memcg->low = 0;
4423 memcg->high = PAGE_COUNTER_MAX;
4424 memcg->soft_limit = PAGE_COUNTER_MAX;
4425 memcg_wb_domain_size_changed(memcg);
4426 }
4427
4428 #ifdef CONFIG_MMU
4429 /* Handlers for move charge at task migration. */
4430 static int mem_cgroup_do_precharge(unsigned long count)
4431 {
4432 int ret;
4433
4434 /* Try a single bulk charge without reclaim first, kswapd may wake */
4435 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4436 if (!ret) {
4437 mc.precharge += count;
4438 return ret;
4439 }
4440
4441 /* Try charges one by one with reclaim, but do not retry */
4442 while (count--) {
4443 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4444 if (ret)
4445 return ret;
4446 mc.precharge++;
4447 cond_resched();
4448 }
4449 return 0;
4450 }
4451
4452 union mc_target {
4453 struct page *page;
4454 swp_entry_t ent;
4455 };
4456
4457 enum mc_target_type {
4458 MC_TARGET_NONE = 0,
4459 MC_TARGET_PAGE,
4460 MC_TARGET_SWAP,
4461 MC_TARGET_DEVICE,
4462 };
4463
4464 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4465 unsigned long addr, pte_t ptent)
4466 {
4467 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4468
4469 if (!page || !page_mapped(page))
4470 return NULL;
4471 if (PageAnon(page)) {
4472 if (!(mc.flags & MOVE_ANON))
4473 return NULL;
4474 } else {
4475 if (!(mc.flags & MOVE_FILE))
4476 return NULL;
4477 }
4478 if (!get_page_unless_zero(page))
4479 return NULL;
4480
4481 return page;
4482 }
4483
4484 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4485 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4486 pte_t ptent, swp_entry_t *entry)
4487 {
4488 struct page *page = NULL;
4489 swp_entry_t ent = pte_to_swp_entry(ptent);
4490
4491 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4492 return NULL;
4493
4494 /*
4495 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4496 * a device and because they are not accessible by CPU they are store
4497 * as special swap entry in the CPU page table.
4498 */
4499 if (is_device_private_entry(ent)) {
4500 page = device_private_entry_to_page(ent);
4501 /*
4502 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4503 * a refcount of 1 when free (unlike normal page)
4504 */
4505 if (!page_ref_add_unless(page, 1, 1))
4506 return NULL;
4507 return page;
4508 }
4509
4510 /*
4511 * Because lookup_swap_cache() updates some statistics counter,
4512 * we call find_get_page() with swapper_space directly.
4513 */
4514 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4515 if (do_memsw_account())
4516 entry->val = ent.val;
4517
4518 return page;
4519 }
4520 #else
4521 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4522 pte_t ptent, swp_entry_t *entry)
4523 {
4524 return NULL;
4525 }
4526 #endif
4527
4528 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4530 {
4531 struct page *page = NULL;
4532 struct address_space *mapping;
4533 pgoff_t pgoff;
4534
4535 if (!vma->vm_file) /* anonymous vma */
4536 return NULL;
4537 if (!(mc.flags & MOVE_FILE))
4538 return NULL;
4539
4540 mapping = vma->vm_file->f_mapping;
4541 pgoff = linear_page_index(vma, addr);
4542
4543 /* page is moved even if it's not RSS of this task(page-faulted). */
4544 #ifdef CONFIG_SWAP
4545 /* shmem/tmpfs may report page out on swap: account for that too. */
4546 if (shmem_mapping(mapping)) {
4547 page = find_get_entry(mapping, pgoff);
4548 if (radix_tree_exceptional_entry(page)) {
4549 swp_entry_t swp = radix_to_swp_entry(page);
4550 if (do_memsw_account())
4551 *entry = swp;
4552 page = find_get_page(swap_address_space(swp),
4553 swp_offset(swp));
4554 }
4555 } else
4556 page = find_get_page(mapping, pgoff);
4557 #else
4558 page = find_get_page(mapping, pgoff);
4559 #endif
4560 return page;
4561 }
4562
4563 /**
4564 * mem_cgroup_move_account - move account of the page
4565 * @page: the page
4566 * @compound: charge the page as compound or small page
4567 * @from: mem_cgroup which the page is moved from.
4568 * @to: mem_cgroup which the page is moved to. @from != @to.
4569 *
4570 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4571 *
4572 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4573 * from old cgroup.
4574 */
4575 static int mem_cgroup_move_account(struct page *page,
4576 bool compound,
4577 struct mem_cgroup *from,
4578 struct mem_cgroup *to)
4579 {
4580 unsigned long flags;
4581 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4582 int ret;
4583 bool anon;
4584
4585 VM_BUG_ON(from == to);
4586 VM_BUG_ON_PAGE(PageLRU(page), page);
4587 VM_BUG_ON(compound && !PageTransHuge(page));
4588
4589 /*
4590 * Prevent mem_cgroup_migrate() from looking at
4591 * page->mem_cgroup of its source page while we change it.
4592 */
4593 ret = -EBUSY;
4594 if (!trylock_page(page))
4595 goto out;
4596
4597 ret = -EINVAL;
4598 if (page->mem_cgroup != from)
4599 goto out_unlock;
4600
4601 anon = PageAnon(page);
4602
4603 spin_lock_irqsave(&from->move_lock, flags);
4604
4605 if (!anon && page_mapped(page)) {
4606 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4607 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4608 }
4609
4610 /*
4611 * move_lock grabbed above and caller set from->moving_account, so
4612 * mod_memcg_page_state will serialize updates to PageDirty.
4613 * So mapping should be stable for dirty pages.
4614 */
4615 if (!anon && PageDirty(page)) {
4616 struct address_space *mapping = page_mapping(page);
4617
4618 if (mapping_cap_account_dirty(mapping)) {
4619 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4620 nr_pages);
4621 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4622 nr_pages);
4623 }
4624 }
4625
4626 if (PageWriteback(page)) {
4627 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4628 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4629 }
4630
4631 /*
4632 * It is safe to change page->mem_cgroup here because the page
4633 * is referenced, charged, and isolated - we can't race with
4634 * uncharging, charging, migration, or LRU putback.
4635 */
4636
4637 /* caller should have done css_get */
4638 page->mem_cgroup = to;
4639 spin_unlock_irqrestore(&from->move_lock, flags);
4640
4641 ret = 0;
4642
4643 local_irq_disable();
4644 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4645 memcg_check_events(to, page);
4646 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4647 memcg_check_events(from, page);
4648 local_irq_enable();
4649 out_unlock:
4650 unlock_page(page);
4651 out:
4652 return ret;
4653 }
4654
4655 /**
4656 * get_mctgt_type - get target type of moving charge
4657 * @vma: the vma the pte to be checked belongs
4658 * @addr: the address corresponding to the pte to be checked
4659 * @ptent: the pte to be checked
4660 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4661 *
4662 * Returns
4663 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4664 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4665 * move charge. if @target is not NULL, the page is stored in target->page
4666 * with extra refcnt got(Callers should handle it).
