]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
memcg: unify slab and other kmem pages charging
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
201 unsigned long flags;
202 unsigned long precharge;
203 unsigned long moved_charge;
204 unsigned long moved_swap;
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207 } mc = {
208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210 };
211
212 /*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
216 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
217 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
218
219 enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221 MEM_CGROUP_CHARGE_TYPE_ANON,
222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
224 NR_CHARGE_TYPE,
225 };
226
227 /* for encoding cft->private value on file */
228 enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
232 _KMEM,
233 };
234
235 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
237 #define MEMFILE_ATTR(val) ((val) & 0xffff)
238 /* Used for OOM nofiier */
239 #define OOM_CONTROL (0)
240
241 /*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246 static DEFINE_MUTEX(memcg_create_mutex);
247
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254 }
255
256 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 {
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 }
260
261 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 {
263 return (memcg == root_mem_cgroup);
264 }
265
266 /*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270 #define MEM_CGROUP_ID_MAX USHRT_MAX
271
272 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 {
274 return memcg->css.id;
275 }
276
277 /*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
283 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 {
285 struct cgroup_subsys_state *css;
286
287 css = css_from_id(id, &memory_cgrp_subsys);
288 return mem_cgroup_from_css(css);
289 }
290
291 /* Writing them here to avoid exposing memcg's inner layout */
292 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293
294 void sock_update_memcg(struct sock *sk)
295 {
296 if (mem_cgroup_sockets_enabled) {
297 struct mem_cgroup *memcg;
298 struct cg_proto *cg_proto;
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312 css_get(&sk->sk_cgrp->memcg->css);
313 return;
314 }
315
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320 css_tryget_online(&memcg->css)) {
321 sk->sk_cgrp = cg_proto;
322 }
323 rcu_read_unlock();
324 }
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327
328 void sock_release_memcg(struct sock *sk)
329 {
330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
334 css_put(&sk->sk_cgrp->memcg->css);
335 }
336 }
337
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
343 return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346
347 #endif
348
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
401 #endif /* CONFIG_MEMCG_KMEM */
402
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411
412 /**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443 }
444
445 /**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458 ino_t page_cgroup_ino(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471 }
472
473 static struct mem_cgroup_per_zone *
474 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 {
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
478
479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 }
481
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_node_zone(int nid, int zid)
484 {
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486 }
487
488 static struct mem_cgroup_tree_per_zone *
489 soft_limit_tree_from_page(struct page *page)
490 {
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495 }
496
497 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
499 unsigned long new_usage_in_excess)
500 {
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527 }
528
529 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
540 {
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
544 __mem_cgroup_remove_exceeded(mz, mctz);
545 spin_unlock_irqrestore(&mctz->lock, flags);
546 }
547
548 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 {
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558 }
559
560 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 {
562 unsigned long excess;
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
565
566 mctz = soft_limit_tree_from_page(page);
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572 mz = mem_cgroup_page_zoneinfo(memcg, page);
573 excess = soft_limit_excess(memcg);
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 /* if on-tree, remove it */
583 if (mz->on_tree)
584 __mem_cgroup_remove_exceeded(mz, mctz);
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
590 spin_unlock_irqrestore(&mctz->lock, flags);
591 }
592 }
593 }
594
595 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 {
597 struct mem_cgroup_tree_per_zone *mctz;
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
600
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
605 mem_cgroup_remove_exceeded(mz, mctz);
606 }
607 }
608 }
609
610 static struct mem_cgroup_per_zone *
611 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 {
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616 retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
628 __mem_cgroup_remove_exceeded(mz, mctz);
629 if (!soft_limit_excess(mz->memcg) ||
630 !css_tryget_online(&mz->memcg->css))
631 goto retry;
632 done:
633 return mz;
634 }
635
636 static struct mem_cgroup_per_zone *
637 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 {
639 struct mem_cgroup_per_zone *mz;
640
641 spin_lock_irq(&mctz->lock);
642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
643 spin_unlock_irq(&mctz->lock);
644 return mz;
645 }
646
647 /*
648 * Return page count for single (non recursive) @memcg.
649 *
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
655 * a periodic synchronization of counter in memcg's counter.
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
665 * common workload, threshold and synchronization as vmstat[] should be
666 * implemented.
667 */
668 static unsigned long
669 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670 {
671 long val = 0;
672 int cpu;
673
674 /* Per-cpu values can be negative, use a signed accumulator */
675 for_each_possible_cpu(cpu)
676 val += per_cpu(memcg->stat->count[idx], cpu);
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
683 return val;
684 }
685
686 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 enum mem_cgroup_events_index idx)
688 {
689 unsigned long val = 0;
690 int cpu;
691
692 for_each_possible_cpu(cpu)
693 val += per_cpu(memcg->stat->events[idx], cpu);
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 struct page *page,
699 int nr_pages)
700 {
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (PageAnon(page))
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719 else {
720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 nr_pages = -nr_pages; /* for event */
722 }
723
724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 }
726
727 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
730 {
731 unsigned long nr = 0;
732 int zid;
733
734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
735
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
748 }
749
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 unsigned int lru_mask)
752 {
753 unsigned long nr = 0;
754 int nid;
755
756 for_each_node_state(nid, N_MEMORY)
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
759 }
760
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
763 {
764 unsigned long val, next;
765
766 val = __this_cpu_read(memcg->stat->nr_page_events);
767 next = __this_cpu_read(memcg->stat->targets[target]);
768 /* from time_after() in jiffies.h */
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
785 }
786 return false;
787 }
788
789 /*
790 * Check events in order.
791 *
792 */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795 /* threshold event is triggered in finer grain than soft limit */
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
798 bool do_softlimit;
799 bool do_numainfo __maybe_unused;
800
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
803 #if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806 #endif
807 mem_cgroup_threshold(memcg);
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
810 #if MAX_NUMNODES > 1
811 if (unlikely(do_numainfo))
812 atomic_inc(&memcg->numainfo_events);
813 #endif
814 }
815 }
816
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818 {
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828 }
829 EXPORT_SYMBOL(mem_cgroup_from_task);
830
831 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832 {
833 struct mem_cgroup *memcg = NULL;
834
835 rcu_read_lock();
836 do {
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
843 memcg = root_mem_cgroup;
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
849 } while (!css_tryget_online(&memcg->css));
850 rcu_read_unlock();
851 return memcg;
852 }
853
854 /**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
871 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872 struct mem_cgroup *prev,
873 struct mem_cgroup_reclaim_cookie *reclaim)
874 {
875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876 struct cgroup_subsys_state *css = NULL;
877 struct mem_cgroup *memcg = NULL;
878 struct mem_cgroup *pos = NULL;
879
880 if (mem_cgroup_disabled())
881 return NULL;
882
883 if (!root)
884 root = root_mem_cgroup;
885
886 if (prev && !reclaim)
887 pos = prev;
888
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
891 goto out;
892 return root;
893 }
894
895 rcu_read_lock();
896
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
906 do {
907 pos = READ_ONCE(iter->position);
908 /*
909 * A racing update may change the position and
910 * put the last reference, hence css_tryget(),
911 * or retry to see the updated position.
912 */
913 } while (pos && !css_tryget(&pos->css));
914 }
915
916 if (pos)
917 css = &pos->css;
918
919 for (;;) {
920 css = css_next_descendant_pre(css, &root->css);
921 if (!css) {
922 /*
923 * Reclaimers share the hierarchy walk, and a
924 * new one might jump in right at the end of
925 * the hierarchy - make sure they see at least
926 * one group and restart from the beginning.
927 */
928 if (!prev)
929 continue;
930 break;
931 }
932
933 /*
934 * Verify the css and acquire a reference. The root
935 * is provided by the caller, so we know it's alive
936 * and kicking, and don't take an extra reference.
937 */
938 memcg = mem_cgroup_from_css(css);
939
940 if (css == &root->css)
941 break;
942
943 if (css_tryget(css)) {
944 /*
945 * Make sure the memcg is initialized:
946 * mem_cgroup_css_online() orders the the
947 * initialization against setting the flag.
948 */
949 if (smp_load_acquire(&memcg->initialized))
950 break;
951
952 css_put(css);
953 }
954
955 memcg = NULL;
956 }
957
958 if (reclaim) {
959 if (cmpxchg(&iter->position, pos, memcg) == pos) {
960 if (memcg)
961 css_get(&memcg->css);
962 if (pos)
963 css_put(&pos->css);
964 }
965
966 /*
967 * pairs with css_tryget when dereferencing iter->position
968 * above.
969 */
970 if (pos)
971 css_put(&pos->css);
972
973 if (!memcg)
974 iter->generation++;
975 else if (!prev)
976 reclaim->generation = iter->generation;
977 }
978
979 out_unlock:
980 rcu_read_unlock();
981 out:
982 if (prev && prev != root)
983 css_put(&prev->css);
984
985 return memcg;
986 }
987
988 /**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
995 {
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000 }
1001
1002 /*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1009 iter != NULL; \
1010 iter = mem_cgroup_iter(root, iter, NULL))
1011
1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1014 iter != NULL; \
1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1016
1017 /**
1018 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1019 * @zone: zone of the wanted lruvec
1020 * @memcg: memcg of the wanted lruvec
1021 *
1022 * Returns the lru list vector holding pages for the given @zone and
1023 * @mem. This can be the global zone lruvec, if the memory controller
1024 * is disabled.
1025 */
1026 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1027 struct mem_cgroup *memcg)
1028 {
1029 struct mem_cgroup_per_zone *mz;
1030 struct lruvec *lruvec;
1031
1032 if (mem_cgroup_disabled()) {
1033 lruvec = &zone->lruvec;
1034 goto out;
1035 }
1036
1037 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1038 lruvec = &mz->lruvec;
1039 out:
1040 /*
1041 * Since a node can be onlined after the mem_cgroup was created,
1042 * we have to be prepared to initialize lruvec->zone here;
1043 * and if offlined then reonlined, we need to reinitialize it.
1044 */
1045 if (unlikely(lruvec->zone != zone))
1046 lruvec->zone = zone;
1047 return lruvec;
1048 }
1049
1050 /**
1051 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1052 * @page: the page
1053 * @zone: zone of the page
1054 *
1055 * This function is only safe when following the LRU page isolation
1056 * and putback protocol: the LRU lock must be held, and the page must
1057 * either be PageLRU() or the caller must have isolated/allocated it.
1058 */
1059 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1060 {
1061 struct mem_cgroup_per_zone *mz;
1062 struct mem_cgroup *memcg;
1063 struct lruvec *lruvec;
1064
1065 if (mem_cgroup_disabled()) {
1066 lruvec = &zone->lruvec;
1067 goto out;
1068 }
1069
1070 memcg = page->mem_cgroup;
1071 /*
1072 * Swapcache readahead pages are added to the LRU - and
1073 * possibly migrated - before they are charged.
1074 */
1075 if (!memcg)
1076 memcg = root_mem_cgroup;
1077
1078 mz = mem_cgroup_page_zoneinfo(memcg, page);
1079 lruvec = &mz->lruvec;
1080 out:
1081 /*
1082 * Since a node can be onlined after the mem_cgroup was created,
1083 * we have to be prepared to initialize lruvec->zone here;
1084 * and if offlined then reonlined, we need to reinitialize it.
1085 */
1086 if (unlikely(lruvec->zone != zone))
1087 lruvec->zone = zone;
1088 return lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1093 * @lruvec: mem_cgroup per zone lru vector
1094 * @lru: index of lru list the page is sitting on
1095 * @nr_pages: positive when adding or negative when removing
1096 *
1097 * This function must be called when a page is added to or removed from an
1098 * lru list.
1099 */
1100 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1101 int nr_pages)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 unsigned long *lru_size;
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1110 lru_size = mz->lru_size + lru;
1111 *lru_size += nr_pages;
1112 VM_BUG_ON((long)(*lru_size) < 0);
1113 }
1114
1115 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1116 {
1117 struct mem_cgroup *task_memcg;
1118 struct task_struct *p;
1119 bool ret;
1120
1121 p = find_lock_task_mm(task);
1122 if (p) {
1123 task_memcg = get_mem_cgroup_from_mm(p->mm);
1124 task_unlock(p);
1125 } else {
1126 /*
1127 * All threads may have already detached their mm's, but the oom
1128 * killer still needs to detect if they have already been oom
1129 * killed to prevent needlessly killing additional tasks.
1130 */
1131 rcu_read_lock();
1132 task_memcg = mem_cgroup_from_task(task);
1133 css_get(&task_memcg->css);
1134 rcu_read_unlock();
1135 }
1136 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1137 css_put(&task_memcg->css);
1138 return ret;
1139 }
1140
1141 #define mem_cgroup_from_counter(counter, member) \
1142 container_of(counter, struct mem_cgroup, member)
1143
1144 /**
1145 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1146 * @memcg: the memory cgroup
1147 *
1148 * Returns the maximum amount of memory @mem can be charged with, in
1149 * pages.
1150 */
1151 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1152 {
1153 unsigned long margin = 0;
1154 unsigned long count;
1155 unsigned long limit;
1156
1157 count = page_counter_read(&memcg->memory);
1158 limit = READ_ONCE(memcg->memory.limit);
1159 if (count < limit)
1160 margin = limit - count;
1161
1162 if (do_swap_account) {
1163 count = page_counter_read(&memcg->memsw);
1164 limit = READ_ONCE(memcg->memsw.limit);
1165 if (count <= limit)
1166 margin = min(margin, limit - count);
1167 }
1168
1169 return margin;
1170 }
1171
1172 /*
1173 * A routine for checking "mem" is under move_account() or not.
1174 *
1175 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1176 * moving cgroups. This is for waiting at high-memory pressure
1177 * caused by "move".
1178 */
1179 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1180 {
1181 struct mem_cgroup *from;
1182 struct mem_cgroup *to;
1183 bool ret = false;
1184 /*
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 */
1188 spin_lock(&mc.lock);
1189 from = mc.from;
1190 to = mc.to;
1191 if (!from)
1192 goto unlock;
1193
1194 ret = mem_cgroup_is_descendant(from, memcg) ||
1195 mem_cgroup_is_descendant(to, memcg);
1196 unlock:
1197 spin_unlock(&mc.lock);
1198 return ret;
1199 }
1200
1201 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1202 {
1203 if (mc.moving_task && current != mc.moving_task) {
1204 if (mem_cgroup_under_move(memcg)) {
1205 DEFINE_WAIT(wait);
1206 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1207 /* moving charge context might have finished. */
1208 if (mc.moving_task)
1209 schedule();
1210 finish_wait(&mc.waitq, &wait);
1211 return true;
1212 }
1213 }
1214 return false;
1215 }
1216
1217 #define K(x) ((x) << (PAGE_SHIFT-10))
1218 /**
1219 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1222 *
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224 * enabled
1225 */
1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227 {
1228 /* oom_info_lock ensures that parallel ooms do not interleave */
1229 static DEFINE_MUTEX(oom_info_lock);
1230 struct mem_cgroup *iter;
1231 unsigned int i;
1232
1233 mutex_lock(&oom_info_lock);
1234 rcu_read_lock();
1235
1236 if (p) {
1237 pr_info("Task in ");
1238 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1239 pr_cont(" killed as a result of limit of ");
1240 } else {
1241 pr_info("Memory limit reached of cgroup ");
1242 }
1243
1244 pr_cont_cgroup_path(memcg->css.cgroup);
1245 pr_cont("\n");
1246
1247 rcu_read_unlock();
1248
1249 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1250 K((u64)page_counter_read(&memcg->memory)),
1251 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1252 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1253 K((u64)page_counter_read(&memcg->memsw)),
1254 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1255 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1256 K((u64)page_counter_read(&memcg->kmem)),
1257 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1258
1259 for_each_mem_cgroup_tree(iter, memcg) {
1260 pr_info("Memory cgroup stats for ");
1261 pr_cont_cgroup_path(iter->css.cgroup);
1262 pr_cont(":");
1263
1264 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1266 continue;
1267 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1268 K(mem_cgroup_read_stat(iter, i)));
1269 }
1270
1271 for (i = 0; i < NR_LRU_LISTS; i++)
1272 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1273 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1274
1275 pr_cont("\n");
1276 }
1277 mutex_unlock(&oom_info_lock);
1278 }
1279
1280 /*
1281 * This function returns the number of memcg under hierarchy tree. Returns
1282 * 1(self count) if no children.
1283 */
1284 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1285 {
1286 int num = 0;
1287 struct mem_cgroup *iter;
1288
1289 for_each_mem_cgroup_tree(iter, memcg)
1290 num++;
1291 return num;
1292 }
1293
1294 /*
1295 * Return the memory (and swap, if configured) limit for a memcg.
1296 */
1297 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1298 {
1299 unsigned long limit;
1300
1301 limit = memcg->memory.limit;
1302 if (mem_cgroup_swappiness(memcg)) {
1303 unsigned long memsw_limit;
1304
1305 memsw_limit = memcg->memsw.limit;
1306 limit = min(limit + total_swap_pages, memsw_limit);
1307 }
1308 return limit;
1309 }
1310
1311 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1312 int order)
1313 {
1314 struct oom_control oc = {
1315 .zonelist = NULL,
1316 .nodemask = NULL,
1317 .gfp_mask = gfp_mask,
1318 .order = order,
1319 };
1320 struct mem_cgroup *iter;
1321 unsigned long chosen_points = 0;
1322 unsigned long totalpages;
1323 unsigned int points = 0;
1324 struct task_struct *chosen = NULL;
1325
1326 mutex_lock(&oom_lock);
1327
1328 /*
1329 * If current has a pending SIGKILL or is exiting, then automatically
1330 * select it. The goal is to allow it to allocate so that it may
1331 * quickly exit and free its memory.
