]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
memcg: move all acccounting to parent at rmdir()
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mm_inline.h>
36 #include <linux/page_cgroup.h>
37
38 #include <asm/uaccess.h>
39
40 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
41 #define MEM_CGROUP_RECLAIM_RETRIES 5
42
43 /*
44 * Statistics for memory cgroup.
45 */
46 enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
54
55 MEM_CGROUP_STAT_NSTATS,
56 };
57
58 struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60 } ____cacheline_aligned_in_smp;
61
62 struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64 };
65
66 /*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
69 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
70 enum mem_cgroup_stat_index idx, int val)
71 {
72 stat->count[idx] += val;
73 }
74
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77 {
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83 }
84
85 /*
86 * per-zone information in memory controller.
87 */
88 struct mem_cgroup_per_zone {
89 /*
90 * spin_lock to protect the per cgroup LRU
91 */
92 spinlock_t lru_lock;
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
95 };
96 /* Macro for accessing counter */
97 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99 struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101 };
102
103 struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105 };
106
107 /*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
117 */
118 struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
127 */
128 struct mem_cgroup_lru_info info;
129
130 int prev_priority; /* for recording reclaim priority */
131 /*
132 * statistics.
133 */
134 struct mem_cgroup_stat stat;
135 };
136 static struct mem_cgroup init_mem_cgroup;
137
138 enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED,
141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
143 NR_CHARGE_TYPE,
144 };
145
146 /* only for here (for easy reading.) */
147 #define PCGF_CACHE (1UL << PCG_CACHE)
148 #define PCGF_USED (1UL << PCG_USED)
149 #define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150 #define PCGF_LOCK (1UL << PCG_LOCK)
151 #define PCGF_FILE (1UL << PCG_FILE)
152 static const unsigned long
153 pcg_default_flags[NR_CHARGE_TYPE] = {
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */
158 };
159
160 /*
161 * Always modified under lru lock. Then, not necessary to preempt_disable()
162 */
163 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc,
165 bool charge)
166 {
167 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat;
169 struct mem_cgroup_stat_cpu *cpustat;
170
171 VM_BUG_ON(!irqs_disabled());
172
173 cpustat = &stat->cpustat[smp_processor_id()];
174 if (PageCgroupCache(pc))
175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
176 else
177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
178
179 if (charge)
180 __mem_cgroup_stat_add_safe(cpustat,
181 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
182 else
183 __mem_cgroup_stat_add_safe(cpustat,
184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
185 }
186
187 static struct mem_cgroup_per_zone *
188 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
189 {
190 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
191 }
192
193 static struct mem_cgroup_per_zone *
194 page_cgroup_zoneinfo(struct page_cgroup *pc)
195 {
196 struct mem_cgroup *mem = pc->mem_cgroup;
197 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc);
199
200 return mem_cgroup_zoneinfo(mem, nid, zid);
201 }
202
203 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
204 enum lru_list idx)
205 {
206 int nid, zid;
207 struct mem_cgroup_per_zone *mz;
208 u64 total = 0;
209
210 for_each_online_node(nid)
211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
212 mz = mem_cgroup_zoneinfo(mem, nid, zid);
213 total += MEM_CGROUP_ZSTAT(mz, idx);
214 }
215 return total;
216 }
217
218 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
219 {
220 return container_of(cgroup_subsys_state(cont,
221 mem_cgroup_subsys_id), struct mem_cgroup,
222 css);
223 }
224
225 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
226 {
227 /*
228 * mm_update_next_owner() may clear mm->owner to NULL
229 * if it races with swapoff, page migration, etc.
230 * So this can be called with p == NULL.
231 */
232 if (unlikely(!p))
233 return NULL;
234
235 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
236 struct mem_cgroup, css);
237 }
238
239 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
240 struct page_cgroup *pc)
241 {
242 int lru = LRU_BASE;
243
244 if (PageCgroupUnevictable(pc))
245 lru = LRU_UNEVICTABLE;
246 else {
247 if (PageCgroupActive(pc))
248 lru += LRU_ACTIVE;
249 if (PageCgroupFile(pc))
250 lru += LRU_FILE;
251 }
252
253 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
254
255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
256 list_del(&pc->lru);
257 }
258
259 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
260 struct page_cgroup *pc, bool hot)
261 {
262 int lru = LRU_BASE;
263
264 if (PageCgroupUnevictable(pc))
265 lru = LRU_UNEVICTABLE;
266 else {
267 if (PageCgroupActive(pc))
268 lru += LRU_ACTIVE;
269 if (PageCgroupFile(pc))
270 lru += LRU_FILE;
271 }
272
273 MEM_CGROUP_ZSTAT(mz, lru) += 1;
274 if (hot)
275 list_add(&pc->lru, &mz->lists[lru]);
276 else
277 list_add_tail(&pc->lru, &mz->lists[lru]);
278
279 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
280 }
281
282 static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
283 {
284 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
285 int active = PageCgroupActive(pc);
286 int file = PageCgroupFile(pc);
287 int unevictable = PageCgroupUnevictable(pc);
288 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
289 (LRU_FILE * !!file + !!active);
290
291 if (lru == from)
292 return;
293
294 MEM_CGROUP_ZSTAT(mz, from) -= 1;
295 /*
296 * However this is done under mz->lru_lock, another flags, which
297 * are not related to LRU, will be modified from out-of-lock.