4667 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4668 * target for charge migration. if @target is not NULL, the entry is stored
4669 * in target->ent.
4670 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4671 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4672 * For now we such page is charge like a regular page would be as for all
4673 * intent and purposes it is just special memory taking the place of a
4674 * regular page.
4675 *
4676 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4677 *
4678 * Called with pte lock held.
4679 */
4680
4681 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4682 unsigned long addr, pte_t ptent, union mc_target *target)
4683 {
4684 struct page *page = NULL;
4685 enum mc_target_type ret = MC_TARGET_NONE;
4686 swp_entry_t ent = { .val = 0 };
4687
4688 if (pte_present(ptent))
4689 page = mc_handle_present_pte(vma, addr, ptent);
4690 else if (is_swap_pte(ptent))
4691 page = mc_handle_swap_pte(vma, ptent, &ent);
4692 else if (pte_none(ptent))
4693 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4694
4695 if (!page && !ent.val)
4696 return ret;
4697 if (page) {
4698 /*
4699 * Do only loose check w/o serialization.
4700 * mem_cgroup_move_account() checks the page is valid or
4701 * not under LRU exclusion.
4702 */
4703 if (page->mem_cgroup == mc.from) {
4704 ret = MC_TARGET_PAGE;
4705 if (is_device_private_page(page) ||
4706 is_device_public_page(page))
4707 ret = MC_TARGET_DEVICE;
4708 if (target)
4709 target->page = page;
4710 }
4711 if (!ret || !target)
4712 put_page(page);
4713 }
4714 /*
4715 * There is a swap entry and a page doesn't exist or isn't charged.
4716 * But we cannot move a tail-page in a THP.
4717 */
4718 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4719 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4720 ret = MC_TARGET_SWAP;
4721 if (target)
4722 target->ent = ent;
4723 }
4724 return ret;
4725 }
4726
4727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4728 /*
4729 * We don't consider PMD mapped swapping or file mapped pages because THP does
4730 * not support them for now.
4731 * Caller should make sure that pmd_trans_huge(pmd) is true.
4732 */
4733 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4734 unsigned long addr, pmd_t pmd, union mc_target *target)
4735 {
4736 struct page *page = NULL;
4737 enum mc_target_type ret = MC_TARGET_NONE;
4738
4739 if (unlikely(is_swap_pmd(pmd))) {
4740 VM_BUG_ON(thp_migration_supported() &&
4741 !is_pmd_migration_entry(pmd));
4742 return ret;
4743 }
4744 page = pmd_page(pmd);
4745 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4746 if (!(mc.flags & MOVE_ANON))
4747 return ret;
4748 if (page->mem_cgroup == mc.from) {
4749 ret = MC_TARGET_PAGE;
4750 if (target) {
4751 get_page(page);
4752 target->page = page;
4753 }
4754 }
4755 return ret;
4756 }
4757 #else
4758 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4759 unsigned long addr, pmd_t pmd, union mc_target *target)
4760 {
4761 return MC_TARGET_NONE;
4762 }
4763 #endif
4764
4765 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4766 unsigned long addr, unsigned long end,
4767 struct mm_walk *walk)
4768 {
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772
4773 ptl = pmd_trans_huge_lock(pmd, vma);
4774 if (ptl) {
4775 /*
4776 * Note their can not be MC_TARGET_DEVICE for now as we do not
4777 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4778 * MEMORY_DEVICE_PRIVATE but this might change.
4779 */
4780 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4781 mc.precharge += HPAGE_PMD_NR;
4782 spin_unlock(ptl);
4783 return 0;
4784 }
4785
4786 if (pmd_trans_unstable(pmd))
4787 return 0;
4788 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4789 for (; addr != end; pte++, addr += PAGE_SIZE)
4790 if (get_mctgt_type(vma, addr, *pte, NULL))
4791 mc.precharge++; /* increment precharge temporarily */
4792 pte_unmap_unlock(pte - 1, ptl);
4793 cond_resched();
4794
4795 return 0;
4796 }
4797
4798 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4799 {
4800 unsigned long precharge;
4801
4802 struct mm_walk mem_cgroup_count_precharge_walk = {
4803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4804 .mm = mm,
4805 };
4806 down_read(&mm->mmap_sem);
4807 walk_page_range(0, mm->highest_vm_end,
4808 &mem_cgroup_count_precharge_walk);
4809 up_read(&mm->mmap_sem);
4810
4811 precharge = mc.precharge;
4812 mc.precharge = 0;
4813
4814 return precharge;
4815 }
4816
4817 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4818 {
4819 unsigned long precharge = mem_cgroup_count_precharge(mm);
4820
4821 VM_BUG_ON(mc.moving_task);
4822 mc.moving_task = current;
4823 return mem_cgroup_do_precharge(precharge);
4824 }
4825
4826 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4827 static void __mem_cgroup_clear_mc(void)
4828 {
4829 struct mem_cgroup *from = mc.from;
4830 struct mem_cgroup *to = mc.to;
4831
4832 /* we must uncharge all the leftover precharges from mc.to */
4833 if (mc.precharge) {
4834 cancel_charge(mc.to, mc.precharge);
4835 mc.precharge = 0;
4836 }
4837 /*
4838 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4839 * we must uncharge here.
4840 */
4841 if (mc.moved_charge) {
4842 cancel_charge(mc.from, mc.moved_charge);
4843 mc.moved_charge = 0;
4844 }
4845 /* we must fixup refcnts and charges */
4846 if (mc.moved_swap) {
4847 /* uncharge swap account from the old cgroup */
4848 if (!mem_cgroup_is_root(mc.from))
4849 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4850
4851 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4852
4853 /*
4854 * we charged both to->memory and to->memsw, so we
4855 * should uncharge to->memory.
4856 */
4857 if (!mem_cgroup_is_root(mc.to))
4858 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4859
4860 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4861 css_put_many(&mc.to->css, mc.moved_swap);
4862
4863 mc.moved_swap = 0;
4864 }
4865 memcg_oom_recover(from);
4866 memcg_oom_recover(to);
4867 wake_up_all(&mc.waitq);
4868 }
4869
4870 static void mem_cgroup_clear_mc(void)
4871 {
4872 struct mm_struct *mm = mc.mm;
4873
4874 /*
4875 * we must clear moving_task before waking up waiters at the end of
4876 * task migration.
4877 */
4878 mc.moving_task = NULL;
4879 __mem_cgroup_clear_mc();
4880 spin_lock(&mc.lock);
4881 mc.from = NULL;
4882 mc.to = NULL;
4883 mc.mm = NULL;
4884 spin_unlock(&mc.lock);
4885
4886 mmput(mm);
4887 }
4888
4889 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4890 {
4891 struct cgroup_subsys_state *css;
4892 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4893 struct mem_cgroup *from;
4894 struct task_struct *leader, *p;
4895 struct mm_struct *mm;
4896 unsigned long move_flags;
4897 int ret = 0;
4898
4899 /* charge immigration isn't supported on the default hierarchy */
4900 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4901 return 0;
4902
4903 /*
4904 * Multi-process migrations only happen on the default hierarchy
4905 * where charge immigration is not used. Perform charge
4906 * immigration if @tset contains a leader and whine if there are
4907 * multiple.
