]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
mm: memcg: rework and document OOM waiting and wakeup
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/spinlock.h>
46 #include <linux/eventfd.h>
47 #include <linux/sort.h>
48 #include <linux/fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/vmalloc.h>
51 #include <linux/vmpressure.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60
61 #include <asm/uaccess.h>
62
63 #include <trace/events/vmscan.h>
64
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81
82 #else
83 #define do_swap_account 0
84 #endif
85
86
87 /*
88 * Statistics for memory cgroup.
89 */
90 enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_NSTATS,
100 };
101
102 static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "rss_huge",
106 "mapped_file",
107 "swap",
108 };
109
110 enum mem_cgroup_events_index {
111 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
112 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
113 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
114 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
115 MEM_CGROUP_EVENTS_NSTATS,
116 };
117
118 static const char * const mem_cgroup_events_names[] = {
119 "pgpgin",
120 "pgpgout",
121 "pgfault",
122 "pgmajfault",
123 };
124
125 static const char * const mem_cgroup_lru_names[] = {
126 "inactive_anon",
127 "active_anon",
128 "inactive_file",
129 "active_file",
130 "unevictable",
131 };
132
133 /*
134 * Per memcg event counter is incremented at every pagein/pageout. With THP,
135 * it will be incremated by the number of pages. This counter is used for
136 * for trigger some periodic events. This is straightforward and better
137 * than using jiffies etc. to handle periodic memcg event.
138 */
139 enum mem_cgroup_events_target {
140 MEM_CGROUP_TARGET_THRESH,
141 MEM_CGROUP_TARGET_SOFTLIMIT,
142 MEM_CGROUP_TARGET_NUMAINFO,
143 MEM_CGROUP_NTARGETS,
144 };
145 #define THRESHOLDS_EVENTS_TARGET 128
146 #define SOFTLIMIT_EVENTS_TARGET 1024
147 #define NUMAINFO_EVENTS_TARGET 1024
148
149 struct mem_cgroup_stat_cpu {
150 long count[MEM_CGROUP_STAT_NSTATS];
151 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152 unsigned long nr_page_events;
153 unsigned long targets[MEM_CGROUP_NTARGETS];
154 };
155
156 struct mem_cgroup_reclaim_iter {
157 /*
158 * last scanned hierarchy member. Valid only if last_dead_count
159 * matches memcg->dead_count of the hierarchy root group.
160 */
161 struct mem_cgroup *last_visited;
162 unsigned long last_dead_count;
163
164 /* scan generation, increased every round-trip */
165 unsigned int generation;
166 };
167
168 /*
169 * per-zone information in memory controller.
170 */
171 struct mem_cgroup_per_zone {
172 struct lruvec lruvec;
173 unsigned long lru_size[NR_LRU_LISTS];
174
175 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
176
177 struct mem_cgroup *memcg; /* Back pointer, we cannot */
178 /* use container_of */
179 };
180
181 struct mem_cgroup_per_node {
182 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
183 };
184
185 struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
187 u64 threshold;
188 };
189
190 /* For threshold */
191 struct mem_cgroup_threshold_ary {
192 /* An array index points to threshold just below or equal to usage. */
193 int current_threshold;
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198 };
199
200 struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209 };
210
211 /* for OOM */
212 struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215 };
216
217 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
218 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219
220 /*
221 * The memory controller data structure. The memory controller controls both
222 * page cache and RSS per cgroup. We would eventually like to provide
223 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
224 * to help the administrator determine what knobs to tune.
225 *
226 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 * we hit the water mark. May be even add a low water mark, such that
228 * no reclaim occurs from a cgroup at it's low water mark, this is
229 * a feature that will be implemented much later in the future.
230 */
231 struct mem_cgroup {
232 struct cgroup_subsys_state css;
233 /*
234 * the counter to account for memory usage
235 */
236 struct res_counter res;
237
238 /* vmpressure notifications */
239 struct vmpressure vmpressure;
240
241 /*
242 * the counter to account for mem+swap usage.
243 */
244 struct res_counter memsw;
245
246 /*
247 * the counter to account for kernel memory usage.
248 */
249 struct res_counter kmem;
250 /*
251 * Should the accounting and control be hierarchical, per subtree?
252 */
253 bool use_hierarchy;
254 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255
256 bool oom_lock;
257 atomic_t under_oom;
258
259 int swappiness;
260 /* OOM-Killer disable */
261 int oom_kill_disable;
262
263 /* set when res.limit == memsw.limit */
264 bool memsw_is_minimum;
265
266 /* protect arrays of thresholds */
267 struct mutex thresholds_lock;
268
269 /* thresholds for memory usage. RCU-protected */
270 struct mem_cgroup_thresholds thresholds;
271
272 /* thresholds for mem+swap usage. RCU-protected */
273 struct mem_cgroup_thresholds memsw_thresholds;
274
275 /* For oom notifier event fd */
276 struct list_head oom_notify;
277
278 /*
279 * Should we move charges of a task when a task is moved into this
280 * mem_cgroup ? And what type of charges should we move ?
281 */
282 unsigned long move_charge_at_immigrate;
283 /*
284 * set > 0 if pages under this cgroup are moving to other cgroup.
285 */
286 atomic_t moving_account;
287 /* taken only while moving_account > 0 */
288 spinlock_t move_lock;
289 /*
290 * percpu counter.
291 */
292 struct mem_cgroup_stat_cpu __percpu *stat;
293 /*
294 * used when a cpu is offlined or other synchronizations
295 * See mem_cgroup_read_stat().
296 */
297 struct mem_cgroup_stat_cpu nocpu_base;
298 spinlock_t pcp_counter_lock;
299
300 atomic_t dead_count;
301 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
302 struct tcp_memcontrol tcp_mem;
303 #endif
304 #if defined(CONFIG_MEMCG_KMEM)
305 /* analogous to slab_common's slab_caches list. per-memcg */
306 struct list_head memcg_slab_caches;
307 /* Not a spinlock, we can take a lot of time walking the list */
308 struct mutex slab_caches_mutex;
309 /* Index in the kmem_cache->memcg_params->memcg_caches array */
310 int kmemcg_id;
311 #endif
312
313 int last_scanned_node;
314 #if MAX_NUMNODES > 1
315 nodemask_t scan_nodes;
316 atomic_t numainfo_events;
317 atomic_t numainfo_updating;
318 #endif
319 /*
320 * Protects soft_contributed transitions.
321 * See mem_cgroup_update_soft_limit
322 */
323 spinlock_t soft_lock;
324
325 /*
326 * If true then this group has increased parents' children_in_excess
327 * when it got over the soft limit.
328 * When a group falls bellow the soft limit, parents' children_in_excess
329 * is decreased and soft_contributed changed to false.
330 */
331 bool soft_contributed;
332
333 /* Number of children that are in soft limit excess */
334 atomic_t children_in_excess;
335
336 struct mem_cgroup_per_node *nodeinfo[0];
337 /* WARNING: nodeinfo must be the last member here */
338 };
339
340 static size_t memcg_size(void)
341 {
342 return sizeof(struct mem_cgroup) +
343 nr_node_ids * sizeof(struct mem_cgroup_per_node);
344 }
345
346 /* internal only representation about the status of kmem accounting. */
347 enum {
348 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 };
352
353 /* We account when limit is on, but only after call sites are patched */
354 #define KMEM_ACCOUNTED_MASK \
355 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356
357 #ifdef CONFIG_MEMCG_KMEM
358 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
359 {
360 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
361 }
362
363 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364 {
365 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
366 }
367
368 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
369 {
370 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
371 }
372
373 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
374 {
375 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
376 }
377
378 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
379 {
380 /*
381 * Our caller must use css_get() first, because memcg_uncharge_kmem()
382 * will call css_put() if it sees the memcg is dead.
383 */
384 smp_wmb();
385 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
386 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
387 }
388
389 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
390 {
391 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
392 &memcg->kmem_account_flags);
393 }
394 #endif
395
396 /* Stuffs for move charges at task migration. */
397 /*
398 * Types of charges to be moved. "move_charge_at_immitgrate" and
399 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
400 */
401 enum move_type {
402 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
403 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
404 NR_MOVE_TYPE,
405 };
406
407 /* "mc" and its members are protected by cgroup_mutex */
408 static struct move_charge_struct {
409 spinlock_t lock; /* for from, to */
410 struct mem_cgroup *from;
411 struct mem_cgroup *to;
412 unsigned long immigrate_flags;
413 unsigned long precharge;
414 unsigned long moved_charge;
415 unsigned long moved_swap;
416 struct task_struct *moving_task; /* a task moving charges */
417 wait_queue_head_t waitq; /* a waitq for other context */
418 } mc = {
419 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
421 };
422
423 static bool move_anon(void)
424 {
425 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
426 }
427
428 static bool move_file(void)
429 {
430 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 }
432
433 /*
434 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
435 * limit reclaim to prevent infinite loops, if they ever occur.
436 */
437 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
438
439 enum charge_type {
440 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
441 MEM_CGROUP_CHARGE_TYPE_ANON,
442 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
443 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
444 NR_CHARGE_TYPE,
445 };
446
447 /* for encoding cft->private value on file */
448 enum res_type {
449 _MEM,
450 _MEMSWAP,
451 _OOM_TYPE,
452 _KMEM,
453 };
454
455 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
456 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
457 #define MEMFILE_ATTR(val) ((val) & 0xffff)
458 /* Used for OOM nofiier */
459 #define OOM_CONTROL (0)
460
461 /*
462 * Reclaim flags for mem_cgroup_hierarchical_reclaim
463 */
464 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
465 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
466 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
467 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
468
469 /*
470 * The memcg_create_mutex will be held whenever a new cgroup is created.
471 * As a consequence, any change that needs to protect against new child cgroups
472 * appearing has to hold it as well.
473 */
474 static DEFINE_MUTEX(memcg_create_mutex);
475
476 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
477 {
478 return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 }
480
481 /* Some nice accessors for the vmpressure. */
482 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
483 {
484 if (!memcg)
485 memcg = root_mem_cgroup;
486 return &memcg->vmpressure;
487 }
488
489 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
490 {
491 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
492 }
493
494 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
495 {
496 return &mem_cgroup_from_css(css)->vmpressure;
497 }
498
499 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
500 {
501 return (memcg == root_mem_cgroup);
502 }
503
504 /* Writing them here to avoid exposing memcg's inner layout */
505 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
506
507 void sock_update_memcg(struct sock *sk)
508 {
509 if (mem_cgroup_sockets_enabled) {
510 struct mem_cgroup *memcg;
511 struct cg_proto *cg_proto;
512
513 BUG_ON(!sk->sk_prot->proto_cgroup);
514
515 /* Socket cloning can throw us here with sk_cgrp already
516 * filled. It won't however, necessarily happen from
517 * process context. So the test for root memcg given
518 * the current task's memcg won't help us in this case.
519 *
520 * Respecting the original socket's memcg is a better
521 * decision in this case.
522 */
523 if (sk->sk_cgrp) {
524 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
525 css_get(&sk->sk_cgrp->memcg->css);
526 return;
527 }
528
529 rcu_read_lock();
530 memcg = mem_cgroup_from_task(current);
531 cg_proto = sk->sk_prot->proto_cgroup(memcg);
532 if (!mem_cgroup_is_root(memcg) &&
533 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
534 sk->sk_cgrp = cg_proto;
535 }
536 rcu_read_unlock();
537 }
538 }
539 EXPORT_SYMBOL(sock_update_memcg);
540
541 void sock_release_memcg(struct sock *sk)
542 {
543 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
544 struct mem_cgroup *memcg;
545 WARN_ON(!sk->sk_cgrp->memcg);
546 memcg = sk->sk_cgrp->memcg;
547 css_put(&sk->sk_cgrp->memcg->css);
548 }
549 }
550
551 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
552 {
553 if (!memcg || mem_cgroup_is_root(memcg))
554 return NULL;
555
556 return &memcg->tcp_mem.cg_proto;
557 }
558 EXPORT_SYMBOL(tcp_proto_cgroup);
559
560 static void disarm_sock_keys(struct mem_cgroup *memcg)
561 {
562 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
563 return;
564 static_key_slow_dec(&memcg_socket_limit_enabled);
565 }
566 #else
567 static void disarm_sock_keys(struct mem_cgroup *memcg)
568 {
569 }
570 #endif
571
572 #ifdef CONFIG_MEMCG_KMEM
573 /*
574 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
575 * There are two main reasons for not using the css_id for this:
576 * 1) this works better in sparse environments, where we have a lot of memcgs,
577 * but only a few kmem-limited. Or also, if we have, for instance, 200
578 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
579 * 200 entry array for that.
580 *
581 * 2) In order not to violate the cgroup API, we would like to do all memory
582 * allocation in ->create(). At that point, we haven't yet allocated the
583 * css_id. Having a separate index prevents us from messing with the cgroup
584 * core for this
585 *
586 * The current size of the caches array is stored in
587 * memcg_limited_groups_array_size. It will double each time we have to
588 * increase it.
589 */
590 static DEFINE_IDA(kmem_limited_groups);
591 int memcg_limited_groups_array_size;
592
593 /*
594 * MIN_SIZE is different than 1, because we would like to avoid going through
595 * the alloc/free process all the time. In a small machine, 4 kmem-limited
596 * cgroups is a reasonable guess. In the future, it could be a parameter or
597 * tunable, but that is strictly not necessary.
598 *
599 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
600 * this constant directly from cgroup, but it is understandable that this is
601 * better kept as an internal representation in cgroup.c. In any case, the
602 * css_id space is not getting any smaller, and we don't have to necessarily
603 * increase ours as well if it increases.
604 */
605 #define MEMCG_CACHES_MIN_SIZE 4
606 #define MEMCG_CACHES_MAX_SIZE 65535
607
608 /*
609 * A lot of the calls to the cache allocation functions are expected to be
610 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
611 * conditional to this static branch, we'll have to allow modules that does
612 * kmem_cache_alloc and the such to see this symbol as well
613 */
614 struct static_key memcg_kmem_enabled_key;
615 EXPORT_SYMBOL(memcg_kmem_enabled_key);
616
617 static void disarm_kmem_keys(struct mem_cgroup *memcg)
618 {
619 if (memcg_kmem_is_active(memcg)) {
620 static_key_slow_dec(&memcg_kmem_enabled_key);
621 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
622 }
623 /*
624 * This check can't live in kmem destruction function,
625 * since the charges will outlive the cgroup
626 */
627 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 }
629 #else
630 static void disarm_kmem_keys(struct mem_cgroup *memcg)
631 {
632 }
633 #endif /* CONFIG_MEMCG_KMEM */
634
635 static void disarm_static_keys(struct mem_cgroup *memcg)
636 {
637 disarm_sock_keys(memcg);
638 disarm_kmem_keys(memcg);
639 }
640
641 static void drain_all_stock_async(struct mem_cgroup *memcg);
642
643 static struct mem_cgroup_per_zone *
644 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645 {
646 VM_BUG_ON((unsigned)nid >= nr_node_ids);
647 return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 }
649
650 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651 {
652 return &memcg->css;
653 }
654
655 static struct mem_cgroup_per_zone *
656 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657 {
658 int nid = page_to_nid(page);
659 int zid = page_zonenum(page);
660
661 return mem_cgroup_zoneinfo(memcg, nid, zid);
662 }
663
664 /*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684 enum mem_cgroup_stat_index idx)
685 {
686 long val = 0;
687 int cpu;
688
689 get_online_cpus();
690 for_each_online_cpu(cpu)
691 val += per_cpu(memcg->stat->count[idx], cpu);
692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
696 #endif
697 put_online_cpus();
698 return val;
699 }
700
701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 bool charge)
703 {
704 int val = (charge) ? 1 : -1;
705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 }
707
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 enum mem_cgroup_events_index idx)
710 {
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
715 val += per_cpu(memcg->stat->events[idx], cpu);
716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
720 #endif
721 return val;
722 }
723
724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725 struct page *page,
726 bool anon, int nr_pages)
727 {
728 preempt_disable();
729
730 /*
731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 * counted as CACHE even if it's on ANON LRU.
733 */
734 if (anon)
735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736 nr_pages);
737 else
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739 nr_pages);
740
741 if (PageTransHuge(page))
742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
743 nr_pages);
744
745 /* pagein of a big page is an event. So, ignore page size */
746 if (nr_pages > 0)
747 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748 else {
749 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 nr_pages = -nr_pages; /* for event */
751 }
752
753 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754
755 preempt_enable();
756 }
757
758 unsigned long
759 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 {
761 struct mem_cgroup_per_zone *mz;
762
763 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764 return mz->lru_size[lru];
765 }
766
767 static unsigned long
768 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769 unsigned int lru_mask)
770 {
771 struct mem_cgroup_per_zone *mz;
772 enum lru_list lru;
773 unsigned long ret = 0;
774
775 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776
777 for_each_lru(lru) {
778 if (BIT(lru) & lru_mask)
779 ret += mz->lru_size[lru];
780 }
781 return ret;
782 }
783
784 static unsigned long
785 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 int nid, unsigned int lru_mask)
787 {
788 u64 total = 0;
789 int zid;
790
791 for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 total += mem_cgroup_zone_nr_lru_pages(memcg,
793 nid, zid, lru_mask);
794
795 return total;
796 }
797
798 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799 unsigned int lru_mask)
800 {
801 int nid;
802 u64 total = 0;
803
804 for_each_node_state(nid, N_MEMORY)
805 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806 return total;
807 }
808
809 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_target target)
811 {
812 unsigned long val, next;
813
814 val = __this_cpu_read(memcg->stat->nr_page_events);
815 next = __this_cpu_read(memcg->stat->targets[target]);
816 /* from time_after() in jiffies.h */
817 if ((long)next - (long)val < 0) {
818 switch (target) {
819 case MEM_CGROUP_TARGET_THRESH:
820 next = val + THRESHOLDS_EVENTS_TARGET;
821 break;
822 case MEM_CGROUP_TARGET_SOFTLIMIT:
823 next = val + SOFTLIMIT_EVENTS_TARGET;
824 break;
825 case MEM_CGROUP_TARGET_NUMAINFO:
826 next = val + NUMAINFO_EVENTS_TARGET;
827 break;
828 default:
829 break;
830 }
831 __this_cpu_write(memcg->stat->targets[target], next);
832 return true;
833 }
834 return false;
835 }
836
837 /*
838 * Called from rate-limited memcg_check_events when enough
839 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
840 * that all the parents up the hierarchy will be notified that this group
841 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
842 * makes the transition a single action whenever the state flips from one to
843 * the other.
844 */
845 static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
846 {
847 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
848 struct mem_cgroup *parent = memcg;
849 int delta = 0;
850
851 spin_lock(&memcg->soft_lock);
852 if (excess) {
853 if (!memcg->soft_contributed) {
854 delta = 1;
855 memcg->soft_contributed = true;
856 }
857 } else {
858 if (memcg->soft_contributed) {
859 delta = -1;
860 memcg->soft_contributed = false;
861 }
862 }
863
864 /*
865 * Necessary to update all ancestors when hierarchy is used
866 * because their event counter is not touched.
867 * We track children even outside the hierarchy for the root
868 * cgroup because tree walk starting at root should visit
869 * all cgroups and we want to prevent from pointless tree
870 * walk if no children is below the limit.
871 */
872 while (delta && (parent = parent_mem_cgroup(parent)))
873 atomic_add(delta, &parent->children_in_excess);
874 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
875 atomic_add(delta, &root_mem_cgroup->children_in_excess);
876 spin_unlock(&memcg->soft_lock);
877 }
878
879 /*
880 * Check events in order.
881 *
882 */
883 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
884 {
885 preempt_disable();
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
889 bool do_softlimit;
890 bool do_numainfo __maybe_unused;
891
892 do_softlimit = mem_cgroup_event_ratelimit(memcg,
893 MEM_CGROUP_TARGET_SOFTLIMIT);
894 #if MAX_NUMNODES > 1
895 do_numainfo = mem_cgroup_event_ratelimit(memcg,
896 MEM_CGROUP_TARGET_NUMAINFO);
897 #endif
898 preempt_enable();
899
900 mem_cgroup_threshold(memcg);
901 if (unlikely(do_softlimit))
902 mem_cgroup_update_soft_limit(memcg);
903 #if MAX_NUMNODES > 1
904 if (unlikely(do_numainfo))
905 atomic_inc(&memcg->numainfo_events);
906 #endif
907 } else
908 preempt_enable();
909 }
910
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912 {
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
921 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
922 }
923
924 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
925 {
926 struct mem_cgroup *memcg = NULL;
927
928 if (!mm)
929 return NULL;
930 /*
931 * Because we have no locks, mm->owner's may be being moved to other
932 * cgroup. We use css_tryget() here even if this looks
933 * pessimistic (rather than adding locks here).
934 */
935 rcu_read_lock();
936 do {
937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 if (unlikely(!memcg))
939 break;
940 } while (!css_tryget(&memcg->css));
941 rcu_read_unlock();
942 return memcg;
943 }
944
945 static enum mem_cgroup_filter_t
946 mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
947 mem_cgroup_iter_filter cond)
948 {
949 if (!cond)
950 return VISIT;
951 return cond(memcg, root);
952 }
953
954 /*
955 * Returns a next (in a pre-order walk) alive memcg (with elevated css
956 * ref. count) or NULL if the whole root's subtree has been visited.
957 *
958 * helper function to be used by mem_cgroup_iter
959 */
960 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
961 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
962 {
963 struct cgroup_subsys_state *prev_css, *next_css;
964
965 prev_css = last_visited ? &last_visited->css : NULL;
966 skip_node:
967 next_css = css_next_descendant_pre(prev_css, &root->css);
968
969 /*
970 * Even if we found a group we have to make sure it is
971 * alive. css && !memcg means that the groups should be
972 * skipped and we should continue the tree walk.
973 * last_visited css is safe to use because it is
974 * protected by css_get and the tree walk is rcu safe.
975 */
976 if (next_css) {
977 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
978
979 switch (mem_cgroup_filter(mem, root, cond)) {
980 case SKIP:
981 prev_css = next_css;
982 goto skip_node;
983 case SKIP_TREE:
984 if (mem == root)
985 return NULL;
986 /*
987 * css_rightmost_descendant is not an optimal way to
988 * skip through a subtree (especially for imbalanced
989 * trees leaning to right) but that's what we have right
990 * now. More effective solution would be traversing
991 * right-up for first non-NULL without calling
992 * css_next_descendant_pre afterwards.
993 */
994 prev_css = css_rightmost_descendant(next_css);
995 goto skip_node;
996 case VISIT:
997 if (css_tryget(&mem->css))
998 return mem;
999 else {
1000 prev_css = next_css;
1001 goto skip_node;
1002 }
1003 break;
1004 }
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1011 {
1012 /*
1013 * When a group in the hierarchy below root is destroyed, the
1014 * hierarchy iterator can no longer be trusted since it might
1015 * have pointed to the destroyed group. Invalidate it.
1016 */
1017 atomic_inc(&root->dead_count);
1018 }
1019
1020 static struct mem_cgroup *
1021 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1022 struct mem_cgroup *root,
1023 int *sequence)
1024 {
1025 struct mem_cgroup *position = NULL;
1026 /*
1027 * A cgroup destruction happens in two stages: offlining and
1028 * release. They are separated by a RCU grace period.
1029 *
1030 * If the iterator is valid, we may still race with an
1031 * offlining. The RCU lock ensures the object won't be
1032 * released, tryget will fail if we lost the race.
1033 */
1034 *sequence = atomic_read(&root->dead_count);
1035 if (iter->last_dead_count == *sequence) {
1036 smp_rmb();
1037 position = iter->last_visited;
1038 if (position && !css_tryget(&position->css))
1039 position = NULL;
1040 }
1041 return position;
1042 }
1043
1044 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1045 struct mem_cgroup *last_visited,
1046 struct mem_cgroup *new_position,
1047 int sequence)
1048 {
1049 if (last_visited)
1050 css_put(&last_visited->css);
1051 /*
1052 * We store the sequence count from the time @last_visited was
1053 * loaded successfully instead of rereading it here so that we
1054 * don't lose destruction events in between. We could have
1055 * raced with the destruction of @new_position after all.
