]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
memcg: get_mem_cgroup_from_mm()
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 };
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401 {
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409 }
410
411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 {
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415 }
416 #endif
417
418 /* Stuffs for move charges at task migration. */
419 /*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423 enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427 };
428
429 /* "mc" and its members are protected by cgroup_mutex */
430 static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440 } mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443 };
444
445 static bool move_anon(void)
446 {
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448 }
449
450 static bool move_file(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 }
454
455 /*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462 enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468 };
469
470 /* for encoding cft->private value on file */
471 enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476 };
477
478 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480 #define MEMFILE_ATTR(val) ((val) & 0xffff)
481 /* Used for OOM nofiier */
482 #define OOM_CONTROL (0)
483
484 /*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492 /*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497 static DEFINE_MUTEX(memcg_create_mutex);
498
499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 {
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 }
503
504 /* Some nice accessors for the vmpressure. */
505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 {
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510 }
511
512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 {
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515 }
516
517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 {
519 return (memcg == root_mem_cgroup);
520 }
521
522 /*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526 #define MEM_CGROUP_ID_MAX USHRT_MAX
527
528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 {
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535 }
536
537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538 {
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &memory_cgrp_subsys);
542 return mem_cgroup_from_css(css);
543 }
544
545 /* Writing them here to avoid exposing memcg's inner layout */
546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548 void sock_update_memcg(struct sock *sk)
549 {
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579 }
580 EXPORT_SYMBOL(sock_update_memcg);
581
582 void sock_release_memcg(struct sock *sk)
583 {
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590 }
591
592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 {
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598 }
599 EXPORT_SYMBOL(tcp_proto_cgroup);
600
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606 }
607 #else
608 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 {
610 }
611 #endif
612
613 #ifdef CONFIG_MEMCG_KMEM
614 /*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626 static DEFINE_IDA(kmem_limited_groups);
627 int memcg_limited_groups_array_size;
628
629 /*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641 #define MEMCG_CACHES_MIN_SIZE 4
642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644 /*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650 struct static_key memcg_kmem_enabled_key;
651 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 {
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 }
665 #else
666 static void disarm_kmem_keys(struct mem_cgroup *memcg)
667 {
668 }
669 #endif /* CONFIG_MEMCG_KMEM */
670
671 static void disarm_static_keys(struct mem_cgroup *memcg)
672 {
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675 }
676
677 static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679 static struct mem_cgroup_per_zone *
680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681 {
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 }
685
686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687 {
688 return &memcg->css;
689 }
690
691 static struct mem_cgroup_per_zone *
692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693 {
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698 }
699
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_node_zone(int nid, int zid)
702 {
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 }
705
706 static struct mem_cgroup_tree_per_zone *
707 soft_limit_tree_from_page(struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 }
714
715 static void
716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720 {
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747 }
748
749 static void
750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753 {
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758 }
759
760 static void
761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764 {
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768 }
769
770
771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772 {
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804 }
805
806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807 {
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819 }
820
821 static struct mem_cgroup_per_zone *
822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827 retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843 done:
844 return mz;
845 }
846
847 static struct mem_cgroup_per_zone *
848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849 {
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856 }
857
858 /*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879 {
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886 #ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890 #endif
891 put_online_cpus();
892 return val;
893 }
894
895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897 {
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 }
901
902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904 {
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 put_online_cpus();
917 return val;
918 }
919
920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923 {
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942 else {
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 nr_pages = -nr_pages; /* for event */
945 }
946
947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948 }
949
950 unsigned long
951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 {
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957 }
958
959 static unsigned long
960 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962 {
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974 }
975
976 static unsigned long
977 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979 {
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988 }
989
990 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992 {
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999 }
1000
1001 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003 {
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027 }
1028
1029 /*
1030 * Check events in order.
1031 *
1032 */
1033 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034 {
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044 #if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047 #endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053 #if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056 #endif
1057 } else
1058 preempt_enable();
1059 }
1060
1061 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062 {
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072 }
1073
1074 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1075 {
1076 struct mem_cgroup *memcg = NULL;
1077
1078 rcu_read_lock();
1079 do {
1080 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1081 if (unlikely(!memcg))
1082 memcg = root_mem_cgroup;
1083 } while (!css_tryget(&memcg->css));
1084 rcu_read_unlock();
1085 return memcg;
1086 }
1087
1088 /*
1089 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1090 * ref. count) or NULL if the whole root's subtree has been visited.
1091 *
1092 * helper function to be used by mem_cgroup_iter
1093 */
1094 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1095 struct mem_cgroup *last_visited)
1096 {
1097 struct cgroup_subsys_state *prev_css, *next_css;
1098
1099 prev_css = last_visited ? &last_visited->css : NULL;
1100 skip_node:
1101 next_css = css_next_descendant_pre(prev_css, &root->css);
1102
1103 /*
1104 * Even if we found a group we have to make sure it is
1105 * alive. css && !memcg means that the groups should be
1106 * skipped and we should continue the tree walk.
1107 * last_visited css is safe to use because it is
1108 * protected by css_get and the tree walk is rcu safe.
1109 *
1110 * We do not take a reference on the root of the tree walk
1111 * because we might race with the root removal when it would
1112 * be the only node in the iterated hierarchy and mem_cgroup_iter
1113 * would end up in an endless loop because it expects that at
1114 * least one valid node will be returned. Root cannot disappear
1115 * because caller of the iterator should hold it already so
1116 * skipping css reference should be safe.
1117 */
1118 if (next_css) {
1119 if ((next_css == &root->css) ||
1120 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1121 return mem_cgroup_from_css(next_css);
1122
1123 prev_css = next_css;
1124 goto skip_node;
1125 }
1126
1127 return NULL;
1128 }
1129
1130 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1131 {
1132 /*
1133 * When a group in the hierarchy below root is destroyed, the
1134 * hierarchy iterator can no longer be trusted since it might
1135 * have pointed to the destroyed group. Invalidate it.
1136 */
1137 atomic_inc(&root->dead_count);
1138 }
1139
1140 static struct mem_cgroup *
1141 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1142 struct mem_cgroup *root,
1143 int *sequence)
1144 {
1145 struct mem_cgroup *position = NULL;
1146 /*
1147 * A cgroup destruction happens in two stages: offlining and
1148 * release. They are separated by a RCU grace period.
1149 *
1150 * If the iterator is valid, we may still race with an
1151 * offlining. The RCU lock ensures the object won't be
1152 * released, tryget will fail if we lost the race.
1153 */
1154 *sequence = atomic_read(&root->dead_count);
1155 if (iter->last_dead_count == *sequence) {
1156 smp_rmb();
1157 position = iter->last_visited;
1158
1159 /*
1160 * We cannot take a reference to root because we might race
1161 * with root removal and returning NULL would end up in
1162 * an endless loop on the iterator user level when root
1163 * would be returned all the time.
1164 */
1165 if (position && position != root &&
1166 !css_tryget(&position->css))
1167 position = NULL;
1168 }
1169 return position;
1170 }
1171
1172 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1173 struct mem_cgroup *last_visited,
1174 struct mem_cgroup *new_position,
1175 struct mem_cgroup *root,
1176 int sequence)
1177 {
1178 /* root reference counting symmetric to mem_cgroup_iter_load */
1179 if (last_visited && last_visited != root)
1180 css_put(&last_visited->css);
1181 /*
1182 * We store the sequence count from the time @last_visited was
1183 * loaded successfully instead of rereading it here so that we
1184 * don't lose destruction events in between. We could have
1185 * raced with the destruction of @new_position after all.
1186 */
1187 iter->last_visited = new_position;
1188 smp_wmb();
1189 iter->last_dead_count = sequence;
1190 }
1191
1192 /**
1193 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1194 * @root: hierarchy root
1195 * @prev: previously returned memcg, NULL on first invocation
1196 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1197 *
1198 * Returns references to children of the hierarchy below @root, or
1199 * @root itself, or %NULL after a full round-trip.
1200 *
1201 * Caller must pass the return value in @prev on subsequent
1202 * invocations for reference counting, or use mem_cgroup_iter_break()
1203 * to cancel a hierarchy walk before the round-trip is complete.
1204 *
1205 * Reclaimers can specify a zone and a priority level in @reclaim to
1206 * divide up the memcgs in the hierarchy among all concurrent
1207 * reclaimers operating on the same zone and priority.
1208 */
1209 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1210 struct mem_cgroup *prev,
1211 struct mem_cgroup_reclaim_cookie *reclaim)
1212 {
1213 struct mem_cgroup *memcg = NULL;
1214 struct mem_cgroup *last_visited = NULL;
1215
1216 if (mem_cgroup_disabled())
1217 return NULL;
1218
1219 if (!root)
1220 root = root_mem_cgroup;
1221
1222 if (prev && !reclaim)
1223 last_visited = prev;
1224
1225 if (!root->use_hierarchy && root != root_mem_cgroup) {
1226 if (prev)
1227 goto out_css_put;
1228 return root;
1229 }
1230
1231 rcu_read_lock();
1232 while (!memcg) {
1233 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1234 int uninitialized_var(seq);
1235
1236 if (reclaim) {
1237 int nid = zone_to_nid(reclaim->zone);
1238 int zid = zone_idx(reclaim->zone);
1239 struct mem_cgroup_per_zone *mz;
1240
1241 mz = mem_cgroup_zoneinfo(root, nid, zid);
1242 iter = &mz->reclaim_iter[reclaim->priority];
1243 if (prev && reclaim->generation != iter->generation) {
1244 iter->last_visited = NULL;
1245 goto out_unlock;
1246 }
1247
1248 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1249 }
1250
1251 memcg = __mem_cgroup_iter_next(root, last_visited);
1252
1253 if (reclaim) {
1254 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1255 seq);
1256
1257 if (!memcg)
1258 iter->generation++;
1259 else if (!prev && memcg)
1260 reclaim->generation = iter->generation;
1261 }
1262
1263 if (prev && !memcg)
1264 goto out_unlock;
1265 }
1266 out_unlock:
1267 rcu_read_unlock();
1268 out_css_put:
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1271
1272 return memcg;
1273 }
1274
1275 /**
1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1277 * @root: hierarchy root
1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1279 */
1280 void mem_cgroup_iter_break(struct mem_cgroup *root,
1281 struct mem_cgroup *prev)
1282 {
1283 if (!root)
1284 root = root_mem_cgroup;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287 }
1288
1289 /*
1290 * Iteration constructs for visiting all cgroups (under a tree). If
1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1292 * be used for reference counting.
1293 */
1294 #define for_each_mem_cgroup_tree(iter, root) \
1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1296 iter != NULL; \
1297 iter = mem_cgroup_iter(root, iter, NULL))
1298
1299 #define for_each_mem_cgroup(iter) \
1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1301 iter != NULL; \
1302 iter = mem_cgroup_iter(NULL, iter, NULL))
1303
1304 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1305 {
1306 struct mem_cgroup *memcg;
1307
1308 rcu_read_lock();
1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1310 if (unlikely(!memcg))
1311 goto out;
1312
1313 switch (idx) {
1314 case PGFAULT:
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1316 break;
1317 case PGMAJFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1319 break;
1320 default:
1321 BUG();
1322 }
1323 out:
1324 rcu_read_unlock();
1325 }
1326 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1327
1328 /**
1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1330 * @zone: zone of the wanted lruvec
1331 * @memcg: memcg of the wanted lruvec
1332 *
1333 * Returns the lru list vector holding pages for the given @zone and
1334 * @mem. This can be the global zone lruvec, if the memory controller
1335 * is disabled.
1336 */
1337 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1338 struct mem_cgroup *memcg)
1339 {
1340 struct mem_cgroup_per_zone *mz;
1341 struct lruvec *lruvec;
1342
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
1347
1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1349 lruvec = &mz->lruvec;
1350 out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
1359 }
1360
1361 /*
1362 * Following LRU functions are allowed to be used without PCG_LOCK.
1363 * Operations are called by routine of global LRU independently from memcg.
1364 * What we have to take care of here is validness of pc->mem_cgroup.
1365 *
1366 * Changes to pc->mem_cgroup happens when
1367 * 1. charge
1368 * 2. moving account
1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1370 * It is added to LRU before charge.
1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1372 * When moving account, the page is not on LRU. It's isolated.
1373 */
1374
1375 /**
1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1377 * @page: the page
1378 * @zone: zone of the page
1379 */
1380 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1381 {
1382 struct mem_cgroup_per_zone *mz;
1383 struct mem_cgroup *memcg;
1384 struct page_cgroup *pc;
1385 struct lruvec *lruvec;
1386
1387 if (mem_cgroup_disabled()) {
1388 lruvec = &zone->lruvec;
1389 goto out;
1390 }
1391
1392 pc = lookup_page_cgroup(page);
1393 memcg = pc->mem_cgroup;
1394
1395 /*
1396 * Surreptitiously switch any uncharged offlist page to root:
1397 * an uncharged page off lru does nothing to secure
1398 * its former mem_cgroup from sudden removal.
1399 *
1400 * Our caller holds lru_lock, and PageCgroupUsed is updated
1401 * under page_cgroup lock: between them, they make all uses
1402 * of pc->mem_cgroup safe.
1403 */
1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1405 pc->mem_cgroup = memcg = root_mem_cgroup;
1406
1407 mz = page_cgroup_zoneinfo(memcg, page);
1408 lruvec = &mz->lruvec;
1409 out:
1410 /*
1411 * Since a node can be onlined after the mem_cgroup was created,
1412 * we have to be prepared to initialize lruvec->zone here;
1413 * and if offlined then reonlined, we need to reinitialize it.
1414 */
1415 if (unlikely(lruvec->zone != zone))
1416 lruvec->zone = zone;
1417 return lruvec;
1418 }
1419
1420 /**
1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1422 * @lruvec: mem_cgroup per zone lru vector
1423 * @lru: index of lru list the page is sitting on
1424 * @nr_pages: positive when adding or negative when removing
1425 *
1426 * This function must be called when a page is added to or removed from an
1427 * lru list.
1428 */
1429 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1430 int nr_pages)
1431 {
1432 struct mem_cgroup_per_zone *mz;
1433 unsigned long *lru_size;
1434
1435 if (mem_cgroup_disabled())
1436 return;
1437
1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1439 lru_size = mz->lru_size + lru;
1440 *lru_size += nr_pages;
1441 VM_BUG_ON((long)(*lru_size) < 0);
1442 }
1443
1444 /*
1445 * Checks whether given mem is same or in the root_mem_cgroup's
1446 * hierarchy subtree
1447 */
1448 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
1450 {
1451 if (root_memcg == memcg)
1452 return true;
1453 if (!root_memcg->use_hierarchy || !memcg)
1454 return false;
1455 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1456 }
1457
1458 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1460 {
1461 bool ret;
1462
1463 rcu_read_lock();
1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1465 rcu_read_unlock();
1466 return ret;
1467 }
1468
1469 bool task_in_mem_cgroup(struct task_struct *task,
1470 const struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *curr = NULL;
1473 struct task_struct *p;
1474 bool ret;
1475
1476 p = find_lock_task_mm(task);
1477 if (p) {
1478 curr = get_mem_cgroup_from_mm(p->mm);
1479 task_unlock(p);
1480 } else {
1481 /*
1482 * All threads may have already detached their mm's, but the oom
1483 * killer still needs to detect if they have already been oom
1484 * killed to prevent needlessly killing additional tasks.
1485 */
1486 rcu_read_lock();
1487 curr = mem_cgroup_from_task(task);
1488 if (curr)
1489 css_get(&curr->css);
1490 rcu_read_unlock();
1491 }
1492 /*
1493 * We should check use_hierarchy of "memcg" not "curr". Because checking
1494 * use_hierarchy of "curr" here make this function true if hierarchy is
1495 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1496 * hierarchy(even if use_hierarchy is disabled in "memcg").
1497 */
1498 ret = mem_cgroup_same_or_subtree(memcg, curr);
1499 css_put(&curr->css);
1500 return ret;
1501 }
1502
1503 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1504 {
1505 unsigned long inactive_ratio;
1506 unsigned long inactive;
1507 unsigned long active;
1508 unsigned long gb;
1509
1510 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1511 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1512
1513 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1514 if (gb)
1515 inactive_ratio = int_sqrt(10 * gb);
1516 else
1517 inactive_ratio = 1;
1518
1519 return inactive * inactive_ratio < active;
1520 }
1521
1522 #define mem_cgroup_from_res_counter(counter, member) \
1523 container_of(counter, struct mem_cgroup, member)
1524
1525 /**
1526 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1527 * @memcg: the memory cgroup
1528 *
1529 * Returns the maximum amount of memory @mem can be charged with, in
1530 * pages.
1531 */
1532 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1533 {
1534 unsigned long long margin;
1535
1536 margin = res_counter_margin(&memcg->res);
1537 if (do_swap_account)
1538 margin = min(margin, res_counter_margin(&memcg->memsw));
1539 return margin >> PAGE_SHIFT;
1540 }
1541
1542 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1543 {
1544 /* root ? */
1545 if (!css_parent(&memcg->css))
1546 return vm_swappiness;
1547
1548 return memcg->swappiness;
1549 }
1550
1551 /*
1552 * memcg->moving_account is used for checking possibility that some thread is
1553 * calling move_account(). When a thread on CPU-A starts moving pages under
1554 * a memcg, other threads should check memcg->moving_account under
1555 * rcu_read_lock(), like this:
1556 *
1557 * CPU-A CPU-B
1558 * rcu_read_lock()
1559 * memcg->moving_account+1 if (memcg->mocing_account)
1560 * take heavy locks.
1561 * synchronize_rcu() update something.
1562 * rcu_read_unlock()
1563 * start move here.
1564 */
1565
1566 /* for quick checking without looking up memcg */
1567 atomic_t memcg_moving __read_mostly;
1568
1569 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1570 {
1571 atomic_inc(&memcg_moving);
1572 atomic_inc(&memcg->moving_account);
1573 synchronize_rcu();
1574 }
1575
1576 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1577 {
1578 /*
1579 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1580 * We check NULL in callee rather than caller.
1581 */
1582 if (memcg) {
1583 atomic_dec(&memcg_moving);
1584 atomic_dec(&memcg->moving_account);
1585 }
1586 }
1587
1588 /*
1589 * 2 routines for checking "mem" is under move_account() or not.
1590 *
1591 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1592 * is used for avoiding races in accounting. If true,
1593 * pc->mem_cgroup may be overwritten.
1594 *
1595 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1596 * under hierarchy of moving cgroups. This is for
1597 * waiting at hith-memory prressure caused by "move".
1598 */
1599
1600 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1601 {
1602 VM_BUG_ON(!rcu_read_lock_held());
1603 return atomic_read(&memcg->moving_account) > 0;
1604 }
1605
1606 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1607 {
1608 struct mem_cgroup *from;
1609 struct mem_cgroup *to;
1610 bool ret = false;
1611 /*
1612 * Unlike task_move routines, we access mc.to, mc.from not under
1613 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1614 */
1615 spin_lock(&mc.lock);
1616 from = mc.from;
1617 to = mc.to;
1618 if (!from)
1619 goto unlock;
1620
1621 ret = mem_cgroup_same_or_subtree(memcg, from)
1622 || mem_cgroup_same_or_subtree(memcg, to);
1623 unlock:
1624 spin_unlock(&mc.lock);
1625 return ret;
1626 }
1627
1628 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1629 {
1630 if (mc.moving_task && current != mc.moving_task) {
1631 if (mem_cgroup_under_move(memcg)) {
1632 DEFINE_WAIT(wait);
1633 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1634 /* moving charge context might have finished. */
1635 if (mc.moving_task)
1636 schedule();
1637 finish_wait(&mc.waitq, &wait);
1638 return true;
1639 }
1640 }
1641 return false;
1642 }
1643
1644 /*
1645 * Take this lock when
1646 * - a code tries to modify page's memcg while it's USED.
1647 * - a code tries to modify page state accounting in a memcg.
1648 * see mem_cgroup_stolen(), too.
1649 */
1650 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1651 unsigned long *flags)
1652 {
1653 spin_lock_irqsave(&memcg->move_lock, *flags);
1654 }
1655
1656 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1657 unsigned long *flags)
1658 {
1659 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1660 }
1661
1662 #define K(x) ((x) << (PAGE_SHIFT-10))
1663 /**
1664 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1665 * @memcg: The memory cgroup that went over limit
1666 * @p: Task that is going to be killed
1667 *
1668 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1669 * enabled
1670 */
1671 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1672 {
1673 /* oom_info_lock ensures that parallel ooms do not interleave */
1674 static DEFINE_MUTEX(oom_info_lock);
1675 struct mem_cgroup *iter;
1676 unsigned int i;
1677
1678 if (!p)
1679 return;
1680
1681 mutex_lock(&oom_info_lock);
1682 rcu_read_lock();
1683
1684 pr_info("Task in ");
1685 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1686 pr_info(" killed as a result of limit of ");
1687 pr_cont_cgroup_path(memcg->css.cgroup);
1688 pr_info("\n");
1689
1690 rcu_read_unlock();
1691
1692 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1693 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1696 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1697 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1700 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1701 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1704
1705 for_each_mem_cgroup_tree(iter, memcg) {
1706 pr_info("Memory cgroup stats for ");
1707 pr_cont_cgroup_path(iter->css.cgroup);
1708 pr_cont(":");
1709
1710 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1711 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1712 continue;
1713 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1714 K(mem_cgroup_read_stat(iter, i)));
1715 }
1716
1717 for (i = 0; i < NR_LRU_LISTS; i++)
1718 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1719 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1720
1721 pr_cont("\n");
1722 }
1723 mutex_unlock(&oom_info_lock);
1724 }
1725
1726 /*
1727 * This function returns the number of memcg under hierarchy tree. Returns
1728 * 1(self count) if no children.
1729 */
1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 {
1732 int num = 0;
1733 struct mem_cgroup *iter;
1734
1735 for_each_mem_cgroup_tree(iter, memcg)
1736 num++;
1737 return num;
1738 }
1739
1740 /*
1741 * Return the memory (and swap, if configured) limit for a memcg.
1742 */
1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1744 {
1745 u64 limit;
1746
1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1748
1749 /*
1750 * Do not consider swap space if we cannot swap due to swappiness
1751 */
1752 if (mem_cgroup_swappiness(memcg)) {
1753 u64 memsw;
1754
1755 limit += total_swap_pages << PAGE_SHIFT;
1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1757
1758 /*
1759 * If memsw is finite and limits the amount of swap space
1760 * available to this memcg, return that limit.
1761 */
1762 limit = min(limit, memsw);
1763 }
1764
1765 return limit;
1766 }
1767
1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1769 int order)
1770 {
1771 struct mem_cgroup *iter;
1772 unsigned long chosen_points = 0;
1773 unsigned long totalpages;
1774 unsigned int points = 0;
1775 struct task_struct *chosen = NULL;
1776
1777 /*
1778 * If current has a pending SIGKILL or is exiting, then automatically
1779 * select it. The goal is to allow it to allocate so that it may
1780 * quickly exit and free its memory.