4908 */
4909 p = NULL;
4910 cgroup_taskset_for_each_leader(leader, css, tset) {
4911 WARN_ON_ONCE(p);
4912 p = leader;
4913 memcg = mem_cgroup_from_css(css);
4914 }
4915 if (!p)
4916 return 0;
4917
4918 /*
4919 * We are now commited to this value whatever it is. Changes in this
4920 * tunable will only affect upcoming migrations, not the current one.
4921 * So we need to save it, and keep it going.
4922 */
4923 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4924 if (!move_flags)
4925 return 0;
4926
4927 from = mem_cgroup_from_task(p);
4928
4929 VM_BUG_ON(from == memcg);
4930
4931 mm = get_task_mm(p);
4932 if (!mm)
4933 return 0;
4934 /* We move charges only when we move a owner of the mm */
4935 if (mm->owner == p) {
4936 VM_BUG_ON(mc.from);
4937 VM_BUG_ON(mc.to);
4938 VM_BUG_ON(mc.precharge);
4939 VM_BUG_ON(mc.moved_charge);
4940 VM_BUG_ON(mc.moved_swap);
4941
4942 spin_lock(&mc.lock);
4943 mc.mm = mm;
4944 mc.from = from;
4945 mc.to = memcg;
4946 mc.flags = move_flags;
4947 spin_unlock(&mc.lock);
4948 /* We set mc.moving_task later */
4949
4950 ret = mem_cgroup_precharge_mc(mm);
4951 if (ret)
4952 mem_cgroup_clear_mc();
4953 } else {
4954 mmput(mm);
4955 }
4956 return ret;
4957 }
4958
4959 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4960 {
4961 if (mc.to)
4962 mem_cgroup_clear_mc();
4963 }
4964
4965 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4966 unsigned long addr, unsigned long end,
4967 struct mm_walk *walk)
4968 {
4969 int ret = 0;
4970 struct vm_area_struct *vma = walk->vma;
4971 pte_t *pte;
4972 spinlock_t *ptl;
4973 enum mc_target_type target_type;
4974 union mc_target target;
4975 struct page *page;
4976
4977 ptl = pmd_trans_huge_lock(pmd, vma);
4978 if (ptl) {
4979 if (mc.precharge < HPAGE_PMD_NR) {
4980 spin_unlock(ptl);
4981 return 0;
4982 }
4983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4984 if (target_type == MC_TARGET_PAGE) {
4985 page = target.page;
4986 if (!isolate_lru_page(page)) {
4987 if (!mem_cgroup_move_account(page, true,
4988 mc.from, mc.to)) {
4989 mc.precharge -= HPAGE_PMD_NR;
4990 mc.moved_charge += HPAGE_PMD_NR;
4991 }
4992 putback_lru_page(page);
4993 }
4994 put_page(page);
4995 } else if (target_type == MC_TARGET_DEVICE) {
4996 page = target.page;
4997 if (!mem_cgroup_move_account(page, true,
4998 mc.from, mc.to)) {
4999 mc.precharge -= HPAGE_PMD_NR;
5000 mc.moved_charge += HPAGE_PMD_NR;
5001 }
5002 put_page(page);
5003 }
5004 spin_unlock(ptl);
5005 return 0;
5006 }
5007
5008 if (pmd_trans_unstable(pmd))
5009 return 0;
5010 retry:
5011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5012 for (; addr != end; addr += PAGE_SIZE) {
5013 pte_t ptent = *(pte++);
5014 bool device = false;
5015 swp_entry_t ent;
5016
5017 if (!mc.precharge)
5018 break;
5019
5020 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5021 case MC_TARGET_DEVICE:
5022 device = true;
5023 /* fall through */
5024 case MC_TARGET_PAGE:
5025 page = target.page;
5026 /*
5027 * We can have a part of the split pmd here. Moving it
5028 * can be done but it would be too convoluted so simply
5029 * ignore such a partial THP and keep it in original
5030 * memcg. There should be somebody mapping the head.
5031 */
5032 if (PageTransCompound(page))
5033 goto put;
5034 if (!device && isolate_lru_page(page))
5035 goto put;
5036 if (!mem_cgroup_move_account(page, false,
5037 mc.from, mc.to)) {
5038 mc.precharge--;
5039 /* we uncharge from mc.from later. */
5040 mc.moved_charge++;
5041 }
5042 if (!device)
5043 putback_lru_page(page);
5044 put: /* get_mctgt_type() gets the page */
5045 put_page(page);
5046 break;
5047 case MC_TARGET_SWAP:
5048 ent = target.ent;
5049 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5050 mc.precharge--;
5051 /* we fixup refcnts and charges later. */
5052 mc.moved_swap++;
5053 }
5054 break;
5055 default:
5056 break;
5057 }
5058 }
5059 pte_unmap_unlock(pte - 1, ptl);
5060 cond_resched();
5061
5062 if (addr != end) {
5063 /*
5064 * We have consumed all precharges we got in can_attach().
5065 * We try charge one by one, but don't do any additional
5066 * charges to mc.to if we have failed in charge once in attach()
5067 * phase.
5068 */
5069 ret = mem_cgroup_do_precharge(1);
5070 if (!ret)
5071 goto retry;
5072 }
5073
5074 return ret;
5075 }
5076
5077 static void mem_cgroup_move_charge(void)
5078 {
5079 struct mm_walk mem_cgroup_move_charge_walk = {
5080 .pmd_entry = mem_cgroup_move_charge_pte_range,
5081 .mm = mc.mm,
5082 };
5083
5084 lru_add_drain_all();
5085 /*
5086 * Signal lock_page_memcg() to take the memcg's move_lock
5087 * while we're moving its pages to another memcg. Then wait
5088 * for already started RCU-only updates to finish.
5089 */
5090 atomic_inc(&mc.from->moving_account);
5091 synchronize_rcu();
5092 retry:
5093 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5094 /*
5095 * Someone who are holding the mmap_sem might be waiting in
5096 * waitq. So we cancel all extra charges, wake up all waiters,
5097 * and retry. Because we cancel precharges, we might not be able
5098 * to move enough charges, but moving charge is a best-effort
5099 * feature anyway, so it wouldn't be a big problem.
5100 */
5101 __mem_cgroup_clear_mc();
5102 cond_resched();
5103 goto retry;
5104 }
5105 /*
5106 * When we have consumed all precharges and failed in doing
5107 * additional charge, the page walk just aborts.
