]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge tag 'upstream-3.13-rc1' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62
63 #include <asm/uaccess.h>
64
65 #include <trace/events/vmscan.h>
66
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
69
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
76
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
83
84 #else
85 #define do_swap_account 0
86 #endif
87
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "writeback",
95 "swap",
96 };
97
98 enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS,
104 };
105
106 static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111 };
112
113 static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119 };
120
121 /*
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
126 */
127 enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
129 MEM_CGROUP_TARGET_SOFTLIMIT,
130 MEM_CGROUP_TARGET_NUMAINFO,
131 MEM_CGROUP_NTARGETS,
132 };
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
136
137 struct mem_cgroup_stat_cpu {
138 long count[MEM_CGROUP_STAT_NSTATS];
139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 unsigned long nr_page_events;
141 unsigned long targets[MEM_CGROUP_NTARGETS];
142 };
143
144 struct mem_cgroup_reclaim_iter {
145 /*
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
148 */
149 struct mem_cgroup *last_visited;
150 unsigned long last_dead_count;
151
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
154 };
155
156 /*
157 * per-zone information in memory controller.
158 */
159 struct mem_cgroup_per_zone {
160 struct lruvec lruvec;
161 unsigned long lru_size[NR_LRU_LISTS];
162
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
170 /* use container_of */
171 };
172
173 struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175 };
176
177 /*
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
180 */
181
182 struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
185 };
186
187 struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189 };
190
191 struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193 };
194
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196
197 struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
200 };
201
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold;
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
210 };
211
212 struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
215 /*
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
219 */
220 struct mem_cgroup_threshold_ary *spare;
221 };
222
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
227 };
228
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231
232 /*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 *
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
242 */
243 struct mem_cgroup {
244 struct cgroup_subsys_state css;
245 /*
246 * the counter to account for memory usage
247 */
248 struct res_counter res;
249
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
252
253 /*
254 * the counter to account for mem+swap usage.
255 */
256 struct res_counter memsw;
257
258 /*
259 * the counter to account for kernel memory usage.
260 */
261 struct res_counter kmem;
262 /*
263 * Should the accounting and control be hierarchical, per subtree?
264 */
265 bool use_hierarchy;
266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267
268 bool oom_lock;
269 atomic_t under_oom;
270 atomic_t oom_wakeups;
271
272 int swappiness;
273 /* OOM-Killer disable */
274 int oom_kill_disable;
275
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum;
278
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock;
281
282 /* thresholds for memory usage. RCU-protected */
283 struct mem_cgroup_thresholds thresholds;
284
285 /* thresholds for mem+swap usage. RCU-protected */
286 struct mem_cgroup_thresholds memsw_thresholds;
287
288 /* For oom notifier event fd */
289 struct list_head oom_notify;
290
291 /*
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
294 */
295 unsigned long move_charge_at_immigrate;
296 /*
297 * set > 0 if pages under this cgroup are moving to other cgroup.
298 */
299 atomic_t moving_account;
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock;
302 /*
303 * percpu counter.
304 */
305 struct mem_cgroup_stat_cpu __percpu *stat;
306 /*
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
309 */
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
312
313 atomic_t dead_count;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 struct tcp_memcontrol tcp_mem;
316 #endif
317 #if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 int kmemcg_id;
324 #endif
325
326 int last_scanned_node;
327 #if MAX_NUMNODES > 1
328 nodemask_t scan_nodes;
329 atomic_t numainfo_events;
330 atomic_t numainfo_updating;
331 #endif
332
333 struct mem_cgroup_per_node *nodeinfo[0];
334 /* WARNING: nodeinfo must be the last member here */
335 };
336
337 static size_t memcg_size(void)
338 {
339 return sizeof(struct mem_cgroup) +
340 nr_node_ids * sizeof(struct mem_cgroup_per_node);
341 }
342
343 /* internal only representation about the status of kmem accounting. */
344 enum {
345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348 };
349
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356 {
357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358 }
359
360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363 }
364
365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366 {
367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368 }
369
370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371 {
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373 }
374
375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376 {
377 /*
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
380 */
381 smp_wmb();
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384 }
385
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387 {
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 &memcg->kmem_account_flags);
390 }
391 #endif
392
393 /* Stuffs for move charges at task migration. */
394 /*
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 */
398 enum move_type {
399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
401 NR_MOVE_TYPE,
402 };
403
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct {
406 spinlock_t lock; /* for from, to */
407 struct mem_cgroup *from;
408 struct mem_cgroup *to;
409 unsigned long immigrate_flags;
410 unsigned long precharge;
411 unsigned long moved_charge;
412 unsigned long moved_swap;
413 struct task_struct *moving_task; /* a task moving charges */
414 wait_queue_head_t waitq; /* a waitq for other context */
415 } mc = {
416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418 };
419
420 static bool move_anon(void)
421 {
422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
423 }
424
425 static bool move_file(void)
426 {
427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428 }
429
430 /*
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
433 */
434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
436
437 enum charge_type {
438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439 MEM_CGROUP_CHARGE_TYPE_ANON,
440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
442 NR_CHARGE_TYPE,
443 };
444
445 /* for encoding cft->private value on file */
446 enum res_type {
447 _MEM,
448 _MEMSWAP,
449 _OOM_TYPE,
450 _KMEM,
451 };
452
453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val) ((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL (0)
458
459 /*
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 */
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466
467 /*
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
471 */
472 static DEFINE_MUTEX(memcg_create_mutex);
473
474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475 {
476 return s ? container_of(s, struct mem_cgroup, css) : NULL;
477 }
478
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481 {
482 if (!memcg)
483 memcg = root_mem_cgroup;
484 return &memcg->vmpressure;
485 }
486
487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488 {
489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490 }
491
492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493 {
494 return &mem_cgroup_from_css(css)->vmpressure;
495 }
496
497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498 {
499 return (memcg == root_mem_cgroup);
500 }
501
502 /*
503 * We restrict the id in the range of [1, 65535], so it can fit into
504 * an unsigned short.
505 */
506 #define MEM_CGROUP_ID_MAX USHRT_MAX
507
508 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
509 {
510 /*
511 * The ID of the root cgroup is 0, but memcg treat 0 as an
512 * invalid ID, so we return (cgroup_id + 1).
513 */
514 return memcg->css.cgroup->id + 1;
515 }
516
517 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
518 {
519 struct cgroup_subsys_state *css;
520
521 css = css_from_id(id - 1, &mem_cgroup_subsys);
522 return mem_cgroup_from_css(css);
523 }
524
525 /* Writing them here to avoid exposing memcg's inner layout */
526 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
527
528 void sock_update_memcg(struct sock *sk)
529 {
530 if (mem_cgroup_sockets_enabled) {
531 struct mem_cgroup *memcg;
532 struct cg_proto *cg_proto;
533
534 BUG_ON(!sk->sk_prot->proto_cgroup);
535
536 /* Socket cloning can throw us here with sk_cgrp already
537 * filled. It won't however, necessarily happen from
538 * process context. So the test for root memcg given
539 * the current task's memcg won't help us in this case.
540 *
541 * Respecting the original socket's memcg is a better
542 * decision in this case.
543 */
544 if (sk->sk_cgrp) {
545 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
546 css_get(&sk->sk_cgrp->memcg->css);
547 return;
548 }
549
550 rcu_read_lock();
551 memcg = mem_cgroup_from_task(current);
552 cg_proto = sk->sk_prot->proto_cgroup(memcg);
553 if (!mem_cgroup_is_root(memcg) &&
554 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
555 sk->sk_cgrp = cg_proto;
556 }
557 rcu_read_unlock();
558 }
559 }
560 EXPORT_SYMBOL(sock_update_memcg);
561
562 void sock_release_memcg(struct sock *sk)
563 {
564 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
565 struct mem_cgroup *memcg;
566 WARN_ON(!sk->sk_cgrp->memcg);
567 memcg = sk->sk_cgrp->memcg;
568 css_put(&sk->sk_cgrp->memcg->css);
569 }
570 }
571
572 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
573 {
574 if (!memcg || mem_cgroup_is_root(memcg))
575 return NULL;
576
577 return &memcg->tcp_mem.cg_proto;
578 }
579 EXPORT_SYMBOL(tcp_proto_cgroup);
580
581 static void disarm_sock_keys(struct mem_cgroup *memcg)
582 {
583 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
584 return;
585 static_key_slow_dec(&memcg_socket_limit_enabled);
586 }
587 #else
588 static void disarm_sock_keys(struct mem_cgroup *memcg)
589 {
590 }
591 #endif
592
593 #ifdef CONFIG_MEMCG_KMEM
594 /*
595 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
596 * The main reason for not using cgroup id for this:
597 * this works better in sparse environments, where we have a lot of memcgs,
598 * but only a few kmem-limited. Or also, if we have, for instance, 200
599 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
600 * 200 entry array for that.
601 *
602 * The current size of the caches array is stored in
603 * memcg_limited_groups_array_size. It will double each time we have to
604 * increase it.
605 */
606 static DEFINE_IDA(kmem_limited_groups);
607 int memcg_limited_groups_array_size;
608
609 /*
610 * MIN_SIZE is different than 1, because we would like to avoid going through
611 * the alloc/free process all the time. In a small machine, 4 kmem-limited
612 * cgroups is a reasonable guess. In the future, it could be a parameter or
613 * tunable, but that is strictly not necessary.
614 *
615 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
616 * this constant directly from cgroup, but it is understandable that this is
617 * better kept as an internal representation in cgroup.c. In any case, the
618 * cgrp_id space is not getting any smaller, and we don't have to necessarily
619 * increase ours as well if it increases.
620 */
621 #define MEMCG_CACHES_MIN_SIZE 4
622 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
623
624 /*
625 * A lot of the calls to the cache allocation functions are expected to be
626 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
627 * conditional to this static branch, we'll have to allow modules that does
628 * kmem_cache_alloc and the such to see this symbol as well
629 */
630 struct static_key memcg_kmem_enabled_key;
631 EXPORT_SYMBOL(memcg_kmem_enabled_key);
632
633 static void disarm_kmem_keys(struct mem_cgroup *memcg)
634 {
635 if (memcg_kmem_is_active(memcg)) {
636 static_key_slow_dec(&memcg_kmem_enabled_key);
637 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
638 }
639 /*
640 * This check can't live in kmem destruction function,
641 * since the charges will outlive the cgroup
642 */
643 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
644 }
645 #else
646 static void disarm_kmem_keys(struct mem_cgroup *memcg)
647 {
648 }
649 #endif /* CONFIG_MEMCG_KMEM */
650
651 static void disarm_static_keys(struct mem_cgroup *memcg)
652 {
653 disarm_sock_keys(memcg);
654 disarm_kmem_keys(memcg);
655 }
656
657 static void drain_all_stock_async(struct mem_cgroup *memcg);
658
659 static struct mem_cgroup_per_zone *
660 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
661 {
662 VM_BUG_ON((unsigned)nid >= nr_node_ids);
663 return &memcg->nodeinfo[nid]->zoneinfo[zid];
664 }
665
666 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
667 {
668 return &memcg->css;
669 }
670
671 static struct mem_cgroup_per_zone *
672 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
673 {
674 int nid = page_to_nid(page);
675 int zid = page_zonenum(page);
676
677 return mem_cgroup_zoneinfo(memcg, nid, zid);
678 }
679
680 static struct mem_cgroup_tree_per_zone *
681 soft_limit_tree_node_zone(int nid, int zid)
682 {
683 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
684 }
685
686 static struct mem_cgroup_tree_per_zone *
687 soft_limit_tree_from_page(struct page *page)
688 {
689 int nid = page_to_nid(page);
690 int zid = page_zonenum(page);
691
692 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
693 }
694
695 static void
696 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
697 struct mem_cgroup_per_zone *mz,
698 struct mem_cgroup_tree_per_zone *mctz,
699 unsigned long long new_usage_in_excess)
700 {
701 struct rb_node **p = &mctz->rb_root.rb_node;
702 struct rb_node *parent = NULL;
703 struct mem_cgroup_per_zone *mz_node;
704
705 if (mz->on_tree)
706 return;
707
708 mz->usage_in_excess = new_usage_in_excess;
709 if (!mz->usage_in_excess)
710 return;
711 while (*p) {
712 parent = *p;
713 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
714 tree_node);
715 if (mz->usage_in_excess < mz_node->usage_in_excess)
716 p = &(*p)->rb_left;
717 /*
718 * We can't avoid mem cgroups that are over their soft
719 * limit by the same amount
720 */
721 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
722 p = &(*p)->rb_right;
723 }
724 rb_link_node(&mz->tree_node, parent, p);
725 rb_insert_color(&mz->tree_node, &mctz->rb_root);
726 mz->on_tree = true;
727 }
728
729 static void
730 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
731 struct mem_cgroup_per_zone *mz,
732 struct mem_cgroup_tree_per_zone *mctz)
733 {
734 if (!mz->on_tree)
735 return;
736 rb_erase(&mz->tree_node, &mctz->rb_root);
737 mz->on_tree = false;
738 }
739
740 static void
741 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
742 struct mem_cgroup_per_zone *mz,
743 struct mem_cgroup_tree_per_zone *mctz)
744 {
745 spin_lock(&mctz->lock);
746 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
747 spin_unlock(&mctz->lock);
748 }
749
750
751 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
752 {
753 unsigned long long excess;
754 struct mem_cgroup_per_zone *mz;
755 struct mem_cgroup_tree_per_zone *mctz;
756 int nid = page_to_nid(page);
757 int zid = page_zonenum(page);
758 mctz = soft_limit_tree_from_page(page);
759
760 /*
761 * Necessary to update all ancestors when hierarchy is used.
762 * because their event counter is not touched.
763 */
764 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
765 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
766 excess = res_counter_soft_limit_excess(&memcg->res);
767 /*
768 * We have to update the tree if mz is on RB-tree or
769 * mem is over its softlimit.
770 */
771 if (excess || mz->on_tree) {
772 spin_lock(&mctz->lock);
773 /* if on-tree, remove it */
774 if (mz->on_tree)
775 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
776 /*
777 * Insert again. mz->usage_in_excess will be updated.
778 * If excess is 0, no tree ops.
779 */
780 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
781 spin_unlock(&mctz->lock);
782 }
783 }
784 }
785
786 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
787 {
788 int node, zone;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791
792 for_each_node(node) {
793 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
794 mz = mem_cgroup_zoneinfo(memcg, node, zone);
795 mctz = soft_limit_tree_node_zone(node, zone);
796 mem_cgroup_remove_exceeded(memcg, mz, mctz);
797 }
798 }
799 }
800
801 static struct mem_cgroup_per_zone *
802 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
803 {
804 struct rb_node *rightmost = NULL;
805 struct mem_cgroup_per_zone *mz;
806
807 retry:
808 mz = NULL;
809 rightmost = rb_last(&mctz->rb_root);
810 if (!rightmost)
811 goto done; /* Nothing to reclaim from */
812
813 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
814 /*
815 * Remove the node now but someone else can add it back,
816 * we will to add it back at the end of reclaim to its correct
817 * position in the tree.
818 */
819 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
820 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
821 !css_tryget(&mz->memcg->css))
822 goto retry;
823 done:
824 return mz;
825 }
826
827 static struct mem_cgroup_per_zone *
828 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
829 {
830 struct mem_cgroup_per_zone *mz;
831
832 spin_lock(&mctz->lock);
833 mz = __mem_cgroup_largest_soft_limit_node(mctz);
834 spin_unlock(&mctz->lock);
835 return mz;
836 }
837
838 /*
839 * Implementation Note: reading percpu statistics for memcg.