298 * We have to use atomic set/clear flags.
299 */
300 if (is_unevictable_lru(lru)) {
301 ClearPageCgroupActive(pc);
302 SetPageCgroupUnevictable(pc);
303 } else {
304 if (is_active_lru(lru))
305 SetPageCgroupActive(pc);
306 else
307 ClearPageCgroupActive(pc);
308 ClearPageCgroupUnevictable(pc);
309 }
310
311 MEM_CGROUP_ZSTAT(mz, lru) += 1;
312 list_move(&pc->lru, &mz->lists[lru]);
313 }
314
315 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
316 {
317 int ret;
318
319 task_lock(task);
320 ret = task->mm && mm_match_cgroup(task->mm, mem);
321 task_unlock(task);
322 return ret;
323 }
324
325 /*
326 * This routine assumes that the appropriate zone's lru lock is already held
327 */
328 void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
329 {
330 struct page_cgroup *pc;
331 struct mem_cgroup_per_zone *mz;
332 unsigned long flags;
333
334 if (mem_cgroup_subsys.disabled)
335 return;
336
337 /*
338 * We cannot lock_page_cgroup while holding zone's lru_lock,
339 * because other holders of lock_page_cgroup can be interrupted
340 * with an attempt to rotate_reclaimable_page. But we cannot
341 * safely get to page_cgroup without it, so just try_lock it:
342 * mem_cgroup_isolate_pages allows for page left on wrong list.
343 */
344 pc = lookup_page_cgroup(page);
345 if (!trylock_page_cgroup(pc))
346 return;
347 if (pc && PageCgroupUsed(pc)) {
348 mz = page_cgroup_zoneinfo(pc);
349 spin_lock_irqsave(&mz->lru_lock, flags);
350 __mem_cgroup_move_lists(pc, lru);
351 spin_unlock_irqrestore(&mz->lru_lock, flags);
352 }
353 unlock_page_cgroup(pc);
354 }
355
356 /*
357 * Calculate mapped_ratio under memory controller. This will be used in
358 * vmscan.c for deteremining we have to reclaim mapped pages.
359 */
360 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
361 {
362 long total, rss;
363
364 /*
365 * usage is recorded in bytes. But, here, we assume the number of
366 * physical pages can be represented by "long" on any arch.
367 */
368 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
369 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
370 return (int)((rss * 100L) / total);
371 }
372
373 /*
374 * prev_priority control...this will be used in memory reclaim path.
375 */
376 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
377 {
378 return mem->prev_priority;
379 }
380
381 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
382 {
383 if (priority < mem->prev_priority)
384 mem->prev_priority = priority;
385 }
386
387 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
388 {
389 mem->prev_priority = priority;
390 }
391
392 /*
393 * Calculate # of pages to be scanned in this priority/zone.
394 * See also vmscan.c
395 *
396 * priority starts from "DEF_PRIORITY" and decremented in each loop.
397 * (see include/linux/mmzone.h)
398 */
399
400 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
401 int priority, enum lru_list lru)
402 {
403 long nr_pages;
404 int nid = zone->zone_pgdat->node_id;
405 int zid = zone_idx(zone);
406 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
407
408 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
409
410 return (nr_pages >> priority);
411 }
412
413 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
414 struct list_head *dst,
415 unsigned long *scanned, int order,
416 int mode, struct zone *z,
417 struct mem_cgroup *mem_cont,
418 int active, int file)
419 {
420 unsigned long nr_taken = 0;
421 struct page *page;
422 unsigned long scan;
423 LIST_HEAD(pc_list);
424 struct list_head *src;
425 struct page_cgroup *pc, *tmp;
426 int nid = z->zone_pgdat->node_id;
427 int zid = zone_idx(z);
428 struct mem_cgroup_per_zone *mz;
429 int lru = LRU_FILE * !!file + !!active;
430
431 BUG_ON(!mem_cont);
432 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
433 src = &mz->lists[lru];
434
435 spin_lock(&mz->lru_lock);
436 scan = 0;
437 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
438 if (scan >= nr_to_scan)
439 break;
440 if (unlikely(!PageCgroupUsed(pc)))
441 continue;
442 page = pc->page;
443
444 if (unlikely(!PageLRU(page)))
445 continue;
446
447 /*
448 * TODO: play better with lumpy reclaim, grabbing anything.