1781 */
1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 set_thread_flag(TIF_MEMDIE);
1784 return;
1785 }
1786
1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1789 for_each_mem_cgroup_tree(iter, memcg) {
1790 struct css_task_iter it;
1791 struct task_struct *task;
1792
1793 css_task_iter_start(&iter->css, &it);
1794 while ((task = css_task_iter_next(&it))) {
1795 switch (oom_scan_process_thread(task, totalpages, NULL,
1796 false)) {
1797 case OOM_SCAN_SELECT:
1798 if (chosen)
1799 put_task_struct(chosen);
1800 chosen = task;
1801 chosen_points = ULONG_MAX;
1802 get_task_struct(chosen);
1803 /* fall through */
1804 case OOM_SCAN_CONTINUE:
1805 continue;
1806 case OOM_SCAN_ABORT:
1807 css_task_iter_end(&it);
1808 mem_cgroup_iter_break(memcg, iter);
1809 if (chosen)
1810 put_task_struct(chosen);
1811 return;
1812 case OOM_SCAN_OK:
1813 break;
1814 };
1815 points = oom_badness(task, memcg, NULL, totalpages);
1816 if (!points || points < chosen_points)
1817 continue;
1818 /* Prefer thread group leaders for display purposes */
1819 if (points == chosen_points &&
1820 thread_group_leader(chosen))
1821 continue;
1822
1823 if (chosen)
1824 put_task_struct(chosen);
1825 chosen = task;
1826 chosen_points = points;
1827 get_task_struct(chosen);
1828 }
1829 css_task_iter_end(&it);
1830 }
1831
1832 if (!chosen)
1833 return;
1834 points = chosen_points * 1000 / totalpages;
1835 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1836 NULL, "Memory cgroup out of memory");
1837 }
1838
1839 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1840 gfp_t gfp_mask,
1841 unsigned long flags)
1842 {
1843 unsigned long total = 0;
1844 bool noswap = false;
1845 int loop;
1846
1847 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1848 noswap = true;
1849 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1850 noswap = true;
1851
1852 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1853 if (loop)
1854 drain_all_stock_async(memcg);
1855 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1856 /*
1857 * Allow limit shrinkers, which are triggered directly
1858 * by userspace, to catch signals and stop reclaim
1859 * after minimal progress, regardless of the margin.
1860 */
1861 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1862 break;
1863 if (mem_cgroup_margin(memcg))
1864 break;
1865 /*
1866 * If nothing was reclaimed after two attempts, there
1867 * may be no reclaimable pages in this hierarchy.
1868 */
1869 if (loop && !total)
1870 break;
1871 }
1872 return total;
1873 }
1874
1875 /**
1876 * test_mem_cgroup_node_reclaimable
1877 * @memcg: the target memcg
1878 * @nid: the node ID to be checked.
1879 * @noswap : specify true here if the user wants flle only information.
1880 *
1881 * This function returns whether the specified memcg contains any
1882 * reclaimable pages on a node. Returns true if there are any reclaimable
1883 * pages in the node.
1884 */
1885 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1886 int nid, bool noswap)
1887 {
1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1889 return true;
1890 if (noswap || !total_swap_pages)
1891 return false;
1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1893 return true;
1894 return false;
1895
1896 }
1897 #if MAX_NUMNODES > 1
1898
1899 /*
1900 * Always updating the nodemask is not very good - even if we have an empty
1901 * list or the wrong list here, we can start from some node and traverse all
1902 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1903 *
1904 */
1905 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1906 {
1907 int nid;
1908 /*
1909 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1910 * pagein/pageout changes since the last update.
1911 */
1912 if (!atomic_read(&memcg->numainfo_events))
1913 return;
1914 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1915 return;
1916
1917 /* make a nodemask where this memcg uses memory from */
1918 memcg->scan_nodes = node_states[N_MEMORY];
1919
1920 for_each_node_mask(nid, node_states[N_MEMORY]) {
1921
1922 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1923 node_clear(nid, memcg->scan_nodes);
1924 }
1925
1926 atomic_set(&memcg->numainfo_events, 0);
1927 atomic_set(&memcg->numainfo_updating, 0);
1928 }
1929
1930 /*
1931 * Selecting a node where we start reclaim from. Because what we need is just
1932 * reducing usage counter, start from anywhere is O,K. Considering
1933 * memory reclaim from current node, there are pros. and cons.
1934 *
1935 * Freeing memory from current node means freeing memory from a node which
1936 * we'll use or we've used. So, it may make LRU bad. And if several threads
1937 * hit limits, it will see a contention on a node. But freeing from remote
1938 * node means more costs for memory reclaim because of memory latency.
1939 *
1940 * Now, we use round-robin. Better algorithm is welcomed.
1941 */
1942 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1943 {
1944 int node;
1945
1946 mem_cgroup_may_update_nodemask(memcg);
1947 node = memcg->last_scanned_node;
1948
1949 node = next_node(node, memcg->scan_nodes);
1950 if (node == MAX_NUMNODES)
1951 node = first_node(memcg->scan_nodes);
1952 /*
1953 * We call this when we hit limit, not when pages are added to LRU.
1954 * No LRU may hold pages because all pages are UNEVICTABLE or
1955 * memcg is too small and all pages are not on LRU. In that case,
1956 * we use curret node.
1957 */
1958 if (unlikely(node == MAX_NUMNODES))
1959 node = numa_node_id();
1960
1961 memcg->last_scanned_node = node;
1962 return node;
1963 }
1964
1965 /*
1966 * Check all nodes whether it contains reclaimable pages or not.
1967 * For quick scan, we make use of scan_nodes. This will allow us to skip
1968 * unused nodes. But scan_nodes is lazily updated and may not cotain
1969 * enough new information. We need to do double check.
1970 */
1971 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1972 {
1973 int nid;
1974
1975 /*
1976 * quick check...making use of scan_node.
1977 * We can skip unused nodes.
1978 */
1979 if (!nodes_empty(memcg->scan_nodes)) {
1980 for (nid = first_node(memcg->scan_nodes);
1981 nid < MAX_NUMNODES;
1982 nid = next_node(nid, memcg->scan_nodes)) {
1983
1984 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1985 return true;
1986 }
1987 }
1988 /*
1989 * Check rest of nodes.
1990 */
1991 for_each_node_state(nid, N_MEMORY) {
1992 if (node_isset(nid, memcg->scan_nodes))
1993 continue;
1994 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1995 return true;
1996 }
1997 return false;
1998 }
1999
2000 #else
2001 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2002 {
2003 return 0;
2004 }
2005
2006 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2007 {
2008 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2009 }
2010 #endif
2011
2012 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2013 struct zone *zone,
2014 gfp_t gfp_mask,
2015 unsigned long *total_scanned)
2016 {
2017 struct mem_cgroup *victim = NULL;
2018 int total = 0;
2019 int loop = 0;
2020 unsigned long excess;
2021 unsigned long nr_scanned;
2022 struct mem_cgroup_reclaim_cookie reclaim = {
2023 .zone = zone,
2024 .priority = 0,
2025 };
2026
2027 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2028
2029 while (1) {
2030 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2031 if (!victim) {
2032 loop++;
2033 if (loop >= 2) {
2034 /*
2035 * If we have not been able to reclaim
2036 * anything, it might because there are
2037 * no reclaimable pages under this hierarchy
2038 */
2039 if (!total)
2040 break;
2041 /*
2042 * We want to do more targeted reclaim.
2043 * excess >> 2 is not to excessive so as to
2044 * reclaim too much, nor too less that we keep
2045 * coming back to reclaim from this cgroup
2046 */
2047 if (total >= (excess >> 2) ||
2048 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2049 break;
2050 }
2051 continue;
2052 }
2053 if (!mem_cgroup_reclaimable(victim, false))
2054 continue;
2055 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2056 zone, &nr_scanned);
2057 *total_scanned += nr_scanned;
2058 if (!res_counter_soft_limit_excess(&root_memcg->res))
2059 break;
2060 }
2061 mem_cgroup_iter_break(root_memcg, victim);
2062 return total;
2063 }
2064
2065 #ifdef CONFIG_LOCKDEP
2066 static struct lockdep_map memcg_oom_lock_dep_map = {
2067 .name = "memcg_oom_lock",
2068 };
2069 #endif
2070
2071 static DEFINE_SPINLOCK(memcg_oom_lock);
2072
2073 /*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
2076 */
2077 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2078 {
2079 struct mem_cgroup *iter, *failed = NULL;
2080
2081 spin_lock(&memcg_oom_lock);
2082
2083 for_each_mem_cgroup_tree(iter, memcg) {
2084 if (iter->oom_lock) {
2085 /*
2086 * this subtree of our hierarchy is already locked
2087 * so we cannot give a lock.
2088 */
2089 failed = iter;
2090 mem_cgroup_iter_break(memcg, iter);
2091 break;
2092 } else
2093 iter->oom_lock = true;
2094 }
2095
2096 if (failed) {
2097 /*
2098 * OK, we failed to lock the whole subtree so we have
2099 * to clean up what we set up to the failing subtree
2100 */
2101 for_each_mem_cgroup_tree(iter, memcg) {
2102 if (iter == failed) {
2103 mem_cgroup_iter_break(memcg, iter);
2104 break;
2105 }
2106 iter->oom_lock = false;
2107 }
2108 } else
2109 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2110
2111 spin_unlock(&memcg_oom_lock);
2112
2113 return !failed;
2114 }
2115
2116 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2117 {
2118 struct mem_cgroup *iter;
2119
2120 spin_lock(&memcg_oom_lock);
2121 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2122 for_each_mem_cgroup_tree(iter, memcg)
2123 iter->oom_lock = false;
2124 spin_unlock(&memcg_oom_lock);
2125 }
2126
2127 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2128 {
2129 struct mem_cgroup *iter;
2130
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 atomic_inc(&iter->under_oom);
2133 }
2134
2135 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2136 {
2137 struct mem_cgroup *iter;
2138
2139 /*
2140 * When a new child is created while the hierarchy is under oom,
2141 * mem_cgroup_oom_lock() may not be called. We have to use
2142 * atomic_add_unless() here.
2143 */
2144 for_each_mem_cgroup_tree(iter, memcg)
2145 atomic_add_unless(&iter->under_oom, -1, 0);
2146 }
2147
2148 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2149
2150 struct oom_wait_info {
2151 struct mem_cgroup *memcg;
2152 wait_queue_t wait;
2153 };
2154
2155 static int memcg_oom_wake_function(wait_queue_t *wait,
2156 unsigned mode, int sync, void *arg)
2157 {
2158 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2159 struct mem_cgroup *oom_wait_memcg;
2160 struct oom_wait_info *oom_wait_info;
2161
2162 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2163 oom_wait_memcg = oom_wait_info->memcg;
2164
2165 /*
2166 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2167 * Then we can use css_is_ancestor without taking care of RCU.
2168 */
2169 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2170 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2171 return 0;
2172 return autoremove_wake_function(wait, mode, sync, arg);
2173 }
2174
2175 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2176 {
2177 atomic_inc(&memcg->oom_wakeups);
2178 /* for filtering, pass "memcg" as argument. */
2179 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2180 }
2181
2182 static void memcg_oom_recover(struct mem_cgroup *memcg)
2183 {
2184 if (memcg && atomic_read(&memcg->under_oom))
2185 memcg_wakeup_oom(memcg);
2186 }
2187
2188 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2189 {
2190 if (!current->memcg_oom.may_oom)
2191 return;
2192 /*
2193 * We are in the middle of the charge context here, so we
2194 * don't want to block when potentially sitting on a callstack
2195 * that holds all kinds of filesystem and mm locks.
2196 *
2197 * Also, the caller may handle a failed allocation gracefully
2198 * (like optional page cache readahead) and so an OOM killer
2199 * invocation might not even be necessary.
2200 *
2201 * That's why we don't do anything here except remember the
2202 * OOM context and then deal with it at the end of the page
2203 * fault when the stack is unwound, the locks are released,
2204 * and when we know whether the fault was overall successful.
2205 */
2206 css_get(&memcg->css);
2207 current->memcg_oom.memcg = memcg;
2208 current->memcg_oom.gfp_mask = mask;
2209 current->memcg_oom.order = order;
2210 }
2211
2212 /**
2213 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2214 * @handle: actually kill/wait or just clean up the OOM state
2215 *
2216 * This has to be called at the end of a page fault if the memcg OOM
2217 * handler was enabled.
2218 *
2219 * Memcg supports userspace OOM handling where failed allocations must
2220 * sleep on a waitqueue until the userspace task resolves the
2221 * situation. Sleeping directly in the charge context with all kinds
2222 * of locks held is not a good idea, instead we remember an OOM state
2223 * in the task and mem_cgroup_oom_synchronize() has to be called at
2224 * the end of the page fault to complete the OOM handling.
2225 *
2226 * Returns %true if an ongoing memcg OOM situation was detected and
2227 * completed, %false otherwise.
2228 */
2229 bool mem_cgroup_oom_synchronize(bool handle)
2230 {
2231 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2232 struct oom_wait_info owait;
2233 bool locked;
2234
2235 /* OOM is global, do not handle */
2236 if (!memcg)
2237 return false;
2238
2239 if (!handle)
2240 goto cleanup;
2241
2242 owait.memcg = memcg;
2243 owait.wait.flags = 0;
2244 owait.wait.func = memcg_oom_wake_function;
2245 owait.wait.private = current;
2246 INIT_LIST_HEAD(&owait.wait.task_list);
2247
2248 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2249 mem_cgroup_mark_under_oom(memcg);
2250
2251 locked = mem_cgroup_oom_trylock(memcg);
2252
2253 if (locked)
2254 mem_cgroup_oom_notify(memcg);
2255
2256 if (locked && !memcg->oom_kill_disable) {
2257 mem_cgroup_unmark_under_oom(memcg);
2258 finish_wait(&memcg_oom_waitq, &owait.wait);
2259 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2260 current->memcg_oom.order);
2261 } else {
2262 schedule();
2263 mem_cgroup_unmark_under_oom(memcg);
2264 finish_wait(&memcg_oom_waitq, &owait.wait);
2265 }
2266
2267 if (locked) {
2268 mem_cgroup_oom_unlock(memcg);
2269 /*
2270 * There is no guarantee that an OOM-lock contender
2271 * sees the wakeups triggered by the OOM kill
2272 * uncharges. Wake any sleepers explicitely.
2273 */
2274 memcg_oom_recover(memcg);
2275 }
2276 cleanup:
2277 current->memcg_oom.memcg = NULL;
2278 css_put(&memcg->css);
2279 return true;
2280 }
2281
2282 /*
2283 * Currently used to update mapped file statistics, but the routine can be
2284 * generalized to update other statistics as well.
2285 *
2286 * Notes: Race condition
2287 *
2288 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2289 * it tends to be costly. But considering some conditions, we doesn't need
2290 * to do so _always_.
2291 *
2292 * Considering "charge", lock_page_cgroup() is not required because all
2293 * file-stat operations happen after a page is attached to radix-tree. There
2294 * are no race with "charge".
2295 *
2296 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2297 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2298 * if there are race with "uncharge". Statistics itself is properly handled
2299 * by flags.
2300 *
2301 * Considering "move", this is an only case we see a race. To make the race
2302 * small, we check mm->moving_account and detect there are possibility of race
2303 * If there is, we take a lock.
2304 */
2305
2306 void __mem_cgroup_begin_update_page_stat(struct page *page,
2307 bool *locked, unsigned long *flags)
2308 {
2309 struct mem_cgroup *memcg;
2310 struct page_cgroup *pc;
2311
2312 pc = lookup_page_cgroup(page);
2313 again:
2314 memcg = pc->mem_cgroup;
2315 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2316 return;
2317 /*
2318 * If this memory cgroup is not under account moving, we don't
2319 * need to take move_lock_mem_cgroup(). Because we already hold
2320 * rcu_read_lock(), any calls to move_account will be delayed until
2321 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2322 */
2323 if (!mem_cgroup_stolen(memcg))
2324 return;
2325
2326 move_lock_mem_cgroup(memcg, flags);
2327 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2328 move_unlock_mem_cgroup(memcg, flags);
2329 goto again;
2330 }
2331 *locked = true;
2332 }
2333
2334 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2335 {
2336 struct page_cgroup *pc = lookup_page_cgroup(page);
2337
2338 /*
2339 * It's guaranteed that pc->mem_cgroup never changes while
2340 * lock is held because a routine modifies pc->mem_cgroup
2341 * should take move_lock_mem_cgroup().
2342 */
2343 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2344 }
2345
2346 void mem_cgroup_update_page_stat(struct page *page,
2347 enum mem_cgroup_stat_index idx, int val)
2348 {
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc = lookup_page_cgroup(page);
2351 unsigned long uninitialized_var(flags);
2352
2353 if (mem_cgroup_disabled())
2354 return;
2355
2356 VM_BUG_ON(!rcu_read_lock_held());
2357 memcg = pc->mem_cgroup;
2358 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2359 return;
2360
2361 this_cpu_add(memcg->stat->count[idx], val);
2362 }
2363
2364 /*
2365 * size of first charge trial. "32" comes from vmscan.c's magic value.
2366 * TODO: maybe necessary to use big numbers in big irons.
2367 */
2368 #define CHARGE_BATCH 32U
2369 struct memcg_stock_pcp {
2370 struct mem_cgroup *cached; /* this never be root cgroup */
2371 unsigned int nr_pages;
2372 struct work_struct work;
2373 unsigned long flags;
2374 #define FLUSHING_CACHED_CHARGE 0
2375 };
2376 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2377 static DEFINE_MUTEX(percpu_charge_mutex);
2378
2379 /**
2380 * consume_stock: Try to consume stocked charge on this cpu.
2381 * @memcg: memcg to consume from.
2382 * @nr_pages: how many pages to charge.
2383 *
2384 * The charges will only happen if @memcg matches the current cpu's memcg
2385 * stock, and at least @nr_pages are available in that stock. Failure to
2386 * service an allocation will refill the stock.
2387 *
2388 * returns true if successful, false otherwise.
2389 */
2390 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2391 {
2392 struct memcg_stock_pcp *stock;
2393 bool ret = true;
2394
2395 if (nr_pages > CHARGE_BATCH)
2396 return false;
2397
2398 stock = &get_cpu_var(memcg_stock);
2399 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2400 stock->nr_pages -= nr_pages;
2401 else /* need to call res_counter_charge */
2402 ret = false;
2403 put_cpu_var(memcg_stock);
2404 return ret;
2405 }
2406
2407 /*
2408 * Returns stocks cached in percpu to res_counter and reset cached information.
2409 */
2410 static void drain_stock(struct memcg_stock_pcp *stock)
2411 {
2412 struct mem_cgroup *old = stock->cached;
2413
2414 if (stock->nr_pages) {
2415 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2416
2417 res_counter_uncharge(&old->res, bytes);
2418 if (do_swap_account)
2419 res_counter_uncharge(&old->memsw, bytes);
2420 stock->nr_pages = 0;
2421 }
2422 stock->cached = NULL;
2423 }
2424
2425 /*
2426 * This must be called under preempt disabled or must be called by
2427 * a thread which is pinned to local cpu.
2428 */
2429 static void drain_local_stock(struct work_struct *dummy)
2430 {
2431 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2432 drain_stock(stock);
2433 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2434 }
2435
2436 static void __init memcg_stock_init(void)
2437 {
2438 int cpu;
2439
2440 for_each_possible_cpu(cpu) {
2441 struct memcg_stock_pcp *stock =
2442 &per_cpu(memcg_stock, cpu);
2443 INIT_WORK(&stock->work, drain_local_stock);
2444 }
2445 }
2446
2447 /*
2448 * Cache charges(val) which is from res_counter, to local per_cpu area.
2449 * This will be consumed by consume_stock() function, later.
2450 */
2451 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2452 {
2453 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2454
2455 if (stock->cached != memcg) { /* reset if necessary */
2456 drain_stock(stock);
2457 stock->cached = memcg;
2458 }
2459 stock->nr_pages += nr_pages;
2460 put_cpu_var(memcg_stock);
2461 }
2462
2463 /*
2464 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2465 * of the hierarchy under it. sync flag says whether we should block
2466 * until the work is done.
2467 */
2468 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2469 {
2470 int cpu, curcpu;
2471
2472 /* Notify other cpus that system-wide "drain" is running */
2473 get_online_cpus();
2474 curcpu = get_cpu();
2475 for_each_online_cpu(cpu) {
2476 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2477 struct mem_cgroup *memcg;
2478
2479 memcg = stock->cached;
2480 if (!memcg || !stock->nr_pages)
2481 continue;
2482 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2483 continue;
2484 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2485 if (cpu == curcpu)
2486 drain_local_stock(&stock->work);
2487 else
2488 schedule_work_on(cpu, &stock->work);
2489 }
2490 }
2491 put_cpu();
2492
2493 if (!sync)
2494 goto out;
2495
2496 for_each_online_cpu(cpu) {
2497 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2498 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2499 flush_work(&stock->work);
2500 }
2501 out:
2502 put_online_cpus();
2503 }
2504
2505 /*
2506 * Tries to drain stocked charges in other cpus. This function is asynchronous
2507 * and just put a work per cpu for draining localy on each cpu. Caller can
2508 * expects some charges will be back to res_counter later but cannot wait for
2509 * it.
2510 */
2511 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2512 {
2513 /*
2514 * If someone calls draining, avoid adding more kworker runs.
2515 */
2516 if (!mutex_trylock(&percpu_charge_mutex))
2517 return;
2518 drain_all_stock(root_memcg, false);
2519 mutex_unlock(&percpu_charge_mutex);
2520 }
2521
2522 /* This is a synchronous drain interface. */
2523 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2524 {
2525 /* called when force_empty is called */
2526 mutex_lock(&percpu_charge_mutex);
2527 drain_all_stock(root_memcg, true);
2528 mutex_unlock(&percpu_charge_mutex);
2529 }
2530
2531 /*
2532 * This function drains percpu counter value from DEAD cpu and
2533 * move it to local cpu. Note that this function can be preempted.
2534 */
2535 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2536 {
2537 int i;
2538
2539 spin_lock(&memcg->pcp_counter_lock);
2540 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2541 long x = per_cpu(memcg->stat->count[i], cpu);
2542
2543 per_cpu(memcg->stat->count[i], cpu) = 0;
2544 memcg->nocpu_base.count[i] += x;
2545 }
2546 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2547 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2548
2549 per_cpu(memcg->stat->events[i], cpu) = 0;
2550 memcg->nocpu_base.events[i] += x;
2551 }
2552 spin_unlock(&memcg->pcp_counter_lock);
2553 }
2554
2555 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2556 unsigned long action,
2557 void *hcpu)
2558 {
2559 int cpu = (unsigned long)hcpu;
2560 struct memcg_stock_pcp *stock;
2561 struct mem_cgroup *iter;
2562
2563 if (action == CPU_ONLINE)
2564 return NOTIFY_OK;
2565
2566 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2567 return NOTIFY_OK;
2568
2569 for_each_mem_cgroup(iter)
2570 mem_cgroup_drain_pcp_counter(iter, cpu);
2571
2572 stock = &per_cpu(memcg_stock, cpu);
2573 drain_stock(stock);
2574 return NOTIFY_OK;
2575 }
2576
2577
2578 /* See __mem_cgroup_try_charge() for details */
2579 enum {
2580 CHARGE_OK, /* success */
2581 CHARGE_RETRY, /* need to retry but retry is not bad */
2582 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2583 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2584 };
2585
2586 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2587 unsigned int nr_pages, unsigned int min_pages,
2588 bool invoke_oom)
2589 {
2590 unsigned long csize = nr_pages * PAGE_SIZE;
2591 struct mem_cgroup *mem_over_limit;
2592 struct res_counter *fail_res;
2593 unsigned long flags = 0;
2594 int ret;
2595
2596 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2597
2598 if (likely(!ret)) {
2599 if (!do_swap_account)
2600 return CHARGE_OK;
2601 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2602 if (likely(!ret))
2603 return CHARGE_OK;
2604
2605 res_counter_uncharge(&memcg->res, csize);
2606 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2607 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2608 } else
2609 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2610 /*
2611 * Never reclaim on behalf of optional batching, retry with a
2612 * single page instead.