1056 */
1057 iter->last_visited = new_position;
1058 smp_wmb();
1059 iter->last_dead_count = sequence;
1060 }
1061
1062 /**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 * @cond: filter for visited nodes, NULL for no filter
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
1076 * Reclaimers can specify a zone and a priority level in @reclaim to
1077 * divide up the memcgs in the hierarchy among all concurrent
1078 * reclaimers operating on the same zone and priority.
1079 */
1080 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1081 struct mem_cgroup *prev,
1082 struct mem_cgroup_reclaim_cookie *reclaim,
1083 mem_cgroup_iter_filter cond)
1084 {
1085 struct mem_cgroup *memcg = NULL;
1086 struct mem_cgroup *last_visited = NULL;
1087
1088 if (mem_cgroup_disabled()) {
1089 /* first call must return non-NULL, second return NULL */
1090 return (struct mem_cgroup *)(unsigned long)!prev;
1091 }
1092
1093 if (!root)
1094 root = root_mem_cgroup;
1095
1096 if (prev && !reclaim)
1097 last_visited = prev;
1098
1099 if (!root->use_hierarchy && root != root_mem_cgroup) {
1100 if (prev)
1101 goto out_css_put;
1102 if (mem_cgroup_filter(root, root, cond) == VISIT)
1103 return root;
1104 return NULL;
1105 }
1106
1107 rcu_read_lock();
1108 while (!memcg) {
1109 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1110 int uninitialized_var(seq);
1111
1112 if (reclaim) {
1113 int nid = zone_to_nid(reclaim->zone);
1114 int zid = zone_idx(reclaim->zone);
1115 struct mem_cgroup_per_zone *mz;
1116
1117 mz = mem_cgroup_zoneinfo(root, nid, zid);
1118 iter = &mz->reclaim_iter[reclaim->priority];
1119 if (prev && reclaim->generation != iter->generation) {
1120 iter->last_visited = NULL;
1121 goto out_unlock;
1122 }
1123
1124 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1125 }
1126
1127 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1128
1129 if (reclaim) {
1130 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev && memcg)
1135 reclaim->generation = iter->generation;
1136 }
1137
1138 /*
1139 * We have finished the whole tree walk or no group has been
1140 * visited because filter told us to skip the root node.
1141 */
1142 if (!memcg && (prev || (cond && !last_visited)))
1143 goto out_unlock;
1144 }
1145 out_unlock:
1146 rcu_read_unlock();
1147 out_css_put:
1148 if (prev && prev != root)
1149 css_put(&prev->css);
1150
1151 return memcg;
1152 }
1153
1154 /**
1155 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1156 * @root: hierarchy root
1157 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1158 */
1159 void mem_cgroup_iter_break(struct mem_cgroup *root,
1160 struct mem_cgroup *prev)
1161 {
1162 if (!root)
1163 root = root_mem_cgroup;
1164 if (prev && prev != root)
1165 css_put(&prev->css);
1166 }
1167
1168 /*
1169 * Iteration constructs for visiting all cgroups (under a tree). If
1170 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1171 * be used for reference counting.
1172 */
1173 #define for_each_mem_cgroup_tree(iter, root) \
1174 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1175 iter != NULL; \
1176 iter = mem_cgroup_iter(root, iter, NULL))
1177
1178 #define for_each_mem_cgroup(iter) \
1179 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1180 iter != NULL; \
1181 iter = mem_cgroup_iter(NULL, iter, NULL))
1182
1183 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1184 {
1185 struct mem_cgroup *memcg;
1186
1187 rcu_read_lock();
1188 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1189 if (unlikely(!memcg))
1190 goto out;
1191
1192 switch (idx) {
1193 case PGFAULT:
1194 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1195 break;
1196 case PGMAJFAULT:
1197 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1198 break;
1199 default:
1200 BUG();
1201 }
1202 out:
1203 rcu_read_unlock();
1204 }
1205 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1206
1207 /**
1208 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1209 * @zone: zone of the wanted lruvec
1210 * @memcg: memcg of the wanted lruvec
1211 *
1212 * Returns the lru list vector holding pages for the given @zone and
1213 * @mem. This can be the global zone lruvec, if the memory controller
1214 * is disabled.
1215 */
1216 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1217 struct mem_cgroup *memcg)
1218 {
1219 struct mem_cgroup_per_zone *mz;
1220 struct lruvec *lruvec;
1221
1222 if (mem_cgroup_disabled()) {
1223 lruvec = &zone->lruvec;
1224 goto out;
1225 }
1226
1227 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1228 lruvec = &mz->lruvec;
1229 out:
1230 /*
1231 * Since a node can be onlined after the mem_cgroup was created,
1232 * we have to be prepared to initialize lruvec->zone here;
1233 * and if offlined then reonlined, we need to reinitialize it.
1234 */
1235 if (unlikely(lruvec->zone != zone))
1236 lruvec->zone = zone;
1237 return lruvec;
1238 }
1239
1240 /*
1241 * Following LRU functions are allowed to be used without PCG_LOCK.
1242 * Operations are called by routine of global LRU independently from memcg.
1243 * What we have to take care of here is validness of pc->mem_cgroup.
1244 *
1245 * Changes to pc->mem_cgroup happens when
1246 * 1. charge
1247 * 2. moving account
1248 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1249 * It is added to LRU before charge.
1250 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1251 * When moving account, the page is not on LRU. It's isolated.
1252 */
1253
1254 /**
1255 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1256 * @page: the page
1257 * @zone: zone of the page
1258 */
1259 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1260 {
1261 struct mem_cgroup_per_zone *mz;
1262 struct mem_cgroup *memcg;
1263 struct page_cgroup *pc;
1264 struct lruvec *lruvec;
1265
1266 if (mem_cgroup_disabled()) {
1267 lruvec = &zone->lruvec;
1268 goto out;
1269 }
1270
1271 pc = lookup_page_cgroup(page);
1272 memcg = pc->mem_cgroup;
1273
1274 /*
1275 * Surreptitiously switch any uncharged offlist page to root:
1276 * an uncharged page off lru does nothing to secure
1277 * its former mem_cgroup from sudden removal.
1278 *
1279 * Our caller holds lru_lock, and PageCgroupUsed is updated
1280 * under page_cgroup lock: between them, they make all uses
1281 * of pc->mem_cgroup safe.
1282 */
1283 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1284 pc->mem_cgroup = memcg = root_mem_cgroup;
1285
1286 mz = page_cgroup_zoneinfo(memcg, page);
1287 lruvec = &mz->lruvec;
1288 out:
1289 /*
1290 * Since a node can be onlined after the mem_cgroup was created,
1291 * we have to be prepared to initialize lruvec->zone here;
1292 * and if offlined then reonlined, we need to reinitialize it.
1293 */
1294 if (unlikely(lruvec->zone != zone))
1295 lruvec->zone = zone;
1296 return lruvec;
1297 }
1298
1299 /**
1300 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1301 * @lruvec: mem_cgroup per zone lru vector
1302 * @lru: index of lru list the page is sitting on
1303 * @nr_pages: positive when adding or negative when removing
1304 *
1305 * This function must be called when a page is added to or removed from an
1306 * lru list.
1307 */
1308 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1309 int nr_pages)
1310 {
1311 struct mem_cgroup_per_zone *mz;
1312 unsigned long *lru_size;
1313
1314 if (mem_cgroup_disabled())
1315 return;
1316
1317 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1318 lru_size = mz->lru_size + lru;
1319 *lru_size += nr_pages;
1320 VM_BUG_ON((long)(*lru_size) < 0);
1321 }
1322
1323 /*
1324 * Checks whether given mem is same or in the root_mem_cgroup's
1325 * hierarchy subtree
1326 */
1327 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1328 struct mem_cgroup *memcg)
1329 {
1330 if (root_memcg == memcg)
1331 return true;
1332 if (!root_memcg->use_hierarchy || !memcg)
1333 return false;
1334 return css_is_ancestor(&memcg->css, &root_memcg->css);
1335 }
1336
1337 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
1339 {
1340 bool ret;
1341
1342 rcu_read_lock();
1343 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1344 rcu_read_unlock();
1345 return ret;
1346 }
1347
1348 bool task_in_mem_cgroup(struct task_struct *task,
1349 const struct mem_cgroup *memcg)
1350 {
1351 struct mem_cgroup *curr = NULL;
1352 struct task_struct *p;
1353 bool ret;
1354
1355 p = find_lock_task_mm(task);
1356 if (p) {
1357 curr = try_get_mem_cgroup_from_mm(p->mm);
1358 task_unlock(p);
1359 } else {
1360 /*
1361 * All threads may have already detached their mm's, but the oom
1362 * killer still needs to detect if they have already been oom
1363 * killed to prevent needlessly killing additional tasks.
1364 */
1365 rcu_read_lock();
1366 curr = mem_cgroup_from_task(task);
1367 if (curr)
1368 css_get(&curr->css);
1369 rcu_read_unlock();
1370 }
1371 if (!curr)
1372 return false;
1373 /*
1374 * We should check use_hierarchy of "memcg" not "curr". Because checking
1375 * use_hierarchy of "curr" here make this function true if hierarchy is
1376 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1377 * hierarchy(even if use_hierarchy is disabled in "memcg").
1378 */
1379 ret = mem_cgroup_same_or_subtree(memcg, curr);
1380 css_put(&curr->css);
1381 return ret;
1382 }
1383
1384 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1385 {
1386 unsigned long inactive_ratio;
1387 unsigned long inactive;
1388 unsigned long active;
1389 unsigned long gb;
1390
1391 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1392 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1393
1394 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1395 if (gb)
1396 inactive_ratio = int_sqrt(10 * gb);
1397 else
1398 inactive_ratio = 1;
1399
1400 return inactive * inactive_ratio < active;
1401 }
1402
1403 #define mem_cgroup_from_res_counter(counter, member) \
1404 container_of(counter, struct mem_cgroup, member)
1405
1406 /**
1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1408 * @memcg: the memory cgroup
1409 *
1410 * Returns the maximum amount of memory @mem can be charged with, in
1411 * pages.
1412 */
1413 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414 {
1415 unsigned long long margin;
1416
1417 margin = res_counter_margin(&memcg->res);
1418 if (do_swap_account)
1419 margin = min(margin, res_counter_margin(&memcg->memsw));
1420 return margin >> PAGE_SHIFT;
1421 }
1422
1423 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1424 {
1425 /* root ? */
1426 if (!css_parent(&memcg->css))
1427 return vm_swappiness;
1428
1429 return memcg->swappiness;
1430 }
1431
1432 /*
1433 * memcg->moving_account is used for checking possibility that some thread is
1434 * calling move_account(). When a thread on CPU-A starts moving pages under
1435 * a memcg, other threads should check memcg->moving_account under
1436 * rcu_read_lock(), like this:
1437 *
1438 * CPU-A CPU-B
1439 * rcu_read_lock()
1440 * memcg->moving_account+1 if (memcg->mocing_account)
1441 * take heavy locks.
1442 * synchronize_rcu() update something.
1443 * rcu_read_unlock()
1444 * start move here.
1445 */
1446
1447 /* for quick checking without looking up memcg */
1448 atomic_t memcg_moving __read_mostly;
1449
1450 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1451 {
1452 atomic_inc(&memcg_moving);
1453 atomic_inc(&memcg->moving_account);
1454 synchronize_rcu();
1455 }
1456
1457 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1458 {
1459 /*
1460 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1461 * We check NULL in callee rather than caller.
1462 */
1463 if (memcg) {
1464 atomic_dec(&memcg_moving);
1465 atomic_dec(&memcg->moving_account);
1466 }
1467 }
1468
1469 /*
1470 * 2 routines for checking "mem" is under move_account() or not.
1471 *
1472 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1473 * is used for avoiding races in accounting. If true,
1474 * pc->mem_cgroup may be overwritten.
1475 *
1476 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1477 * under hierarchy of moving cgroups. This is for
1478 * waiting at hith-memory prressure caused by "move".
1479 */
1480
1481 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1482 {
1483 VM_BUG_ON(!rcu_read_lock_held());
1484 return atomic_read(&memcg->moving_account) > 0;
1485 }
1486
1487 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1488 {
1489 struct mem_cgroup *from;
1490 struct mem_cgroup *to;
1491 bool ret = false;
1492 /*
1493 * Unlike task_move routines, we access mc.to, mc.from not under
1494 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1495 */
1496 spin_lock(&mc.lock);
1497 from = mc.from;
1498 to = mc.to;
1499 if (!from)
1500 goto unlock;
1501
1502 ret = mem_cgroup_same_or_subtree(memcg, from)
1503 || mem_cgroup_same_or_subtree(memcg, to);
1504 unlock:
1505 spin_unlock(&mc.lock);
1506 return ret;
1507 }
1508
1509 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1510 {
1511 if (mc.moving_task && current != mc.moving_task) {
1512 if (mem_cgroup_under_move(memcg)) {
1513 DEFINE_WAIT(wait);
1514 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1515 /* moving charge context might have finished. */
1516 if (mc.moving_task)
1517 schedule();
1518 finish_wait(&mc.waitq, &wait);
1519 return true;
1520 }
1521 }
1522 return false;
1523 }
1524
1525 /*
1526 * Take this lock when
1527 * - a code tries to modify page's memcg while it's USED.
1528 * - a code tries to modify page state accounting in a memcg.
1529 * see mem_cgroup_stolen(), too.
1530 */
1531 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1532 unsigned long *flags)
1533 {
1534 spin_lock_irqsave(&memcg->move_lock, *flags);
1535 }
1536
1537 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1538 unsigned long *flags)
1539 {
1540 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1541 }
1542
1543 #define K(x) ((x) << (PAGE_SHIFT-10))
1544 /**
1545 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1546 * @memcg: The memory cgroup that went over limit
1547 * @p: Task that is going to be killed
1548 *
1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550 * enabled
1551 */
1552 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1553 {
1554 struct cgroup *task_cgrp;
1555 struct cgroup *mem_cgrp;
1556 /*
1557 * Need a buffer in BSS, can't rely on allocations. The code relies
1558 * on the assumption that OOM is serialized for memory controller.
1559 * If this assumption is broken, revisit this code.
1560 */
1561 static char memcg_name[PATH_MAX];
1562 int ret;
1563 struct mem_cgroup *iter;
1564 unsigned int i;
1565
1566 if (!p)
1567 return;
1568
1569 rcu_read_lock();
1570
1571 mem_cgrp = memcg->css.cgroup;
1572 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1573
1574 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1575 if (ret < 0) {
1576 /*
1577 * Unfortunately, we are unable to convert to a useful name
1578 * But we'll still print out the usage information
1579 */
1580 rcu_read_unlock();
1581 goto done;
1582 }
1583 rcu_read_unlock();
1584
1585 pr_info("Task in %s killed", memcg_name);
1586
1587 rcu_read_lock();
1588 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1589 if (ret < 0) {
1590 rcu_read_unlock();
1591 goto done;
1592 }
1593 rcu_read_unlock();
1594
1595 /*
1596 * Continues from above, so we don't need an KERN_ level
1597 */
1598 pr_cont(" as a result of limit of %s\n", memcg_name);
1599 done:
1600
1601 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1602 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1603 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1604 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1605 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1606 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1607 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1608 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1609 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1610 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1611 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1612 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1613
1614 for_each_mem_cgroup_tree(iter, memcg) {
1615 pr_info("Memory cgroup stats");
1616
1617 rcu_read_lock();
1618 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1619 if (!ret)
1620 pr_cont(" for %s", memcg_name);
1621 rcu_read_unlock();
1622 pr_cont(":");
1623
1624 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1625 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1626 continue;
1627 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1628 K(mem_cgroup_read_stat(iter, i)));
1629 }
1630
1631 for (i = 0; i < NR_LRU_LISTS; i++)
1632 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1633 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1634
1635 pr_cont("\n");
1636 }
1637 }
1638
1639 /*
1640 * This function returns the number of memcg under hierarchy tree. Returns
1641 * 1(self count) if no children.
1642 */
1643 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1644 {
1645 int num = 0;
1646 struct mem_cgroup *iter;
1647
1648 for_each_mem_cgroup_tree(iter, memcg)
1649 num++;
1650 return num;
1651 }
1652
1653 /*
1654 * Return the memory (and swap, if configured) limit for a memcg.
1655 */
1656 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1657 {
1658 u64 limit;
1659
1660 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1661
1662 /*
1663 * Do not consider swap space if we cannot swap due to swappiness
1664 */
1665 if (mem_cgroup_swappiness(memcg)) {
1666 u64 memsw;
1667
1668 limit += total_swap_pages << PAGE_SHIFT;
1669 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1670
1671 /*
1672 * If memsw is finite and limits the amount of swap space
1673 * available to this memcg, return that limit.
1674 */
1675 limit = min(limit, memsw);
1676 }
1677
1678 return limit;
1679 }
1680
1681 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1682 int order)
1683 {
1684 struct mem_cgroup *iter;
1685 unsigned long chosen_points = 0;
1686 unsigned long totalpages;
1687 unsigned int points = 0;
1688 struct task_struct *chosen = NULL;
1689
1690 /*
1691 * If current has a pending SIGKILL or is exiting, then automatically
1692 * select it. The goal is to allow it to allocate so that it may
1693 * quickly exit and free its memory.
1694 */
1695 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1696 set_thread_flag(TIF_MEMDIE);
1697 return;
1698 }
1699
1700 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1701 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1702 for_each_mem_cgroup_tree(iter, memcg) {
1703 struct css_task_iter it;
1704 struct task_struct *task;
1705
1706 css_task_iter_start(&iter->css, &it);
1707 while ((task = css_task_iter_next(&it))) {
1708 switch (oom_scan_process_thread(task, totalpages, NULL,
1709 false)) {
1710 case OOM_SCAN_SELECT:
1711 if (chosen)
1712 put_task_struct(chosen);
1713 chosen = task;
1714 chosen_points = ULONG_MAX;
1715 get_task_struct(chosen);
1716 /* fall through */
1717 case OOM_SCAN_CONTINUE:
1718 continue;
1719 case OOM_SCAN_ABORT:
1720 css_task_iter_end(&it);
1721 mem_cgroup_iter_break(memcg, iter);
1722 if (chosen)
1723 put_task_struct(chosen);
1724 return;
1725 case OOM_SCAN_OK:
1726 break;
1727 };
1728 points = oom_badness(task, memcg, NULL, totalpages);
1729 if (points > chosen_points) {
1730 if (chosen)
1731 put_task_struct(chosen);
1732 chosen = task;
1733 chosen_points = points;
1734 get_task_struct(chosen);
1735 }
1736 }
1737 css_task_iter_end(&it);
1738 }
1739
1740 if (!chosen)
1741 return;
1742 points = chosen_points * 1000 / totalpages;
1743 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1744 NULL, "Memory cgroup out of memory");
1745 }
1746
1747 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1748 gfp_t gfp_mask,
1749 unsigned long flags)
1750 {
1751 unsigned long total = 0;
1752 bool noswap = false;
1753 int loop;
1754
1755 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1756 noswap = true;
1757 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1758 noswap = true;
1759
1760 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1761 if (loop)
1762 drain_all_stock_async(memcg);
1763 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1764 /*
1765 * Allow limit shrinkers, which are triggered directly
1766 * by userspace, to catch signals and stop reclaim
1767 * after minimal progress, regardless of the margin.
1768 */
1769 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1770 break;
1771 if (mem_cgroup_margin(memcg))
1772 break;
1773 /*
1774 * If nothing was reclaimed after two attempts, there
1775 * may be no reclaimable pages in this hierarchy.
1776 */
1777 if (loop && !total)
1778 break;
1779 }
1780 return total;
1781 }
1782
1783 #if MAX_NUMNODES > 1
1784 /**
1785 * test_mem_cgroup_node_reclaimable
1786 * @memcg: the target memcg
1787 * @nid: the node ID to be checked.
1788 * @noswap : specify true here if the user wants flle only information.
1789 *
1790 * This function returns whether the specified memcg contains any
1791 * reclaimable pages on a node. Returns true if there are any reclaimable
1792 * pages in the node.
1793 */
1794 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1795 int nid, bool noswap)
1796 {
1797 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1798 return true;
1799 if (noswap || !total_swap_pages)
1800 return false;
1801 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1802 return true;
1803 return false;
1804
1805 }
1806
1807 /*
1808 * Always updating the nodemask is not very good - even if we have an empty
1809 * list or the wrong list here, we can start from some node and traverse all
1810 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1811 *
1812 */
1813 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1814 {
1815 int nid;
1816 /*
1817 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1818 * pagein/pageout changes since the last update.
1819 */
1820 if (!atomic_read(&memcg->numainfo_events))
1821 return;
1822 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1823 return;
1824
1825 /* make a nodemask where this memcg uses memory from */
1826 memcg->scan_nodes = node_states[N_MEMORY];
1827
1828 for_each_node_mask(nid, node_states[N_MEMORY]) {
1829
1830 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1831 node_clear(nid, memcg->scan_nodes);
1832 }
1833
1834 atomic_set(&memcg->numainfo_events, 0);
1835 atomic_set(&memcg->numainfo_updating, 0);
1836 }
1837
1838 /*
1839 * Selecting a node where we start reclaim from. Because what we need is just
1840 * reducing usage counter, start from anywhere is O,K. Considering
1841 * memory reclaim from current node, there are pros. and cons.
1842 *
1843 * Freeing memory from current node means freeing memory from a node which
1844 * we'll use or we've used. So, it may make LRU bad. And if several threads
1845 * hit limits, it will see a contention on a node. But freeing from remote
1846 * node means more costs for memory reclaim because of memory latency.
1847 *
1848 * Now, we use round-robin. Better algorithm is welcomed.
1849 */
1850 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1851 {
1852 int node;
1853
1854 mem_cgroup_may_update_nodemask(memcg);
1855 node = memcg->last_scanned_node;
1856
1857 node = next_node(node, memcg->scan_nodes);
1858 if (node == MAX_NUMNODES)
1859 node = first_node(memcg->scan_nodes);
1860 /*
1861 * We call this when we hit limit, not when pages are added to LRU.
1862 * No LRU may hold pages because all pages are UNEVICTABLE or
1863 * memcg is too small and all pages are not on LRU. In that case,
1864 * we use curret node.
1865 */
1866 if (unlikely(node == MAX_NUMNODES))
1867 node = numa_node_id();
1868
1869 memcg->last_scanned_node = node;
1870 return node;
1871 }
1872
1873 #else
1874 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1875 {
1876 return 0;
1877 }
1878
1879 #endif
1880
1881 /*
1882 * A group is eligible for the soft limit reclaim under the given root
1883 * hierarchy if
1884 * a) it is over its soft limit
1885 * b) any parent up the hierarchy is over its soft limit
1886 *
1887 * If the given group doesn't have any children over the limit then it
1888 * doesn't make any sense to iterate its subtree.
1889 */
1890 enum mem_cgroup_filter_t
1891 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1892 struct mem_cgroup *root)
1893 {
1894 struct mem_cgroup *parent;
1895
1896 if (!memcg)
1897 memcg = root_mem_cgroup;
1898 parent = memcg;
1899
1900 if (res_counter_soft_limit_excess(&memcg->res))
1901 return VISIT;
1902
1903 /*
1904 * If any parent up to the root in the hierarchy is over its soft limit
1905 * then we have to obey and reclaim from this group as well.
1906 */
1907 while ((parent = parent_mem_cgroup(parent))) {
1908 if (res_counter_soft_limit_excess(&parent->res))
1909 return VISIT;
1910 if (parent == root)
1911 break;
1912 }
1913
1914 if (!atomic_read(&memcg->children_in_excess))
1915 return SKIP_TREE;
1916 return SKIP;
1917 }
1918
1919 static DEFINE_SPINLOCK(memcg_oom_lock);
1920
1921 /*
1922 * Check OOM-Killer is already running under our hierarchy.
1923 * If someone is running, return false.