1332 */
1333 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1334 mark_oom_victim(current);
1335 goto unlock;
1336 }
1337
1338 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1339 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1340 for_each_mem_cgroup_tree(iter, memcg) {
1341 struct css_task_iter it;
1342 struct task_struct *task;
1343
1344 css_task_iter_start(&iter->css, &it);
1345 while ((task = css_task_iter_next(&it))) {
1346 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1347 case OOM_SCAN_SELECT:
1348 if (chosen)
1349 put_task_struct(chosen);
1350 chosen = task;
1351 chosen_points = ULONG_MAX;
1352 get_task_struct(chosen);
1353 /* fall through */
1354 case OOM_SCAN_CONTINUE:
1355 continue;
1356 case OOM_SCAN_ABORT:
1357 css_task_iter_end(&it);
1358 mem_cgroup_iter_break(memcg, iter);
1359 if (chosen)
1360 put_task_struct(chosen);
1361 goto unlock;
1362 case OOM_SCAN_OK:
1363 break;
1364 };
1365 points = oom_badness(task, memcg, NULL, totalpages);
1366 if (!points || points < chosen_points)
1367 continue;
1368 /* Prefer thread group leaders for display purposes */
1369 if (points == chosen_points &&
1370 thread_group_leader(chosen))
1371 continue;
1372
1373 if (chosen)
1374 put_task_struct(chosen);
1375 chosen = task;
1376 chosen_points = points;
1377 get_task_struct(chosen);
1378 }
1379 css_task_iter_end(&it);
1380 }
1381
1382 if (chosen) {
1383 points = chosen_points * 1000 / totalpages;
1384 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1385 "Memory cgroup out of memory");
1386 }
1387 unlock:
1388 mutex_unlock(&oom_lock);
1389 }
1390
1391 #if MAX_NUMNODES > 1
1392
1393 /**
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1405 {
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 return true;
1412 return false;
1413
1414 }
1415
1416 /*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 int nid;
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
1429 if (!atomic_read(&memcg->numainfo_events))
1430 return;
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 return;
1433
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1436
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1438
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1441 }
1442
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446
1447 /*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 int node;
1462
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1465
1466 node = next_node(node, memcg->scan_nodes);
1467 if (node == MAX_NUMNODES)
1468 node = first_node(memcg->scan_nodes);
1469 /*
1470 * We call this when we hit limit, not when pages are added to LRU.
1471 * No LRU may hold pages because all pages are UNEVICTABLE or
1472 * memcg is too small and all pages are not on LRU. In that case,
1473 * we use curret node.
1474 */
1475 if (unlikely(node == MAX_NUMNODES))
1476 node = numa_node_id();
1477
1478 memcg->last_scanned_node = node;
1479 return node;
1480 }
1481 #else
1482 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1483 {
1484 return 0;
1485 }
1486 #endif
1487
1488 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1489 struct zone *zone,
1490 gfp_t gfp_mask,
1491 unsigned long *total_scanned)
1492 {
1493 struct mem_cgroup *victim = NULL;
1494 int total = 0;
1495 int loop = 0;
1496 unsigned long excess;
1497 unsigned long nr_scanned;
1498 struct mem_cgroup_reclaim_cookie reclaim = {
1499 .zone = zone,
1500 .priority = 0,
1501 };
1502
1503 excess = soft_limit_excess(root_memcg);
1504
1505 while (1) {
1506 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1507 if (!victim) {
1508 loop++;
1509 if (loop >= 2) {
1510 /*
1511 * If we have not been able to reclaim
1512 * anything, it might because there are
1513 * no reclaimable pages under this hierarchy
1514 */
1515 if (!total)
1516 break;
1517 /*
1518 * We want to do more targeted reclaim.
1519 * excess >> 2 is not to excessive so as to
1520 * reclaim too much, nor too less that we keep
1521 * coming back to reclaim from this cgroup
1522 */
1523 if (total >= (excess >> 2) ||
1524 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1525 break;
1526 }
1527 continue;
1528 }
1529 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1530 zone, &nr_scanned);
1531 *total_scanned += nr_scanned;
1532 if (!soft_limit_excess(root_memcg))
1533 break;
1534 }
1535 mem_cgroup_iter_break(root_memcg, victim);
1536 return total;
1537 }
1538
1539 #ifdef CONFIG_LOCKDEP
1540 static struct lockdep_map memcg_oom_lock_dep_map = {
1541 .name = "memcg_oom_lock",
1542 };
1543 #endif
1544
1545 static DEFINE_SPINLOCK(memcg_oom_lock);
1546
1547 /*
1548 * Check OOM-Killer is already running under our hierarchy.
1549 * If someone is running, return false.
1550 */
1551 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1552 {
1553 struct mem_cgroup *iter, *failed = NULL;
1554
1555 spin_lock(&memcg_oom_lock);
1556
1557 for_each_mem_cgroup_tree(iter, memcg) {
1558 if (iter->oom_lock) {
1559 /*
1560 * this subtree of our hierarchy is already locked
1561 * so we cannot give a lock.
1562 */
1563 failed = iter;
1564 mem_cgroup_iter_break(memcg, iter);
1565 break;
1566 } else
1567 iter->oom_lock = true;
1568 }
1569
1570 if (failed) {
1571 /*
1572 * OK, we failed to lock the whole subtree so we have
1573 * to clean up what we set up to the failing subtree
1574 */
1575 for_each_mem_cgroup_tree(iter, memcg) {
1576 if (iter == failed) {
1577 mem_cgroup_iter_break(memcg, iter);
1578 break;
1579 }
1580 iter->oom_lock = false;
1581 }
1582 } else
1583 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1584
1585 spin_unlock(&memcg_oom_lock);
1586
1587 return !failed;
1588 }
1589
1590 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1591 {
1592 struct mem_cgroup *iter;
1593
1594 spin_lock(&memcg_oom_lock);
1595 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1596 for_each_mem_cgroup_tree(iter, memcg)
1597 iter->oom_lock = false;
1598 spin_unlock(&memcg_oom_lock);
1599 }
1600
1601 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1602 {
1603 struct mem_cgroup *iter;
1604
1605 spin_lock(&memcg_oom_lock);
1606 for_each_mem_cgroup_tree(iter, memcg)
1607 iter->under_oom++;
1608 spin_unlock(&memcg_oom_lock);
1609 }
1610
1611 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1612 {
1613 struct mem_cgroup *iter;
1614
1615 /*
1616 * When a new child is created while the hierarchy is under oom,
1617 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1618 */
1619 spin_lock(&memcg_oom_lock);
1620 for_each_mem_cgroup_tree(iter, memcg)
1621 if (iter->under_oom > 0)
1622 iter->under_oom--;
1623 spin_unlock(&memcg_oom_lock);
1624 }
1625
1626 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1627
1628 struct oom_wait_info {
1629 struct mem_cgroup *memcg;
1630 wait_queue_t wait;
1631 };
1632
1633 static int memcg_oom_wake_function(wait_queue_t *wait,
1634 unsigned mode, int sync, void *arg)
1635 {
1636 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1637 struct mem_cgroup *oom_wait_memcg;
1638 struct oom_wait_info *oom_wait_info;
1639
1640 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1641 oom_wait_memcg = oom_wait_info->memcg;
1642
1643 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1644 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1645 return 0;
1646 return autoremove_wake_function(wait, mode, sync, arg);
1647 }
1648
1649 static void memcg_oom_recover(struct mem_cgroup *memcg)
1650 {
1651 /*
1652 * For the following lockless ->under_oom test, the only required
1653 * guarantee is that it must see the state asserted by an OOM when
1654 * this function is called as a result of userland actions
1655 * triggered by the notification of the OOM. This is trivially
1656 * achieved by invoking mem_cgroup_mark_under_oom() before
1657 * triggering notification.
1658 */
1659 if (memcg && memcg->under_oom)
1660 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1661 }
1662
1663 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664 {
1665 if (!current->memcg_may_oom)
1666 return;
1667 /*
1668 * We are in the middle of the charge context here, so we
1669 * don't want to block when potentially sitting on a callstack
1670 * that holds all kinds of filesystem and mm locks.
1671 *
1672 * Also, the caller may handle a failed allocation gracefully
1673 * (like optional page cache readahead) and so an OOM killer
1674 * invocation might not even be necessary.
1675 *
1676 * That's why we don't do anything here except remember the
1677 * OOM context and then deal with it at the end of the page
1678 * fault when the stack is unwound, the locks are released,
1679 * and when we know whether the fault was overall successful.
1680 */
1681 css_get(&memcg->css);
1682 current->memcg_in_oom = memcg;
1683 current->memcg_oom_gfp_mask = mask;
1684 current->memcg_oom_order = order;
1685 }
1686
1687 /**
1688 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1689 * @handle: actually kill/wait or just clean up the OOM state
1690 *
1691 * This has to be called at the end of a page fault if the memcg OOM
1692 * handler was enabled.
1693 *
1694 * Memcg supports userspace OOM handling where failed allocations must
1695 * sleep on a waitqueue until the userspace task resolves the
1696 * situation. Sleeping directly in the charge context with all kinds
1697 * of locks held is not a good idea, instead we remember an OOM state
1698 * in the task and mem_cgroup_oom_synchronize() has to be called at
1699 * the end of the page fault to complete the OOM handling.
1700 *
1701 * Returns %true if an ongoing memcg OOM situation was detected and
1702 * completed, %false otherwise.
1703 */
1704 bool mem_cgroup_oom_synchronize(bool handle)
1705 {
1706 struct mem_cgroup *memcg = current->memcg_in_oom;
1707 struct oom_wait_info owait;
1708 bool locked;
1709
1710 /* OOM is global, do not handle */
1711 if (!memcg)
1712 return false;
1713
1714 if (!handle || oom_killer_disabled)
1715 goto cleanup;
1716
1717 owait.memcg = memcg;
1718 owait.wait.flags = 0;
1719 owait.wait.func = memcg_oom_wake_function;
1720 owait.wait.private = current;
1721 INIT_LIST_HEAD(&owait.wait.task_list);
1722
1723 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1724 mem_cgroup_mark_under_oom(memcg);
1725
1726 locked = mem_cgroup_oom_trylock(memcg);
1727
1728 if (locked)
1729 mem_cgroup_oom_notify(memcg);
1730
1731 if (locked && !memcg->oom_kill_disable) {
1732 mem_cgroup_unmark_under_oom(memcg);
1733 finish_wait(&memcg_oom_waitq, &owait.wait);
1734 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1735 current->memcg_oom_order);
1736 } else {
1737 schedule();
1738 mem_cgroup_unmark_under_oom(memcg);
1739 finish_wait(&memcg_oom_waitq, &owait.wait);
1740 }
1741
1742 if (locked) {
1743 mem_cgroup_oom_unlock(memcg);
1744 /*
1745 * There is no guarantee that an OOM-lock contender
1746 * sees the wakeups triggered by the OOM kill
1747 * uncharges. Wake any sleepers explicitely.
1748 */
1749 memcg_oom_recover(memcg);
1750 }
1751 cleanup:
1752 current->memcg_in_oom = NULL;
1753 css_put(&memcg->css);
1754 return true;
1755 }
1756
1757 /**
1758 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1759 * @page: page that is going to change accounted state
1760 *
1761 * This function must mark the beginning of an accounted page state
1762 * change to prevent double accounting when the page is concurrently
1763 * being moved to another memcg:
1764 *
1765 * memcg = mem_cgroup_begin_page_stat(page);
1766 * if (TestClearPageState(page))
1767 * mem_cgroup_update_page_stat(memcg, state, -1);
1768 * mem_cgroup_end_page_stat(memcg);
1769 */
1770 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1771 {
1772 struct mem_cgroup *memcg;
1773 unsigned long flags;
1774
1775 /*
1776 * The RCU lock is held throughout the transaction. The fast
1777 * path can get away without acquiring the memcg->move_lock
1778 * because page moving starts with an RCU grace period.
1779 *
1780 * The RCU lock also protects the memcg from being freed when
1781 * the page state that is going to change is the only thing
1782 * preventing the page from being uncharged.
1783 * E.g. end-writeback clearing PageWriteback(), which allows
1784 * migration to go ahead and uncharge the page before the
1785 * account transaction might be complete.
1786 */
1787 rcu_read_lock();
1788
1789 if (mem_cgroup_disabled())
1790 return NULL;
1791 again:
1792 memcg = page->mem_cgroup;
1793 if (unlikely(!memcg))
1794 return NULL;
1795
1796 if (atomic_read(&memcg->moving_account) <= 0)
1797 return memcg;
1798
1799 spin_lock_irqsave(&memcg->move_lock, flags);
1800 if (memcg != page->mem_cgroup) {
1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 goto again;
1803 }
1804
1805 /*
1806 * When charge migration first begins, we can have locked and
1807 * unlocked page stat updates happening concurrently. Track
1808 * the task who has the lock for mem_cgroup_end_page_stat().
1809 */
1810 memcg->move_lock_task = current;
1811 memcg->move_lock_flags = flags;
1812
1813 return memcg;
1814 }
1815 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1816
1817 /**
1818 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1819 * @memcg: the memcg that was accounted against
1820 */
1821 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1822 {
1823 if (memcg && memcg->move_lock_task == current) {
1824 unsigned long flags = memcg->move_lock_flags;
1825
1826 memcg->move_lock_task = NULL;
1827 memcg->move_lock_flags = 0;
1828
1829 spin_unlock_irqrestore(&memcg->move_lock, flags);
1830 }
1831
1832 rcu_read_unlock();
1833 }
1834 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1835
1836 /*
1837 * size of first charge trial. "32" comes from vmscan.c's magic value.
1838 * TODO: maybe necessary to use big numbers in big irons.
1839 */
1840 #define CHARGE_BATCH 32U
1841 struct memcg_stock_pcp {
1842 struct mem_cgroup *cached; /* this never be root cgroup */
1843 unsigned int nr_pages;
1844 struct work_struct work;
1845 unsigned long flags;
1846 #define FLUSHING_CACHED_CHARGE 0
1847 };
1848 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1849 static DEFINE_MUTEX(percpu_charge_mutex);
1850
1851 /**
1852 * consume_stock: Try to consume stocked charge on this cpu.
1853 * @memcg: memcg to consume from.
1854 * @nr_pages: how many pages to charge.
1855 *
1856 * The charges will only happen if @memcg matches the current cpu's memcg
1857 * stock, and at least @nr_pages are available in that stock. Failure to
1858 * service an allocation will refill the stock.
1859 *
1860 * returns true if successful, false otherwise.
1861 */
1862 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 {
1864 struct memcg_stock_pcp *stock;
1865 bool ret = false;
1866
1867 if (nr_pages > CHARGE_BATCH)
1868 return ret;
1869
1870 stock = &get_cpu_var(memcg_stock);
1871 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1872 stock->nr_pages -= nr_pages;
1873 ret = true;
1874 }
1875 put_cpu_var(memcg_stock);
1876 return ret;
1877 }
1878
1879 /*
1880 * Returns stocks cached in percpu and reset cached information.
1881 */
1882 static void drain_stock(struct memcg_stock_pcp *stock)
1883 {
1884 struct mem_cgroup *old = stock->cached;
1885
1886 if (stock->nr_pages) {
1887 page_counter_uncharge(&old->memory, stock->nr_pages);
1888 if (do_swap_account)
1889 page_counter_uncharge(&old->memsw, stock->nr_pages);
1890 css_put_many(&old->css, stock->nr_pages);
1891 stock->nr_pages = 0;
1892 }
1893 stock->cached = NULL;
1894 }
1895
1896 /*
1897 * This must be called under preempt disabled or must be called by
1898 * a thread which is pinned to local cpu.
1899 */
1900 static void drain_local_stock(struct work_struct *dummy)
1901 {
1902 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1903 drain_stock(stock);
1904 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1905 }
1906
1907 /*
1908 * Cache charges(val) to local per_cpu area.
1909 * This will be consumed by consume_stock() function, later.
1910 */
1911 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1912 {
1913 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1914
1915 if (stock->cached != memcg) { /* reset if necessary */
1916 drain_stock(stock);
1917 stock->cached = memcg;
1918 }
1919 stock->nr_pages += nr_pages;
1920 put_cpu_var(memcg_stock);
1921 }
1922
1923 /*
1924 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1925 * of the hierarchy under it.
1926 */
1927 static void drain_all_stock(struct mem_cgroup *root_memcg)
1928 {
1929 int cpu, curcpu;
1930
1931 /* If someone's already draining, avoid adding running more workers. */
1932 if (!mutex_trylock(&percpu_charge_mutex))
1933 return;
1934 /* Notify other cpus that system-wide "drain" is running */
1935 get_online_cpus();
1936 curcpu = get_cpu();
1937 for_each_online_cpu(cpu) {
1938 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1939 struct mem_cgroup *memcg;
1940
1941 memcg = stock->cached;
1942 if (!memcg || !stock->nr_pages)
1943 continue;
1944 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1945 continue;
1946 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1947 if (cpu == curcpu)
1948 drain_local_stock(&stock->work);
1949 else
1950 schedule_work_on(cpu, &stock->work);
1951 }
1952 }
1953 put_cpu();
1954 put_online_cpus();
1955 mutex_unlock(&percpu_charge_mutex);
1956 }
1957
1958 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1959 unsigned long action,
1960 void *hcpu)
1961 {
1962 int cpu = (unsigned long)hcpu;
1963 struct memcg_stock_pcp *stock;
1964
1965 if (action == CPU_ONLINE)
1966 return NOTIFY_OK;
1967
1968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1969 return NOTIFY_OK;
1970
1971 stock = &per_cpu(memcg_stock, cpu);
1972 drain_stock(stock);
1973 return NOTIFY_OK;
1974 }
1975
1976 /*
1977 * Scheduled by try_charge() to be executed from the userland return path
1978 * and reclaims memory over the high limit.