2613 */
2614 if (nr_pages > min_pages)
2615 return CHARGE_RETRY;
2616
2617 if (!(gfp_mask & __GFP_WAIT))
2618 return CHARGE_WOULDBLOCK;
2619
2620 if (gfp_mask & __GFP_NORETRY)
2621 return CHARGE_NOMEM;
2622
2623 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2624 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2625 return CHARGE_RETRY;
2626 /*
2627 * Even though the limit is exceeded at this point, reclaim
2628 * may have been able to free some pages. Retry the charge
2629 * before killing the task.
2630 *
2631 * Only for regular pages, though: huge pages are rather
2632 * unlikely to succeed so close to the limit, and we fall back
2633 * to regular pages anyway in case of failure.
2634 */
2635 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2636 return CHARGE_RETRY;
2637
2638 /*
2639 * At task move, charge accounts can be doubly counted. So, it's
2640 * better to wait until the end of task_move if something is going on.
2641 */
2642 if (mem_cgroup_wait_acct_move(mem_over_limit))
2643 return CHARGE_RETRY;
2644
2645 if (invoke_oom)
2646 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2647
2648 return CHARGE_NOMEM;
2649 }
2650
2651 /*
2652 * __mem_cgroup_try_charge() does
2653 * 1. detect memcg to be charged against from passed *mm and *ptr,
2654 * 2. update res_counter
2655 * 3. call memory reclaim if necessary.
2656 *
2657 * In some special case, if the task is fatal, fatal_signal_pending() or
2658 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2659 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2660 * as possible without any hazards. 2: all pages should have a valid
2661 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2662 * pointer, that is treated as a charge to root_mem_cgroup.
2663 *
2664 * So __mem_cgroup_try_charge() will return
2665 * 0 ... on success, filling *ptr with a valid memcg pointer.
2666 * -ENOMEM ... charge failure because of resource limits.
2667 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2668 *
2669 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2670 * the oom-killer can be invoked.
2671 */
2672 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2673 gfp_t gfp_mask,
2674 unsigned int nr_pages,
2675 struct mem_cgroup **ptr,
2676 bool oom)
2677 {
2678 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2679 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2680 struct mem_cgroup *memcg = NULL;
2681 int ret;
2682
2683 /*
2684 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2685 * in system level. So, allow to go ahead dying process in addition to
2686 * MEMDIE process.
2687 */
2688 if (unlikely(test_thread_flag(TIF_MEMDIE)
2689 || fatal_signal_pending(current)))
2690 goto bypass;
2691
2692 if (unlikely(task_in_memcg_oom(current)))
2693 goto nomem;
2694
2695 if (gfp_mask & __GFP_NOFAIL)
2696 oom = false;
2697 again:
2698 if (*ptr) { /* css should be a valid one */
2699 memcg = *ptr;
2700 if (mem_cgroup_is_root(memcg))
2701 goto done;
2702 if (consume_stock(memcg, nr_pages))
2703 goto done;
2704 css_get(&memcg->css);
2705 } else {
2706 struct task_struct *p;
2707
2708 rcu_read_lock();
2709 p = rcu_dereference(mm->owner);
2710 /*
2711 * Because we don't have task_lock(), "p" can exit.
2712 * In that case, "memcg" can point to root or p can be NULL with
2713 * race with swapoff. Then, we have small risk of mis-accouning.
2714 * But such kind of mis-account by race always happens because
2715 * we don't have cgroup_mutex(). It's overkill and we allo that
2716 * small race, here.
2717 * (*) swapoff at el will charge against mm-struct not against
2718 * task-struct. So, mm->owner can be NULL.
2719 */
2720 memcg = mem_cgroup_from_task(p);
2721 if (!memcg)
2722 memcg = root_mem_cgroup;
2723 if (mem_cgroup_is_root(memcg)) {
2724 rcu_read_unlock();
2725 goto done;
2726 }
2727 if (consume_stock(memcg, nr_pages)) {
2728 /*
2729 * It seems dagerous to access memcg without css_get().
2730 * But considering how consume_stok works, it's not
2731 * necessary. If consume_stock success, some charges
2732 * from this memcg are cached on this cpu. So, we
2733 * don't need to call css_get()/css_tryget() before
2734 * calling consume_stock().
2735 */
2736 rcu_read_unlock();
2737 goto done;
2738 }
2739 /* after here, we may be blocked. we need to get refcnt */
2740 if (!css_tryget(&memcg->css)) {
2741 rcu_read_unlock();
2742 goto again;
2743 }
2744 rcu_read_unlock();
2745 }
2746
2747 do {
2748 bool invoke_oom = oom && !nr_oom_retries;
2749
2750 /* If killed, bypass charge */
2751 if (fatal_signal_pending(current)) {
2752 css_put(&memcg->css);
2753 goto bypass;
2754 }
2755
2756 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2757 nr_pages, invoke_oom);
2758 switch (ret) {
2759 case CHARGE_OK:
2760 break;
2761 case CHARGE_RETRY: /* not in OOM situation but retry */
2762 batch = nr_pages;
2763 css_put(&memcg->css);
2764 memcg = NULL;
2765 goto again;
2766 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2767 css_put(&memcg->css);
2768 goto nomem;
2769 case CHARGE_NOMEM: /* OOM routine works */
2770 if (!oom || invoke_oom) {
2771 css_put(&memcg->css);
2772 goto nomem;
2773 }
2774 nr_oom_retries--;
2775 break;
2776 }
2777 } while (ret != CHARGE_OK);
2778
2779 if (batch > nr_pages)
2780 refill_stock(memcg, batch - nr_pages);
2781 css_put(&memcg->css);
2782 done:
2783 *ptr = memcg;
2784 return 0;
2785 nomem:
2786 if (!(gfp_mask & __GFP_NOFAIL)) {
2787 *ptr = NULL;
2788 return -ENOMEM;
2789 }
2790 bypass:
2791 *ptr = root_mem_cgroup;
2792 return -EINTR;
2793 }
2794
2795 /*
2796 * Somemtimes we have to undo a charge we got by try_charge().
2797 * This function is for that and do uncharge, put css's refcnt.
2798 * gotten by try_charge().
2799 */
2800 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2801 unsigned int nr_pages)
2802 {
2803 if (!mem_cgroup_is_root(memcg)) {
2804 unsigned long bytes = nr_pages * PAGE_SIZE;
2805
2806 res_counter_uncharge(&memcg->res, bytes);
2807 if (do_swap_account)
2808 res_counter_uncharge(&memcg->memsw, bytes);
2809 }
2810 }
2811
2812 /*
2813 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2814 * This is useful when moving usage to parent cgroup.
2815 */
2816 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2817 unsigned int nr_pages)
2818 {
2819 unsigned long bytes = nr_pages * PAGE_SIZE;
2820
2821 if (mem_cgroup_is_root(memcg))
2822 return;
2823
2824 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2825 if (do_swap_account)
2826 res_counter_uncharge_until(&memcg->memsw,
2827 memcg->memsw.parent, bytes);
2828 }
2829
2830 /*
2831 * A helper function to get mem_cgroup from ID. must be called under
2832 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2833 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2834 * called against removed memcg.)
2835 */
2836 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2837 {
2838 /* ID 0 is unused ID */
2839 if (!id)
2840 return NULL;
2841 return mem_cgroup_from_id(id);
2842 }
2843
2844 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2845 {
2846 struct mem_cgroup *memcg = NULL;
2847 struct page_cgroup *pc;
2848 unsigned short id;
2849 swp_entry_t ent;
2850
2851 VM_BUG_ON_PAGE(!PageLocked(page), page);
2852
2853 pc = lookup_page_cgroup(page);
2854 lock_page_cgroup(pc);
2855 if (PageCgroupUsed(pc)) {
2856 memcg = pc->mem_cgroup;
2857 if (memcg && !css_tryget(&memcg->css))
2858 memcg = NULL;
2859 } else if (PageSwapCache(page)) {
2860 ent.val = page_private(page);
2861 id = lookup_swap_cgroup_id(ent);
2862 rcu_read_lock();
2863 memcg = mem_cgroup_lookup(id);
2864 if (memcg && !css_tryget(&memcg->css))
2865 memcg = NULL;
2866 rcu_read_unlock();
2867 }
2868 unlock_page_cgroup(pc);
2869 return memcg;
2870 }
2871
2872 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2873 struct page *page,
2874 unsigned int nr_pages,
2875 enum charge_type ctype,
2876 bool lrucare)
2877 {
2878 struct page_cgroup *pc = lookup_page_cgroup(page);
2879 struct zone *uninitialized_var(zone);
2880 struct lruvec *lruvec;
2881 bool was_on_lru = false;
2882 bool anon;
2883
2884 lock_page_cgroup(pc);
2885 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2886 /*
2887 * we don't need page_cgroup_lock about tail pages, becase they are not
2888 * accessed by any other context at this point.
2889 */
2890
2891 /*
2892 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2893 * may already be on some other mem_cgroup's LRU. Take care of it.
2894 */
2895 if (lrucare) {
2896 zone = page_zone(page);
2897 spin_lock_irq(&zone->lru_lock);
2898 if (PageLRU(page)) {
2899 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2900 ClearPageLRU(page);
2901 del_page_from_lru_list(page, lruvec, page_lru(page));
2902 was_on_lru = true;
2903 }
2904 }
2905
2906 pc->mem_cgroup = memcg;
2907 /*
2908 * We access a page_cgroup asynchronously without lock_page_cgroup().
2909 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2910 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2911 * before USED bit, we need memory barrier here.
2912 * See mem_cgroup_add_lru_list(), etc.
2913 */
2914 smp_wmb();
2915 SetPageCgroupUsed(pc);
2916
2917 if (lrucare) {
2918 if (was_on_lru) {
2919 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2920 VM_BUG_ON_PAGE(PageLRU(page), page);
2921 SetPageLRU(page);
2922 add_page_to_lru_list(page, lruvec, page_lru(page));
2923 }
2924 spin_unlock_irq(&zone->lru_lock);
2925 }
2926
2927 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2928 anon = true;
2929 else
2930 anon = false;
2931
2932 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2933 unlock_page_cgroup(pc);
2934
2935 /*
2936 * "charge_statistics" updated event counter. Then, check it.
2937 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2938 * if they exceeds softlimit.
2939 */
2940 memcg_check_events(memcg, page);
2941 }
2942
2943 static DEFINE_MUTEX(set_limit_mutex);
2944
2945 #ifdef CONFIG_MEMCG_KMEM
2946 static DEFINE_MUTEX(activate_kmem_mutex);
2947
2948 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2949 {
2950 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2951 memcg_kmem_is_active(memcg);
2952 }
2953
2954 /*
2955 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2956 * in the memcg_cache_params struct.
2957 */
2958 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2959 {
2960 struct kmem_cache *cachep;
2961
2962 VM_BUG_ON(p->is_root_cache);
2963 cachep = p->root_cache;
2964 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2965 }
2966
2967 #ifdef CONFIG_SLABINFO
2968 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2969 {
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2971 struct memcg_cache_params *params;
2972
2973 if (!memcg_can_account_kmem(memcg))
2974 return -EIO;
2975
2976 print_slabinfo_header(m);
2977
2978 mutex_lock(&memcg->slab_caches_mutex);
2979 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2980 cache_show(memcg_params_to_cache(params), m);
2981 mutex_unlock(&memcg->slab_caches_mutex);
2982
2983 return 0;
2984 }
2985 #endif
2986
2987 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2988 {
2989 struct res_counter *fail_res;
2990 struct mem_cgroup *_memcg;
2991 int ret = 0;
2992
2993 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2994 if (ret)
2995 return ret;
2996
2997 _memcg = memcg;
2998 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2999 &_memcg, oom_gfp_allowed(gfp));
3000
3001 if (ret == -EINTR) {
3002 /*
3003 * __mem_cgroup_try_charge() chosed to bypass to root due to
3004 * OOM kill or fatal signal. Since our only options are to
3005 * either fail the allocation or charge it to this cgroup, do
3006 * it as a temporary condition. But we can't fail. From a
3007 * kmem/slab perspective, the cache has already been selected,
3008 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3009 * our minds.
3010 *
3011 * This condition will only trigger if the task entered
3012 * memcg_charge_kmem in a sane state, but was OOM-killed during
3013 * __mem_cgroup_try_charge() above. Tasks that were already
3014 * dying when the allocation triggers should have been already
3015 * directed to the root cgroup in memcontrol.h
3016 */
3017 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3018 if (do_swap_account)
3019 res_counter_charge_nofail(&memcg->memsw, size,
3020 &fail_res);
3021 ret = 0;
3022 } else if (ret)
3023 res_counter_uncharge(&memcg->kmem, size);
3024
3025 return ret;
3026 }
3027
3028 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3029 {
3030 res_counter_uncharge(&memcg->res, size);
3031 if (do_swap_account)
3032 res_counter_uncharge(&memcg->memsw, size);
3033
3034 /* Not down to 0 */
3035 if (res_counter_uncharge(&memcg->kmem, size))
3036 return;
3037
3038 /*
3039 * Releases a reference taken in kmem_cgroup_css_offline in case
3040 * this last uncharge is racing with the offlining code or it is
3041 * outliving the memcg existence.
3042 *
3043 * The memory barrier imposed by test&clear is paired with the
3044 * explicit one in memcg_kmem_mark_dead().
3045 */
3046 if (memcg_kmem_test_and_clear_dead(memcg))
3047 css_put(&memcg->css);
3048 }
3049
3050 /*
3051 * helper for acessing a memcg's index. It will be used as an index in the
3052 * child cache array in kmem_cache, and also to derive its name. This function
3053 * will return -1 when this is not a kmem-limited memcg.
3054 */
3055 int memcg_cache_id(struct mem_cgroup *memcg)
3056 {
3057 return memcg ? memcg->kmemcg_id : -1;
3058 }
3059
3060 static size_t memcg_caches_array_size(int num_groups)
3061 {
3062 ssize_t size;
3063 if (num_groups <= 0)
3064 return 0;
3065
3066 size = 2 * num_groups;
3067 if (size < MEMCG_CACHES_MIN_SIZE)
3068 size = MEMCG_CACHES_MIN_SIZE;
3069 else if (size > MEMCG_CACHES_MAX_SIZE)
3070 size = MEMCG_CACHES_MAX_SIZE;
3071
3072 return size;
3073 }
3074
3075 /*
3076 * We should update the current array size iff all caches updates succeed. This
3077 * can only be done from the slab side. The slab mutex needs to be held when
3078 * calling this.
3079 */
3080 void memcg_update_array_size(int num)
3081 {
3082 if (num > memcg_limited_groups_array_size)
3083 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3084 }
3085
3086 static void kmem_cache_destroy_work_func(struct work_struct *w);
3087
3088 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3089 {
3090 struct memcg_cache_params *cur_params = s->memcg_params;
3091
3092 VM_BUG_ON(!is_root_cache(s));
3093
3094 if (num_groups > memcg_limited_groups_array_size) {
3095 int i;
3096 struct memcg_cache_params *new_params;
3097 ssize_t size = memcg_caches_array_size(num_groups);
3098
3099 size *= sizeof(void *);
3100 size += offsetof(struct memcg_cache_params, memcg_caches);
3101
3102 new_params = kzalloc(size, GFP_KERNEL);
3103 if (!new_params)
3104 return -ENOMEM;
3105
3106 new_params->is_root_cache = true;
3107
3108 /*
3109 * There is the chance it will be bigger than
3110 * memcg_limited_groups_array_size, if we failed an allocation
3111 * in a cache, in which case all caches updated before it, will
3112 * have a bigger array.
3113 *
3114 * But if that is the case, the data after
3115 * memcg_limited_groups_array_size is certainly unused
3116 */
3117 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3118 if (!cur_params->memcg_caches[i])
3119 continue;
3120 new_params->memcg_caches[i] =
3121 cur_params->memcg_caches[i];
3122 }
3123
3124 /*
3125 * Ideally, we would wait until all caches succeed, and only
3126 * then free the old one. But this is not worth the extra
3127 * pointer per-cache we'd have to have for this.
3128 *
3129 * It is not a big deal if some caches are left with a size
3130 * bigger than the others. And all updates will reset this
3131 * anyway.
3132 */
3133 rcu_assign_pointer(s->memcg_params, new_params);
3134 if (cur_params)
3135 kfree_rcu(cur_params, rcu_head);
3136 }
3137 return 0;
3138 }
3139
3140 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3141 struct kmem_cache *root_cache)
3142 {
3143 size_t size;
3144
3145 if (!memcg_kmem_enabled())
3146 return 0;
3147
3148 if (!memcg) {
3149 size = offsetof(struct memcg_cache_params, memcg_caches);
3150 size += memcg_limited_groups_array_size * sizeof(void *);
3151 } else
3152 size = sizeof(struct memcg_cache_params);
3153
3154 s->memcg_params = kzalloc(size, GFP_KERNEL);
3155 if (!s->memcg_params)
3156 return -ENOMEM;
3157
3158 if (memcg) {
3159 s->memcg_params->memcg = memcg;
3160 s->memcg_params->root_cache = root_cache;
3161 INIT_WORK(&s->memcg_params->destroy,
3162 kmem_cache_destroy_work_func);
3163 } else
3164 s->memcg_params->is_root_cache = true;
3165
3166 return 0;
3167 }
3168
3169 void memcg_free_cache_params(struct kmem_cache *s)
3170 {
3171 kfree(s->memcg_params);
3172 }
3173
3174 void memcg_register_cache(struct kmem_cache *s)
3175 {
3176 struct kmem_cache *root;
3177 struct mem_cgroup *memcg;
3178 int id;
3179
3180 if (is_root_cache(s))
3181 return;
3182
3183 /*
3184 * Holding the slab_mutex assures nobody will touch the memcg_caches
3185 * array while we are modifying it.
3186 */
3187 lockdep_assert_held(&slab_mutex);
3188
3189 root = s->memcg_params->root_cache;
3190 memcg = s->memcg_params->memcg;
3191 id = memcg_cache_id(memcg);
3192
3193 css_get(&memcg->css);
3194
3195
3196 /*
3197 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3198 * barrier here to ensure nobody will see the kmem_cache partially
3199 * initialized.
3200 */
3201 smp_wmb();
3202
3203 /*
3204 * Initialize the pointer to this cache in its parent's memcg_params
3205 * before adding it to the memcg_slab_caches list, otherwise we can
3206 * fail to convert memcg_params_to_cache() while traversing the list.
3207 */
3208 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3209 root->memcg_params->memcg_caches[id] = s;
3210
3211 mutex_lock(&memcg->slab_caches_mutex);
3212 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3213 mutex_unlock(&memcg->slab_caches_mutex);
3214 }
3215
3216 void memcg_unregister_cache(struct kmem_cache *s)
3217 {
3218 struct kmem_cache *root;
3219 struct mem_cgroup *memcg;
3220 int id;
3221
3222 if (is_root_cache(s))
3223 return;
3224
3225 /*
3226 * Holding the slab_mutex assures nobody will touch the memcg_caches
3227 * array while we are modifying it.
3228 */
3229 lockdep_assert_held(&slab_mutex);
3230
3231 root = s->memcg_params->root_cache;
3232 memcg = s->memcg_params->memcg;
3233 id = memcg_cache_id(memcg);
3234
3235 mutex_lock(&memcg->slab_caches_mutex);
3236 list_del(&s->memcg_params->list);
3237 mutex_unlock(&memcg->slab_caches_mutex);
3238
3239 /*
3240 * Clear the pointer to this cache in its parent's memcg_params only
3241 * after removing it from the memcg_slab_caches list, otherwise we can
3242 * fail to convert memcg_params_to_cache() while traversing the list.
3243 */
3244 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3245 root->memcg_params->memcg_caches[id] = NULL;
3246
3247 css_put(&memcg->css);
3248 }
3249
3250 /*
3251 * During the creation a new cache, we need to disable our accounting mechanism
3252 * altogether. This is true even if we are not creating, but rather just
3253 * enqueing new caches to be created.
3254 *
3255 * This is because that process will trigger allocations; some visible, like
3256 * explicit kmallocs to auxiliary data structures, name strings and internal
3257 * cache structures; some well concealed, like INIT_WORK() that can allocate
3258 * objects during debug.
3259 *
3260 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3261 * to it. This may not be a bounded recursion: since the first cache creation
3262 * failed to complete (waiting on the allocation), we'll just try to create the
3263 * cache again, failing at the same point.
3264 *
3265 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3266 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3267 * inside the following two functions.
3268 */
3269 static inline void memcg_stop_kmem_account(void)
3270 {
3271 VM_BUG_ON(!current->mm);
3272 current->memcg_kmem_skip_account++;
3273 }
3274
3275 static inline void memcg_resume_kmem_account(void)
3276 {
3277 VM_BUG_ON(!current->mm);
3278 current->memcg_kmem_skip_account--;
3279 }
3280
3281 static void kmem_cache_destroy_work_func(struct work_struct *w)
3282 {
3283 struct kmem_cache *cachep;
3284 struct memcg_cache_params *p;
3285
3286 p = container_of(w, struct memcg_cache_params, destroy);
3287
3288 cachep = memcg_params_to_cache(p);
3289
3290 /*
3291 * If we get down to 0 after shrink, we could delete right away.
3292 * However, memcg_release_pages() already puts us back in the workqueue
3293 * in that case. If we proceed deleting, we'll get a dangling
3294 * reference, and removing the object from the workqueue in that case
3295 * is unnecessary complication. We are not a fast path.
3296 *
3297 * Note that this case is fundamentally different from racing with
3298 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3299 * kmem_cache_shrink, not only we would be reinserting a dead cache
3300 * into the queue, but doing so from inside the worker racing to
3301 * destroy it.
3302 *
3303 * So if we aren't down to zero, we'll just schedule a worker and try
3304 * again
3305 */
3306 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3307 kmem_cache_shrink(cachep);
3308 else
3309 kmem_cache_destroy(cachep);
3310 }
3311
3312 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3313 {
3314 if (!cachep->memcg_params->dead)
3315 return;
3316
3317 /*
3318 * There are many ways in which we can get here.
3319 *
3320 * We can get to a memory-pressure situation while the delayed work is
3321 * still pending to run. The vmscan shrinkers can then release all
3322 * cache memory and get us to destruction. If this is the case, we'll
3323 * be executed twice, which is a bug (the second time will execute over
3324 * bogus data). In this case, cancelling the work should be fine.
3325 *
3326 * But we can also get here from the worker itself, if
3327 * kmem_cache_shrink is enough to shake all the remaining objects and
3328 * get the page count to 0. In this case, we'll deadlock if we try to
3329 * cancel the work (the worker runs with an internal lock held, which
3330 * is the same lock we would hold for cancel_work_sync().)
3331 *
3332 * Since we can't possibly know who got us here, just refrain from
3333 * running if there is already work pending
3334 */
3335 if (work_pending(&cachep->memcg_params->destroy))
3336 return;
3337 /*
3338 * We have to defer the actual destroying to a workqueue, because
3339 * we might currently be in a context that cannot sleep.