840 *
841 * Both of vmstat[] and percpu_counter has threshold and do periodic
842 * synchronization to implement "quick" read. There are trade-off between
843 * reading cost and precision of value. Then, we may have a chance to implement
844 * a periodic synchronizion of counter in memcg's counter.
845 *
846 * But this _read() function is used for user interface now. The user accounts
847 * memory usage by memory cgroup and he _always_ requires exact value because
848 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
849 * have to visit all online cpus and make sum. So, for now, unnecessary
850 * synchronization is not implemented. (just implemented for cpu hotplug)
851 *
852 * If there are kernel internal actions which can make use of some not-exact
853 * value, and reading all cpu value can be performance bottleneck in some
854 * common workload, threashold and synchonization as vmstat[] should be
855 * implemented.
856 */
857 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
858 enum mem_cgroup_stat_index idx)
859 {
860 long val = 0;
861 int cpu;
862
863 get_online_cpus();
864 for_each_online_cpu(cpu)
865 val += per_cpu(memcg->stat->count[idx], cpu);
866 #ifdef CONFIG_HOTPLUG_CPU
867 spin_lock(&memcg->pcp_counter_lock);
868 val += memcg->nocpu_base.count[idx];
869 spin_unlock(&memcg->pcp_counter_lock);
870 #endif
871 put_online_cpus();
872 return val;
873 }
874
875 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
876 bool charge)
877 {
878 int val = (charge) ? 1 : -1;
879 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
880 }
881
882 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
883 enum mem_cgroup_events_index idx)
884 {
885 unsigned long val = 0;
886 int cpu;
887
888 get_online_cpus();
889 for_each_online_cpu(cpu)
890 val += per_cpu(memcg->stat->events[idx], cpu);
891 #ifdef CONFIG_HOTPLUG_CPU
892 spin_lock(&memcg->pcp_counter_lock);
893 val += memcg->nocpu_base.events[idx];
894 spin_unlock(&memcg->pcp_counter_lock);
895 #endif
896 put_online_cpus();
897 return val;
898 }
899
900 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
901 struct page *page,
902 bool anon, int nr_pages)
903 {
904 preempt_disable();
905
906 /*
907 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
908 * counted as CACHE even if it's on ANON LRU.
909 */
910 if (anon)
911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
912 nr_pages);
913 else
914 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
915 nr_pages);
916
917 if (PageTransHuge(page))
918 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
919 nr_pages);
920
921 /* pagein of a big page is an event. So, ignore page size */
922 if (nr_pages > 0)
923 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
924 else {
925 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
926 nr_pages = -nr_pages; /* for event */
927 }
928
929 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
930
931 preempt_enable();
932 }
933
934 unsigned long
935 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
936 {
937 struct mem_cgroup_per_zone *mz;
938
939 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
940 return mz->lru_size[lru];
941 }
942
943 static unsigned long
944 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
945 unsigned int lru_mask)
946 {
947 struct mem_cgroup_per_zone *mz;
948 enum lru_list lru;
949 unsigned long ret = 0;
950
951 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
952
953 for_each_lru(lru) {
954 if (BIT(lru) & lru_mask)
955 ret += mz->lru_size[lru];
956 }
957 return ret;
958 }
959
960 static unsigned long
961 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
962 int nid, unsigned int lru_mask)
963 {
964 u64 total = 0;
965 int zid;
966
967 for (zid = 0; zid < MAX_NR_ZONES; zid++)
968 total += mem_cgroup_zone_nr_lru_pages(memcg,
969 nid, zid, lru_mask);
970
971 return total;
972 }
973
974 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
975 unsigned int lru_mask)
976 {
977 int nid;
978 u64 total = 0;
979
980 for_each_node_state(nid, N_MEMORY)
981 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
982 return total;
983 }
984
985 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
986 enum mem_cgroup_events_target target)
987 {
988 unsigned long val, next;
989
990 val = __this_cpu_read(memcg->stat->nr_page_events);
991 next = __this_cpu_read(memcg->stat->targets[target]);
992 /* from time_after() in jiffies.h */
993 if ((long)next - (long)val < 0) {
994 switch (target) {
995 case MEM_CGROUP_TARGET_THRESH:
996 next = val + THRESHOLDS_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_SOFTLIMIT:
999 next = val + SOFTLIMIT_EVENTS_TARGET;
1000 break;
1001 case MEM_CGROUP_TARGET_NUMAINFO:
1002 next = val + NUMAINFO_EVENTS_TARGET;
1003 break;
1004 default:
1005 break;
1006 }
1007 __this_cpu_write(memcg->stat->targets[target], next);
1008 return true;
1009 }
1010 return false;
1011 }
1012
1013 /*
1014 * Check events in order.
1015 *
1016 */
1017 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1018 {
1019 preempt_disable();
1020 /* threshold event is triggered in finer grain than soft limit */
1021 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_THRESH))) {
1023 bool do_softlimit;
1024 bool do_numainfo __maybe_unused;
1025
1026 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_SOFTLIMIT);
1028 #if MAX_NUMNODES > 1
1029 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1030 MEM_CGROUP_TARGET_NUMAINFO);
1031 #endif
1032 preempt_enable();
1033
1034 mem_cgroup_threshold(memcg);
1035 if (unlikely(do_softlimit))
1036 mem_cgroup_update_tree(memcg, page);
1037 #if MAX_NUMNODES > 1
1038 if (unlikely(do_numainfo))
1039 atomic_inc(&memcg->numainfo_events);
1040 #endif
1041 } else
1042 preempt_enable();
1043 }
1044
1045 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1046 {
1047 /*
1048 * mm_update_next_owner() may clear mm->owner to NULL
1049 * if it races with swapoff, page migration, etc.
1050 * So this can be called with p == NULL.
1051 */
1052 if (unlikely(!p))
1053 return NULL;
1054
1055 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1056 }
1057
1058 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1059 {
1060 struct mem_cgroup *memcg = NULL;
1061
1062 if (!mm)
1063 return NULL;
1064 /*
1065 * Because we have no locks, mm->owner's may be being moved to other
1066 * cgroup. We use css_tryget() here even if this looks
1067 * pessimistic (rather than adding locks here).
1068 */
1069 rcu_read_lock();
1070 do {
1071 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1072 if (unlikely(!memcg))
1073 break;
1074 } while (!css_tryget(&memcg->css));
1075 rcu_read_unlock();
1076 return memcg;
1077 }
1078
1079 /*
1080 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1081 * ref. count) or NULL if the whole root's subtree has been visited.
1082 *
1083 * helper function to be used by mem_cgroup_iter
1084 */
1085 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1086 struct mem_cgroup *last_visited)
1087 {
1088 struct cgroup_subsys_state *prev_css, *next_css;
1089
1090 prev_css = last_visited ? &last_visited->css : NULL;
1091 skip_node:
1092 next_css = css_next_descendant_pre(prev_css, &root->css);
1093
1094 /*
1095 * Even if we found a group we have to make sure it is
1096 * alive. css && !memcg means that the groups should be
1097 * skipped and we should continue the tree walk.
1098 * last_visited css is safe to use because it is
1099 * protected by css_get and the tree walk is rcu safe.
1100 */
1101 if (next_css) {
1102 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1103
1104 if (css_tryget(&mem->css))
1105 return mem;
1106 else {
1107 prev_css = next_css;
1108 goto skip_node;
1109 }
1110 }
1111
1112 return NULL;
1113 }
1114
1115 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1116 {
1117 /*
1118 * When a group in the hierarchy below root is destroyed, the
1119 * hierarchy iterator can no longer be trusted since it might
1120 * have pointed to the destroyed group. Invalidate it.
1121 */
1122 atomic_inc(&root->dead_count);
1123 }
1124
1125 static struct mem_cgroup *
1126 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1127 struct mem_cgroup *root,
1128 int *sequence)
1129 {
1130 struct mem_cgroup *position = NULL;
1131 /*
1132 * A cgroup destruction happens in two stages: offlining and
1133 * release. They are separated by a RCU grace period.
1134 *
1135 * If the iterator is valid, we may still race with an
1136 * offlining. The RCU lock ensures the object won't be
1137 * released, tryget will fail if we lost the race.
1138 */
1139 *sequence = atomic_read(&root->dead_count);
1140 if (iter->last_dead_count == *sequence) {
1141 smp_rmb();
1142 position = iter->last_visited;
1143 if (position && !css_tryget(&position->css))
1144 position = NULL;
1145 }
1146 return position;
1147 }
1148
1149 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1150 struct mem_cgroup *last_visited,
1151 struct mem_cgroup *new_position,
1152 int sequence)
1153 {
1154 if (last_visited)
1155 css_put(&last_visited->css);
1156 /*
1157 * We store the sequence count from the time @last_visited was
1158 * loaded successfully instead of rereading it here so that we
1159 * don't lose destruction events in between. We could have
1160 * raced with the destruction of @new_position after all.
1161 */
1162 iter->last_visited = new_position;
1163 smp_wmb();
1164 iter->last_dead_count = sequence;
1165 }
1166
1167 /**
1168 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1169 * @root: hierarchy root
1170 * @prev: previously returned memcg, NULL on first invocation
1171 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1172 *
1173 * Returns references to children of the hierarchy below @root, or
1174 * @root itself, or %NULL after a full round-trip.
1175 *
1176 * Caller must pass the return value in @prev on subsequent
1177 * invocations for reference counting, or use mem_cgroup_iter_break()
1178 * to cancel a hierarchy walk before the round-trip is complete.
1179 *
1180 * Reclaimers can specify a zone and a priority level in @reclaim to
1181 * divide up the memcgs in the hierarchy among all concurrent
1182 * reclaimers operating on the same zone and priority.
1183 */
1184 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1185 struct mem_cgroup *prev,
1186 struct mem_cgroup_reclaim_cookie *reclaim)
1187 {
1188 struct mem_cgroup *memcg = NULL;
1189 struct mem_cgroup *last_visited = NULL;
1190
1191 if (mem_cgroup_disabled())
1192 return NULL;
1193
1194 if (!root)
1195 root = root_mem_cgroup;
1196
1197 if (prev && !reclaim)
1198 last_visited = prev;
1199
1200 if (!root->use_hierarchy && root != root_mem_cgroup) {
1201 if (prev)
1202 goto out_css_put;
1203 return root;
1204 }
1205
1206 rcu_read_lock();
1207 while (!memcg) {
1208 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1209 int uninitialized_var(seq);
1210
1211 if (reclaim) {
1212 int nid = zone_to_nid(reclaim->zone);
1213 int zid = zone_idx(reclaim->zone);
1214 struct mem_cgroup_per_zone *mz;
1215
1216 mz = mem_cgroup_zoneinfo(root, nid, zid);
1217 iter = &mz->reclaim_iter[reclaim->priority];
1218 if (prev && reclaim->generation != iter->generation) {
1219 iter->last_visited = NULL;
1220 goto out_unlock;
1221 }
1222
1223 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1224 }
1225
1226 memcg = __mem_cgroup_iter_next(root, last_visited);
1227
1228 if (reclaim) {
1229 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1230
1231 if (!memcg)
1232 iter->generation++;
1233 else if (!prev && memcg)
1234 reclaim->generation = iter->generation;
1235 }
1236
1237 if (prev && !memcg)
1238 goto out_unlock;
1239 }
1240 out_unlock:
1241 rcu_read_unlock();
1242 out_css_put:
1243 if (prev && prev != root)
1244 css_put(&prev->css);
1245
1246 return memcg;
1247 }
1248
1249 /**
1250 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1251 * @root: hierarchy root
1252 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1253 */
1254 void mem_cgroup_iter_break(struct mem_cgroup *root,
1255 struct mem_cgroup *prev)
1256 {
1257 if (!root)
1258 root = root_mem_cgroup;
1259 if (prev && prev != root)
1260 css_put(&prev->css);
1261 }
1262
1263 /*
1264 * Iteration constructs for visiting all cgroups (under a tree). If
1265 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1266 * be used for reference counting.
1267 */
1268 #define for_each_mem_cgroup_tree(iter, root) \
1269 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1270 iter != NULL; \
1271 iter = mem_cgroup_iter(root, iter, NULL))
1272
1273 #define for_each_mem_cgroup(iter) \
1274 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1275 iter != NULL; \
1276 iter = mem_cgroup_iter(NULL, iter, NULL))
1277
1278 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1279 {
1280 struct mem_cgroup *memcg;
1281
1282 rcu_read_lock();
1283 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1284 if (unlikely(!memcg))
1285 goto out;
1286
1287 switch (idx) {
1288 case PGFAULT:
1289 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1290 break;
1291 case PGMAJFAULT:
1292 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1293 break;
1294 default:
1295 BUG();
1296 }
1297 out:
1298 rcu_read_unlock();
1299 }
1300 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1301
1302 /**
1303 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1304 * @zone: zone of the wanted lruvec
1305 * @memcg: memcg of the wanted lruvec
1306 *
1307 * Returns the lru list vector holding pages for the given @zone and
1308 * @mem. This can be the global zone lruvec, if the memory controller
1309 * is disabled.
1310 */
1311 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1312 struct mem_cgroup *memcg)
1313 {
1314 struct mem_cgroup_per_zone *mz;
1315 struct lruvec *lruvec;
1316
1317 if (mem_cgroup_disabled()) {
1318 lruvec = &zone->lruvec;
1319 goto out;
1320 }
1321
1322 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1323 lruvec = &mz->lruvec;
1324 out:
1325 /*
1326 * Since a node can be onlined after the mem_cgroup was created,
1327 * we have to be prepared to initialize lruvec->zone here;
1328 * and if offlined then reonlined, we need to reinitialize it.
1329 */
1330 if (unlikely(lruvec->zone != zone))
1331 lruvec->zone = zone;
1332 return lruvec;
1333 }
1334
1335 /*
1336 * Following LRU functions are allowed to be used without PCG_LOCK.
1337 * Operations are called by routine of global LRU independently from memcg.
1338 * What we have to take care of here is validness of pc->mem_cgroup.
1339 *
1340 * Changes to pc->mem_cgroup happens when
1341 * 1. charge
1342 * 2. moving account
1343 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1344 * It is added to LRU before charge.
1345 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1346 * When moving account, the page is not on LRU. It's isolated.
1347 */
1348
1349 /**
1350 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1351 * @page: the page
1352 * @zone: zone of the page
1353 */
1354 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1355 {
1356 struct mem_cgroup_per_zone *mz;
1357 struct mem_cgroup *memcg;
1358 struct page_cgroup *pc;
1359 struct lruvec *lruvec;
1360
1361 if (mem_cgroup_disabled()) {
1362 lruvec = &zone->lruvec;
1363 goto out;
1364 }
1365
1366 pc = lookup_page_cgroup(page);
1367 memcg = pc->mem_cgroup;
1368
1369 /*
1370 * Surreptitiously switch any uncharged offlist page to root:
1371 * an uncharged page off lru does nothing to secure
1372 * its former mem_cgroup from sudden removal.
1373 *
1374 * Our caller holds lru_lock, and PageCgroupUsed is updated
1375 * under page_cgroup lock: between them, they make all uses
1376 * of pc->mem_cgroup safe.
1377 */
1378 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1379 pc->mem_cgroup = memcg = root_mem_cgroup;
1380
1381 mz = page_cgroup_zoneinfo(memcg, page);
1382 lruvec = &mz->lruvec;
1383 out:
1384 /*
1385 * Since a node can be onlined after the mem_cgroup was created,
1386 * we have to be prepared to initialize lruvec->zone here;
1387 * and if offlined then reonlined, we need to reinitialize it.