5108 */
5109 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5110
5111 up_read(&mc.mm->mmap_sem);
5112 atomic_dec(&mc.from->moving_account);
5113 }
5114
5115 static void mem_cgroup_move_task(void)
5116 {
5117 if (mc.to) {
5118 mem_cgroup_move_charge();
5119 mem_cgroup_clear_mc();
5120 }
5121 }
5122 #else /* !CONFIG_MMU */
5123 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5124 {
5125 return 0;
5126 }
5127 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5128 {
5129 }
5130 static void mem_cgroup_move_task(void)
5131 {
5132 }
5133 #endif
5134
5135 /*
5136 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5137 * to verify whether we're attached to the default hierarchy on each mount
5138 * attempt.
5139 */
5140 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5141 {
5142 /*
5143 * use_hierarchy is forced on the default hierarchy. cgroup core
5144 * guarantees that @root doesn't have any children, so turning it
5145 * on for the root memcg is enough.
5146 */
5147 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5148 root_mem_cgroup->use_hierarchy = true;
5149 else
5150 root_mem_cgroup->use_hierarchy = false;
5151 }
5152
5153 static u64 memory_current_read(struct cgroup_subsys_state *css,
5154 struct cftype *cft)
5155 {
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157
5158 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5159 }
5160
5161 static int memory_low_show(struct seq_file *m, void *v)
5162 {
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5164 unsigned long low = READ_ONCE(memcg->low);
5165
5166 if (low == PAGE_COUNTER_MAX)
5167 seq_puts(m, "max\n");
5168 else
5169 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5170
5171 return 0;
5172 }
5173
5174 static ssize_t memory_low_write(struct kernfs_open_file *of,
5175 char *buf, size_t nbytes, loff_t off)
5176 {
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5178 unsigned long low;
5179 int err;
5180
5181 buf = strstrip(buf);
5182 err = page_counter_memparse(buf, "max", &low);
5183 if (err)
5184 return err;
5185
5186 memcg->low = low;
5187
5188 return nbytes;
5189 }
5190
5191 static int memory_high_show(struct seq_file *m, void *v)
5192 {
5193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5194 unsigned long high = READ_ONCE(memcg->high);
5195
5196 if (high == PAGE_COUNTER_MAX)
5197 seq_puts(m, "max\n");
5198 else
5199 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5200
5201 return 0;
5202 }
5203
5204 static ssize_t memory_high_write(struct kernfs_open_file *of,
5205 char *buf, size_t nbytes, loff_t off)
5206 {
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5208 unsigned long nr_pages;
5209 unsigned long high;
5210 int err;
5211
5212 buf = strstrip(buf);
5213 err = page_counter_memparse(buf, "max", &high);
5214 if (err)
5215 return err;
5216
5217 memcg->high = high;
5218
5219 nr_pages = page_counter_read(&memcg->memory);
5220 if (nr_pages > high)
5221 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5222 GFP_KERNEL, true);
5223
5224 memcg_wb_domain_size_changed(memcg);
5225 return nbytes;
5226 }
5227
5228 static int memory_max_show(struct seq_file *m, void *v)
5229 {
5230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5231 unsigned long max = READ_ONCE(memcg->memory.limit);
5232
5233 if (max == PAGE_COUNTER_MAX)
5234 seq_puts(m, "max\n");
5235 else
5236 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5237
5238 return 0;
5239 }
5240
5241 static ssize_t memory_max_write(struct kernfs_open_file *of,
5242 char *buf, size_t nbytes, loff_t off)
5243 {
5244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5245 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5246 bool drained = false;
5247 unsigned long max;
5248 int err;
5249
5250 buf = strstrip(buf);
5251 err = page_counter_memparse(buf, "max", &max);
5252 if (err)
5253 return err;
5254
5255 xchg(&memcg->memory.limit, max);
5256
5257 for (;;) {
5258 unsigned long nr_pages = page_counter_read(&memcg->memory);
5259
5260 if (nr_pages <= max)
5261 break;
5262
5263 if (signal_pending(current)) {
5264 err = -EINTR;
5265 break;
5266 }
5267
5268 if (!drained) {
5269 drain_all_stock(memcg);
5270 drained = true;
5271 continue;
5272 }
5273
5274 if (nr_reclaims) {
5275 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5276 GFP_KERNEL, true))
5277 nr_reclaims--;
5278 continue;
5279 }
5280
5281 mem_cgroup_event(memcg, MEMCG_OOM);
5282 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5283 break;
5284 }
5285
5286 memcg_wb_domain_size_changed(memcg);
5287 return nbytes;
5288 }
5289
5290 static int memory_events_show(struct seq_file *m, void *v)
5291 {
5292 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5293
5294 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5295 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5296 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5297 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5298 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5299
5300 return 0;
5301 }
5302
5303 static int memory_stat_show(struct seq_file *m, void *v)
5304 {
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5306 unsigned long stat[MEMCG_NR_STAT];
5307 unsigned long events[MEMCG_NR_EVENTS];
5308 int i;
5309
5310 /*
5311 * Provide statistics on the state of the memory subsystem as
5312 * well as cumulative event counters that show past behavior.