1979 */
1980 void mem_cgroup_handle_over_high(void)
1981 {
1982 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1983 struct mem_cgroup *memcg, *pos;
1984
1985 if (likely(!nr_pages))
1986 return;
1987
1988 pos = memcg = get_mem_cgroup_from_mm(current->mm);
1989
1990 do {
1991 if (page_counter_read(&pos->memory) <= pos->high)
1992 continue;
1993 mem_cgroup_events(pos, MEMCG_HIGH, 1);
1994 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1995 } while ((pos = parent_mem_cgroup(pos)));
1996
1997 css_put(&memcg->css);
1998 current->memcg_nr_pages_over_high = 0;
1999 }
2000
2001 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2002 unsigned int nr_pages)
2003 {
2004 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2005 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2006 struct mem_cgroup *mem_over_limit;
2007 struct page_counter *counter;
2008 unsigned long nr_reclaimed;
2009 bool may_swap = true;
2010 bool drained = false;
2011
2012 if (mem_cgroup_is_root(memcg))
2013 return 0;
2014 retry:
2015 if (consume_stock(memcg, nr_pages))
2016 return 0;
2017
2018 if (!do_swap_account ||
2019 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2020 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2021 goto done_restock;
2022 if (do_swap_account)
2023 page_counter_uncharge(&memcg->memsw, batch);
2024 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2025 } else {
2026 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2027 may_swap = false;
2028 }
2029
2030 if (batch > nr_pages) {
2031 batch = nr_pages;
2032 goto retry;
2033 }
2034
2035 /*
2036 * Unlike in global OOM situations, memcg is not in a physical
2037 * memory shortage. Allow dying and OOM-killed tasks to
2038 * bypass the last charges so that they can exit quickly and
2039 * free their memory.
2040 */
2041 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2042 fatal_signal_pending(current) ||
2043 current->flags & PF_EXITING))
2044 goto force;
2045
2046 if (unlikely(task_in_memcg_oom(current)))
2047 goto nomem;
2048
2049 if (!(gfp_mask & __GFP_WAIT))
2050 goto nomem;
2051
2052 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2053
2054 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2055 gfp_mask, may_swap);
2056
2057 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2058 goto retry;
2059
2060 if (!drained) {
2061 drain_all_stock(mem_over_limit);
2062 drained = true;
2063 goto retry;
2064 }
2065
2066 if (gfp_mask & __GFP_NORETRY)
2067 goto nomem;
2068 /*
2069 * Even though the limit is exceeded at this point, reclaim
2070 * may have been able to free some pages. Retry the charge
2071 * before killing the task.
2072 *
2073 * Only for regular pages, though: huge pages are rather
2074 * unlikely to succeed so close to the limit, and we fall back
2075 * to regular pages anyway in case of failure.
2076 */
2077 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2078 goto retry;
2079 /*
2080 * At task move, charge accounts can be doubly counted. So, it's
2081 * better to wait until the end of task_move if something is going on.
2082 */
2083 if (mem_cgroup_wait_acct_move(mem_over_limit))
2084 goto retry;
2085
2086 if (nr_retries--)
2087 goto retry;
2088
2089 if (gfp_mask & __GFP_NOFAIL)
2090 goto force;
2091
2092 if (fatal_signal_pending(current))
2093 goto force;
2094
2095 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2096
2097 mem_cgroup_oom(mem_over_limit, gfp_mask,
2098 get_order(nr_pages * PAGE_SIZE));
2099 nomem:
2100 if (!(gfp_mask & __GFP_NOFAIL))
2101 return -ENOMEM;
2102 force:
2103 /*
2104 * The allocation either can't fail or will lead to more memory
2105 * being freed very soon. Allow memory usage go over the limit
2106 * temporarily by force charging it.
2107 */
2108 page_counter_charge(&memcg->memory, nr_pages);
2109 if (do_swap_account)
2110 page_counter_charge(&memcg->memsw, nr_pages);
2111 css_get_many(&memcg->css, nr_pages);
2112
2113 return 0;
2114
2115 done_restock:
2116 css_get_many(&memcg->css, batch);
2117 if (batch > nr_pages)
2118 refill_stock(memcg, batch - nr_pages);
2119
2120 /*
2121 * If the hierarchy is above the normal consumption range, schedule
2122 * reclaim on returning to userland. We can perform reclaim here
2123 * if __GFP_WAIT but let's always punt for simplicity and so that
2124 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2125 * not recorded as it most likely matches current's and won't
2126 * change in the meantime. As high limit is checked again before
2127 * reclaim, the cost of mismatch is negligible.
2128 */
2129 do {
2130 if (page_counter_read(&memcg->memory) > memcg->high) {
2131 current->memcg_nr_pages_over_high += nr_pages;
2132 set_notify_resume(current);
2133 break;
2134 }
2135 } while ((memcg = parent_mem_cgroup(memcg)));
2136
2137 return 0;
2138 }
2139
2140 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2141 {
2142 if (mem_cgroup_is_root(memcg))
2143 return;
2144
2145 page_counter_uncharge(&memcg->memory, nr_pages);
2146 if (do_swap_account)
2147 page_counter_uncharge(&memcg->memsw, nr_pages);
2148
2149 css_put_many(&memcg->css, nr_pages);
2150 }
2151
2152 static void lock_page_lru(struct page *page, int *isolated)
2153 {
2154 struct zone *zone = page_zone(page);
2155
2156 spin_lock_irq(&zone->lru_lock);
2157 if (PageLRU(page)) {
2158 struct lruvec *lruvec;
2159
2160 lruvec = mem_cgroup_page_lruvec(page, zone);
2161 ClearPageLRU(page);
2162 del_page_from_lru_list(page, lruvec, page_lru(page));
2163 *isolated = 1;
2164 } else
2165 *isolated = 0;
2166 }
2167
2168 static void unlock_page_lru(struct page *page, int isolated)
2169 {
2170 struct zone *zone = page_zone(page);
2171
2172 if (isolated) {
2173 struct lruvec *lruvec;
2174
2175 lruvec = mem_cgroup_page_lruvec(page, zone);
2176 VM_BUG_ON_PAGE(PageLRU(page), page);
2177 SetPageLRU(page);
2178 add_page_to_lru_list(page, lruvec, page_lru(page));
2179 }
2180 spin_unlock_irq(&zone->lru_lock);
2181 }
2182
2183 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2184 bool lrucare)
2185 {
2186 int isolated;
2187
2188 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2189
2190 /*
2191 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2192 * may already be on some other mem_cgroup's LRU. Take care of it.
2193 */
2194 if (lrucare)
2195 lock_page_lru(page, &isolated);
2196
2197 /*
2198 * Nobody should be changing or seriously looking at
2199 * page->mem_cgroup at this point:
2200 *
2201 * - the page is uncharged
2202 *
2203 * - the page is off-LRU
2204 *
2205 * - an anonymous fault has exclusive page access, except for
2206 * a locked page table
2207 *
2208 * - a page cache insertion, a swapin fault, or a migration
2209 * have the page locked
2210 */
2211 page->mem_cgroup = memcg;
2212
2213 if (lrucare)
2214 unlock_page_lru(page, isolated);
2215 }
2216
2217 #ifdef CONFIG_MEMCG_KMEM
2218 static int memcg_alloc_cache_id(void)
2219 {
2220 int id, size;
2221 int err;
2222
2223 id = ida_simple_get(&memcg_cache_ida,
2224 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2225 if (id < 0)
2226 return id;
2227
2228 if (id < memcg_nr_cache_ids)
2229 return id;
2230
2231 /*
2232 * There's no space for the new id in memcg_caches arrays,
2233 * so we have to grow them.
2234 */
2235 down_write(&memcg_cache_ids_sem);
2236
2237 size = 2 * (id + 1);
2238 if (size < MEMCG_CACHES_MIN_SIZE)
2239 size = MEMCG_CACHES_MIN_SIZE;
2240 else if (size > MEMCG_CACHES_MAX_SIZE)
2241 size = MEMCG_CACHES_MAX_SIZE;
2242
2243 err = memcg_update_all_caches(size);
2244 if (!err)
2245 err = memcg_update_all_list_lrus(size);
2246 if (!err)
2247 memcg_nr_cache_ids = size;
2248
2249 up_write(&memcg_cache_ids_sem);
2250
2251 if (err) {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 return err;
2254 }
2255 return id;
2256 }
2257
2258 static void memcg_free_cache_id(int id)
2259 {
2260 ida_simple_remove(&memcg_cache_ida, id);
2261 }
2262
2263 struct memcg_kmem_cache_create_work {
2264 struct mem_cgroup *memcg;
2265 struct kmem_cache *cachep;
2266 struct work_struct work;
2267 };
2268
2269 static void memcg_kmem_cache_create_func(struct work_struct *w)
2270 {
2271 struct memcg_kmem_cache_create_work *cw =
2272 container_of(w, struct memcg_kmem_cache_create_work, work);
2273 struct mem_cgroup *memcg = cw->memcg;
2274 struct kmem_cache *cachep = cw->cachep;
2275
2276 memcg_create_kmem_cache(memcg, cachep);
2277
2278 css_put(&memcg->css);
2279 kfree(cw);
2280 }
2281
2282 /*
2283 * Enqueue the creation of a per-memcg kmem_cache.
2284 */
2285 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2286 struct kmem_cache *cachep)
2287 {
2288 struct memcg_kmem_cache_create_work *cw;
2289
2290 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2291 if (!cw)
2292 return;
2293
2294 css_get(&memcg->css);
2295
2296 cw->memcg = memcg;
2297 cw->cachep = cachep;
2298 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2299
2300 schedule_work(&cw->work);
2301 }
2302
2303 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2304 struct kmem_cache *cachep)
2305 {
2306 /*
2307 * We need to stop accounting when we kmalloc, because if the
2308 * corresponding kmalloc cache is not yet created, the first allocation
2309 * in __memcg_schedule_kmem_cache_create will recurse.
2310 *
2311 * However, it is better to enclose the whole function. Depending on
2312 * the debugging options enabled, INIT_WORK(), for instance, can
2313 * trigger an allocation. This too, will make us recurse. Because at
2314 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2315 * the safest choice is to do it like this, wrapping the whole function.
2316 */
2317 current->memcg_kmem_skip_account = 1;
2318 __memcg_schedule_kmem_cache_create(memcg, cachep);
2319 current->memcg_kmem_skip_account = 0;
2320 }
2321
2322 /*
2323 * Return the kmem_cache we're supposed to use for a slab allocation.
2324 * We try to use the current memcg's version of the cache.
2325 *
2326 * If the cache does not exist yet, if we are the first user of it,
2327 * we either create it immediately, if possible, or create it asynchronously
2328 * in a workqueue.
2329 * In the latter case, we will let the current allocation go through with
2330 * the original cache.
2331 *
2332 * Can't be called in interrupt context or from kernel threads.
2333 * This function needs to be called with rcu_read_lock() held.
2334 */
2335 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2336 {
2337 struct mem_cgroup *memcg;
2338 struct kmem_cache *memcg_cachep;
2339 int kmemcg_id;
2340
2341 VM_BUG_ON(!is_root_cache(cachep));
2342
2343 if (current->memcg_kmem_skip_account)
2344 return cachep;
2345
2346 memcg = get_mem_cgroup_from_mm(current->mm);
2347 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2348 if (kmemcg_id < 0)
2349 goto out;
2350
2351 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2352 if (likely(memcg_cachep))
2353 return memcg_cachep;
2354
2355 /*
2356 * If we are in a safe context (can wait, and not in interrupt
2357 * context), we could be be predictable and return right away.
2358 * This would guarantee that the allocation being performed
2359 * already belongs in the new cache.
2360 *
2361 * However, there are some clashes that can arrive from locking.
2362 * For instance, because we acquire the slab_mutex while doing
2363 * memcg_create_kmem_cache, this means no further allocation
2364 * could happen with the slab_mutex held. So it's better to
2365 * defer everything.
2366 */
2367 memcg_schedule_kmem_cache_create(memcg, cachep);
2368 out:
2369 css_put(&memcg->css);
2370 return cachep;
2371 }
2372
2373 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2374 {
2375 if (!is_root_cache(cachep))
2376 css_put(&cachep->memcg_params.memcg->css);
2377 }
2378
2379 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2380 struct mem_cgroup *memcg)
2381 {
2382 unsigned int nr_pages = 1 << order;
2383 struct page_counter *counter;
2384 int ret = 0;
2385
2386 if (!memcg_kmem_is_active(memcg))
2387 return 0;
2388
2389 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2390 if (ret)
2391 return ret;
2392
2393 ret = try_charge(memcg, gfp, nr_pages);
2394 if (ret) {
2395 page_counter_uncharge(&memcg->kmem, nr_pages);
2396 return ret;
2397 }
2398
2399 page->mem_cgroup = memcg;
2400
2401 return 0;
2402 }
2403
2404 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2405 {
2406 struct mem_cgroup *memcg;
2407 int ret;
2408
2409 memcg = get_mem_cgroup_from_mm(current->mm);
2410 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2411 css_put(&memcg->css);
2412 return ret;
2413 }
2414
2415 void __memcg_kmem_uncharge(struct page *page, int order)
2416 {
2417 struct mem_cgroup *memcg = page->mem_cgroup;
2418 unsigned int nr_pages = 1 << order;
2419
2420 if (!memcg)
2421 return;
2422
2423 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2424
2425 page_counter_uncharge(&memcg->kmem, nr_pages);
2426 page_counter_uncharge(&memcg->memory, nr_pages);
2427 if (do_swap_account)
2428 page_counter_uncharge(&memcg->memsw, nr_pages);
2429
2430 page->mem_cgroup = NULL;
2431 css_put_many(&memcg->css, nr_pages);
2432 }
2433
2434 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2435 {
2436 struct mem_cgroup *memcg = NULL;
2437 struct kmem_cache *cachep;
2438 struct page *page;
2439
2440 page = virt_to_head_page(ptr);
2441 if (PageSlab(page)) {
2442 cachep = page->slab_cache;
2443 if (!is_root_cache(cachep))
2444 memcg = cachep->memcg_params.memcg;
2445 } else
2446 /* page allocated by alloc_kmem_pages */
2447 memcg = page->mem_cgroup;
2448
2449 return memcg;
2450 }
2451 #endif /* CONFIG_MEMCG_KMEM */
2452
2453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2454
2455 /*
2456 * Because tail pages are not marked as "used", set it. We're under
2457 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2458 * charge/uncharge will be never happen and move_account() is done under
2459 * compound_lock(), so we don't have to take care of races.
2460 */
2461 void mem_cgroup_split_huge_fixup(struct page *head)
2462 {
2463 int i;
2464
2465 if (mem_cgroup_disabled())
2466 return;
2467
2468 for (i = 1; i < HPAGE_PMD_NR; i++)
2469 head[i].mem_cgroup = head->mem_cgroup;
2470
2471 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2472 HPAGE_PMD_NR);
2473 }
2474 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2475
2476 #ifdef CONFIG_MEMCG_SWAP
2477 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2478 bool charge)
2479 {
2480 int val = (charge) ? 1 : -1;
2481 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2482 }
2483
2484 /**
2485 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2486 * @entry: swap entry to be moved
2487 * @from: mem_cgroup which the entry is moved from
2488 * @to: mem_cgroup which the entry is moved to
2489 *
2490 * It succeeds only when the swap_cgroup's record for this entry is the same
2491 * as the mem_cgroup's id of @from.
2492 *
2493 * Returns 0 on success, -EINVAL on failure.
2494 *
2495 * The caller must have charged to @to, IOW, called page_counter_charge() about
2496 * both res and memsw, and called css_get().
2497 */
2498 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2499 struct mem_cgroup *from, struct mem_cgroup *to)
2500 {
2501 unsigned short old_id, new_id;
2502
2503 old_id = mem_cgroup_id(from);
2504 new_id = mem_cgroup_id(to);
2505
2506 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2507 mem_cgroup_swap_statistics(from, false);
2508 mem_cgroup_swap_statistics(to, true);
2509 return 0;
2510 }
2511 return -EINVAL;
2512 }
2513 #else
2514 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2515 struct mem_cgroup *from, struct mem_cgroup *to)
2516 {
2517 return -EINVAL;
2518 }
2519 #endif
2520
2521 static DEFINE_MUTEX(memcg_limit_mutex);
2522
2523 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2524 unsigned long limit)
2525 {
2526 unsigned long curusage;
2527 unsigned long oldusage;
2528 bool enlarge = false;
2529 int retry_count;
2530 int ret;
2531
2532 /*
2533 * For keeping hierarchical_reclaim simple, how long we should retry
2534 * is depends on callers. We set our retry-count to be function
2535 * of # of children which we should visit in this loop.