1388 */
1389 if (unlikely(lruvec->zone != zone))
1390 lruvec->zone = zone;
1391 return lruvec;
1392 }
1393
1394 /**
1395 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1396 * @lruvec: mem_cgroup per zone lru vector
1397 * @lru: index of lru list the page is sitting on
1398 * @nr_pages: positive when adding or negative when removing
1399 *
1400 * This function must be called when a page is added to or removed from an
1401 * lru list.
1402 */
1403 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1404 int nr_pages)
1405 {
1406 struct mem_cgroup_per_zone *mz;
1407 unsigned long *lru_size;
1408
1409 if (mem_cgroup_disabled())
1410 return;
1411
1412 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1413 lru_size = mz->lru_size + lru;
1414 *lru_size += nr_pages;
1415 VM_BUG_ON((long)(*lru_size) < 0);
1416 }
1417
1418 /*
1419 * Checks whether given mem is same or in the root_mem_cgroup's
1420 * hierarchy subtree
1421 */
1422 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1423 struct mem_cgroup *memcg)
1424 {
1425 if (root_memcg == memcg)
1426 return true;
1427 if (!root_memcg->use_hierarchy || !memcg)
1428 return false;
1429 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1430 }
1431
1432 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1433 struct mem_cgroup *memcg)
1434 {
1435 bool ret;
1436
1437 rcu_read_lock();
1438 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1439 rcu_read_unlock();
1440 return ret;
1441 }
1442
1443 bool task_in_mem_cgroup(struct task_struct *task,
1444 const struct mem_cgroup *memcg)
1445 {
1446 struct mem_cgroup *curr = NULL;
1447 struct task_struct *p;
1448 bool ret;
1449
1450 p = find_lock_task_mm(task);
1451 if (p) {
1452 curr = try_get_mem_cgroup_from_mm(p->mm);
1453 task_unlock(p);
1454 } else {
1455 /*
1456 * All threads may have already detached their mm's, but the oom
1457 * killer still needs to detect if they have already been oom
1458 * killed to prevent needlessly killing additional tasks.
1459 */
1460 rcu_read_lock();
1461 curr = mem_cgroup_from_task(task);
1462 if (curr)
1463 css_get(&curr->css);
1464 rcu_read_unlock();
1465 }
1466 if (!curr)
1467 return false;
1468 /*
1469 * We should check use_hierarchy of "memcg" not "curr". Because checking
1470 * use_hierarchy of "curr" here make this function true if hierarchy is
1471 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1472 * hierarchy(even if use_hierarchy is disabled in "memcg").
1473 */
1474 ret = mem_cgroup_same_or_subtree(memcg, curr);
1475 css_put(&curr->css);
1476 return ret;
1477 }
1478
1479 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1480 {
1481 unsigned long inactive_ratio;
1482 unsigned long inactive;
1483 unsigned long active;
1484 unsigned long gb;
1485
1486 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1487 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1488
1489 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1490 if (gb)
1491 inactive_ratio = int_sqrt(10 * gb);
1492 else
1493 inactive_ratio = 1;
1494
1495 return inactive * inactive_ratio < active;
1496 }
1497
1498 #define mem_cgroup_from_res_counter(counter, member) \
1499 container_of(counter, struct mem_cgroup, member)
1500
1501 /**
1502 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1503 * @memcg: the memory cgroup
1504 *
1505 * Returns the maximum amount of memory @mem can be charged with, in
1506 * pages.
1507 */
1508 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1509 {
1510 unsigned long long margin;
1511
1512 margin = res_counter_margin(&memcg->res);
1513 if (do_swap_account)
1514 margin = min(margin, res_counter_margin(&memcg->memsw));
1515 return margin >> PAGE_SHIFT;
1516 }
1517
1518 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1519 {
1520 /* root ? */
1521 if (!css_parent(&memcg->css))
1522 return vm_swappiness;
1523
1524 return memcg->swappiness;
1525 }
1526
1527 /*
1528 * memcg->moving_account is used for checking possibility that some thread is
1529 * calling move_account(). When a thread on CPU-A starts moving pages under
1530 * a memcg, other threads should check memcg->moving_account under
1531 * rcu_read_lock(), like this:
1532 *
1533 * CPU-A CPU-B
1534 * rcu_read_lock()
1535 * memcg->moving_account+1 if (memcg->mocing_account)
1536 * take heavy locks.
1537 * synchronize_rcu() update something.
1538 * rcu_read_unlock()
1539 * start move here.
1540 */
1541
1542 /* for quick checking without looking up memcg */
1543 atomic_t memcg_moving __read_mostly;
1544
1545 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1546 {
1547 atomic_inc(&memcg_moving);
1548 atomic_inc(&memcg->moving_account);
1549 synchronize_rcu();
1550 }
1551
1552 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1553 {
1554 /*
1555 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1556 * We check NULL in callee rather than caller.
1557 */
1558 if (memcg) {
1559 atomic_dec(&memcg_moving);
1560 atomic_dec(&memcg->moving_account);
1561 }
1562 }
1563
1564 /*
1565 * 2 routines for checking "mem" is under move_account() or not.
1566 *
1567 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1568 * is used for avoiding races in accounting. If true,
1569 * pc->mem_cgroup may be overwritten.
1570 *
1571 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1572 * under hierarchy of moving cgroups. This is for
1573 * waiting at hith-memory prressure caused by "move".
1574 */
1575
1576 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1577 {
1578 VM_BUG_ON(!rcu_read_lock_held());
1579 return atomic_read(&memcg->moving_account) > 0;
1580 }
1581
1582 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *from;
1585 struct mem_cgroup *to;
1586 bool ret = false;
1587 /*
1588 * Unlike task_move routines, we access mc.to, mc.from not under
1589 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1590 */
1591 spin_lock(&mc.lock);
1592 from = mc.from;
1593 to = mc.to;
1594 if (!from)
1595 goto unlock;
1596
1597 ret = mem_cgroup_same_or_subtree(memcg, from)
1598 || mem_cgroup_same_or_subtree(memcg, to);
1599 unlock:
1600 spin_unlock(&mc.lock);
1601 return ret;
1602 }
1603
1604 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1605 {
1606 if (mc.moving_task && current != mc.moving_task) {
1607 if (mem_cgroup_under_move(memcg)) {
1608 DEFINE_WAIT(wait);
1609 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1610 /* moving charge context might have finished. */
1611 if (mc.moving_task)
1612 schedule();
1613 finish_wait(&mc.waitq, &wait);
1614 return true;
1615 }
1616 }
1617 return false;
1618 }
1619
1620 /*
1621 * Take this lock when
1622 * - a code tries to modify page's memcg while it's USED.
1623 * - a code tries to modify page state accounting in a memcg.
1624 * see mem_cgroup_stolen(), too.
1625 */
1626 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1627 unsigned long *flags)
1628 {
1629 spin_lock_irqsave(&memcg->move_lock, *flags);
1630 }
1631
1632 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1633 unsigned long *flags)
1634 {
1635 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1636 }
1637
1638 #define K(x) ((x) << (PAGE_SHIFT-10))
1639 /**
1640 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1641 * @memcg: The memory cgroup that went over limit
1642 * @p: Task that is going to be killed
1643 *
1644 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1645 * enabled
1646 */
1647 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1648 {
1649 struct cgroup *task_cgrp;
1650 struct cgroup *mem_cgrp;
1651 /*
1652 * Need a buffer in BSS, can't rely on allocations. The code relies
1653 * on the assumption that OOM is serialized for memory controller.
1654 * If this assumption is broken, revisit this code.
1655 */
1656 static char memcg_name[PATH_MAX];
1657 int ret;
1658 struct mem_cgroup *iter;
1659 unsigned int i;
1660
1661 if (!p)
1662 return;
1663
1664 rcu_read_lock();
1665
1666 mem_cgrp = memcg->css.cgroup;
1667 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1668
1669 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1670 if (ret < 0) {
1671 /*
1672 * Unfortunately, we are unable to convert to a useful name
1673 * But we'll still print out the usage information
1674 */
1675 rcu_read_unlock();
1676 goto done;
1677 }
1678 rcu_read_unlock();
1679
1680 pr_info("Task in %s killed", memcg_name);
1681
1682 rcu_read_lock();
1683 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1684 if (ret < 0) {
1685 rcu_read_unlock();
1686 goto done;
1687 }
1688 rcu_read_unlock();
1689
1690 /*
1691 * Continues from above, so we don't need an KERN_ level
1692 */
1693 pr_cont(" as a result of limit of %s\n", memcg_name);
1694 done:
1695
1696 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1697 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1700 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1701 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1704 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1705 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1708
1709 for_each_mem_cgroup_tree(iter, memcg) {
1710 pr_info("Memory cgroup stats");
1711
1712 rcu_read_lock();
1713 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1714 if (!ret)
1715 pr_cont(" for %s", memcg_name);
1716 rcu_read_unlock();
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
1732 }
1733
1734 /*
1735 * This function returns the number of memcg under hierarchy tree. Returns
1736 * 1(self count) if no children.
1737 */
1738 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1739 {
1740 int num = 0;
1741 struct mem_cgroup *iter;
1742
1743 for_each_mem_cgroup_tree(iter, memcg)
1744 num++;
1745 return num;
1746 }
1747
1748 /*
1749 * Return the memory (and swap, if configured) limit for a memcg.
1750 */
1751 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1752 {
1753 u64 limit;
1754
1755 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1756
1757 /*
1758 * Do not consider swap space if we cannot swap due to swappiness
1759 */
1760 if (mem_cgroup_swappiness(memcg)) {
1761 u64 memsw;
1762
1763 limit += total_swap_pages << PAGE_SHIFT;
1764 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1765
1766 /*
1767 * If memsw is finite and limits the amount of swap space
1768 * available to this memcg, return that limit.
1769 */
1770 limit = min(limit, memsw);
1771 }
1772
1773 return limit;
1774 }
1775
1776 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1777 int order)
1778 {
1779 struct mem_cgroup *iter;
1780 unsigned long chosen_points = 0;
1781 unsigned long totalpages;
1782 unsigned int points = 0;
1783 struct task_struct *chosen = NULL;
1784
1785 /*
1786 * If current has a pending SIGKILL or is exiting, then automatically
1787 * select it. The goal is to allow it to allocate so that it may
1788 * quickly exit and free its memory.
1789 */
1790 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1791 set_thread_flag(TIF_MEMDIE);
1792 return;
1793 }
1794
1795 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1796 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1797 for_each_mem_cgroup_tree(iter, memcg) {
1798 struct css_task_iter it;
1799 struct task_struct *task;
1800
1801 css_task_iter_start(&iter->css, &it);
1802 while ((task = css_task_iter_next(&it))) {
1803 switch (oom_scan_process_thread(task, totalpages, NULL,
1804 false)) {
1805 case OOM_SCAN_SELECT:
1806 if (chosen)
1807 put_task_struct(chosen);
1808 chosen = task;
1809 chosen_points = ULONG_MAX;
1810 get_task_struct(chosen);
1811 /* fall through */
1812 case OOM_SCAN_CONTINUE:
1813 continue;
1814 case OOM_SCAN_ABORT:
1815 css_task_iter_end(&it);
1816 mem_cgroup_iter_break(memcg, iter);
1817 if (chosen)
1818 put_task_struct(chosen);
1819 return;
1820 case OOM_SCAN_OK:
1821 break;
1822 };
1823 points = oom_badness(task, memcg, NULL, totalpages);
1824 if (points > chosen_points) {
1825 if (chosen)
1826 put_task_struct(chosen);
1827 chosen = task;
1828 chosen_points = points;
1829 get_task_struct(chosen);
1830 }
1831 }
1832 css_task_iter_end(&it);
1833 }
1834
1835 if (!chosen)
1836 return;
1837 points = chosen_points * 1000 / totalpages;
1838 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1839 NULL, "Memory cgroup out of memory");
1840 }
1841
1842 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1843 gfp_t gfp_mask,
1844 unsigned long flags)
1845 {
1846 unsigned long total = 0;
1847 bool noswap = false;
1848 int loop;
1849
1850 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1851 noswap = true;
1852 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1853 noswap = true;
1854
1855 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1856 if (loop)
1857 drain_all_stock_async(memcg);
1858 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1859 /*
1860 * Allow limit shrinkers, which are triggered directly
1861 * by userspace, to catch signals and stop reclaim
1862 * after minimal progress, regardless of the margin.
1863 */
1864 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1865 break;
1866 if (mem_cgroup_margin(memcg))
1867 break;
1868 /*
1869 * If nothing was reclaimed after two attempts, there
1870 * may be no reclaimable pages in this hierarchy.
1871 */
1872 if (loop && !total)
1873 break;
1874 }
1875 return total;
1876 }
1877
1878 /**
1879 * test_mem_cgroup_node_reclaimable
1880 * @memcg: the target memcg
1881 * @nid: the node ID to be checked.
1882 * @noswap : specify true here if the user wants flle only information.
1883 *
1884 * This function returns whether the specified memcg contains any
1885 * reclaimable pages on a node. Returns true if there are any reclaimable
1886 * pages in the node.
1887 */
1888 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1889 int nid, bool noswap)
1890 {
1891 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1892 return true;
1893 if (noswap || !total_swap_pages)
1894 return false;
1895 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1896 return true;
1897 return false;
1898
1899 }
1900 #if MAX_NUMNODES > 1
1901
1902 /*
1903 * Always updating the nodemask is not very good - even if we have an empty
1904 * list or the wrong list here, we can start from some node and traverse all
1905 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1906 *
1907 */
1908 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1909 {
1910 int nid;
1911 /*
1912 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1913 * pagein/pageout changes since the last update.
1914 */
1915 if (!atomic_read(&memcg->numainfo_events))
1916 return;
1917 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1918 return;
1919
1920 /* make a nodemask where this memcg uses memory from */
1921 memcg->scan_nodes = node_states[N_MEMORY];
1922
1923 for_each_node_mask(nid, node_states[N_MEMORY]) {
1924
1925 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1926 node_clear(nid, memcg->scan_nodes);
1927 }
1928
1929 atomic_set(&memcg->numainfo_events, 0);
1930 atomic_set(&memcg->numainfo_updating, 0);
1931 }
1932
1933 /*
1934 * Selecting a node where we start reclaim from. Because what we need is just
1935 * reducing usage counter, start from anywhere is O,K. Considering
1936 * memory reclaim from current node, there are pros. and cons.
1937 *
1938 * Freeing memory from current node means freeing memory from a node which
1939 * we'll use or we've used. So, it may make LRU bad. And if several threads
1940 * hit limits, it will see a contention on a node. But freeing from remote
1941 * node means more costs for memory reclaim because of memory latency.
1942 *
1943 * Now, we use round-robin. Better algorithm is welcomed.
1944 */
1945 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1946 {
1947 int node;
1948
1949 mem_cgroup_may_update_nodemask(memcg);
1950 node = memcg->last_scanned_node;
1951
1952 node = next_node(node, memcg->scan_nodes);
1953 if (node == MAX_NUMNODES)
1954 node = first_node(memcg->scan_nodes);
1955 /*
1956 * We call this when we hit limit, not when pages are added to LRU.
1957 * No LRU may hold pages because all pages are UNEVICTABLE or
1958 * memcg is too small and all pages are not on LRU. In that case,
1959 * we use curret node.
1960 */
1961 if (unlikely(node == MAX_NUMNODES))
1962 node = numa_node_id();
1963
1964 memcg->last_scanned_node = node;
1965 return node;
1966 }
1967
1968 /*
1969 * Check all nodes whether it contains reclaimable pages or not.