1924 */
1925 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1926 {
1927 struct mem_cgroup *iter, *failed = NULL;
1928
1929 spin_lock(&memcg_oom_lock);
1930
1931 for_each_mem_cgroup_tree(iter, memcg) {
1932 if (iter->oom_lock) {
1933 /*
1934 * this subtree of our hierarchy is already locked
1935 * so we cannot give a lock.
1936 */
1937 failed = iter;
1938 mem_cgroup_iter_break(memcg, iter);
1939 break;
1940 } else
1941 iter->oom_lock = true;
1942 }
1943
1944 if (failed) {
1945 /*
1946 * OK, we failed to lock the whole subtree so we have
1947 * to clean up what we set up to the failing subtree
1948 */
1949 for_each_mem_cgroup_tree(iter, memcg) {
1950 if (iter == failed) {
1951 mem_cgroup_iter_break(memcg, iter);
1952 break;
1953 }
1954 iter->oom_lock = false;
1955 }
1956 }
1957
1958 spin_unlock(&memcg_oom_lock);
1959
1960 return !failed;
1961 }
1962
1963 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1964 {
1965 struct mem_cgroup *iter;
1966
1967 spin_lock(&memcg_oom_lock);
1968 for_each_mem_cgroup_tree(iter, memcg)
1969 iter->oom_lock = false;
1970 spin_unlock(&memcg_oom_lock);
1971 }
1972
1973 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1974 {
1975 struct mem_cgroup *iter;
1976
1977 for_each_mem_cgroup_tree(iter, memcg)
1978 atomic_inc(&iter->under_oom);
1979 }
1980
1981 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1982 {
1983 struct mem_cgroup *iter;
1984
1985 /*
1986 * When a new child is created while the hierarchy is under oom,
1987 * mem_cgroup_oom_lock() may not be called. We have to use
1988 * atomic_add_unless() here.
1989 */
1990 for_each_mem_cgroup_tree(iter, memcg)
1991 atomic_add_unless(&iter->under_oom, -1, 0);
1992 }
1993
1994 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1995
1996 struct oom_wait_info {
1997 struct mem_cgroup *memcg;
1998 wait_queue_t wait;
1999 };
2000
2001 static int memcg_oom_wake_function(wait_queue_t *wait,
2002 unsigned mode, int sync, void *arg)
2003 {
2004 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2005 struct mem_cgroup *oom_wait_memcg;
2006 struct oom_wait_info *oom_wait_info;
2007
2008 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2009 oom_wait_memcg = oom_wait_info->memcg;
2010
2011 /*
2012 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2013 * Then we can use css_is_ancestor without taking care of RCU.
2014 */
2015 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2016 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2017 return 0;
2018 return autoremove_wake_function(wait, mode, sync, arg);
2019 }
2020
2021 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2022 {
2023 /* for filtering, pass "memcg" as argument. */
2024 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2025 }
2026
2027 static void memcg_oom_recover(struct mem_cgroup *memcg)
2028 {
2029 if (memcg && atomic_read(&memcg->under_oom))
2030 memcg_wakeup_oom(memcg);
2031 }
2032
2033 /*
2034 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2035 */
2036 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2037 int order)
2038 {
2039 struct oom_wait_info owait;
2040 bool locked;
2041
2042 owait.memcg = memcg;
2043 owait.wait.flags = 0;
2044 owait.wait.func = memcg_oom_wake_function;
2045 owait.wait.private = current;
2046 INIT_LIST_HEAD(&owait.wait.task_list);
2047
2048 /*
2049 * As with any blocking lock, a contender needs to start
2050 * listening for wakeups before attempting the trylock,
2051 * otherwise it can miss the wakeup from the unlock and sleep
2052 * indefinitely. This is just open-coded because our locking
2053 * is so particular to memcg hierarchies.
2054 *
2055 * Even if signal_pending(), we can't quit charge() loop without
2056 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2057 * under OOM is always welcomed, use TASK_KILLABLE here.
2058 */
2059 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2060 mem_cgroup_mark_under_oom(memcg);
2061
2062 locked = mem_cgroup_oom_trylock(memcg);
2063
2064 if (locked)
2065 mem_cgroup_oom_notify(memcg);
2066
2067 if (locked && !memcg->oom_kill_disable) {
2068 mem_cgroup_unmark_under_oom(memcg);
2069 finish_wait(&memcg_oom_waitq, &owait.wait);
2070 mem_cgroup_out_of_memory(memcg, mask, order);
2071 } else {
2072 schedule();
2073 mem_cgroup_unmark_under_oom(memcg);
2074 finish_wait(&memcg_oom_waitq, &owait.wait);
2075 }
2076
2077 if (locked) {
2078 mem_cgroup_oom_unlock(memcg);
2079 /*
2080 * There is no guarantee that an OOM-lock contender
2081 * sees the wakeups triggered by the OOM kill
2082 * uncharges. Wake any sleepers explicitely.
2083 */
2084 memcg_oom_recover(memcg);
2085 }
2086
2087 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2088 return false;
2089 /* Give chance to dying process */
2090 schedule_timeout_uninterruptible(1);
2091 return true;
2092 }
2093
2094 /*
2095 * Currently used to update mapped file statistics, but the routine can be
2096 * generalized to update other statistics as well.
2097 *
2098 * Notes: Race condition
2099 *
2100 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2101 * it tends to be costly. But considering some conditions, we doesn't need
2102 * to do so _always_.
2103 *
2104 * Considering "charge", lock_page_cgroup() is not required because all
2105 * file-stat operations happen after a page is attached to radix-tree. There
2106 * are no race with "charge".
2107 *
2108 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2109 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2110 * if there are race with "uncharge". Statistics itself is properly handled
2111 * by flags.
2112 *
2113 * Considering "move", this is an only case we see a race. To make the race
2114 * small, we check mm->moving_account and detect there are possibility of race
2115 * If there is, we take a lock.
2116 */
2117
2118 void __mem_cgroup_begin_update_page_stat(struct page *page,
2119 bool *locked, unsigned long *flags)
2120 {
2121 struct mem_cgroup *memcg;
2122 struct page_cgroup *pc;
2123
2124 pc = lookup_page_cgroup(page);
2125 again:
2126 memcg = pc->mem_cgroup;
2127 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2128 return;
2129 /*
2130 * If this memory cgroup is not under account moving, we don't
2131 * need to take move_lock_mem_cgroup(). Because we already hold
2132 * rcu_read_lock(), any calls to move_account will be delayed until
2133 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2134 */
2135 if (!mem_cgroup_stolen(memcg))
2136 return;
2137
2138 move_lock_mem_cgroup(memcg, flags);
2139 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2140 move_unlock_mem_cgroup(memcg, flags);
2141 goto again;
2142 }
2143 *locked = true;
2144 }
2145
2146 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2147 {
2148 struct page_cgroup *pc = lookup_page_cgroup(page);
2149
2150 /*
2151 * It's guaranteed that pc->mem_cgroup never changes while
2152 * lock is held because a routine modifies pc->mem_cgroup
2153 * should take move_lock_mem_cgroup().
2154 */
2155 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2156 }
2157
2158 void mem_cgroup_update_page_stat(struct page *page,
2159 enum mem_cgroup_page_stat_item idx, int val)
2160 {
2161 struct mem_cgroup *memcg;
2162 struct page_cgroup *pc = lookup_page_cgroup(page);
2163 unsigned long uninitialized_var(flags);
2164
2165 if (mem_cgroup_disabled())
2166 return;
2167
2168 memcg = pc->mem_cgroup;
2169 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2170 return;
2171
2172 switch (idx) {
2173 case MEMCG_NR_FILE_MAPPED:
2174 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2175 break;
2176 default:
2177 BUG();
2178 }
2179
2180 this_cpu_add(memcg->stat->count[idx], val);
2181 }
2182
2183 /*
2184 * size of first charge trial. "32" comes from vmscan.c's magic value.
2185 * TODO: maybe necessary to use big numbers in big irons.
2186 */
2187 #define CHARGE_BATCH 32U
2188 struct memcg_stock_pcp {
2189 struct mem_cgroup *cached; /* this never be root cgroup */
2190 unsigned int nr_pages;
2191 struct work_struct work;
2192 unsigned long flags;
2193 #define FLUSHING_CACHED_CHARGE 0
2194 };
2195 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2196 static DEFINE_MUTEX(percpu_charge_mutex);
2197
2198 /**
2199 * consume_stock: Try to consume stocked charge on this cpu.
2200 * @memcg: memcg to consume from.
2201 * @nr_pages: how many pages to charge.
2202 *
2203 * The charges will only happen if @memcg matches the current cpu's memcg
2204 * stock, and at least @nr_pages are available in that stock. Failure to
2205 * service an allocation will refill the stock.
2206 *
2207 * returns true if successful, false otherwise.
2208 */
2209 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2210 {
2211 struct memcg_stock_pcp *stock;
2212 bool ret = true;
2213
2214 if (nr_pages > CHARGE_BATCH)
2215 return false;
2216
2217 stock = &get_cpu_var(memcg_stock);
2218 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2219 stock->nr_pages -= nr_pages;
2220 else /* need to call res_counter_charge */
2221 ret = false;
2222 put_cpu_var(memcg_stock);
2223 return ret;
2224 }
2225
2226 /*
2227 * Returns stocks cached in percpu to res_counter and reset cached information.
2228 */
2229 static void drain_stock(struct memcg_stock_pcp *stock)
2230 {
2231 struct mem_cgroup *old = stock->cached;
2232
2233 if (stock->nr_pages) {
2234 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2235
2236 res_counter_uncharge(&old->res, bytes);
2237 if (do_swap_account)
2238 res_counter_uncharge(&old->memsw, bytes);
2239 stock->nr_pages = 0;
2240 }
2241 stock->cached = NULL;
2242 }
2243
2244 /*
2245 * This must be called under preempt disabled or must be called by
2246 * a thread which is pinned to local cpu.
2247 */
2248 static void drain_local_stock(struct work_struct *dummy)
2249 {
2250 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2251 drain_stock(stock);
2252 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2253 }
2254
2255 static void __init memcg_stock_init(void)
2256 {
2257 int cpu;
2258
2259 for_each_possible_cpu(cpu) {
2260 struct memcg_stock_pcp *stock =
2261 &per_cpu(memcg_stock, cpu);
2262 INIT_WORK(&stock->work, drain_local_stock);
2263 }
2264 }
2265
2266 /*
2267 * Cache charges(val) which is from res_counter, to local per_cpu area.
2268 * This will be consumed by consume_stock() function, later.
2269 */
2270 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2271 {
2272 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2273
2274 if (stock->cached != memcg) { /* reset if necessary */
2275 drain_stock(stock);
2276 stock->cached = memcg;
2277 }
2278 stock->nr_pages += nr_pages;
2279 put_cpu_var(memcg_stock);
2280 }
2281
2282 /*
2283 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2284 * of the hierarchy under it. sync flag says whether we should block
2285 * until the work is done.
2286 */
2287 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2288 {
2289 int cpu, curcpu;
2290
2291 /* Notify other cpus that system-wide "drain" is running */
2292 get_online_cpus();
2293 curcpu = get_cpu();
2294 for_each_online_cpu(cpu) {
2295 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2296 struct mem_cgroup *memcg;
2297
2298 memcg = stock->cached;
2299 if (!memcg || !stock->nr_pages)
2300 continue;
2301 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2302 continue;
2303 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2304 if (cpu == curcpu)
2305 drain_local_stock(&stock->work);
2306 else
2307 schedule_work_on(cpu, &stock->work);
2308 }
2309 }
2310 put_cpu();
2311
2312 if (!sync)
2313 goto out;
2314
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2318 flush_work(&stock->work);
2319 }
2320 out:
2321 put_online_cpus();
2322 }
2323
2324 /*
2325 * Tries to drain stocked charges in other cpus. This function is asynchronous
2326 * and just put a work per cpu for draining localy on each cpu. Caller can
2327 * expects some charges will be back to res_counter later but cannot wait for
2328 * it.
2329 */
2330 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2331 {
2332 /*
2333 * If someone calls draining, avoid adding more kworker runs.
2334 */
2335 if (!mutex_trylock(&percpu_charge_mutex))
2336 return;
2337 drain_all_stock(root_memcg, false);
2338 mutex_unlock(&percpu_charge_mutex);
2339 }
2340
2341 /* This is a synchronous drain interface. */
2342 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2343 {
2344 /* called when force_empty is called */
2345 mutex_lock(&percpu_charge_mutex);
2346 drain_all_stock(root_memcg, true);
2347 mutex_unlock(&percpu_charge_mutex);
2348 }
2349
2350 /*
2351 * This function drains percpu counter value from DEAD cpu and
2352 * move it to local cpu. Note that this function can be preempted.
2353 */
2354 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2355 {
2356 int i;
2357
2358 spin_lock(&memcg->pcp_counter_lock);
2359 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2360 long x = per_cpu(memcg->stat->count[i], cpu);
2361
2362 per_cpu(memcg->stat->count[i], cpu) = 0;
2363 memcg->nocpu_base.count[i] += x;
2364 }
2365 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2366 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2367
2368 per_cpu(memcg->stat->events[i], cpu) = 0;
2369 memcg->nocpu_base.events[i] += x;
2370 }
2371 spin_unlock(&memcg->pcp_counter_lock);
2372 }
2373
2374 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2375 unsigned long action,
2376 void *hcpu)
2377 {
2378 int cpu = (unsigned long)hcpu;
2379 struct memcg_stock_pcp *stock;
2380 struct mem_cgroup *iter;
2381
2382 if (action == CPU_ONLINE)
2383 return NOTIFY_OK;
2384
2385 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2386 return NOTIFY_OK;
2387
2388 for_each_mem_cgroup(iter)
2389 mem_cgroup_drain_pcp_counter(iter, cpu);
2390
2391 stock = &per_cpu(memcg_stock, cpu);
2392 drain_stock(stock);
2393 return NOTIFY_OK;
2394 }
2395
2396
2397 /* See __mem_cgroup_try_charge() for details */
2398 enum {
2399 CHARGE_OK, /* success */
2400 CHARGE_RETRY, /* need to retry but retry is not bad */
2401 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2402 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2403 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2404 };
2405
2406 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2407 unsigned int nr_pages, unsigned int min_pages,
2408 bool oom_check)
2409 {
2410 unsigned long csize = nr_pages * PAGE_SIZE;
2411 struct mem_cgroup *mem_over_limit;
2412 struct res_counter *fail_res;
2413 unsigned long flags = 0;
2414 int ret;
2415
2416 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2417
2418 if (likely(!ret)) {
2419 if (!do_swap_account)
2420 return CHARGE_OK;
2421 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2422 if (likely(!ret))
2423 return CHARGE_OK;
2424
2425 res_counter_uncharge(&memcg->res, csize);
2426 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2427 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2428 } else
2429 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2430 /*
2431 * Never reclaim on behalf of optional batching, retry with a
2432 * single page instead.
2433 */
2434 if (nr_pages > min_pages)
2435 return CHARGE_RETRY;
2436
2437 if (!(gfp_mask & __GFP_WAIT))
2438 return CHARGE_WOULDBLOCK;
2439
2440 if (gfp_mask & __GFP_NORETRY)
2441 return CHARGE_NOMEM;
2442
2443 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2444 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2445 return CHARGE_RETRY;
2446 /*
2447 * Even though the limit is exceeded at this point, reclaim
2448 * may have been able to free some pages. Retry the charge
2449 * before killing the task.
2450 *
2451 * Only for regular pages, though: huge pages are rather
2452 * unlikely to succeed so close to the limit, and we fall back
2453 * to regular pages anyway in case of failure.
2454 */
2455 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2456 return CHARGE_RETRY;
2457
2458 /*
2459 * At task move, charge accounts can be doubly counted. So, it's
2460 * better to wait until the end of task_move if something is going on.
2461 */
2462 if (mem_cgroup_wait_acct_move(mem_over_limit))
2463 return CHARGE_RETRY;
2464
2465 /* If we don't need to call oom-killer at el, return immediately */
2466 if (!oom_check || !current->memcg_oom.may_oom)
2467 return CHARGE_NOMEM;
2468 /* check OOM */
2469 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2470 return CHARGE_OOM_DIE;
2471
2472 return CHARGE_RETRY;
2473 }
2474
2475 /*
2476 * __mem_cgroup_try_charge() does
2477 * 1. detect memcg to be charged against from passed *mm and *ptr,
2478 * 2. update res_counter
2479 * 3. call memory reclaim if necessary.
2480 *
2481 * In some special case, if the task is fatal, fatal_signal_pending() or
2482 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2483 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2484 * as possible without any hazards. 2: all pages should have a valid
2485 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2486 * pointer, that is treated as a charge to root_mem_cgroup.
2487 *
2488 * So __mem_cgroup_try_charge() will return
2489 * 0 ... on success, filling *ptr with a valid memcg pointer.
2490 * -ENOMEM ... charge failure because of resource limits.
2491 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2492 *
2493 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2494 * the oom-killer can be invoked.
2495 */
2496 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2497 gfp_t gfp_mask,
2498 unsigned int nr_pages,
2499 struct mem_cgroup **ptr,
2500 bool oom)
2501 {
2502 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2503 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2504 struct mem_cgroup *memcg = NULL;
2505 int ret;
2506
2507 /*
2508 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2509 * in system level. So, allow to go ahead dying process in addition to
2510 * MEMDIE process.
2511 */
2512 if (unlikely(test_thread_flag(TIF_MEMDIE)
2513 || fatal_signal_pending(current)))
2514 goto bypass;
2515
2516 /*
2517 * We always charge the cgroup the mm_struct belongs to.
2518 * The mm_struct's mem_cgroup changes on task migration if the
2519 * thread group leader migrates. It's possible that mm is not
2520 * set, if so charge the root memcg (happens for pagecache usage).
2521 */
2522 if (!*ptr && !mm)
2523 *ptr = root_mem_cgroup;
2524 again:
2525 if (*ptr) { /* css should be a valid one */
2526 memcg = *ptr;
2527 if (mem_cgroup_is_root(memcg))
2528 goto done;
2529 if (consume_stock(memcg, nr_pages))
2530 goto done;
2531 css_get(&memcg->css);
2532 } else {
2533 struct task_struct *p;
2534
2535 rcu_read_lock();
2536 p = rcu_dereference(mm->owner);
2537 /*
2538 * Because we don't have task_lock(), "p" can exit.
2539 * In that case, "memcg" can point to root or p can be NULL with
2540 * race with swapoff. Then, we have small risk of mis-accouning.
2541 * But such kind of mis-account by race always happens because
2542 * we don't have cgroup_mutex(). It's overkill and we allo that
2543 * small race, here.
2544 * (*) swapoff at el will charge against mm-struct not against
2545 * task-struct. So, mm->owner can be NULL.
2546 */
2547 memcg = mem_cgroup_from_task(p);
2548 if (!memcg)
2549 memcg = root_mem_cgroup;
2550 if (mem_cgroup_is_root(memcg)) {
2551 rcu_read_unlock();
2552 goto done;
2553 }
2554 if (consume_stock(memcg, nr_pages)) {
2555 /*
2556 * It seems dagerous to access memcg without css_get().
2557 * But considering how consume_stok works, it's not
2558 * necessary. If consume_stock success, some charges
2559 * from this memcg are cached on this cpu. So, we
2560 * don't need to call css_get()/css_tryget() before
2561 * calling consume_stock().
2562 */
2563 rcu_read_unlock();
2564 goto done;
2565 }
2566 /* after here, we may be blocked. we need to get refcnt */
2567 if (!css_tryget(&memcg->css)) {
2568 rcu_read_unlock();
2569 goto again;
2570 }
2571 rcu_read_unlock();
2572 }
2573
2574 do {
2575 bool oom_check;
2576
2577 /* If killed, bypass charge */
2578 if (fatal_signal_pending(current)) {
2579 css_put(&memcg->css);
2580 goto bypass;
2581 }
2582
2583 oom_check = false;
2584 if (oom && !nr_oom_retries) {
2585 oom_check = true;
2586 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2587 }
2588
2589 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2590 oom_check);
2591 switch (ret) {
2592 case CHARGE_OK:
2593 break;
2594 case CHARGE_RETRY: /* not in OOM situation but retry */
2595 batch = nr_pages;
2596 css_put(&memcg->css);
2597 memcg = NULL;
2598 goto again;
2599 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2600 css_put(&memcg->css);
2601 goto nomem;
2602 case CHARGE_NOMEM: /* OOM routine works */
2603 if (!oom) {
2604 css_put(&memcg->css);
2605 goto nomem;
2606 }
2607 /* If oom, we never return -ENOMEM */
2608 nr_oom_retries--;
2609 break;
2610 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2611 css_put(&memcg->css);
2612 goto bypass;
2613 }
2614 } while (ret != CHARGE_OK);
2615
2616 if (batch > nr_pages)
2617 refill_stock(memcg, batch - nr_pages);
2618 css_put(&memcg->css);
2619 done:
2620 *ptr = memcg;
2621 return 0;
2622 nomem:
2623 *ptr = NULL;
2624 return -ENOMEM;
2625 bypass:
2626 *ptr = root_mem_cgroup;
2627 return -EINTR;
2628 }
2629
2630 /*
2631 * Somemtimes we have to undo a charge we got by try_charge().
2632 * This function is for that and do uncharge, put css's refcnt.
2633 * gotten by try_charge().
2634 */
2635 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2636 unsigned int nr_pages)
2637 {
2638 if (!mem_cgroup_is_root(memcg)) {
2639 unsigned long bytes = nr_pages * PAGE_SIZE;
2640
2641 res_counter_uncharge(&memcg->res, bytes);
2642 if (do_swap_account)
2643 res_counter_uncharge(&memcg->memsw, bytes);
2644 }
2645 }
2646
2647 /*
2648 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2649 * This is useful when moving usage to parent cgroup.
2650 */
2651 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2652 unsigned int nr_pages)
2653 {
2654 unsigned long bytes = nr_pages * PAGE_SIZE;
2655
2656 if (mem_cgroup_is_root(memcg))
2657 return;
2658
2659 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2660 if (do_swap_account)
2661 res_counter_uncharge_until(&memcg->memsw,
2662 memcg->memsw.parent, bytes);
2663 }
2664
2665 /*
2666 * A helper function to get mem_cgroup from ID. must be called under
2667 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2668 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2669 * called against removed memcg.)
2670 */
2671 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2672 {
2673 struct cgroup_subsys_state *css;
2674
2675 /* ID 0 is unused ID */
2676 if (!id)
2677 return NULL;
2678 css = css_lookup(&mem_cgroup_subsys, id);
2679 if (!css)
2680 return NULL;
2681 return mem_cgroup_from_css(css);
2682 }
2683
2684 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2685 {
2686 struct mem_cgroup *memcg = NULL;
2687 struct page_cgroup *pc;
2688 unsigned short id;
2689 swp_entry_t ent;
2690
2691 VM_BUG_ON(!PageLocked(page));
2692
2693 pc = lookup_page_cgroup(page);
2694 lock_page_cgroup(pc);
2695 if (PageCgroupUsed(pc)) {
2696 memcg = pc->mem_cgroup;
2697 if (memcg && !css_tryget(&memcg->css))
2698 memcg = NULL;
2699 } else if (PageSwapCache(page)) {
2700 ent.val = page_private(page);
2701 id = lookup_swap_cgroup_id(ent);
2702 rcu_read_lock();
2703 memcg = mem_cgroup_lookup(id);
2704 if (memcg && !css_tryget(&memcg->css))
2705 memcg = NULL;
2706 rcu_read_unlock();
2707 }
2708 unlock_page_cgroup(pc);
2709 return memcg;
2710 }
2711
2712 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2713 struct page *page,
2714 unsigned int nr_pages,
2715 enum charge_type ctype,
2716 bool lrucare)
2717 {
2718 struct page_cgroup *pc = lookup_page_cgroup(page);
2719 struct zone *uninitialized_var(zone);
2720 struct lruvec *lruvec;
2721 bool was_on_lru = false;
2722 bool anon;
2723
2724 lock_page_cgroup(pc);
2725 VM_BUG_ON(PageCgroupUsed(pc));
2726 /*
2727 * we don't need page_cgroup_lock about tail pages, becase they are not
2728 * accessed by any other context at this point.