5313 *
5314 * This list is ordered following a combination of these gradients:
5315 * 1) generic big picture -> specifics and details
5316 * 2) reflecting userspace activity -> reflecting kernel heuristics
5317 *
5318 * Current memory state:
5319 */
5320
5321 tree_stat(memcg, stat);
5322 tree_events(memcg, events);
5323
5324 seq_printf(m, "anon %llu\n",
5325 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5326 seq_printf(m, "file %llu\n",
5327 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5328 seq_printf(m, "kernel_stack %llu\n",
5329 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5330 seq_printf(m, "slab %llu\n",
5331 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5332 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5333 seq_printf(m, "sock %llu\n",
5334 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5335
5336 seq_printf(m, "shmem %llu\n",
5337 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5338 seq_printf(m, "file_mapped %llu\n",
5339 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5340 seq_printf(m, "file_dirty %llu\n",
5341 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5342 seq_printf(m, "file_writeback %llu\n",
5343 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5344
5345 for (i = 0; i < NR_LRU_LISTS; i++) {
5346 struct mem_cgroup *mi;
5347 unsigned long val = 0;
5348
5349 for_each_mem_cgroup_tree(mi, memcg)
5350 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5351 seq_printf(m, "%s %llu\n",
5352 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5353 }
5354
5355 seq_printf(m, "slab_reclaimable %llu\n",
5356 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5357 seq_printf(m, "slab_unreclaimable %llu\n",
5358 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5359
5360 /* Accumulated memory events */
5361
5362 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5363 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5364
5365 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5366 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5367 events[PGSCAN_DIRECT]);
5368 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5369 events[PGSTEAL_DIRECT]);
5370 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5371 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5372 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5373 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5374
5375 seq_printf(m, "workingset_refault %lu\n",
5376 stat[WORKINGSET_REFAULT]);
5377 seq_printf(m, "workingset_activate %lu\n",
5378 stat[WORKINGSET_ACTIVATE]);
5379 seq_printf(m, "workingset_nodereclaim %lu\n",
5380 stat[WORKINGSET_NODERECLAIM]);
5381
5382 return 0;
5383 }
5384
5385 static struct cftype memory_files[] = {
5386 {
5387 .name = "current",
5388 .flags = CFTYPE_NOT_ON_ROOT,
5389 .read_u64 = memory_current_read,
5390 },
5391 {
5392 .name = "low",
5393 .flags = CFTYPE_NOT_ON_ROOT,
5394 .seq_show = memory_low_show,
5395 .write = memory_low_write,
5396 },
5397 {
5398 .name = "high",
5399 .flags = CFTYPE_NOT_ON_ROOT,
5400 .seq_show = memory_high_show,
5401 .write = memory_high_write,
5402 },
5403 {
5404 .name = "max",
5405 .flags = CFTYPE_NOT_ON_ROOT,
5406 .seq_show = memory_max_show,
5407 .write = memory_max_write,
5408 },
5409 {
5410 .name = "events",
5411 .flags = CFTYPE_NOT_ON_ROOT,
5412 .file_offset = offsetof(struct mem_cgroup, events_file),
5413 .seq_show = memory_events_show,
5414 },
5415 {
5416 .name = "stat",
5417 .flags = CFTYPE_NOT_ON_ROOT,
5418 .seq_show = memory_stat_show,
5419 },
5420 { } /* terminate */
5421 };
5422
5423 struct cgroup_subsys memory_cgrp_subsys = {
5424 .css_alloc = mem_cgroup_css_alloc,
5425 .css_online = mem_cgroup_css_online,
5426 .css_offline = mem_cgroup_css_offline,
5427 .css_released = mem_cgroup_css_released,
5428 .css_free = mem_cgroup_css_free,
5429 .css_reset = mem_cgroup_css_reset,
5430 .can_attach = mem_cgroup_can_attach,
5431 .cancel_attach = mem_cgroup_cancel_attach,
5432 .post_attach = mem_cgroup_move_task,
5433 .bind = mem_cgroup_bind,
5434 .dfl_cftypes = memory_files,
5435 .legacy_cftypes = mem_cgroup_legacy_files,
5436 .early_init = 0,
5437 };
5438
5439 /**
5440 * mem_cgroup_low - check if memory consumption is below the normal range
5441 * @root: the top ancestor of the sub-tree being checked
5442 * @memcg: the memory cgroup to check
5443 *
5444 * Returns %true if memory consumption of @memcg, and that of all
5445 * ancestors up to (but not including) @root, is below the normal range.
5446 *
5447 * @root is exclusive; it is never low when looked at directly and isn't
5448 * checked when traversing the hierarchy.
5449 *
5450 * Excluding @root enables using memory.low to prioritize memory usage
5451 * between cgroups within a subtree of the hierarchy that is limited by
5452 * memory.high or memory.max.
5453 *
5454 * For example, given cgroup A with children B and C:
5455 *
5456 * A
5457 * / \
5458 * B C
5459 *
5460 * and
5461 *
5462 * 1. A/memory.current > A/memory.high
5463 * 2. A/B/memory.current < A/B/memory.low
5464 * 3. A/C/memory.current >= A/C/memory.low
5465 *
5466 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5467 * should reclaim from 'C' until 'A' is no longer high or until we can
5468 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5469 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5470 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5471 */
5472 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5473 {
5474 if (mem_cgroup_disabled())
5475 return false;
5476
5477 if (!root)
5478 root = root_mem_cgroup;
5479 if (memcg == root)
5480 return false;
5481
5482 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5483 if (page_counter_read(&memcg->memory) >= memcg->low)
5484 return false;
5485 }
5486
5487 return true;
5488 }
5489
5490 /**
5491 * mem_cgroup_try_charge - try charging a page
5492 * @page: page to charge
5493 * @mm: mm context of the victim
5494 * @gfp_mask: reclaim mode
5495 * @memcgp: charged memcg return
5496 * @compound: charge the page as compound or small page
5497 *
5498 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5499 * pages according to @gfp_mask if necessary.
5500 *
5501 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5502 * Otherwise, an error code is returned.
5503 *
5504 * After page->mapping has been set up, the caller must finalize the
5505 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5506 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5507 */
5508 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5509 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5510 bool compound)
5511 {
5512 struct mem_cgroup *memcg = NULL;
5513 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5514 int ret = 0;
5515
5516 if (mem_cgroup_disabled())
5517 goto out;
5518
5519 if (PageSwapCache(page)) {
5520 /*
5521 * Every swap fault against a single page tries to charge the
5522 * page, bail as early as possible. shmem_unuse() encounters
5523 * already charged pages, too. The USED bit is protected by
5524 * the page lock, which serializes swap cache removal, which
5525 * in turn serializes uncharging.
5526 */
5527 VM_BUG_ON_PAGE(!PageLocked(page), page);
5528 if (compound_head(page)->mem_cgroup)
5529 goto out;
5530
5531 if (do_swap_account) {
5532 swp_entry_t ent = { .val = page_private(page), };
5533 unsigned short id = lookup_swap_cgroup_id(ent);
5534
5535 rcu_read_lock();
5536 memcg = mem_cgroup_from_id(id);
5537 if (memcg && !css_tryget_online(&memcg->css))
5538 memcg = NULL;
5539 rcu_read_unlock();
5540 }
5541 }
5542
5543 if (!memcg)
5544 memcg = get_mem_cgroup_from_mm(mm);
5545
5546 ret = try_charge(memcg, gfp_mask, nr_pages);
5547
5548 css_put(&memcg->css);
5549 out:
5550 *memcgp = memcg;
5551 return ret;
5552 }
5553
5554 /**
5555 * mem_cgroup_commit_charge - commit a page charge
5556 * @page: page to charge
5557 * @memcg: memcg to charge the page to
5558 * @lrucare: page might be on LRU already
5559 * @compound: charge the page as compound or small page
5560 *
5561 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5562 * after page->mapping has been set up. This must happen atomically
5563 * as part of the page instantiation, i.e. under the page table lock
5564 * for anonymous pages, under the page lock for page and swap cache.
5565 *
5566 * In addition, the page must not be on the LRU during the commit, to
5567 * prevent racing with task migration. If it might be, use @lrucare.
5568 *
5569 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5570 */
5571 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5572 bool lrucare, bool compound)
5573 {
5574 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5575
5576 VM_BUG_ON_PAGE(!page->mapping, page);
5577 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5578
5579 if (mem_cgroup_disabled())
5580 return;
5581 /*
5582 * Swap faults will attempt to charge the same page multiple
5583 * times. But reuse_swap_page() might have removed the page
5584 * from swapcache already, so we can't check PageSwapCache().