1970 * For quick scan, we make use of scan_nodes. This will allow us to skip
1971 * unused nodes. But scan_nodes is lazily updated and may not cotain
1972 * enough new information. We need to do double check.
1973 */
1974 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1975 {
1976 int nid;
1977
1978 /*
1979 * quick check...making use of scan_node.
1980 * We can skip unused nodes.
1981 */
1982 if (!nodes_empty(memcg->scan_nodes)) {
1983 for (nid = first_node(memcg->scan_nodes);
1984 nid < MAX_NUMNODES;
1985 nid = next_node(nid, memcg->scan_nodes)) {
1986
1987 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1988 return true;
1989 }
1990 }
1991 /*
1992 * Check rest of nodes.
1993 */
1994 for_each_node_state(nid, N_MEMORY) {
1995 if (node_isset(nid, memcg->scan_nodes))
1996 continue;
1997 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1998 return true;
1999 }
2000 return false;
2001 }
2002
2003 #else
2004 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2005 {
2006 return 0;
2007 }
2008
2009 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2010 {
2011 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2012 }
2013 #endif
2014
2015 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2016 struct zone *zone,
2017 gfp_t gfp_mask,
2018 unsigned long *total_scanned)
2019 {
2020 struct mem_cgroup *victim = NULL;
2021 int total = 0;
2022 int loop = 0;
2023 unsigned long excess;
2024 unsigned long nr_scanned;
2025 struct mem_cgroup_reclaim_cookie reclaim = {
2026 .zone = zone,
2027 .priority = 0,
2028 };
2029
2030 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2031
2032 while (1) {
2033 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2034 if (!victim) {
2035 loop++;
2036 if (loop >= 2) {
2037 /*
2038 * If we have not been able to reclaim
2039 * anything, it might because there are
2040 * no reclaimable pages under this hierarchy
2041 */
2042 if (!total)
2043 break;
2044 /*
2045 * We want to do more targeted reclaim.
2046 * excess >> 2 is not to excessive so as to
2047 * reclaim too much, nor too less that we keep
2048 * coming back to reclaim from this cgroup
2049 */
2050 if (total >= (excess >> 2) ||
2051 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2052 break;
2053 }
2054 continue;
2055 }
2056 if (!mem_cgroup_reclaimable(victim, false))
2057 continue;
2058 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2059 zone, &nr_scanned);
2060 *total_scanned += nr_scanned;
2061 if (!res_counter_soft_limit_excess(&root_memcg->res))
2062 break;
2063 }
2064 mem_cgroup_iter_break(root_memcg, victim);
2065 return total;
2066 }
2067
2068 #ifdef CONFIG_LOCKDEP
2069 static struct lockdep_map memcg_oom_lock_dep_map = {
2070 .name = "memcg_oom_lock",
2071 };
2072 #endif
2073
2074 static DEFINE_SPINLOCK(memcg_oom_lock);
2075
2076 /*
2077 * Check OOM-Killer is already running under our hierarchy.
2078 * If someone is running, return false.
2079 */
2080 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2081 {
2082 struct mem_cgroup *iter, *failed = NULL;
2083
2084 spin_lock(&memcg_oom_lock);
2085
2086 for_each_mem_cgroup_tree(iter, memcg) {
2087 if (iter->oom_lock) {
2088 /*
2089 * this subtree of our hierarchy is already locked
2090 * so we cannot give a lock.
2091 */
2092 failed = iter;
2093 mem_cgroup_iter_break(memcg, iter);
2094 break;
2095 } else
2096 iter->oom_lock = true;
2097 }
2098
2099 if (failed) {
2100 /*
2101 * OK, we failed to lock the whole subtree so we have
2102 * to clean up what we set up to the failing subtree
2103 */
2104 for_each_mem_cgroup_tree(iter, memcg) {
2105 if (iter == failed) {
2106 mem_cgroup_iter_break(memcg, iter);
2107 break;
2108 }
2109 iter->oom_lock = false;
2110 }
2111 } else
2112 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2113
2114 spin_unlock(&memcg_oom_lock);
2115
2116 return !failed;
2117 }
2118
2119 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2120 {
2121 struct mem_cgroup *iter;
2122
2123 spin_lock(&memcg_oom_lock);
2124 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2125 for_each_mem_cgroup_tree(iter, memcg)
2126 iter->oom_lock = false;
2127 spin_unlock(&memcg_oom_lock);
2128 }
2129
2130 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2131 {
2132 struct mem_cgroup *iter;
2133
2134 for_each_mem_cgroup_tree(iter, memcg)
2135 atomic_inc(&iter->under_oom);
2136 }
2137
2138 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2139 {
2140 struct mem_cgroup *iter;
2141
2142 /*
2143 * When a new child is created while the hierarchy is under oom,
2144 * mem_cgroup_oom_lock() may not be called. We have to use
2145 * atomic_add_unless() here.
2146 */
2147 for_each_mem_cgroup_tree(iter, memcg)
2148 atomic_add_unless(&iter->under_oom, -1, 0);
2149 }
2150
2151 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2152
2153 struct oom_wait_info {
2154 struct mem_cgroup *memcg;
2155 wait_queue_t wait;
2156 };
2157
2158 static int memcg_oom_wake_function(wait_queue_t *wait,
2159 unsigned mode, int sync, void *arg)
2160 {
2161 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2162 struct mem_cgroup *oom_wait_memcg;
2163 struct oom_wait_info *oom_wait_info;
2164
2165 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2166 oom_wait_memcg = oom_wait_info->memcg;
2167
2168 /*
2169 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2170 * Then we can use css_is_ancestor without taking care of RCU.
2171 */
2172 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2173 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2174 return 0;
2175 return autoremove_wake_function(wait, mode, sync, arg);
2176 }
2177
2178 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2179 {
2180 atomic_inc(&memcg->oom_wakeups);
2181 /* for filtering, pass "memcg" as argument. */
2182 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2183 }
2184
2185 static void memcg_oom_recover(struct mem_cgroup *memcg)
2186 {
2187 if (memcg && atomic_read(&memcg->under_oom))
2188 memcg_wakeup_oom(memcg);
2189 }
2190
2191 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2192 {
2193 if (!current->memcg_oom.may_oom)
2194 return;
2195 /*
2196 * We are in the middle of the charge context here, so we
2197 * don't want to block when potentially sitting on a callstack
2198 * that holds all kinds of filesystem and mm locks.
2199 *
2200 * Also, the caller may handle a failed allocation gracefully
2201 * (like optional page cache readahead) and so an OOM killer
2202 * invocation might not even be necessary.
2203 *
2204 * That's why we don't do anything here except remember the
2205 * OOM context and then deal with it at the end of the page
2206 * fault when the stack is unwound, the locks are released,
2207 * and when we know whether the fault was overall successful.
2208 */
2209 css_get(&memcg->css);
2210 current->memcg_oom.memcg = memcg;
2211 current->memcg_oom.gfp_mask = mask;
2212 current->memcg_oom.order = order;
2213 }
2214
2215 /**
2216 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2217 * @handle: actually kill/wait or just clean up the OOM state
2218 *
2219 * This has to be called at the end of a page fault if the memcg OOM
2220 * handler was enabled.
2221 *
2222 * Memcg supports userspace OOM handling where failed allocations must
2223 * sleep on a waitqueue until the userspace task resolves the
2224 * situation. Sleeping directly in the charge context with all kinds
2225 * of locks held is not a good idea, instead we remember an OOM state
2226 * in the task and mem_cgroup_oom_synchronize() has to be called at
2227 * the end of the page fault to complete the OOM handling.
2228 *
2229 * Returns %true if an ongoing memcg OOM situation was detected and
2230 * completed, %false otherwise.
2231 */
2232 bool mem_cgroup_oom_synchronize(bool handle)
2233 {
2234 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2235 struct oom_wait_info owait;
2236 bool locked;
2237
2238 /* OOM is global, do not handle */
2239 if (!memcg)
2240 return false;
2241
2242 if (!handle)
2243 goto cleanup;
2244
2245 owait.memcg = memcg;
2246 owait.wait.flags = 0;
2247 owait.wait.func = memcg_oom_wake_function;
2248 owait.wait.private = current;
2249 INIT_LIST_HEAD(&owait.wait.task_list);
2250
2251 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2252 mem_cgroup_mark_under_oom(memcg);
2253
2254 locked = mem_cgroup_oom_trylock(memcg);
2255
2256 if (locked)
2257 mem_cgroup_oom_notify(memcg);
2258
2259 if (locked && !memcg->oom_kill_disable) {
2260 mem_cgroup_unmark_under_oom(memcg);
2261 finish_wait(&memcg_oom_waitq, &owait.wait);
2262 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2263 current->memcg_oom.order);
2264 } else {
2265 schedule();
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 }
2269
2270 if (locked) {
2271 mem_cgroup_oom_unlock(memcg);
2272 /*
2273 * There is no guarantee that an OOM-lock contender
2274 * sees the wakeups triggered by the OOM kill
2275 * uncharges. Wake any sleepers explicitely.
2276 */
2277 memcg_oom_recover(memcg);
2278 }
2279 cleanup:
2280 current->memcg_oom.memcg = NULL;
2281 css_put(&memcg->css);
2282 return true;
2283 }
2284
2285 /*
2286 * Currently used to update mapped file statistics, but the routine can be
2287 * generalized to update other statistics as well.
2288 *
2289 * Notes: Race condition
2290 *
2291 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2292 * it tends to be costly. But considering some conditions, we doesn't need
2293 * to do so _always_.
2294 *
2295 * Considering "charge", lock_page_cgroup() is not required because all
2296 * file-stat operations happen after a page is attached to radix-tree. There
2297 * are no race with "charge".
2298 *
2299 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2300 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2301 * if there are race with "uncharge". Statistics itself is properly handled
2302 * by flags.
2303 *
2304 * Considering "move", this is an only case we see a race. To make the race
2305 * small, we check mm->moving_account and detect there are possibility of race
2306 * If there is, we take a lock.
2307 */
2308
2309 void __mem_cgroup_begin_update_page_stat(struct page *page,
2310 bool *locked, unsigned long *flags)
2311 {
2312 struct mem_cgroup *memcg;
2313 struct page_cgroup *pc;
2314
2315 pc = lookup_page_cgroup(page);
2316 again:
2317 memcg = pc->mem_cgroup;
2318 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2319 return;
2320 /*
2321 * If this memory cgroup is not under account moving, we don't
2322 * need to take move_lock_mem_cgroup(). Because we already hold
2323 * rcu_read_lock(), any calls to move_account will be delayed until
2324 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2325 */
2326 if (!mem_cgroup_stolen(memcg))
2327 return;
2328
2329 move_lock_mem_cgroup(memcg, flags);
2330 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2331 move_unlock_mem_cgroup(memcg, flags);
2332 goto again;
2333 }
2334 *locked = true;
2335 }
2336
2337 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2338 {
2339 struct page_cgroup *pc = lookup_page_cgroup(page);
2340
2341 /*
2342 * It's guaranteed that pc->mem_cgroup never changes while
2343 * lock is held because a routine modifies pc->mem_cgroup
2344 * should take move_lock_mem_cgroup().
2345 */
2346 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2347 }
2348
2349 void mem_cgroup_update_page_stat(struct page *page,
2350 enum mem_cgroup_stat_index idx, int val)
2351 {
2352 struct mem_cgroup *memcg;
2353 struct page_cgroup *pc = lookup_page_cgroup(page);
2354 unsigned long uninitialized_var(flags);
2355
2356 if (mem_cgroup_disabled())
2357 return;
2358
2359 VM_BUG_ON(!rcu_read_lock_held());
2360 memcg = pc->mem_cgroup;
2361 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2362 return;
2363
2364 this_cpu_add(memcg->stat->count[idx], val);
2365 }
2366
2367 /*
2368 * size of first charge trial. "32" comes from vmscan.c's magic value.
2369 * TODO: maybe necessary to use big numbers in big irons.
2370 */
2371 #define CHARGE_BATCH 32U
2372 struct memcg_stock_pcp {
2373 struct mem_cgroup *cached; /* this never be root cgroup */
2374 unsigned int nr_pages;
2375 struct work_struct work;
2376 unsigned long flags;
2377 #define FLUSHING_CACHED_CHARGE 0
2378 };
2379 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2380 static DEFINE_MUTEX(percpu_charge_mutex);
2381
2382 /**
2383 * consume_stock: Try to consume stocked charge on this cpu.
2384 * @memcg: memcg to consume from.
2385 * @nr_pages: how many pages to charge.
2386 *
2387 * The charges will only happen if @memcg matches the current cpu's memcg
2388 * stock, and at least @nr_pages are available in that stock. Failure to
2389 * service an allocation will refill the stock.
2390 *
2391 * returns true if successful, false otherwise.
2392 */
2393 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2394 {
2395 struct memcg_stock_pcp *stock;
2396 bool ret = true;
2397
2398 if (nr_pages > CHARGE_BATCH)
2399 return false;
2400
2401 stock = &get_cpu_var(memcg_stock);
2402 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2403 stock->nr_pages -= nr_pages;
2404 else /* need to call res_counter_charge */
2405 ret = false;
2406 put_cpu_var(memcg_stock);
2407 return ret;
2408 }
2409
2410 /*
2411 * Returns stocks cached in percpu to res_counter and reset cached information.
2412 */
2413 static void drain_stock(struct memcg_stock_pcp *stock)
2414 {
2415 struct mem_cgroup *old = stock->cached;
2416
2417 if (stock->nr_pages) {
2418 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2419
2420 res_counter_uncharge(&old->res, bytes);
2421 if (do_swap_account)
2422 res_counter_uncharge(&old->memsw, bytes);
2423 stock->nr_pages = 0;
2424 }
2425 stock->cached = NULL;
2426 }
2427
2428 /*
2429 * This must be called under preempt disabled or must be called by
2430 * a thread which is pinned to local cpu.
2431 */
2432 static void drain_local_stock(struct work_struct *dummy)
2433 {
2434 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2435 drain_stock(stock);
2436 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2437 }
2438
2439 static void __init memcg_stock_init(void)
2440 {
2441 int cpu;
2442
2443 for_each_possible_cpu(cpu) {
2444 struct memcg_stock_pcp *stock =
2445 &per_cpu(memcg_stock, cpu);
2446 INIT_WORK(&stock->work, drain_local_stock);
2447 }
2448 }
2449
2450 /*
2451 * Cache charges(val) which is from res_counter, to local per_cpu area.
2452 * This will be consumed by consume_stock() function, later.
2453 */
2454 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2455 {
2456 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2457
2458 if (stock->cached != memcg) { /* reset if necessary */
2459 drain_stock(stock);
2460 stock->cached = memcg;
2461 }
2462 stock->nr_pages += nr_pages;
2463 put_cpu_var(memcg_stock);
2464 }
2465
2466 /*
2467 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2468 * of the hierarchy under it. sync flag says whether we should block
2469 * until the work is done.
2470 */
2471 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2472 {
2473 int cpu, curcpu;
2474
2475 /* Notify other cpus that system-wide "drain" is running */
2476 get_online_cpus();
2477 curcpu = get_cpu();
2478 for_each_online_cpu(cpu) {
2479 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2480 struct mem_cgroup *memcg;
2481
2482 memcg = stock->cached;
2483 if (!memcg || !stock->nr_pages)
2484 continue;
2485 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2486 continue;
2487 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2488 if (cpu == curcpu)
2489 drain_local_stock(&stock->work);
2490 else
2491 schedule_work_on(cpu, &stock->work);
2492 }
2493 }
2494 put_cpu();
2495
2496 if (!sync)
2497 goto out;
2498
2499 for_each_online_cpu(cpu) {
2500 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2501 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2502 flush_work(&stock->work);
2503 }
2504 out:
2505 put_online_cpus();
2506 }
2507
2508 /*
2509 * Tries to drain stocked charges in other cpus. This function is asynchronous
2510 * and just put a work per cpu for draining localy on each cpu. Caller can
2511 * expects some charges will be back to res_counter later but cannot wait for
2512 * it.