3340 */
3341 schedule_work(&cachep->memcg_params->destroy);
3342 }
3343
3344 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3345 struct kmem_cache *s)
3346 {
3347 struct kmem_cache *new = NULL;
3348 static char *tmp_path = NULL, *tmp_name = NULL;
3349 static DEFINE_MUTEX(mutex); /* protects tmp_name */
3350
3351 BUG_ON(!memcg_can_account_kmem(memcg));
3352
3353 mutex_lock(&mutex);
3354 /*
3355 * kmem_cache_create_memcg duplicates the given name and
3356 * cgroup_name for this name requires RCU context.
3357 * This static temporary buffer is used to prevent from
3358 * pointless shortliving allocation.
3359 */
3360 if (!tmp_path || !tmp_name) {
3361 if (!tmp_path)
3362 tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
3363 if (!tmp_name)
3364 tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3365 if (!tmp_path || !tmp_name)
3366 goto out;
3367 }
3368
3369 cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
3370 snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
3371 memcg_cache_id(memcg), tmp_name);
3372
3373 new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
3374 (s->flags & ~SLAB_PANIC), s->ctor, s);
3375 if (new)
3376 new->allocflags |= __GFP_KMEMCG;
3377 else
3378 new = s;
3379 out:
3380 mutex_unlock(&mutex);
3381 return new;
3382 }
3383
3384 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3385 {
3386 struct kmem_cache *c;
3387 int i;
3388
3389 if (!s->memcg_params)
3390 return;
3391 if (!s->memcg_params->is_root_cache)
3392 return;
3393
3394 /*
3395 * If the cache is being destroyed, we trust that there is no one else
3396 * requesting objects from it. Even if there are, the sanity checks in
3397 * kmem_cache_destroy should caught this ill-case.
3398 *
3399 * Still, we don't want anyone else freeing memcg_caches under our
3400 * noses, which can happen if a new memcg comes to life. As usual,
3401 * we'll take the activate_kmem_mutex to protect ourselves against
3402 * this.
3403 */
3404 mutex_lock(&activate_kmem_mutex);
3405 for_each_memcg_cache_index(i) {
3406 c = cache_from_memcg_idx(s, i);
3407 if (!c)
3408 continue;
3409
3410 /*
3411 * We will now manually delete the caches, so to avoid races
3412 * we need to cancel all pending destruction workers and
3413 * proceed with destruction ourselves.
3414 *
3415 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3416 * and that could spawn the workers again: it is likely that
3417 * the cache still have active pages until this very moment.
3418 * This would lead us back to mem_cgroup_destroy_cache.
3419 *
3420 * But that will not execute at all if the "dead" flag is not
3421 * set, so flip it down to guarantee we are in control.
3422 */
3423 c->memcg_params->dead = false;
3424 cancel_work_sync(&c->memcg_params->destroy);
3425 kmem_cache_destroy(c);
3426 }
3427 mutex_unlock(&activate_kmem_mutex);
3428 }
3429
3430 struct create_work {
3431 struct mem_cgroup *memcg;
3432 struct kmem_cache *cachep;
3433 struct work_struct work;
3434 };
3435
3436 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3437 {
3438 struct kmem_cache *cachep;
3439 struct memcg_cache_params *params;
3440
3441 if (!memcg_kmem_is_active(memcg))
3442 return;
3443
3444 mutex_lock(&memcg->slab_caches_mutex);
3445 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3446 cachep = memcg_params_to_cache(params);
3447 cachep->memcg_params->dead = true;
3448 schedule_work(&cachep->memcg_params->destroy);
3449 }
3450 mutex_unlock(&memcg->slab_caches_mutex);
3451 }
3452
3453 static void memcg_create_cache_work_func(struct work_struct *w)
3454 {
3455 struct create_work *cw;
3456
3457 cw = container_of(w, struct create_work, work);
3458 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3459 css_put(&cw->memcg->css);
3460 kfree(cw);
3461 }
3462
3463 /*
3464 * Enqueue the creation of a per-memcg kmem_cache.
3465 */
3466 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3467 struct kmem_cache *cachep)
3468 {
3469 struct create_work *cw;
3470
3471 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3472 if (cw == NULL) {
3473 css_put(&memcg->css);
3474 return;
3475 }
3476
3477 cw->memcg = memcg;
3478 cw->cachep = cachep;
3479
3480 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3481 schedule_work(&cw->work);
3482 }
3483
3484 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3485 struct kmem_cache *cachep)
3486 {
3487 /*
3488 * We need to stop accounting when we kmalloc, because if the
3489 * corresponding kmalloc cache is not yet created, the first allocation
3490 * in __memcg_create_cache_enqueue will recurse.
3491 *
3492 * However, it is better to enclose the whole function. Depending on
3493 * the debugging options enabled, INIT_WORK(), for instance, can
3494 * trigger an allocation. This too, will make us recurse. Because at
3495 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3496 * the safest choice is to do it like this, wrapping the whole function.
3497 */
3498 memcg_stop_kmem_account();
3499 __memcg_create_cache_enqueue(memcg, cachep);
3500 memcg_resume_kmem_account();
3501 }
3502 /*
3503 * Return the kmem_cache we're supposed to use for a slab allocation.
3504 * We try to use the current memcg's version of the cache.
3505 *
3506 * If the cache does not exist yet, if we are the first user of it,
3507 * we either create it immediately, if possible, or create it asynchronously
3508 * in a workqueue.
3509 * In the latter case, we will let the current allocation go through with
3510 * the original cache.
3511 *
3512 * Can't be called in interrupt context or from kernel threads.
3513 * This function needs to be called with rcu_read_lock() held.
3514 */
3515 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3516 gfp_t gfp)
3517 {
3518 struct mem_cgroup *memcg;
3519 struct kmem_cache *memcg_cachep;
3520
3521 VM_BUG_ON(!cachep->memcg_params);
3522 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3523
3524 if (!current->mm || current->memcg_kmem_skip_account)
3525 return cachep;
3526
3527 rcu_read_lock();
3528 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3529
3530 if (!memcg_can_account_kmem(memcg))
3531 goto out;
3532
3533 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3534 if (likely(memcg_cachep)) {
3535 cachep = memcg_cachep;
3536 goto out;
3537 }
3538
3539 /* The corresponding put will be done in the workqueue. */
3540 if (!css_tryget(&memcg->css))
3541 goto out;
3542 rcu_read_unlock();
3543
3544 /*
3545 * If we are in a safe context (can wait, and not in interrupt
3546 * context), we could be be predictable and return right away.
3547 * This would guarantee that the allocation being performed
3548 * already belongs in the new cache.
3549 *
3550 * However, there are some clashes that can arrive from locking.
3551 * For instance, because we acquire the slab_mutex while doing
3552 * kmem_cache_dup, this means no further allocation could happen
3553 * with the slab_mutex held.
3554 *
3555 * Also, because cache creation issue get_online_cpus(), this
3556 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3557 * that ends up reversed during cpu hotplug. (cpuset allocates
3558 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3559 * better to defer everything.
3560 */
3561 memcg_create_cache_enqueue(memcg, cachep);
3562 return cachep;
3563 out:
3564 rcu_read_unlock();
3565 return cachep;
3566 }
3567 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3568
3569 /*
3570 * We need to verify if the allocation against current->mm->owner's memcg is
3571 * possible for the given order. But the page is not allocated yet, so we'll
3572 * need a further commit step to do the final arrangements.
3573 *
3574 * It is possible for the task to switch cgroups in this mean time, so at
3575 * commit time, we can't rely on task conversion any longer. We'll then use
3576 * the handle argument to return to the caller which cgroup we should commit
3577 * against. We could also return the memcg directly and avoid the pointer
3578 * passing, but a boolean return value gives better semantics considering
3579 * the compiled-out case as well.
3580 *
3581 * Returning true means the allocation is possible.
3582 */
3583 bool
3584 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3585 {
3586 struct mem_cgroup *memcg;
3587 int ret;
3588
3589 *_memcg = NULL;
3590
3591 /*
3592 * Disabling accounting is only relevant for some specific memcg
3593 * internal allocations. Therefore we would initially not have such
3594 * check here, since direct calls to the page allocator that are marked
3595 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3596 * concerned with cache allocations, and by having this test at
3597 * memcg_kmem_get_cache, we are already able to relay the allocation to
3598 * the root cache and bypass the memcg cache altogether.
3599 *
3600 * There is one exception, though: the SLUB allocator does not create
3601 * large order caches, but rather service large kmallocs directly from
3602 * the page allocator. Therefore, the following sequence when backed by
3603 * the SLUB allocator:
3604 *
3605 * memcg_stop_kmem_account();
3606 * kmalloc(<large_number>)
3607 * memcg_resume_kmem_account();
3608 *
3609 * would effectively ignore the fact that we should skip accounting,
3610 * since it will drive us directly to this function without passing
3611 * through the cache selector memcg_kmem_get_cache. Such large
3612 * allocations are extremely rare but can happen, for instance, for the
3613 * cache arrays. We bring this test here.
3614 */
3615 if (!current->mm || current->memcg_kmem_skip_account)
3616 return true;
3617
3618 memcg = get_mem_cgroup_from_mm(current->mm);
3619
3620 if (!memcg_can_account_kmem(memcg)) {
3621 css_put(&memcg->css);
3622 return true;
3623 }
3624
3625 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3626 if (!ret)
3627 *_memcg = memcg;
3628
3629 css_put(&memcg->css);
3630 return (ret == 0);
3631 }
3632
3633 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3634 int order)
3635 {
3636 struct page_cgroup *pc;
3637
3638 VM_BUG_ON(mem_cgroup_is_root(memcg));
3639
3640 /* The page allocation failed. Revert */
3641 if (!page) {
3642 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3643 return;
3644 }
3645
3646 pc = lookup_page_cgroup(page);
3647 lock_page_cgroup(pc);
3648 pc->mem_cgroup = memcg;
3649 SetPageCgroupUsed(pc);
3650 unlock_page_cgroup(pc);
3651 }
3652
3653 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3654 {
3655 struct mem_cgroup *memcg = NULL;
3656 struct page_cgroup *pc;
3657
3658
3659 pc = lookup_page_cgroup(page);
3660 /*
3661 * Fast unlocked return. Theoretically might have changed, have to
3662 * check again after locking.
3663 */
3664 if (!PageCgroupUsed(pc))
3665 return;
3666
3667 lock_page_cgroup(pc);
3668 if (PageCgroupUsed(pc)) {
3669 memcg = pc->mem_cgroup;
3670 ClearPageCgroupUsed(pc);
3671 }
3672 unlock_page_cgroup(pc);
3673
3674 /*
3675 * We trust that only if there is a memcg associated with the page, it
3676 * is a valid allocation
3677 */
3678 if (!memcg)
3679 return;
3680
3681 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3682 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3683 }
3684 #else
3685 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3686 {
3687 }
3688 #endif /* CONFIG_MEMCG_KMEM */
3689
3690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3691
3692 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3693 /*
3694 * Because tail pages are not marked as "used", set it. We're under
3695 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3696 * charge/uncharge will be never happen and move_account() is done under
3697 * compound_lock(), so we don't have to take care of races.
3698 */
3699 void mem_cgroup_split_huge_fixup(struct page *head)
3700 {
3701 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3702 struct page_cgroup *pc;
3703 struct mem_cgroup *memcg;
3704 int i;
3705
3706 if (mem_cgroup_disabled())
3707 return;
3708
3709 memcg = head_pc->mem_cgroup;
3710 for (i = 1; i < HPAGE_PMD_NR; i++) {
3711 pc = head_pc + i;
3712 pc->mem_cgroup = memcg;
3713 smp_wmb();/* see __commit_charge() */
3714 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3715 }
3716 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3717 HPAGE_PMD_NR);
3718 }
3719 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3720
3721 /**
3722 * mem_cgroup_move_account - move account of the page
3723 * @page: the page
3724 * @nr_pages: number of regular pages (>1 for huge pages)
3725 * @pc: page_cgroup of the page.
3726 * @from: mem_cgroup which the page is moved from.
3727 * @to: mem_cgroup which the page is moved to. @from != @to.
3728 *
3729 * The caller must confirm following.
3730 * - page is not on LRU (isolate_page() is useful.)
3731 * - compound_lock is held when nr_pages > 1
3732 *
3733 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3734 * from old cgroup.
3735 */
3736 static int mem_cgroup_move_account(struct page *page,
3737 unsigned int nr_pages,
3738 struct page_cgroup *pc,
3739 struct mem_cgroup *from,
3740 struct mem_cgroup *to)
3741 {
3742 unsigned long flags;
3743 int ret;
3744 bool anon = PageAnon(page);
3745
3746 VM_BUG_ON(from == to);
3747 VM_BUG_ON_PAGE(PageLRU(page), page);
3748 /*
3749 * The page is isolated from LRU. So, collapse function
3750 * will not handle this page. But page splitting can happen.
3751 * Do this check under compound_page_lock(). The caller should
3752 * hold it.
3753 */
3754 ret = -EBUSY;
3755 if (nr_pages > 1 && !PageTransHuge(page))
3756 goto out;
3757
3758 lock_page_cgroup(pc);
3759
3760 ret = -EINVAL;
3761 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3762 goto unlock;
3763
3764 move_lock_mem_cgroup(from, &flags);
3765
3766 if (!anon && page_mapped(page)) {
3767 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3768 nr_pages);
3769 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3770 nr_pages);
3771 }
3772
3773 if (PageWriteback(page)) {
3774 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3775 nr_pages);
3776 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3777 nr_pages);
3778 }
3779
3780 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3781
3782 /* caller should have done css_get */
3783 pc->mem_cgroup = to;
3784 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3785 move_unlock_mem_cgroup(from, &flags);
3786 ret = 0;
3787 unlock:
3788 unlock_page_cgroup(pc);
3789 /*
3790 * check events
3791 */
3792 memcg_check_events(to, page);
3793 memcg_check_events(from, page);
3794 out:
3795 return ret;
3796 }
3797
3798 /**
3799 * mem_cgroup_move_parent - moves page to the parent group
3800 * @page: the page to move
3801 * @pc: page_cgroup of the page
3802 * @child: page's cgroup
3803 *
3804 * move charges to its parent or the root cgroup if the group has no
3805 * parent (aka use_hierarchy==0).
3806 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3807 * mem_cgroup_move_account fails) the failure is always temporary and
3808 * it signals a race with a page removal/uncharge or migration. In the
3809 * first case the page is on the way out and it will vanish from the LRU
3810 * on the next attempt and the call should be retried later.
3811 * Isolation from the LRU fails only if page has been isolated from
3812 * the LRU since we looked at it and that usually means either global
3813 * reclaim or migration going on. The page will either get back to the
3814 * LRU or vanish.
3815 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3816 * (!PageCgroupUsed) or moved to a different group. The page will
3817 * disappear in the next attempt.
3818 */
3819 static int mem_cgroup_move_parent(struct page *page,
3820 struct page_cgroup *pc,
3821 struct mem_cgroup *child)
3822 {
3823 struct mem_cgroup *parent;
3824 unsigned int nr_pages;
3825 unsigned long uninitialized_var(flags);
3826 int ret;
3827
3828 VM_BUG_ON(mem_cgroup_is_root(child));
3829
3830 ret = -EBUSY;
3831 if (!get_page_unless_zero(page))
3832 goto out;
3833 if (isolate_lru_page(page))
3834 goto put;
3835
3836 nr_pages = hpage_nr_pages(page);
3837
3838 parent = parent_mem_cgroup(child);
3839 /*
3840 * If no parent, move charges to root cgroup.
3841 */
3842 if (!parent)
3843 parent = root_mem_cgroup;
3844
3845 if (nr_pages > 1) {
3846 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3847 flags = compound_lock_irqsave(page);
3848 }
3849
3850 ret = mem_cgroup_move_account(page, nr_pages,
3851 pc, child, parent);
3852 if (!ret)
3853 __mem_cgroup_cancel_local_charge(child, nr_pages);
3854
3855 if (nr_pages > 1)
3856 compound_unlock_irqrestore(page, flags);
3857 putback_lru_page(page);
3858 put:
3859 put_page(page);
3860 out:
3861 return ret;
3862 }
3863
3864 int mem_cgroup_newpage_charge(struct page *page,
3865 struct mm_struct *mm, gfp_t gfp_mask)
3866 {
3867 struct mem_cgroup *memcg = NULL;
3868 unsigned int nr_pages = 1;
3869 bool oom = true;
3870 int ret;
3871
3872 if (mem_cgroup_disabled())
3873 return 0;
3874
3875 VM_BUG_ON_PAGE(page_mapped(page), page);
3876 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3877 VM_BUG_ON(!mm);
3878
3879 if (PageTransHuge(page)) {
3880 nr_pages <<= compound_order(page);
3881 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3882 /*
3883 * Never OOM-kill a process for a huge page. The
3884 * fault handler will fall back to regular pages.
3885 */
3886 oom = false;
3887 }
3888
3889 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3890 if (ret == -ENOMEM)
3891 return ret;
3892 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3893 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3894 return 0;
3895 }
3896
3897 /*
3898 * While swap-in, try_charge -> commit or cancel, the page is locked.
3899 * And when try_charge() successfully returns, one refcnt to memcg without
3900 * struct page_cgroup is acquired. This refcnt will be consumed by
3901 * "commit()" or removed by "cancel()"
3902 */
3903 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3904 struct page *page,
3905 gfp_t mask,
3906 struct mem_cgroup **memcgp)
3907 {
3908 struct mem_cgroup *memcg;
3909 struct page_cgroup *pc;
3910 int ret;
3911
3912 pc = lookup_page_cgroup(page);
3913 /*
3914 * Every swap fault against a single page tries to charge the
3915 * page, bail as early as possible. shmem_unuse() encounters
3916 * already charged pages, too. The USED bit is protected by
3917 * the page lock, which serializes swap cache removal, which
3918 * in turn serializes uncharging.
3919 */
3920 if (PageCgroupUsed(pc))
3921 return 0;
3922 if (!do_swap_account)
3923 goto charge_cur_mm;
3924 memcg = try_get_mem_cgroup_from_page(page);
3925 if (!memcg)
3926 goto charge_cur_mm;
3927 *memcgp = memcg;
3928 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3929 css_put(&memcg->css);
3930 if (ret == -EINTR)
3931 ret = 0;
3932 return ret;
3933 charge_cur_mm:
3934 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3935 if (ret == -EINTR)
3936 ret = 0;
3937 return ret;
3938 }
3939
3940 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3941 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3942 {
3943 *memcgp = NULL;
3944 if (mem_cgroup_disabled())
3945 return 0;
3946 /*
3947 * A racing thread's fault, or swapoff, may have already
3948 * updated the pte, and even removed page from swap cache: in
3949 * those cases unuse_pte()'s pte_same() test will fail; but
3950 * there's also a KSM case which does need to charge the page.
3951 */
3952 if (!PageSwapCache(page)) {
3953 int ret;
3954
3955 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3956 if (ret == -EINTR)
3957 ret = 0;
3958 return ret;
3959 }
3960 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3961 }
3962
3963 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3964 {
3965 if (mem_cgroup_disabled())
3966 return;
3967 if (!memcg)
3968 return;
3969 __mem_cgroup_cancel_charge(memcg, 1);
3970 }
3971
3972 static void
3973 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3974 enum charge_type ctype)
3975 {
3976 if (mem_cgroup_disabled())
3977 return;
3978 if (!memcg)
3979 return;
3980
3981 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3982 /*
3983 * Now swap is on-memory. This means this page may be
3984 * counted both as mem and swap....double count.
3985 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3986 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3987 * may call delete_from_swap_cache() before reach here.
3988 */
3989 if (do_swap_account && PageSwapCache(page)) {
3990 swp_entry_t ent = {.val = page_private(page)};
3991 mem_cgroup_uncharge_swap(ent);
3992 }
3993 }
3994
3995 void mem_cgroup_commit_charge_swapin(struct page *page,
3996 struct mem_cgroup *memcg)
3997 {
3998 __mem_cgroup_commit_charge_swapin(page, memcg,
3999 MEM_CGROUP_CHARGE_TYPE_ANON);
4000 }
4001
4002 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4003 gfp_t gfp_mask)
4004 {
4005 struct mem_cgroup *memcg = NULL;
4006 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4007 int ret;
4008
4009 if (mem_cgroup_disabled())
4010 return 0;
4011 if (PageCompound(page))
4012 return 0;
4013
4014 if (!PageSwapCache(page)) {
4015 /*
4016 * Page cache insertions can happen without an actual
4017 * task context, e.g. during disk probing on boot.
4018 */
4019 if (!mm)
4020 memcg = root_mem_cgroup;
4021 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
4022 if (ret != -ENOMEM)
4023 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
4024 } else { /* page is swapcache/shmem */
4025 ret = __mem_cgroup_try_charge_swapin(mm, page,
4026 gfp_mask, &memcg);
4027 if (!ret)
4028 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4029 }
4030 return ret;
4031 }
4032
4033 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4034 unsigned int nr_pages,
4035 const enum charge_type ctype)
4036 {
4037 struct memcg_batch_info *batch = NULL;
4038 bool uncharge_memsw = true;
4039
4040 /* If swapout, usage of swap doesn't decrease */
4041 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4042 uncharge_memsw = false;
4043
4044 batch = &current->memcg_batch;
4045 /*
4046 * In usual, we do css_get() when we remember memcg pointer.
4047 * But in this case, we keep res->usage until end of a series of
4048 * uncharges. Then, it's ok to ignore memcg's refcnt.
4049 */
4050 if (!batch->memcg)
4051 batch->memcg = memcg;
4052 /*
4053 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4054 * In those cases, all pages freed continuously can be expected to be in
4055 * the same cgroup and we have chance to coalesce uncharges.
4056 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4057 * because we want to do uncharge as soon as possible.
4058 */
4059
4060 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4061 goto direct_uncharge;
4062
4063 if (nr_pages > 1)
4064 goto direct_uncharge;
4065
4066 /*
4067 * In typical case, batch->memcg == mem. This means we can
4068 * merge a series of uncharges to an uncharge of res_counter.
4069 * If not, we uncharge res_counter ony by one.
4070 */
4071 if (batch->memcg != memcg)
4072 goto direct_uncharge;
4073 /* remember freed charge and uncharge it later */
4074 batch->nr_pages++;
4075 if (uncharge_memsw)
4076 batch->memsw_nr_pages++;
4077 return;
4078 direct_uncharge:
4079 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4080 if (uncharge_memsw)
4081 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4082 if (unlikely(batch->memcg != memcg))
4083 memcg_oom_recover(memcg);
4084 }
4085
4086 /*
4087 * uncharge if !page_mapped(page)
4088 */
4089 static struct mem_cgroup *
4090 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4091 bool end_migration)
4092 {
4093 struct mem_cgroup *memcg = NULL;
4094 unsigned int nr_pages = 1;
4095 struct page_cgroup *pc;
4096 bool anon;
4097
4098 if (mem_cgroup_disabled())
4099 return NULL;
4100
4101 if (PageTransHuge(page)) {
4102 nr_pages <<= compound_order(page);
4103 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4104 }
4105 /*
4106 * Check if our page_cgroup is valid
4107 */
4108 pc = lookup_page_cgroup(page);
4109 if (unlikely(!PageCgroupUsed(pc)))
4110 return NULL;
4111
4112 lock_page_cgroup(pc);
4113
4114 memcg = pc->mem_cgroup;
4115
4116 if (!PageCgroupUsed(pc))
4117 goto unlock_out;
4118
4119 anon = PageAnon(page);
4120
4121 switch (ctype) {
4122 case MEM_CGROUP_CHARGE_TYPE_ANON:
4123 /*
4124 * Generally PageAnon tells if it's the anon statistics to be
4125 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4126 * used before page reached the stage of being marked PageAnon.