2536 */
2537 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2538 mem_cgroup_count_children(memcg);
2539
2540 oldusage = page_counter_read(&memcg->memory);
2541
2542 do {
2543 if (signal_pending(current)) {
2544 ret = -EINTR;
2545 break;
2546 }
2547
2548 mutex_lock(&memcg_limit_mutex);
2549 if (limit > memcg->memsw.limit) {
2550 mutex_unlock(&memcg_limit_mutex);
2551 ret = -EINVAL;
2552 break;
2553 }
2554 if (limit > memcg->memory.limit)
2555 enlarge = true;
2556 ret = page_counter_limit(&memcg->memory, limit);
2557 mutex_unlock(&memcg_limit_mutex);
2558
2559 if (!ret)
2560 break;
2561
2562 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2563
2564 curusage = page_counter_read(&memcg->memory);
2565 /* Usage is reduced ? */
2566 if (curusage >= oldusage)
2567 retry_count--;
2568 else
2569 oldusage = curusage;
2570 } while (retry_count);
2571
2572 if (!ret && enlarge)
2573 memcg_oom_recover(memcg);
2574
2575 return ret;
2576 }
2577
2578 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2579 unsigned long limit)
2580 {
2581 unsigned long curusage;
2582 unsigned long oldusage;
2583 bool enlarge = false;
2584 int retry_count;
2585 int ret;
2586
2587 /* see mem_cgroup_resize_res_limit */
2588 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2589 mem_cgroup_count_children(memcg);
2590
2591 oldusage = page_counter_read(&memcg->memsw);
2592
2593 do {
2594 if (signal_pending(current)) {
2595 ret = -EINTR;
2596 break;
2597 }
2598
2599 mutex_lock(&memcg_limit_mutex);
2600 if (limit < memcg->memory.limit) {
2601 mutex_unlock(&memcg_limit_mutex);
2602 ret = -EINVAL;
2603 break;
2604 }
2605 if (limit > memcg->memsw.limit)
2606 enlarge = true;
2607 ret = page_counter_limit(&memcg->memsw, limit);
2608 mutex_unlock(&memcg_limit_mutex);
2609
2610 if (!ret)
2611 break;
2612
2613 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2614
2615 curusage = page_counter_read(&memcg->memsw);
2616 /* Usage is reduced ? */
2617 if (curusage >= oldusage)
2618 retry_count--;
2619 else
2620 oldusage = curusage;
2621 } while (retry_count);
2622
2623 if (!ret && enlarge)
2624 memcg_oom_recover(memcg);
2625
2626 return ret;
2627 }
2628
2629 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2630 gfp_t gfp_mask,
2631 unsigned long *total_scanned)
2632 {
2633 unsigned long nr_reclaimed = 0;
2634 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2635 unsigned long reclaimed;
2636 int loop = 0;
2637 struct mem_cgroup_tree_per_zone *mctz;
2638 unsigned long excess;
2639 unsigned long nr_scanned;
2640
2641 if (order > 0)
2642 return 0;
2643
2644 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2645 /*
2646 * This loop can run a while, specially if mem_cgroup's continuously
2647 * keep exceeding their soft limit and putting the system under
2648 * pressure
2649 */
2650 do {
2651 if (next_mz)
2652 mz = next_mz;
2653 else
2654 mz = mem_cgroup_largest_soft_limit_node(mctz);
2655 if (!mz)
2656 break;
2657
2658 nr_scanned = 0;
2659 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2660 gfp_mask, &nr_scanned);
2661 nr_reclaimed += reclaimed;
2662 *total_scanned += nr_scanned;
2663 spin_lock_irq(&mctz->lock);
2664 __mem_cgroup_remove_exceeded(mz, mctz);
2665
2666 /*
2667 * If we failed to reclaim anything from this memory cgroup
2668 * it is time to move on to the next cgroup
2669 */
2670 next_mz = NULL;
2671 if (!reclaimed)
2672 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2673
2674 excess = soft_limit_excess(mz->memcg);
2675 /*
2676 * One school of thought says that we should not add
2677 * back the node to the tree if reclaim returns 0.
2678 * But our reclaim could return 0, simply because due
2679 * to priority we are exposing a smaller subset of
2680 * memory to reclaim from. Consider this as a longer
2681 * term TODO.
2682 */
2683 /* If excess == 0, no tree ops */
2684 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2685 spin_unlock_irq(&mctz->lock);
2686 css_put(&mz->memcg->css);
2687 loop++;
2688 /*
2689 * Could not reclaim anything and there are no more
2690 * mem cgroups to try or we seem to be looping without
2691 * reclaiming anything.
2692 */
2693 if (!nr_reclaimed &&
2694 (next_mz == NULL ||
2695 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2696 break;
2697 } while (!nr_reclaimed);
2698 if (next_mz)
2699 css_put(&next_mz->memcg->css);
2700 return nr_reclaimed;
2701 }
2702
2703 /*
2704 * Test whether @memcg has children, dead or alive. Note that this
2705 * function doesn't care whether @memcg has use_hierarchy enabled and
2706 * returns %true if there are child csses according to the cgroup
2707 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2708 */
2709 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2710 {
2711 bool ret;
2712
2713 /*
2714 * The lock does not prevent addition or deletion of children, but
2715 * it prevents a new child from being initialized based on this
2716 * parent in css_online(), so it's enough to decide whether
2717 * hierarchically inherited attributes can still be changed or not.
2718 */
2719 lockdep_assert_held(&memcg_create_mutex);
2720
2721 rcu_read_lock();
2722 ret = css_next_child(NULL, &memcg->css);
2723 rcu_read_unlock();
2724 return ret;
2725 }
2726
2727 /*
2728 * Reclaims as many pages from the given memcg as possible and moves
2729 * the rest to the parent.
2730 *
2731 * Caller is responsible for holding css reference for memcg.
2732 */
2733 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2734 {
2735 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2736
2737 /* we call try-to-free pages for make this cgroup empty */
2738 lru_add_drain_all();
2739 /* try to free all pages in this cgroup */
2740 while (nr_retries && page_counter_read(&memcg->memory)) {
2741 int progress;
2742
2743 if (signal_pending(current))
2744 return -EINTR;
2745
2746 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2747 GFP_KERNEL, true);
2748 if (!progress) {
2749 nr_retries--;
2750 /* maybe some writeback is necessary */
2751 congestion_wait(BLK_RW_ASYNC, HZ/10);
2752 }
2753
2754 }
2755
2756 return 0;
2757 }
2758
2759 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2760 char *buf, size_t nbytes,
2761 loff_t off)
2762 {
2763 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2764
2765 if (mem_cgroup_is_root(memcg))
2766 return -EINVAL;
2767 return mem_cgroup_force_empty(memcg) ?: nbytes;
2768 }
2769
2770 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2771 struct cftype *cft)
2772 {
2773 return mem_cgroup_from_css(css)->use_hierarchy;
2774 }
2775
2776 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2777 struct cftype *cft, u64 val)
2778 {
2779 int retval = 0;
2780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2781 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2782
2783 mutex_lock(&memcg_create_mutex);
2784
2785 if (memcg->use_hierarchy == val)
2786 goto out;
2787
2788 /*
2789 * If parent's use_hierarchy is set, we can't make any modifications
2790 * in the child subtrees. If it is unset, then the change can
2791 * occur, provided the current cgroup has no children.
2792 *
2793 * For the root cgroup, parent_mem is NULL, we allow value to be
2794 * set if there are no children.
2795 */
2796 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2797 (val == 1 || val == 0)) {
2798 if (!memcg_has_children(memcg))
2799 memcg->use_hierarchy = val;
2800 else
2801 retval = -EBUSY;
2802 } else
2803 retval = -EINVAL;
2804
2805 out:
2806 mutex_unlock(&memcg_create_mutex);
2807
2808 return retval;
2809 }
2810
2811 static unsigned long tree_stat(struct mem_cgroup *memcg,
2812 enum mem_cgroup_stat_index idx)
2813 {
2814 struct mem_cgroup *iter;
2815 unsigned long val = 0;
2816
2817 for_each_mem_cgroup_tree(iter, memcg)
2818 val += mem_cgroup_read_stat(iter, idx);
2819
2820 return val;
2821 }
2822
2823 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2824 {
2825 u64 val;
2826
2827 if (mem_cgroup_is_root(memcg)) {
2828 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2829 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2830 if (swap)
2831 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2832 } else {
2833 if (!swap)
2834 val = page_counter_read(&memcg->memory);
2835 else
2836 val = page_counter_read(&memcg->memsw);
2837 }
2838 return val << PAGE_SHIFT;
2839 }
2840
2841 enum {
2842 RES_USAGE,
2843 RES_LIMIT,
2844 RES_MAX_USAGE,
2845 RES_FAILCNT,
2846 RES_SOFT_LIMIT,
2847 };
2848
2849 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2850 struct cftype *cft)
2851 {
2852 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2853 struct page_counter *counter;
2854
2855 switch (MEMFILE_TYPE(cft->private)) {
2856 case _MEM:
2857 counter = &memcg->memory;
2858 break;
2859 case _MEMSWAP:
2860 counter = &memcg->memsw;
2861 break;
2862 case _KMEM:
2863 counter = &memcg->kmem;
2864 break;
2865 default:
2866 BUG();
2867 }
2868
2869 switch (MEMFILE_ATTR(cft->private)) {
2870 case RES_USAGE:
2871 if (counter == &memcg->memory)
2872 return mem_cgroup_usage(memcg, false);
2873 if (counter == &memcg->memsw)
2874 return mem_cgroup_usage(memcg, true);
2875 return (u64)page_counter_read(counter) * PAGE_SIZE;
2876 case RES_LIMIT:
2877 return (u64)counter->limit * PAGE_SIZE;
2878 case RES_MAX_USAGE:
2879 return (u64)counter->watermark * PAGE_SIZE;
2880 case RES_FAILCNT:
2881 return counter->failcnt;
2882 case RES_SOFT_LIMIT:
2883 return (u64)memcg->soft_limit * PAGE_SIZE;
2884 default:
2885 BUG();
2886 }
2887 }
2888
2889 #ifdef CONFIG_MEMCG_KMEM
2890 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2891 unsigned long nr_pages)
2892 {
2893 int err = 0;
2894 int memcg_id;
2895
2896 BUG_ON(memcg->kmemcg_id >= 0);
2897 BUG_ON(memcg->kmem_acct_activated);
2898 BUG_ON(memcg->kmem_acct_active);
2899
2900 /*
2901 * For simplicity, we won't allow this to be disabled. It also can't
2902 * be changed if the cgroup has children already, or if tasks had
2903 * already joined.
2904 *
2905 * If tasks join before we set the limit, a person looking at
2906 * kmem.usage_in_bytes will have no way to determine when it took
2907 * place, which makes the value quite meaningless.
2908 *
2909 * After it first became limited, changes in the value of the limit are
2910 * of course permitted.
2911 */
2912 mutex_lock(&memcg_create_mutex);
2913 if (cgroup_has_tasks(memcg->css.cgroup) ||
2914 (memcg->use_hierarchy && memcg_has_children(memcg)))
2915 err = -EBUSY;
2916 mutex_unlock(&memcg_create_mutex);
2917 if (err)
2918 goto out;
2919
2920 memcg_id = memcg_alloc_cache_id();
2921 if (memcg_id < 0) {
2922 err = memcg_id;
2923 goto out;
2924 }
2925
2926 /*
2927 * We couldn't have accounted to this cgroup, because it hasn't got
2928 * activated yet, so this should succeed.
2929 */
2930 err = page_counter_limit(&memcg->kmem, nr_pages);
2931 VM_BUG_ON(err);
2932
2933 static_key_slow_inc(&memcg_kmem_enabled_key);
2934 /*
2935 * A memory cgroup is considered kmem-active as soon as it gets
2936 * kmemcg_id. Setting the id after enabling static branching will
2937 * guarantee no one starts accounting before all call sites are
2938 * patched.
2939 */
2940 memcg->kmemcg_id = memcg_id;
2941 memcg->kmem_acct_activated = true;
2942 memcg->kmem_acct_active = true;
2943 out:
2944 return err;
2945 }
2946
2947 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2948 unsigned long limit)
2949 {
2950 int ret;
2951
2952 mutex_lock(&memcg_limit_mutex);
2953 if (!memcg_kmem_is_active(memcg))
2954 ret = memcg_activate_kmem(memcg, limit);
2955 else
2956 ret = page_counter_limit(&memcg->kmem, limit);
2957 mutex_unlock(&memcg_limit_mutex);
2958 return ret;
2959 }
2960
2961 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2962 {
2963 int ret = 0;
2964 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2965
2966 if (!parent)
2967 return 0;
2968
2969 mutex_lock(&memcg_limit_mutex);
2970 /*
2971 * If the parent cgroup is not kmem-active now, it cannot be activated
2972 * after this point, because it has at least one child already.
2973 */
2974 if (memcg_kmem_is_active(parent))
2975 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978 }
2979 #else
2980 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2981 unsigned long limit)
2982 {
2983 return -EINVAL;
2984 }
2985 #endif /* CONFIG_MEMCG_KMEM */
2986
2987 /*
2988 * The user of this function is...
2989 * RES_LIMIT.
2990 */
2991 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2992 char *buf, size_t nbytes, loff_t off)
2993 {
2994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2995 unsigned long nr_pages;
2996 int ret;
2997
2998 buf = strstrip(buf);
2999 ret = page_counter_memparse(buf, "-1", &nr_pages);
3000 if (ret)
3001 return ret;
3002
3003 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3004 case RES_LIMIT:
3005 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3006 ret = -EINVAL;
3007 break;
3008 }
3009 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3010 case _MEM:
3011 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3012 break;
3013 case _MEMSWAP:
3014 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3015 break;
3016 case _KMEM:
3017 ret = memcg_update_kmem_limit(memcg, nr_pages);
3018 break;
3019 }
3020 break;
3021 case RES_SOFT_LIMIT:
3022 memcg->soft_limit = nr_pages;
3023 ret = 0;
3024 break;
3025 }
3026 return ret ?: nbytes;
3027 }
3028
3029 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3030 size_t nbytes, loff_t off)
3031 {
3032 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3033 struct page_counter *counter;
3034
3035 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3036 case _MEM:
3037 counter = &memcg->memory;
3038 break;
3039 case _MEMSWAP:
3040 counter = &memcg->memsw;
3041 break;
3042 case _KMEM:
3043 counter = &memcg->kmem;
3044 break;
3045 default:
3046 BUG();
3047 }
3048
3049 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3050 case RES_MAX_USAGE:
3051 page_counter_reset_watermark(counter);
3052 break;
3053 case RES_FAILCNT:
3054 counter->failcnt = 0;
3055 break;
3056 default:
3057 BUG();
3058 }
3059
3060 return nbytes;
3061 }
3062
3063 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3064 struct cftype *cft)
3065 {
3066 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3067 }
3068
3069 #ifdef CONFIG_MMU
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072 {
3073 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3074
3075 if (val & ~MOVE_MASK)
3076 return -EINVAL;
3077
3078 /*
3079 * No kind of locking is needed in here, because ->can_attach() will
3080 * check this value once in the beginning of the process, and then carry
3081 * on with stale data. This means that changes to this value will only
3082 * affect task migrations starting after the change.
3083 */
3084 memcg->move_charge_at_immigrate = val;
3085 return 0;
3086 }
3087 #else
3088 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3089 struct cftype *cft, u64 val)
3090 {
3091 return -ENOSYS;
3092 }
3093 #endif
3094
3095 #ifdef CONFIG_NUMA
3096 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3097 {
3098 struct numa_stat {
3099 const char *name;
3100 unsigned int lru_mask;
3101 };
3102
3103 static const struct numa_stat stats[] = {
3104 { "total", LRU_ALL },
3105 { "file", LRU_ALL_FILE },
3106 { "anon", LRU_ALL_ANON },
3107 { "unevictable", BIT(LRU_UNEVICTABLE) },
3108 };
3109 const struct numa_stat *stat;
3110 int nid;
3111 unsigned long nr;
3112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3113
3114 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3115 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3116 seq_printf(m, "%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3119 stat->lru_mask);
3120 seq_printf(m, " N%d=%lu", nid, nr);
3121 }
3122 seq_putc(m, '\n');
3123 }
3124
3125 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3126 struct mem_cgroup *iter;
3127
3128 nr = 0;
3129 for_each_mem_cgroup_tree(iter, memcg)
3130 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3131 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3132 for_each_node_state(nid, N_MEMORY) {
3133 nr = 0;
3134 for_each_mem_cgroup_tree(iter, memcg)
3135 nr += mem_cgroup_node_nr_lru_pages(
3136 iter, nid, stat->lru_mask);
3137 seq_printf(m, " N%d=%lu", nid, nr);
3138 }
3139 seq_putc(m, '\n');
3140 }
3141
3142 return 0;
3143 }
3144 #endif /* CONFIG_NUMA */
3145
3146 static int memcg_stat_show(struct seq_file *m, void *v)
3147 {
3148 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3149 unsigned long memory, memsw;
3150 struct mem_cgroup *mi;
3151 unsigned int i;
3152
3153 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3154 MEM_CGROUP_STAT_NSTATS);
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3156 MEM_CGROUP_EVENTS_NSTATS);
3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3158
3159 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3160 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3161 continue;
3162 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3163 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3164 }
3165
3166 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3167 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3168 mem_cgroup_read_events(memcg, i));
3169
3170 for (i = 0; i < NR_LRU_LISTS; i++)
3171 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3172 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3173
3174 /* Hierarchical information */
3175 memory = memsw = PAGE_COUNTER_MAX;
3176 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3177 memory = min(memory, mi->memory.limit);
3178 memsw = min(memsw, mi->memsw.limit);
3179 }
3180 seq_printf(m, "hierarchical_memory_limit %llu\n",
3181 (u64)memory * PAGE_SIZE);
3182 if (do_swap_account)
3183 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3184 (u64)memsw * PAGE_SIZE);
3185
3186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3187 unsigned long long val = 0;
3188
3189 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3190 continue;
3191 for_each_mem_cgroup_tree(mi, memcg)
3192 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3193 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3194 }
3195
3196 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3197 unsigned long long val = 0;
3198
3199 for_each_mem_cgroup_tree(mi, memcg)
3200 val += mem_cgroup_read_events(mi, i);
3201 seq_printf(m, "total_%s %llu\n",
3202 mem_cgroup_events_names[i], val);
3203 }
3204
3205 for (i = 0; i < NR_LRU_LISTS; i++) {
3206 unsigned long long val = 0;
3207
3208 for_each_mem_cgroup_tree(mi, memcg)
3209 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3210 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3211 }
3212
3213 #ifdef CONFIG_DEBUG_VM
3214 {
3215 int nid, zid;
3216 struct mem_cgroup_per_zone *mz;
3217 struct zone_reclaim_stat *rstat;
3218 unsigned long recent_rotated[2] = {0, 0};
3219 unsigned long recent_scanned[2] = {0, 0};
3220
3221 for_each_online_node(nid)
3222 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3223 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3224 rstat = &mz->lruvec.reclaim_stat;
3225
3226 recent_rotated[0] += rstat->recent_rotated[0];
3227 recent_rotated[1] += rstat->recent_rotated[1];
3228 recent_scanned[0] += rstat->recent_scanned[0];
3229 recent_scanned[1] += rstat->recent_scanned[1];
3230 }
3231 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3232 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3233 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3234 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3235 }
3236 #endif
3237
3238 return 0;
3239 }
3240
3241 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3242 struct cftype *cft)
3243 {
3244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3245
3246 return mem_cgroup_swappiness(memcg);
3247 }
3248
3249 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3250 struct cftype *cft, u64 val)
3251 {
3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3253
3254 if (val > 100)
3255 return -EINVAL;
3256
3257 if (css->parent)
3258 memcg->swappiness = val;
3259 else
3260 vm_swappiness = val;
3261
3262 return 0;
3263 }
3264
3265 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3266 {
3267 struct mem_cgroup_threshold_ary *t;
3268 unsigned long usage;
3269 int i;
3270
3271 rcu_read_lock();
3272 if (!swap)
3273 t = rcu_dereference(memcg->thresholds.primary);
3274 else
3275 t = rcu_dereference(memcg->memsw_thresholds.primary);
3276
3277 if (!t)
3278 goto unlock;
3279
3280 usage = mem_cgroup_usage(memcg, swap);
3281
3282 /*
3283 * current_threshold points to threshold just below or equal to usage.