449 */
450 if (PageUnevictable(page) ||
451 (PageActive(page) && !active) ||
452 (!PageActive(page) && active)) {
453 __mem_cgroup_move_lists(pc, page_lru(page));
454 continue;
455 }
456
457 scan++;
458 list_move(&pc->lru, &pc_list);
459
460 if (__isolate_lru_page(page, mode, file) == 0) {
461 list_move(&page->lru, dst);
462 nr_taken++;
463 }
464 }
465
466 list_splice(&pc_list, src);
467 spin_unlock(&mz->lru_lock);
468
469 *scanned = scan;
470 return nr_taken;
471 }
472
473 /*
474 * Unlike exported interface, "oom" parameter is added. if oom==true,
475 * oom-killer can be invoked.
476 */
477 static int __mem_cgroup_try_charge(struct mm_struct *mm,
478 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
479 {
480 struct mem_cgroup *mem;
481 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
482 /*
483 * We always charge the cgroup the mm_struct belongs to.
484 * The mm_struct's mem_cgroup changes on task migration if the
485 * thread group leader migrates. It's possible that mm is not
486 * set, if so charge the init_mm (happens for pagecache usage).
487 */
488 if (likely(!*memcg)) {
489 rcu_read_lock();
490 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
491 if (unlikely(!mem)) {
492 rcu_read_unlock();
493 return 0;
494 }
495 /*
496 * For every charge from the cgroup, increment reference count
497 */
498 css_get(&mem->css);
499 *memcg = mem;
500 rcu_read_unlock();
501 } else {
502 mem = *memcg;
503 css_get(&mem->css);
504 }
505
506
507 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
508 if (!(gfp_mask & __GFP_WAIT))
509 goto nomem;
510
511 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
512 continue;
513
514 /*
515 * try_to_free_mem_cgroup_pages() might not give us a full
516 * picture of reclaim. Some pages are reclaimed and might be
517 * moved to swap cache or just unmapped from the cgroup.
518 * Check the limit again to see if the reclaim reduced the
519 * current usage of the cgroup before giving up
520 */
521 if (res_counter_check_under_limit(&mem->res))
522 continue;
523
524 if (!nr_retries--) {
525 if (oom)
526 mem_cgroup_out_of_memory(mem, gfp_mask);
527 goto nomem;
528 }
529 }
530 return 0;
531 nomem:
532 css_put(&mem->css);
533 return -ENOMEM;
534 }
535
536 /**
537 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
538 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
539 * @gfp_mask: gfp_mask for reclaim.
540 * @memcg: a pointer to memory cgroup which is charged against.
541 *
542 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
543 * memory cgroup from @mm is got and stored in *memcg.
544 *
545 * Returns 0 if success. -ENOMEM at failure.
546 * This call can invoke OOM-Killer.
547 */
548
549 int mem_cgroup_try_charge(struct mm_struct *mm,
550 gfp_t mask, struct mem_cgroup **memcg)
551 {
552 return __mem_cgroup_try_charge(mm, mask, memcg, true);
553 }
554
555 /*
556 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
557 * USED state. If already USED, uncharge and return.
558 */
559
560 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
561 struct page_cgroup *pc,
562 enum charge_type ctype)
563 {
564 struct mem_cgroup_per_zone *mz;
565 unsigned long flags;
566
567 /* try_charge() can return NULL to *memcg, taking care of it. */
568 if (!mem)
569 return;
570
571 lock_page_cgroup(pc);
572 if (unlikely(PageCgroupUsed(pc))) {
573 unlock_page_cgroup(pc);
574 res_counter_uncharge(&mem->res, PAGE_SIZE);
575 css_put(&mem->css);
576 return;
577 }
578 pc->mem_cgroup = mem;
579 /*
580 * If a page is accounted as a page cache, insert to inactive list.
581 * If anon, insert to active list.
582 */
583 pc->flags = pcg_default_flags[ctype];
584
585 mz = page_cgroup_zoneinfo(pc);
586
587 spin_lock_irqsave(&mz->lru_lock, flags);
588 __mem_cgroup_add_list(mz, pc, true);
589 spin_unlock_irqrestore(&mz->lru_lock, flags);
590 unlock_page_cgroup(pc);
591 }
592
593 /**
594 * mem_cgroup_move_account - move account of the page
595 * @pc: page_cgroup of the page.