4127 */
4128 anon = true;
4129 /* fallthrough */
4130 case MEM_CGROUP_CHARGE_TYPE_DROP:
4131 /* See mem_cgroup_prepare_migration() */
4132 if (page_mapped(page))
4133 goto unlock_out;
4134 /*
4135 * Pages under migration may not be uncharged. But
4136 * end_migration() /must/ be the one uncharging the
4137 * unused post-migration page and so it has to call
4138 * here with the migration bit still set. See the
4139 * res_counter handling below.
4140 */
4141 if (!end_migration && PageCgroupMigration(pc))
4142 goto unlock_out;
4143 break;
4144 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4145 if (!PageAnon(page)) { /* Shared memory */
4146 if (page->mapping && !page_is_file_cache(page))
4147 goto unlock_out;
4148 } else if (page_mapped(page)) /* Anon */
4149 goto unlock_out;
4150 break;
4151 default:
4152 break;
4153 }
4154
4155 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4156
4157 ClearPageCgroupUsed(pc);
4158 /*
4159 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4160 * freed from LRU. This is safe because uncharged page is expected not
4161 * to be reused (freed soon). Exception is SwapCache, it's handled by
4162 * special functions.
4163 */
4164
4165 unlock_page_cgroup(pc);
4166 /*
4167 * even after unlock, we have memcg->res.usage here and this memcg
4168 * will never be freed, so it's safe to call css_get().
4169 */
4170 memcg_check_events(memcg, page);
4171 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4172 mem_cgroup_swap_statistics(memcg, true);
4173 css_get(&memcg->css);
4174 }
4175 /*
4176 * Migration does not charge the res_counter for the
4177 * replacement page, so leave it alone when phasing out the
4178 * page that is unused after the migration.
4179 */
4180 if (!end_migration && !mem_cgroup_is_root(memcg))
4181 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4182
4183 return memcg;
4184
4185 unlock_out:
4186 unlock_page_cgroup(pc);
4187 return NULL;
4188 }
4189
4190 void mem_cgroup_uncharge_page(struct page *page)
4191 {
4192 /* early check. */
4193 if (page_mapped(page))
4194 return;
4195 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4196 /*
4197 * If the page is in swap cache, uncharge should be deferred
4198 * to the swap path, which also properly accounts swap usage
4199 * and handles memcg lifetime.
4200 *
4201 * Note that this check is not stable and reclaim may add the
4202 * page to swap cache at any time after this. However, if the
4203 * page is not in swap cache by the time page->mapcount hits
4204 * 0, there won't be any page table references to the swap
4205 * slot, and reclaim will free it and not actually write the
4206 * page to disk.
4207 */
4208 if (PageSwapCache(page))
4209 return;
4210 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4211 }
4212
4213 void mem_cgroup_uncharge_cache_page(struct page *page)
4214 {
4215 VM_BUG_ON_PAGE(page_mapped(page), page);
4216 VM_BUG_ON_PAGE(page->mapping, page);
4217 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4218 }
4219
4220 /*
4221 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4222 * In that cases, pages are freed continuously and we can expect pages
4223 * are in the same memcg. All these calls itself limits the number of
4224 * pages freed at once, then uncharge_start/end() is called properly.
4225 * This may be called prural(2) times in a context,
4226 */
4227
4228 void mem_cgroup_uncharge_start(void)
4229 {
4230 current->memcg_batch.do_batch++;
4231 /* We can do nest. */
4232 if (current->memcg_batch.do_batch == 1) {
4233 current->memcg_batch.memcg = NULL;
4234 current->memcg_batch.nr_pages = 0;
4235 current->memcg_batch.memsw_nr_pages = 0;
4236 }
4237 }
4238
4239 void mem_cgroup_uncharge_end(void)
4240 {
4241 struct memcg_batch_info *batch = &current->memcg_batch;
4242
4243 if (!batch->do_batch)
4244 return;
4245
4246 batch->do_batch--;
4247 if (batch->do_batch) /* If stacked, do nothing. */
4248 return;
4249
4250 if (!batch->memcg)
4251 return;
4252 /*
4253 * This "batch->memcg" is valid without any css_get/put etc...
4254 * bacause we hide charges behind us.
4255 */
4256 if (batch->nr_pages)
4257 res_counter_uncharge(&batch->memcg->res,
4258 batch->nr_pages * PAGE_SIZE);
4259 if (batch->memsw_nr_pages)
4260 res_counter_uncharge(&batch->memcg->memsw,
4261 batch->memsw_nr_pages * PAGE_SIZE);
4262 memcg_oom_recover(batch->memcg);
4263 /* forget this pointer (for sanity check) */
4264 batch->memcg = NULL;
4265 }
4266
4267 #ifdef CONFIG_SWAP
4268 /*
4269 * called after __delete_from_swap_cache() and drop "page" account.
4270 * memcg information is recorded to swap_cgroup of "ent"
4271 */
4272 void
4273 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4274 {
4275 struct mem_cgroup *memcg;
4276 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4277
4278 if (!swapout) /* this was a swap cache but the swap is unused ! */
4279 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4280
4281 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4282
4283 /*
4284 * record memcg information, if swapout && memcg != NULL,
4285 * css_get() was called in uncharge().
4286 */
4287 if (do_swap_account && swapout && memcg)
4288 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4289 }
4290 #endif
4291
4292 #ifdef CONFIG_MEMCG_SWAP
4293 /*
4294 * called from swap_entry_free(). remove record in swap_cgroup and
4295 * uncharge "memsw" account.
4296 */
4297 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4298 {
4299 struct mem_cgroup *memcg;
4300 unsigned short id;
4301
4302 if (!do_swap_account)
4303 return;
4304
4305 id = swap_cgroup_record(ent, 0);
4306 rcu_read_lock();
4307 memcg = mem_cgroup_lookup(id);
4308 if (memcg) {
4309 /*
4310 * We uncharge this because swap is freed.
4311 * This memcg can be obsolete one. We avoid calling css_tryget
4312 */
4313 if (!mem_cgroup_is_root(memcg))
4314 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4315 mem_cgroup_swap_statistics(memcg, false);
4316 css_put(&memcg->css);
4317 }
4318 rcu_read_unlock();
4319 }
4320
4321 /**
4322 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4323 * @entry: swap entry to be moved
4324 * @from: mem_cgroup which the entry is moved from
4325 * @to: mem_cgroup which the entry is moved to
4326 *
4327 * It succeeds only when the swap_cgroup's record for this entry is the same
4328 * as the mem_cgroup's id of @from.
4329 *
4330 * Returns 0 on success, -EINVAL on failure.
4331 *
4332 * The caller must have charged to @to, IOW, called res_counter_charge() about
4333 * both res and memsw, and called css_get().
4334 */
4335 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4336 struct mem_cgroup *from, struct mem_cgroup *to)
4337 {
4338 unsigned short old_id, new_id;
4339
4340 old_id = mem_cgroup_id(from);
4341 new_id = mem_cgroup_id(to);
4342
4343 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4344 mem_cgroup_swap_statistics(from, false);
4345 mem_cgroup_swap_statistics(to, true);
4346 /*
4347 * This function is only called from task migration context now.
4348 * It postpones res_counter and refcount handling till the end
4349 * of task migration(mem_cgroup_clear_mc()) for performance
4350 * improvement. But we cannot postpone css_get(to) because if
4351 * the process that has been moved to @to does swap-in, the
4352 * refcount of @to might be decreased to 0.
4353 *
4354 * We are in attach() phase, so the cgroup is guaranteed to be
4355 * alive, so we can just call css_get().
4356 */
4357 css_get(&to->css);
4358 return 0;
4359 }
4360 return -EINVAL;
4361 }
4362 #else
4363 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4364 struct mem_cgroup *from, struct mem_cgroup *to)
4365 {
4366 return -EINVAL;
4367 }
4368 #endif
4369
4370 /*
4371 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4372 * page belongs to.
4373 */
4374 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4375 struct mem_cgroup **memcgp)
4376 {
4377 struct mem_cgroup *memcg = NULL;
4378 unsigned int nr_pages = 1;
4379 struct page_cgroup *pc;
4380 enum charge_type ctype;
4381
4382 *memcgp = NULL;
4383
4384 if (mem_cgroup_disabled())
4385 return;
4386
4387 if (PageTransHuge(page))
4388 nr_pages <<= compound_order(page);
4389
4390 pc = lookup_page_cgroup(page);
4391 lock_page_cgroup(pc);
4392 if (PageCgroupUsed(pc)) {
4393 memcg = pc->mem_cgroup;
4394 css_get(&memcg->css);
4395 /*
4396 * At migrating an anonymous page, its mapcount goes down
4397 * to 0 and uncharge() will be called. But, even if it's fully
4398 * unmapped, migration may fail and this page has to be
4399 * charged again. We set MIGRATION flag here and delay uncharge
4400 * until end_migration() is called
4401 *
4402 * Corner Case Thinking
4403 * A)
4404 * When the old page was mapped as Anon and it's unmap-and-freed
4405 * while migration was ongoing.
4406 * If unmap finds the old page, uncharge() of it will be delayed
4407 * until end_migration(). If unmap finds a new page, it's
4408 * uncharged when it make mapcount to be 1->0. If unmap code
4409 * finds swap_migration_entry, the new page will not be mapped
4410 * and end_migration() will find it(mapcount==0).
4411 *
4412 * B)
4413 * When the old page was mapped but migraion fails, the kernel
4414 * remaps it. A charge for it is kept by MIGRATION flag even
4415 * if mapcount goes down to 0. We can do remap successfully
4416 * without charging it again.
4417 *
4418 * C)
4419 * The "old" page is under lock_page() until the end of
4420 * migration, so, the old page itself will not be swapped-out.
4421 * If the new page is swapped out before end_migraton, our
4422 * hook to usual swap-out path will catch the event.
4423 */
4424 if (PageAnon(page))
4425 SetPageCgroupMigration(pc);
4426 }
4427 unlock_page_cgroup(pc);
4428 /*
4429 * If the page is not charged at this point,
4430 * we return here.
4431 */
4432 if (!memcg)
4433 return;
4434
4435 *memcgp = memcg;
4436 /*
4437 * We charge new page before it's used/mapped. So, even if unlock_page()
4438 * is called before end_migration, we can catch all events on this new
4439 * page. In the case new page is migrated but not remapped, new page's
4440 * mapcount will be finally 0 and we call uncharge in end_migration().
4441 */
4442 if (PageAnon(page))
4443 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4444 else
4445 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4446 /*
4447 * The page is committed to the memcg, but it's not actually
4448 * charged to the res_counter since we plan on replacing the
4449 * old one and only one page is going to be left afterwards.
4450 */
4451 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4452 }
4453
4454 /* remove redundant charge if migration failed*/
4455 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4456 struct page *oldpage, struct page *newpage, bool migration_ok)
4457 {
4458 struct page *used, *unused;
4459 struct page_cgroup *pc;
4460 bool anon;
4461
4462 if (!memcg)
4463 return;
4464
4465 if (!migration_ok) {
4466 used = oldpage;
4467 unused = newpage;
4468 } else {
4469 used = newpage;
4470 unused = oldpage;
4471 }
4472 anon = PageAnon(used);
4473 __mem_cgroup_uncharge_common(unused,
4474 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4475 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4476 true);
4477 css_put(&memcg->css);
4478 /*
4479 * We disallowed uncharge of pages under migration because mapcount
4480 * of the page goes down to zero, temporarly.
4481 * Clear the flag and check the page should be charged.
4482 */
4483 pc = lookup_page_cgroup(oldpage);
4484 lock_page_cgroup(pc);
4485 ClearPageCgroupMigration(pc);
4486 unlock_page_cgroup(pc);
4487
4488 /*
4489 * If a page is a file cache, radix-tree replacement is very atomic
4490 * and we can skip this check. When it was an Anon page, its mapcount
4491 * goes down to 0. But because we added MIGRATION flage, it's not
4492 * uncharged yet. There are several case but page->mapcount check
4493 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4494 * check. (see prepare_charge() also)
4495 */
4496 if (anon)
4497 mem_cgroup_uncharge_page(used);
4498 }
4499
4500 /*
4501 * At replace page cache, newpage is not under any memcg but it's on
4502 * LRU. So, this function doesn't touch res_counter but handles LRU
4503 * in correct way. Both pages are locked so we cannot race with uncharge.
4504 */
4505 void mem_cgroup_replace_page_cache(struct page *oldpage,
4506 struct page *newpage)
4507 {
4508 struct mem_cgroup *memcg = NULL;
4509 struct page_cgroup *pc;
4510 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4511
4512 if (mem_cgroup_disabled())
4513 return;
4514
4515 pc = lookup_page_cgroup(oldpage);
4516 /* fix accounting on old pages */
4517 lock_page_cgroup(pc);
4518 if (PageCgroupUsed(pc)) {
4519 memcg = pc->mem_cgroup;
4520 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4521 ClearPageCgroupUsed(pc);
4522 }
4523 unlock_page_cgroup(pc);
4524
4525 /*
4526 * When called from shmem_replace_page(), in some cases the
4527 * oldpage has already been charged, and in some cases not.
4528 */
4529 if (!memcg)
4530 return;
4531 /*
4532 * Even if newpage->mapping was NULL before starting replacement,
4533 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4534 * LRU while we overwrite pc->mem_cgroup.
4535 */
4536 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4537 }
4538
4539 #ifdef CONFIG_DEBUG_VM
4540 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4541 {
4542 struct page_cgroup *pc;
4543
4544 pc = lookup_page_cgroup(page);
4545 /*
4546 * Can be NULL while feeding pages into the page allocator for
4547 * the first time, i.e. during boot or memory hotplug;
4548 * or when mem_cgroup_disabled().
4549 */
4550 if (likely(pc) && PageCgroupUsed(pc))
4551 return pc;
4552 return NULL;
4553 }
4554
4555 bool mem_cgroup_bad_page_check(struct page *page)
4556 {
4557 if (mem_cgroup_disabled())
4558 return false;
4559
4560 return lookup_page_cgroup_used(page) != NULL;
4561 }
4562
4563 void mem_cgroup_print_bad_page(struct page *page)
4564 {
4565 struct page_cgroup *pc;
4566
4567 pc = lookup_page_cgroup_used(page);
4568 if (pc) {
4569 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4570 pc, pc->flags, pc->mem_cgroup);
4571 }
4572 }
4573 #endif
4574
4575 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4576 unsigned long long val)
4577 {
4578 int retry_count;
4579 u64 memswlimit, memlimit;
4580 int ret = 0;
4581 int children = mem_cgroup_count_children(memcg);
4582 u64 curusage, oldusage;
4583 int enlarge;
4584
4585 /*
4586 * For keeping hierarchical_reclaim simple, how long we should retry
4587 * is depends on callers. We set our retry-count to be function
4588 * of # of children which we should visit in this loop.
4589 */
4590 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4591
4592 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4593
4594 enlarge = 0;
4595 while (retry_count) {
4596 if (signal_pending(current)) {
4597 ret = -EINTR;
4598 break;
4599 }
4600 /*
4601 * Rather than hide all in some function, I do this in
4602 * open coded manner. You see what this really does.
4603 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4604 */
4605 mutex_lock(&set_limit_mutex);
4606 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4607 if (memswlimit < val) {
4608 ret = -EINVAL;
4609 mutex_unlock(&set_limit_mutex);
4610 break;
4611 }
4612
4613 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4614 if (memlimit < val)
4615 enlarge = 1;
4616
4617 ret = res_counter_set_limit(&memcg->res, val);
4618 if (!ret) {
4619 if (memswlimit == val)
4620 memcg->memsw_is_minimum = true;
4621 else
4622 memcg->memsw_is_minimum = false;
4623 }
4624 mutex_unlock(&set_limit_mutex);
4625
4626 if (!ret)
4627 break;
4628
4629 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4630 MEM_CGROUP_RECLAIM_SHRINK);
4631 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4632 /* Usage is reduced ? */
4633 if (curusage >= oldusage)
4634 retry_count--;
4635 else
4636 oldusage = curusage;
4637 }
4638 if (!ret && enlarge)
4639 memcg_oom_recover(memcg);
4640
4641 return ret;
4642 }
4643
4644 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4645 unsigned long long val)
4646 {
4647 int retry_count;
4648 u64 memlimit, memswlimit, oldusage, curusage;
4649 int children = mem_cgroup_count_children(memcg);
4650 int ret = -EBUSY;
4651 int enlarge = 0;
4652
4653 /* see mem_cgroup_resize_res_limit */
4654 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4655 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4656 while (retry_count) {
4657 if (signal_pending(current)) {
4658 ret = -EINTR;
4659 break;
4660 }
4661 /*
4662 * Rather than hide all in some function, I do this in
4663 * open coded manner. You see what this really does.
4664 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4665 */
4666 mutex_lock(&set_limit_mutex);
4667 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4668 if (memlimit > val) {
4669 ret = -EINVAL;
4670 mutex_unlock(&set_limit_mutex);
4671 break;
4672 }
4673 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4674 if (memswlimit < val)
4675 enlarge = 1;
4676 ret = res_counter_set_limit(&memcg->memsw, val);
4677 if (!ret) {
4678 if (memlimit == val)
4679 memcg->memsw_is_minimum = true;
4680 else
4681 memcg->memsw_is_minimum = false;
4682 }
4683 mutex_unlock(&set_limit_mutex);
4684
4685 if (!ret)
4686 break;
4687
4688 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4689 MEM_CGROUP_RECLAIM_NOSWAP |
4690 MEM_CGROUP_RECLAIM_SHRINK);
4691 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4692 /* Usage is reduced ? */
4693 if (curusage >= oldusage)
4694 retry_count--;
4695 else
4696 oldusage = curusage;
4697 }
4698 if (!ret && enlarge)
4699 memcg_oom_recover(memcg);
4700 return ret;
4701 }
4702
4703 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4704 gfp_t gfp_mask,
4705 unsigned long *total_scanned)
4706 {
4707 unsigned long nr_reclaimed = 0;
4708 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4709 unsigned long reclaimed;
4710 int loop = 0;
4711 struct mem_cgroup_tree_per_zone *mctz;
4712 unsigned long long excess;
4713 unsigned long nr_scanned;
4714
4715 if (order > 0)
4716 return 0;
4717
4718 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4719 /*
4720 * This loop can run a while, specially if mem_cgroup's continuously
4721 * keep exceeding their soft limit and putting the system under
4722 * pressure
4723 */
4724 do {
4725 if (next_mz)
4726 mz = next_mz;
4727 else
4728 mz = mem_cgroup_largest_soft_limit_node(mctz);
4729 if (!mz)
4730 break;
4731
4732 nr_scanned = 0;
4733 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4734 gfp_mask, &nr_scanned);
4735 nr_reclaimed += reclaimed;
4736 *total_scanned += nr_scanned;
4737 spin_lock(&mctz->lock);
4738
4739 /*
4740 * If we failed to reclaim anything from this memory cgroup
4741 * it is time to move on to the next cgroup
4742 */
4743 next_mz = NULL;
4744 if (!reclaimed) {
4745 do {
4746 /*
4747 * Loop until we find yet another one.
4748 *
4749 * By the time we get the soft_limit lock
4750 * again, someone might have aded the
4751 * group back on the RB tree. Iterate to
4752 * make sure we get a different mem.
4753 * mem_cgroup_largest_soft_limit_node returns
4754 * NULL if no other cgroup is present on
4755 * the tree
4756 */
4757 next_mz =
4758 __mem_cgroup_largest_soft_limit_node(mctz);
4759 if (next_mz == mz)
4760 css_put(&next_mz->memcg->css);
4761 else /* next_mz == NULL or other memcg */
4762 break;
4763 } while (1);
4764 }
4765 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4766 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4767 /*
4768 * One school of thought says that we should not add
4769 * back the node to the tree if reclaim returns 0.
4770 * But our reclaim could return 0, simply because due
4771 * to priority we are exposing a smaller subset of
4772 * memory to reclaim from. Consider this as a longer
4773 * term TODO.
4774 */
4775 /* If excess == 0, no tree ops */
4776 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4777 spin_unlock(&mctz->lock);
4778 css_put(&mz->memcg->css);
4779 loop++;
4780 /*
4781 * Could not reclaim anything and there are no more
4782 * mem cgroups to try or we seem to be looping without
4783 * reclaiming anything.
4784 */
4785 if (!nr_reclaimed &&
4786 (next_mz == NULL ||
4787 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4788 break;
4789 } while (!nr_reclaimed);
4790 if (next_mz)
4791 css_put(&next_mz->memcg->css);
4792 return nr_reclaimed;
4793 }
4794
4795 /**
4796 * mem_cgroup_force_empty_list - clears LRU of a group
4797 * @memcg: group to clear
4798 * @node: NUMA node
4799 * @zid: zone id
4800 * @lru: lru to to clear
4801 *
4802 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4803 * reclaim the pages page themselves - pages are moved to the parent (or root)
4804 * group.
4805 */
4806 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4807 int node, int zid, enum lru_list lru)
4808 {
4809 struct lruvec *lruvec;
4810 unsigned long flags;
4811 struct list_head *list;
4812 struct page *busy;
4813 struct zone *zone;
4814
4815 zone = &NODE_DATA(node)->node_zones[zid];
4816 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4817 list = &lruvec->lists[lru];
4818
4819 busy = NULL;
4820 do {
4821 struct page_cgroup *pc;
4822 struct page *page;
4823
4824 spin_lock_irqsave(&zone->lru_lock, flags);
4825 if (list_empty(list)) {
4826 spin_unlock_irqrestore(&zone->lru_lock, flags);
4827 break;
4828 }
4829 page = list_entry(list->prev, struct page, lru);
4830 if (busy == page) {
4831 list_move(&page->lru, list);
4832 busy = NULL;
4833 spin_unlock_irqrestore(&zone->lru_lock, flags);
4834 continue;
4835 }
4836 spin_unlock_irqrestore(&zone->lru_lock, flags);
4837
4838 pc = lookup_page_cgroup(page);
4839
4840 if (mem_cgroup_move_parent(page, pc, memcg)) {
4841 /* found lock contention or "pc" is obsolete. */
4842 busy = page;
4843 cond_resched();
4844 } else
4845 busy = NULL;
4846 } while (!list_empty(list));
4847 }
4848
4849 /*
4850 * make mem_cgroup's charge to be 0 if there is no task by moving
4851 * all the charges and pages to the parent.
4852 * This enables deleting this mem_cgroup.
4853 *
4854 * Caller is responsible for holding css reference on the memcg.