2729 */
2730
2731 /*
2732 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2733 * may already be on some other mem_cgroup's LRU. Take care of it.
2734 */
2735 if (lrucare) {
2736 zone = page_zone(page);
2737 spin_lock_irq(&zone->lru_lock);
2738 if (PageLRU(page)) {
2739 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2740 ClearPageLRU(page);
2741 del_page_from_lru_list(page, lruvec, page_lru(page));
2742 was_on_lru = true;
2743 }
2744 }
2745
2746 pc->mem_cgroup = memcg;
2747 /*
2748 * We access a page_cgroup asynchronously without lock_page_cgroup().
2749 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2750 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2751 * before USED bit, we need memory barrier here.
2752 * See mem_cgroup_add_lru_list(), etc.
2753 */
2754 smp_wmb();
2755 SetPageCgroupUsed(pc);
2756
2757 if (lrucare) {
2758 if (was_on_lru) {
2759 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2760 VM_BUG_ON(PageLRU(page));
2761 SetPageLRU(page);
2762 add_page_to_lru_list(page, lruvec, page_lru(page));
2763 }
2764 spin_unlock_irq(&zone->lru_lock);
2765 }
2766
2767 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2768 anon = true;
2769 else
2770 anon = false;
2771
2772 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2773 unlock_page_cgroup(pc);
2774
2775 /*
2776 * "charge_statistics" updated event counter.
2777 */
2778 memcg_check_events(memcg, page);
2779 }
2780
2781 static DEFINE_MUTEX(set_limit_mutex);
2782
2783 #ifdef CONFIG_MEMCG_KMEM
2784 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2785 {
2786 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2787 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2788 }
2789
2790 /*
2791 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2792 * in the memcg_cache_params struct.
2793 */
2794 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2795 {
2796 struct kmem_cache *cachep;
2797
2798 VM_BUG_ON(p->is_root_cache);
2799 cachep = p->root_cache;
2800 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2801 }
2802
2803 #ifdef CONFIG_SLABINFO
2804 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2805 struct cftype *cft, struct seq_file *m)
2806 {
2807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2808 struct memcg_cache_params *params;
2809
2810 if (!memcg_can_account_kmem(memcg))
2811 return -EIO;
2812
2813 print_slabinfo_header(m);
2814
2815 mutex_lock(&memcg->slab_caches_mutex);
2816 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2817 cache_show(memcg_params_to_cache(params), m);
2818 mutex_unlock(&memcg->slab_caches_mutex);
2819
2820 return 0;
2821 }
2822 #endif
2823
2824 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2825 {
2826 struct res_counter *fail_res;
2827 struct mem_cgroup *_memcg;
2828 int ret = 0;
2829 bool may_oom;
2830
2831 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2832 if (ret)
2833 return ret;
2834
2835 /*
2836 * Conditions under which we can wait for the oom_killer. Those are
2837 * the same conditions tested by the core page allocator
2838 */
2839 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2840
2841 _memcg = memcg;
2842 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2843 &_memcg, may_oom);
2844
2845 if (ret == -EINTR) {
2846 /*
2847 * __mem_cgroup_try_charge() chosed to bypass to root due to
2848 * OOM kill or fatal signal. Since our only options are to
2849 * either fail the allocation or charge it to this cgroup, do
2850 * it as a temporary condition. But we can't fail. From a
2851 * kmem/slab perspective, the cache has already been selected,
2852 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2853 * our minds.
2854 *
2855 * This condition will only trigger if the task entered
2856 * memcg_charge_kmem in a sane state, but was OOM-killed during
2857 * __mem_cgroup_try_charge() above. Tasks that were already
2858 * dying when the allocation triggers should have been already
2859 * directed to the root cgroup in memcontrol.h
2860 */
2861 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2862 if (do_swap_account)
2863 res_counter_charge_nofail(&memcg->memsw, size,
2864 &fail_res);
2865 ret = 0;
2866 } else if (ret)
2867 res_counter_uncharge(&memcg->kmem, size);
2868
2869 return ret;
2870 }
2871
2872 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2873 {
2874 res_counter_uncharge(&memcg->res, size);
2875 if (do_swap_account)
2876 res_counter_uncharge(&memcg->memsw, size);
2877
2878 /* Not down to 0 */
2879 if (res_counter_uncharge(&memcg->kmem, size))
2880 return;
2881
2882 /*
2883 * Releases a reference taken in kmem_cgroup_css_offline in case
2884 * this last uncharge is racing with the offlining code or it is
2885 * outliving the memcg existence.
2886 *
2887 * The memory barrier imposed by test&clear is paired with the
2888 * explicit one in memcg_kmem_mark_dead().
2889 */
2890 if (memcg_kmem_test_and_clear_dead(memcg))
2891 css_put(&memcg->css);
2892 }
2893
2894 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2895 {
2896 if (!memcg)
2897 return;
2898
2899 mutex_lock(&memcg->slab_caches_mutex);
2900 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2901 mutex_unlock(&memcg->slab_caches_mutex);
2902 }
2903
2904 /*
2905 * helper for acessing a memcg's index. It will be used as an index in the
2906 * child cache array in kmem_cache, and also to derive its name. This function
2907 * will return -1 when this is not a kmem-limited memcg.
2908 */
2909 int memcg_cache_id(struct mem_cgroup *memcg)
2910 {
2911 return memcg ? memcg->kmemcg_id : -1;
2912 }
2913
2914 /*
2915 * This ends up being protected by the set_limit mutex, during normal
2916 * operation, because that is its main call site.
2917 *
2918 * But when we create a new cache, we can call this as well if its parent
2919 * is kmem-limited. That will have to hold set_limit_mutex as well.
2920 */
2921 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2922 {
2923 int num, ret;
2924
2925 num = ida_simple_get(&kmem_limited_groups,
2926 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2927 if (num < 0)
2928 return num;
2929 /*
2930 * After this point, kmem_accounted (that we test atomically in
2931 * the beginning of this conditional), is no longer 0. This
2932 * guarantees only one process will set the following boolean
2933 * to true. We don't need test_and_set because we're protected
2934 * by the set_limit_mutex anyway.
2935 */
2936 memcg_kmem_set_activated(memcg);
2937
2938 ret = memcg_update_all_caches(num+1);
2939 if (ret) {
2940 ida_simple_remove(&kmem_limited_groups, num);
2941 memcg_kmem_clear_activated(memcg);
2942 return ret;
2943 }
2944
2945 memcg->kmemcg_id = num;
2946 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2947 mutex_init(&memcg->slab_caches_mutex);
2948 return 0;
2949 }
2950
2951 static size_t memcg_caches_array_size(int num_groups)
2952 {
2953 ssize_t size;
2954 if (num_groups <= 0)
2955 return 0;
2956
2957 size = 2 * num_groups;
2958 if (size < MEMCG_CACHES_MIN_SIZE)
2959 size = MEMCG_CACHES_MIN_SIZE;
2960 else if (size > MEMCG_CACHES_MAX_SIZE)
2961 size = MEMCG_CACHES_MAX_SIZE;
2962
2963 return size;
2964 }
2965
2966 /*
2967 * We should update the current array size iff all caches updates succeed. This
2968 * can only be done from the slab side. The slab mutex needs to be held when
2969 * calling this.
2970 */
2971 void memcg_update_array_size(int num)
2972 {
2973 if (num > memcg_limited_groups_array_size)
2974 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2975 }
2976
2977 static void kmem_cache_destroy_work_func(struct work_struct *w);
2978
2979 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2980 {
2981 struct memcg_cache_params *cur_params = s->memcg_params;
2982
2983 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2984
2985 if (num_groups > memcg_limited_groups_array_size) {
2986 int i;
2987 ssize_t size = memcg_caches_array_size(num_groups);
2988
2989 size *= sizeof(void *);
2990 size += offsetof(struct memcg_cache_params, memcg_caches);
2991
2992 s->memcg_params = kzalloc(size, GFP_KERNEL);
2993 if (!s->memcg_params) {
2994 s->memcg_params = cur_params;
2995 return -ENOMEM;
2996 }
2997
2998 s->memcg_params->is_root_cache = true;
2999
3000 /*
3001 * There is the chance it will be bigger than
3002 * memcg_limited_groups_array_size, if we failed an allocation
3003 * in a cache, in which case all caches updated before it, will
3004 * have a bigger array.
3005 *
3006 * But if that is the case, the data after
3007 * memcg_limited_groups_array_size is certainly unused
3008 */
3009 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3010 if (!cur_params->memcg_caches[i])
3011 continue;
3012 s->memcg_params->memcg_caches[i] =
3013 cur_params->memcg_caches[i];
3014 }
3015
3016 /*
3017 * Ideally, we would wait until all caches succeed, and only
3018 * then free the old one. But this is not worth the extra
3019 * pointer per-cache we'd have to have for this.
3020 *
3021 * It is not a big deal if some caches are left with a size
3022 * bigger than the others. And all updates will reset this
3023 * anyway.
3024 */
3025 kfree(cur_params);
3026 }
3027 return 0;
3028 }
3029
3030 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3031 struct kmem_cache *root_cache)
3032 {
3033 size_t size;
3034
3035 if (!memcg_kmem_enabled())
3036 return 0;
3037
3038 if (!memcg) {
3039 size = offsetof(struct memcg_cache_params, memcg_caches);
3040 size += memcg_limited_groups_array_size * sizeof(void *);
3041 } else
3042 size = sizeof(struct memcg_cache_params);
3043
3044 s->memcg_params = kzalloc(size, GFP_KERNEL);
3045 if (!s->memcg_params)
3046 return -ENOMEM;
3047
3048 if (memcg) {
3049 s->memcg_params->memcg = memcg;
3050 s->memcg_params->root_cache = root_cache;
3051 INIT_WORK(&s->memcg_params->destroy,
3052 kmem_cache_destroy_work_func);
3053 } else
3054 s->memcg_params->is_root_cache = true;
3055
3056 return 0;
3057 }
3058
3059 void memcg_release_cache(struct kmem_cache *s)
3060 {
3061 struct kmem_cache *root;
3062 struct mem_cgroup *memcg;
3063 int id;
3064
3065 /*
3066 * This happens, for instance, when a root cache goes away before we
3067 * add any memcg.
3068 */
3069 if (!s->memcg_params)
3070 return;
3071
3072 if (s->memcg_params->is_root_cache)
3073 goto out;
3074
3075 memcg = s->memcg_params->memcg;
3076 id = memcg_cache_id(memcg);
3077
3078 root = s->memcg_params->root_cache;
3079 root->memcg_params->memcg_caches[id] = NULL;
3080
3081 mutex_lock(&memcg->slab_caches_mutex);
3082 list_del(&s->memcg_params->list);
3083 mutex_unlock(&memcg->slab_caches_mutex);
3084
3085 css_put(&memcg->css);
3086 out:
3087 kfree(s->memcg_params);
3088 }
3089
3090 /*
3091 * During the creation a new cache, we need to disable our accounting mechanism
3092 * altogether. This is true even if we are not creating, but rather just
3093 * enqueing new caches to be created.
3094 *
3095 * This is because that process will trigger allocations; some visible, like
3096 * explicit kmallocs to auxiliary data structures, name strings and internal
3097 * cache structures; some well concealed, like INIT_WORK() that can allocate
3098 * objects during debug.
3099 *
3100 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3101 * to it. This may not be a bounded recursion: since the first cache creation
3102 * failed to complete (waiting on the allocation), we'll just try to create the
3103 * cache again, failing at the same point.
3104 *
3105 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3106 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3107 * inside the following two functions.
3108 */
3109 static inline void memcg_stop_kmem_account(void)
3110 {
3111 VM_BUG_ON(!current->mm);
3112 current->memcg_kmem_skip_account++;
3113 }
3114
3115 static inline void memcg_resume_kmem_account(void)
3116 {
3117 VM_BUG_ON(!current->mm);
3118 current->memcg_kmem_skip_account--;
3119 }
3120
3121 static void kmem_cache_destroy_work_func(struct work_struct *w)
3122 {
3123 struct kmem_cache *cachep;
3124 struct memcg_cache_params *p;
3125
3126 p = container_of(w, struct memcg_cache_params, destroy);
3127
3128 cachep = memcg_params_to_cache(p);
3129
3130 /*
3131 * If we get down to 0 after shrink, we could delete right away.
3132 * However, memcg_release_pages() already puts us back in the workqueue
3133 * in that case. If we proceed deleting, we'll get a dangling
3134 * reference, and removing the object from the workqueue in that case
3135 * is unnecessary complication. We are not a fast path.
3136 *
3137 * Note that this case is fundamentally different from racing with
3138 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3139 * kmem_cache_shrink, not only we would be reinserting a dead cache
3140 * into the queue, but doing so from inside the worker racing to
3141 * destroy it.
3142 *
3143 * So if we aren't down to zero, we'll just schedule a worker and try
3144 * again
3145 */
3146 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3147 kmem_cache_shrink(cachep);
3148 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3149 return;
3150 } else
3151 kmem_cache_destroy(cachep);
3152 }
3153
3154 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3155 {
3156 if (!cachep->memcg_params->dead)
3157 return;
3158
3159 /*
3160 * There are many ways in which we can get here.
3161 *
3162 * We can get to a memory-pressure situation while the delayed work is
3163 * still pending to run. The vmscan shrinkers can then release all
3164 * cache memory and get us to destruction. If this is the case, we'll
3165 * be executed twice, which is a bug (the second time will execute over
3166 * bogus data). In this case, cancelling the work should be fine.
3167 *
3168 * But we can also get here from the worker itself, if
3169 * kmem_cache_shrink is enough to shake all the remaining objects and
3170 * get the page count to 0. In this case, we'll deadlock if we try to
3171 * cancel the work (the worker runs with an internal lock held, which
3172 * is the same lock we would hold for cancel_work_sync().)
3173 *
3174 * Since we can't possibly know who got us here, just refrain from
3175 * running if there is already work pending
3176 */
3177 if (work_pending(&cachep->memcg_params->destroy))
3178 return;
3179 /*
3180 * We have to defer the actual destroying to a workqueue, because
3181 * we might currently be in a context that cannot sleep.
3182 */
3183 schedule_work(&cachep->memcg_params->destroy);
3184 }
3185
3186 /*
3187 * This lock protects updaters, not readers. We want readers to be as fast as
3188 * they can, and they will either see NULL or a valid cache value. Our model
3189 * allow them to see NULL, in which case the root memcg will be selected.
3190 *
3191 * We need this lock because multiple allocations to the same cache from a non
3192 * will span more than one worker. Only one of them can create the cache.
3193 */
3194 static DEFINE_MUTEX(memcg_cache_mutex);
3195
3196 /*
3197 * Called with memcg_cache_mutex held
3198 */
3199 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3200 struct kmem_cache *s)
3201 {
3202 struct kmem_cache *new;
3203 static char *tmp_name = NULL;
3204
3205 lockdep_assert_held(&memcg_cache_mutex);
3206
3207 /*
3208 * kmem_cache_create_memcg duplicates the given name and
3209 * cgroup_name for this name requires RCU context.
3210 * This static temporary buffer is used to prevent from
3211 * pointless shortliving allocation.
3212 */
3213 if (!tmp_name) {
3214 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3215 if (!tmp_name)
3216 return NULL;
3217 }
3218
3219 rcu_read_lock();
3220 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3221 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3222 rcu_read_unlock();
3223
3224 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3225 (s->flags & ~SLAB_PANIC), s->ctor, s);
3226
3227 if (new)
3228 new->allocflags |= __GFP_KMEMCG;
3229
3230 return new;
3231 }
3232
3233 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3234 struct kmem_cache *cachep)
3235 {
3236 struct kmem_cache *new_cachep;
3237 int idx;
3238
3239 BUG_ON(!memcg_can_account_kmem(memcg));
3240
3241 idx = memcg_cache_id(memcg);
3242
3243 mutex_lock(&memcg_cache_mutex);
3244 new_cachep = cachep->memcg_params->memcg_caches[idx];
3245 if (new_cachep) {
3246 css_put(&memcg->css);
3247 goto out;
3248 }
3249
3250 new_cachep = kmem_cache_dup(memcg, cachep);
3251 if (new_cachep == NULL) {
3252 new_cachep = cachep;
3253 css_put(&memcg->css);
3254 goto out;
3255 }
3256
3257 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3258
3259 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3260 /*
3261 * the readers won't lock, make sure everybody sees the updated value,
3262 * so they won't put stuff in the queue again for no reason
3263 */
3264 wmb();
3265 out:
3266 mutex_unlock(&memcg_cache_mutex);
3267 return new_cachep;
3268 }
3269
3270 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3271 {
3272 struct kmem_cache *c;
3273 int i;
3274
3275 if (!s->memcg_params)
3276 return;
3277 if (!s->memcg_params->is_root_cache)
3278 return;
3279
3280 /*
3281 * If the cache is being destroyed, we trust that there is no one else
3282 * requesting objects from it. Even if there are, the sanity checks in
3283 * kmem_cache_destroy should caught this ill-case.
3284 *
3285 * Still, we don't want anyone else freeing memcg_caches under our
3286 * noses, which can happen if a new memcg comes to life. As usual,
3287 * we'll take the set_limit_mutex to protect ourselves against this.
3288 */
3289 mutex_lock(&set_limit_mutex);
3290 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3291 c = s->memcg_params->memcg_caches[i];
3292 if (!c)
3293 continue;
3294
3295 /*
3296 * We will now manually delete the caches, so to avoid races
3297 * we need to cancel all pending destruction workers and
3298 * proceed with destruction ourselves.
3299 *
3300 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3301 * and that could spawn the workers again: it is likely that
3302 * the cache still have active pages until this very moment.
3303 * This would lead us back to mem_cgroup_destroy_cache.
3304 *
3305 * But that will not execute at all if the "dead" flag is not
3306 * set, so flip it down to guarantee we are in control.
3307 */
3308 c->memcg_params->dead = false;
3309 cancel_work_sync(&c->memcg_params->destroy);
3310 kmem_cache_destroy(c);
3311 }
3312 mutex_unlock(&set_limit_mutex);
3313 }
3314
3315 struct create_work {
3316 struct mem_cgroup *memcg;
3317 struct kmem_cache *cachep;
3318 struct work_struct work;
3319 };
3320
3321 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3322 {
3323 struct kmem_cache *cachep;
3324 struct memcg_cache_params *params;
3325
3326 if (!memcg_kmem_is_active(memcg))
3327 return;
3328
3329 mutex_lock(&memcg->slab_caches_mutex);
3330 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3331 cachep = memcg_params_to_cache(params);
3332 cachep->memcg_params->dead = true;
3333 schedule_work(&cachep->memcg_params->destroy);
3334 }
3335 mutex_unlock(&memcg->slab_caches_mutex);
3336 }
3337
3338 static void memcg_create_cache_work_func(struct work_struct *w)
3339 {
3340 struct create_work *cw;
3341
3342 cw = container_of(w, struct create_work, work);
3343 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3344 kfree(cw);
3345 }
3346
3347 /*
3348 * Enqueue the creation of a per-memcg kmem_cache.
3349 */
3350 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3351 struct kmem_cache *cachep)
3352 {
3353 struct create_work *cw;
3354
3355 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3356 if (cw == NULL) {
3357 css_put(&memcg->css);
3358 return;
3359 }
3360
3361 cw->memcg = memcg;
3362 cw->cachep = cachep;
3363
3364 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3365 schedule_work(&cw->work);
3366 }
3367
3368 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3369 struct kmem_cache *cachep)
3370 {
3371 /*
3372 * We need to stop accounting when we kmalloc, because if the
3373 * corresponding kmalloc cache is not yet created, the first allocation
3374 * in __memcg_create_cache_enqueue will recurse.
3375 *
3376 * However, it is better to enclose the whole function. Depending on
3377 * the debugging options enabled, INIT_WORK(), for instance, can
3378 * trigger an allocation. This too, will make us recurse. Because at
3379 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3380 * the safest choice is to do it like this, wrapping the whole function.
3381 */
3382 memcg_stop_kmem_account();
3383 __memcg_create_cache_enqueue(memcg, cachep);
3384 memcg_resume_kmem_account();
3385 }
3386 /*
3387 * Return the kmem_cache we're supposed to use for a slab allocation.
3388 * We try to use the current memcg's version of the cache.
3389 *
3390 * If the cache does not exist yet, if we are the first user of it,
3391 * we either create it immediately, if possible, or create it asynchronously
3392 * in a workqueue.
3393 * In the latter case, we will let the current allocation go through with
3394 * the original cache.
3395 *
3396 * Can't be called in interrupt context or from kernel threads.
3397 * This function needs to be called with rcu_read_lock() held.
3398 */
3399 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3400 gfp_t gfp)
3401 {
3402 struct mem_cgroup *memcg;
3403 int idx;
3404
3405 VM_BUG_ON(!cachep->memcg_params);
3406 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3407
3408 if (!current->mm || current->memcg_kmem_skip_account)
3409 return cachep;
3410
3411 rcu_read_lock();
3412 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3413
3414 if (!memcg_can_account_kmem(memcg))
3415 goto out;
3416
3417 idx = memcg_cache_id(memcg);
3418
3419 /*
3420 * barrier to mare sure we're always seeing the up to date value. The
3421 * code updating memcg_caches will issue a write barrier to match this.
3422 */
3423 read_barrier_depends();
3424 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3425 cachep = cachep->memcg_params->memcg_caches[idx];
3426 goto out;
3427 }
3428
3429 /* The corresponding put will be done in the workqueue. */
3430 if (!css_tryget(&memcg->css))
3431 goto out;
3432 rcu_read_unlock();
3433
3434 /*
3435 * If we are in a safe context (can wait, and not in interrupt
3436 * context), we could be be predictable and return right away.
3437 * This would guarantee that the allocation being performed
3438 * already belongs in the new cache.
3439 *
3440 * However, there are some clashes that can arrive from locking.
3441 * For instance, because we acquire the slab_mutex while doing
3442 * kmem_cache_dup, this means no further allocation could happen
3443 * with the slab_mutex held.
3444 *
3445 * Also, because cache creation issue get_online_cpus(), this
3446 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3447 * that ends up reversed during cpu hotplug. (cpuset allocates
3448 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3449 * better to defer everything.
3450 */
3451 memcg_create_cache_enqueue(memcg, cachep);
3452 return cachep;
3453 out:
3454 rcu_read_unlock();
3455 return cachep;
3456 }
3457 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3458
3459 /*
3460 * We need to verify if the allocation against current->mm->owner's memcg is
3461 * possible for the given order. But the page is not allocated yet, so we'll
3462 * need a further commit step to do the final arrangements.
3463 *
3464 * It is possible for the task to switch cgroups in this mean time, so at
3465 * commit time, we can't rely on task conversion any longer. We'll then use
3466 * the handle argument to return to the caller which cgroup we should commit
3467 * against. We could also return the memcg directly and avoid the pointer
3468 * passing, but a boolean return value gives better semantics considering
3469 * the compiled-out case as well.
3470 *
3471 * Returning true means the allocation is possible.
3472 */
3473 bool
3474 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3475 {
3476 struct mem_cgroup *memcg;
3477 int ret;
3478
3479 *_memcg = NULL;
3480
3481 /*
3482 * Disabling accounting is only relevant for some specific memcg
3483 * internal allocations. Therefore we would initially not have such
3484 * check here, since direct calls to the page allocator that are marked
3485 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3486 * concerned with cache allocations, and by having this test at
3487 * memcg_kmem_get_cache, we are already able to relay the allocation to
3488 * the root cache and bypass the memcg cache altogether.
3489 *
3490 * There is one exception, though: the SLUB allocator does not create
3491 * large order caches, but rather service large kmallocs directly from
3492 * the page allocator. Therefore, the following sequence when backed by
3493 * the SLUB allocator:
3494 *
3495 * memcg_stop_kmem_account();
3496 * kmalloc(<large_number>)
3497 * memcg_resume_kmem_account();
3498 *
3499 * would effectively ignore the fact that we should skip accounting,
3500 * since it will drive us directly to this function without passing
3501 * through the cache selector memcg_kmem_get_cache. Such large
3502 * allocations are extremely rare but can happen, for instance, for the
3503 * cache arrays. We bring this test here.