596 * @from: mem_cgroup which the page is moved from.
597 * @to: mem_cgroup which the page is moved to. @from != @to.
598 *
599 * The caller must confirm following.
600 * 1. disable irq.
601 * 2. lru_lock of old mem_cgroup(@from) should be held.
602 *
603 * returns 0 at success,
604 * returns -EBUSY when lock is busy or "pc" is unstable.
605 *
606 * This function does "uncharge" from old cgroup but doesn't do "charge" to
607 * new cgroup. It should be done by a caller.
608 */
609
610 static int mem_cgroup_move_account(struct page_cgroup *pc,
611 struct mem_cgroup *from, struct mem_cgroup *to)
612 {
613 struct mem_cgroup_per_zone *from_mz, *to_mz;
614 int nid, zid;
615 int ret = -EBUSY;
616
617 VM_BUG_ON(!irqs_disabled());
618 VM_BUG_ON(from == to);
619
620 nid = page_cgroup_nid(pc);
621 zid = page_cgroup_zid(pc);
622 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
623 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
624
625
626 if (!trylock_page_cgroup(pc))
627 return ret;
628
629 if (!PageCgroupUsed(pc))
630 goto out;
631
632 if (pc->mem_cgroup != from)
633 goto out;
634
635 if (spin_trylock(&to_mz->lru_lock)) {
636 __mem_cgroup_remove_list(from_mz, pc);
637 css_put(&from->css);
638 res_counter_uncharge(&from->res, PAGE_SIZE);
639 pc->mem_cgroup = to;
640 css_get(&to->css);
641 __mem_cgroup_add_list(to_mz, pc, false);
642 ret = 0;
643 spin_unlock(&to_mz->lru_lock);
644 }
645 out:
646 unlock_page_cgroup(pc);
647 return ret;
648 }
649
650 /*
651 * move charges to its parent.
652 */
653
654 static int mem_cgroup_move_parent(struct page_cgroup *pc,
655 struct mem_cgroup *child,
656 gfp_t gfp_mask)
657 {
658 struct cgroup *cg = child->css.cgroup;
659 struct cgroup *pcg = cg->parent;
660 struct mem_cgroup *parent;
661 struct mem_cgroup_per_zone *mz;
662 unsigned long flags;
663 int ret;
664
665 /* Is ROOT ? */
666 if (!pcg)
667 return -EINVAL;
668
669 parent = mem_cgroup_from_cont(pcg);
670
671 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
672 if (ret)
673 return ret;
674
675 mz = mem_cgroup_zoneinfo(child,
676 page_cgroup_nid(pc), page_cgroup_zid(pc));
677
678 spin_lock_irqsave(&mz->lru_lock, flags);
679 ret = mem_cgroup_move_account(pc, child, parent);
680 spin_unlock_irqrestore(&mz->lru_lock, flags);
681
682 /* drop extra refcnt */
683 css_put(&parent->css);
684 /* uncharge if move fails */
685 if (ret)
686 res_counter_uncharge(&parent->res, PAGE_SIZE);
687
688 return ret;
689 }
690
691 /*
692 * Charge the memory controller for page usage.
693 * Return
694 * 0 if the charge was successful
695 * < 0 if the cgroup is over its limit
696 */
697 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
698 gfp_t gfp_mask, enum charge_type ctype,
699 struct mem_cgroup *memcg)
700 {
701 struct mem_cgroup *mem;
702 struct page_cgroup *pc;
703 int ret;
704
705 pc = lookup_page_cgroup(page);
706 /* can happen at boot */
707 if (unlikely(!pc))
708 return 0;
709 prefetchw(pc);
710
711 mem = memcg;
712 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
713 if (ret)
714 return ret;
715
716 __mem_cgroup_commit_charge(mem, pc, ctype);
717 return 0;
718 }
719
720 int mem_cgroup_newpage_charge(struct page *page,
721 struct mm_struct *mm, gfp_t gfp_mask)
722 {
723 if (mem_cgroup_subsys.disabled)
724 return 0;
725 if (PageCompound(page))
726 return 0;
727 /*
728 * If already mapped, we don't have to account.
729 * If page cache, page->mapping has address_space.
730 * But page->mapping may have out-of-use anon_vma pointer,
731 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
732 * is NULL.
733 */
734 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
735 return 0;
736 if (unlikely(!mm))
737 mm = &init_mm;
738 return mem_cgroup_charge_common(page, mm, gfp_mask,
739 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
740 }
741
742 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
743 gfp_t gfp_mask)
744 {
745 if (mem_cgroup_subsys.disabled)
746 return 0;
747 if (PageCompound(page))
748 return 0;
749 /*
750 * Corner case handling. This is called from add_to_page_cache()
751 * in usual. But some FS (shmem) precharges this page before calling it
752 * and call add_to_page_cache() with GFP_NOWAIT.