3284 * If it's not true, a threshold was crossed after last
3285 * call of __mem_cgroup_threshold().
3286 */
3287 i = t->current_threshold;
3288
3289 /*
3290 * Iterate backward over array of thresholds starting from
3291 * current_threshold and check if a threshold is crossed.
3292 * If none of thresholds below usage is crossed, we read
3293 * only one element of the array here.
3294 */
3295 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3296 eventfd_signal(t->entries[i].eventfd, 1);
3297
3298 /* i = current_threshold + 1 */
3299 i++;
3300
3301 /*
3302 * Iterate forward over array of thresholds starting from
3303 * current_threshold+1 and check if a threshold is crossed.
3304 * If none of thresholds above usage is crossed, we read
3305 * only one element of the array here.
3306 */
3307 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3308 eventfd_signal(t->entries[i].eventfd, 1);
3309
3310 /* Update current_threshold */
3311 t->current_threshold = i - 1;
3312 unlock:
3313 rcu_read_unlock();
3314 }
3315
3316 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3317 {
3318 while (memcg) {
3319 __mem_cgroup_threshold(memcg, false);
3320 if (do_swap_account)
3321 __mem_cgroup_threshold(memcg, true);
3322
3323 memcg = parent_mem_cgroup(memcg);
3324 }
3325 }
3326
3327 static int compare_thresholds(const void *a, const void *b)
3328 {
3329 const struct mem_cgroup_threshold *_a = a;
3330 const struct mem_cgroup_threshold *_b = b;
3331
3332 if (_a->threshold > _b->threshold)
3333 return 1;
3334
3335 if (_a->threshold < _b->threshold)
3336 return -1;
3337
3338 return 0;
3339 }
3340
3341 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3342 {
3343 struct mem_cgroup_eventfd_list *ev;
3344
3345 spin_lock(&memcg_oom_lock);
3346
3347 list_for_each_entry(ev, &memcg->oom_notify, list)
3348 eventfd_signal(ev->eventfd, 1);
3349
3350 spin_unlock(&memcg_oom_lock);
3351 return 0;
3352 }
3353
3354 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3355 {
3356 struct mem_cgroup *iter;
3357
3358 for_each_mem_cgroup_tree(iter, memcg)
3359 mem_cgroup_oom_notify_cb(iter);
3360 }
3361
3362 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3363 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3364 {
3365 struct mem_cgroup_thresholds *thresholds;
3366 struct mem_cgroup_threshold_ary *new;
3367 unsigned long threshold;
3368 unsigned long usage;
3369 int i, size, ret;
3370
3371 ret = page_counter_memparse(args, "-1", &threshold);
3372 if (ret)
3373 return ret;
3374 threshold <<= PAGE_SHIFT;
3375
3376 mutex_lock(&memcg->thresholds_lock);
3377
3378 if (type == _MEM) {
3379 thresholds = &memcg->thresholds;
3380 usage = mem_cgroup_usage(memcg, false);
3381 } else if (type == _MEMSWAP) {
3382 thresholds = &memcg->memsw_thresholds;
3383 usage = mem_cgroup_usage(memcg, true);
3384 } else
3385 BUG();
3386
3387 /* Check if a threshold crossed before adding a new one */
3388 if (thresholds->primary)
3389 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3390
3391 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3392
3393 /* Allocate memory for new array of thresholds */
3394 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3395 GFP_KERNEL);
3396 if (!new) {
3397 ret = -ENOMEM;
3398 goto unlock;
3399 }
3400 new->size = size;
3401
3402 /* Copy thresholds (if any) to new array */
3403 if (thresholds->primary) {
3404 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3405 sizeof(struct mem_cgroup_threshold));
3406 }
3407
3408 /* Add new threshold */
3409 new->entries[size - 1].eventfd = eventfd;
3410 new->entries[size - 1].threshold = threshold;
3411
3412 /* Sort thresholds. Registering of new threshold isn't time-critical */
3413 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3414 compare_thresholds, NULL);
3415
3416 /* Find current threshold */
3417 new->current_threshold = -1;
3418 for (i = 0; i < size; i++) {
3419 if (new->entries[i].threshold <= usage) {
3420 /*
3421 * new->current_threshold will not be used until
3422 * rcu_assign_pointer(), so it's safe to increment
3423 * it here.
3424 */
3425 ++new->current_threshold;
3426 } else
3427 break;
3428 }
3429
3430 /* Free old spare buffer and save old primary buffer as spare */
3431 kfree(thresholds->spare);
3432 thresholds->spare = thresholds->primary;
3433
3434 rcu_assign_pointer(thresholds->primary, new);
3435
3436 /* To be sure that nobody uses thresholds */
3437 synchronize_rcu();
3438
3439 unlock:
3440 mutex_unlock(&memcg->thresholds_lock);
3441
3442 return ret;
3443 }
3444
3445 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3446 struct eventfd_ctx *eventfd, const char *args)
3447 {
3448 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3449 }
3450
3451 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452 struct eventfd_ctx *eventfd, const char *args)
3453 {
3454 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3455 }
3456
3457 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3458 struct eventfd_ctx *eventfd, enum res_type type)
3459 {
3460 struct mem_cgroup_thresholds *thresholds;
3461 struct mem_cgroup_threshold_ary *new;
3462 unsigned long usage;
3463 int i, j, size;
3464
3465 mutex_lock(&memcg->thresholds_lock);
3466
3467 if (type == _MEM) {
3468 thresholds = &memcg->thresholds;
3469 usage = mem_cgroup_usage(memcg, false);
3470 } else if (type == _MEMSWAP) {
3471 thresholds = &memcg->memsw_thresholds;
3472 usage = mem_cgroup_usage(memcg, true);
3473 } else
3474 BUG();
3475
3476 if (!thresholds->primary)
3477 goto unlock;
3478
3479 /* Check if a threshold crossed before removing */
3480 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3481
3482 /* Calculate new number of threshold */
3483 size = 0;
3484 for (i = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd != eventfd)
3486 size++;
3487 }
3488
3489 new = thresholds->spare;
3490
3491 /* Set thresholds array to NULL if we don't have thresholds */
3492 if (!size) {
3493 kfree(new);
3494 new = NULL;
3495 goto swap_buffers;
3496 }
3497
3498 new->size = size;
3499
3500 /* Copy thresholds and find current threshold */
3501 new->current_threshold = -1;
3502 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3503 if (thresholds->primary->entries[i].eventfd == eventfd)
3504 continue;
3505
3506 new->entries[j] = thresholds->primary->entries[i];
3507 if (new->entries[j].threshold <= usage) {
3508 /*
3509 * new->current_threshold will not be used
3510 * until rcu_assign_pointer(), so it's safe to increment
3511 * it here.
3512 */
3513 ++new->current_threshold;
3514 }
3515 j++;
3516 }
3517
3518 swap_buffers:
3519 /* Swap primary and spare array */
3520 thresholds->spare = thresholds->primary;
3521 /* If all events are unregistered, free the spare array */
3522 if (!new) {
3523 kfree(thresholds->spare);
3524 thresholds->spare = NULL;
3525 }
3526
3527 rcu_assign_pointer(thresholds->primary, new);
3528
3529 /* To be sure that nobody uses thresholds */
3530 synchronize_rcu();
3531 unlock:
3532 mutex_unlock(&memcg->thresholds_lock);
3533 }
3534
3535 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3536 struct eventfd_ctx *eventfd)
3537 {
3538 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3539 }
3540
3541 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3542 struct eventfd_ctx *eventfd)
3543 {
3544 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3545 }
3546
3547 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3548 struct eventfd_ctx *eventfd, const char *args)
3549 {
3550 struct mem_cgroup_eventfd_list *event;
3551
3552 event = kmalloc(sizeof(*event), GFP_KERNEL);
3553 if (!event)
3554 return -ENOMEM;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 event->eventfd = eventfd;
3559 list_add(&event->list, &memcg->oom_notify);
3560
3561 /* already in OOM ? */
3562 if (memcg->under_oom)
3563 eventfd_signal(eventfd, 1);
3564 spin_unlock(&memcg_oom_lock);
3565
3566 return 0;
3567 }
3568
3569 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3570 struct eventfd_ctx *eventfd)
3571 {
3572 struct mem_cgroup_eventfd_list *ev, *tmp;
3573
3574 spin_lock(&memcg_oom_lock);
3575
3576 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3577 if (ev->eventfd == eventfd) {
3578 list_del(&ev->list);
3579 kfree(ev);
3580 }
3581 }
3582
3583 spin_unlock(&memcg_oom_lock);
3584 }
3585
3586 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3587 {
3588 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3589
3590 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3591 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3592 return 0;
3593 }
3594
3595 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3596 struct cftype *cft, u64 val)
3597 {
3598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3599
3600 /* cannot set to root cgroup and only 0 and 1 are allowed */
3601 if (!css->parent || !((val == 0) || (val == 1)))
3602 return -EINVAL;
3603
3604 memcg->oom_kill_disable = val;
3605 if (!val)
3606 memcg_oom_recover(memcg);
3607
3608 return 0;
3609 }
3610
3611 #ifdef CONFIG_MEMCG_KMEM
3612 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3613 {
3614 int ret;
3615
3616 ret = memcg_propagate_kmem(memcg);
3617 if (ret)
3618 return ret;
3619
3620 return mem_cgroup_sockets_init(memcg, ss);
3621 }
3622
3623 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3624 {
3625 struct cgroup_subsys_state *css;
3626 struct mem_cgroup *parent, *child;
3627 int kmemcg_id;
3628
3629 if (!memcg->kmem_acct_active)
3630 return;
3631
3632 /*
3633 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3634 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3635 * guarantees no cache will be created for this cgroup after we are
3636 * done (see memcg_create_kmem_cache()).
3637 */
3638 memcg->kmem_acct_active = false;
3639
3640 memcg_deactivate_kmem_caches(memcg);
3641
3642 kmemcg_id = memcg->kmemcg_id;
3643 BUG_ON(kmemcg_id < 0);
3644
3645 parent = parent_mem_cgroup(memcg);
3646 if (!parent)
3647 parent = root_mem_cgroup;
3648
3649 /*
3650 * Change kmemcg_id of this cgroup and all its descendants to the
3651 * parent's id, and then move all entries from this cgroup's list_lrus
3652 * to ones of the parent. After we have finished, all list_lrus
3653 * corresponding to this cgroup are guaranteed to remain empty. The
3654 * ordering is imposed by list_lru_node->lock taken by
3655 * memcg_drain_all_list_lrus().
3656 */
3657 css_for_each_descendant_pre(css, &memcg->css) {
3658 child = mem_cgroup_from_css(css);
3659 BUG_ON(child->kmemcg_id != kmemcg_id);
3660 child->kmemcg_id = parent->kmemcg_id;
3661 if (!memcg->use_hierarchy)
3662 break;
3663 }
3664 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3665
3666 memcg_free_cache_id(kmemcg_id);
3667 }
3668
3669 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3670 {
3671 if (memcg->kmem_acct_activated) {
3672 memcg_destroy_kmem_caches(memcg);
3673 static_key_slow_dec(&memcg_kmem_enabled_key);
3674 WARN_ON(page_counter_read(&memcg->kmem));
3675 }
3676 mem_cgroup_sockets_destroy(memcg);
3677 }
3678 #else
3679 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3680 {
3681 return 0;
3682 }
3683
3684 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3685 {
3686 }
3687
3688 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3689 {
3690 }
3691 #endif
3692
3693 #ifdef CONFIG_CGROUP_WRITEBACK
3694
3695 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3696 {
3697 return &memcg->cgwb_list;
3698 }
3699
3700 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3701 {
3702 return wb_domain_init(&memcg->cgwb_domain, gfp);
3703 }
3704
3705 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3706 {
3707 wb_domain_exit(&memcg->cgwb_domain);
3708 }
3709
3710 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3711 {
3712 wb_domain_size_changed(&memcg->cgwb_domain);
3713 }
3714
3715 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3716 {
3717 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3718
3719 if (!memcg->css.parent)
3720 return NULL;
3721
3722 return &memcg->cgwb_domain;
3723 }
3724
3725 /**
3726 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3727 * @wb: bdi_writeback in question
3728 * @pfilepages: out parameter for number of file pages
3729 * @pheadroom: out parameter for number of allocatable pages according to memcg
3730 * @pdirty: out parameter for number of dirty pages
3731 * @pwriteback: out parameter for number of pages under writeback
3732 *
3733 * Determine the numbers of file, headroom, dirty, and writeback pages in
3734 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3735 * is a bit more involved.
3736 *
3737 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3738 * headroom is calculated as the lowest headroom of itself and the
3739 * ancestors. Note that this doesn't consider the actual amount of
3740 * available memory in the system. The caller should further cap
3741 * *@pheadroom accordingly.
3742 */
3743 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3744 unsigned long *pheadroom, unsigned long *pdirty,
3745 unsigned long *pwriteback)
3746 {
3747 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3748 struct mem_cgroup *parent;
3749
3750 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3751
3752 /* this should eventually include NR_UNSTABLE_NFS */
3753 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3754 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3755 (1 << LRU_ACTIVE_FILE));
3756 *pheadroom = PAGE_COUNTER_MAX;
3757
3758 while ((parent = parent_mem_cgroup(memcg))) {
3759 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3760 unsigned long used = page_counter_read(&memcg->memory);
3761
3762 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3763 memcg = parent;
3764 }
3765 }
3766
3767 #else /* CONFIG_CGROUP_WRITEBACK */
3768
3769 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3770 {
3771 return 0;
3772 }
3773
3774 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3775 {
3776 }
3777
3778 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3779 {
3780 }
3781
3782 #endif /* CONFIG_CGROUP_WRITEBACK */
3783
3784 /*
3785 * DO NOT USE IN NEW FILES.
3786 *
3787 * "cgroup.event_control" implementation.
3788 *
3789 * This is way over-engineered. It tries to support fully configurable
3790 * events for each user. Such level of flexibility is completely
3791 * unnecessary especially in the light of the planned unified hierarchy.
3792 *
3793 * Please deprecate this and replace with something simpler if at all
3794 * possible.
3795 */
3796
3797 /*
3798 * Unregister event and free resources.
3799 *
3800 * Gets called from workqueue.
3801 */
3802 static void memcg_event_remove(struct work_struct *work)
3803 {
3804 struct mem_cgroup_event *event =
3805 container_of(work, struct mem_cgroup_event, remove);
3806 struct mem_cgroup *memcg = event->memcg;
3807
3808 remove_wait_queue(event->wqh, &event->wait);
3809
3810 event->unregister_event(memcg, event->eventfd);
3811
3812 /* Notify userspace the event is going away. */
3813 eventfd_signal(event->eventfd, 1);
3814
3815 eventfd_ctx_put(event->eventfd);
3816 kfree(event);
3817 css_put(&memcg->css);
3818 }
3819
3820 /*
3821 * Gets called on POLLHUP on eventfd when user closes it.
3822 *
3823 * Called with wqh->lock held and interrupts disabled.
3824 */
3825 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3826 int sync, void *key)
3827 {
3828 struct mem_cgroup_event *event =
3829 container_of(wait, struct mem_cgroup_event, wait);
3830 struct mem_cgroup *memcg = event->memcg;
3831 unsigned long flags = (unsigned long)key;
3832
3833 if (flags & POLLHUP) {
3834 /*
3835 * If the event has been detached at cgroup removal, we
3836 * can simply return knowing the other side will cleanup
3837 * for us.
3838 *
3839 * We can't race against event freeing since the other
3840 * side will require wqh->lock via remove_wait_queue(),
3841 * which we hold.
3842 */
3843 spin_lock(&memcg->event_list_lock);
3844 if (!list_empty(&event->list)) {
3845 list_del_init(&event->list);
3846 /*
3847 * We are in atomic context, but cgroup_event_remove()
3848 * may sleep, so we have to call it in workqueue.
3849 */
3850 schedule_work(&event->remove);
3851 }
3852 spin_unlock(&memcg->event_list_lock);
3853 }
3854
3855 return 0;
3856 }
3857
3858 static void memcg_event_ptable_queue_proc(struct file *file,
3859 wait_queue_head_t *wqh, poll_table *pt)
3860 {
3861 struct mem_cgroup_event *event =
3862 container_of(pt, struct mem_cgroup_event, pt);
3863
3864 event->wqh = wqh;
3865 add_wait_queue(wqh, &event->wait);
3866 }
3867
3868 /*
3869 * DO NOT USE IN NEW FILES.