3504 */
3505 if (!current->mm || current->memcg_kmem_skip_account)
3506 return true;
3507
3508 memcg = try_get_mem_cgroup_from_mm(current->mm);
3509
3510 /*
3511 * very rare case described in mem_cgroup_from_task. Unfortunately there
3512 * isn't much we can do without complicating this too much, and it would
3513 * be gfp-dependent anyway. Just let it go
3514 */
3515 if (unlikely(!memcg))
3516 return true;
3517
3518 if (!memcg_can_account_kmem(memcg)) {
3519 css_put(&memcg->css);
3520 return true;
3521 }
3522
3523 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3524 if (!ret)
3525 *_memcg = memcg;
3526
3527 css_put(&memcg->css);
3528 return (ret == 0);
3529 }
3530
3531 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3532 int order)
3533 {
3534 struct page_cgroup *pc;
3535
3536 VM_BUG_ON(mem_cgroup_is_root(memcg));
3537
3538 /* The page allocation failed. Revert */
3539 if (!page) {
3540 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3541 return;
3542 }
3543
3544 pc = lookup_page_cgroup(page);
3545 lock_page_cgroup(pc);
3546 pc->mem_cgroup = memcg;
3547 SetPageCgroupUsed(pc);
3548 unlock_page_cgroup(pc);
3549 }
3550
3551 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3552 {
3553 struct mem_cgroup *memcg = NULL;
3554 struct page_cgroup *pc;
3555
3556
3557 pc = lookup_page_cgroup(page);
3558 /*
3559 * Fast unlocked return. Theoretically might have changed, have to
3560 * check again after locking.
3561 */
3562 if (!PageCgroupUsed(pc))
3563 return;
3564
3565 lock_page_cgroup(pc);
3566 if (PageCgroupUsed(pc)) {
3567 memcg = pc->mem_cgroup;
3568 ClearPageCgroupUsed(pc);
3569 }
3570 unlock_page_cgroup(pc);
3571
3572 /*
3573 * We trust that only if there is a memcg associated with the page, it
3574 * is a valid allocation
3575 */
3576 if (!memcg)
3577 return;
3578
3579 VM_BUG_ON(mem_cgroup_is_root(memcg));
3580 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3581 }
3582 #else
3583 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3584 {
3585 }
3586 #endif /* CONFIG_MEMCG_KMEM */
3587
3588 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3589
3590 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3591 /*
3592 * Because tail pages are not marked as "used", set it. We're under
3593 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3594 * charge/uncharge will be never happen and move_account() is done under
3595 * compound_lock(), so we don't have to take care of races.
3596 */
3597 void mem_cgroup_split_huge_fixup(struct page *head)
3598 {
3599 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3600 struct page_cgroup *pc;
3601 struct mem_cgroup *memcg;
3602 int i;
3603
3604 if (mem_cgroup_disabled())
3605 return;
3606
3607 memcg = head_pc->mem_cgroup;
3608 for (i = 1; i < HPAGE_PMD_NR; i++) {
3609 pc = head_pc + i;
3610 pc->mem_cgroup = memcg;
3611 smp_wmb();/* see __commit_charge() */
3612 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3613 }
3614 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3615 HPAGE_PMD_NR);
3616 }
3617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3618
3619 /**
3620 * mem_cgroup_move_account - move account of the page
3621 * @page: the page
3622 * @nr_pages: number of regular pages (>1 for huge pages)
3623 * @pc: page_cgroup of the page.
3624 * @from: mem_cgroup which the page is moved from.
3625 * @to: mem_cgroup which the page is moved to. @from != @to.
3626 *
3627 * The caller must confirm following.
3628 * - page is not on LRU (isolate_page() is useful.)
3629 * - compound_lock is held when nr_pages > 1
3630 *
3631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3632 * from old cgroup.
3633 */
3634 static int mem_cgroup_move_account(struct page *page,
3635 unsigned int nr_pages,
3636 struct page_cgroup *pc,
3637 struct mem_cgroup *from,
3638 struct mem_cgroup *to)
3639 {
3640 unsigned long flags;
3641 int ret;
3642 bool anon = PageAnon(page);
3643
3644 VM_BUG_ON(from == to);
3645 VM_BUG_ON(PageLRU(page));
3646 /*
3647 * The page is isolated from LRU. So, collapse function
3648 * will not handle this page. But page splitting can happen.
3649 * Do this check under compound_page_lock(). The caller should
3650 * hold it.
3651 */
3652 ret = -EBUSY;
3653 if (nr_pages > 1 && !PageTransHuge(page))
3654 goto out;
3655
3656 lock_page_cgroup(pc);
3657
3658 ret = -EINVAL;
3659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3660 goto unlock;
3661
3662 move_lock_mem_cgroup(from, &flags);
3663
3664 if (!anon && page_mapped(page)) {
3665 /* Update mapped_file data for mem_cgroup */
3666 preempt_disable();
3667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3669 preempt_enable();
3670 }
3671 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3672
3673 /* caller should have done css_get */
3674 pc->mem_cgroup = to;
3675 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3676 move_unlock_mem_cgroup(from, &flags);
3677 ret = 0;
3678 unlock:
3679 unlock_page_cgroup(pc);
3680 /*
3681 * check events
3682 */
3683 memcg_check_events(to, page);
3684 memcg_check_events(from, page);
3685 out:
3686 return ret;
3687 }
3688
3689 /**
3690 * mem_cgroup_move_parent - moves page to the parent group
3691 * @page: the page to move
3692 * @pc: page_cgroup of the page
3693 * @child: page's cgroup
3694 *
3695 * move charges to its parent or the root cgroup if the group has no
3696 * parent (aka use_hierarchy==0).
3697 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3698 * mem_cgroup_move_account fails) the failure is always temporary and
3699 * it signals a race with a page removal/uncharge or migration. In the
3700 * first case the page is on the way out and it will vanish from the LRU
3701 * on the next attempt and the call should be retried later.
3702 * Isolation from the LRU fails only if page has been isolated from
3703 * the LRU since we looked at it and that usually means either global
3704 * reclaim or migration going on. The page will either get back to the
3705 * LRU or vanish.
3706 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3707 * (!PageCgroupUsed) or moved to a different group. The page will
3708 * disappear in the next attempt.
3709 */
3710 static int mem_cgroup_move_parent(struct page *page,
3711 struct page_cgroup *pc,
3712 struct mem_cgroup *child)
3713 {
3714 struct mem_cgroup *parent;
3715 unsigned int nr_pages;
3716 unsigned long uninitialized_var(flags);
3717 int ret;
3718
3719 VM_BUG_ON(mem_cgroup_is_root(child));
3720
3721 ret = -EBUSY;
3722 if (!get_page_unless_zero(page))
3723 goto out;
3724 if (isolate_lru_page(page))
3725 goto put;
3726
3727 nr_pages = hpage_nr_pages(page);
3728
3729 parent = parent_mem_cgroup(child);
3730 /*
3731 * If no parent, move charges to root cgroup.
3732 */
3733 if (!parent)
3734 parent = root_mem_cgroup;
3735
3736 if (nr_pages > 1) {
3737 VM_BUG_ON(!PageTransHuge(page));
3738 flags = compound_lock_irqsave(page);
3739 }
3740
3741 ret = mem_cgroup_move_account(page, nr_pages,
3742 pc, child, parent);
3743 if (!ret)
3744 __mem_cgroup_cancel_local_charge(child, nr_pages);
3745
3746 if (nr_pages > 1)
3747 compound_unlock_irqrestore(page, flags);
3748 putback_lru_page(page);
3749 put:
3750 put_page(page);
3751 out:
3752 return ret;
3753 }
3754
3755 /*
3756 * Charge the memory controller for page usage.
3757 * Return
3758 * 0 if the charge was successful
3759 * < 0 if the cgroup is over its limit
3760 */
3761 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3762 gfp_t gfp_mask, enum charge_type ctype)
3763 {
3764 struct mem_cgroup *memcg = NULL;
3765 unsigned int nr_pages = 1;
3766 bool oom = true;
3767 int ret;
3768
3769 if (PageTransHuge(page)) {
3770 nr_pages <<= compound_order(page);
3771 VM_BUG_ON(!PageTransHuge(page));
3772 /*
3773 * Never OOM-kill a process for a huge page. The
3774 * fault handler will fall back to regular pages.
3775 */
3776 oom = false;
3777 }
3778
3779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3780 if (ret == -ENOMEM)
3781 return ret;
3782 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3783 return 0;
3784 }
3785
3786 int mem_cgroup_newpage_charge(struct page *page,
3787 struct mm_struct *mm, gfp_t gfp_mask)
3788 {
3789 if (mem_cgroup_disabled())
3790 return 0;
3791 VM_BUG_ON(page_mapped(page));
3792 VM_BUG_ON(page->mapping && !PageAnon(page));
3793 VM_BUG_ON(!mm);
3794 return mem_cgroup_charge_common(page, mm, gfp_mask,
3795 MEM_CGROUP_CHARGE_TYPE_ANON);
3796 }
3797
3798 /*
3799 * While swap-in, try_charge -> commit or cancel, the page is locked.
3800 * And when try_charge() successfully returns, one refcnt to memcg without
3801 * struct page_cgroup is acquired. This refcnt will be consumed by
3802 * "commit()" or removed by "cancel()"
3803 */
3804 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3805 struct page *page,
3806 gfp_t mask,
3807 struct mem_cgroup **memcgp)
3808 {
3809 struct mem_cgroup *memcg;
3810 struct page_cgroup *pc;
3811 int ret;
3812
3813 pc = lookup_page_cgroup(page);
3814 /*
3815 * Every swap fault against a single page tries to charge the
3816 * page, bail as early as possible. shmem_unuse() encounters
3817 * already charged pages, too. The USED bit is protected by
3818 * the page lock, which serializes swap cache removal, which
3819 * in turn serializes uncharging.
3820 */
3821 if (PageCgroupUsed(pc))
3822 return 0;
3823 if (!do_swap_account)
3824 goto charge_cur_mm;
3825 memcg = try_get_mem_cgroup_from_page(page);
3826 if (!memcg)
3827 goto charge_cur_mm;
3828 *memcgp = memcg;
3829 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3830 css_put(&memcg->css);
3831 if (ret == -EINTR)
3832 ret = 0;
3833 return ret;
3834 charge_cur_mm:
3835 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3836 if (ret == -EINTR)
3837 ret = 0;
3838 return ret;
3839 }
3840
3841 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3842 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3843 {
3844 *memcgp = NULL;
3845 if (mem_cgroup_disabled())
3846 return 0;
3847 /*
3848 * A racing thread's fault, or swapoff, may have already
3849 * updated the pte, and even removed page from swap cache: in
3850 * those cases unuse_pte()'s pte_same() test will fail; but
3851 * there's also a KSM case which does need to charge the page.
3852 */
3853 if (!PageSwapCache(page)) {
3854 int ret;
3855
3856 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3857 if (ret == -EINTR)
3858 ret = 0;
3859 return ret;
3860 }
3861 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3862 }
3863
3864 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3865 {
3866 if (mem_cgroup_disabled())
3867 return;
3868 if (!memcg)
3869 return;
3870 __mem_cgroup_cancel_charge(memcg, 1);
3871 }
3872
3873 static void
3874 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3875 enum charge_type ctype)
3876 {
3877 if (mem_cgroup_disabled())
3878 return;
3879 if (!memcg)
3880 return;
3881
3882 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3883 /*
3884 * Now swap is on-memory. This means this page may be
3885 * counted both as mem and swap....double count.
3886 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3887 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3888 * may call delete_from_swap_cache() before reach here.
3889 */
3890 if (do_swap_account && PageSwapCache(page)) {
3891 swp_entry_t ent = {.val = page_private(page)};
3892 mem_cgroup_uncharge_swap(ent);
3893 }
3894 }
3895
3896 void mem_cgroup_commit_charge_swapin(struct page *page,
3897 struct mem_cgroup *memcg)
3898 {
3899 __mem_cgroup_commit_charge_swapin(page, memcg,
3900 MEM_CGROUP_CHARGE_TYPE_ANON);
3901 }
3902
3903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3904 gfp_t gfp_mask)
3905 {
3906 struct mem_cgroup *memcg = NULL;
3907 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3908 int ret;
3909
3910 if (mem_cgroup_disabled())
3911 return 0;
3912 if (PageCompound(page))
3913 return 0;
3914
3915 if (!PageSwapCache(page))
3916 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3917 else { /* page is swapcache/shmem */
3918 ret = __mem_cgroup_try_charge_swapin(mm, page,
3919 gfp_mask, &memcg);
3920 if (!ret)
3921 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3922 }
3923 return ret;
3924 }
3925
3926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3927 unsigned int nr_pages,
3928 const enum charge_type ctype)
3929 {
3930 struct memcg_batch_info *batch = NULL;
3931 bool uncharge_memsw = true;
3932
3933 /* If swapout, usage of swap doesn't decrease */
3934 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3935 uncharge_memsw = false;
3936
3937 batch = &current->memcg_batch;
3938 /*
3939 * In usual, we do css_get() when we remember memcg pointer.
3940 * But in this case, we keep res->usage until end of a series of
3941 * uncharges. Then, it's ok to ignore memcg's refcnt.
3942 */
3943 if (!batch->memcg)
3944 batch->memcg = memcg;
3945 /*
3946 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3947 * In those cases, all pages freed continuously can be expected to be in
3948 * the same cgroup and we have chance to coalesce uncharges.
3949 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3950 * because we want to do uncharge as soon as possible.
3951 */
3952
3953 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3954 goto direct_uncharge;
3955
3956 if (nr_pages > 1)
3957 goto direct_uncharge;
3958
3959 /*
3960 * In typical case, batch->memcg == mem. This means we can
3961 * merge a series of uncharges to an uncharge of res_counter.
3962 * If not, we uncharge res_counter ony by one.
3963 */
3964 if (batch->memcg != memcg)
3965 goto direct_uncharge;
3966 /* remember freed charge and uncharge it later */
3967 batch->nr_pages++;
3968 if (uncharge_memsw)
3969 batch->memsw_nr_pages++;
3970 return;
3971 direct_uncharge:
3972 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3973 if (uncharge_memsw)
3974 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3975 if (unlikely(batch->memcg != memcg))
3976 memcg_oom_recover(memcg);
3977 }
3978
3979 /*
3980 * uncharge if !page_mapped(page)
3981 */
3982 static struct mem_cgroup *
3983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3984 bool end_migration)
3985 {
3986 struct mem_cgroup *memcg = NULL;
3987 unsigned int nr_pages = 1;
3988 struct page_cgroup *pc;
3989 bool anon;
3990
3991 if (mem_cgroup_disabled())
3992 return NULL;
3993
3994 if (PageTransHuge(page)) {
3995 nr_pages <<= compound_order(page);
3996 VM_BUG_ON(!PageTransHuge(page));
3997 }
3998 /*
3999 * Check if our page_cgroup is valid
4000 */
4001 pc = lookup_page_cgroup(page);
4002 if (unlikely(!PageCgroupUsed(pc)))
4003 return NULL;
4004
4005 lock_page_cgroup(pc);
4006
4007 memcg = pc->mem_cgroup;
4008
4009 if (!PageCgroupUsed(pc))
4010 goto unlock_out;
4011
4012 anon = PageAnon(page);
4013
4014 switch (ctype) {
4015 case MEM_CGROUP_CHARGE_TYPE_ANON:
4016 /*
4017 * Generally PageAnon tells if it's the anon statistics to be
4018 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4019 * used before page reached the stage of being marked PageAnon.
4020 */
4021 anon = true;
4022 /* fallthrough */
4023 case MEM_CGROUP_CHARGE_TYPE_DROP:
4024 /* See mem_cgroup_prepare_migration() */
4025 if (page_mapped(page))
4026 goto unlock_out;
4027 /*
4028 * Pages under migration may not be uncharged. But
4029 * end_migration() /must/ be the one uncharging the
4030 * unused post-migration page and so it has to call
4031 * here with the migration bit still set. See the
4032 * res_counter handling below.
4033 */
4034 if (!end_migration && PageCgroupMigration(pc))
4035 goto unlock_out;
4036 break;
4037 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4038 if (!PageAnon(page)) { /* Shared memory */
4039 if (page->mapping && !page_is_file_cache(page))
4040 goto unlock_out;
4041 } else if (page_mapped(page)) /* Anon */
4042 goto unlock_out;
4043 break;
4044 default:
4045 break;
4046 }
4047
4048 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4049
4050 ClearPageCgroupUsed(pc);
4051 /*
4052 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4053 * freed from LRU. This is safe because uncharged page is expected not
4054 * to be reused (freed soon). Exception is SwapCache, it's handled by
4055 * special functions.
4056 */
4057
4058 unlock_page_cgroup(pc);
4059 /*
4060 * even after unlock, we have memcg->res.usage here and this memcg
4061 * will never be freed, so it's safe to call css_get().
4062 */
4063 memcg_check_events(memcg, page);
4064 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4065 mem_cgroup_swap_statistics(memcg, true);
4066 css_get(&memcg->css);
4067 }
4068 /*
4069 * Migration does not charge the res_counter for the
4070 * replacement page, so leave it alone when phasing out the
4071 * page that is unused after the migration.
4072 */
4073 if (!end_migration && !mem_cgroup_is_root(memcg))
4074 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4075
4076 return memcg;
4077
4078 unlock_out:
4079 unlock_page_cgroup(pc);
4080 return NULL;
4081 }
4082
4083 void mem_cgroup_uncharge_page(struct page *page)
4084 {
4085 /* early check. */
4086 if (page_mapped(page))
4087 return;
4088 VM_BUG_ON(page->mapping && !PageAnon(page));
4089 /*
4090 * If the page is in swap cache, uncharge should be deferred
4091 * to the swap path, which also properly accounts swap usage
4092 * and handles memcg lifetime.
4093 *
4094 * Note that this check is not stable and reclaim may add the
4095 * page to swap cache at any time after this. However, if the
4096 * page is not in swap cache by the time page->mapcount hits
4097 * 0, there won't be any page table references to the swap
4098 * slot, and reclaim will free it and not actually write the
4099 * page to disk.
4100 */
4101 if (PageSwapCache(page))
4102 return;
4103 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4104 }
4105
4106 void mem_cgroup_uncharge_cache_page(struct page *page)
4107 {
4108 VM_BUG_ON(page_mapped(page));
4109 VM_BUG_ON(page->mapping);
4110 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4111 }
4112
4113 /*
4114 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4115 * In that cases, pages are freed continuously and we can expect pages
4116 * are in the same memcg. All these calls itself limits the number of
4117 * pages freed at once, then uncharge_start/end() is called properly.
4118 * This may be called prural(2) times in a context,
4119 */
4120
4121 void mem_cgroup_uncharge_start(void)
4122 {
4123 current->memcg_batch.do_batch++;
4124 /* We can do nest. */
4125 if (current->memcg_batch.do_batch == 1) {
4126 current->memcg_batch.memcg = NULL;
4127 current->memcg_batch.nr_pages = 0;
4128 current->memcg_batch.memsw_nr_pages = 0;
4129 }
4130 }
4131
4132 void mem_cgroup_uncharge_end(void)
4133 {
4134 struct memcg_batch_info *batch = &current->memcg_batch;
4135
4136 if (!batch->do_batch)
4137 return;
4138
4139 batch->do_batch--;
4140 if (batch->do_batch) /* If stacked, do nothing. */
4141 return;
4142
4143 if (!batch->memcg)
4144 return;
4145 /*
4146 * This "batch->memcg" is valid without any css_get/put etc...
4147 * bacause we hide charges behind us.
4148 */
4149 if (batch->nr_pages)
4150 res_counter_uncharge(&batch->memcg->res,
4151 batch->nr_pages * PAGE_SIZE);
4152 if (batch->memsw_nr_pages)
4153 res_counter_uncharge(&batch->memcg->memsw,
4154 batch->memsw_nr_pages * PAGE_SIZE);
4155 memcg_oom_recover(batch->memcg);
4156 /* forget this pointer (for sanity check) */
4157 batch->memcg = NULL;
4158 }
4159
4160 #ifdef CONFIG_SWAP
4161 /*
4162 * called after __delete_from_swap_cache() and drop "page" account.
4163 * memcg information is recorded to swap_cgroup of "ent"
4164 */
4165 void
4166 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4167 {
4168 struct mem_cgroup *memcg;
4169 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4170
4171 if (!swapout) /* this was a swap cache but the swap is unused ! */
4172 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4173
4174 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4175
4176 /*
4177 * record memcg information, if swapout && memcg != NULL,
4178 * css_get() was called in uncharge().
4179 */
4180 if (do_swap_account && swapout && memcg)
4181 swap_cgroup_record(ent, css_id(&memcg->css));
4182 }
4183 #endif
4184
4185 #ifdef CONFIG_MEMCG_SWAP
4186 /*
4187 * called from swap_entry_free(). remove record in swap_cgroup and
4188 * uncharge "memsw" account.
4189 */
4190 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4191 {
4192 struct mem_cgroup *memcg;
4193 unsigned short id;
4194
4195 if (!do_swap_account)
4196 return;
4197
4198 id = swap_cgroup_record(ent, 0);
4199 rcu_read_lock();
4200 memcg = mem_cgroup_lookup(id);
4201 if (memcg) {
4202 /*
4203 * We uncharge this because swap is freed.
4204 * This memcg can be obsolete one. We avoid calling css_tryget
4205 */
4206 if (!mem_cgroup_is_root(memcg))
4207 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4208 mem_cgroup_swap_statistics(memcg, false);
4209 css_put(&memcg->css);
4210 }
4211 rcu_read_unlock();
4212 }
4213
4214 /**
4215 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4216 * @entry: swap entry to be moved
4217 * @from: mem_cgroup which the entry is moved from
4218 * @to: mem_cgroup which the entry is moved to
4219 *
4220 * It succeeds only when the swap_cgroup's record for this entry is the same
4221 * as the mem_cgroup's id of @from.
4222 *
4223 * Returns 0 on success, -EINVAL on failure.
4224 *
4225 * The caller must have charged to @to, IOW, called res_counter_charge() about
4226 * both res and memsw, and called css_get().
4227 */
4228 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4229 struct mem_cgroup *from, struct mem_cgroup *to)
4230 {
4231 unsigned short old_id, new_id;
4232
4233 old_id = css_id(&from->css);
4234 new_id = css_id(&to->css);
4235
4236 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4237 mem_cgroup_swap_statistics(from, false);
4238 mem_cgroup_swap_statistics(to, true);
4239 /*
4240 * This function is only called from task migration context now.
4241 * It postpones res_counter and refcount handling till the end
4242 * of task migration(mem_cgroup_clear_mc()) for performance
4243 * improvement. But we cannot postpone css_get(to) because if
4244 * the process that has been moved to @to does swap-in, the
4245 * refcount of @to might be decreased to 0.
4246 *
4247 * We are in attach() phase, so the cgroup is guaranteed to be
4248 * alive, so we can just call css_get().
4249 */
4250 css_get(&to->css);
4251 return 0;
4252 }
4253 return -EINVAL;
4254 }
4255 #else
4256 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4257 struct mem_cgroup *from, struct mem_cgroup *to)
4258 {
4259 return -EINVAL;
4260 }
4261 #endif
4262
4263 /*
4264 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4265 * page belongs to.
4266 */
4267 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4268 struct mem_cgroup **memcgp)
4269 {
4270 struct mem_cgroup *memcg = NULL;
4271 unsigned int nr_pages = 1;
4272 struct page_cgroup *pc;
4273 enum charge_type ctype;
4274
4275 *memcgp = NULL;
4276
4277 if (mem_cgroup_disabled())
4278 return;
4279
4280 if (PageTransHuge(page))
4281 nr_pages <<= compound_order(page);
4282
4283 pc = lookup_page_cgroup(page);
4284 lock_page_cgroup(pc);
4285 if (PageCgroupUsed(pc)) {
4286 memcg = pc->mem_cgroup;
4287 css_get(&memcg->css);
4288 /*
4289 * At migrating an anonymous page, its mapcount goes down
4290 * to 0 and uncharge() will be called. But, even if it's fully
4291 * unmapped, migration may fail and this page has to be
4292 * charged again. We set MIGRATION flag here and delay uncharge
4293 * until end_migration() is called
4294 *
4295 * Corner Case Thinking
4296 * A)
4297 * When the old page was mapped as Anon and it's unmap-and-freed
4298 * while migration was ongoing.