5585 */
5586 if (!memcg)
5587 return;
5588
5589 commit_charge(page, memcg, lrucare);
5590
5591 local_irq_disable();
5592 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5593 memcg_check_events(memcg, page);
5594 local_irq_enable();
5595
5596 if (do_memsw_account() && PageSwapCache(page)) {
5597 swp_entry_t entry = { .val = page_private(page) };
5598 /*
5599 * The swap entry might not get freed for a long time,
5600 * let's not wait for it. The page already received a
5601 * memory+swap charge, drop the swap entry duplicate.
5602 */
5603 mem_cgroup_uncharge_swap(entry, nr_pages);
5604 }
5605 }
5606
5607 /**
5608 * mem_cgroup_cancel_charge - cancel a page charge
5609 * @page: page to charge
5610 * @memcg: memcg to charge the page to
5611 * @compound: charge the page as compound or small page
5612 *
5613 * Cancel a charge transaction started by mem_cgroup_try_charge().
5614 */
5615 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5616 bool compound)
5617 {
5618 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5619
5620 if (mem_cgroup_disabled())
5621 return;
5622 /*
5623 * Swap faults will attempt to charge the same page multiple
5624 * times. But reuse_swap_page() might have removed the page
5625 * from swapcache already, so we can't check PageSwapCache().
5626 */
5627 if (!memcg)
5628 return;
5629
5630 cancel_charge(memcg, nr_pages);
5631 }
5632
5633 struct uncharge_gather {
5634 struct mem_cgroup *memcg;
5635 unsigned long pgpgout;
5636 unsigned long nr_anon;
5637 unsigned long nr_file;
5638 unsigned long nr_kmem;
5639 unsigned long nr_huge;
5640 unsigned long nr_shmem;
5641 struct page *dummy_page;
5642 };
5643
5644 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5645 {
5646 memset(ug, 0, sizeof(*ug));
5647 }
5648
5649 static void uncharge_batch(const struct uncharge_gather *ug)
5650 {
5651 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5652 unsigned long flags;
5653
5654 if (!mem_cgroup_is_root(ug->memcg)) {
5655 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5656 if (do_memsw_account())
5657 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5659 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5660 memcg_oom_recover(ug->memcg);
5661 }
5662
5663 local_irq_save(flags);
5664 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5665 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5666 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5667 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5668 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5669 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5670 memcg_check_events(ug->memcg, ug->dummy_page);
5671 local_irq_restore(flags);
5672
5673 if (!mem_cgroup_is_root(ug->memcg))
5674 css_put_many(&ug->memcg->css, nr_pages);
5675 }
5676
5677 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5678 {
5679 VM_BUG_ON_PAGE(PageLRU(page), page);
5680 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5681 !PageHWPoison(page) , page);
5682
5683 if (!page->mem_cgroup)
5684 return;
5685
5686 /*
5687 * Nobody should be changing or seriously looking at
5688 * page->mem_cgroup at this point, we have fully
5689 * exclusive access to the page.
5690 */
5691
5692 if (ug->memcg != page->mem_cgroup) {
5693 if (ug->memcg) {
5694 uncharge_batch(ug);
5695 uncharge_gather_clear(ug);
5696 }
5697 ug->memcg = page->mem_cgroup;
5698 }
5699
5700 if (!PageKmemcg(page)) {
5701 unsigned int nr_pages = 1;
5702
5703 if (PageTransHuge(page)) {
5704 nr_pages <<= compound_order(page);
5705 ug->nr_huge += nr_pages;
5706 }
5707 if (PageAnon(page))
5708 ug->nr_anon += nr_pages;
5709 else {
5710 ug->nr_file += nr_pages;
5711 if (PageSwapBacked(page))
5712 ug->nr_shmem += nr_pages;
5713 }
5714 ug->pgpgout++;
5715 } else {
5716 ug->nr_kmem += 1 << compound_order(page);
5717 __ClearPageKmemcg(page);
5718 }
5719
5720 ug->dummy_page = page;
5721 page->mem_cgroup = NULL;
5722 }
5723
5724 static void uncharge_list(struct list_head *page_list)
5725 {
5726 struct uncharge_gather ug;
5727 struct list_head *next;
5728
5729 uncharge_gather_clear(&ug);
5730
5731 /*
5732 * Note that the list can be a single page->lru; hence the
5733 * do-while loop instead of a simple list_for_each_entry().
5734 */
5735 next = page_list->next;
5736 do {
5737 struct page *page;
5738
5739 page = list_entry(next, struct page, lru);
5740 next = page->lru.next;
5741
5742 uncharge_page(page, &ug);
5743 } while (next != page_list);
5744
5745 if (ug.memcg)
5746 uncharge_batch(&ug);
5747 }
5748
5749 /**
5750 * mem_cgroup_uncharge - uncharge a page
5751 * @page: page to uncharge
5752 *
5753 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5754 * mem_cgroup_commit_charge().
5755 */
5756 void mem_cgroup_uncharge(struct page *page)
5757 {
5758 struct uncharge_gather ug;
5759
5760 if (mem_cgroup_disabled())
5761 return;
5762
5763 /* Don't touch page->lru of any random page, pre-check: */
5764 if (!page->mem_cgroup)
5765 return;
5766
5767 uncharge_gather_clear(&ug);
5768 uncharge_page(page, &ug);
5769 uncharge_batch(&ug);
5770 }
5771
5772 /**
5773 * mem_cgroup_uncharge_list - uncharge a list of page
5774 * @page_list: list of pages to uncharge
5775 *
5776 * Uncharge a list of pages previously charged with
5777 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5778 */
5779 void mem_cgroup_uncharge_list(struct list_head *page_list)
5780 {
5781 if (mem_cgroup_disabled())
5782 return;
5783
5784 if (!list_empty(page_list))
5785 uncharge_list(page_list);
5786 }
5787
5788 /**
5789 * mem_cgroup_migrate - charge a page's replacement
5790 * @oldpage: currently circulating page
5791 * @newpage: replacement page
5792 *
5793 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5794 * be uncharged upon free.
5795 *
5796 * Both pages must be locked, @newpage->mapping must be set up.
5797 */
5798 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5799 {
5800 struct mem_cgroup *memcg;
5801 unsigned int nr_pages;
5802 bool compound;
5803 unsigned long flags;
5804
5805 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5806 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5807 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5808 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5809 newpage);
5810
5811 if (mem_cgroup_disabled())
5812 return;
5813
5814 /* Page cache replacement: new page already charged? */
5815 if (newpage->mem_cgroup)
5816 return;
5817
5818 /* Swapcache readahead pages can get replaced before being charged */
5819 memcg = oldpage->mem_cgroup;
5820 if (!memcg)
5821 return;
5822
5823 /* Force-charge the new page. The old one will be freed soon */
5824 compound = PageTransHuge(newpage);
5825 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5826
5827 page_counter_charge(&memcg->memory, nr_pages);
5828 if (do_memsw_account())
5829 page_counter_charge(&memcg->memsw, nr_pages);
5830 css_get_many(&memcg->css, nr_pages);
5831
5832 commit_charge(newpage, memcg, false);
5833
5834 local_irq_save(flags);
5835 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5836 memcg_check_events(memcg, newpage);
5837 local_irq_restore(flags);
5838 }
5839
5840 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5841 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5842
5843 void mem_cgroup_sk_alloc(struct sock *sk)
5844 {
5845 struct mem_cgroup *memcg;
5846
5847 if (!mem_cgroup_sockets_enabled)
5848 return;
5849
5850 /*
5851 * Socket cloning can throw us here with sk_memcg already
5852 * filled. It won't however, necessarily happen from
5853 * process context. So the test for root memcg given
5854 * the current task's memcg won't help us in this case.