4855 */
4856 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4857 {
4858 int node, zid;
4859 u64 usage;
4860
4861 do {
4862 /* This is for making all *used* pages to be on LRU. */
4863 lru_add_drain_all();
4864 drain_all_stock_sync(memcg);
4865 mem_cgroup_start_move(memcg);
4866 for_each_node_state(node, N_MEMORY) {
4867 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4868 enum lru_list lru;
4869 for_each_lru(lru) {
4870 mem_cgroup_force_empty_list(memcg,
4871 node, zid, lru);
4872 }
4873 }
4874 }
4875 mem_cgroup_end_move(memcg);
4876 memcg_oom_recover(memcg);
4877 cond_resched();
4878
4879 /*
4880 * Kernel memory may not necessarily be trackable to a specific
4881 * process. So they are not migrated, and therefore we can't
4882 * expect their value to drop to 0 here.
4883 * Having res filled up with kmem only is enough.
4884 *
4885 * This is a safety check because mem_cgroup_force_empty_list
4886 * could have raced with mem_cgroup_replace_page_cache callers
4887 * so the lru seemed empty but the page could have been added
4888 * right after the check. RES_USAGE should be safe as we always
4889 * charge before adding to the LRU.
4890 */
4891 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4892 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4893 } while (usage > 0);
4894 }
4895
4896 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4897 {
4898 lockdep_assert_held(&memcg_create_mutex);
4899 /*
4900 * The lock does not prevent addition or deletion to the list
4901 * of children, but it prevents a new child from being
4902 * initialized based on this parent in css_online(), so it's
4903 * enough to decide whether hierarchically inherited
4904 * attributes can still be changed or not.
4905 */
4906 return memcg->use_hierarchy &&
4907 !list_empty(&memcg->css.cgroup->children);
4908 }
4909
4910 /*
4911 * Reclaims as many pages from the given memcg as possible and moves
4912 * the rest to the parent.
4913 *
4914 * Caller is responsible for holding css reference for memcg.
4915 */
4916 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4917 {
4918 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4919 struct cgroup *cgrp = memcg->css.cgroup;
4920
4921 /* returns EBUSY if there is a task or if we come here twice. */
4922 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4923 return -EBUSY;
4924
4925 /* we call try-to-free pages for make this cgroup empty */
4926 lru_add_drain_all();
4927 /* try to free all pages in this cgroup */
4928 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4929 int progress;
4930
4931 if (signal_pending(current))
4932 return -EINTR;
4933
4934 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4935 false);
4936 if (!progress) {
4937 nr_retries--;
4938 /* maybe some writeback is necessary */
4939 congestion_wait(BLK_RW_ASYNC, HZ/10);
4940 }
4941
4942 }
4943 lru_add_drain();
4944 mem_cgroup_reparent_charges(memcg);
4945
4946 return 0;
4947 }
4948
4949 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4950 unsigned int event)
4951 {
4952 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4953
4954 if (mem_cgroup_is_root(memcg))
4955 return -EINVAL;
4956 return mem_cgroup_force_empty(memcg);
4957 }
4958
4959 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4960 struct cftype *cft)
4961 {
4962 return mem_cgroup_from_css(css)->use_hierarchy;
4963 }
4964
4965 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4966 struct cftype *cft, u64 val)
4967 {
4968 int retval = 0;
4969 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4970 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4971
4972 mutex_lock(&memcg_create_mutex);
4973
4974 if (memcg->use_hierarchy == val)
4975 goto out;
4976
4977 /*
4978 * If parent's use_hierarchy is set, we can't make any modifications
4979 * in the child subtrees. If it is unset, then the change can
4980 * occur, provided the current cgroup has no children.
4981 *
4982 * For the root cgroup, parent_mem is NULL, we allow value to be
4983 * set if there are no children.
4984 */
4985 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4986 (val == 1 || val == 0)) {
4987 if (list_empty(&memcg->css.cgroup->children))
4988 memcg->use_hierarchy = val;
4989 else
4990 retval = -EBUSY;
4991 } else
4992 retval = -EINVAL;
4993
4994 out:
4995 mutex_unlock(&memcg_create_mutex);
4996
4997 return retval;
4998 }
4999
5000
5001 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5002 enum mem_cgroup_stat_index idx)
5003 {
5004 struct mem_cgroup *iter;
5005 long val = 0;
5006
5007 /* Per-cpu values can be negative, use a signed accumulator */
5008 for_each_mem_cgroup_tree(iter, memcg)
5009 val += mem_cgroup_read_stat(iter, idx);
5010
5011 if (val < 0) /* race ? */
5012 val = 0;
5013 return val;
5014 }
5015
5016 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5017 {
5018 u64 val;
5019
5020 if (!mem_cgroup_is_root(memcg)) {
5021 if (!swap)
5022 return res_counter_read_u64(&memcg->res, RES_USAGE);
5023 else
5024 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5025 }
5026
5027 /*
5028 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5029 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5030 */
5031 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5032 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5033
5034 if (swap)
5035 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5036
5037 return val << PAGE_SHIFT;
5038 }
5039
5040 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5041 struct cftype *cft)
5042 {
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5044 u64 val;
5045 int name;
5046 enum res_type type;
5047
5048 type = MEMFILE_TYPE(cft->private);
5049 name = MEMFILE_ATTR(cft->private);
5050
5051 switch (type) {
5052 case _MEM:
5053 if (name == RES_USAGE)
5054 val = mem_cgroup_usage(memcg, false);
5055 else
5056 val = res_counter_read_u64(&memcg->res, name);
5057 break;
5058 case _MEMSWAP:
5059 if (name == RES_USAGE)
5060 val = mem_cgroup_usage(memcg, true);
5061 else
5062 val = res_counter_read_u64(&memcg->memsw, name);
5063 break;
5064 case _KMEM:
5065 val = res_counter_read_u64(&memcg->kmem, name);
5066 break;
5067 default:
5068 BUG();
5069 }
5070
5071 return val;
5072 }
5073
5074 #ifdef CONFIG_MEMCG_KMEM
5075 /* should be called with activate_kmem_mutex held */
5076 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5077 unsigned long long limit)
5078 {
5079 int err = 0;
5080 int memcg_id;
5081
5082 if (memcg_kmem_is_active(memcg))
5083 return 0;
5084
5085 /*
5086 * We are going to allocate memory for data shared by all memory
5087 * cgroups so let's stop accounting here.
5088 */
5089 memcg_stop_kmem_account();
5090
5091 /*
5092 * For simplicity, we won't allow this to be disabled. It also can't
5093 * be changed if the cgroup has children already, or if tasks had
5094 * already joined.
5095 *
5096 * If tasks join before we set the limit, a person looking at
5097 * kmem.usage_in_bytes will have no way to determine when it took
5098 * place, which makes the value quite meaningless.
5099 *
5100 * After it first became limited, changes in the value of the limit are
5101 * of course permitted.
5102 */
5103 mutex_lock(&memcg_create_mutex);
5104 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5105 err = -EBUSY;
5106 mutex_unlock(&memcg_create_mutex);
5107 if (err)
5108 goto out;
5109
5110 memcg_id = ida_simple_get(&kmem_limited_groups,
5111 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5112 if (memcg_id < 0) {
5113 err = memcg_id;
5114 goto out;
5115 }
5116
5117 /*
5118 * Make sure we have enough space for this cgroup in each root cache's
5119 * memcg_params.
5120 */
5121 err = memcg_update_all_caches(memcg_id + 1);
5122 if (err)
5123 goto out_rmid;
5124
5125 memcg->kmemcg_id = memcg_id;
5126 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5127 mutex_init(&memcg->slab_caches_mutex);
5128
5129 /*
5130 * We couldn't have accounted to this cgroup, because it hasn't got the
5131 * active bit set yet, so this should succeed.
5132 */
5133 err = res_counter_set_limit(&memcg->kmem, limit);
5134 VM_BUG_ON(err);
5135
5136 static_key_slow_inc(&memcg_kmem_enabled_key);
5137 /*
5138 * Setting the active bit after enabling static branching will
5139 * guarantee no one starts accounting before all call sites are
5140 * patched.
5141 */
5142 memcg_kmem_set_active(memcg);
5143 out:
5144 memcg_resume_kmem_account();
5145 return err;
5146
5147 out_rmid:
5148 ida_simple_remove(&kmem_limited_groups, memcg_id);
5149 goto out;
5150 }
5151
5152 static int memcg_activate_kmem(struct mem_cgroup *memcg,
5153 unsigned long long limit)
5154 {
5155 int ret;
5156
5157 mutex_lock(&activate_kmem_mutex);
5158 ret = __memcg_activate_kmem(memcg, limit);
5159 mutex_unlock(&activate_kmem_mutex);
5160 return ret;
5161 }
5162
5163 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5164 unsigned long long val)
5165 {
5166 int ret;
5167
5168 if (!memcg_kmem_is_active(memcg))
5169 ret = memcg_activate_kmem(memcg, val);
5170 else
5171 ret = res_counter_set_limit(&memcg->kmem, val);
5172 return ret;
5173 }
5174
5175 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5176 {
5177 int ret = 0;
5178 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5179
5180 if (!parent)
5181 return 0;
5182
5183 mutex_lock(&activate_kmem_mutex);
5184 /*
5185 * If the parent cgroup is not kmem-active now, it cannot be activated
5186 * after this point, because it has at least one child already.
5187 */
5188 if (memcg_kmem_is_active(parent))
5189 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5190 mutex_unlock(&activate_kmem_mutex);
5191 return ret;
5192 }
5193 #else
5194 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5195 unsigned long long val)
5196 {
5197 return -EINVAL;
5198 }
5199 #endif /* CONFIG_MEMCG_KMEM */
5200
5201 /*
5202 * The user of this function is...
5203 * RES_LIMIT.
5204 */
5205 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5206 char *buffer)
5207 {
5208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5209 enum res_type type;
5210 int name;
5211 unsigned long long val;
5212 int ret;
5213
5214 type = MEMFILE_TYPE(cft->private);
5215 name = MEMFILE_ATTR(cft->private);
5216
5217 switch (name) {
5218 case RES_LIMIT:
5219 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5220 ret = -EINVAL;
5221 break;
5222 }
5223 /* This function does all necessary parse...reuse it */
5224 ret = res_counter_memparse_write_strategy(buffer, &val);
5225 if (ret)
5226 break;
5227 if (type == _MEM)
5228 ret = mem_cgroup_resize_limit(memcg, val);
5229 else if (type == _MEMSWAP)
5230 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5231 else if (type == _KMEM)
5232 ret = memcg_update_kmem_limit(memcg, val);
5233 else
5234 return -EINVAL;
5235 break;
5236 case RES_SOFT_LIMIT:
5237 ret = res_counter_memparse_write_strategy(buffer, &val);
5238 if (ret)
5239 break;
5240 /*
5241 * For memsw, soft limits are hard to implement in terms
5242 * of semantics, for now, we support soft limits for
5243 * control without swap
5244 */
5245 if (type == _MEM)
5246 ret = res_counter_set_soft_limit(&memcg->res, val);
5247 else
5248 ret = -EINVAL;
5249 break;
5250 default:
5251 ret = -EINVAL; /* should be BUG() ? */
5252 break;
5253 }
5254 return ret;
5255 }
5256
5257 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5258 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5259 {
5260 unsigned long long min_limit, min_memsw_limit, tmp;
5261
5262 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5263 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5264 if (!memcg->use_hierarchy)
5265 goto out;
5266
5267 while (css_parent(&memcg->css)) {
5268 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5269 if (!memcg->use_hierarchy)
5270 break;
5271 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5272 min_limit = min(min_limit, tmp);
5273 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5274 min_memsw_limit = min(min_memsw_limit, tmp);
5275 }
5276 out:
5277 *mem_limit = min_limit;
5278 *memsw_limit = min_memsw_limit;
5279 }
5280
5281 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5282 {
5283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5284 int name;
5285 enum res_type type;
5286
5287 type = MEMFILE_TYPE(event);
5288 name = MEMFILE_ATTR(event);
5289
5290 switch (name) {
5291 case RES_MAX_USAGE:
5292 if (type == _MEM)
5293 res_counter_reset_max(&memcg->res);
5294 else if (type == _MEMSWAP)
5295 res_counter_reset_max(&memcg->memsw);
5296 else if (type == _KMEM)
5297 res_counter_reset_max(&memcg->kmem);
5298 else
5299 return -EINVAL;
5300 break;
5301 case RES_FAILCNT:
5302 if (type == _MEM)
5303 res_counter_reset_failcnt(&memcg->res);
5304 else if (type == _MEMSWAP)
5305 res_counter_reset_failcnt(&memcg->memsw);
5306 else if (type == _KMEM)
5307 res_counter_reset_failcnt(&memcg->kmem);
5308 else
5309 return -EINVAL;
5310 break;
5311 }
5312
5313 return 0;
5314 }
5315
5316 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5317 struct cftype *cft)
5318 {
5319 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5320 }
5321
5322 #ifdef CONFIG_MMU
5323 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5324 struct cftype *cft, u64 val)
5325 {
5326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5327
5328 if (val >= (1 << NR_MOVE_TYPE))
5329 return -EINVAL;
5330
5331 /*
5332 * No kind of locking is needed in here, because ->can_attach() will
5333 * check this value once in the beginning of the process, and then carry
5334 * on with stale data. This means that changes to this value will only
5335 * affect task migrations starting after the change.
5336 */
5337 memcg->move_charge_at_immigrate = val;
5338 return 0;
5339 }
5340 #else
5341 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5342 struct cftype *cft, u64 val)
5343 {
5344 return -ENOSYS;
5345 }
5346 #endif
5347
5348 #ifdef CONFIG_NUMA
5349 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5350 {
5351 struct numa_stat {
5352 const char *name;
5353 unsigned int lru_mask;
5354 };
5355
5356 static const struct numa_stat stats[] = {
5357 { "total", LRU_ALL },
5358 { "file", LRU_ALL_FILE },
5359 { "anon", LRU_ALL_ANON },
5360 { "unevictable", BIT(LRU_UNEVICTABLE) },
5361 };
5362 const struct numa_stat *stat;
5363 int nid;
5364 unsigned long nr;
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5366
5367 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5368 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5369 seq_printf(m, "%s=%lu", stat->name, nr);
5370 for_each_node_state(nid, N_MEMORY) {
5371 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5372 stat->lru_mask);
5373 seq_printf(m, " N%d=%lu", nid, nr);
5374 }
5375 seq_putc(m, '\n');
5376 }
5377
5378 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5379 struct mem_cgroup *iter;
5380
5381 nr = 0;
5382 for_each_mem_cgroup_tree(iter, memcg)
5383 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5384 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5385 for_each_node_state(nid, N_MEMORY) {
5386 nr = 0;
5387 for_each_mem_cgroup_tree(iter, memcg)
5388 nr += mem_cgroup_node_nr_lru_pages(
5389 iter, nid, stat->lru_mask);
5390 seq_printf(m, " N%d=%lu", nid, nr);
5391 }
5392 seq_putc(m, '\n');
5393 }
5394
5395 return 0;
5396 }
5397 #endif /* CONFIG_NUMA */
5398
5399 static inline void mem_cgroup_lru_names_not_uptodate(void)
5400 {
5401 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5402 }
5403
5404 static int memcg_stat_show(struct seq_file *m, void *v)
5405 {
5406 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5407 struct mem_cgroup *mi;
5408 unsigned int i;
5409
5410 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5411 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5412 continue;
5413 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5414 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5415 }
5416
5417 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5418 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5419 mem_cgroup_read_events(memcg, i));
5420
5421 for (i = 0; i < NR_LRU_LISTS; i++)
5422 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5423 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5424
5425 /* Hierarchical information */
5426 {
5427 unsigned long long limit, memsw_limit;
5428 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5429 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5430 if (do_swap_account)
5431 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5432 memsw_limit);
5433 }
5434
5435 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5436 long long val = 0;
5437
5438 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5439 continue;
5440 for_each_mem_cgroup_tree(mi, memcg)
5441 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5442 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5443 }
5444
5445 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5446 unsigned long long val = 0;
5447
5448 for_each_mem_cgroup_tree(mi, memcg)
5449 val += mem_cgroup_read_events(mi, i);
5450 seq_printf(m, "total_%s %llu\n",
5451 mem_cgroup_events_names[i], val);
5452 }
5453
5454 for (i = 0; i < NR_LRU_LISTS; i++) {
5455 unsigned long long val = 0;
5456
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5459 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5460 }
5461
5462 #ifdef CONFIG_DEBUG_VM
5463 {
5464 int nid, zid;
5465 struct mem_cgroup_per_zone *mz;
5466 struct zone_reclaim_stat *rstat;
5467 unsigned long recent_rotated[2] = {0, 0};
5468 unsigned long recent_scanned[2] = {0, 0};
5469
5470 for_each_online_node(nid)
5471 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5472 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5473 rstat = &mz->lruvec.reclaim_stat;
5474
5475 recent_rotated[0] += rstat->recent_rotated[0];
5476 recent_rotated[1] += rstat->recent_rotated[1];
5477 recent_scanned[0] += rstat->recent_scanned[0];
5478 recent_scanned[1] += rstat->recent_scanned[1];
5479 }
5480 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5481 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5482 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5483 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5484 }
5485 #endif
5486
5487 return 0;
5488 }
5489
5490 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5491 struct cftype *cft)
5492 {
5493 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5494
5495 return mem_cgroup_swappiness(memcg);
5496 }
5497
5498 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5499 struct cftype *cft, u64 val)
5500 {
5501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5502 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5503
5504 if (val > 100 || !parent)
5505 return -EINVAL;
5506
5507 mutex_lock(&memcg_create_mutex);
5508
5509 /* If under hierarchy, only empty-root can set this value */
5510 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5511 mutex_unlock(&memcg_create_mutex);
5512 return -EINVAL;
5513 }
5514
5515 memcg->swappiness = val;
5516
5517 mutex_unlock(&memcg_create_mutex);
5518
5519 return 0;
5520 }
5521
5522 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5523 {
5524 struct mem_cgroup_threshold_ary *t;
5525 u64 usage;
5526 int i;
5527
5528 rcu_read_lock();
5529 if (!swap)
5530 t = rcu_dereference(memcg->thresholds.primary);
5531 else
5532 t = rcu_dereference(memcg->memsw_thresholds.primary);
5533
5534 if (!t)
5535 goto unlock;
5536
5537 usage = mem_cgroup_usage(memcg, swap);
5538
5539 /*
5540 * current_threshold points to threshold just below or equal to usage.
5541 * If it's not true, a threshold was crossed after last
5542 * call of __mem_cgroup_threshold().
5543 */
5544 i = t->current_threshold;
5545
5546 /*
5547 * Iterate backward over array of thresholds starting from
5548 * current_threshold and check if a threshold is crossed.
5549 * If none of thresholds below usage is crossed, we read
5550 * only one element of the array here.
5551 */
5552 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5553 eventfd_signal(t->entries[i].eventfd, 1);
5554
5555 /* i = current_threshold + 1 */
5556 i++;
5557
5558 /*
5559 * Iterate forward over array of thresholds starting from
5560 * current_threshold+1 and check if a threshold is crossed.
5561 * If none of thresholds above usage is crossed, we read
5562 * only one element of the array here.
5563 */
5564 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5565 eventfd_signal(t->entries[i].eventfd, 1);
5566
5567 /* Update current_threshold */
5568 t->current_threshold = i - 1;
5569 unlock:
5570 rcu_read_unlock();
5571 }
5572
5573 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5574 {
5575 while (memcg) {
5576 __mem_cgroup_threshold(memcg, false);
5577 if (do_swap_account)
5578 __mem_cgroup_threshold(memcg, true);
5579
5580 memcg = parent_mem_cgroup(memcg);
5581 }
5582 }
5583
5584 static int compare_thresholds(const void *a, const void *b)
5585 {
5586 const struct mem_cgroup_threshold *_a = a;
5587 const struct mem_cgroup_threshold *_b = b;
5588
5589 if (_a->threshold > _b->threshold)
5590 return 1;
5591
5592 if (_a->threshold < _b->threshold)
5593 return -1;
5594
5595 return 0;
5596 }
5597
5598 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5599 {
5600 struct mem_cgroup_eventfd_list *ev;
5601
5602 list_for_each_entry(ev, &memcg->oom_notify, list)
5603 eventfd_signal(ev->eventfd, 1);
5604 return 0;
5605 }
5606
5607 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5608 {
5609 struct mem_cgroup *iter;
5610
5611 for_each_mem_cgroup_tree(iter, memcg)
5612 mem_cgroup_oom_notify_cb(iter);
5613 }
5614
5615 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5616 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5617 {
5618 struct mem_cgroup_thresholds *thresholds;
5619 struct mem_cgroup_threshold_ary *new;
5620 u64 threshold, usage;
5621 int i, size, ret;
5622
5623 ret = res_counter_memparse_write_strategy(args, &threshold);
5624 if (ret)
5625 return ret;
5626
5627 mutex_lock(&memcg->thresholds_lock);
5628
5629 if (type == _MEM)
5630 thresholds = &memcg->thresholds;
5631 else if (type == _MEMSWAP)
5632 thresholds = &memcg->memsw_thresholds;
5633 else
5634 BUG();
5635
5636 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5637
5638 /* Check if a threshold crossed before adding a new one */
5639 if (thresholds->primary)
5640 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5641
5642 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5643
5644 /* Allocate memory for new array of thresholds */
5645 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5646 GFP_KERNEL);
5647 if (!new) {
5648 ret = -ENOMEM;
5649 goto unlock;
5650 }
5651 new->size = size;
5652
5653 /* Copy thresholds (if any) to new array */
5654 if (thresholds->primary) {
5655 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5656 sizeof(struct mem_cgroup_threshold));
5657 }
5658
5659 /* Add new threshold */
5660 new->entries[size - 1].eventfd = eventfd;
5661 new->entries[size - 1].threshold = threshold;
5662
5663 /* Sort thresholds. Registering of new threshold isn't time-critical */
5664 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5665 compare_thresholds, NULL);
5666
5667 /* Find current threshold */
5668 new->current_threshold = -1;
5669 for (i = 0; i < size; i++) {
5670 if (new->entries[i].threshold <= usage) {
5671 /*
5672 * new->current_threshold will not be used until
5673 * rcu_assign_pointer(), so it's safe to increment
5674 * it here.
5675 */
5676 ++new->current_threshold;
5677 } else
5678 break;
5679 }
5680
5681 /* Free old spare buffer and save old primary buffer as spare */
5682 kfree(thresholds->spare);
5683 thresholds->spare = thresholds->primary;
5684
5685 rcu_assign_pointer(thresholds->primary, new);
5686
5687 /* To be sure that nobody uses thresholds */
5688 synchronize_rcu();
5689
5690 unlock:
5691 mutex_unlock(&memcg->thresholds_lock);
5692
5693 return ret;
5694 }
5695
5696 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5697 struct eventfd_ctx *eventfd, const char *args)
5698 {
5699 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5700 }
5701
5702 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5703 struct eventfd_ctx *eventfd, const char *args)
5704 {
5705 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5706 }
5707
5708 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5709 struct eventfd_ctx *eventfd, enum res_type type)
5710 {
5711 struct mem_cgroup_thresholds *thresholds;
5712 struct mem_cgroup_threshold_ary *new;
5713 u64 usage;
5714 int i, j, size;
5715
5716 mutex_lock(&memcg->thresholds_lock);
5717 if (type == _MEM)
5718 thresholds = &memcg->thresholds;
5719 else if (type == _MEMSWAP)
5720 thresholds = &memcg->memsw_thresholds;
5721 else
5722 BUG();
5723
5724 if (!thresholds->primary)
5725 goto unlock;
5726
5727 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5728
5729 /* Check if a threshold crossed before removing */
5730 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5731
5732 /* Calculate new number of threshold */
5733 size = 0;
5734 for (i = 0; i < thresholds->primary->size; i++) {
5735 if (thresholds->primary->entries[i].eventfd != eventfd)
5736 size++;
5737 }
5738
5739 new = thresholds->spare;
5740
5741 /* Set thresholds array to NULL if we don't have thresholds */
5742 if (!size) {
5743 kfree(new);
5744 new = NULL;
5745 goto swap_buffers;
5746 }
5747
5748 new->size = size;
5749
5750 /* Copy thresholds and find current threshold */
5751 new->current_threshold = -1;
5752 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5753 if (thresholds->primary->entries[i].eventfd == eventfd)
5754 continue;
5755
5756 new->entries[j] = thresholds->primary->entries[i];
5757 if (new->entries[j].threshold <= usage) {
5758 /*
5759 * new->current_threshold will not be used
5760 * until rcu_assign_pointer(), so it's safe to increment
5761 * it here.