4299 * If unmap finds the old page, uncharge() of it will be delayed
4300 * until end_migration(). If unmap finds a new page, it's
4301 * uncharged when it make mapcount to be 1->0. If unmap code
4302 * finds swap_migration_entry, the new page will not be mapped
4303 * and end_migration() will find it(mapcount==0).
4304 *
4305 * B)
4306 * When the old page was mapped but migraion fails, the kernel
4307 * remaps it. A charge for it is kept by MIGRATION flag even
4308 * if mapcount goes down to 0. We can do remap successfully
4309 * without charging it again.
4310 *
4311 * C)
4312 * The "old" page is under lock_page() until the end of
4313 * migration, so, the old page itself will not be swapped-out.
4314 * If the new page is swapped out before end_migraton, our
4315 * hook to usual swap-out path will catch the event.
4316 */
4317 if (PageAnon(page))
4318 SetPageCgroupMigration(pc);
4319 }
4320 unlock_page_cgroup(pc);
4321 /*
4322 * If the page is not charged at this point,
4323 * we return here.
4324 */
4325 if (!memcg)
4326 return;
4327
4328 *memcgp = memcg;
4329 /*
4330 * We charge new page before it's used/mapped. So, even if unlock_page()
4331 * is called before end_migration, we can catch all events on this new
4332 * page. In the case new page is migrated but not remapped, new page's
4333 * mapcount will be finally 0 and we call uncharge in end_migration().
4334 */
4335 if (PageAnon(page))
4336 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4337 else
4338 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4339 /*
4340 * The page is committed to the memcg, but it's not actually
4341 * charged to the res_counter since we plan on replacing the
4342 * old one and only one page is going to be left afterwards.
4343 */
4344 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4345 }
4346
4347 /* remove redundant charge if migration failed*/
4348 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4349 struct page *oldpage, struct page *newpage, bool migration_ok)
4350 {
4351 struct page *used, *unused;
4352 struct page_cgroup *pc;
4353 bool anon;
4354
4355 if (!memcg)
4356 return;
4357
4358 if (!migration_ok) {
4359 used = oldpage;
4360 unused = newpage;
4361 } else {
4362 used = newpage;
4363 unused = oldpage;
4364 }
4365 anon = PageAnon(used);
4366 __mem_cgroup_uncharge_common(unused,
4367 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4368 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4369 true);
4370 css_put(&memcg->css);
4371 /*
4372 * We disallowed uncharge of pages under migration because mapcount
4373 * of the page goes down to zero, temporarly.
4374 * Clear the flag and check the page should be charged.
4375 */
4376 pc = lookup_page_cgroup(oldpage);
4377 lock_page_cgroup(pc);
4378 ClearPageCgroupMigration(pc);
4379 unlock_page_cgroup(pc);
4380
4381 /*
4382 * If a page is a file cache, radix-tree replacement is very atomic
4383 * and we can skip this check. When it was an Anon page, its mapcount
4384 * goes down to 0. But because we added MIGRATION flage, it's not
4385 * uncharged yet. There are several case but page->mapcount check
4386 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4387 * check. (see prepare_charge() also)
4388 */
4389 if (anon)
4390 mem_cgroup_uncharge_page(used);
4391 }
4392
4393 /*
4394 * At replace page cache, newpage is not under any memcg but it's on
4395 * LRU. So, this function doesn't touch res_counter but handles LRU
4396 * in correct way. Both pages are locked so we cannot race with uncharge.
4397 */
4398 void mem_cgroup_replace_page_cache(struct page *oldpage,
4399 struct page *newpage)
4400 {
4401 struct mem_cgroup *memcg = NULL;
4402 struct page_cgroup *pc;
4403 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4404
4405 if (mem_cgroup_disabled())
4406 return;
4407
4408 pc = lookup_page_cgroup(oldpage);
4409 /* fix accounting on old pages */
4410 lock_page_cgroup(pc);
4411 if (PageCgroupUsed(pc)) {
4412 memcg = pc->mem_cgroup;
4413 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4414 ClearPageCgroupUsed(pc);
4415 }
4416 unlock_page_cgroup(pc);
4417
4418 /*
4419 * When called from shmem_replace_page(), in some cases the
4420 * oldpage has already been charged, and in some cases not.
4421 */
4422 if (!memcg)
4423 return;
4424 /*
4425 * Even if newpage->mapping was NULL before starting replacement,
4426 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4427 * LRU while we overwrite pc->mem_cgroup.
4428 */
4429 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4430 }
4431
4432 #ifdef CONFIG_DEBUG_VM
4433 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4434 {
4435 struct page_cgroup *pc;
4436
4437 pc = lookup_page_cgroup(page);
4438 /*
4439 * Can be NULL while feeding pages into the page allocator for
4440 * the first time, i.e. during boot or memory hotplug;
4441 * or when mem_cgroup_disabled().
4442 */
4443 if (likely(pc) && PageCgroupUsed(pc))
4444 return pc;
4445 return NULL;
4446 }
4447
4448 bool mem_cgroup_bad_page_check(struct page *page)
4449 {
4450 if (mem_cgroup_disabled())
4451 return false;
4452
4453 return lookup_page_cgroup_used(page) != NULL;
4454 }
4455
4456 void mem_cgroup_print_bad_page(struct page *page)
4457 {
4458 struct page_cgroup *pc;
4459
4460 pc = lookup_page_cgroup_used(page);
4461 if (pc) {
4462 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4463 pc, pc->flags, pc->mem_cgroup);
4464 }
4465 }
4466 #endif
4467
4468 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4469 unsigned long long val)
4470 {
4471 int retry_count;
4472 u64 memswlimit, memlimit;
4473 int ret = 0;
4474 int children = mem_cgroup_count_children(memcg);
4475 u64 curusage, oldusage;
4476 int enlarge;
4477
4478 /*
4479 * For keeping hierarchical_reclaim simple, how long we should retry
4480 * is depends on callers. We set our retry-count to be function
4481 * of # of children which we should visit in this loop.
4482 */
4483 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4484
4485 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4486
4487 enlarge = 0;
4488 while (retry_count) {
4489 if (signal_pending(current)) {
4490 ret = -EINTR;
4491 break;
4492 }
4493 /*
4494 * Rather than hide all in some function, I do this in
4495 * open coded manner. You see what this really does.
4496 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4497 */
4498 mutex_lock(&set_limit_mutex);
4499 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4500 if (memswlimit < val) {
4501 ret = -EINVAL;
4502 mutex_unlock(&set_limit_mutex);
4503 break;
4504 }
4505
4506 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4507 if (memlimit < val)
4508 enlarge = 1;
4509
4510 ret = res_counter_set_limit(&memcg->res, val);
4511 if (!ret) {
4512 if (memswlimit == val)
4513 memcg->memsw_is_minimum = true;
4514 else
4515 memcg->memsw_is_minimum = false;
4516 }
4517 mutex_unlock(&set_limit_mutex);
4518
4519 if (!ret)
4520 break;
4521
4522 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4523 MEM_CGROUP_RECLAIM_SHRINK);
4524 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4525 /* Usage is reduced ? */
4526 if (curusage >= oldusage)
4527 retry_count--;
4528 else
4529 oldusage = curusage;
4530 }
4531 if (!ret && enlarge)
4532 memcg_oom_recover(memcg);
4533
4534 return ret;
4535 }
4536
4537 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4538 unsigned long long val)
4539 {
4540 int retry_count;
4541 u64 memlimit, memswlimit, oldusage, curusage;
4542 int children = mem_cgroup_count_children(memcg);
4543 int ret = -EBUSY;
4544 int enlarge = 0;
4545
4546 /* see mem_cgroup_resize_res_limit */
4547 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4548 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4549 while (retry_count) {
4550 if (signal_pending(current)) {
4551 ret = -EINTR;
4552 break;
4553 }
4554 /*
4555 * Rather than hide all in some function, I do this in
4556 * open coded manner. You see what this really does.
4557 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4558 */
4559 mutex_lock(&set_limit_mutex);
4560 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4561 if (memlimit > val) {
4562 ret = -EINVAL;
4563 mutex_unlock(&set_limit_mutex);
4564 break;
4565 }
4566 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4567 if (memswlimit < val)
4568 enlarge = 1;
4569 ret = res_counter_set_limit(&memcg->memsw, val);
4570 if (!ret) {
4571 if (memlimit == val)
4572 memcg->memsw_is_minimum = true;
4573 else
4574 memcg->memsw_is_minimum = false;
4575 }
4576 mutex_unlock(&set_limit_mutex);
4577
4578 if (!ret)
4579 break;
4580
4581 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4582 MEM_CGROUP_RECLAIM_NOSWAP |
4583 MEM_CGROUP_RECLAIM_SHRINK);
4584 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4585 /* Usage is reduced ? */
4586 if (curusage >= oldusage)
4587 retry_count--;
4588 else
4589 oldusage = curusage;
4590 }
4591 if (!ret && enlarge)
4592 memcg_oom_recover(memcg);
4593 return ret;
4594 }
4595
4596 /**
4597 * mem_cgroup_force_empty_list - clears LRU of a group
4598 * @memcg: group to clear
4599 * @node: NUMA node
4600 * @zid: zone id
4601 * @lru: lru to to clear
4602 *
4603 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4604 * reclaim the pages page themselves - pages are moved to the parent (or root)
4605 * group.
4606 */
4607 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4608 int node, int zid, enum lru_list lru)
4609 {
4610 struct lruvec *lruvec;
4611 unsigned long flags;
4612 struct list_head *list;
4613 struct page *busy;
4614 struct zone *zone;
4615
4616 zone = &NODE_DATA(node)->node_zones[zid];
4617 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4618 list = &lruvec->lists[lru];
4619
4620 busy = NULL;
4621 do {
4622 struct page_cgroup *pc;
4623 struct page *page;
4624
4625 spin_lock_irqsave(&zone->lru_lock, flags);
4626 if (list_empty(list)) {
4627 spin_unlock_irqrestore(&zone->lru_lock, flags);
4628 break;
4629 }
4630 page = list_entry(list->prev, struct page, lru);
4631 if (busy == page) {
4632 list_move(&page->lru, list);
4633 busy = NULL;
4634 spin_unlock_irqrestore(&zone->lru_lock, flags);
4635 continue;
4636 }
4637 spin_unlock_irqrestore(&zone->lru_lock, flags);
4638
4639 pc = lookup_page_cgroup(page);
4640
4641 if (mem_cgroup_move_parent(page, pc, memcg)) {
4642 /* found lock contention or "pc" is obsolete. */
4643 busy = page;
4644 cond_resched();
4645 } else
4646 busy = NULL;
4647 } while (!list_empty(list));
4648 }
4649
4650 /*
4651 * make mem_cgroup's charge to be 0 if there is no task by moving
4652 * all the charges and pages to the parent.
4653 * This enables deleting this mem_cgroup.
4654 *
4655 * Caller is responsible for holding css reference on the memcg.
4656 */
4657 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4658 {
4659 int node, zid;
4660 u64 usage;
4661
4662 do {
4663 /* This is for making all *used* pages to be on LRU. */
4664 lru_add_drain_all();
4665 drain_all_stock_sync(memcg);
4666 mem_cgroup_start_move(memcg);
4667 for_each_node_state(node, N_MEMORY) {
4668 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4669 enum lru_list lru;
4670 for_each_lru(lru) {
4671 mem_cgroup_force_empty_list(memcg,
4672 node, zid, lru);
4673 }
4674 }
4675 }
4676 mem_cgroup_end_move(memcg);
4677 memcg_oom_recover(memcg);
4678 cond_resched();
4679
4680 /*
4681 * Kernel memory may not necessarily be trackable to a specific
4682 * process. So they are not migrated, and therefore we can't
4683 * expect their value to drop to 0 here.
4684 * Having res filled up with kmem only is enough.
4685 *
4686 * This is a safety check because mem_cgroup_force_empty_list
4687 * could have raced with mem_cgroup_replace_page_cache callers
4688 * so the lru seemed empty but the page could have been added
4689 * right after the check. RES_USAGE should be safe as we always
4690 * charge before adding to the LRU.
4691 */
4692 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4693 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4694 } while (usage > 0);
4695 }
4696
4697 /*
4698 * This mainly exists for tests during the setting of set of use_hierarchy.
4699 * Since this is the very setting we are changing, the current hierarchy value
4700 * is meaningless
4701 */
4702 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4703 {
4704 struct cgroup_subsys_state *pos;
4705
4706 /* bounce at first found */
4707 css_for_each_child(pos, &memcg->css)
4708 return true;
4709 return false;
4710 }
4711
4712 /*
4713 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4714 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4715 * from mem_cgroup_count_children(), in the sense that we don't really care how
4716 * many children we have; we only need to know if we have any. It also counts
4717 * any memcg without hierarchy as infertile.
4718 */
4719 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4720 {
4721 return memcg->use_hierarchy && __memcg_has_children(memcg);
4722 }
4723
4724 /*
4725 * Reclaims as many pages from the given memcg as possible and moves
4726 * the rest to the parent.
4727 *
4728 * Caller is responsible for holding css reference for memcg.
4729 */
4730 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4731 {
4732 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4733 struct cgroup *cgrp = memcg->css.cgroup;
4734
4735 /* returns EBUSY if there is a task or if we come here twice. */
4736 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4737 return -EBUSY;
4738
4739 /* we call try-to-free pages for make this cgroup empty */
4740 lru_add_drain_all();
4741 /* try to free all pages in this cgroup */
4742 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4743 int progress;
4744
4745 if (signal_pending(current))
4746 return -EINTR;
4747
4748 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4749 false);
4750 if (!progress) {
4751 nr_retries--;
4752 /* maybe some writeback is necessary */
4753 congestion_wait(BLK_RW_ASYNC, HZ/10);
4754 }
4755
4756 }
4757 lru_add_drain();
4758 mem_cgroup_reparent_charges(memcg);
4759
4760 return 0;
4761 }
4762
4763 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4764 unsigned int event)
4765 {
4766 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4767
4768 if (mem_cgroup_is_root(memcg))
4769 return -EINVAL;
4770 return mem_cgroup_force_empty(memcg);
4771 }
4772
4773 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4774 struct cftype *cft)
4775 {
4776 return mem_cgroup_from_css(css)->use_hierarchy;
4777 }
4778
4779 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4780 struct cftype *cft, u64 val)
4781 {
4782 int retval = 0;
4783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4784 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4785
4786 mutex_lock(&memcg_create_mutex);
4787
4788 if (memcg->use_hierarchy == val)
4789 goto out;
4790
4791 /*
4792 * If parent's use_hierarchy is set, we can't make any modifications
4793 * in the child subtrees. If it is unset, then the change can
4794 * occur, provided the current cgroup has no children.
4795 *
4796 * For the root cgroup, parent_mem is NULL, we allow value to be
4797 * set if there are no children.
4798 */
4799 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4800 (val == 1 || val == 0)) {
4801 if (!__memcg_has_children(memcg))
4802 memcg->use_hierarchy = val;
4803 else
4804 retval = -EBUSY;
4805 } else
4806 retval = -EINVAL;
4807
4808 out:
4809 mutex_unlock(&memcg_create_mutex);
4810
4811 return retval;
4812 }
4813
4814
4815 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4816 enum mem_cgroup_stat_index idx)
4817 {
4818 struct mem_cgroup *iter;
4819 long val = 0;
4820
4821 /* Per-cpu values can be negative, use a signed accumulator */
4822 for_each_mem_cgroup_tree(iter, memcg)
4823 val += mem_cgroup_read_stat(iter, idx);
4824
4825 if (val < 0) /* race ? */
4826 val = 0;
4827 return val;
4828 }
4829
4830 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4831 {
4832 u64 val;
4833
4834 if (!mem_cgroup_is_root(memcg)) {
4835 if (!swap)
4836 return res_counter_read_u64(&memcg->res, RES_USAGE);
4837 else
4838 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4839 }
4840
4841 /*
4842 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4843 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4844 */
4845 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4846 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4847
4848 if (swap)
4849 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4850
4851 return val << PAGE_SHIFT;
4852 }
4853
4854 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4855 struct cftype *cft, struct file *file,
4856 char __user *buf, size_t nbytes, loff_t *ppos)
4857 {
4858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4859 char str[64];
4860 u64 val;
4861 int name, len;
4862 enum res_type type;
4863
4864 type = MEMFILE_TYPE(cft->private);
4865 name = MEMFILE_ATTR(cft->private);
4866
4867 switch (type) {
4868 case _MEM:
4869 if (name == RES_USAGE)
4870 val = mem_cgroup_usage(memcg, false);
4871 else
4872 val = res_counter_read_u64(&memcg->res, name);
4873 break;
4874 case _MEMSWAP:
4875 if (name == RES_USAGE)
4876 val = mem_cgroup_usage(memcg, true);
4877 else
4878 val = res_counter_read_u64(&memcg->memsw, name);
4879 break;
4880 case _KMEM:
4881 val = res_counter_read_u64(&memcg->kmem, name);
4882 break;
4883 default:
4884 BUG();
4885 }
4886
4887 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4888 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4889 }
4890
4891 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4892 {
4893 int ret = -EINVAL;
4894 #ifdef CONFIG_MEMCG_KMEM
4895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4896 /*
4897 * For simplicity, we won't allow this to be disabled. It also can't
4898 * be changed if the cgroup has children already, or if tasks had
4899 * already joined.
4900 *
4901 * If tasks join before we set the limit, a person looking at
4902 * kmem.usage_in_bytes will have no way to determine when it took
4903 * place, which makes the value quite meaningless.
4904 *
4905 * After it first became limited, changes in the value of the limit are
4906 * of course permitted.
4907 */
4908 mutex_lock(&memcg_create_mutex);
4909 mutex_lock(&set_limit_mutex);
4910 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4911 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4912 ret = -EBUSY;
4913 goto out;
4914 }
4915 ret = res_counter_set_limit(&memcg->kmem, val);
4916 VM_BUG_ON(ret);
4917
4918 ret = memcg_update_cache_sizes(memcg);
4919 if (ret) {
4920 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4921 goto out;
4922 }
4923 static_key_slow_inc(&memcg_kmem_enabled_key);
4924 /*
4925 * setting the active bit after the inc will guarantee no one
4926 * starts accounting before all call sites are patched
4927 */
4928 memcg_kmem_set_active(memcg);
4929 } else
4930 ret = res_counter_set_limit(&memcg->kmem, val);
4931 out:
4932 mutex_unlock(&set_limit_mutex);
4933 mutex_unlock(&memcg_create_mutex);
4934 #endif
4935 return ret;
4936 }
4937
4938 #ifdef CONFIG_MEMCG_KMEM
4939 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4940 {
4941 int ret = 0;
4942 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4943 if (!parent)
4944 goto out;
4945
4946 memcg->kmem_account_flags = parent->kmem_account_flags;
4947 /*
4948 * When that happen, we need to disable the static branch only on those
4949 * memcgs that enabled it. To achieve this, we would be forced to
4950 * complicate the code by keeping track of which memcgs were the ones
4951 * that actually enabled limits, and which ones got it from its
4952 * parents.
4953 *
4954 * It is a lot simpler just to do static_key_slow_inc() on every child
4955 * that is accounted.
4956 */
4957 if (!memcg_kmem_is_active(memcg))
4958 goto out;
4959
4960 /*
4961 * __mem_cgroup_free() will issue static_key_slow_dec() because this
4962 * memcg is active already. If the later initialization fails then the
4963 * cgroup core triggers the cleanup so we do not have to do it here.
4964 */
4965 static_key_slow_inc(&memcg_kmem_enabled_key);
4966
4967 mutex_lock(&set_limit_mutex);
4968 memcg_stop_kmem_account();
4969 ret = memcg_update_cache_sizes(memcg);
4970 memcg_resume_kmem_account();
4971 mutex_unlock(&set_limit_mutex);
4972 out:
4973 return ret;
4974 }
4975 #endif /* CONFIG_MEMCG_KMEM */
4976
4977 /*
4978 * The user of this function is...
4979 * RES_LIMIT.
4980 */
4981 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4982 const char *buffer)
4983 {
4984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4985 enum res_type type;
4986 int name;
4987 unsigned long long val;
4988 int ret;
4989
4990 type = MEMFILE_TYPE(cft->private);
4991 name = MEMFILE_ATTR(cft->private);
4992
4993 switch (name) {
4994 case RES_LIMIT:
4995 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4996 ret = -EINVAL;
4997 break;
4998 }
4999 /* This function does all necessary parse...reuse it */
5000 ret = res_counter_memparse_write_strategy(buffer, &val);
5001 if (ret)
5002 break;
5003 if (type == _MEM)
5004 ret = mem_cgroup_resize_limit(memcg, val);
5005 else if (type == _MEMSWAP)
5006 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5007 else if (type == _KMEM)
5008 ret = memcg_update_kmem_limit(css, val);
5009 else
5010 return -EINVAL;
5011 break;
5012 case RES_SOFT_LIMIT:
5013 ret = res_counter_memparse_write_strategy(buffer, &val);
5014 if (ret)
5015 break;
5016 /*
5017 * For memsw, soft limits are hard to implement in terms
5018 * of semantics, for now, we support soft limits for
5019 * control without swap
5020 */
5021 if (type == _MEM)
5022 ret = res_counter_set_soft_limit(&memcg->res, val);
5023 else
5024 ret = -EINVAL;
5025 break;
5026 default:
5027 ret = -EINVAL; /* should be BUG() ? */
5028 break;
5029 }
5030 return ret;
5031 }
5032
5033 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5034 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5035 {
5036 unsigned long long min_limit, min_memsw_limit, tmp;
5037
5038 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5039 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5040 if (!memcg->use_hierarchy)
5041 goto out;
5042
5043 while (css_parent(&memcg->css)) {
5044 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5045 if (!memcg->use_hierarchy)
5046 break;
5047 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5048 min_limit = min(min_limit, tmp);
5049 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5050 min_memsw_limit = min(min_memsw_limit, tmp);
5051 }
5052 out:
5053 *mem_limit = min_limit;
5054 *memsw_limit = min_memsw_limit;
5055 }
5056
5057 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5058 {
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060 int name;
5061 enum res_type type;
5062
5063 type = MEMFILE_TYPE(event);
5064 name = MEMFILE_ATTR(event);
5065
5066 switch (name) {
5067 case RES_MAX_USAGE:
5068 if (type == _MEM)
5069 res_counter_reset_max(&memcg->res);
5070 else if (type == _MEMSWAP)
5071 res_counter_reset_max(&memcg->memsw);
5072 else if (type == _KMEM)
5073 res_counter_reset_max(&memcg->kmem);
5074 else
5075 return -EINVAL;
5076 break;
5077 case RES_FAILCNT:
5078 if (type == _MEM)
5079 res_counter_reset_failcnt(&memcg->res);
5080 else if (type == _MEMSWAP)
5081 res_counter_reset_failcnt(&memcg->memsw);
5082 else if (type == _KMEM)
5083 res_counter_reset_failcnt(&memcg->kmem);
5084 else
5085 return -EINVAL;
5086 break;
5087 }
5088
5089 return 0;
5090 }
5091
5092 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5093 struct cftype *cft)
5094 {
5095 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5096 }
5097
5098 #ifdef CONFIG_MMU
5099 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5100 struct cftype *cft, u64 val)
5101 {
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103
5104 if (val >= (1 << NR_MOVE_TYPE))
5105 return -EINVAL;
5106
5107 /*
5108 * No kind of locking is needed in here, because ->can_attach() will
5109 * check this value once in the beginning of the process, and then carry
5110 * on with stale data. This means that changes to this value will only
5111 * affect task migrations starting after the change.