2513 */
2514 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2515 {
2516 /*
2517 * If someone calls draining, avoid adding more kworker runs.
2518 */
2519 if (!mutex_trylock(&percpu_charge_mutex))
2520 return;
2521 drain_all_stock(root_memcg, false);
2522 mutex_unlock(&percpu_charge_mutex);
2523 }
2524
2525 /* This is a synchronous drain interface. */
2526 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2527 {
2528 /* called when force_empty is called */
2529 mutex_lock(&percpu_charge_mutex);
2530 drain_all_stock(root_memcg, true);
2531 mutex_unlock(&percpu_charge_mutex);
2532 }
2533
2534 /*
2535 * This function drains percpu counter value from DEAD cpu and
2536 * move it to local cpu. Note that this function can be preempted.
2537 */
2538 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2539 {
2540 int i;
2541
2542 spin_lock(&memcg->pcp_counter_lock);
2543 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2544 long x = per_cpu(memcg->stat->count[i], cpu);
2545
2546 per_cpu(memcg->stat->count[i], cpu) = 0;
2547 memcg->nocpu_base.count[i] += x;
2548 }
2549 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2550 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2551
2552 per_cpu(memcg->stat->events[i], cpu) = 0;
2553 memcg->nocpu_base.events[i] += x;
2554 }
2555 spin_unlock(&memcg->pcp_counter_lock);
2556 }
2557
2558 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2559 unsigned long action,
2560 void *hcpu)
2561 {
2562 int cpu = (unsigned long)hcpu;
2563 struct memcg_stock_pcp *stock;
2564 struct mem_cgroup *iter;
2565
2566 if (action == CPU_ONLINE)
2567 return NOTIFY_OK;
2568
2569 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2570 return NOTIFY_OK;
2571
2572 for_each_mem_cgroup(iter)
2573 mem_cgroup_drain_pcp_counter(iter, cpu);
2574
2575 stock = &per_cpu(memcg_stock, cpu);
2576 drain_stock(stock);
2577 return NOTIFY_OK;
2578 }
2579
2580
2581 /* See __mem_cgroup_try_charge() for details */
2582 enum {
2583 CHARGE_OK, /* success */
2584 CHARGE_RETRY, /* need to retry but retry is not bad */
2585 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2586 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2587 };
2588
2589 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2590 unsigned int nr_pages, unsigned int min_pages,
2591 bool invoke_oom)
2592 {
2593 unsigned long csize = nr_pages * PAGE_SIZE;
2594 struct mem_cgroup *mem_over_limit;
2595 struct res_counter *fail_res;
2596 unsigned long flags = 0;
2597 int ret;
2598
2599 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2600
2601 if (likely(!ret)) {
2602 if (!do_swap_account)
2603 return CHARGE_OK;
2604 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2605 if (likely(!ret))
2606 return CHARGE_OK;
2607
2608 res_counter_uncharge(&memcg->res, csize);
2609 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2610 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2611 } else
2612 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2613 /*
2614 * Never reclaim on behalf of optional batching, retry with a
2615 * single page instead.
2616 */
2617 if (nr_pages > min_pages)
2618 return CHARGE_RETRY;
2619
2620 if (!(gfp_mask & __GFP_WAIT))
2621 return CHARGE_WOULDBLOCK;
2622
2623 if (gfp_mask & __GFP_NORETRY)
2624 return CHARGE_NOMEM;
2625
2626 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2627 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2628 return CHARGE_RETRY;
2629 /*
2630 * Even though the limit is exceeded at this point, reclaim
2631 * may have been able to free some pages. Retry the charge
2632 * before killing the task.
2633 *
2634 * Only for regular pages, though: huge pages are rather
2635 * unlikely to succeed so close to the limit, and we fall back
2636 * to regular pages anyway in case of failure.
2637 */
2638 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2639 return CHARGE_RETRY;
2640
2641 /*
2642 * At task move, charge accounts can be doubly counted. So, it's
2643 * better to wait until the end of task_move if something is going on.
2644 */
2645 if (mem_cgroup_wait_acct_move(mem_over_limit))
2646 return CHARGE_RETRY;
2647
2648 if (invoke_oom)
2649 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2650
2651 return CHARGE_NOMEM;
2652 }
2653
2654 /*
2655 * __mem_cgroup_try_charge() does
2656 * 1. detect memcg to be charged against from passed *mm and *ptr,
2657 * 2. update res_counter
2658 * 3. call memory reclaim if necessary.
2659 *
2660 * In some special case, if the task is fatal, fatal_signal_pending() or
2661 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2662 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2663 * as possible without any hazards. 2: all pages should have a valid
2664 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2665 * pointer, that is treated as a charge to root_mem_cgroup.
2666 *
2667 * So __mem_cgroup_try_charge() will return
2668 * 0 ... on success, filling *ptr with a valid memcg pointer.
2669 * -ENOMEM ... charge failure because of resource limits.
2670 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2671 *
2672 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2673 * the oom-killer can be invoked.
2674 */
2675 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2676 gfp_t gfp_mask,
2677 unsigned int nr_pages,
2678 struct mem_cgroup **ptr,
2679 bool oom)
2680 {
2681 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2682 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2683 struct mem_cgroup *memcg = NULL;
2684 int ret;
2685
2686 /*
2687 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2688 * in system level. So, allow to go ahead dying process in addition to
2689 * MEMDIE process.
2690 */
2691 if (unlikely(test_thread_flag(TIF_MEMDIE)
2692 || fatal_signal_pending(current)))
2693 goto bypass;
2694
2695 if (unlikely(task_in_memcg_oom(current)))
2696 goto bypass;
2697
2698 /*
2699 * We always charge the cgroup the mm_struct belongs to.
2700 * The mm_struct's mem_cgroup changes on task migration if the
2701 * thread group leader migrates. It's possible that mm is not
2702 * set, if so charge the root memcg (happens for pagecache usage).
2703 */
2704 if (!*ptr && !mm)
2705 *ptr = root_mem_cgroup;
2706 again:
2707 if (*ptr) { /* css should be a valid one */
2708 memcg = *ptr;
2709 if (mem_cgroup_is_root(memcg))
2710 goto done;
2711 if (consume_stock(memcg, nr_pages))
2712 goto done;
2713 css_get(&memcg->css);
2714 } else {
2715 struct task_struct *p;
2716
2717 rcu_read_lock();
2718 p = rcu_dereference(mm->owner);
2719 /*
2720 * Because we don't have task_lock(), "p" can exit.
2721 * In that case, "memcg" can point to root or p can be NULL with
2722 * race with swapoff. Then, we have small risk of mis-accouning.
2723 * But such kind of mis-account by race always happens because
2724 * we don't have cgroup_mutex(). It's overkill and we allo that
2725 * small race, here.
2726 * (*) swapoff at el will charge against mm-struct not against
2727 * task-struct. So, mm->owner can be NULL.
2728 */
2729 memcg = mem_cgroup_from_task(p);
2730 if (!memcg)
2731 memcg = root_mem_cgroup;
2732 if (mem_cgroup_is_root(memcg)) {
2733 rcu_read_unlock();
2734 goto done;
2735 }
2736 if (consume_stock(memcg, nr_pages)) {
2737 /*
2738 * It seems dagerous to access memcg without css_get().
2739 * But considering how consume_stok works, it's not
2740 * necessary. If consume_stock success, some charges
2741 * from this memcg are cached on this cpu. So, we
2742 * don't need to call css_get()/css_tryget() before
2743 * calling consume_stock().
2744 */
2745 rcu_read_unlock();
2746 goto done;
2747 }
2748 /* after here, we may be blocked. we need to get refcnt */
2749 if (!css_tryget(&memcg->css)) {
2750 rcu_read_unlock();
2751 goto again;
2752 }
2753 rcu_read_unlock();
2754 }
2755
2756 do {
2757 bool invoke_oom = oom && !nr_oom_retries;
2758
2759 /* If killed, bypass charge */
2760 if (fatal_signal_pending(current)) {
2761 css_put(&memcg->css);
2762 goto bypass;
2763 }
2764
2765 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2766 nr_pages, invoke_oom);
2767 switch (ret) {
2768 case CHARGE_OK:
2769 break;
2770 case CHARGE_RETRY: /* not in OOM situation but retry */
2771 batch = nr_pages;
2772 css_put(&memcg->css);
2773 memcg = NULL;
2774 goto again;
2775 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2776 css_put(&memcg->css);
2777 goto nomem;
2778 case CHARGE_NOMEM: /* OOM routine works */
2779 if (!oom || invoke_oom) {
2780 css_put(&memcg->css);
2781 goto nomem;
2782 }
2783 nr_oom_retries--;
2784 break;
2785 }
2786 } while (ret != CHARGE_OK);
2787
2788 if (batch > nr_pages)
2789 refill_stock(memcg, batch - nr_pages);
2790 css_put(&memcg->css);
2791 done:
2792 *ptr = memcg;
2793 return 0;
2794 nomem:
2795 if (!(gfp_mask & __GFP_NOFAIL)) {
2796 *ptr = NULL;
2797 return -ENOMEM;
2798 }
2799 bypass:
2800 *ptr = root_mem_cgroup;
2801 return -EINTR;
2802 }
2803
2804 /*
2805 * Somemtimes we have to undo a charge we got by try_charge().
2806 * This function is for that and do uncharge, put css's refcnt.
2807 * gotten by try_charge().
2808 */
2809 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2810 unsigned int nr_pages)
2811 {
2812 if (!mem_cgroup_is_root(memcg)) {
2813 unsigned long bytes = nr_pages * PAGE_SIZE;
2814
2815 res_counter_uncharge(&memcg->res, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge(&memcg->memsw, bytes);
2818 }
2819 }
2820
2821 /*
2822 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2823 * This is useful when moving usage to parent cgroup.
2824 */
2825 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2826 unsigned int nr_pages)
2827 {
2828 unsigned long bytes = nr_pages * PAGE_SIZE;
2829
2830 if (mem_cgroup_is_root(memcg))
2831 return;
2832
2833 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2834 if (do_swap_account)
2835 res_counter_uncharge_until(&memcg->memsw,
2836 memcg->memsw.parent, bytes);
2837 }
2838
2839 /*
2840 * A helper function to get mem_cgroup from ID. must be called under
2841 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2842 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2843 * called against removed memcg.)
2844 */
2845 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2846 {
2847 /* ID 0 is unused ID */
2848 if (!id)
2849 return NULL;
2850 return mem_cgroup_from_id(id);
2851 }
2852
2853 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2854 {
2855 struct mem_cgroup *memcg = NULL;
2856 struct page_cgroup *pc;
2857 unsigned short id;
2858 swp_entry_t ent;
2859
2860 VM_BUG_ON(!PageLocked(page));
2861
2862 pc = lookup_page_cgroup(page);
2863 lock_page_cgroup(pc);
2864 if (PageCgroupUsed(pc)) {
2865 memcg = pc->mem_cgroup;
2866 if (memcg && !css_tryget(&memcg->css))
2867 memcg = NULL;
2868 } else if (PageSwapCache(page)) {
2869 ent.val = page_private(page);
2870 id = lookup_swap_cgroup_id(ent);
2871 rcu_read_lock();
2872 memcg = mem_cgroup_lookup(id);
2873 if (memcg && !css_tryget(&memcg->css))
2874 memcg = NULL;
2875 rcu_read_unlock();
2876 }
2877 unlock_page_cgroup(pc);
2878 return memcg;
2879 }
2880
2881 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2882 struct page *page,
2883 unsigned int nr_pages,
2884 enum charge_type ctype,
2885 bool lrucare)
2886 {
2887 struct page_cgroup *pc = lookup_page_cgroup(page);
2888 struct zone *uninitialized_var(zone);
2889 struct lruvec *lruvec;
2890 bool was_on_lru = false;
2891 bool anon;
2892
2893 lock_page_cgroup(pc);
2894 VM_BUG_ON(PageCgroupUsed(pc));
2895 /*
2896 * we don't need page_cgroup_lock about tail pages, becase they are not
2897 * accessed by any other context at this point.
2898 */
2899
2900 /*
2901 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2902 * may already be on some other mem_cgroup's LRU. Take care of it.
2903 */
2904 if (lrucare) {
2905 zone = page_zone(page);
2906 spin_lock_irq(&zone->lru_lock);
2907 if (PageLRU(page)) {
2908 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2909 ClearPageLRU(page);
2910 del_page_from_lru_list(page, lruvec, page_lru(page));
2911 was_on_lru = true;
2912 }
2913 }
2914
2915 pc->mem_cgroup = memcg;
2916 /*
2917 * We access a page_cgroup asynchronously without lock_page_cgroup().
2918 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2919 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2920 * before USED bit, we need memory barrier here.
2921 * See mem_cgroup_add_lru_list(), etc.
2922 */
2923 smp_wmb();
2924 SetPageCgroupUsed(pc);
2925
2926 if (lrucare) {
2927 if (was_on_lru) {
2928 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2929 VM_BUG_ON(PageLRU(page));
2930 SetPageLRU(page);
2931 add_page_to_lru_list(page, lruvec, page_lru(page));
2932 }
2933 spin_unlock_irq(&zone->lru_lock);
2934 }
2935
2936 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2937 anon = true;
2938 else
2939 anon = false;
2940
2941 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2942 unlock_page_cgroup(pc);
2943
2944 /*
2945 * "charge_statistics" updated event counter. Then, check it.
2946 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2947 * if they exceeds softlimit.
2948 */
2949 memcg_check_events(memcg, page);
2950 }
2951
2952 static DEFINE_MUTEX(set_limit_mutex);
2953
2954 #ifdef CONFIG_MEMCG_KMEM
2955 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2956 {
2957 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2958 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2959 }
2960
2961 /*
2962 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2963 * in the memcg_cache_params struct.
2964 */
2965 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2966 {
2967 struct kmem_cache *cachep;
2968
2969 VM_BUG_ON(p->is_root_cache);
2970 cachep = p->root_cache;
2971 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2972 }
2973
2974 #ifdef CONFIG_SLABINFO
2975 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2976 struct cftype *cft, struct seq_file *m)
2977 {
2978 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2979 struct memcg_cache_params *params;
2980
2981 if (!memcg_can_account_kmem(memcg))
2982 return -EIO;
2983
2984 print_slabinfo_header(m);
2985
2986 mutex_lock(&memcg->slab_caches_mutex);
2987 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2988 cache_show(memcg_params_to_cache(params), m);
2989 mutex_unlock(&memcg->slab_caches_mutex);
2990
2991 return 0;
2992 }
2993 #endif
2994
2995 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2996 {
2997 struct res_counter *fail_res;
2998 struct mem_cgroup *_memcg;
2999 int ret = 0;
3000 bool may_oom;
3001
3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 if (ret)
3004 return ret;
3005
3006 /*
3007 * Conditions under which we can wait for the oom_killer. Those are
3008 * the same conditions tested by the core page allocator
3009 */
3010 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3011
3012 _memcg = memcg;
3013 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3014 &_memcg, may_oom);
3015
3016 if (ret == -EINTR) {
3017 /*
3018 * __mem_cgroup_try_charge() chosed to bypass to root due to
3019 * OOM kill or fatal signal. Since our only options are to
3020 * either fail the allocation or charge it to this cgroup, do
3021 * it as a temporary condition. But we can't fail. From a
3022 * kmem/slab perspective, the cache has already been selected,
3023 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3024 * our minds.