5762 */
5763 ++new->current_threshold;
5764 }
5765 j++;
5766 }
5767
5768 swap_buffers:
5769 /* Swap primary and spare array */
5770 thresholds->spare = thresholds->primary;
5771 /* If all events are unregistered, free the spare array */
5772 if (!new) {
5773 kfree(thresholds->spare);
5774 thresholds->spare = NULL;
5775 }
5776
5777 rcu_assign_pointer(thresholds->primary, new);
5778
5779 /* To be sure that nobody uses thresholds */
5780 synchronize_rcu();
5781 unlock:
5782 mutex_unlock(&memcg->thresholds_lock);
5783 }
5784
5785 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5786 struct eventfd_ctx *eventfd)
5787 {
5788 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5789 }
5790
5791 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5792 struct eventfd_ctx *eventfd)
5793 {
5794 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5795 }
5796
5797 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5798 struct eventfd_ctx *eventfd, const char *args)
5799 {
5800 struct mem_cgroup_eventfd_list *event;
5801
5802 event = kmalloc(sizeof(*event), GFP_KERNEL);
5803 if (!event)
5804 return -ENOMEM;
5805
5806 spin_lock(&memcg_oom_lock);
5807
5808 event->eventfd = eventfd;
5809 list_add(&event->list, &memcg->oom_notify);
5810
5811 /* already in OOM ? */
5812 if (atomic_read(&memcg->under_oom))
5813 eventfd_signal(eventfd, 1);
5814 spin_unlock(&memcg_oom_lock);
5815
5816 return 0;
5817 }
5818
5819 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5820 struct eventfd_ctx *eventfd)
5821 {
5822 struct mem_cgroup_eventfd_list *ev, *tmp;
5823
5824 spin_lock(&memcg_oom_lock);
5825
5826 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5827 if (ev->eventfd == eventfd) {
5828 list_del(&ev->list);
5829 kfree(ev);
5830 }
5831 }
5832
5833 spin_unlock(&memcg_oom_lock);
5834 }
5835
5836 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5837 {
5838 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5839
5840 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5841 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5842 return 0;
5843 }
5844
5845 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5846 struct cftype *cft, u64 val)
5847 {
5848 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5849 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5850
5851 /* cannot set to root cgroup and only 0 and 1 are allowed */
5852 if (!parent || !((val == 0) || (val == 1)))
5853 return -EINVAL;
5854
5855 mutex_lock(&memcg_create_mutex);
5856 /* oom-kill-disable is a flag for subhierarchy. */
5857 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5858 mutex_unlock(&memcg_create_mutex);
5859 return -EINVAL;
5860 }
5861 memcg->oom_kill_disable = val;
5862 if (!val)
5863 memcg_oom_recover(memcg);
5864 mutex_unlock(&memcg_create_mutex);
5865 return 0;
5866 }
5867
5868 #ifdef CONFIG_MEMCG_KMEM
5869 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5870 {
5871 int ret;
5872
5873 memcg->kmemcg_id = -1;
5874 ret = memcg_propagate_kmem(memcg);
5875 if (ret)
5876 return ret;
5877
5878 return mem_cgroup_sockets_init(memcg, ss);
5879 }
5880
5881 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5882 {
5883 mem_cgroup_sockets_destroy(memcg);
5884 }
5885
5886 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5887 {
5888 if (!memcg_kmem_is_active(memcg))
5889 return;
5890
5891 /*
5892 * kmem charges can outlive the cgroup. In the case of slab
5893 * pages, for instance, a page contain objects from various
5894 * processes. As we prevent from taking a reference for every
5895 * such allocation we have to be careful when doing uncharge
5896 * (see memcg_uncharge_kmem) and here during offlining.
5897 *
5898 * The idea is that that only the _last_ uncharge which sees
5899 * the dead memcg will drop the last reference. An additional
5900 * reference is taken here before the group is marked dead
5901 * which is then paired with css_put during uncharge resp. here.
5902 *
5903 * Although this might sound strange as this path is called from
5904 * css_offline() when the referencemight have dropped down to 0
5905 * and shouldn't be incremented anymore (css_tryget would fail)
5906 * we do not have other options because of the kmem allocations
5907 * lifetime.
5908 */
5909 css_get(&memcg->css);
5910
5911 memcg_kmem_mark_dead(memcg);
5912
5913 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5914 return;
5915
5916 if (memcg_kmem_test_and_clear_dead(memcg))
5917 css_put(&memcg->css);
5918 }
5919 #else
5920 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5921 {
5922 return 0;
5923 }
5924
5925 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5926 {
5927 }
5928
5929 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5930 {
5931 }
5932 #endif
5933
5934 /*
5935 * DO NOT USE IN NEW FILES.
5936 *
5937 * "cgroup.event_control" implementation.
5938 *
5939 * This is way over-engineered. It tries to support fully configurable
5940 * events for each user. Such level of flexibility is completely
5941 * unnecessary especially in the light of the planned unified hierarchy.
5942 *
5943 * Please deprecate this and replace with something simpler if at all
5944 * possible.
5945 */
5946
5947 /*
5948 * Unregister event and free resources.
5949 *
5950 * Gets called from workqueue.
5951 */
5952 static void memcg_event_remove(struct work_struct *work)
5953 {
5954 struct mem_cgroup_event *event =
5955 container_of(work, struct mem_cgroup_event, remove);
5956 struct mem_cgroup *memcg = event->memcg;
5957
5958 remove_wait_queue(event->wqh, &event->wait);
5959
5960 event->unregister_event(memcg, event->eventfd);
5961
5962 /* Notify userspace the event is going away. */
5963 eventfd_signal(event->eventfd, 1);
5964
5965 eventfd_ctx_put(event->eventfd);
5966 kfree(event);
5967 css_put(&memcg->css);
5968 }
5969
5970 /*
5971 * Gets called on POLLHUP on eventfd when user closes it.
5972 *
5973 * Called with wqh->lock held and interrupts disabled.
5974 */
5975 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5976 int sync, void *key)
5977 {
5978 struct mem_cgroup_event *event =
5979 container_of(wait, struct mem_cgroup_event, wait);
5980 struct mem_cgroup *memcg = event->memcg;
5981 unsigned long flags = (unsigned long)key;
5982
5983 if (flags & POLLHUP) {
5984 /*
5985 * If the event has been detached at cgroup removal, we
5986 * can simply return knowing the other side will cleanup
5987 * for us.
5988 *
5989 * We can't race against event freeing since the other
5990 * side will require wqh->lock via remove_wait_queue(),
5991 * which we hold.
5992 */
5993 spin_lock(&memcg->event_list_lock);
5994 if (!list_empty(&event->list)) {
5995 list_del_init(&event->list);
5996 /*
5997 * We are in atomic context, but cgroup_event_remove()
5998 * may sleep, so we have to call it in workqueue.
5999 */
6000 schedule_work(&event->remove);
6001 }
6002 spin_unlock(&memcg->event_list_lock);
6003 }
6004
6005 return 0;
6006 }
6007
6008 static void memcg_event_ptable_queue_proc(struct file *file,
6009 wait_queue_head_t *wqh, poll_table *pt)
6010 {
6011 struct mem_cgroup_event *event =
6012 container_of(pt, struct mem_cgroup_event, pt);
6013
6014 event->wqh = wqh;
6015 add_wait_queue(wqh, &event->wait);
6016 }
6017
6018 /*
6019 * DO NOT USE IN NEW FILES.
6020 *
6021 * Parse input and register new cgroup event handler.
6022 *
6023 * Input must be in format '<event_fd> <control_fd> <args>'.
6024 * Interpretation of args is defined by control file implementation.
6025 */
6026 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6027 struct cftype *cft, char *buffer)
6028 {
6029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6030 struct mem_cgroup_event *event;
6031 struct cgroup_subsys_state *cfile_css;
6032 unsigned int efd, cfd;
6033 struct fd efile;
6034 struct fd cfile;
6035 const char *name;
6036 char *endp;
6037 int ret;
6038
6039 efd = simple_strtoul(buffer, &endp, 10);
6040 if (*endp != ' ')
6041 return -EINVAL;
6042 buffer = endp + 1;
6043
6044 cfd = simple_strtoul(buffer, &endp, 10);
6045 if ((*endp != ' ') && (*endp != '\0'))
6046 return -EINVAL;
6047 buffer = endp + 1;
6048
6049 event = kzalloc(sizeof(*event), GFP_KERNEL);
6050 if (!event)
6051 return -ENOMEM;
6052
6053 event->memcg = memcg;
6054 INIT_LIST_HEAD(&event->list);
6055 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6056 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6057 INIT_WORK(&event->remove, memcg_event_remove);
6058
6059 efile = fdget(efd);
6060 if (!efile.file) {
6061 ret = -EBADF;
6062 goto out_kfree;
6063 }
6064
6065 event->eventfd = eventfd_ctx_fileget(efile.file);
6066 if (IS_ERR(event->eventfd)) {
6067 ret = PTR_ERR(event->eventfd);
6068 goto out_put_efile;
6069 }
6070
6071 cfile = fdget(cfd);
6072 if (!cfile.file) {
6073 ret = -EBADF;
6074 goto out_put_eventfd;
6075 }
6076
6077 /* the process need read permission on control file */
6078 /* AV: shouldn't we check that it's been opened for read instead? */
6079 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6080 if (ret < 0)
6081 goto out_put_cfile;
6082
6083 /*
6084 * Determine the event callbacks and set them in @event. This used
6085 * to be done via struct cftype but cgroup core no longer knows
6086 * about these events. The following is crude but the whole thing
6087 * is for compatibility anyway.
6088 *
6089 * DO NOT ADD NEW FILES.
6090 */
6091 name = cfile.file->f_dentry->d_name.name;
6092
6093 if (!strcmp(name, "memory.usage_in_bytes")) {
6094 event->register_event = mem_cgroup_usage_register_event;
6095 event->unregister_event = mem_cgroup_usage_unregister_event;
6096 } else if (!strcmp(name, "memory.oom_control")) {
6097 event->register_event = mem_cgroup_oom_register_event;
6098 event->unregister_event = mem_cgroup_oom_unregister_event;
6099 } else if (!strcmp(name, "memory.pressure_level")) {
6100 event->register_event = vmpressure_register_event;
6101 event->unregister_event = vmpressure_unregister_event;
6102 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6103 event->register_event = memsw_cgroup_usage_register_event;
6104 event->unregister_event = memsw_cgroup_usage_unregister_event;
6105 } else {
6106 ret = -EINVAL;
6107 goto out_put_cfile;
6108 }
6109
6110 /*
6111 * Verify @cfile should belong to @css. Also, remaining events are
6112 * automatically removed on cgroup destruction but the removal is
6113 * asynchronous, so take an extra ref on @css.
6114 */
6115 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6116 &memory_cgrp_subsys);
6117 ret = -EINVAL;
6118 if (IS_ERR(cfile_css))
6119 goto out_put_cfile;
6120 if (cfile_css != css) {
6121 css_put(cfile_css);
6122 goto out_put_cfile;
6123 }
6124
6125 ret = event->register_event(memcg, event->eventfd, buffer);
6126 if (ret)
6127 goto out_put_css;
6128
6129 efile.file->f_op->poll(efile.file, &event->pt);
6130
6131 spin_lock(&memcg->event_list_lock);
6132 list_add(&event->list, &memcg->event_list);
6133 spin_unlock(&memcg->event_list_lock);
6134
6135 fdput(cfile);
6136 fdput(efile);
6137
6138 return 0;
6139
6140 out_put_css:
6141 css_put(css);
6142 out_put_cfile:
6143 fdput(cfile);
6144 out_put_eventfd:
6145 eventfd_ctx_put(event->eventfd);
6146 out_put_efile:
6147 fdput(efile);
6148 out_kfree:
6149 kfree(event);
6150
6151 return ret;
6152 }
6153
6154 static struct cftype mem_cgroup_files[] = {
6155 {
6156 .name = "usage_in_bytes",
6157 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6158 .read_u64 = mem_cgroup_read_u64,
6159 },
6160 {
6161 .name = "max_usage_in_bytes",
6162 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6163 .trigger = mem_cgroup_reset,
6164 .read_u64 = mem_cgroup_read_u64,
6165 },
6166 {
6167 .name = "limit_in_bytes",
6168 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6169 .write_string = mem_cgroup_write,
6170 .read_u64 = mem_cgroup_read_u64,
6171 },
6172 {
6173 .name = "soft_limit_in_bytes",
6174 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6175 .write_string = mem_cgroup_write,
6176 .read_u64 = mem_cgroup_read_u64,
6177 },
6178 {
6179 .name = "failcnt",
6180 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6181 .trigger = mem_cgroup_reset,
6182 .read_u64 = mem_cgroup_read_u64,
6183 },
6184 {
6185 .name = "stat",
6186 .seq_show = memcg_stat_show,
6187 },
6188 {
6189 .name = "force_empty",
6190 .trigger = mem_cgroup_force_empty_write,
6191 },
6192 {
6193 .name = "use_hierarchy",
6194 .flags = CFTYPE_INSANE,
6195 .write_u64 = mem_cgroup_hierarchy_write,
6196 .read_u64 = mem_cgroup_hierarchy_read,
6197 },
6198 {
6199 .name = "cgroup.event_control", /* XXX: for compat */
6200 .write_string = memcg_write_event_control,
6201 .flags = CFTYPE_NO_PREFIX,
6202 .mode = S_IWUGO,
6203 },
6204 {
6205 .name = "swappiness",
6206 .read_u64 = mem_cgroup_swappiness_read,
6207 .write_u64 = mem_cgroup_swappiness_write,
6208 },
6209 {
6210 .name = "move_charge_at_immigrate",
6211 .read_u64 = mem_cgroup_move_charge_read,
6212 .write_u64 = mem_cgroup_move_charge_write,
6213 },
6214 {
6215 .name = "oom_control",
6216 .seq_show = mem_cgroup_oom_control_read,
6217 .write_u64 = mem_cgroup_oom_control_write,
6218 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6219 },
6220 {
6221 .name = "pressure_level",
6222 },
6223 #ifdef CONFIG_NUMA
6224 {
6225 .name = "numa_stat",
6226 .seq_show = memcg_numa_stat_show,
6227 },
6228 #endif
6229 #ifdef CONFIG_MEMCG_KMEM
6230 {
6231 .name = "kmem.limit_in_bytes",
6232 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6233 .write_string = mem_cgroup_write,
6234 .read_u64 = mem_cgroup_read_u64,
6235 },
6236 {
6237 .name = "kmem.usage_in_bytes",
6238 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6239 .read_u64 = mem_cgroup_read_u64,
6240 },
6241 {
6242 .name = "kmem.failcnt",
6243 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6244 .trigger = mem_cgroup_reset,
6245 .read_u64 = mem_cgroup_read_u64,
6246 },
6247 {
6248 .name = "kmem.max_usage_in_bytes",
6249 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6250 .trigger = mem_cgroup_reset,
6251 .read_u64 = mem_cgroup_read_u64,
6252 },
6253 #ifdef CONFIG_SLABINFO
6254 {
6255 .name = "kmem.slabinfo",
6256 .seq_show = mem_cgroup_slabinfo_read,
6257 },
6258 #endif
6259 #endif
6260 { }, /* terminate */
6261 };
6262
6263 #ifdef CONFIG_MEMCG_SWAP
6264 static struct cftype memsw_cgroup_files[] = {
6265 {
6266 .name = "memsw.usage_in_bytes",
6267 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6268 .read_u64 = mem_cgroup_read_u64,
6269 },
6270 {
6271 .name = "memsw.max_usage_in_bytes",
6272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6273 .trigger = mem_cgroup_reset,
6274 .read_u64 = mem_cgroup_read_u64,
6275 },
6276 {
6277 .name = "memsw.limit_in_bytes",
6278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6279 .write_string = mem_cgroup_write,
6280 .read_u64 = mem_cgroup_read_u64,
6281 },
6282 {
6283 .name = "memsw.failcnt",
6284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6285 .trigger = mem_cgroup_reset,
6286 .read_u64 = mem_cgroup_read_u64,
6287 },
6288 { }, /* terminate */
6289 };
6290 #endif
6291 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6292 {
6293 struct mem_cgroup_per_node *pn;
6294 struct mem_cgroup_per_zone *mz;
6295 int zone, tmp = node;
6296 /*
6297 * This routine is called against possible nodes.
6298 * But it's BUG to call kmalloc() against offline node.
6299 *
6300 * TODO: this routine can waste much memory for nodes which will
6301 * never be onlined. It's better to use memory hotplug callback
6302 * function.
6303 */
6304 if (!node_state(node, N_NORMAL_MEMORY))
6305 tmp = -1;
6306 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6307 if (!pn)
6308 return 1;
6309
6310 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6311 mz = &pn->zoneinfo[zone];
6312 lruvec_init(&mz->lruvec);
6313 mz->usage_in_excess = 0;
6314 mz->on_tree = false;
6315 mz->memcg = memcg;
6316 }
6317 memcg->nodeinfo[node] = pn;
6318 return 0;
6319 }
6320
6321 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6322 {
6323 kfree(memcg->nodeinfo[node]);
6324 }
6325
6326 static struct mem_cgroup *mem_cgroup_alloc(void)
6327 {
6328 struct mem_cgroup *memcg;
6329 size_t size;
6330
6331 size = sizeof(struct mem_cgroup);
6332 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6333
6334 memcg = kzalloc(size, GFP_KERNEL);
6335 if (!memcg)
6336 return NULL;
6337
6338 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6339 if (!memcg->stat)
6340 goto out_free;
6341 spin_lock_init(&memcg->pcp_counter_lock);
6342 return memcg;
6343
6344 out_free:
6345 kfree(memcg);
6346 return NULL;
6347 }
6348
6349 /*
6350 * At destroying mem_cgroup, references from swap_cgroup can remain.
6351 * (scanning all at force_empty is too costly...)
6352 *
6353 * Instead of clearing all references at force_empty, we remember
6354 * the number of reference from swap_cgroup and free mem_cgroup when
6355 * it goes down to 0.
6356 *
6357 * Removal of cgroup itself succeeds regardless of refs from swap.
6358 */
6359
6360 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6361 {
6362 int node;
6363
6364 mem_cgroup_remove_from_trees(memcg);
6365
6366 for_each_node(node)
6367 free_mem_cgroup_per_zone_info(memcg, node);
6368
6369 free_percpu(memcg->stat);
6370
6371 /*
6372 * We need to make sure that (at least for now), the jump label
6373 * destruction code runs outside of the cgroup lock. This is because
6374 * get_online_cpus(), which is called from the static_branch update,
6375 * can't be called inside the cgroup_lock. cpusets are the ones
6376 * enforcing this dependency, so if they ever change, we might as well.
6377 *
6378 * schedule_work() will guarantee this happens. Be careful if you need
6379 * to move this code around, and make sure it is outside
6380 * the cgroup_lock.
6381 */
6382 disarm_static_keys(memcg);
6383 kfree(memcg);
6384 }
6385
6386 /*
6387 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6388 */
6389 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6390 {
6391 if (!memcg->res.parent)
6392 return NULL;
6393 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6394 }
6395 EXPORT_SYMBOL(parent_mem_cgroup);
6396
6397 static void __init mem_cgroup_soft_limit_tree_init(void)
6398 {
6399 struct mem_cgroup_tree_per_node *rtpn;
6400 struct mem_cgroup_tree_per_zone *rtpz;
6401 int tmp, node, zone;
6402
6403 for_each_node(node) {
6404 tmp = node;
6405 if (!node_state(node, N_NORMAL_MEMORY))
6406 tmp = -1;
6407 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6408 BUG_ON(!rtpn);
6409
6410 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6411
6412 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6413 rtpz = &rtpn->rb_tree_per_zone[zone];
6414 rtpz->rb_root = RB_ROOT;
6415 spin_lock_init(&rtpz->lock);
6416 }
6417 }
6418 }
6419
6420 static struct cgroup_subsys_state * __ref
6421 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6422 {
6423 struct mem_cgroup *memcg;
6424 long error = -ENOMEM;
6425 int node;
6426
6427 memcg = mem_cgroup_alloc();
6428 if (!memcg)
6429 return ERR_PTR(error);
6430
6431 for_each_node(node)
6432 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6433 goto free_out;
6434
6435 /* root ? */
6436 if (parent_css == NULL) {
6437 root_mem_cgroup = memcg;
6438 res_counter_init(&memcg->res, NULL);
6439 res_counter_init(&memcg->memsw, NULL);
6440 res_counter_init(&memcg->kmem, NULL);
6441 }
6442
6443 memcg->last_scanned_node = MAX_NUMNODES;
6444 INIT_LIST_HEAD(&memcg->oom_notify);
6445 memcg->move_charge_at_immigrate = 0;
6446 mutex_init(&memcg->thresholds_lock);
6447 spin_lock_init(&memcg->move_lock);
6448 vmpressure_init(&memcg->vmpressure);
6449 INIT_LIST_HEAD(&memcg->event_list);
6450 spin_lock_init(&memcg->event_list_lock);
6451
6452 return &memcg->css;
6453
6454 free_out:
6455 __mem_cgroup_free(memcg);
6456 return ERR_PTR(error);
6457 }
6458
6459 static int
6460 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6461 {
6462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6463 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6464
6465 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6466 return -ENOSPC;
6467
6468 if (!parent)
6469 return 0;
6470
6471 mutex_lock(&memcg_create_mutex);
6472
6473 memcg->use_hierarchy = parent->use_hierarchy;
6474 memcg->oom_kill_disable = parent->oom_kill_disable;
6475 memcg->swappiness = mem_cgroup_swappiness(parent);
6476
6477 if (parent->use_hierarchy) {
6478 res_counter_init(&memcg->res, &parent->res);
6479 res_counter_init(&memcg->memsw, &parent->memsw);
6480 res_counter_init(&memcg->kmem, &parent->kmem);
6481
6482 /*
6483 * No need to take a reference to the parent because cgroup
6484 * core guarantees its existence.
6485 */
6486 } else {
6487 res_counter_init(&memcg->res, NULL);
6488 res_counter_init(&memcg->memsw, NULL);
6489 res_counter_init(&memcg->kmem, NULL);
6490 /*
6491 * Deeper hierachy with use_hierarchy == false doesn't make
6492 * much sense so let cgroup subsystem know about this
6493 * unfortunate state in our controller.