5855 *
5856 * Respecting the original socket's memcg is a better
5857 * decision in this case.
5858 */
5859 if (sk->sk_memcg) {
5860 css_get(&sk->sk_memcg->css);
5861 return;
5862 }
5863
5864 rcu_read_lock();
5865 memcg = mem_cgroup_from_task(current);
5866 if (memcg == root_mem_cgroup)
5867 goto out;
5868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5869 goto out;
5870 if (css_tryget_online(&memcg->css))
5871 sk->sk_memcg = memcg;
5872 out:
5873 rcu_read_unlock();
5874 }
5875
5876 void mem_cgroup_sk_free(struct sock *sk)
5877 {
5878 if (sk->sk_memcg)
5879 css_put(&sk->sk_memcg->css);
5880 }
5881
5882 /**
5883 * mem_cgroup_charge_skmem - charge socket memory
5884 * @memcg: memcg to charge
5885 * @nr_pages: number of pages to charge
5886 *
5887 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5888 * @memcg's configured limit, %false if the charge had to be forced.
5889 */
5890 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5891 {
5892 gfp_t gfp_mask = GFP_KERNEL;
5893
5894 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5895 struct page_counter *fail;
5896
5897 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5898 memcg->tcpmem_pressure = 0;
5899 return true;
5900 }
5901 page_counter_charge(&memcg->tcpmem, nr_pages);
5902 memcg->tcpmem_pressure = 1;
5903 return false;
5904 }
5905
5906 /* Don't block in the packet receive path */
5907 if (in_softirq())
5908 gfp_mask = GFP_NOWAIT;
5909
5910 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5911
5912 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5913 return true;
5914
5915 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5916 return false;
5917 }
5918
5919 /**
5920 * mem_cgroup_uncharge_skmem - uncharge socket memory
5921 * @memcg - memcg to uncharge
5922 * @nr_pages - number of pages to uncharge
5923 */
5924 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5925 {
5926 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5927 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5928 return;
5929 }
5930
5931 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5932
5933 refill_stock(memcg, nr_pages);
5934 }
5935
5936 static int __init cgroup_memory(char *s)
5937 {
5938 char *token;
5939
5940 while ((token = strsep(&s, ",")) != NULL) {
5941 if (!*token)
5942 continue;
5943 if (!strcmp(token, "nosocket"))
5944 cgroup_memory_nosocket = true;
5945 if (!strcmp(token, "nokmem"))
5946 cgroup_memory_nokmem = true;
5947 }
5948 return 0;
5949 }
5950 __setup("cgroup.memory=", cgroup_memory);
5951
5952 /*
5953 * subsys_initcall() for memory controller.
5954 *
5955 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5956 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5957 * basically everything that doesn't depend on a specific mem_cgroup structure
5958 * should be initialized from here.
5959 */
5960 static int __init mem_cgroup_init(void)
5961 {
5962 int cpu, node;
5963
5964 #ifndef CONFIG_SLOB
5965 /*
5966 * Kmem cache creation is mostly done with the slab_mutex held,
5967 * so use a workqueue with limited concurrency to avoid stalling
5968 * all worker threads in case lots of cgroups are created and
5969 * destroyed simultaneously.
5970 */
5971 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5972 BUG_ON(!memcg_kmem_cache_wq);
5973 #endif
5974
5975 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5976 memcg_hotplug_cpu_dead);
5977
5978 for_each_possible_cpu(cpu)
5979 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5980 drain_local_stock);
5981
5982 for_each_node(node) {
5983 struct mem_cgroup_tree_per_node *rtpn;
5984
5985 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5986 node_online(node) ? node : NUMA_NO_NODE);
5987
5988 rtpn->rb_root = RB_ROOT;
5989 rtpn->rb_rightmost = NULL;
5990 spin_lock_init(&rtpn->lock);
5991 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5992 }
5993
5994 return 0;
5995 }
5996 subsys_initcall(mem_cgroup_init);
5997
5998 #ifdef CONFIG_MEMCG_SWAP
5999 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6000 {
6001 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6002 /*
6003 * The root cgroup cannot be destroyed, so it's refcount must
6004 * always be >= 1.
6005 */
6006 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6007 VM_BUG_ON(1);
6008 break;
6009 }
6010 memcg = parent_mem_cgroup(memcg);
6011 if (!memcg)
6012 memcg = root_mem_cgroup;
6013 }
6014 return memcg;
6015 }
6016
6017 /**
6018 * mem_cgroup_swapout - transfer a memsw charge to swap
6019 * @page: page whose memsw charge to transfer
6020 * @entry: swap entry to move the charge to
6021 *
6022 * Transfer the memsw charge of @page to @entry.
6023 */
6024 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6025 {
6026 struct mem_cgroup *memcg, *swap_memcg;
6027 unsigned int nr_entries;
6028 unsigned short oldid;
6029
6030 VM_BUG_ON_PAGE(PageLRU(page), page);
6031 VM_BUG_ON_PAGE(page_count(page), page);
6032
6033 if (!do_memsw_account())
6034 return;
6035
6036 memcg = page->mem_cgroup;
6037
6038 /* Readahead page, never charged */
6039 if (!memcg)
6040 return;
6041
6042 /*
6043 * In case the memcg owning these pages has been offlined and doesn't
6044 * have an ID allocated to it anymore, charge the closest online
6045 * ancestor for the swap instead and transfer the memory+swap charge.
6046 */
6047 swap_memcg = mem_cgroup_id_get_online(memcg);
6048 nr_entries = hpage_nr_pages(page);
6049 /* Get references for the tail pages, too */
6050 if (nr_entries > 1)
6051 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6052 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6053 nr_entries);
6054 VM_BUG_ON_PAGE(oldid, page);
6055 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6056
6057 page->mem_cgroup = NULL;
6058
6059 if (!mem_cgroup_is_root(memcg))
6060 page_counter_uncharge(&memcg->memory, nr_entries);
6061
6062 if (memcg != swap_memcg) {
6063 if (!mem_cgroup_is_root(swap_memcg))
6064 page_counter_charge(&swap_memcg->memsw, nr_entries);
6065 page_counter_uncharge(&memcg->memsw, nr_entries);
6066 }
6067
6068 /*
6069 * Interrupts should be disabled here because the caller holds the
6070 * mapping->tree_lock lock which is taken with interrupts-off. It is
6071 * important here to have the interrupts disabled because it is the
6072 * only synchronisation we have for udpating the per-CPU variables.