3025 *
3026 * This condition will only trigger if the task entered
3027 * memcg_charge_kmem in a sane state, but was OOM-killed during
3028 * __mem_cgroup_try_charge() above. Tasks that were already
3029 * dying when the allocation triggers should have been already
3030 * directed to the root cgroup in memcontrol.h
3031 */
3032 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3033 if (do_swap_account)
3034 res_counter_charge_nofail(&memcg->memsw, size,
3035 &fail_res);
3036 ret = 0;
3037 } else if (ret)
3038 res_counter_uncharge(&memcg->kmem, size);
3039
3040 return ret;
3041 }
3042
3043 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3044 {
3045 res_counter_uncharge(&memcg->res, size);
3046 if (do_swap_account)
3047 res_counter_uncharge(&memcg->memsw, size);
3048
3049 /* Not down to 0 */
3050 if (res_counter_uncharge(&memcg->kmem, size))
3051 return;
3052
3053 /*
3054 * Releases a reference taken in kmem_cgroup_css_offline in case
3055 * this last uncharge is racing with the offlining code or it is
3056 * outliving the memcg existence.
3057 *
3058 * The memory barrier imposed by test&clear is paired with the
3059 * explicit one in memcg_kmem_mark_dead().
3060 */
3061 if (memcg_kmem_test_and_clear_dead(memcg))
3062 css_put(&memcg->css);
3063 }
3064
3065 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3066 {
3067 if (!memcg)
3068 return;
3069
3070 mutex_lock(&memcg->slab_caches_mutex);
3071 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3072 mutex_unlock(&memcg->slab_caches_mutex);
3073 }
3074
3075 /*
3076 * helper for acessing a memcg's index. It will be used as an index in the
3077 * child cache array in kmem_cache, and also to derive its name. This function
3078 * will return -1 when this is not a kmem-limited memcg.
3079 */
3080 int memcg_cache_id(struct mem_cgroup *memcg)
3081 {
3082 return memcg ? memcg->kmemcg_id : -1;
3083 }
3084
3085 /*
3086 * This ends up being protected by the set_limit mutex, during normal
3087 * operation, because that is its main call site.
3088 *
3089 * But when we create a new cache, we can call this as well if its parent
3090 * is kmem-limited. That will have to hold set_limit_mutex as well.
3091 */
3092 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3093 {
3094 int num, ret;
3095
3096 num = ida_simple_get(&kmem_limited_groups,
3097 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3098 if (num < 0)
3099 return num;
3100 /*
3101 * After this point, kmem_accounted (that we test atomically in
3102 * the beginning of this conditional), is no longer 0. This
3103 * guarantees only one process will set the following boolean
3104 * to true. We don't need test_and_set because we're protected
3105 * by the set_limit_mutex anyway.
3106 */
3107 memcg_kmem_set_activated(memcg);
3108
3109 ret = memcg_update_all_caches(num+1);
3110 if (ret) {
3111 ida_simple_remove(&kmem_limited_groups, num);
3112 memcg_kmem_clear_activated(memcg);
3113 return ret;
3114 }
3115
3116 memcg->kmemcg_id = num;
3117 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3118 mutex_init(&memcg->slab_caches_mutex);
3119 return 0;
3120 }
3121
3122 static size_t memcg_caches_array_size(int num_groups)
3123 {
3124 ssize_t size;
3125 if (num_groups <= 0)
3126 return 0;
3127
3128 size = 2 * num_groups;
3129 if (size < MEMCG_CACHES_MIN_SIZE)
3130 size = MEMCG_CACHES_MIN_SIZE;
3131 else if (size > MEMCG_CACHES_MAX_SIZE)
3132 size = MEMCG_CACHES_MAX_SIZE;
3133
3134 return size;
3135 }
3136
3137 /*
3138 * We should update the current array size iff all caches updates succeed. This
3139 * can only be done from the slab side. The slab mutex needs to be held when
3140 * calling this.
3141 */
3142 void memcg_update_array_size(int num)
3143 {
3144 if (num > memcg_limited_groups_array_size)
3145 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3146 }
3147
3148 static void kmem_cache_destroy_work_func(struct work_struct *w);
3149
3150 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3151 {
3152 struct memcg_cache_params *cur_params = s->memcg_params;
3153
3154 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3155
3156 if (num_groups > memcg_limited_groups_array_size) {
3157 int i;
3158 ssize_t size = memcg_caches_array_size(num_groups);
3159
3160 size *= sizeof(void *);
3161 size += offsetof(struct memcg_cache_params, memcg_caches);
3162
3163 s->memcg_params = kzalloc(size, GFP_KERNEL);
3164 if (!s->memcg_params) {
3165 s->memcg_params = cur_params;
3166 return -ENOMEM;
3167 }
3168
3169 s->memcg_params->is_root_cache = true;
3170
3171 /*
3172 * There is the chance it will be bigger than
3173 * memcg_limited_groups_array_size, if we failed an allocation
3174 * in a cache, in which case all caches updated before it, will
3175 * have a bigger array.
3176 *
3177 * But if that is the case, the data after
3178 * memcg_limited_groups_array_size is certainly unused
3179 */
3180 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3181 if (!cur_params->memcg_caches[i])
3182 continue;
3183 s->memcg_params->memcg_caches[i] =
3184 cur_params->memcg_caches[i];
3185 }
3186
3187 /*
3188 * Ideally, we would wait until all caches succeed, and only
3189 * then free the old one. But this is not worth the extra
3190 * pointer per-cache we'd have to have for this.
3191 *
3192 * It is not a big deal if some caches are left with a size
3193 * bigger than the others. And all updates will reset this
3194 * anyway.
3195 */
3196 kfree(cur_params);
3197 }
3198 return 0;
3199 }
3200
3201 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3202 struct kmem_cache *root_cache)
3203 {
3204 size_t size;
3205
3206 if (!memcg_kmem_enabled())
3207 return 0;
3208
3209 if (!memcg) {
3210 size = offsetof(struct memcg_cache_params, memcg_caches);
3211 size += memcg_limited_groups_array_size * sizeof(void *);
3212 } else
3213 size = sizeof(struct memcg_cache_params);
3214
3215 s->memcg_params = kzalloc(size, GFP_KERNEL);
3216 if (!s->memcg_params)
3217 return -ENOMEM;
3218
3219 if (memcg) {
3220 s->memcg_params->memcg = memcg;
3221 s->memcg_params->root_cache = root_cache;
3222 INIT_WORK(&s->memcg_params->destroy,
3223 kmem_cache_destroy_work_func);
3224 } else
3225 s->memcg_params->is_root_cache = true;
3226
3227 return 0;
3228 }
3229
3230 void memcg_release_cache(struct kmem_cache *s)
3231 {
3232 struct kmem_cache *root;
3233 struct mem_cgroup *memcg;
3234 int id;
3235
3236 /*
3237 * This happens, for instance, when a root cache goes away before we
3238 * add any memcg.
3239 */
3240 if (!s->memcg_params)
3241 return;
3242
3243 if (s->memcg_params->is_root_cache)
3244 goto out;
3245
3246 memcg = s->memcg_params->memcg;
3247 id = memcg_cache_id(memcg);
3248
3249 root = s->memcg_params->root_cache;
3250 root->memcg_params->memcg_caches[id] = NULL;
3251
3252 mutex_lock(&memcg->slab_caches_mutex);
3253 list_del(&s->memcg_params->list);
3254 mutex_unlock(&memcg->slab_caches_mutex);
3255
3256 css_put(&memcg->css);
3257 out:
3258 kfree(s->memcg_params);
3259 }
3260
3261 /*
3262 * During the creation a new cache, we need to disable our accounting mechanism
3263 * altogether. This is true even if we are not creating, but rather just
3264 * enqueing new caches to be created.
3265 *
3266 * This is because that process will trigger allocations; some visible, like
3267 * explicit kmallocs to auxiliary data structures, name strings and internal
3268 * cache structures; some well concealed, like INIT_WORK() that can allocate
3269 * objects during debug.
3270 *
3271 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3272 * to it. This may not be a bounded recursion: since the first cache creation
3273 * failed to complete (waiting on the allocation), we'll just try to create the
3274 * cache again, failing at the same point.
3275 *
3276 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3277 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3278 * inside the following two functions.
3279 */
3280 static inline void memcg_stop_kmem_account(void)
3281 {
3282 VM_BUG_ON(!current->mm);
3283 current->memcg_kmem_skip_account++;
3284 }
3285
3286 static inline void memcg_resume_kmem_account(void)
3287 {
3288 VM_BUG_ON(!current->mm);
3289 current->memcg_kmem_skip_account--;
3290 }
3291
3292 static void kmem_cache_destroy_work_func(struct work_struct *w)
3293 {
3294 struct kmem_cache *cachep;
3295 struct memcg_cache_params *p;
3296
3297 p = container_of(w, struct memcg_cache_params, destroy);
3298
3299 cachep = memcg_params_to_cache(p);
3300
3301 /*
3302 * If we get down to 0 after shrink, we could delete right away.
3303 * However, memcg_release_pages() already puts us back in the workqueue
3304 * in that case. If we proceed deleting, we'll get a dangling
3305 * reference, and removing the object from the workqueue in that case
3306 * is unnecessary complication. We are not a fast path.
3307 *
3308 * Note that this case is fundamentally different from racing with
3309 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3310 * kmem_cache_shrink, not only we would be reinserting a dead cache
3311 * into the queue, but doing so from inside the worker racing to
3312 * destroy it.
3313 *
3314 * So if we aren't down to zero, we'll just schedule a worker and try
3315 * again
3316 */
3317 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3318 kmem_cache_shrink(cachep);
3319 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3320 return;
3321 } else
3322 kmem_cache_destroy(cachep);
3323 }
3324
3325 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3326 {
3327 if (!cachep->memcg_params->dead)
3328 return;
3329
3330 /*
3331 * There are many ways in which we can get here.
3332 *
3333 * We can get to a memory-pressure situation while the delayed work is
3334 * still pending to run. The vmscan shrinkers can then release all
3335 * cache memory and get us to destruction. If this is the case, we'll
3336 * be executed twice, which is a bug (the second time will execute over
3337 * bogus data). In this case, cancelling the work should be fine.
3338 *
3339 * But we can also get here from the worker itself, if
3340 * kmem_cache_shrink is enough to shake all the remaining objects and
3341 * get the page count to 0. In this case, we'll deadlock if we try to
3342 * cancel the work (the worker runs with an internal lock held, which
3343 * is the same lock we would hold for cancel_work_sync().)
3344 *
3345 * Since we can't possibly know who got us here, just refrain from
3346 * running if there is already work pending
3347 */
3348 if (work_pending(&cachep->memcg_params->destroy))
3349 return;
3350 /*
3351 * We have to defer the actual destroying to a workqueue, because
3352 * we might currently be in a context that cannot sleep.
3353 */
3354 schedule_work(&cachep->memcg_params->destroy);
3355 }
3356
3357 /*
3358 * This lock protects updaters, not readers. We want readers to be as fast as
3359 * they can, and they will either see NULL or a valid cache value. Our model
3360 * allow them to see NULL, in which case the root memcg will be selected.
3361 *
3362 * We need this lock because multiple allocations to the same cache from a non
3363 * will span more than one worker. Only one of them can create the cache.
3364 */
3365 static DEFINE_MUTEX(memcg_cache_mutex);
3366
3367 /*
3368 * Called with memcg_cache_mutex held
3369 */
3370 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3371 struct kmem_cache *s)
3372 {
3373 struct kmem_cache *new;
3374 static char *tmp_name = NULL;
3375
3376 lockdep_assert_held(&memcg_cache_mutex);
3377
3378 /*
3379 * kmem_cache_create_memcg duplicates the given name and
3380 * cgroup_name for this name requires RCU context.
3381 * This static temporary buffer is used to prevent from
3382 * pointless shortliving allocation.
3383 */
3384 if (!tmp_name) {
3385 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3386 if (!tmp_name)
3387 return NULL;
3388 }
3389
3390 rcu_read_lock();
3391 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3392 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3393 rcu_read_unlock();
3394
3395 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3396 (s->flags & ~SLAB_PANIC), s->ctor, s);
3397
3398 if (new)
3399 new->allocflags |= __GFP_KMEMCG;
3400
3401 return new;
3402 }
3403
3404 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3405 struct kmem_cache *cachep)
3406 {
3407 struct kmem_cache *new_cachep;
3408 int idx;
3409
3410 BUG_ON(!memcg_can_account_kmem(memcg));
3411
3412 idx = memcg_cache_id(memcg);
3413
3414 mutex_lock(&memcg_cache_mutex);
3415 new_cachep = cachep->memcg_params->memcg_caches[idx];
3416 if (new_cachep) {
3417 css_put(&memcg->css);
3418 goto out;
3419 }
3420
3421 new_cachep = kmem_cache_dup(memcg, cachep);
3422 if (new_cachep == NULL) {
3423 new_cachep = cachep;
3424 css_put(&memcg->css);
3425 goto out;
3426 }
3427
3428 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3429
3430 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3431 /*
3432 * the readers won't lock, make sure everybody sees the updated value,
3433 * so they won't put stuff in the queue again for no reason
3434 */
3435 wmb();
3436 out:
3437 mutex_unlock(&memcg_cache_mutex);
3438 return new_cachep;
3439 }
3440
3441 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3442 {
3443 struct kmem_cache *c;
3444 int i;
3445
3446 if (!s->memcg_params)
3447 return;
3448 if (!s->memcg_params->is_root_cache)
3449 return;
3450
3451 /*
3452 * If the cache is being destroyed, we trust that there is no one else
3453 * requesting objects from it. Even if there are, the sanity checks in
3454 * kmem_cache_destroy should caught this ill-case.
3455 *
3456 * Still, we don't want anyone else freeing memcg_caches under our
3457 * noses, which can happen if a new memcg comes to life. As usual,
3458 * we'll take the set_limit_mutex to protect ourselves against this.
3459 */
3460 mutex_lock(&set_limit_mutex);
3461 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3462 c = s->memcg_params->memcg_caches[i];
3463 if (!c)
3464 continue;
3465
3466 /*
3467 * We will now manually delete the caches, so to avoid races
3468 * we need to cancel all pending destruction workers and
3469 * proceed with destruction ourselves.
3470 *
3471 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3472 * and that could spawn the workers again: it is likely that
3473 * the cache still have active pages until this very moment.
3474 * This would lead us back to mem_cgroup_destroy_cache.
3475 *
3476 * But that will not execute at all if the "dead" flag is not
3477 * set, so flip it down to guarantee we are in control.
3478 */
3479 c->memcg_params->dead = false;
3480 cancel_work_sync(&c->memcg_params->destroy);
3481 kmem_cache_destroy(c);
3482 }
3483 mutex_unlock(&set_limit_mutex);
3484 }
3485
3486 struct create_work {
3487 struct mem_cgroup *memcg;
3488 struct kmem_cache *cachep;
3489 struct work_struct work;
3490 };
3491
3492 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3493 {
3494 struct kmem_cache *cachep;
3495 struct memcg_cache_params *params;
3496
3497 if (!memcg_kmem_is_active(memcg))
3498 return;
3499
3500 mutex_lock(&memcg->slab_caches_mutex);
3501 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3502 cachep = memcg_params_to_cache(params);
3503 cachep->memcg_params->dead = true;
3504 schedule_work(&cachep->memcg_params->destroy);
3505 }
3506 mutex_unlock(&memcg->slab_caches_mutex);
3507 }
3508
3509 static void memcg_create_cache_work_func(struct work_struct *w)
3510 {
3511 struct create_work *cw;
3512
3513 cw = container_of(w, struct create_work, work);
3514 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3515 kfree(cw);
3516 }
3517
3518 /*
3519 * Enqueue the creation of a per-memcg kmem_cache.