6494 */
6495 if (parent != root_mem_cgroup)
6496 memory_cgrp_subsys.broken_hierarchy = true;
6497 }
6498 mutex_unlock(&memcg_create_mutex);
6499
6500 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6501 }
6502
6503 /*
6504 * Announce all parents that a group from their hierarchy is gone.
6505 */
6506 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6507 {
6508 struct mem_cgroup *parent = memcg;
6509
6510 while ((parent = parent_mem_cgroup(parent)))
6511 mem_cgroup_iter_invalidate(parent);
6512
6513 /*
6514 * if the root memcg is not hierarchical we have to check it
6515 * explicitely.
6516 */
6517 if (!root_mem_cgroup->use_hierarchy)
6518 mem_cgroup_iter_invalidate(root_mem_cgroup);
6519 }
6520
6521 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6522 {
6523 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6524 struct mem_cgroup_event *event, *tmp;
6525 struct cgroup_subsys_state *iter;
6526
6527 /*
6528 * Unregister events and notify userspace.
6529 * Notify userspace about cgroup removing only after rmdir of cgroup
6530 * directory to avoid race between userspace and kernelspace.
6531 */
6532 spin_lock(&memcg->event_list_lock);
6533 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6534 list_del_init(&event->list);
6535 schedule_work(&event->remove);
6536 }
6537 spin_unlock(&memcg->event_list_lock);
6538
6539 kmem_cgroup_css_offline(memcg);
6540
6541 mem_cgroup_invalidate_reclaim_iterators(memcg);
6542
6543 /*
6544 * This requires that offlining is serialized. Right now that is
6545 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6546 */
6547 css_for_each_descendant_post(iter, css)
6548 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6549
6550 mem_cgroup_destroy_all_caches(memcg);
6551 vmpressure_cleanup(&memcg->vmpressure);
6552 }
6553
6554 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6555 {
6556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6557 /*
6558 * XXX: css_offline() would be where we should reparent all
6559 * memory to prepare the cgroup for destruction. However,
6560 * memcg does not do css_tryget() and res_counter charging
6561 * under the same RCU lock region, which means that charging
6562 * could race with offlining. Offlining only happens to
6563 * cgroups with no tasks in them but charges can show up
6564 * without any tasks from the swapin path when the target
6565 * memcg is looked up from the swapout record and not from the
6566 * current task as it usually is. A race like this can leak
6567 * charges and put pages with stale cgroup pointers into
6568 * circulation:
6569 *
6570 * #0 #1
6571 * lookup_swap_cgroup_id()
6572 * rcu_read_lock()
6573 * mem_cgroup_lookup()
6574 * css_tryget()
6575 * rcu_read_unlock()
6576 * disable css_tryget()
6577 * call_rcu()
6578 * offline_css()
6579 * reparent_charges()
6580 * res_counter_charge()
6581 * css_put()
6582 * css_free()
6583 * pc->mem_cgroup = dead memcg
6584 * add page to lru
6585 *
6586 * The bulk of the charges are still moved in offline_css() to
6587 * avoid pinning a lot of pages in case a long-term reference
6588 * like a swapout record is deferring the css_free() to long
6589 * after offlining. But this makes sure we catch any charges
6590 * made after offlining:
6591 */
6592 mem_cgroup_reparent_charges(memcg);
6593
6594 memcg_destroy_kmem(memcg);
6595 __mem_cgroup_free(memcg);
6596 }
6597
6598 #ifdef CONFIG_MMU
6599 /* Handlers for move charge at task migration. */
6600 #define PRECHARGE_COUNT_AT_ONCE 256
6601 static int mem_cgroup_do_precharge(unsigned long count)
6602 {
6603 int ret = 0;
6604 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6605 struct mem_cgroup *memcg = mc.to;
6606
6607 if (mem_cgroup_is_root(memcg)) {
6608 mc.precharge += count;
6609 /* we don't need css_get for root */
6610 return ret;
6611 }
6612 /* try to charge at once */
6613 if (count > 1) {
6614 struct res_counter *dummy;
6615 /*
6616 * "memcg" cannot be under rmdir() because we've already checked
6617 * by cgroup_lock_live_cgroup() that it is not removed and we
6618 * are still under the same cgroup_mutex. So we can postpone
6619 * css_get().
6620 */
6621 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6622 goto one_by_one;
6623 if (do_swap_account && res_counter_charge(&memcg->memsw,
6624 PAGE_SIZE * count, &dummy)) {
6625 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6626 goto one_by_one;
6627 }
6628 mc.precharge += count;
6629 return ret;
6630 }
6631 one_by_one:
6632 /* fall back to one by one charge */
6633 while (count--) {
6634 if (signal_pending(current)) {
6635 ret = -EINTR;
6636 break;
6637 }
6638 if (!batch_count--) {
6639 batch_count = PRECHARGE_COUNT_AT_ONCE;
6640 cond_resched();
6641 }
6642 ret = __mem_cgroup_try_charge(NULL,
6643 GFP_KERNEL, 1, &memcg, false);
6644 if (ret)
6645 /* mem_cgroup_clear_mc() will do uncharge later */
6646 return ret;
6647 mc.precharge++;
6648 }
6649 return ret;
6650 }
6651
6652 /**
6653 * get_mctgt_type - get target type of moving charge
6654 * @vma: the vma the pte to be checked belongs
6655 * @addr: the address corresponding to the pte to be checked
6656 * @ptent: the pte to be checked
6657 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6658 *
6659 * Returns
6660 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6661 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6662 * move charge. if @target is not NULL, the page is stored in target->page
6663 * with extra refcnt got(Callers should handle it).
6664 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6665 * target for charge migration. if @target is not NULL, the entry is stored
6666 * in target->ent.
6667 *
6668 * Called with pte lock held.
6669 */
6670 union mc_target {
6671 struct page *page;
6672 swp_entry_t ent;
6673 };
6674
6675 enum mc_target_type {
6676 MC_TARGET_NONE = 0,
6677 MC_TARGET_PAGE,
6678 MC_TARGET_SWAP,
6679 };
6680
6681 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6682 unsigned long addr, pte_t ptent)
6683 {
6684 struct page *page = vm_normal_page(vma, addr, ptent);
6685
6686 if (!page || !page_mapped(page))
6687 return NULL;
6688 if (PageAnon(page)) {
6689 /* we don't move shared anon */
6690 if (!move_anon())
6691 return NULL;
6692 } else if (!move_file())
6693 /* we ignore mapcount for file pages */
6694 return NULL;
6695 if (!get_page_unless_zero(page))
6696 return NULL;
6697
6698 return page;
6699 }
6700
6701 #ifdef CONFIG_SWAP
6702 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6703 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6704 {
6705 struct page *page = NULL;
6706 swp_entry_t ent = pte_to_swp_entry(ptent);
6707
6708 if (!move_anon() || non_swap_entry(ent))
6709 return NULL;
6710 /*
6711 * Because lookup_swap_cache() updates some statistics counter,
6712 * we call find_get_page() with swapper_space directly.
6713 */
6714 page = find_get_page(swap_address_space(ent), ent.val);
6715 if (do_swap_account)
6716 entry->val = ent.val;
6717
6718 return page;
6719 }
6720 #else
6721 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6722 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6723 {
6724 return NULL;
6725 }
6726 #endif
6727
6728 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6729 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6730 {
6731 struct page *page = NULL;
6732 struct address_space *mapping;
6733 pgoff_t pgoff;
6734
6735 if (!vma->vm_file) /* anonymous vma */
6736 return NULL;
6737 if (!move_file())
6738 return NULL;
6739
6740 mapping = vma->vm_file->f_mapping;
6741 if (pte_none(ptent))
6742 pgoff = linear_page_index(vma, addr);
6743 else /* pte_file(ptent) is true */
6744 pgoff = pte_to_pgoff(ptent);
6745
6746 /* page is moved even if it's not RSS of this task(page-faulted). */
6747 page = find_get_page(mapping, pgoff);
6748
6749 #ifdef CONFIG_SWAP
6750 /* shmem/tmpfs may report page out on swap: account for that too. */
6751 if (radix_tree_exceptional_entry(page)) {
6752 swp_entry_t swap = radix_to_swp_entry(page);
6753 if (do_swap_account)
6754 *entry = swap;
6755 page = find_get_page(swap_address_space(swap), swap.val);
6756 }
6757 #endif
6758 return page;
6759 }
6760
6761 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6762 unsigned long addr, pte_t ptent, union mc_target *target)
6763 {
6764 struct page *page = NULL;
6765 struct page_cgroup *pc;
6766 enum mc_target_type ret = MC_TARGET_NONE;
6767 swp_entry_t ent = { .val = 0 };
6768
6769 if (pte_present(ptent))
6770 page = mc_handle_present_pte(vma, addr, ptent);
6771 else if (is_swap_pte(ptent))
6772 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6773 else if (pte_none(ptent) || pte_file(ptent))
6774 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6775
6776 if (!page && !ent.val)
6777 return ret;
6778 if (page) {
6779 pc = lookup_page_cgroup(page);
6780 /*
6781 * Do only loose check w/o page_cgroup lock.
6782 * mem_cgroup_move_account() checks the pc is valid or not under
6783 * the lock.
6784 */
6785 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6786 ret = MC_TARGET_PAGE;
6787 if (target)
6788 target->page = page;
6789 }
6790 if (!ret || !target)
6791 put_page(page);
6792 }
6793 /* There is a swap entry and a page doesn't exist or isn't charged */
6794 if (ent.val && !ret &&
6795 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6796 ret = MC_TARGET_SWAP;
6797 if (target)
6798 target->ent = ent;
6799 }
6800 return ret;
6801 }
6802
6803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6804 /*
6805 * We don't consider swapping or file mapped pages because THP does not
6806 * support them for now.
6807 * Caller should make sure that pmd_trans_huge(pmd) is true.
6808 */
6809 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6810 unsigned long addr, pmd_t pmd, union mc_target *target)
6811 {
6812 struct page *page = NULL;
6813 struct page_cgroup *pc;
6814 enum mc_target_type ret = MC_TARGET_NONE;
6815
6816 page = pmd_page(pmd);
6817 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6818 if (!move_anon())
6819 return ret;
6820 pc = lookup_page_cgroup(page);
6821 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6822 ret = MC_TARGET_PAGE;
6823 if (target) {
6824 get_page(page);
6825 target->page = page;
6826 }
6827 }
6828 return ret;
6829 }
6830 #else
6831 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6832 unsigned long addr, pmd_t pmd, union mc_target *target)
6833 {
6834 return MC_TARGET_NONE;
6835 }
6836 #endif
6837
6838 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6839 unsigned long addr, unsigned long end,
6840 struct mm_walk *walk)
6841 {
6842 struct vm_area_struct *vma = walk->private;
6843 pte_t *pte;
6844 spinlock_t *ptl;
6845
6846 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6847 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6848 mc.precharge += HPAGE_PMD_NR;
6849 spin_unlock(ptl);
6850 return 0;
6851 }
6852
6853 if (pmd_trans_unstable(pmd))
6854 return 0;
6855 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6856 for (; addr != end; pte++, addr += PAGE_SIZE)
6857 if (get_mctgt_type(vma, addr, *pte, NULL))
6858 mc.precharge++; /* increment precharge temporarily */
6859 pte_unmap_unlock(pte - 1, ptl);
6860 cond_resched();
6861
6862 return 0;
6863 }
6864
6865 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6866 {
6867 unsigned long precharge;
6868 struct vm_area_struct *vma;
6869
6870 down_read(&mm->mmap_sem);
6871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6872 struct mm_walk mem_cgroup_count_precharge_walk = {
6873 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6874 .mm = mm,
6875 .private = vma,
6876 };
6877 if (is_vm_hugetlb_page(vma))
6878 continue;
6879 walk_page_range(vma->vm_start, vma->vm_end,
6880 &mem_cgroup_count_precharge_walk);
6881 }
6882 up_read(&mm->mmap_sem);
6883
6884 precharge = mc.precharge;
6885 mc.precharge = 0;
6886
6887 return precharge;
6888 }
6889
6890 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6891 {
6892 unsigned long precharge = mem_cgroup_count_precharge(mm);
6893
6894 VM_BUG_ON(mc.moving_task);
6895 mc.moving_task = current;
6896 return mem_cgroup_do_precharge(precharge);
6897 }
6898
6899 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6900 static void __mem_cgroup_clear_mc(void)
6901 {
6902 struct mem_cgroup *from = mc.from;
6903 struct mem_cgroup *to = mc.to;
6904 int i;
6905
6906 /* we must uncharge all the leftover precharges from mc.to */
6907 if (mc.precharge) {
6908 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6909 mc.precharge = 0;
6910 }
6911 /*
6912 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6913 * we must uncharge here.
6914 */
6915 if (mc.moved_charge) {
6916 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6917 mc.moved_charge = 0;
6918 }
6919 /* we must fixup refcnts and charges */
6920 if (mc.moved_swap) {
6921 /* uncharge swap account from the old cgroup */
6922 if (!mem_cgroup_is_root(mc.from))
6923 res_counter_uncharge(&mc.from->memsw,
6924 PAGE_SIZE * mc.moved_swap);
6925
6926 for (i = 0; i < mc.moved_swap; i++)
6927 css_put(&mc.from->css);
6928
6929 if (!mem_cgroup_is_root(mc.to)) {
6930 /*
6931 * we charged both to->res and to->memsw, so we should
6932 * uncharge to->res.
6933 */
6934 res_counter_uncharge(&mc.to->res,
6935 PAGE_SIZE * mc.moved_swap);
6936 }
6937 /* we've already done css_get(mc.to) */
6938 mc.moved_swap = 0;
6939 }
6940 memcg_oom_recover(from);
6941 memcg_oom_recover(to);
6942 wake_up_all(&mc.waitq);
6943 }
6944
6945 static void mem_cgroup_clear_mc(void)
6946 {
6947 struct mem_cgroup *from = mc.from;
6948
6949 /*
6950 * we must clear moving_task before waking up waiters at the end of
6951 * task migration.
6952 */
6953 mc.moving_task = NULL;
6954 __mem_cgroup_clear_mc();
6955 spin_lock(&mc.lock);
6956 mc.from = NULL;
6957 mc.to = NULL;
6958 spin_unlock(&mc.lock);
6959 mem_cgroup_end_move(from);
6960 }
6961
6962 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6963 struct cgroup_taskset *tset)
6964 {
6965 struct task_struct *p = cgroup_taskset_first(tset);
6966 int ret = 0;
6967 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6968 unsigned long move_charge_at_immigrate;
6969
6970 /*
6971 * We are now commited to this value whatever it is. Changes in this
6972 * tunable will only affect upcoming migrations, not the current one.
6973 * So we need to save it, and keep it going.
6974 */
6975 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6976 if (move_charge_at_immigrate) {
6977 struct mm_struct *mm;
6978 struct mem_cgroup *from = mem_cgroup_from_task(p);
6979
6980 VM_BUG_ON(from == memcg);
6981
6982 mm = get_task_mm(p);
6983 if (!mm)
6984 return 0;
6985 /* We move charges only when we move a owner of the mm */
6986 if (mm->owner == p) {
6987 VM_BUG_ON(mc.from);
6988 VM_BUG_ON(mc.to);
6989 VM_BUG_ON(mc.precharge);
6990 VM_BUG_ON(mc.moved_charge);
6991 VM_BUG_ON(mc.moved_swap);
6992 mem_cgroup_start_move(from);
6993 spin_lock(&mc.lock);
6994 mc.from = from;
6995 mc.to = memcg;
6996 mc.immigrate_flags = move_charge_at_immigrate;
6997 spin_unlock(&mc.lock);
6998 /* We set mc.moving_task later */
6999
7000 ret = mem_cgroup_precharge_mc(mm);
7001 if (ret)
7002 mem_cgroup_clear_mc();
7003 }
7004 mmput(mm);
7005 }
7006 return ret;
7007 }
7008
7009 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7010 struct cgroup_taskset *tset)
7011 {
7012 mem_cgroup_clear_mc();
7013 }
7014
7015 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7016 unsigned long addr, unsigned long end,
7017 struct mm_walk *walk)
7018 {
7019 int ret = 0;
7020 struct vm_area_struct *vma = walk->private;
7021 pte_t *pte;
7022 spinlock_t *ptl;
7023 enum mc_target_type target_type;
7024 union mc_target target;
7025 struct page *page;
7026 struct page_cgroup *pc;
7027
7028 /*
7029 * We don't take compound_lock() here but no race with splitting thp
7030 * happens because:
7031 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7032 * under splitting, which means there's no concurrent thp split,
7033 * - if another thread runs into split_huge_page() just after we
7034 * entered this if-block, the thread must wait for page table lock
7035 * to be unlocked in __split_huge_page_splitting(), where the main
7036 * part of thp split is not executed yet.
7037 */
7038 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7039 if (mc.precharge < HPAGE_PMD_NR) {
7040 spin_unlock(ptl);
7041 return 0;
7042 }
7043 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7044 if (target_type == MC_TARGET_PAGE) {
7045 page = target.page;
7046 if (!isolate_lru_page(page)) {
7047 pc = lookup_page_cgroup(page);
7048 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7049 pc, mc.from, mc.to)) {
7050 mc.precharge -= HPAGE_PMD_NR;
7051 mc.moved_charge += HPAGE_PMD_NR;
7052 }
7053 putback_lru_page(page);
7054 }
7055 put_page(page);
7056 }
7057 spin_unlock(ptl);
7058 return 0;
7059 }
7060
7061 if (pmd_trans_unstable(pmd))
7062 return 0;
7063 retry:
7064 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7065 for (; addr != end; addr += PAGE_SIZE) {
7066 pte_t ptent = *(pte++);
7067 swp_entry_t ent;
7068
7069 if (!mc.precharge)
7070 break;
7071
7072 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7073 case MC_TARGET_PAGE:
7074 page = target.page;
7075 if (isolate_lru_page(page))
7076 goto put;
7077 pc = lookup_page_cgroup(page);
7078 if (!mem_cgroup_move_account(page, 1, pc,
7079 mc.from, mc.to)) {
7080 mc.precharge--;
7081 /* we uncharge from mc.from later. */
7082 mc.moved_charge++;
7083 }
7084 putback_lru_page(page);
7085 put: /* get_mctgt_type() gets the page */
7086 put_page(page);
7087 break;
7088 case MC_TARGET_SWAP:
7089 ent = target.ent;
7090 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7091 mc.precharge--;
7092 /* we fixup refcnts and charges later. */
7093 mc.moved_swap++;
7094 }
7095 break;
7096 default:
7097 break;
7098 }
7099 }
7100 pte_unmap_unlock(pte - 1, ptl);
7101 cond_resched();
7102
7103 if (addr != end) {
7104 /*
7105 * We have consumed all precharges we got in can_attach().
7106 * We try charge one by one, but don't do any additional
7107 * charges to mc.to if we have failed in charge once in attach()
7108 * phase.
7109 */
7110 ret = mem_cgroup_do_precharge(1);
7111 if (!ret)
7112 goto retry;
7113 }
7114
7115 return ret;
7116 }
7117
7118 static void mem_cgroup_move_charge(struct mm_struct *mm)
7119 {
7120 struct vm_area_struct *vma;
7121
7122 lru_add_drain_all();
7123 retry:
7124 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7125 /*
7126 * Someone who are holding the mmap_sem might be waiting in
7127 * waitq. So we cancel all extra charges, wake up all waiters,
7128 * and retry. Because we cancel precharges, we might not be able
7129 * to move enough charges, but moving charge is a best-effort
7130 * feature anyway, so it wouldn't be a big problem.
7131 */
7132 __mem_cgroup_clear_mc();
7133 cond_resched();
7134 goto retry;
7135 }
7136 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7137 int ret;
7138 struct mm_walk mem_cgroup_move_charge_walk = {
7139 .pmd_entry = mem_cgroup_move_charge_pte_range,
7140 .mm = mm,
7141 .private = vma,
7142 };
7143 if (is_vm_hugetlb_page(vma))
7144 continue;
7145 ret = walk_page_range(vma->vm_start, vma->vm_end,
7146 &mem_cgroup_move_charge_walk);
7147 if (ret)
7148 /*
7149 * means we have consumed all precharges and failed in
7150 * doing additional charge. Just abandon here.
7151 */
7152 break;
7153 }
7154 up_read(&mm->mmap_sem);
7155 }
7156
7157 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7158 struct cgroup_taskset *tset)
7159 {
7160 struct task_struct *p = cgroup_taskset_first(tset);
7161 struct mm_struct *mm = get_task_mm(p);
7162
7163 if (mm) {
7164 if (mc.to)
7165 mem_cgroup_move_charge(mm);
7166 mmput(mm);
7167 }
7168 if (mc.to)
7169 mem_cgroup_clear_mc();
7170 }
7171 #else /* !CONFIG_MMU */
7172 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7173 struct cgroup_taskset *tset)
7174 {
7175 return 0;
7176 }
7177 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7178 struct cgroup_taskset *tset)
7179 {
7180 }
7181 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7182 struct cgroup_taskset *tset)
7183 {
7184 }
7185 #endif
7186
7187 /*
7188 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7189 * to verify sane_behavior flag on each mount attempt.
7190 */
7191 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7192 {
7193 /*
7194 * use_hierarchy is forced with sane_behavior. cgroup core
7195 * guarantees that @root doesn't have any children, so turning it
7196 * on for the root memcg is enough.
7197 */
7198 if (cgroup_sane_behavior(root_css->cgroup))
7199 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7200 }
7201
7202 struct cgroup_subsys memory_cgrp_subsys = {
7203 .css_alloc = mem_cgroup_css_alloc,
7204 .css_online = mem_cgroup_css_online,
7205 .css_offline = mem_cgroup_css_offline,
7206 .css_free = mem_cgroup_css_free,
7207 .can_attach = mem_cgroup_can_attach,
7208 .cancel_attach = mem_cgroup_cancel_attach,
7209 .attach = mem_cgroup_move_task,
7210 .bind = mem_cgroup_bind,
7211 .base_cftypes = mem_cgroup_files,
7212 .early_init = 0,
7213 };
7214
7215 #ifdef CONFIG_MEMCG_SWAP
7216 static int __init enable_swap_account(char *s)
7217 {
7218 if (!strcmp(s, "1"))
7219 really_do_swap_account = 1;
7220 else if (!strcmp(s, "0"))
7221 really_do_swap_account = 0;
7222 return 1;
7223 }
7224 __setup("swapaccount=", enable_swap_account);
7225
7226 static void __init memsw_file_init(void)
7227 {
7228 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7229 }
7230
7231 static void __init enable_swap_cgroup(void)
7232 {
7233 if (!mem_cgroup_disabled() && really_do_swap_account) {
7234 do_swap_account = 1;
7235 memsw_file_init();
7236 }
7237 }
7238
7239 #else
7240 static void __init enable_swap_cgroup(void)
7241 {
7242 }
7243 #endif
7244
7245 /*
7246 * subsys_initcall() for memory controller.
7247 *
7248 * Some parts like hotcpu_notifier() have to be initialized from this context
7249 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7250 * everything that doesn't depend on a specific mem_cgroup structure should
7251 * be initialized from here.
7252 */
7253 static int __init mem_cgroup_init(void)
7254 {
7255 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7256 enable_swap_cgroup();
7257 mem_cgroup_soft_limit_tree_init();
7258 memcg_stock_init();
7259 return 0;
7260 }
7261 subsys_initcall(mem_cgroup_init);