3870 *
3871 * Parse input and register new cgroup event handler.
3872 *
3873 * Input must be in format '<event_fd> <control_fd> <args>'.
3874 * Interpretation of args is defined by control file implementation.
3875 */
3876 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3877 char *buf, size_t nbytes, loff_t off)
3878 {
3879 struct cgroup_subsys_state *css = of_css(of);
3880 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3881 struct mem_cgroup_event *event;
3882 struct cgroup_subsys_state *cfile_css;
3883 unsigned int efd, cfd;
3884 struct fd efile;
3885 struct fd cfile;
3886 const char *name;
3887 char *endp;
3888 int ret;
3889
3890 buf = strstrip(buf);
3891
3892 efd = simple_strtoul(buf, &endp, 10);
3893 if (*endp != ' ')
3894 return -EINVAL;
3895 buf = endp + 1;
3896
3897 cfd = simple_strtoul(buf, &endp, 10);
3898 if ((*endp != ' ') && (*endp != '\0'))
3899 return -EINVAL;
3900 buf = endp + 1;
3901
3902 event = kzalloc(sizeof(*event), GFP_KERNEL);
3903 if (!event)
3904 return -ENOMEM;
3905
3906 event->memcg = memcg;
3907 INIT_LIST_HEAD(&event->list);
3908 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3909 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3910 INIT_WORK(&event->remove, memcg_event_remove);
3911
3912 efile = fdget(efd);
3913 if (!efile.file) {
3914 ret = -EBADF;
3915 goto out_kfree;
3916 }
3917
3918 event->eventfd = eventfd_ctx_fileget(efile.file);
3919 if (IS_ERR(event->eventfd)) {
3920 ret = PTR_ERR(event->eventfd);
3921 goto out_put_efile;
3922 }
3923
3924 cfile = fdget(cfd);
3925 if (!cfile.file) {
3926 ret = -EBADF;
3927 goto out_put_eventfd;
3928 }
3929
3930 /* the process need read permission on control file */
3931 /* AV: shouldn't we check that it's been opened for read instead? */
3932 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3933 if (ret < 0)
3934 goto out_put_cfile;
3935
3936 /*
3937 * Determine the event callbacks and set them in @event. This used
3938 * to be done via struct cftype but cgroup core no longer knows
3939 * about these events. The following is crude but the whole thing
3940 * is for compatibility anyway.
3941 *
3942 * DO NOT ADD NEW FILES.
3943 */
3944 name = cfile.file->f_path.dentry->d_name.name;
3945
3946 if (!strcmp(name, "memory.usage_in_bytes")) {
3947 event->register_event = mem_cgroup_usage_register_event;
3948 event->unregister_event = mem_cgroup_usage_unregister_event;
3949 } else if (!strcmp(name, "memory.oom_control")) {
3950 event->register_event = mem_cgroup_oom_register_event;
3951 event->unregister_event = mem_cgroup_oom_unregister_event;
3952 } else if (!strcmp(name, "memory.pressure_level")) {
3953 event->register_event = vmpressure_register_event;
3954 event->unregister_event = vmpressure_unregister_event;
3955 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3956 event->register_event = memsw_cgroup_usage_register_event;
3957 event->unregister_event = memsw_cgroup_usage_unregister_event;
3958 } else {
3959 ret = -EINVAL;
3960 goto out_put_cfile;
3961 }
3962
3963 /*
3964 * Verify @cfile should belong to @css. Also, remaining events are
3965 * automatically removed on cgroup destruction but the removal is
3966 * asynchronous, so take an extra ref on @css.
3967 */
3968 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3969 &memory_cgrp_subsys);
3970 ret = -EINVAL;
3971 if (IS_ERR(cfile_css))
3972 goto out_put_cfile;
3973 if (cfile_css != css) {
3974 css_put(cfile_css);
3975 goto out_put_cfile;
3976 }
3977
3978 ret = event->register_event(memcg, event->eventfd, buf);
3979 if (ret)
3980 goto out_put_css;
3981
3982 efile.file->f_op->poll(efile.file, &event->pt);
3983
3984 spin_lock(&memcg->event_list_lock);
3985 list_add(&event->list, &memcg->event_list);
3986 spin_unlock(&memcg->event_list_lock);
3987
3988 fdput(cfile);
3989 fdput(efile);
3990
3991 return nbytes;
3992
3993 out_put_css:
3994 css_put(css);
3995 out_put_cfile:
3996 fdput(cfile);
3997 out_put_eventfd:
3998 eventfd_ctx_put(event->eventfd);
3999 out_put_efile:
4000 fdput(efile);
4001 out_kfree:
4002 kfree(event);
4003
4004 return ret;
4005 }
4006
4007 static struct cftype mem_cgroup_legacy_files[] = {
4008 {
4009 .name = "usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4016 .write = mem_cgroup_reset,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 {
4020 .name = "limit_in_bytes",
4021 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4022 .write = mem_cgroup_write,
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "soft_limit_in_bytes",
4027 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4028 .write = mem_cgroup_write,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "failcnt",
4033 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 {
4038 .name = "stat",
4039 .seq_show = memcg_stat_show,
4040 },
4041 {
4042 .name = "force_empty",
4043 .write = mem_cgroup_force_empty_write,
4044 },
4045 {
4046 .name = "use_hierarchy",
4047 .write_u64 = mem_cgroup_hierarchy_write,
4048 .read_u64 = mem_cgroup_hierarchy_read,
4049 },
4050 {
4051 .name = "cgroup.event_control", /* XXX: for compat */
4052 .write = memcg_write_event_control,
4053 .flags = CFTYPE_NO_PREFIX,
4054 .mode = S_IWUGO,
4055 },
4056 {
4057 .name = "swappiness",
4058 .read_u64 = mem_cgroup_swappiness_read,
4059 .write_u64 = mem_cgroup_swappiness_write,
4060 },
4061 {
4062 .name = "move_charge_at_immigrate",
4063 .read_u64 = mem_cgroup_move_charge_read,
4064 .write_u64 = mem_cgroup_move_charge_write,
4065 },
4066 {
4067 .name = "oom_control",
4068 .seq_show = mem_cgroup_oom_control_read,
4069 .write_u64 = mem_cgroup_oom_control_write,
4070 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4071 },
4072 {
4073 .name = "pressure_level",
4074 },
4075 #ifdef CONFIG_NUMA
4076 {
4077 .name = "numa_stat",
4078 .seq_show = memcg_numa_stat_show,
4079 },
4080 #endif
4081 #ifdef CONFIG_MEMCG_KMEM
4082 {
4083 .name = "kmem.limit_in_bytes",
4084 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4085 .write = mem_cgroup_write,
4086 .read_u64 = mem_cgroup_read_u64,
4087 },
4088 {
4089 .name = "kmem.usage_in_bytes",
4090 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
4093 {
4094 .name = "kmem.failcnt",
4095 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4096 .write = mem_cgroup_reset,
4097 .read_u64 = mem_cgroup_read_u64,
4098 },
4099 {
4100 .name = "kmem.max_usage_in_bytes",
4101 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4102 .write = mem_cgroup_reset,
4103 .read_u64 = mem_cgroup_read_u64,
4104 },
4105 #ifdef CONFIG_SLABINFO
4106 {
4107 .name = "kmem.slabinfo",
4108 .seq_start = slab_start,
4109 .seq_next = slab_next,
4110 .seq_stop = slab_stop,
4111 .seq_show = memcg_slab_show,
4112 },
4113 #endif
4114 #endif
4115 { }, /* terminate */
4116 };
4117
4118 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4119 {
4120 struct mem_cgroup_per_node *pn;
4121 struct mem_cgroup_per_zone *mz;
4122 int zone, tmp = node;
4123 /*
4124 * This routine is called against possible nodes.
4125 * But it's BUG to call kmalloc() against offline node.
4126 *
4127 * TODO: this routine can waste much memory for nodes which will
4128 * never be onlined. It's better to use memory hotplug callback
4129 * function.
4130 */
4131 if (!node_state(node, N_NORMAL_MEMORY))
4132 tmp = -1;
4133 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4134 if (!pn)
4135 return 1;
4136
4137 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4138 mz = &pn->zoneinfo[zone];
4139 lruvec_init(&mz->lruvec);
4140 mz->usage_in_excess = 0;
4141 mz->on_tree = false;
4142 mz->memcg = memcg;
4143 }
4144 memcg->nodeinfo[node] = pn;
4145 return 0;
4146 }
4147
4148 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4149 {
4150 kfree(memcg->nodeinfo[node]);
4151 }
4152
4153 static struct mem_cgroup *mem_cgroup_alloc(void)
4154 {
4155 struct mem_cgroup *memcg;
4156 size_t size;
4157
4158 size = sizeof(struct mem_cgroup);
4159 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4160
4161 memcg = kzalloc(size, GFP_KERNEL);
4162 if (!memcg)
4163 return NULL;
4164
4165 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4166 if (!memcg->stat)
4167 goto out_free;
4168
4169 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4170 goto out_free_stat;
4171
4172 return memcg;
4173
4174 out_free_stat:
4175 free_percpu(memcg->stat);
4176 out_free:
4177 kfree(memcg);
4178 return NULL;
4179 }
4180
4181 /*
4182 * At destroying mem_cgroup, references from swap_cgroup can remain.
4183 * (scanning all at force_empty is too costly...)
4184 *
4185 * Instead of clearing all references at force_empty, we remember
4186 * the number of reference from swap_cgroup and free mem_cgroup when
4187 * it goes down to 0.
4188 *
4189 * Removal of cgroup itself succeeds regardless of refs from swap.
4190 */
4191
4192 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4193 {
4194 int node;
4195
4196 mem_cgroup_remove_from_trees(memcg);
4197
4198 for_each_node(node)
4199 free_mem_cgroup_per_zone_info(memcg, node);
4200
4201 free_percpu(memcg->stat);
4202 memcg_wb_domain_exit(memcg);
4203 kfree(memcg);
4204 }
4205
4206 /*
4207 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4208 */
4209 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4210 {
4211 if (!memcg->memory.parent)
4212 return NULL;
4213 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4214 }
4215 EXPORT_SYMBOL(parent_mem_cgroup);
4216
4217 static struct cgroup_subsys_state * __ref
4218 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4219 {
4220 struct mem_cgroup *memcg;
4221 long error = -ENOMEM;
4222 int node;
4223
4224 memcg = mem_cgroup_alloc();
4225 if (!memcg)
4226 return ERR_PTR(error);
4227
4228 for_each_node(node)
4229 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4230 goto free_out;
4231
4232 /* root ? */
4233 if (parent_css == NULL) {
4234 root_mem_cgroup = memcg;
4235 mem_cgroup_root_css = &memcg->css;
4236 page_counter_init(&memcg->memory, NULL);
4237 memcg->high = PAGE_COUNTER_MAX;
4238 memcg->soft_limit = PAGE_COUNTER_MAX;
4239 page_counter_init(&memcg->memsw, NULL);
4240 page_counter_init(&memcg->kmem, NULL);
4241 }
4242
4243 memcg->last_scanned_node = MAX_NUMNODES;
4244 INIT_LIST_HEAD(&memcg->oom_notify);
4245 memcg->move_charge_at_immigrate = 0;
4246 mutex_init(&memcg->thresholds_lock);
4247 spin_lock_init(&memcg->move_lock);
4248 vmpressure_init(&memcg->vmpressure);
4249 INIT_LIST_HEAD(&memcg->event_list);
4250 spin_lock_init(&memcg->event_list_lock);
4251 #ifdef CONFIG_MEMCG_KMEM
4252 memcg->kmemcg_id = -1;
4253 #endif
4254 #ifdef CONFIG_CGROUP_WRITEBACK
4255 INIT_LIST_HEAD(&memcg->cgwb_list);
4256 #endif
4257 return &memcg->css;
4258
4259 free_out:
4260 __mem_cgroup_free(memcg);
4261 return ERR_PTR(error);
4262 }
4263
4264 static int
4265 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4266 {
4267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4268 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4269 int ret;
4270
4271 if (css->id > MEM_CGROUP_ID_MAX)
4272 return -ENOSPC;
4273
4274 if (!parent)
4275 return 0;
4276
4277 mutex_lock(&memcg_create_mutex);
4278
4279 memcg->use_hierarchy = parent->use_hierarchy;
4280 memcg->oom_kill_disable = parent->oom_kill_disable;
4281 memcg->swappiness = mem_cgroup_swappiness(parent);
4282
4283 if (parent->use_hierarchy) {
4284 page_counter_init(&memcg->memory, &parent->memory);
4285 memcg->high = PAGE_COUNTER_MAX;
4286 memcg->soft_limit = PAGE_COUNTER_MAX;
4287 page_counter_init(&memcg->memsw, &parent->memsw);
4288 page_counter_init(&memcg->kmem, &parent->kmem);
4289
4290 /*
4291 * No need to take a reference to the parent because cgroup
4292 * core guarantees its existence.
4293 */
4294 } else {
4295 page_counter_init(&memcg->memory, NULL);
4296 memcg->high = PAGE_COUNTER_MAX;
4297 memcg->soft_limit = PAGE_COUNTER_MAX;
4298 page_counter_init(&memcg->memsw, NULL);
4299 page_counter_init(&memcg->kmem, NULL);
4300 /*
4301 * Deeper hierachy with use_hierarchy == false doesn't make
4302 * much sense so let cgroup subsystem know about this
4303 * unfortunate state in our controller.
4304 */
4305 if (parent != root_mem_cgroup)
4306 memory_cgrp_subsys.broken_hierarchy = true;
4307 }
4308 mutex_unlock(&memcg_create_mutex);
4309
4310 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4311 if (ret)
4312 return ret;
4313
4314 /*
4315 * Make sure the memcg is initialized: mem_cgroup_iter()
4316 * orders reading memcg->initialized against its callers
4317 * reading the memcg members.
4318 */
4319 smp_store_release(&memcg->initialized, 1);
4320
4321 return 0;
4322 }
4323
4324 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4325 {
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327 struct mem_cgroup_event *event, *tmp;
4328
4329 /*
4330 * Unregister events and notify userspace.
4331 * Notify userspace about cgroup removing only after rmdir of cgroup
4332 * directory to avoid race between userspace and kernelspace.
4333 */
4334 spin_lock(&memcg->event_list_lock);
4335 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4336 list_del_init(&event->list);
4337 schedule_work(&event->remove);
4338 }
4339 spin_unlock(&memcg->event_list_lock);
4340
4341 vmpressure_cleanup(&memcg->vmpressure);
4342
4343 memcg_deactivate_kmem(memcg);
4344
4345 wb_memcg_offline(memcg);
4346 }
4347
4348 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4349 {
4350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4351
4352 memcg_destroy_kmem(memcg);
4353 __mem_cgroup_free(memcg);
4354 }
4355
4356 /**
4357 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4358 * @css: the target css
4359 *
4360 * Reset the states of the mem_cgroup associated with @css. This is
4361 * invoked when the userland requests disabling on the default hierarchy
4362 * but the memcg is pinned through dependency. The memcg should stop
4363 * applying policies and should revert to the vanilla state as it may be
4364 * made visible again.
4365 *
4366 * The current implementation only resets the essential configurations.
4367 * This needs to be expanded to cover all the visible parts.
4368 */
4369 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4370 {
4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372
4373 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4374 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4375 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4376 memcg->low = 0;
4377 memcg->high = PAGE_COUNTER_MAX;
4378 memcg->soft_limit = PAGE_COUNTER_MAX;
4379 memcg_wb_domain_size_changed(memcg);
4380 }
4381
4382 #ifdef CONFIG_MMU
4383 /* Handlers for move charge at task migration. */
4384 static int mem_cgroup_do_precharge(unsigned long count)
4385 {
4386 int ret;
4387
4388 /* Try a single bulk charge without reclaim first */
4389 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4390 if (!ret) {
4391 mc.precharge += count;
4392 return ret;
4393 }
4394
4395 /* Try charges one by one with reclaim */
4396 while (count--) {
4397 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4398 if (ret)
4399 return ret;
4400 mc.precharge++;
4401 cond_resched();
4402 }
4403 return 0;
4404 }
4405
4406 /**
4407 * get_mctgt_type - get target type of moving charge
4408 * @vma: the vma the pte to be checked belongs
4409 * @addr: the address corresponding to the pte to be checked
4410 * @ptent: the pte to be checked
4411 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4412 *
4413 * Returns
4414 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4415 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4416 * move charge. if @target is not NULL, the page is stored in target->page
4417 * with extra refcnt got(Callers should handle it).
4418 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4419 * target for charge migration. if @target is not NULL, the entry is stored
4420 * in target->ent.
4421 *
4422 * Called with pte lock held.
4423 */
4424 union mc_target {
4425 struct page *page;
4426 swp_entry_t ent;
4427 };
4428
4429 enum mc_target_type {
4430 MC_TARGET_NONE = 0,
4431 MC_TARGET_PAGE,
4432 MC_TARGET_SWAP,
4433 };
4434
4435 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4436 unsigned long addr, pte_t ptent)
4437 {
4438 struct page *page = vm_normal_page(vma, addr, ptent);
4439
4440 if (!page || !page_mapped(page))
4441 return NULL;
4442 if (PageAnon(page)) {
4443 if (!(mc.flags & MOVE_ANON))
4444 return NULL;
4445 } else {
4446 if (!(mc.flags & MOVE_FILE))
4447 return NULL;
4448 }
4449 if (!get_page_unless_zero(page))
4450 return NULL;
4451
4452 return page;
4453 }
4454
4455 #ifdef CONFIG_SWAP
4456 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4457 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4458 {
4459 struct page *page = NULL;
4460 swp_entry_t ent = pte_to_swp_entry(ptent);
4461
4462 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4463 return NULL;
4464 /*
4465 * Because lookup_swap_cache() updates some statistics counter,
4466 * we call find_get_page() with swapper_space directly.