5112 */
5113 memcg->move_charge_at_immigrate = val;
5114 return 0;
5115 }
5116 #else
5117 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5118 struct cftype *cft, u64 val)
5119 {
5120 return -ENOSYS;
5121 }
5122 #endif
5123
5124 #ifdef CONFIG_NUMA
5125 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5126 struct cftype *cft, struct seq_file *m)
5127 {
5128 int nid;
5129 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5130 unsigned long node_nr;
5131 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5132
5133 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5134 seq_printf(m, "total=%lu", total_nr);
5135 for_each_node_state(nid, N_MEMORY) {
5136 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5137 seq_printf(m, " N%d=%lu", nid, node_nr);
5138 }
5139 seq_putc(m, '\n');
5140
5141 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5142 seq_printf(m, "file=%lu", file_nr);
5143 for_each_node_state(nid, N_MEMORY) {
5144 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5145 LRU_ALL_FILE);
5146 seq_printf(m, " N%d=%lu", nid, node_nr);
5147 }
5148 seq_putc(m, '\n');
5149
5150 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5151 seq_printf(m, "anon=%lu", anon_nr);
5152 for_each_node_state(nid, N_MEMORY) {
5153 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5154 LRU_ALL_ANON);
5155 seq_printf(m, " N%d=%lu", nid, node_nr);
5156 }
5157 seq_putc(m, '\n');
5158
5159 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5160 seq_printf(m, "unevictable=%lu", unevictable_nr);
5161 for_each_node_state(nid, N_MEMORY) {
5162 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5163 BIT(LRU_UNEVICTABLE));
5164 seq_printf(m, " N%d=%lu", nid, node_nr);
5165 }
5166 seq_putc(m, '\n');
5167 return 0;
5168 }
5169 #endif /* CONFIG_NUMA */
5170
5171 static inline void mem_cgroup_lru_names_not_uptodate(void)
5172 {
5173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5174 }
5175
5176 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5177 struct seq_file *m)
5178 {
5179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5180 struct mem_cgroup *mi;
5181 unsigned int i;
5182
5183 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5184 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5185 continue;
5186 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5187 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5188 }
5189
5190 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5191 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5192 mem_cgroup_read_events(memcg, i));
5193
5194 for (i = 0; i < NR_LRU_LISTS; i++)
5195 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5196 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5197
5198 /* Hierarchical information */
5199 {
5200 unsigned long long limit, memsw_limit;
5201 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5202 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5203 if (do_swap_account)
5204 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5205 memsw_limit);
5206 }
5207
5208 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5209 long long val = 0;
5210
5211 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5212 continue;
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5215 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5216 }
5217
5218 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5219 unsigned long long val = 0;
5220
5221 for_each_mem_cgroup_tree(mi, memcg)
5222 val += mem_cgroup_read_events(mi, i);
5223 seq_printf(m, "total_%s %llu\n",
5224 mem_cgroup_events_names[i], val);
5225 }
5226
5227 for (i = 0; i < NR_LRU_LISTS; i++) {
5228 unsigned long long val = 0;
5229
5230 for_each_mem_cgroup_tree(mi, memcg)
5231 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5232 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5233 }
5234
5235 #ifdef CONFIG_DEBUG_VM
5236 {
5237 int nid, zid;
5238 struct mem_cgroup_per_zone *mz;
5239 struct zone_reclaim_stat *rstat;
5240 unsigned long recent_rotated[2] = {0, 0};
5241 unsigned long recent_scanned[2] = {0, 0};
5242
5243 for_each_online_node(nid)
5244 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5245 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5246 rstat = &mz->lruvec.reclaim_stat;
5247
5248 recent_rotated[0] += rstat->recent_rotated[0];
5249 recent_rotated[1] += rstat->recent_rotated[1];
5250 recent_scanned[0] += rstat->recent_scanned[0];
5251 recent_scanned[1] += rstat->recent_scanned[1];
5252 }
5253 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5254 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5255 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5256 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5257 }
5258 #endif
5259
5260 return 0;
5261 }
5262
5263 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5264 struct cftype *cft)
5265 {
5266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267
5268 return mem_cgroup_swappiness(memcg);
5269 }
5270
5271 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5272 struct cftype *cft, u64 val)
5273 {
5274 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5275 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5276
5277 if (val > 100 || !parent)
5278 return -EINVAL;
5279
5280 mutex_lock(&memcg_create_mutex);
5281
5282 /* If under hierarchy, only empty-root can set this value */
5283 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5284 mutex_unlock(&memcg_create_mutex);
5285 return -EINVAL;
5286 }
5287
5288 memcg->swappiness = val;
5289
5290 mutex_unlock(&memcg_create_mutex);
5291
5292 return 0;
5293 }
5294
5295 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5296 {
5297 struct mem_cgroup_threshold_ary *t;
5298 u64 usage;
5299 int i;
5300
5301 rcu_read_lock();
5302 if (!swap)
5303 t = rcu_dereference(memcg->thresholds.primary);
5304 else
5305 t = rcu_dereference(memcg->memsw_thresholds.primary);
5306
5307 if (!t)
5308 goto unlock;
5309
5310 usage = mem_cgroup_usage(memcg, swap);
5311
5312 /*
5313 * current_threshold points to threshold just below or equal to usage.
5314 * If it's not true, a threshold was crossed after last
5315 * call of __mem_cgroup_threshold().
5316 */
5317 i = t->current_threshold;
5318
5319 /*
5320 * Iterate backward over array of thresholds starting from
5321 * current_threshold and check if a threshold is crossed.
5322 * If none of thresholds below usage is crossed, we read
5323 * only one element of the array here.
5324 */
5325 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5326 eventfd_signal(t->entries[i].eventfd, 1);
5327
5328 /* i = current_threshold + 1 */
5329 i++;
5330
5331 /*
5332 * Iterate forward over array of thresholds starting from
5333 * current_threshold+1 and check if a threshold is crossed.
5334 * If none of thresholds above usage is crossed, we read
5335 * only one element of the array here.
5336 */
5337 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5338 eventfd_signal(t->entries[i].eventfd, 1);
5339
5340 /* Update current_threshold */
5341 t->current_threshold = i - 1;
5342 unlock:
5343 rcu_read_unlock();
5344 }
5345
5346 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5347 {
5348 while (memcg) {
5349 __mem_cgroup_threshold(memcg, false);
5350 if (do_swap_account)
5351 __mem_cgroup_threshold(memcg, true);
5352
5353 memcg = parent_mem_cgroup(memcg);
5354 }
5355 }
5356
5357 static int compare_thresholds(const void *a, const void *b)
5358 {
5359 const struct mem_cgroup_threshold *_a = a;
5360 const struct mem_cgroup_threshold *_b = b;
5361
5362 if (_a->threshold > _b->threshold)
5363 return 1;
5364
5365 if (_a->threshold < _b->threshold)
5366 return -1;
5367
5368 return 0;
5369 }
5370
5371 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5372 {
5373 struct mem_cgroup_eventfd_list *ev;
5374
5375 list_for_each_entry(ev, &memcg->oom_notify, list)
5376 eventfd_signal(ev->eventfd, 1);
5377 return 0;
5378 }
5379
5380 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5381 {
5382 struct mem_cgroup *iter;
5383
5384 for_each_mem_cgroup_tree(iter, memcg)
5385 mem_cgroup_oom_notify_cb(iter);
5386 }
5387
5388 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5389 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5390 {
5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 struct mem_cgroup_thresholds *thresholds;
5393 struct mem_cgroup_threshold_ary *new;
5394 enum res_type type = MEMFILE_TYPE(cft->private);
5395 u64 threshold, usage;
5396 int i, size, ret;
5397
5398 ret = res_counter_memparse_write_strategy(args, &threshold);
5399 if (ret)
5400 return ret;
5401
5402 mutex_lock(&memcg->thresholds_lock);
5403
5404 if (type == _MEM)
5405 thresholds = &memcg->thresholds;
5406 else if (type == _MEMSWAP)
5407 thresholds = &memcg->memsw_thresholds;
5408 else
5409 BUG();
5410
5411 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5412
5413 /* Check if a threshold crossed before adding a new one */
5414 if (thresholds->primary)
5415 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5416
5417 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5418
5419 /* Allocate memory for new array of thresholds */
5420 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5421 GFP_KERNEL);
5422 if (!new) {
5423 ret = -ENOMEM;
5424 goto unlock;
5425 }
5426 new->size = size;
5427
5428 /* Copy thresholds (if any) to new array */
5429 if (thresholds->primary) {
5430 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5431 sizeof(struct mem_cgroup_threshold));
5432 }
5433
5434 /* Add new threshold */
5435 new->entries[size - 1].eventfd = eventfd;
5436 new->entries[size - 1].threshold = threshold;
5437
5438 /* Sort thresholds. Registering of new threshold isn't time-critical */
5439 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5440 compare_thresholds, NULL);
5441
5442 /* Find current threshold */
5443 new->current_threshold = -1;
5444 for (i = 0; i < size; i++) {
5445 if (new->entries[i].threshold <= usage) {
5446 /*
5447 * new->current_threshold will not be used until
5448 * rcu_assign_pointer(), so it's safe to increment
5449 * it here.
5450 */
5451 ++new->current_threshold;
5452 } else
5453 break;
5454 }
5455
5456 /* Free old spare buffer and save old primary buffer as spare */
5457 kfree(thresholds->spare);
5458 thresholds->spare = thresholds->primary;
5459
5460 rcu_assign_pointer(thresholds->primary, new);
5461
5462 /* To be sure that nobody uses thresholds */
5463 synchronize_rcu();
5464
5465 unlock:
5466 mutex_unlock(&memcg->thresholds_lock);
5467
5468 return ret;
5469 }
5470
5471 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5472 struct cftype *cft, struct eventfd_ctx *eventfd)
5473 {
5474 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5475 struct mem_cgroup_thresholds *thresholds;
5476 struct mem_cgroup_threshold_ary *new;
5477 enum res_type type = MEMFILE_TYPE(cft->private);
5478 u64 usage;
5479 int i, j, size;
5480
5481 mutex_lock(&memcg->thresholds_lock);
5482 if (type == _MEM)
5483 thresholds = &memcg->thresholds;
5484 else if (type == _MEMSWAP)
5485 thresholds = &memcg->memsw_thresholds;
5486 else
5487 BUG();
5488
5489 if (!thresholds->primary)
5490 goto unlock;
5491
5492 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5493
5494 /* Check if a threshold crossed before removing */
5495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5496
5497 /* Calculate new number of threshold */
5498 size = 0;
5499 for (i = 0; i < thresholds->primary->size; i++) {
5500 if (thresholds->primary->entries[i].eventfd != eventfd)
5501 size++;
5502 }
5503
5504 new = thresholds->spare;
5505
5506 /* Set thresholds array to NULL if we don't have thresholds */
5507 if (!size) {
5508 kfree(new);
5509 new = NULL;
5510 goto swap_buffers;
5511 }
5512
5513 new->size = size;
5514
5515 /* Copy thresholds and find current threshold */
5516 new->current_threshold = -1;
5517 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5518 if (thresholds->primary->entries[i].eventfd == eventfd)
5519 continue;
5520
5521 new->entries[j] = thresholds->primary->entries[i];
5522 if (new->entries[j].threshold <= usage) {
5523 /*
5524 * new->current_threshold will not be used
5525 * until rcu_assign_pointer(), so it's safe to increment
5526 * it here.
5527 */
5528 ++new->current_threshold;
5529 }
5530 j++;
5531 }
5532
5533 swap_buffers:
5534 /* Swap primary and spare array */
5535 thresholds->spare = thresholds->primary;
5536 /* If all events are unregistered, free the spare array */
5537 if (!new) {
5538 kfree(thresholds->spare);
5539 thresholds->spare = NULL;
5540 }
5541
5542 rcu_assign_pointer(thresholds->primary, new);
5543
5544 /* To be sure that nobody uses thresholds */
5545 synchronize_rcu();
5546 unlock:
5547 mutex_unlock(&memcg->thresholds_lock);
5548 }
5549
5550 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5551 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5552 {
5553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5554 struct mem_cgroup_eventfd_list *event;
5555 enum res_type type = MEMFILE_TYPE(cft->private);
5556
5557 BUG_ON(type != _OOM_TYPE);
5558 event = kmalloc(sizeof(*event), GFP_KERNEL);
5559 if (!event)
5560 return -ENOMEM;
5561
5562 spin_lock(&memcg_oom_lock);
5563
5564 event->eventfd = eventfd;
5565 list_add(&event->list, &memcg->oom_notify);
5566
5567 /* already in OOM ? */
5568 if (atomic_read(&memcg->under_oom))
5569 eventfd_signal(eventfd, 1);
5570 spin_unlock(&memcg_oom_lock);
5571
5572 return 0;
5573 }
5574
5575 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5576 struct cftype *cft, struct eventfd_ctx *eventfd)
5577 {
5578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5579 struct mem_cgroup_eventfd_list *ev, *tmp;
5580 enum res_type type = MEMFILE_TYPE(cft->private);
5581
5582 BUG_ON(type != _OOM_TYPE);
5583
5584 spin_lock(&memcg_oom_lock);
5585
5586 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5587 if (ev->eventfd == eventfd) {
5588 list_del(&ev->list);
5589 kfree(ev);
5590 }
5591 }
5592
5593 spin_unlock(&memcg_oom_lock);
5594 }
5595
5596 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5597 struct cftype *cft, struct cgroup_map_cb *cb)
5598 {
5599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5600
5601 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5602
5603 if (atomic_read(&memcg->under_oom))
5604 cb->fill(cb, "under_oom", 1);
5605 else
5606 cb->fill(cb, "under_oom", 0);
5607 return 0;
5608 }
5609
5610 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5611 struct cftype *cft, u64 val)
5612 {
5613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5614 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5615
5616 /* cannot set to root cgroup and only 0 and 1 are allowed */
5617 if (!parent || !((val == 0) || (val == 1)))
5618 return -EINVAL;
5619
5620 mutex_lock(&memcg_create_mutex);
5621 /* oom-kill-disable is a flag for subhierarchy. */
5622 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5623 mutex_unlock(&memcg_create_mutex);
5624 return -EINVAL;
5625 }
5626 memcg->oom_kill_disable = val;
5627 if (!val)
5628 memcg_oom_recover(memcg);
5629 mutex_unlock(&memcg_create_mutex);
5630 return 0;
5631 }
5632
5633 #ifdef CONFIG_MEMCG_KMEM
5634 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5635 {
5636 int ret;
5637
5638 memcg->kmemcg_id = -1;
5639 ret = memcg_propagate_kmem(memcg);
5640 if (ret)
5641 return ret;
5642
5643 return mem_cgroup_sockets_init(memcg, ss);
5644 }
5645
5646 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5647 {
5648 mem_cgroup_sockets_destroy(memcg);
5649 }
5650
5651 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5652 {
5653 if (!memcg_kmem_is_active(memcg))
5654 return;
5655
5656 /*
5657 * kmem charges can outlive the cgroup. In the case of slab
5658 * pages, for instance, a page contain objects from various
5659 * processes. As we prevent from taking a reference for every
5660 * such allocation we have to be careful when doing uncharge
5661 * (see memcg_uncharge_kmem) and here during offlining.
5662 *
5663 * The idea is that that only the _last_ uncharge which sees
5664 * the dead memcg will drop the last reference. An additional
5665 * reference is taken here before the group is marked dead
5666 * which is then paired with css_put during uncharge resp. here.
5667 *
5668 * Although this might sound strange as this path is called from
5669 * css_offline() when the referencemight have dropped down to 0
5670 * and shouldn't be incremented anymore (css_tryget would fail)
5671 * we do not have other options because of the kmem allocations
5672 * lifetime.
5673 */
5674 css_get(&memcg->css);
5675
5676 memcg_kmem_mark_dead(memcg);
5677
5678 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5679 return;
5680
5681 if (memcg_kmem_test_and_clear_dead(memcg))
5682 css_put(&memcg->css);
5683 }
5684 #else
5685 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5686 {
5687 return 0;
5688 }
5689
5690 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5691 {
5692 }
5693
5694 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5695 {
5696 }
5697 #endif
5698
5699 static struct cftype mem_cgroup_files[] = {
5700 {
5701 .name = "usage_in_bytes",
5702 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5703 .read = mem_cgroup_read,
5704 .register_event = mem_cgroup_usage_register_event,
5705 .unregister_event = mem_cgroup_usage_unregister_event,
5706 },
5707 {
5708 .name = "max_usage_in_bytes",
5709 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5710 .trigger = mem_cgroup_reset,
5711 .read = mem_cgroup_read,
5712 },
5713 {
5714 .name = "limit_in_bytes",
5715 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5716 .write_string = mem_cgroup_write,
5717 .read = mem_cgroup_read,
5718 },
5719 {
5720 .name = "soft_limit_in_bytes",
5721 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5722 .write_string = mem_cgroup_write,
5723 .read = mem_cgroup_read,
5724 },
5725 {
5726 .name = "failcnt",
5727 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5728 .trigger = mem_cgroup_reset,
5729 .read = mem_cgroup_read,
5730 },
5731 {
5732 .name = "stat",
5733 .read_seq_string = memcg_stat_show,
5734 },
5735 {
5736 .name = "force_empty",
5737 .trigger = mem_cgroup_force_empty_write,
5738 },
5739 {
5740 .name = "use_hierarchy",
5741 .flags = CFTYPE_INSANE,
5742 .write_u64 = mem_cgroup_hierarchy_write,
5743 .read_u64 = mem_cgroup_hierarchy_read,
5744 },
5745 {
5746 .name = "swappiness",
5747 .read_u64 = mem_cgroup_swappiness_read,
5748 .write_u64 = mem_cgroup_swappiness_write,
5749 },
5750 {
5751 .name = "move_charge_at_immigrate",
5752 .read_u64 = mem_cgroup_move_charge_read,
5753 .write_u64 = mem_cgroup_move_charge_write,
5754 },
5755 {
5756 .name = "oom_control",
5757 .read_map = mem_cgroup_oom_control_read,
5758 .write_u64 = mem_cgroup_oom_control_write,
5759 .register_event = mem_cgroup_oom_register_event,
5760 .unregister_event = mem_cgroup_oom_unregister_event,
5761 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5762 },
5763 {
5764 .name = "pressure_level",
5765 .register_event = vmpressure_register_event,
5766 .unregister_event = vmpressure_unregister_event,
5767 },
5768 #ifdef CONFIG_NUMA
5769 {
5770 .name = "numa_stat",
5771 .read_seq_string = memcg_numa_stat_show,
5772 },
5773 #endif
5774 #ifdef CONFIG_MEMCG_KMEM
5775 {
5776 .name = "kmem.limit_in_bytes",
5777 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5778 .write_string = mem_cgroup_write,
5779 .read = mem_cgroup_read,
5780 },
5781 {
5782 .name = "kmem.usage_in_bytes",
5783 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5784 .read = mem_cgroup_read,
5785 },
5786 {
5787 .name = "kmem.failcnt",
5788 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5789 .trigger = mem_cgroup_reset,
5790 .read = mem_cgroup_read,
5791 },
5792 {
5793 .name = "kmem.max_usage_in_bytes",
5794 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5795 .trigger = mem_cgroup_reset,
5796 .read = mem_cgroup_read,
5797 },
5798 #ifdef CONFIG_SLABINFO
5799 {
5800 .name = "kmem.slabinfo",
5801 .read_seq_string = mem_cgroup_slabinfo_read,
5802 },
5803 #endif
5804 #endif
5805 { }, /* terminate */
5806 };
5807
5808 #ifdef CONFIG_MEMCG_SWAP
5809 static struct cftype memsw_cgroup_files[] = {
5810 {
5811 .name = "memsw.usage_in_bytes",
5812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5813 .read = mem_cgroup_read,
5814 .register_event = mem_cgroup_usage_register_event,
5815 .unregister_event = mem_cgroup_usage_unregister_event,
5816 },
5817 {
5818 .name = "memsw.max_usage_in_bytes",
5819 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5820 .trigger = mem_cgroup_reset,
5821 .read = mem_cgroup_read,
5822 },
5823 {
5824 .name = "memsw.limit_in_bytes",
5825 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5826 .write_string = mem_cgroup_write,
5827 .read = mem_cgroup_read,
5828 },
5829 {
5830 .name = "memsw.failcnt",
5831 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5832 .trigger = mem_cgroup_reset,
5833 .read = mem_cgroup_read,
5834 },
5835 { }, /* terminate */
5836 };
5837 #endif
5838 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5839 {
5840 struct mem_cgroup_per_node *pn;
5841 struct mem_cgroup_per_zone *mz;
5842 int zone, tmp = node;
5843 /*
5844 * This routine is called against possible nodes.
5845 * But it's BUG to call kmalloc() against offline node.
5846 *
5847 * TODO: this routine can waste much memory for nodes which will
5848 * never be onlined. It's better to use memory hotplug callback
5849 * function.
5850 */
5851 if (!node_state(node, N_NORMAL_MEMORY))
5852 tmp = -1;
5853 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5854 if (!pn)
5855 return 1;
5856
5857 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5858 mz = &pn->zoneinfo[zone];
5859 lruvec_init(&mz->lruvec);
5860 mz->memcg = memcg;
5861 }
5862 memcg->nodeinfo[node] = pn;
5863 return 0;
5864 }
5865
5866 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5867 {
5868 kfree(memcg->nodeinfo[node]);
5869 }
5870
5871 static struct mem_cgroup *mem_cgroup_alloc(void)
5872 {
5873 struct mem_cgroup *memcg;
5874 size_t size = memcg_size();
5875
5876 /* Can be very big if nr_node_ids is very big */
5877 if (size < PAGE_SIZE)
5878 memcg = kzalloc(size, GFP_KERNEL);
5879 else
5880 memcg = vzalloc(size);
5881
5882 if (!memcg)
5883 return NULL;
5884
5885 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5886 if (!memcg->stat)
5887 goto out_free;
5888 spin_lock_init(&memcg->pcp_counter_lock);
5889 return memcg;
5890
5891 out_free:
5892 if (size < PAGE_SIZE)
5893 kfree(memcg);
5894 else
5895 vfree(memcg);
5896 return NULL;
5897 }
5898
5899 /*
5900 * At destroying mem_cgroup, references from swap_cgroup can remain.
5901 * (scanning all at force_empty is too costly...)
5902 *
5903 * Instead of clearing all references at force_empty, we remember
5904 * the number of reference from swap_cgroup and free mem_cgroup when
5905 * it goes down to 0.
5906 *
5907 * Removal of cgroup itself succeeds regardless of refs from swap.
5908 */
5909
5910 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5911 {
5912 int node;
5913 size_t size = memcg_size();
5914
5915 free_css_id(&mem_cgroup_subsys, &memcg->css);
5916
5917 for_each_node(node)
5918 free_mem_cgroup_per_zone_info(memcg, node);
5919
5920 free_percpu(memcg->stat);
5921
5922 /*
5923 * We need to make sure that (at least for now), the jump label
5924 * destruction code runs outside of the cgroup lock. This is because
5925 * get_online_cpus(), which is called from the static_branch update,
5926 * can't be called inside the cgroup_lock. cpusets are the ones
5927 * enforcing this dependency, so if they ever change, we might as well.
5928 *
5929 * schedule_work() will guarantee this happens. Be careful if you need
5930 * to move this code around, and make sure it is outside
5931 * the cgroup_lock.