753 *
754 * For GFP_NOWAIT case, the page may be pre-charged before calling
755 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
756 * charge twice. (It works but has to pay a bit larger cost.)
757 */
758 if (!(gfp_mask & __GFP_WAIT)) {
759 struct page_cgroup *pc;
760
761
762 pc = lookup_page_cgroup(page);
763 if (!pc)
764 return 0;
765 lock_page_cgroup(pc);
766 if (PageCgroupUsed(pc)) {
767 unlock_page_cgroup(pc);
768 return 0;
769 }
770 unlock_page_cgroup(pc);
771 }
772
773 if (unlikely(!mm))
774 mm = &init_mm;
775
776 if (page_is_file_cache(page))
777 return mem_cgroup_charge_common(page, mm, gfp_mask,
778 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
779 else
780 return mem_cgroup_charge_common(page, mm, gfp_mask,
781 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
782 }
783
784 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
785 {
786 struct page_cgroup *pc;
787
788 if (mem_cgroup_subsys.disabled)
789 return;
790 if (!ptr)
791 return;
792 pc = lookup_page_cgroup(page);
793 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
794 }
795
796 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
797 {
798 if (mem_cgroup_subsys.disabled)
799 return;
800 if (!mem)
801 return;
802 res_counter_uncharge(&mem->res, PAGE_SIZE);
803 css_put(&mem->css);
804 }
805
806
807 /*
808 * uncharge if !page_mapped(page)
809 */
810 static void
811 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
812 {
813 struct page_cgroup *pc;
814 struct mem_cgroup *mem;
815 struct mem_cgroup_per_zone *mz;
816 unsigned long flags;
817
818 if (mem_cgroup_subsys.disabled)
819 return;
820
821 /*
822 * Check if our page_cgroup is valid
823 */
824 pc = lookup_page_cgroup(page);
825 if (unlikely(!pc || !PageCgroupUsed(pc)))
826 return;
827
828 lock_page_cgroup(pc);
829 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
830 || !PageCgroupUsed(pc)) {
831 /* This happens at race in zap_pte_range() and do_swap_page()*/
832 unlock_page_cgroup(pc);
833 return;
834 }
835 ClearPageCgroupUsed(pc);
836 mem = pc->mem_cgroup;
837
838 mz = page_cgroup_zoneinfo(pc);
839 spin_lock_irqsave(&mz->lru_lock, flags);
840 __mem_cgroup_remove_list(mz, pc);
841 spin_unlock_irqrestore(&mz->lru_lock, flags);
842 unlock_page_cgroup(pc);
843
844 res_counter_uncharge(&mem->res, PAGE_SIZE);
845 css_put(&mem->css);
846
847 return;
848 }
849
850 void mem_cgroup_uncharge_page(struct page *page)
851 {
852 /* early check. */
853 if (page_mapped(page))
854 return;
855 if (page->mapping && !PageAnon(page))
856 return;
857 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
858 }
859
860 void mem_cgroup_uncharge_cache_page(struct page *page)
861 {
862 VM_BUG_ON(page_mapped(page));
863 VM_BUG_ON(page->mapping);
864 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
865 }
866
867 /*
868 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
869 * page belongs to.
870 */
871 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
872 {
873 struct page_cgroup *pc;
874 struct mem_cgroup *mem = NULL;
875 int ret = 0;
876
877 if (mem_cgroup_subsys.disabled)
878 return 0;
879
880 pc = lookup_page_cgroup(page);
881 lock_page_cgroup(pc);
882 if (PageCgroupUsed(pc)) {
883 mem = pc->mem_cgroup;
884 css_get(&mem->css);
885 }
886 unlock_page_cgroup(pc);
887
888 if (mem) {
889 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
890 css_put(&mem->css);
891 }
892 *ptr = mem;
893 return ret;
894 }
895
896 /* remove redundant charge if migration failed*/
897 void mem_cgroup_end_migration(struct mem_cgroup *mem,
898 struct page *oldpage, struct page *newpage)
899 {
900 struct page *target, *unused;
901 struct page_cgroup *pc;
902 enum charge_type ctype;
903
904 if (!mem)
905 return;
906
907 /* at migration success, oldpage->mapping is NULL. */
908 if (oldpage->mapping) {
909 target = oldpage;
910 unused = NULL;
911 } else {
912 target = newpage;
913 unused = oldpage;
914 }
915
916 if (PageAnon(target))
917 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
918 else if (page_is_file_cache(target))
919 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
920 else
921 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
922
923 /* unused page is not on radix-tree now. */
924 if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
925 __mem_cgroup_uncharge_common(unused, ctype);
926
927 pc = lookup_page_cgroup(target);
928 /*
929 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
930 * So, double-counting is effectively avoided.