6073 */
6074 VM_BUG_ON(!irqs_disabled());
6075 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6076 -nr_entries);
6077 memcg_check_events(memcg, page);
6078
6079 if (!mem_cgroup_is_root(memcg))
6080 css_put_many(&memcg->css, nr_entries);
6081 }
6082
6083 /**
6084 * mem_cgroup_try_charge_swap - try charging swap space for a page
6085 * @page: page being added to swap
6086 * @entry: swap entry to charge
6087 *
6088 * Try to charge @page's memcg for the swap space at @entry.
6089 *
6090 * Returns 0 on success, -ENOMEM on failure.
6091 */
6092 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6093 {
6094 unsigned int nr_pages = hpage_nr_pages(page);
6095 struct page_counter *counter;
6096 struct mem_cgroup *memcg;
6097 unsigned short oldid;
6098
6099 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6100 return 0;
6101
6102 memcg = page->mem_cgroup;
6103
6104 /* Readahead page, never charged */
6105 if (!memcg)
6106 return 0;
6107
6108 memcg = mem_cgroup_id_get_online(memcg);
6109
6110 if (!mem_cgroup_is_root(memcg) &&
6111 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6112 mem_cgroup_id_put(memcg);
6113 return -ENOMEM;
6114 }
6115
6116 /* Get references for the tail pages, too */
6117 if (nr_pages > 1)
6118 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6119 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6120 VM_BUG_ON_PAGE(oldid, page);
6121 mem_cgroup_swap_statistics(memcg, nr_pages);
6122
6123 return 0;
6124 }
6125
6126 /**
6127 * mem_cgroup_uncharge_swap - uncharge swap space
6128 * @entry: swap entry to uncharge
6129 * @nr_pages: the amount of swap space to uncharge
6130 */
6131 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6132 {
6133 struct mem_cgroup *memcg;
6134 unsigned short id;
6135
6136 if (!do_swap_account)
6137 return;
6138
6139 id = swap_cgroup_record(entry, 0, nr_pages);
6140 rcu_read_lock();
6141 memcg = mem_cgroup_from_id(id);
6142 if (memcg) {
6143 if (!mem_cgroup_is_root(memcg)) {
6144 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6145 page_counter_uncharge(&memcg->swap, nr_pages);
6146 else
6147 page_counter_uncharge(&memcg->memsw, nr_pages);
6148 }
6149 mem_cgroup_swap_statistics(memcg, -nr_pages);
6150 mem_cgroup_id_put_many(memcg, nr_pages);
6151 }
6152 rcu_read_unlock();
6153 }
6154
6155 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6156 {
6157 long nr_swap_pages = get_nr_swap_pages();
6158
6159 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6160 return nr_swap_pages;
6161 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6162 nr_swap_pages = min_t(long, nr_swap_pages,
6163 READ_ONCE(memcg->swap.limit) -
6164 page_counter_read(&memcg->swap));
6165 return nr_swap_pages;
6166 }
6167
6168 bool mem_cgroup_swap_full(struct page *page)
6169 {
6170 struct mem_cgroup *memcg;
6171
6172 VM_BUG_ON_PAGE(!PageLocked(page), page);
6173
6174 if (vm_swap_full())
6175 return true;
6176 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6177 return false;
6178
6179 memcg = page->mem_cgroup;
6180 if (!memcg)
6181 return false;
6182
6183 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6184 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6185 return true;
6186
6187 return false;
6188 }
6189
6190 /* for remember boot option*/
6191 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6192 static int really_do_swap_account __initdata = 1;
6193 #else
6194 static int really_do_swap_account __initdata;
6195 #endif
6196
6197 static int __init enable_swap_account(char *s)
6198 {
6199 if (!strcmp(s, "1"))
6200 really_do_swap_account = 1;
6201 else if (!strcmp(s, "0"))
6202 really_do_swap_account = 0;
6203 return 1;
6204 }
6205 __setup("swapaccount=", enable_swap_account);
6206
6207 static u64 swap_current_read(struct cgroup_subsys_state *css,
6208 struct cftype *cft)
6209 {
6210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6211
6212 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6213 }
6214
6215 static int swap_max_show(struct seq_file *m, void *v)
6216 {
6217 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6218 unsigned long max = READ_ONCE(memcg->swap.limit);
6219
6220 if (max == PAGE_COUNTER_MAX)
6221 seq_puts(m, "max\n");
6222 else
6223 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6224
6225 return 0;
6226 }
6227
6228 static ssize_t swap_max_write(struct kernfs_open_file *of,
6229 char *buf, size_t nbytes, loff_t off)
6230 {
6231 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6232 unsigned long max;
6233 int err;
6234
6235 buf = strstrip(buf);
6236 err = page_counter_memparse(buf, "max", &max);
6237 if (err)
6238 return err;
6239
6240 mutex_lock(&memcg_limit_mutex);
6241 err = page_counter_limit(&memcg->swap, max);
6242 mutex_unlock(&memcg_limit_mutex);
6243 if (err)
6244 return err;
6245
6246 return nbytes;
6247 }
6248
6249 static struct cftype swap_files[] = {
6250 {
6251 .name = "swap.current",
6252 .flags = CFTYPE_NOT_ON_ROOT,
6253 .read_u64 = swap_current_read,
6254 },
6255 {
6256 .name = "swap.max",
6257 .flags = CFTYPE_NOT_ON_ROOT,
6258 .seq_show = swap_max_show,
6259 .write = swap_max_write,
6260 },
6261 { } /* terminate */
6262 };
6263
6264 static struct cftype memsw_cgroup_files[] = {
6265 {
6266 .name = "memsw.usage_in_bytes",
6267 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6268 .read_u64 = mem_cgroup_read_u64,
6269 },
6270 {
6271 .name = "memsw.max_usage_in_bytes",
6272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6273 .write = mem_cgroup_reset,
6274 .read_u64 = mem_cgroup_read_u64,
6275 },
6276 {
6277 .name = "memsw.limit_in_bytes",
6278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6279 .write = mem_cgroup_write,
6280 .read_u64 = mem_cgroup_read_u64,
6281 },
6282 {
6283 .name = "memsw.failcnt",
6284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6285 .write = mem_cgroup_reset,
6286 .read_u64 = mem_cgroup_read_u64,
6287 },
6288 { }, /* terminate */
6289 };
6290
6291 static int __init mem_cgroup_swap_init(void)
6292 {
6293 if (!mem_cgroup_disabled() && really_do_swap_account) {
6294 do_swap_account = 1;
6295 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6296 swap_files));
6297 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6298 memsw_cgroup_files));
6299 }
6300 return 0;
6301 }
6302 subsys_initcall(mem_cgroup_swap_init);
6303
6304 #endif /* CONFIG_MEMCG_SWAP */