3520 */
3521 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3522 struct kmem_cache *cachep)
3523 {
3524 struct create_work *cw;
3525
3526 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3527 if (cw == NULL) {
3528 css_put(&memcg->css);
3529 return;
3530 }
3531
3532 cw->memcg = memcg;
3533 cw->cachep = cachep;
3534
3535 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3536 schedule_work(&cw->work);
3537 }
3538
3539 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3540 struct kmem_cache *cachep)
3541 {
3542 /*
3543 * We need to stop accounting when we kmalloc, because if the
3544 * corresponding kmalloc cache is not yet created, the first allocation
3545 * in __memcg_create_cache_enqueue will recurse.
3546 *
3547 * However, it is better to enclose the whole function. Depending on
3548 * the debugging options enabled, INIT_WORK(), for instance, can
3549 * trigger an allocation. This too, will make us recurse. Because at
3550 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3551 * the safest choice is to do it like this, wrapping the whole function.
3552 */
3553 memcg_stop_kmem_account();
3554 __memcg_create_cache_enqueue(memcg, cachep);
3555 memcg_resume_kmem_account();
3556 }
3557 /*
3558 * Return the kmem_cache we're supposed to use for a slab allocation.
3559 * We try to use the current memcg's version of the cache.
3560 *
3561 * If the cache does not exist yet, if we are the first user of it,
3562 * we either create it immediately, if possible, or create it asynchronously
3563 * in a workqueue.
3564 * In the latter case, we will let the current allocation go through with
3565 * the original cache.
3566 *
3567 * Can't be called in interrupt context or from kernel threads.
3568 * This function needs to be called with rcu_read_lock() held.
3569 */
3570 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3571 gfp_t gfp)
3572 {
3573 struct mem_cgroup *memcg;
3574 int idx;
3575
3576 VM_BUG_ON(!cachep->memcg_params);
3577 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3578
3579 if (!current->mm || current->memcg_kmem_skip_account)
3580 return cachep;
3581
3582 rcu_read_lock();
3583 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3584
3585 if (!memcg_can_account_kmem(memcg))
3586 goto out;
3587
3588 idx = memcg_cache_id(memcg);
3589
3590 /*
3591 * barrier to mare sure we're always seeing the up to date value. The
3592 * code updating memcg_caches will issue a write barrier to match this.
3593 */
3594 read_barrier_depends();
3595 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3596 cachep = cachep->memcg_params->memcg_caches[idx];
3597 goto out;
3598 }
3599
3600 /* The corresponding put will be done in the workqueue. */
3601 if (!css_tryget(&memcg->css))
3602 goto out;
3603 rcu_read_unlock();
3604
3605 /*
3606 * If we are in a safe context (can wait, and not in interrupt
3607 * context), we could be be predictable and return right away.
3608 * This would guarantee that the allocation being performed
3609 * already belongs in the new cache.
3610 *
3611 * However, there are some clashes that can arrive from locking.
3612 * For instance, because we acquire the slab_mutex while doing
3613 * kmem_cache_dup, this means no further allocation could happen
3614 * with the slab_mutex held.
3615 *
3616 * Also, because cache creation issue get_online_cpus(), this
3617 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3618 * that ends up reversed during cpu hotplug. (cpuset allocates
3619 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3620 * better to defer everything.
3621 */
3622 memcg_create_cache_enqueue(memcg, cachep);
3623 return cachep;
3624 out:
3625 rcu_read_unlock();
3626 return cachep;
3627 }
3628 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3629
3630 /*
3631 * We need to verify if the allocation against current->mm->owner's memcg is
3632 * possible for the given order. But the page is not allocated yet, so we'll
3633 * need a further commit step to do the final arrangements.
3634 *
3635 * It is possible for the task to switch cgroups in this mean time, so at
3636 * commit time, we can't rely on task conversion any longer. We'll then use
3637 * the handle argument to return to the caller which cgroup we should commit
3638 * against. We could also return the memcg directly and avoid the pointer
3639 * passing, but a boolean return value gives better semantics considering
3640 * the compiled-out case as well.
3641 *
3642 * Returning true means the allocation is possible.
3643 */
3644 bool
3645 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3646 {
3647 struct mem_cgroup *memcg;
3648 int ret;
3649
3650 *_memcg = NULL;
3651
3652 /*
3653 * Disabling accounting is only relevant for some specific memcg
3654 * internal allocations. Therefore we would initially not have such
3655 * check here, since direct calls to the page allocator that are marked
3656 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3657 * concerned with cache allocations, and by having this test at
3658 * memcg_kmem_get_cache, we are already able to relay the allocation to
3659 * the root cache and bypass the memcg cache altogether.
3660 *
3661 * There is one exception, though: the SLUB allocator does not create
3662 * large order caches, but rather service large kmallocs directly from
3663 * the page allocator. Therefore, the following sequence when backed by
3664 * the SLUB allocator:
3665 *
3666 * memcg_stop_kmem_account();
3667 * kmalloc(<large_number>)
3668 * memcg_resume_kmem_account();
3669 *
3670 * would effectively ignore the fact that we should skip accounting,
3671 * since it will drive us directly to this function without passing
3672 * through the cache selector memcg_kmem_get_cache. Such large
3673 * allocations are extremely rare but can happen, for instance, for the
3674 * cache arrays. We bring this test here.
3675 */
3676 if (!current->mm || current->memcg_kmem_skip_account)
3677 return true;
3678
3679 memcg = try_get_mem_cgroup_from_mm(current->mm);
3680
3681 /*
3682 * very rare case described in mem_cgroup_from_task. Unfortunately there
3683 * isn't much we can do without complicating this too much, and it would
3684 * be gfp-dependent anyway. Just let it go
3685 */
3686 if (unlikely(!memcg))
3687 return true;
3688
3689 if (!memcg_can_account_kmem(memcg)) {
3690 css_put(&memcg->css);
3691 return true;
3692 }
3693
3694 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3695 if (!ret)
3696 *_memcg = memcg;
3697
3698 css_put(&memcg->css);
3699 return (ret == 0);
3700 }
3701
3702 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3703 int order)
3704 {
3705 struct page_cgroup *pc;
3706
3707 VM_BUG_ON(mem_cgroup_is_root(memcg));
3708
3709 /* The page allocation failed. Revert */
3710 if (!page) {
3711 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3712 return;
3713 }
3714
3715 pc = lookup_page_cgroup(page);
3716 lock_page_cgroup(pc);
3717 pc->mem_cgroup = memcg;
3718 SetPageCgroupUsed(pc);
3719 unlock_page_cgroup(pc);
3720 }
3721
3722 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3723 {
3724 struct mem_cgroup *memcg = NULL;
3725 struct page_cgroup *pc;
3726
3727
3728 pc = lookup_page_cgroup(page);
3729 /*
3730 * Fast unlocked return. Theoretically might have changed, have to
3731 * check again after locking.
3732 */
3733 if (!PageCgroupUsed(pc))
3734 return;
3735
3736 lock_page_cgroup(pc);
3737 if (PageCgroupUsed(pc)) {
3738 memcg = pc->mem_cgroup;
3739 ClearPageCgroupUsed(pc);
3740 }
3741 unlock_page_cgroup(pc);
3742
3743 /*
3744 * We trust that only if there is a memcg associated with the page, it
3745 * is a valid allocation
3746 */
3747 if (!memcg)
3748 return;
3749
3750 VM_BUG_ON(mem_cgroup_is_root(memcg));
3751 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3752 }
3753 #else
3754 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3755 {
3756 }
3757 #endif /* CONFIG_MEMCG_KMEM */
3758
3759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760
3761 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3762 /*
3763 * Because tail pages are not marked as "used", set it. We're under
3764 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3765 * charge/uncharge will be never happen and move_account() is done under
3766 * compound_lock(), so we don't have to take care of races.
3767 */
3768 void mem_cgroup_split_huge_fixup(struct page *head)
3769 {
3770 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3771 struct page_cgroup *pc;
3772 struct mem_cgroup *memcg;
3773 int i;
3774
3775 if (mem_cgroup_disabled())
3776 return;
3777
3778 memcg = head_pc->mem_cgroup;
3779 for (i = 1; i < HPAGE_PMD_NR; i++) {
3780 pc = head_pc + i;
3781 pc->mem_cgroup = memcg;
3782 smp_wmb();/* see __commit_charge() */
3783 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3784 }
3785 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3786 HPAGE_PMD_NR);
3787 }
3788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3789
3790 static inline
3791 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3792 struct mem_cgroup *to,
3793 unsigned int nr_pages,
3794 enum mem_cgroup_stat_index idx)
3795 {
3796 /* Update stat data for mem_cgroup */
3797 preempt_disable();
3798 __this_cpu_sub(from->stat->count[idx], nr_pages);
3799 __this_cpu_add(to->stat->count[idx], nr_pages);
3800 preempt_enable();
3801 }
3802
3803 /**
3804 * mem_cgroup_move_account - move account of the page
3805 * @page: the page
3806 * @nr_pages: number of regular pages (>1 for huge pages)
3807 * @pc: page_cgroup of the page.
3808 * @from: mem_cgroup which the page is moved from.
3809 * @to: mem_cgroup which the page is moved to. @from != @to.
3810 *
3811 * The caller must confirm following.
3812 * - page is not on LRU (isolate_page() is useful.)
3813 * - compound_lock is held when nr_pages > 1
3814 *
3815 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3816 * from old cgroup.
3817 */
3818 static int mem_cgroup_move_account(struct page *page,
3819 unsigned int nr_pages,
3820 struct page_cgroup *pc,
3821 struct mem_cgroup *from,
3822 struct mem_cgroup *to)
3823 {
3824 unsigned long flags;
3825 int ret;
3826 bool anon = PageAnon(page);
3827
3828 VM_BUG_ON(from == to);
3829 VM_BUG_ON(PageLRU(page));
3830 /*
3831 * The page is isolated from LRU. So, collapse function
3832 * will not handle this page. But page splitting can happen.
3833 * Do this check under compound_page_lock(). The caller should
3834 * hold it.
3835 */
3836 ret = -EBUSY;
3837 if (nr_pages > 1 && !PageTransHuge(page))
3838 goto out;
3839
3840 lock_page_cgroup(pc);
3841
3842 ret = -EINVAL;
3843 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3844 goto unlock;
3845
3846 move_lock_mem_cgroup(from, &flags);
3847
3848 if (!anon && page_mapped(page))
3849 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3850 MEM_CGROUP_STAT_FILE_MAPPED);
3851
3852 if (PageWriteback(page))
3853 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3854 MEM_CGROUP_STAT_WRITEBACK);
3855
3856 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3857
3858 /* caller should have done css_get */
3859 pc->mem_cgroup = to;
3860 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3861 move_unlock_mem_cgroup(from, &flags);
3862 ret = 0;
3863 unlock:
3864 unlock_page_cgroup(pc);
3865 /*
3866 * check events
3867 */
3868 memcg_check_events(to, page);
3869 memcg_check_events(from, page);
3870 out:
3871 return ret;
3872 }
3873
3874 /**
3875 * mem_cgroup_move_parent - moves page to the parent group
3876 * @page: the page to move
3877 * @pc: page_cgroup of the page
3878 * @child: page's cgroup
3879 *
3880 * move charges to its parent or the root cgroup if the group has no
3881 * parent (aka use_hierarchy==0).
3882 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3883 * mem_cgroup_move_account fails) the failure is always temporary and
3884 * it signals a race with a page removal/uncharge or migration. In the
3885 * first case the page is on the way out and it will vanish from the LRU
3886 * on the next attempt and the call should be retried later.
3887 * Isolation from the LRU fails only if page has been isolated from
3888 * the LRU since we looked at it and that usually means either global
3889 * reclaim or migration going on. The page will either get back to the
3890 * LRU or vanish.
3891 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3892 * (!PageCgroupUsed) or moved to a different group. The page will
3893 * disappear in the next attempt.
3894 */
3895 static int mem_cgroup_move_parent(struct page *page,
3896 struct page_cgroup *pc,
3897 struct mem_cgroup *child)
3898 {
3899 struct mem_cgroup *parent;
3900 unsigned int nr_pages;
3901 unsigned long uninitialized_var(flags);
3902 int ret;
3903
3904 VM_BUG_ON(mem_cgroup_is_root(child));
3905
3906 ret = -EBUSY;
3907 if (!get_page_unless_zero(page))
3908 goto out;
3909 if (isolate_lru_page(page))
3910 goto put;
3911
3912 nr_pages = hpage_nr_pages(page);
3913
3914 parent = parent_mem_cgroup(child);
3915 /*
3916 * If no parent, move charges to root cgroup.
3917 */
3918 if (!parent)
3919 parent = root_mem_cgroup;
3920
3921 if (nr_pages > 1) {
3922 VM_BUG_ON(!PageTransHuge(page));
3923 flags = compound_lock_irqsave(page);
3924 }
3925
3926 ret = mem_cgroup_move_account(page, nr_pages,
3927 pc, child, parent);
3928 if (!ret)
3929 __mem_cgroup_cancel_local_charge(child, nr_pages);
3930
3931 if (nr_pages > 1)
3932 compound_unlock_irqrestore(page, flags);
3933 putback_lru_page(page);
3934 put:
3935 put_page(page);
3936 out:
3937 return ret;
3938 }
3939
3940 /*
3941 * Charge the memory controller for page usage.
3942 * Return
3943 * 0 if the charge was successful
3944 * < 0 if the cgroup is over its limit
3945 */
3946 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3947 gfp_t gfp_mask, enum charge_type ctype)
3948 {
3949 struct mem_cgroup *memcg = NULL;
3950 unsigned int nr_pages = 1;
3951 bool oom = true;
3952 int ret;
3953
3954 if (PageTransHuge(page)) {
3955 nr_pages <<= compound_order(page);
3956 VM_BUG_ON(!PageTransHuge(page));
3957 /*
3958 * Never OOM-kill a process for a huge page. The
3959 * fault handler will fall back to regular pages.
3960 */
3961 oom = false;
3962 }
3963
3964 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3965 if (ret == -ENOMEM)
3966 return ret;
3967 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3968 return 0;
3969 }
3970
3971 int mem_cgroup_newpage_charge(struct page *page,
3972 struct mm_struct *mm, gfp_t gfp_mask)
3973 {
3974 if (mem_cgroup_disabled())
3975 return 0;
3976 VM_BUG_ON(page_mapped(page));
3977 VM_BUG_ON(page->mapping && !PageAnon(page));
3978 VM_BUG_ON(!mm);
3979 return mem_cgroup_charge_common(page, mm, gfp_mask,
3980 MEM_CGROUP_CHARGE_TYPE_ANON);
3981 }
3982
3983 /*
3984 * While swap-in, try_charge -> commit or cancel, the page is locked.
3985 * And when try_charge() successfully returns, one refcnt to memcg without
3986 * struct page_cgroup is acquired. This refcnt will be consumed by
3987 * "commit()" or removed by "cancel()"
3988 */
3989 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3990 struct page *page,
3991 gfp_t mask,
3992 struct mem_cgroup **memcgp)
3993 {
3994 struct mem_cgroup *memcg;
3995 struct page_cgroup *pc;
3996 int ret;
3997
3998 pc = lookup_page_cgroup(page);
3999 /*
4000 * Every swap fault against a single page tries to charge the
4001 * page, bail as early as possible. shmem_unuse() encounters
4002 * already charged pages, too. The USED bit is protected by
4003 * the page lock, which serializes swap cache removal, which
4004 * in turn serializes uncharging.