931 */
932 __mem_cgroup_commit_charge(mem, pc, ctype);
933
934 /*
935 * Both of oldpage and newpage are still under lock_page().
936 * Then, we don't have to care about race in radix-tree.
937 * But we have to be careful that this page is unmapped or not.
938 *
939 * There is a case for !page_mapped(). At the start of
940 * migration, oldpage was mapped. But now, it's zapped.
941 * But we know *target* page is not freed/reused under us.
942 * mem_cgroup_uncharge_page() does all necessary checks.
943 */
944 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
945 mem_cgroup_uncharge_page(target);
946 }
947
948 /*
949 * A call to try to shrink memory usage under specified resource controller.
950 * This is typically used for page reclaiming for shmem for reducing side
951 * effect of page allocation from shmem, which is used by some mem_cgroup.
952 */
953 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
954 {
955 struct mem_cgroup *mem;
956 int progress = 0;
957 int retry = MEM_CGROUP_RECLAIM_RETRIES;
958
959 if (mem_cgroup_subsys.disabled)
960 return 0;
961 if (!mm)
962 return 0;
963
964 rcu_read_lock();
965 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
966 if (unlikely(!mem)) {
967 rcu_read_unlock();
968 return 0;
969 }
970 css_get(&mem->css);
971 rcu_read_unlock();
972
973 do {
974 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
975 progress += res_counter_check_under_limit(&mem->res);
976 } while (!progress && --retry);
977
978 css_put(&mem->css);
979 if (!retry)
980 return -ENOMEM;
981 return 0;
982 }
983
984 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
985 unsigned long long val)
986 {
987
988 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
989 int progress;
990 int ret = 0;
991
992 while (res_counter_set_limit(&memcg->res, val)) {
993 if (signal_pending(current)) {
994 ret = -EINTR;
995 break;
996 }
997 if (!retry_count) {
998 ret = -EBUSY;
999 break;
1000 }
1001 progress = try_to_free_mem_cgroup_pages(memcg,
1002 GFP_HIGHUSER_MOVABLE);
1003 if (!progress)
1004 retry_count--;
1005 }
1006 return ret;
1007 }
1008
1009
1010 /*
1011 * This routine traverse page_cgroup in given list and drop them all.
1012 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1013 */
1014 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1015 struct mem_cgroup_per_zone *mz,
1016 enum lru_list lru)
1017 {
1018 struct page_cgroup *pc, *busy;
1019 unsigned long flags;
1020 unsigned long loop;
1021 struct list_head *list;
1022 int ret = 0;
1023
1024 list = &mz->lists[lru];
1025
1026 loop = MEM_CGROUP_ZSTAT(mz, lru);
1027 /* give some margin against EBUSY etc...*/
1028 loop += 256;
1029 busy = NULL;
1030 while (loop--) {
1031 ret = 0;
1032 spin_lock_irqsave(&mz->lru_lock, flags);
1033 if (list_empty(list)) {
1034 spin_unlock_irqrestore(&mz->lru_lock, flags);
1035 break;
1036 }
1037 pc = list_entry(list->prev, struct page_cgroup, lru);
1038 if (busy == pc) {
1039 list_move(&pc->lru, list);
1040 busy = 0;
1041 spin_unlock_irqrestore(&mz->lru_lock, flags);
1042 continue;
1043 }
1044 spin_unlock_irqrestore(&mz->lru_lock, flags);
1045
1046 ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1047 if (ret == -ENOMEM)
1048 break;
1049
1050 if (ret == -EBUSY || ret == -EINVAL) {
1051 /* found lock contention or "pc" is obsolete. */
1052 busy = pc;
1053 cond_resched();
1054 } else
1055 busy = NULL;
1056 }
1057 if (!ret && !list_empty(list))
1058 return -EBUSY;
1059 return ret;
1060 }
1061
1062 /*
1063 * make mem_cgroup's charge to be 0 if there is no task.
1064 * This enables deleting this mem_cgroup.