4467 */
4468 page = find_get_page(swap_address_space(ent), ent.val);
4469 if (do_swap_account)
4470 entry->val = ent.val;
4471
4472 return page;
4473 }
4474 #else
4475 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4476 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4477 {
4478 return NULL;
4479 }
4480 #endif
4481
4482 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4483 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4484 {
4485 struct page *page = NULL;
4486 struct address_space *mapping;
4487 pgoff_t pgoff;
4488
4489 if (!vma->vm_file) /* anonymous vma */
4490 return NULL;
4491 if (!(mc.flags & MOVE_FILE))
4492 return NULL;
4493
4494 mapping = vma->vm_file->f_mapping;
4495 pgoff = linear_page_index(vma, addr);
4496
4497 /* page is moved even if it's not RSS of this task(page-faulted). */
4498 #ifdef CONFIG_SWAP
4499 /* shmem/tmpfs may report page out on swap: account for that too. */
4500 if (shmem_mapping(mapping)) {
4501 page = find_get_entry(mapping, pgoff);
4502 if (radix_tree_exceptional_entry(page)) {
4503 swp_entry_t swp = radix_to_swp_entry(page);
4504 if (do_swap_account)
4505 *entry = swp;
4506 page = find_get_page(swap_address_space(swp), swp.val);
4507 }
4508 } else
4509 page = find_get_page(mapping, pgoff);
4510 #else
4511 page = find_get_page(mapping, pgoff);
4512 #endif
4513 return page;
4514 }
4515
4516 /**
4517 * mem_cgroup_move_account - move account of the page
4518 * @page: the page
4519 * @nr_pages: number of regular pages (>1 for huge pages)
4520 * @from: mem_cgroup which the page is moved from.
4521 * @to: mem_cgroup which the page is moved to. @from != @to.
4522 *
4523 * The caller must confirm following.
4524 * - page is not on LRU (isolate_page() is useful.)
4525 * - compound_lock is held when nr_pages > 1
4526 *
4527 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4528 * from old cgroup.
4529 */
4530 static int mem_cgroup_move_account(struct page *page,
4531 unsigned int nr_pages,
4532 struct mem_cgroup *from,
4533 struct mem_cgroup *to)
4534 {
4535 unsigned long flags;
4536 int ret;
4537 bool anon;
4538
4539 VM_BUG_ON(from == to);
4540 VM_BUG_ON_PAGE(PageLRU(page), page);
4541 /*
4542 * The page is isolated from LRU. So, collapse function
4543 * will not handle this page. But page splitting can happen.
4544 * Do this check under compound_page_lock(). The caller should
4545 * hold it.
4546 */
4547 ret = -EBUSY;
4548 if (nr_pages > 1 && !PageTransHuge(page))
4549 goto out;
4550
4551 /*
4552 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4553 * of its source page while we change it: page migration takes
4554 * both pages off the LRU, but page cache replacement doesn't.
4555 */
4556 if (!trylock_page(page))
4557 goto out;
4558
4559 ret = -EINVAL;
4560 if (page->mem_cgroup != from)
4561 goto out_unlock;
4562
4563 anon = PageAnon(page);
4564
4565 spin_lock_irqsave(&from->move_lock, flags);
4566
4567 if (!anon && page_mapped(page)) {
4568 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4569 nr_pages);
4570 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4571 nr_pages);
4572 }
4573
4574 /*
4575 * move_lock grabbed above and caller set from->moving_account, so
4576 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4577 * So mapping should be stable for dirty pages.
4578 */
4579 if (!anon && PageDirty(page)) {
4580 struct address_space *mapping = page_mapping(page);
4581
4582 if (mapping_cap_account_dirty(mapping)) {
4583 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4584 nr_pages);
4585 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4586 nr_pages);
4587 }
4588 }
4589
4590 if (PageWriteback(page)) {
4591 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4592 nr_pages);
4593 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4594 nr_pages);
4595 }
4596
4597 /*
4598 * It is safe to change page->mem_cgroup here because the page
4599 * is referenced, charged, and isolated - we can't race with
4600 * uncharging, charging, migration, or LRU putback.
4601 */
4602
4603 /* caller should have done css_get */
4604 page->mem_cgroup = to;
4605 spin_unlock_irqrestore(&from->move_lock, flags);
4606
4607 ret = 0;
4608
4609 local_irq_disable();
4610 mem_cgroup_charge_statistics(to, page, nr_pages);
4611 memcg_check_events(to, page);
4612 mem_cgroup_charge_statistics(from, page, -nr_pages);
4613 memcg_check_events(from, page);
4614 local_irq_enable();
4615 out_unlock:
4616 unlock_page(page);
4617 out:
4618 return ret;
4619 }
4620
4621 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4622 unsigned long addr, pte_t ptent, union mc_target *target)
4623 {
4624 struct page *page = NULL;
4625 enum mc_target_type ret = MC_TARGET_NONE;
4626 swp_entry_t ent = { .val = 0 };
4627
4628 if (pte_present(ptent))
4629 page = mc_handle_present_pte(vma, addr, ptent);
4630 else if (is_swap_pte(ptent))
4631 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4632 else if (pte_none(ptent))
4633 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4634
4635 if (!page && !ent.val)
4636 return ret;
4637 if (page) {
4638 /*
4639 * Do only loose check w/o serialization.
4640 * mem_cgroup_move_account() checks the page is valid or
4641 * not under LRU exclusion.
4642 */
4643 if (page->mem_cgroup == mc.from) {
4644 ret = MC_TARGET_PAGE;
4645 if (target)
4646 target->page = page;
4647 }
4648 if (!ret || !target)
4649 put_page(page);
4650 }
4651 /* There is a swap entry and a page doesn't exist or isn't charged */
4652 if (ent.val && !ret &&
4653 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4654 ret = MC_TARGET_SWAP;
4655 if (target)
4656 target->ent = ent;
4657 }
4658 return ret;
4659 }
4660
4661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4662 /*
4663 * We don't consider swapping or file mapped pages because THP does not
4664 * support them for now.
4665 * Caller should make sure that pmd_trans_huge(pmd) is true.
4666 */
4667 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4668 unsigned long addr, pmd_t pmd, union mc_target *target)
4669 {
4670 struct page *page = NULL;
4671 enum mc_target_type ret = MC_TARGET_NONE;
4672
4673 page = pmd_page(pmd);
4674 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4675 if (!(mc.flags & MOVE_ANON))
4676 return ret;
4677 if (page->mem_cgroup == mc.from) {
4678 ret = MC_TARGET_PAGE;
4679 if (target) {
4680 get_page(page);
4681 target->page = page;
4682 }
4683 }
4684 return ret;
4685 }
4686 #else
4687 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4688 unsigned long addr, pmd_t pmd, union mc_target *target)
4689 {
4690 return MC_TARGET_NONE;
4691 }
4692 #endif
4693
4694 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4695 unsigned long addr, unsigned long end,
4696 struct mm_walk *walk)
4697 {
4698 struct vm_area_struct *vma = walk->vma;
4699 pte_t *pte;
4700 spinlock_t *ptl;
4701
4702 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4703 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4704 mc.precharge += HPAGE_PMD_NR;
4705 spin_unlock(ptl);
4706 return 0;
4707 }
4708
4709 if (pmd_trans_unstable(pmd))
4710 return 0;
4711 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4712 for (; addr != end; pte++, addr += PAGE_SIZE)
4713 if (get_mctgt_type(vma, addr, *pte, NULL))
4714 mc.precharge++; /* increment precharge temporarily */
4715 pte_unmap_unlock(pte - 1, ptl);
4716 cond_resched();
4717
4718 return 0;
4719 }
4720
4721 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4722 {
4723 unsigned long precharge;
4724
4725 struct mm_walk mem_cgroup_count_precharge_walk = {
4726 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4727 .mm = mm,
4728 };
4729 down_read(&mm->mmap_sem);
4730 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4731 up_read(&mm->mmap_sem);
4732
4733 precharge = mc.precharge;
4734 mc.precharge = 0;
4735
4736 return precharge;
4737 }
4738
4739 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4740 {
4741 unsigned long precharge = mem_cgroup_count_precharge(mm);
4742
4743 VM_BUG_ON(mc.moving_task);
4744 mc.moving_task = current;
4745 return mem_cgroup_do_precharge(precharge);
4746 }
4747
4748 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4749 static void __mem_cgroup_clear_mc(void)
4750 {
4751 struct mem_cgroup *from = mc.from;
4752 struct mem_cgroup *to = mc.to;
4753
4754 /* we must uncharge all the leftover precharges from mc.to */
4755 if (mc.precharge) {
4756 cancel_charge(mc.to, mc.precharge);
4757 mc.precharge = 0;
4758 }
4759 /*
4760 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4761 * we must uncharge here.
4762 */
4763 if (mc.moved_charge) {
4764 cancel_charge(mc.from, mc.moved_charge);
4765 mc.moved_charge = 0;
4766 }
4767 /* we must fixup refcnts and charges */
4768 if (mc.moved_swap) {
4769 /* uncharge swap account from the old cgroup */
4770 if (!mem_cgroup_is_root(mc.from))
4771 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4772
4773 /*
4774 * we charged both to->memory and to->memsw, so we
4775 * should uncharge to->memory.
4776 */
4777 if (!mem_cgroup_is_root(mc.to))
4778 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4779
4780 css_put_many(&mc.from->css, mc.moved_swap);
4781
4782 /* we've already done css_get(mc.to) */
4783 mc.moved_swap = 0;
4784 }
4785 memcg_oom_recover(from);
4786 memcg_oom_recover(to);
4787 wake_up_all(&mc.waitq);
4788 }
4789
4790 static void mem_cgroup_clear_mc(void)
4791 {
4792 /*
4793 * we must clear moving_task before waking up waiters at the end of
4794 * task migration.
4795 */
4796 mc.moving_task = NULL;
4797 __mem_cgroup_clear_mc();
4798 spin_lock(&mc.lock);
4799 mc.from = NULL;
4800 mc.to = NULL;
4801 spin_unlock(&mc.lock);
4802 }
4803
4804 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4805 struct cgroup_taskset *tset)
4806 {
4807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4808 struct mem_cgroup *from;
4809 struct task_struct *p;
4810 struct mm_struct *mm;
4811 unsigned long move_flags;
4812 int ret = 0;
4813
4814 /*
4815 * We are now commited to this value whatever it is. Changes in this
4816 * tunable will only affect upcoming migrations, not the current one.
4817 * So we need to save it, and keep it going.
4818 */
4819 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4820 if (!move_flags)
4821 return 0;
4822
4823 p = cgroup_taskset_first(tset);
4824 from = mem_cgroup_from_task(p);
4825
4826 VM_BUG_ON(from == memcg);
4827
4828 mm = get_task_mm(p);
4829 if (!mm)
4830 return 0;
4831 /* We move charges only when we move a owner of the mm */
4832 if (mm->owner == p) {
4833 VM_BUG_ON(mc.from);
4834 VM_BUG_ON(mc.to);
4835 VM_BUG_ON(mc.precharge);
4836 VM_BUG_ON(mc.moved_charge);
4837 VM_BUG_ON(mc.moved_swap);
4838
4839 spin_lock(&mc.lock);
4840 mc.from = from;
4841 mc.to = memcg;
4842 mc.flags = move_flags;
4843 spin_unlock(&mc.lock);
4844 /* We set mc.moving_task later */
4845
4846 ret = mem_cgroup_precharge_mc(mm);
4847 if (ret)
4848 mem_cgroup_clear_mc();
4849 }
4850 mmput(mm);
4851 return ret;
4852 }
4853
4854 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4855 struct cgroup_taskset *tset)
4856 {
4857 if (mc.to)
4858 mem_cgroup_clear_mc();
4859 }
4860
4861 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4862 unsigned long addr, unsigned long end,
4863 struct mm_walk *walk)
4864 {
4865 int ret = 0;
4866 struct vm_area_struct *vma = walk->vma;
4867 pte_t *pte;
4868 spinlock_t *ptl;
4869 enum mc_target_type target_type;
4870 union mc_target target;
4871 struct page *page;
4872
4873 /*
4874 * We don't take compound_lock() here but no race with splitting thp
4875 * happens because:
4876 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4877 * under splitting, which means there's no concurrent thp split,
4878 * - if another thread runs into split_huge_page() just after we
4879 * entered this if-block, the thread must wait for page table lock
4880 * to be unlocked in __split_huge_page_splitting(), where the main
4881 * part of thp split is not executed yet.
4882 */
4883 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4884 if (mc.precharge < HPAGE_PMD_NR) {
4885 spin_unlock(ptl);
4886 return 0;
4887 }
4888 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4889 if (target_type == MC_TARGET_PAGE) {
4890 page = target.page;
4891 if (!isolate_lru_page(page)) {
4892 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4893 mc.from, mc.to)) {
4894 mc.precharge -= HPAGE_PMD_NR;
4895 mc.moved_charge += HPAGE_PMD_NR;
4896 }
4897 putback_lru_page(page);
4898 }
4899 put_page(page);
4900 }
4901 spin_unlock(ptl);
4902 return 0;
4903 }
4904
4905 if (pmd_trans_unstable(pmd))
4906 return 0;
4907 retry:
4908 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4909 for (; addr != end; addr += PAGE_SIZE) {
4910 pte_t ptent = *(pte++);
4911 swp_entry_t ent;
4912
4913 if (!mc.precharge)
4914 break;
4915
4916 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4917 case MC_TARGET_PAGE:
4918 page = target.page;
4919 if (isolate_lru_page(page))
4920 goto put;
4921 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4922 mc.precharge--;
4923 /* we uncharge from mc.from later. */
4924 mc.moved_charge++;
4925 }
4926 putback_lru_page(page);
4927 put: /* get_mctgt_type() gets the page */
4928 put_page(page);
4929 break;
4930 case MC_TARGET_SWAP:
4931 ent = target.ent;
4932 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4933 mc.precharge--;
4934 /* we fixup refcnts and charges later. */
4935 mc.moved_swap++;
4936 }
4937 break;
4938 default:
4939 break;
4940 }
4941 }
4942 pte_unmap_unlock(pte - 1, ptl);
4943 cond_resched();
4944
4945 if (addr != end) {
4946 /*
4947 * We have consumed all precharges we got in can_attach().
4948 * We try charge one by one, but don't do any additional
4949 * charges to mc.to if we have failed in charge once in attach()
4950 * phase.
4951 */
4952 ret = mem_cgroup_do_precharge(1);
4953 if (!ret)
4954 goto retry;
4955 }
4956
4957 return ret;
4958 }
4959
4960 static void mem_cgroup_move_charge(struct mm_struct *mm)
4961 {
4962 struct mm_walk mem_cgroup_move_charge_walk = {
4963 .pmd_entry = mem_cgroup_move_charge_pte_range,
4964 .mm = mm,
4965 };
4966
4967 lru_add_drain_all();
4968 /*
4969 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4970 * move_lock while we're moving its pages to another memcg.
4971 * Then wait for already started RCU-only updates to finish.
4972 */
4973 atomic_inc(&mc.from->moving_account);
4974 synchronize_rcu();
4975 retry:
4976 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4977 /*
4978 * Someone who are holding the mmap_sem might be waiting in
4979 * waitq. So we cancel all extra charges, wake up all waiters,
4980 * and retry. Because we cancel precharges, we might not be able
4981 * to move enough charges, but moving charge is a best-effort
4982 * feature anyway, so it wouldn't be a big problem.
4983 */
4984 __mem_cgroup_clear_mc();
4985 cond_resched();
4986 goto retry;
4987 }
4988 /*
4989 * When we have consumed all precharges and failed in doing
4990 * additional charge, the page walk just aborts.
4991 */
4992 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4993 up_read(&mm->mmap_sem);
4994 atomic_dec(&mc.from->moving_account);
4995 }
4996
4997 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
4998 struct cgroup_taskset *tset)
4999 {
5000 struct task_struct *p = cgroup_taskset_first(tset);
5001 struct mm_struct *mm = get_task_mm(p);
5002
5003 if (mm) {
5004 if (mc.to)
5005 mem_cgroup_move_charge(mm);
5006 mmput(mm);
5007 }
5008 if (mc.to)
5009 mem_cgroup_clear_mc();
5010 }
5011 #else /* !CONFIG_MMU */
5012 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5013 struct cgroup_taskset *tset)
5014 {
5015 return 0;
5016 }
5017 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5018 struct cgroup_taskset *tset)
5019 {
5020 }
5021 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5022 struct cgroup_taskset *tset)
5023 {
5024 }
5025 #endif
5026
5027 /*
5028 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5029 * to verify whether we're attached to the default hierarchy on each mount
5030 * attempt.
5031 */
5032 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5033 {
5034 /*
5035 * use_hierarchy is forced on the default hierarchy. cgroup core
5036 * guarantees that @root doesn't have any children, so turning it
5037 * on for the root memcg is enough.