5932 */
5933 disarm_static_keys(memcg);
5934 if (size < PAGE_SIZE)
5935 kfree(memcg);
5936 else
5937 vfree(memcg);
5938 }
5939
5940 /*
5941 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5942 */
5943 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5944 {
5945 if (!memcg->res.parent)
5946 return NULL;
5947 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5948 }
5949 EXPORT_SYMBOL(parent_mem_cgroup);
5950
5951 static struct cgroup_subsys_state * __ref
5952 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5953 {
5954 struct mem_cgroup *memcg;
5955 long error = -ENOMEM;
5956 int node;
5957
5958 memcg = mem_cgroup_alloc();
5959 if (!memcg)
5960 return ERR_PTR(error);
5961
5962 for_each_node(node)
5963 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5964 goto free_out;
5965
5966 /* root ? */
5967 if (parent_css == NULL) {
5968 root_mem_cgroup = memcg;
5969 res_counter_init(&memcg->res, NULL);
5970 res_counter_init(&memcg->memsw, NULL);
5971 res_counter_init(&memcg->kmem, NULL);
5972 }
5973
5974 memcg->last_scanned_node = MAX_NUMNODES;
5975 INIT_LIST_HEAD(&memcg->oom_notify);
5976 memcg->move_charge_at_immigrate = 0;
5977 mutex_init(&memcg->thresholds_lock);
5978 spin_lock_init(&memcg->move_lock);
5979 vmpressure_init(&memcg->vmpressure);
5980 spin_lock_init(&memcg->soft_lock);
5981
5982 return &memcg->css;
5983
5984 free_out:
5985 __mem_cgroup_free(memcg);
5986 return ERR_PTR(error);
5987 }
5988
5989 static int
5990 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5991 {
5992 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5993 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5994 int error = 0;
5995
5996 if (!parent)
5997 return 0;
5998
5999 mutex_lock(&memcg_create_mutex);
6000
6001 memcg->use_hierarchy = parent->use_hierarchy;
6002 memcg->oom_kill_disable = parent->oom_kill_disable;
6003 memcg->swappiness = mem_cgroup_swappiness(parent);
6004
6005 if (parent->use_hierarchy) {
6006 res_counter_init(&memcg->res, &parent->res);
6007 res_counter_init(&memcg->memsw, &parent->memsw);
6008 res_counter_init(&memcg->kmem, &parent->kmem);
6009
6010 /*
6011 * No need to take a reference to the parent because cgroup
6012 * core guarantees its existence.
6013 */
6014 } else {
6015 res_counter_init(&memcg->res, NULL);
6016 res_counter_init(&memcg->memsw, NULL);
6017 res_counter_init(&memcg->kmem, NULL);
6018 /*
6019 * Deeper hierachy with use_hierarchy == false doesn't make
6020 * much sense so let cgroup subsystem know about this
6021 * unfortunate state in our controller.
6022 */
6023 if (parent != root_mem_cgroup)
6024 mem_cgroup_subsys.broken_hierarchy = true;
6025 }
6026
6027 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6028 mutex_unlock(&memcg_create_mutex);
6029 return error;
6030 }
6031
6032 /*
6033 * Announce all parents that a group from their hierarchy is gone.
6034 */
6035 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6036 {
6037 struct mem_cgroup *parent = memcg;
6038
6039 while ((parent = parent_mem_cgroup(parent)))
6040 mem_cgroup_iter_invalidate(parent);
6041
6042 /*
6043 * if the root memcg is not hierarchical we have to check it
6044 * explicitely.
6045 */
6046 if (!root_mem_cgroup->use_hierarchy)
6047 mem_cgroup_iter_invalidate(root_mem_cgroup);
6048 }
6049
6050 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6051 {
6052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6053
6054 kmem_cgroup_css_offline(memcg);
6055
6056 mem_cgroup_invalidate_reclaim_iterators(memcg);
6057 mem_cgroup_reparent_charges(memcg);
6058 if (memcg->soft_contributed) {
6059 while ((memcg = parent_mem_cgroup(memcg)))
6060 atomic_dec(&memcg->children_in_excess);
6061
6062 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6063 atomic_dec(&root_mem_cgroup->children_in_excess);
6064 }
6065 mem_cgroup_destroy_all_caches(memcg);
6066 vmpressure_cleanup(&memcg->vmpressure);
6067 }
6068
6069 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6070 {
6071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6072
6073 memcg_destroy_kmem(memcg);
6074 __mem_cgroup_free(memcg);
6075 }
6076
6077 #ifdef CONFIG_MMU
6078 /* Handlers for move charge at task migration. */
6079 #define PRECHARGE_COUNT_AT_ONCE 256
6080 static int mem_cgroup_do_precharge(unsigned long count)
6081 {
6082 int ret = 0;
6083 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6084 struct mem_cgroup *memcg = mc.to;
6085
6086 if (mem_cgroup_is_root(memcg)) {
6087 mc.precharge += count;
6088 /* we don't need css_get for root */
6089 return ret;
6090 }
6091 /* try to charge at once */
6092 if (count > 1) {
6093 struct res_counter *dummy;
6094 /*
6095 * "memcg" cannot be under rmdir() because we've already checked
6096 * by cgroup_lock_live_cgroup() that it is not removed and we
6097 * are still under the same cgroup_mutex. So we can postpone
6098 * css_get().
6099 */
6100 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6101 goto one_by_one;
6102 if (do_swap_account && res_counter_charge(&memcg->memsw,
6103 PAGE_SIZE * count, &dummy)) {
6104 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6105 goto one_by_one;
6106 }
6107 mc.precharge += count;
6108 return ret;
6109 }
6110 one_by_one:
6111 /* fall back to one by one charge */
6112 while (count--) {
6113 if (signal_pending(current)) {
6114 ret = -EINTR;
6115 break;
6116 }
6117 if (!batch_count--) {
6118 batch_count = PRECHARGE_COUNT_AT_ONCE;
6119 cond_resched();
6120 }
6121 ret = __mem_cgroup_try_charge(NULL,
6122 GFP_KERNEL, 1, &memcg, false);
6123 if (ret)
6124 /* mem_cgroup_clear_mc() will do uncharge later */
6125 return ret;
6126 mc.precharge++;
6127 }
6128 return ret;
6129 }
6130
6131 /**
6132 * get_mctgt_type - get target type of moving charge
6133 * @vma: the vma the pte to be checked belongs
6134 * @addr: the address corresponding to the pte to be checked
6135 * @ptent: the pte to be checked
6136 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6137 *
6138 * Returns
6139 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6140 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6141 * move charge. if @target is not NULL, the page is stored in target->page
6142 * with extra refcnt got(Callers should handle it).
6143 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6144 * target for charge migration. if @target is not NULL, the entry is stored
6145 * in target->ent.
6146 *
6147 * Called with pte lock held.
6148 */
6149 union mc_target {
6150 struct page *page;
6151 swp_entry_t ent;
6152 };
6153
6154 enum mc_target_type {
6155 MC_TARGET_NONE = 0,
6156 MC_TARGET_PAGE,
6157 MC_TARGET_SWAP,
6158 };
6159
6160 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6161 unsigned long addr, pte_t ptent)
6162 {
6163 struct page *page = vm_normal_page(vma, addr, ptent);
6164
6165 if (!page || !page_mapped(page))
6166 return NULL;
6167 if (PageAnon(page)) {
6168 /* we don't move shared anon */
6169 if (!move_anon())
6170 return NULL;
6171 } else if (!move_file())
6172 /* we ignore mapcount for file pages */
6173 return NULL;
6174 if (!get_page_unless_zero(page))
6175 return NULL;
6176
6177 return page;
6178 }
6179
6180 #ifdef CONFIG_SWAP
6181 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6182 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6183 {
6184 struct page *page = NULL;
6185 swp_entry_t ent = pte_to_swp_entry(ptent);
6186
6187 if (!move_anon() || non_swap_entry(ent))
6188 return NULL;
6189 /*
6190 * Because lookup_swap_cache() updates some statistics counter,
6191 * we call find_get_page() with swapper_space directly.
6192 */
6193 page = find_get_page(swap_address_space(ent), ent.val);
6194 if (do_swap_account)
6195 entry->val = ent.val;
6196
6197 return page;
6198 }
6199 #else
6200 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6201 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6202 {
6203 return NULL;
6204 }
6205 #endif
6206
6207 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6208 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6209 {
6210 struct page *page = NULL;
6211 struct address_space *mapping;
6212 pgoff_t pgoff;
6213
6214 if (!vma->vm_file) /* anonymous vma */
6215 return NULL;
6216 if (!move_file())
6217 return NULL;
6218
6219 mapping = vma->vm_file->f_mapping;
6220 if (pte_none(ptent))
6221 pgoff = linear_page_index(vma, addr);
6222 else /* pte_file(ptent) is true */
6223 pgoff = pte_to_pgoff(ptent);
6224
6225 /* page is moved even if it's not RSS of this task(page-faulted). */
6226 page = find_get_page(mapping, pgoff);
6227
6228 #ifdef CONFIG_SWAP
6229 /* shmem/tmpfs may report page out on swap: account for that too. */
6230 if (radix_tree_exceptional_entry(page)) {
6231 swp_entry_t swap = radix_to_swp_entry(page);
6232 if (do_swap_account)
6233 *entry = swap;
6234 page = find_get_page(swap_address_space(swap), swap.val);
6235 }
6236 #endif
6237 return page;
6238 }
6239
6240 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6241 unsigned long addr, pte_t ptent, union mc_target *target)
6242 {
6243 struct page *page = NULL;
6244 struct page_cgroup *pc;
6245 enum mc_target_type ret = MC_TARGET_NONE;
6246 swp_entry_t ent = { .val = 0 };
6247
6248 if (pte_present(ptent))
6249 page = mc_handle_present_pte(vma, addr, ptent);
6250 else if (is_swap_pte(ptent))
6251 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6252 else if (pte_none(ptent) || pte_file(ptent))
6253 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6254
6255 if (!page && !ent.val)
6256 return ret;
6257 if (page) {
6258 pc = lookup_page_cgroup(page);
6259 /*
6260 * Do only loose check w/o page_cgroup lock.
6261 * mem_cgroup_move_account() checks the pc is valid or not under
6262 * the lock.
6263 */
6264 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6265 ret = MC_TARGET_PAGE;
6266 if (target)
6267 target->page = page;
6268 }
6269 if (!ret || !target)
6270 put_page(page);
6271 }
6272 /* There is a swap entry and a page doesn't exist or isn't charged */
6273 if (ent.val && !ret &&
6274 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6275 ret = MC_TARGET_SWAP;
6276 if (target)
6277 target->ent = ent;
6278 }
6279 return ret;
6280 }
6281
6282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6283 /*
6284 * We don't consider swapping or file mapped pages because THP does not
6285 * support them for now.
6286 * Caller should make sure that pmd_trans_huge(pmd) is true.
6287 */
6288 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6289 unsigned long addr, pmd_t pmd, union mc_target *target)
6290 {
6291 struct page *page = NULL;
6292 struct page_cgroup *pc;
6293 enum mc_target_type ret = MC_TARGET_NONE;
6294
6295 page = pmd_page(pmd);
6296 VM_BUG_ON(!page || !PageHead(page));
6297 if (!move_anon())
6298 return ret;
6299 pc = lookup_page_cgroup(page);
6300 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6301 ret = MC_TARGET_PAGE;
6302 if (target) {
6303 get_page(page);
6304 target->page = page;
6305 }
6306 }
6307 return ret;
6308 }
6309 #else
6310 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6311 unsigned long addr, pmd_t pmd, union mc_target *target)
6312 {
6313 return MC_TARGET_NONE;
6314 }
6315 #endif
6316
6317 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6318 unsigned long addr, unsigned long end,
6319 struct mm_walk *walk)
6320 {
6321 struct vm_area_struct *vma = walk->private;
6322 pte_t *pte;
6323 spinlock_t *ptl;
6324
6325 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6326 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6327 mc.precharge += HPAGE_PMD_NR;
6328 spin_unlock(&vma->vm_mm->page_table_lock);
6329 return 0;
6330 }
6331
6332 if (pmd_trans_unstable(pmd))
6333 return 0;
6334 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6335 for (; addr != end; pte++, addr += PAGE_SIZE)
6336 if (get_mctgt_type(vma, addr, *pte, NULL))
6337 mc.precharge++; /* increment precharge temporarily */
6338 pte_unmap_unlock(pte - 1, ptl);
6339 cond_resched();
6340
6341 return 0;
6342 }
6343
6344 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6345 {
6346 unsigned long precharge;
6347 struct vm_area_struct *vma;
6348
6349 down_read(&mm->mmap_sem);
6350 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6351 struct mm_walk mem_cgroup_count_precharge_walk = {
6352 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6353 .mm = mm,
6354 .private = vma,
6355 };
6356 if (is_vm_hugetlb_page(vma))
6357 continue;
6358 walk_page_range(vma->vm_start, vma->vm_end,
6359 &mem_cgroup_count_precharge_walk);
6360 }
6361 up_read(&mm->mmap_sem);
6362
6363 precharge = mc.precharge;
6364 mc.precharge = 0;
6365
6366 return precharge;
6367 }
6368
6369 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6370 {
6371 unsigned long precharge = mem_cgroup_count_precharge(mm);
6372
6373 VM_BUG_ON(mc.moving_task);
6374 mc.moving_task = current;
6375 return mem_cgroup_do_precharge(precharge);
6376 }
6377
6378 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6379 static void __mem_cgroup_clear_mc(void)
6380 {
6381 struct mem_cgroup *from = mc.from;
6382 struct mem_cgroup *to = mc.to;
6383 int i;
6384
6385 /* we must uncharge all the leftover precharges from mc.to */
6386 if (mc.precharge) {
6387 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6388 mc.precharge = 0;
6389 }
6390 /*
6391 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6392 * we must uncharge here.
6393 */
6394 if (mc.moved_charge) {
6395 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6396 mc.moved_charge = 0;
6397 }
6398 /* we must fixup refcnts and charges */
6399 if (mc.moved_swap) {
6400 /* uncharge swap account from the old cgroup */
6401 if (!mem_cgroup_is_root(mc.from))
6402 res_counter_uncharge(&mc.from->memsw,
6403 PAGE_SIZE * mc.moved_swap);
6404
6405 for (i = 0; i < mc.moved_swap; i++)
6406 css_put(&mc.from->css);
6407
6408 if (!mem_cgroup_is_root(mc.to)) {
6409 /*
6410 * we charged both to->res and to->memsw, so we should
6411 * uncharge to->res.
6412 */
6413 res_counter_uncharge(&mc.to->res,
6414 PAGE_SIZE * mc.moved_swap);
6415 }
6416 /* we've already done css_get(mc.to) */
6417 mc.moved_swap = 0;
6418 }
6419 memcg_oom_recover(from);
6420 memcg_oom_recover(to);
6421 wake_up_all(&mc.waitq);
6422 }
6423
6424 static void mem_cgroup_clear_mc(void)
6425 {
6426 struct mem_cgroup *from = mc.from;
6427
6428 /*
6429 * we must clear moving_task before waking up waiters at the end of
6430 * task migration.
6431 */
6432 mc.moving_task = NULL;
6433 __mem_cgroup_clear_mc();
6434 spin_lock(&mc.lock);
6435 mc.from = NULL;
6436 mc.to = NULL;
6437 spin_unlock(&mc.lock);
6438 mem_cgroup_end_move(from);
6439 }
6440
6441 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6442 struct cgroup_taskset *tset)
6443 {
6444 struct task_struct *p = cgroup_taskset_first(tset);
6445 int ret = 0;
6446 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6447 unsigned long move_charge_at_immigrate;
6448
6449 /*
6450 * We are now commited to this value whatever it is. Changes in this
6451 * tunable will only affect upcoming migrations, not the current one.
6452 * So we need to save it, and keep it going.
6453 */
6454 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6455 if (move_charge_at_immigrate) {
6456 struct mm_struct *mm;
6457 struct mem_cgroup *from = mem_cgroup_from_task(p);
6458
6459 VM_BUG_ON(from == memcg);
6460
6461 mm = get_task_mm(p);
6462 if (!mm)
6463 return 0;
6464 /* We move charges only when we move a owner of the mm */
6465 if (mm->owner == p) {
6466 VM_BUG_ON(mc.from);
6467 VM_BUG_ON(mc.to);
6468 VM_BUG_ON(mc.precharge);
6469 VM_BUG_ON(mc.moved_charge);
6470 VM_BUG_ON(mc.moved_swap);
6471 mem_cgroup_start_move(from);
6472 spin_lock(&mc.lock);
6473 mc.from = from;
6474 mc.to = memcg;
6475 mc.immigrate_flags = move_charge_at_immigrate;
6476 spin_unlock(&mc.lock);
6477 /* We set mc.moving_task later */
6478
6479 ret = mem_cgroup_precharge_mc(mm);
6480 if (ret)
6481 mem_cgroup_clear_mc();
6482 }
6483 mmput(mm);
6484 }
6485 return ret;
6486 }
6487
6488 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6489 struct cgroup_taskset *tset)
6490 {
6491 mem_cgroup_clear_mc();
6492 }
6493
6494 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6495 unsigned long addr, unsigned long end,
6496 struct mm_walk *walk)
6497 {
6498 int ret = 0;
6499 struct vm_area_struct *vma = walk->private;
6500 pte_t *pte;
6501 spinlock_t *ptl;
6502 enum mc_target_type target_type;
6503 union mc_target target;
6504 struct page *page;
6505 struct page_cgroup *pc;
6506
6507 /*
6508 * We don't take compound_lock() here but no race with splitting thp
6509 * happens because:
6510 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6511 * under splitting, which means there's no concurrent thp split,
6512 * - if another thread runs into split_huge_page() just after we
6513 * entered this if-block, the thread must wait for page table lock
6514 * to be unlocked in __split_huge_page_splitting(), where the main
6515 * part of thp split is not executed yet.
6516 */
6517 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6518 if (mc.precharge < HPAGE_PMD_NR) {
6519 spin_unlock(&vma->vm_mm->page_table_lock);
6520 return 0;
6521 }
6522 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6523 if (target_type == MC_TARGET_PAGE) {
6524 page = target.page;
6525 if (!isolate_lru_page(page)) {
6526 pc = lookup_page_cgroup(page);
6527 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6528 pc, mc.from, mc.to)) {
6529 mc.precharge -= HPAGE_PMD_NR;
6530 mc.moved_charge += HPAGE_PMD_NR;
6531 }
6532 putback_lru_page(page);
6533 }
6534 put_page(page);
6535 }
6536 spin_unlock(&vma->vm_mm->page_table_lock);
6537 return 0;
6538 }
6539
6540 if (pmd_trans_unstable(pmd))
6541 return 0;
6542 retry:
6543 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6544 for (; addr != end; addr += PAGE_SIZE) {
6545 pte_t ptent = *(pte++);
6546 swp_entry_t ent;
6547
6548 if (!mc.precharge)
6549 break;
6550
6551 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6552 case MC_TARGET_PAGE:
6553 page = target.page;
6554 if (isolate_lru_page(page))
6555 goto put;
6556 pc = lookup_page_cgroup(page);
6557 if (!mem_cgroup_move_account(page, 1, pc,
6558 mc.from, mc.to)) {
6559 mc.precharge--;
6560 /* we uncharge from mc.from later. */
6561 mc.moved_charge++;
6562 }
6563 putback_lru_page(page);
6564 put: /* get_mctgt_type() gets the page */
6565 put_page(page);
6566 break;
6567 case MC_TARGET_SWAP:
6568 ent = target.ent;
6569 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6570 mc.precharge--;
6571 /* we fixup refcnts and charges later. */
6572 mc.moved_swap++;
6573 }
6574 break;
6575 default:
6576 break;
6577 }
6578 }
6579 pte_unmap_unlock(pte - 1, ptl);
6580 cond_resched();
6581
6582 if (addr != end) {
6583 /*
6584 * We have consumed all precharges we got in can_attach().
6585 * We try charge one by one, but don't do any additional
6586 * charges to mc.to if we have failed in charge once in attach()
6587 * phase.
6588 */
6589 ret = mem_cgroup_do_precharge(1);
6590 if (!ret)
6591 goto retry;
6592 }
6593
6594 return ret;
6595 }
6596
6597 static void mem_cgroup_move_charge(struct mm_struct *mm)
6598 {
6599 struct vm_area_struct *vma;
6600
6601 lru_add_drain_all();
6602 retry:
6603 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6604 /*
6605 * Someone who are holding the mmap_sem might be waiting in
6606 * waitq. So we cancel all extra charges, wake up all waiters,
6607 * and retry. Because we cancel precharges, we might not be able
6608 * to move enough charges, but moving charge is a best-effort
6609 * feature anyway, so it wouldn't be a big problem.
6610 */
6611 __mem_cgroup_clear_mc();
6612 cond_resched();
6613 goto retry;
6614 }
6615 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6616 int ret;
6617 struct mm_walk mem_cgroup_move_charge_walk = {
6618 .pmd_entry = mem_cgroup_move_charge_pte_range,
6619 .mm = mm,
6620 .private = vma,
6621 };
6622 if (is_vm_hugetlb_page(vma))
6623 continue;
6624 ret = walk_page_range(vma->vm_start, vma->vm_end,
6625 &mem_cgroup_move_charge_walk);
6626 if (ret)
6627 /*
6628 * means we have consumed all precharges and failed in
6629 * doing additional charge. Just abandon here.
6630 */
6631 break;
6632 }
6633 up_read(&mm->mmap_sem);
6634 }
6635
6636 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6637 struct cgroup_taskset *tset)
6638 {
6639 struct task_struct *p = cgroup_taskset_first(tset);
6640 struct mm_struct *mm = get_task_mm(p);
6641
6642 if (mm) {
6643 if (mc.to)
6644 mem_cgroup_move_charge(mm);
6645 mmput(mm);
6646 }
6647 if (mc.to)
6648 mem_cgroup_clear_mc();
6649 }
6650 #else /* !CONFIG_MMU */
6651 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6652 struct cgroup_taskset *tset)
6653 {
6654 return 0;
6655 }
6656 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6657 struct cgroup_taskset *tset)
6658 {
6659 }
6660 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6661 struct cgroup_taskset *tset)
6662 {
6663 }
6664 #endif
6665
6666 /*
6667 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6668 * to verify sane_behavior flag on each mount attempt.
6669 */
6670 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6671 {
6672 /*
6673 * use_hierarchy is forced with sane_behavior. cgroup core
6674 * guarantees that @root doesn't have any children, so turning it
6675 * on for the root memcg is enough.
6676 */
6677 if (cgroup_sane_behavior(root_css->cgroup))
6678 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6679 }
6680
6681 struct cgroup_subsys mem_cgroup_subsys = {
6682 .name = "memory",
6683 .subsys_id = mem_cgroup_subsys_id,
6684 .css_alloc = mem_cgroup_css_alloc,
6685 .css_online = mem_cgroup_css_online,
6686 .css_offline = mem_cgroup_css_offline,
6687 .css_free = mem_cgroup_css_free,
6688 .can_attach = mem_cgroup_can_attach,
6689 .cancel_attach = mem_cgroup_cancel_attach,
6690 .attach = mem_cgroup_move_task,
6691 .bind = mem_cgroup_bind,
6692 .base_cftypes = mem_cgroup_files,
6693 .early_init = 0,
6694 .use_id = 1,
6695 };
6696
6697 #ifdef CONFIG_MEMCG_SWAP
6698 static int __init enable_swap_account(char *s)
6699 {
6700 if (!strcmp(s, "1"))
6701 really_do_swap_account = 1;
6702 else if (!strcmp(s, "0"))
6703 really_do_swap_account = 0;
6704 return 1;
6705 }
6706 __setup("swapaccount=", enable_swap_account);
6707
6708 static void __init memsw_file_init(void)
6709 {
6710 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6711 }
6712
6713 static void __init enable_swap_cgroup(void)
6714 {
6715 if (!mem_cgroup_disabled() && really_do_swap_account) {
6716 do_swap_account = 1;
6717 memsw_file_init();
6718 }
6719 }
6720
6721 #else
6722 static void __init enable_swap_cgroup(void)
6723 {
6724 }
6725 #endif
6726
6727 /*
6728 * subsys_initcall() for memory controller.
6729 *
6730 * Some parts like hotcpu_notifier() have to be initialized from this context
6731 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6732 * everything that doesn't depend on a specific mem_cgroup structure should
6733 * be initialized from here.
6734 */
6735 static int __init mem_cgroup_init(void)
6736 {
6737 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6738 enable_swap_cgroup();
6739 memcg_stock_init();
6740 return 0;
6741 }
6742 subsys_initcall(mem_cgroup_init);