1065 */
1066 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
1067 {
1068 int ret;
1069 int node, zid, shrink;
1070 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1071
1072 css_get(&mem->css);
1073
1074 shrink = 0;
1075 move_account:
1076 while (mem->res.usage > 0) {
1077 ret = -EBUSY;
1078 if (atomic_read(&mem->css.cgroup->count) > 0)
1079 goto out;
1080
1081 /* This is for making all *used* pages to be on LRU. */
1082 lru_add_drain_all();
1083 ret = 0;
1084 for_each_node_state(node, N_POSSIBLE) {
1085 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1086 struct mem_cgroup_per_zone *mz;
1087 enum lru_list l;
1088 mz = mem_cgroup_zoneinfo(mem, node, zid);
1089 for_each_lru(l) {
1090 ret = mem_cgroup_force_empty_list(mem,
1091 mz, l);
1092 if (ret)
1093 break;
1094 }
1095 }
1096 if (ret)
1097 break;
1098 }
1099 /* it seems parent cgroup doesn't have enough mem */
1100 if (ret == -ENOMEM)
1101 goto try_to_free;
1102 cond_resched();
1103 }
1104 ret = 0;
1105 out:
1106 css_put(&mem->css);
1107 return ret;
1108
1109 try_to_free:
1110 /* returns EBUSY if we come here twice. */
1111 if (shrink) {
1112 ret = -EBUSY;
1113 goto out;
1114 }
1115 /* try to free all pages in this cgroup */
1116 shrink = 1;
1117 while (nr_retries && mem->res.usage > 0) {
1118 int progress;
1119 progress = try_to_free_mem_cgroup_pages(mem,
1120 GFP_HIGHUSER_MOVABLE);
1121 if (!progress)
1122 nr_retries--;
1123
1124 }
1125 /* try move_account...there may be some *locked* pages. */
1126 if (mem->res.usage)
1127 goto move_account;
1128 ret = 0;
1129 goto out;
1130 }
1131
1132 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1133 {
1134 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
1135 cft->private);
1136 }
1137 /*
1138 * The user of this function is...
1139 * RES_LIMIT.
1140 */
1141 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1142 const char *buffer)
1143 {
1144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1145 unsigned long long val;
1146 int ret;
1147
1148 switch (cft->private) {
1149 case RES_LIMIT:
1150 /* This function does all necessary parse...reuse it */
1151 ret = res_counter_memparse_write_strategy(buffer, &val);
1152 if (!ret)
1153 ret = mem_cgroup_resize_limit(memcg, val);
1154 break;
1155 default:
1156 ret = -EINVAL; /* should be BUG() ? */
1157 break;
1158 }
1159 return ret;
1160 }
1161
1162 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1163 {
1164 struct mem_cgroup *mem;
1165
1166 mem = mem_cgroup_from_cont(cont);
1167 switch (event) {
1168 case RES_MAX_USAGE:
1169 res_counter_reset_max(&mem->res);
1170 break;
1171 case RES_FAILCNT:
1172 res_counter_reset_failcnt(&mem->res);
1173 break;
1174 }
1175 return 0;
1176 }
1177
1178 static const struct mem_cgroup_stat_desc {
1179 const char *msg;
1180 u64 unit;
1181 } mem_cgroup_stat_desc[] = {
1182 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1183 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1184 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1185 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1186 };
1187
1188 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1189 struct cgroup_map_cb *cb)
1190 {
1191 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1192 struct mem_cgroup_stat *stat = &mem_cont->stat;
1193 int i;
1194
1195 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1196 s64 val;
1197
1198 val = mem_cgroup_read_stat(stat, i);
1199 val *= mem_cgroup_stat_desc[i].unit;
1200 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1201 }
1202 /* showing # of active pages */
1203 {
1204 unsigned long active_anon, inactive_anon;
1205 unsigned long active_file, inactive_file;
1206 unsigned long unevictable;
1207
1208 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1209 LRU_INACTIVE_ANON);
1210 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1211 LRU_ACTIVE_ANON);
1212 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1213 LRU_INACTIVE_FILE);
1214 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1215 LRU_ACTIVE_FILE);
1216 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1217 LRU_UNEVICTABLE);
1218
1219 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1220 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1221 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1222 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1223 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1224
1225 }
1226 return 0;
1227 }
1228
1229 static struct cftype mem_cgroup_files[] = {
1230 {
1231 .name = "usage_in_bytes",
1232 .private = RES_USAGE,
1233 .read_u64 = mem_cgroup_read,
1234 },
1235 {
1236 .name = "max_usage_in_bytes",
1237 .private = RES_MAX_USAGE,
1238 .trigger = mem_cgroup_reset,
1239 .read_u64 = mem_cgroup_read,
1240 },
1241 {
1242 .name = "limit_in_bytes",
1243 .private = RES_LIMIT,
1244 .write_string = mem_cgroup_write,
1245 .read_u64 = mem_cgroup_read,
1246 },
1247 {
1248 .name = "failcnt",
1249 .private = RES_FAILCNT,
1250 .trigger = mem_cgroup_reset,
1251 .read_u64 = mem_cgroup_read,
1252 },
1253 {
1254 .name = "stat",
1255 .read_map = mem_control_stat_show,
1256 },
1257 };
1258
1259 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1260 {
1261 struct mem_cgroup_per_node *pn;
1262 struct mem_cgroup_per_zone *mz;
1263 enum lru_list l;
1264 int zone, tmp = node;
1265 /*
1266 * This routine is called against possible nodes.