5038 */
5039 if (cgroup_on_dfl(root_css->cgroup))
5040 root_mem_cgroup->use_hierarchy = true;
5041 else
5042 root_mem_cgroup->use_hierarchy = false;
5043 }
5044
5045 static u64 memory_current_read(struct cgroup_subsys_state *css,
5046 struct cftype *cft)
5047 {
5048 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5049 }
5050
5051 static int memory_low_show(struct seq_file *m, void *v)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5054 unsigned long low = READ_ONCE(memcg->low);
5055
5056 if (low == PAGE_COUNTER_MAX)
5057 seq_puts(m, "max\n");
5058 else
5059 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5060
5061 return 0;
5062 }
5063
5064 static ssize_t memory_low_write(struct kernfs_open_file *of,
5065 char *buf, size_t nbytes, loff_t off)
5066 {
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5068 unsigned long low;
5069 int err;
5070
5071 buf = strstrip(buf);
5072 err = page_counter_memparse(buf, "max", &low);
5073 if (err)
5074 return err;
5075
5076 memcg->low = low;
5077
5078 return nbytes;
5079 }
5080
5081 static int memory_high_show(struct seq_file *m, void *v)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5084 unsigned long high = READ_ONCE(memcg->high);
5085
5086 if (high == PAGE_COUNTER_MAX)
5087 seq_puts(m, "max\n");
5088 else
5089 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5090
5091 return 0;
5092 }
5093
5094 static ssize_t memory_high_write(struct kernfs_open_file *of,
5095 char *buf, size_t nbytes, loff_t off)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5098 unsigned long high;
5099 int err;
5100
5101 buf = strstrip(buf);
5102 err = page_counter_memparse(buf, "max", &high);
5103 if (err)
5104 return err;
5105
5106 memcg->high = high;
5107
5108 memcg_wb_domain_size_changed(memcg);
5109 return nbytes;
5110 }
5111
5112 static int memory_max_show(struct seq_file *m, void *v)
5113 {
5114 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115 unsigned long max = READ_ONCE(memcg->memory.limit);
5116
5117 if (max == PAGE_COUNTER_MAX)
5118 seq_puts(m, "max\n");
5119 else
5120 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5121
5122 return 0;
5123 }
5124
5125 static ssize_t memory_max_write(struct kernfs_open_file *of,
5126 char *buf, size_t nbytes, loff_t off)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5129 unsigned long max;
5130 int err;
5131
5132 buf = strstrip(buf);
5133 err = page_counter_memparse(buf, "max", &max);
5134 if (err)
5135 return err;
5136
5137 err = mem_cgroup_resize_limit(memcg, max);
5138 if (err)
5139 return err;
5140
5141 memcg_wb_domain_size_changed(memcg);
5142 return nbytes;
5143 }
5144
5145 static int memory_events_show(struct seq_file *m, void *v)
5146 {
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5148
5149 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5150 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5151 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5152 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5153
5154 return 0;
5155 }
5156
5157 static struct cftype memory_files[] = {
5158 {
5159 .name = "current",
5160 .read_u64 = memory_current_read,
5161 },
5162 {
5163 .name = "low",
5164 .flags = CFTYPE_NOT_ON_ROOT,
5165 .seq_show = memory_low_show,
5166 .write = memory_low_write,
5167 },
5168 {
5169 .name = "high",
5170 .flags = CFTYPE_NOT_ON_ROOT,
5171 .seq_show = memory_high_show,
5172 .write = memory_high_write,
5173 },
5174 {
5175 .name = "max",
5176 .flags = CFTYPE_NOT_ON_ROOT,
5177 .seq_show = memory_max_show,
5178 .write = memory_max_write,
5179 },
5180 {
5181 .name = "events",
5182 .flags = CFTYPE_NOT_ON_ROOT,
5183 .seq_show = memory_events_show,
5184 },
5185 { } /* terminate */
5186 };
5187
5188 struct cgroup_subsys memory_cgrp_subsys = {
5189 .css_alloc = mem_cgroup_css_alloc,
5190 .css_online = mem_cgroup_css_online,
5191 .css_offline = mem_cgroup_css_offline,
5192 .css_free = mem_cgroup_css_free,
5193 .css_reset = mem_cgroup_css_reset,
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
5196 .attach = mem_cgroup_move_task,
5197 .bind = mem_cgroup_bind,
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
5200 .early_init = 0,
5201 };
5202
5203 /**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212 {
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
5225 if (page_counter_read(&memcg->memory) >= memcg->low)
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
5234 if (page_counter_read(&memcg->memory) >= memcg->low)
5235 return false;
5236 }
5237 return true;
5238 }
5239
5240 /**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5259 {
5260 struct mem_cgroup *memcg = NULL;
5261 unsigned int nr_pages = 1;
5262 int ret = 0;
5263
5264 if (mem_cgroup_disabled())
5265 goto out;
5266
5267 if (PageSwapCache(page)) {
5268 /*
5269 * Every swap fault against a single page tries to charge the
5270 * page, bail as early as possible. shmem_unuse() encounters
5271 * already charged pages, too. The USED bit is protected by
5272 * the page lock, which serializes swap cache removal, which
5273 * in turn serializes uncharging.
5274 */
5275 VM_BUG_ON_PAGE(!PageLocked(page), page);
5276 if (page->mem_cgroup)
5277 goto out;
5278
5279 if (do_swap_account) {
5280 swp_entry_t ent = { .val = page_private(page), };
5281 unsigned short id = lookup_swap_cgroup_id(ent);
5282
5283 rcu_read_lock();
5284 memcg = mem_cgroup_from_id(id);
5285 if (memcg && !css_tryget_online(&memcg->css))
5286 memcg = NULL;
5287 rcu_read_unlock();
5288 }
5289 }
5290
5291 if (PageTransHuge(page)) {
5292 nr_pages <<= compound_order(page);
5293 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5294 }
5295
5296 if (!memcg)
5297 memcg = get_mem_cgroup_from_mm(mm);
5298
5299 ret = try_charge(memcg, gfp_mask, nr_pages);
5300
5301 css_put(&memcg->css);
5302 out:
5303 *memcgp = memcg;
5304 return ret;
5305 }
5306
5307 /**
5308 * mem_cgroup_commit_charge - commit a page charge
5309 * @page: page to charge
5310 * @memcg: memcg to charge the page to
5311 * @lrucare: page might be on LRU already
5312 *
5313 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5314 * after page->mapping has been set up. This must happen atomically
5315 * as part of the page instantiation, i.e. under the page table lock
5316 * for anonymous pages, under the page lock for page and swap cache.
5317 *
5318 * In addition, the page must not be on the LRU during the commit, to
5319 * prevent racing with task migration. If it might be, use @lrucare.
5320 *
5321 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5322 */
5323 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5324 bool lrucare)
5325 {
5326 unsigned int nr_pages = 1;
5327
5328 VM_BUG_ON_PAGE(!page->mapping, page);
5329 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5330
5331 if (mem_cgroup_disabled())
5332 return;
5333 /*
5334 * Swap faults will attempt to charge the same page multiple
5335 * times. But reuse_swap_page() might have removed the page
5336 * from swapcache already, so we can't check PageSwapCache().
5337 */
5338 if (!memcg)
5339 return;
5340
5341 commit_charge(page, memcg, lrucare);
5342
5343 if (PageTransHuge(page)) {
5344 nr_pages <<= compound_order(page);
5345 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5346 }
5347
5348 local_irq_disable();
5349 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5350 memcg_check_events(memcg, page);
5351 local_irq_enable();
5352
5353 if (do_swap_account && PageSwapCache(page)) {
5354 swp_entry_t entry = { .val = page_private(page) };
5355 /*
5356 * The swap entry might not get freed for a long time,
5357 * let's not wait for it. The page already received a
5358 * memory+swap charge, drop the swap entry duplicate.
5359 */
5360 mem_cgroup_uncharge_swap(entry);
5361 }
5362 }
5363
5364 /**
5365 * mem_cgroup_cancel_charge - cancel a page charge
5366 * @page: page to charge
5367 * @memcg: memcg to charge the page to
5368 *
5369 * Cancel a charge transaction started by mem_cgroup_try_charge().
5370 */
5371 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5372 {
5373 unsigned int nr_pages = 1;
5374
5375 if (mem_cgroup_disabled())
5376 return;
5377 /*
5378 * Swap faults will attempt to charge the same page multiple
5379 * times. But reuse_swap_page() might have removed the page
5380 * from swapcache already, so we can't check PageSwapCache().
5381 */
5382 if (!memcg)
5383 return;
5384
5385 if (PageTransHuge(page)) {
5386 nr_pages <<= compound_order(page);
5387 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5388 }
5389
5390 cancel_charge(memcg, nr_pages);
5391 }
5392
5393 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5394 unsigned long nr_anon, unsigned long nr_file,
5395 unsigned long nr_huge, struct page *dummy_page)
5396 {
5397 unsigned long nr_pages = nr_anon + nr_file;
5398 unsigned long flags;
5399
5400 if (!mem_cgroup_is_root(memcg)) {
5401 page_counter_uncharge(&memcg->memory, nr_pages);
5402 if (do_swap_account)
5403 page_counter_uncharge(&memcg->memsw, nr_pages);
5404 memcg_oom_recover(memcg);
5405 }
5406
5407 local_irq_save(flags);
5408 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5409 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5410 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5411 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5412 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5413 memcg_check_events(memcg, dummy_page);
5414 local_irq_restore(flags);
5415
5416 if (!mem_cgroup_is_root(memcg))
5417 css_put_many(&memcg->css, nr_pages);
5418 }
5419
5420 static void uncharge_list(struct list_head *page_list)
5421 {
5422 struct mem_cgroup *memcg = NULL;
5423 unsigned long nr_anon = 0;
5424 unsigned long nr_file = 0;
5425 unsigned long nr_huge = 0;
5426 unsigned long pgpgout = 0;
5427 struct list_head *next;
5428 struct page *page;
5429
5430 next = page_list->next;
5431 do {
5432 unsigned int nr_pages = 1;
5433
5434 page = list_entry(next, struct page, lru);
5435 next = page->lru.next;
5436
5437 VM_BUG_ON_PAGE(PageLRU(page), page);
5438 VM_BUG_ON_PAGE(page_count(page), page);
5439
5440 if (!page->mem_cgroup)
5441 continue;
5442
5443 /*
5444 * Nobody should be changing or seriously looking at
5445 * page->mem_cgroup at this point, we have fully
5446 * exclusive access to the page.
5447 */
5448
5449 if (memcg != page->mem_cgroup) {
5450 if (memcg) {
5451 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5452 nr_huge, page);
5453 pgpgout = nr_anon = nr_file = nr_huge = 0;
5454 }
5455 memcg = page->mem_cgroup;
5456 }
5457
5458 if (PageTransHuge(page)) {
5459 nr_pages <<= compound_order(page);
5460 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5461 nr_huge += nr_pages;
5462 }
5463
5464 if (PageAnon(page))
5465 nr_anon += nr_pages;
5466 else
5467 nr_file += nr_pages;
5468
5469 page->mem_cgroup = NULL;
5470
5471 pgpgout++;
5472 } while (next != page_list);
5473
5474 if (memcg)
5475 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5476 nr_huge, page);
5477 }
5478
5479 /**
5480 * mem_cgroup_uncharge - uncharge a page
5481 * @page: page to uncharge
5482 *
5483 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5484 * mem_cgroup_commit_charge().
5485 */
5486 void mem_cgroup_uncharge(struct page *page)
5487 {
5488 if (mem_cgroup_disabled())
5489 return;
5490
5491 /* Don't touch page->lru of any random page, pre-check: */
5492 if (!page->mem_cgroup)
5493 return;
5494
5495 INIT_LIST_HEAD(&page->lru);
5496 uncharge_list(&page->lru);
5497 }
5498
5499 /**
5500 * mem_cgroup_uncharge_list - uncharge a list of page
5501 * @page_list: list of pages to uncharge
5502 *
5503 * Uncharge a list of pages previously charged with
5504 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5505 */
5506 void mem_cgroup_uncharge_list(struct list_head *page_list)
5507 {
5508 if (mem_cgroup_disabled())
5509 return;
5510
5511 if (!list_empty(page_list))
5512 uncharge_list(page_list);
5513 }
5514
5515 /**
5516 * mem_cgroup_migrate - migrate a charge to another page
5517 * @oldpage: currently charged page
5518 * @newpage: page to transfer the charge to
5519 * @lrucare: either or both pages might be on the LRU already
5520 *
5521 * Migrate the charge from @oldpage to @newpage.
5522 *
5523 * Both pages must be locked, @newpage->mapping must be set up.
5524 */
5525 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5526 bool lrucare)
5527 {
5528 struct mem_cgroup *memcg;
5529 int isolated;
5530
5531 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5532 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5533 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5534 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5535 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5536 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5537 newpage);
5538
5539 if (mem_cgroup_disabled())
5540 return;
5541
5542 /* Page cache replacement: new page already charged? */
5543 if (newpage->mem_cgroup)
5544 return;
5545
5546 /*
5547 * Swapcache readahead pages can get migrated before being
5548 * charged, and migration from compaction can happen to an
5549 * uncharged page when the PFN walker finds a page that
5550 * reclaim just put back on the LRU but has not released yet.
5551 */
5552 memcg = oldpage->mem_cgroup;
5553 if (!memcg)
5554 return;
5555
5556 if (lrucare)
5557 lock_page_lru(oldpage, &isolated);
5558
5559 oldpage->mem_cgroup = NULL;
5560
5561 if (lrucare)
5562 unlock_page_lru(oldpage, isolated);
5563
5564 commit_charge(newpage, memcg, lrucare);
5565 }
5566
5567 /*
5568 * subsys_initcall() for memory controller.
5569 *
5570 * Some parts like hotcpu_notifier() have to be initialized from this context
5571 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5572 * everything that doesn't depend on a specific mem_cgroup structure should
5573 * be initialized from here.
5574 */
5575 static int __init mem_cgroup_init(void)
5576 {
5577 int cpu, node;
5578
5579 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5580
5581 for_each_possible_cpu(cpu)
5582 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5583 drain_local_stock);
5584
5585 for_each_node(node) {
5586 struct mem_cgroup_tree_per_node *rtpn;
5587 int zone;
5588
5589 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5590 node_online(node) ? node : NUMA_NO_NODE);
5591
5592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5593 struct mem_cgroup_tree_per_zone *rtpz;
5594
5595 rtpz = &rtpn->rb_tree_per_zone[zone];
5596 rtpz->rb_root = RB_ROOT;
5597 spin_lock_init(&rtpz->lock);
5598 }
5599 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5600 }
5601
5602 return 0;
5603 }
5604 subsys_initcall(mem_cgroup_init);
5605
5606 #ifdef CONFIG_MEMCG_SWAP
5607 /**
5608 * mem_cgroup_swapout - transfer a memsw charge to swap
5609 * @page: page whose memsw charge to transfer
5610 * @entry: swap entry to move the charge to
5611 *
5612 * Transfer the memsw charge of @page to @entry.
5613 */
5614 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5615 {
5616 struct mem_cgroup *memcg;
5617 unsigned short oldid;
5618
5619 VM_BUG_ON_PAGE(PageLRU(page), page);
5620 VM_BUG_ON_PAGE(page_count(page), page);
5621
5622 if (!do_swap_account)
5623 return;
5624
5625 memcg = page->mem_cgroup;
5626
5627 /* Readahead page, never charged */
5628 if (!memcg)
5629 return;
5630
5631 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5632 VM_BUG_ON_PAGE(oldid, page);
5633 mem_cgroup_swap_statistics(memcg, true);
5634
5635 page->mem_cgroup = NULL;
5636
5637 if (!mem_cgroup_is_root(memcg))
5638 page_counter_uncharge(&memcg->memory, 1);
5639
5640 /*
5641 * Interrupts should be disabled here because the caller holds the
5642 * mapping->tree_lock lock which is taken with interrupts-off. It is
5643 * important here to have the interrupts disabled because it is the
5644 * only synchronisation we have for udpating the per-CPU variables.
5645 */
5646 VM_BUG_ON(!irqs_disabled());
5647 mem_cgroup_charge_statistics(memcg, page, -1);
5648 memcg_check_events(memcg, page);
5649 }
5650
5651 /**
5652 * mem_cgroup_uncharge_swap - uncharge a swap entry
5653 * @entry: swap entry to uncharge
5654 *
5655 * Drop the memsw charge associated with @entry.
5656 */
5657 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5658 {
5659 struct mem_cgroup *memcg;
5660 unsigned short id;
5661
5662 if (!do_swap_account)
5663 return;
5664
5665 id = swap_cgroup_record(entry, 0);
5666 rcu_read_lock();
5667 memcg = mem_cgroup_from_id(id);
5668 if (memcg) {
5669 if (!mem_cgroup_is_root(memcg))
5670 page_counter_uncharge(&memcg->memsw, 1);
5671 mem_cgroup_swap_statistics(memcg, false);
5672 css_put(&memcg->css);
5673 }
5674 rcu_read_unlock();
5675 }
5676
5677 /* for remember boot option*/
5678 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5679 static int really_do_swap_account __initdata = 1;
5680 #else
5681 static int really_do_swap_account __initdata;
5682 #endif
5683
5684 static int __init enable_swap_account(char *s)
5685 {
5686 if (!strcmp(s, "1"))
5687 really_do_swap_account = 1;
5688 else if (!strcmp(s, "0"))
5689 really_do_swap_account = 0;
5690 return 1;
5691 }
5692 __setup("swapaccount=", enable_swap_account);
5693
5694 static struct cftype memsw_cgroup_files[] = {
5695 {
5696 .name = "memsw.usage_in_bytes",
5697 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5698 .read_u64 = mem_cgroup_read_u64,
5699 },
5700 {
5701 .name = "memsw.max_usage_in_bytes",
5702 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5703 .write = mem_cgroup_reset,
5704 .read_u64 = mem_cgroup_read_u64,
5705 },
5706 {
5707 .name = "memsw.limit_in_bytes",
5708 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5709 .write = mem_cgroup_write,
5710 .read_u64 = mem_cgroup_read_u64,
5711 },
5712 {
5713 .name = "memsw.failcnt",
5714 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5715 .write = mem_cgroup_reset,
5716 .read_u64 = mem_cgroup_read_u64,
5717 },
5718 { }, /* terminate */
5719 };
5720
5721 static int __init mem_cgroup_swap_init(void)
5722 {
5723 if (!mem_cgroup_disabled() && really_do_swap_account) {
5724 do_swap_account = 1;
5725 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5726 memsw_cgroup_files));
5727 }
5728 return 0;
5729 }
5730 subsys_initcall(mem_cgroup_swap_init);
5731
5732 #endif /* CONFIG_MEMCG_SWAP */