1267 * But it's BUG to call kmalloc() against offline node.
1268 *
1269 * TODO: this routine can waste much memory for nodes which will
1270 * never be onlined. It's better to use memory hotplug callback
1271 * function.
1272 */
1273 if (!node_state(node, N_NORMAL_MEMORY))
1274 tmp = -1;
1275 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1276 if (!pn)
1277 return 1;
1278
1279 mem->info.nodeinfo[node] = pn;
1280 memset(pn, 0, sizeof(*pn));
1281
1282 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1283 mz = &pn->zoneinfo[zone];
1284 spin_lock_init(&mz->lru_lock);
1285 for_each_lru(l)
1286 INIT_LIST_HEAD(&mz->lists[l]);
1287 }
1288 return 0;
1289 }
1290
1291 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1292 {
1293 kfree(mem->info.nodeinfo[node]);
1294 }
1295
1296 static struct mem_cgroup *mem_cgroup_alloc(void)
1297 {
1298 struct mem_cgroup *mem;
1299
1300 if (sizeof(*mem) < PAGE_SIZE)
1301 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1302 else
1303 mem = vmalloc(sizeof(*mem));
1304
1305 if (mem)
1306 memset(mem, 0, sizeof(*mem));
1307 return mem;
1308 }
1309
1310 static void mem_cgroup_free(struct mem_cgroup *mem)
1311 {
1312 if (sizeof(*mem) < PAGE_SIZE)
1313 kfree(mem);
1314 else
1315 vfree(mem);
1316 }
1317
1318
1319 static struct cgroup_subsys_state *
1320 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1321 {
1322 struct mem_cgroup *mem;
1323 int node;
1324
1325 if (unlikely((cont->parent) == NULL)) {
1326 mem = &init_mem_cgroup;
1327 } else {
1328 mem = mem_cgroup_alloc();
1329 if (!mem)
1330 return ERR_PTR(-ENOMEM);
1331 }
1332
1333 res_counter_init(&mem->res);
1334
1335 for_each_node_state(node, N_POSSIBLE)
1336 if (alloc_mem_cgroup_per_zone_info(mem, node))
1337 goto free_out;
1338
1339 return &mem->css;
1340 free_out:
1341 for_each_node_state(node, N_POSSIBLE)
1342 free_mem_cgroup_per_zone_info(mem, node);
1343 if (cont->parent != NULL)
1344 mem_cgroup_free(mem);
1345 return ERR_PTR(-ENOMEM);
1346 }
1347
1348 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1349 struct cgroup *cont)
1350 {
1351 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1352 mem_cgroup_force_empty(mem);
1353 }
1354
1355 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1356 struct cgroup *cont)
1357 {
1358 int node;
1359 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1360
1361 for_each_node_state(node, N_POSSIBLE)
1362 free_mem_cgroup_per_zone_info(mem, node);
1363
1364 mem_cgroup_free(mem_cgroup_from_cont(cont));
1365 }
1366
1367 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1368 struct cgroup *cont)
1369 {
1370 return cgroup_add_files(cont, ss, mem_cgroup_files,
1371 ARRAY_SIZE(mem_cgroup_files));
1372 }
1373
1374 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1375 struct cgroup *cont,
1376 struct cgroup *old_cont,
1377 struct task_struct *p)
1378 {
1379 struct mm_struct *mm;
1380 struct mem_cgroup *mem, *old_mem;
1381
1382 mm = get_task_mm(p);
1383 if (mm == NULL)
1384 return;
1385
1386 mem = mem_cgroup_from_cont(cont);
1387 old_mem = mem_cgroup_from_cont(old_cont);
1388
1389 /*
1390 * Only thread group leaders are allowed to migrate, the mm_struct is
1391 * in effect owned by the leader
1392 */
1393 if (!thread_group_leader(p))
1394 goto out;
1395
1396 out:
1397 mmput(mm);
1398 }
1399
1400 struct cgroup_subsys mem_cgroup_subsys = {
1401 .name = "memory",
1402 .subsys_id = mem_cgroup_subsys_id,
1403 .create = mem_cgroup_create,
1404 .pre_destroy = mem_cgroup_pre_destroy,
1405 .destroy = mem_cgroup_destroy,
1406 .populate = mem_cgroup_populate,
1407 .attach = mem_cgroup_move_task,
1408 .early_init = 0,
1409 };