4005 */
4006 if (PageCgroupUsed(pc))
4007 return 0;
4008 if (!do_swap_account)
4009 goto charge_cur_mm;
4010 memcg = try_get_mem_cgroup_from_page(page);
4011 if (!memcg)
4012 goto charge_cur_mm;
4013 *memcgp = memcg;
4014 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4015 css_put(&memcg->css);
4016 if (ret == -EINTR)
4017 ret = 0;
4018 return ret;
4019 charge_cur_mm:
4020 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4021 if (ret == -EINTR)
4022 ret = 0;
4023 return ret;
4024 }
4025
4026 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4027 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4028 {
4029 *memcgp = NULL;
4030 if (mem_cgroup_disabled())
4031 return 0;
4032 /*
4033 * A racing thread's fault, or swapoff, may have already
4034 * updated the pte, and even removed page from swap cache: in
4035 * those cases unuse_pte()'s pte_same() test will fail; but
4036 * there's also a KSM case which does need to charge the page.
4037 */
4038 if (!PageSwapCache(page)) {
4039 int ret;
4040
4041 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4042 if (ret == -EINTR)
4043 ret = 0;
4044 return ret;
4045 }
4046 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4047 }
4048
4049 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4050 {
4051 if (mem_cgroup_disabled())
4052 return;
4053 if (!memcg)
4054 return;
4055 __mem_cgroup_cancel_charge(memcg, 1);
4056 }
4057
4058 static void
4059 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4060 enum charge_type ctype)
4061 {
4062 if (mem_cgroup_disabled())
4063 return;
4064 if (!memcg)
4065 return;
4066
4067 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4068 /*
4069 * Now swap is on-memory. This means this page may be
4070 * counted both as mem and swap....double count.
4071 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4072 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4073 * may call delete_from_swap_cache() before reach here.
4074 */
4075 if (do_swap_account && PageSwapCache(page)) {
4076 swp_entry_t ent = {.val = page_private(page)};
4077 mem_cgroup_uncharge_swap(ent);
4078 }
4079 }
4080
4081 void mem_cgroup_commit_charge_swapin(struct page *page,
4082 struct mem_cgroup *memcg)
4083 {
4084 __mem_cgroup_commit_charge_swapin(page, memcg,
4085 MEM_CGROUP_CHARGE_TYPE_ANON);
4086 }
4087
4088 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4089 gfp_t gfp_mask)
4090 {
4091 struct mem_cgroup *memcg = NULL;
4092 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4093 int ret;
4094
4095 if (mem_cgroup_disabled())
4096 return 0;
4097 if (PageCompound(page))
4098 return 0;
4099
4100 if (!PageSwapCache(page))
4101 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4102 else { /* page is swapcache/shmem */
4103 ret = __mem_cgroup_try_charge_swapin(mm, page,
4104 gfp_mask, &memcg);
4105 if (!ret)
4106 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4107 }
4108 return ret;
4109 }
4110
4111 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4112 unsigned int nr_pages,
4113 const enum charge_type ctype)
4114 {
4115 struct memcg_batch_info *batch = NULL;
4116 bool uncharge_memsw = true;
4117
4118 /* If swapout, usage of swap doesn't decrease */
4119 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4120 uncharge_memsw = false;
4121
4122 batch = &current->memcg_batch;
4123 /*
4124 * In usual, we do css_get() when we remember memcg pointer.
4125 * But in this case, we keep res->usage until end of a series of
4126 * uncharges. Then, it's ok to ignore memcg's refcnt.
4127 */
4128 if (!batch->memcg)
4129 batch->memcg = memcg;
4130 /*
4131 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4132 * In those cases, all pages freed continuously can be expected to be in
4133 * the same cgroup and we have chance to coalesce uncharges.
4134 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4135 * because we want to do uncharge as soon as possible.
4136 */
4137
4138 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4139 goto direct_uncharge;
4140
4141 if (nr_pages > 1)
4142 goto direct_uncharge;
4143
4144 /*
4145 * In typical case, batch->memcg == mem. This means we can
4146 * merge a series of uncharges to an uncharge of res_counter.
4147 * If not, we uncharge res_counter ony by one.
4148 */
4149 if (batch->memcg != memcg)
4150 goto direct_uncharge;
4151 /* remember freed charge and uncharge it later */
4152 batch->nr_pages++;
4153 if (uncharge_memsw)
4154 batch->memsw_nr_pages++;
4155 return;
4156 direct_uncharge:
4157 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4158 if (uncharge_memsw)
4159 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4160 if (unlikely(batch->memcg != memcg))
4161 memcg_oom_recover(memcg);
4162 }
4163
4164 /*
4165 * uncharge if !page_mapped(page)
4166 */
4167 static struct mem_cgroup *
4168 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4169 bool end_migration)
4170 {
4171 struct mem_cgroup *memcg = NULL;
4172 unsigned int nr_pages = 1;
4173 struct page_cgroup *pc;
4174 bool anon;
4175
4176 if (mem_cgroup_disabled())
4177 return NULL;
4178
4179 if (PageTransHuge(page)) {
4180 nr_pages <<= compound_order(page);
4181 VM_BUG_ON(!PageTransHuge(page));
4182 }
4183 /*
4184 * Check if our page_cgroup is valid
4185 */
4186 pc = lookup_page_cgroup(page);
4187 if (unlikely(!PageCgroupUsed(pc)))
4188 return NULL;
4189
4190 lock_page_cgroup(pc);
4191
4192 memcg = pc->mem_cgroup;
4193
4194 if (!PageCgroupUsed(pc))
4195 goto unlock_out;
4196
4197 anon = PageAnon(page);
4198
4199 switch (ctype) {
4200 case MEM_CGROUP_CHARGE_TYPE_ANON:
4201 /*
4202 * Generally PageAnon tells if it's the anon statistics to be
4203 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4204 * used before page reached the stage of being marked PageAnon.
4205 */
4206 anon = true;
4207 /* fallthrough */
4208 case MEM_CGROUP_CHARGE_TYPE_DROP:
4209 /* See mem_cgroup_prepare_migration() */
4210 if (page_mapped(page))
4211 goto unlock_out;
4212 /*
4213 * Pages under migration may not be uncharged. But
4214 * end_migration() /must/ be the one uncharging the
4215 * unused post-migration page and so it has to call
4216 * here with the migration bit still set. See the
4217 * res_counter handling below.
4218 */
4219 if (!end_migration && PageCgroupMigration(pc))
4220 goto unlock_out;
4221 break;
4222 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4223 if (!PageAnon(page)) { /* Shared memory */
4224 if (page->mapping && !page_is_file_cache(page))
4225 goto unlock_out;
4226 } else if (page_mapped(page)) /* Anon */
4227 goto unlock_out;
4228 break;
4229 default:
4230 break;
4231 }
4232
4233 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4234
4235 ClearPageCgroupUsed(pc);
4236 /*
4237 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4238 * freed from LRU. This is safe because uncharged page is expected not
4239 * to be reused (freed soon). Exception is SwapCache, it's handled by
4240 * special functions.
4241 */
4242
4243 unlock_page_cgroup(pc);
4244 /*
4245 * even after unlock, we have memcg->res.usage here and this memcg
4246 * will never be freed, so it's safe to call css_get().
4247 */
4248 memcg_check_events(memcg, page);
4249 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4250 mem_cgroup_swap_statistics(memcg, true);
4251 css_get(&memcg->css);
4252 }
4253 /*
4254 * Migration does not charge the res_counter for the
4255 * replacement page, so leave it alone when phasing out the
4256 * page that is unused after the migration.
4257 */
4258 if (!end_migration && !mem_cgroup_is_root(memcg))
4259 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4260
4261 return memcg;
4262
4263 unlock_out:
4264 unlock_page_cgroup(pc);
4265 return NULL;
4266 }
4267
4268 void mem_cgroup_uncharge_page(struct page *page)
4269 {
4270 /* early check. */
4271 if (page_mapped(page))
4272 return;
4273 VM_BUG_ON(page->mapping && !PageAnon(page));
4274 /*
4275 * If the page is in swap cache, uncharge should be deferred
4276 * to the swap path, which also properly accounts swap usage
4277 * and handles memcg lifetime.
4278 *
4279 * Note that this check is not stable and reclaim may add the
4280 * page to swap cache at any time after this. However, if the
4281 * page is not in swap cache by the time page->mapcount hits
4282 * 0, there won't be any page table references to the swap
4283 * slot, and reclaim will free it and not actually write the
4284 * page to disk.
4285 */
4286 if (PageSwapCache(page))
4287 return;
4288 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4289 }
4290
4291 void mem_cgroup_uncharge_cache_page(struct page *page)
4292 {
4293 VM_BUG_ON(page_mapped(page));
4294 VM_BUG_ON(page->mapping);
4295 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4296 }
4297
4298 /*
4299 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4300 * In that cases, pages are freed continuously and we can expect pages
4301 * are in the same memcg. All these calls itself limits the number of
4302 * pages freed at once, then uncharge_start/end() is called properly.
4303 * This may be called prural(2) times in a context,
4304 */
4305
4306 void mem_cgroup_uncharge_start(void)
4307 {
4308 current->memcg_batch.do_batch++;
4309 /* We can do nest. */
4310 if (current->memcg_batch.do_batch == 1) {
4311 current->memcg_batch.memcg = NULL;
4312 current->memcg_batch.nr_pages = 0;
4313 current->memcg_batch.memsw_nr_pages = 0;
4314 }
4315 }
4316
4317 void mem_cgroup_uncharge_end(void)
4318 {
4319 struct memcg_batch_info *batch = &current->memcg_batch;
4320
4321 if (!batch->do_batch)
4322 return;
4323
4324 batch->do_batch--;
4325 if (batch->do_batch) /* If stacked, do nothing. */
4326 return;
4327
4328 if (!batch->memcg)
4329 return;
4330 /*
4331 * This "batch->memcg" is valid without any css_get/put etc...
4332 * bacause we hide charges behind us.
4333 */
4334 if (batch->nr_pages)
4335 res_counter_uncharge(&batch->memcg->res,
4336 batch->nr_pages * PAGE_SIZE);
4337 if (batch->memsw_nr_pages)
4338 res_counter_uncharge(&batch->memcg->memsw,
4339 batch->memsw_nr_pages * PAGE_SIZE);
4340 memcg_oom_recover(batch->memcg);
4341 /* forget this pointer (for sanity check) */
4342 batch->memcg = NULL;
4343 }
4344
4345 #ifdef CONFIG_SWAP
4346 /*
4347 * called after __delete_from_swap_cache() and drop "page" account.
4348 * memcg information is recorded to swap_cgroup of "ent"
4349 */
4350 void
4351 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4352 {
4353 struct mem_cgroup *memcg;
4354 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4355
4356 if (!swapout) /* this was a swap cache but the swap is unused ! */
4357 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4358
4359 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4360
4361 /*
4362 * record memcg information, if swapout && memcg != NULL,
4363 * css_get() was called in uncharge().
4364 */
4365 if (do_swap_account && swapout && memcg)
4366 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4367 }
4368 #endif
4369
4370 #ifdef CONFIG_MEMCG_SWAP
4371 /*
4372 * called from swap_entry_free(). remove record in swap_cgroup and
4373 * uncharge "memsw" account.
4374 */
4375 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4376 {
4377 struct mem_cgroup *memcg;
4378 unsigned short id;
4379
4380 if (!do_swap_account)
4381 return;
4382
4383 id = swap_cgroup_record(ent, 0);
4384 rcu_read_lock();
4385 memcg = mem_cgroup_lookup(id);
4386 if (memcg) {
4387 /*
4388 * We uncharge this because swap is freed.
4389 * This memcg can be obsolete one. We avoid calling css_tryget
4390 */
4391 if (!mem_cgroup_is_root(memcg))
4392 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4393 mem_cgroup_swap_statistics(memcg, false);
4394 css_put(&memcg->css);
4395 }
4396 rcu_read_unlock();
4397 }
4398
4399 /**
4400 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4401 * @entry: swap entry to be moved
4402 * @from: mem_cgroup which the entry is moved from
4403 * @to: mem_cgroup which the entry is moved to
4404 *
4405 * It succeeds only when the swap_cgroup's record for this entry is the same
4406 * as the mem_cgroup's id of @from.
4407 *
4408 * Returns 0 on success, -EINVAL on failure.
4409 *
4410 * The caller must have charged to @to, IOW, called res_counter_charge() about
4411 * both res and memsw, and called css_get().
4412 */
4413 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4414 struct mem_cgroup *from, struct mem_cgroup *to)
4415 {
4416 unsigned short old_id, new_id;
4417
4418 old_id = mem_cgroup_id(from);
4419 new_id = mem_cgroup_id(to);
4420
4421 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4422 mem_cgroup_swap_statistics(from, false);
4423 mem_cgroup_swap_statistics(to, true);
4424 /*
4425 * This function is only called from task migration context now.
4426 * It postpones res_counter and refcount handling till the end
4427 * of task migration(mem_cgroup_clear_mc()) for performance
4428 * improvement. But we cannot postpone css_get(to) because if
4429 * the process that has been moved to @to does swap-in, the
4430 * refcount of @to might be decreased to 0.
4431 *
4432 * We are in attach() phase, so the cgroup is guaranteed to be
4433 * alive, so we can just call css_get().
4434 */
4435 css_get(&to->css);
4436 return 0;
4437 }
4438 return -EINVAL;
4439 }
4440 #else
4441 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4442 struct mem_cgroup *from, struct mem_cgroup *to)
4443 {
4444 return -EINVAL;
4445 }
4446 #endif
4447
4448 /*
4449 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4450 * page belongs to.
4451 */
4452 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4453 struct mem_cgroup **memcgp)
4454 {
4455 struct mem_cgroup *memcg = NULL;
4456 unsigned int nr_pages = 1;
4457 struct page_cgroup *pc;
4458 enum charge_type ctype;
4459
4460 *memcgp = NULL;
4461
4462 if (mem_cgroup_disabled())
4463 return;
4464
4465 if (PageTransHuge(page))
4466 nr_pages <<= compound_order(page);
4467
4468 pc = lookup_page_cgroup(page);
4469 lock_page_cgroup(pc);
4470 if (PageCgroupUsed(pc)) {
4471 memcg = pc->mem_cgroup;
4472 css_get(&memcg->css);
4473 /*
4474 * At migrating an anonymous page, its mapcount goes down
4475 * to 0 and uncharge() will be called. But, even if it's fully
4476 * unmapped, migration may fail and this page has to be
4477 * charged again. We set MIGRATION flag here and delay uncharge
4478 * until end_migration() is called
4479 *
4480 * Corner Case Thinking
4481 * A)
4482 * When the old page was mapped as Anon and it's unmap-and-freed
4483 * while migration was ongoing.
4484 * If unmap finds the old page, uncharge() of it will be delayed
4485 * until end_migration(). If unmap finds a new page, it's
4486 * uncharged when it make mapcount to be 1->0. If unmap code
4487 * finds swap_migration_entry, the new page will not be mapped
4488 * and end_migration() will find it(mapcount==0).
4489 *
4490 * B)
4491 * When the old page was mapped but migraion fails, the kernel
4492 * remaps it. A charge for it is kept by MIGRATION flag even
4493 * if mapcount goes down to 0. We can do remap successfully
4494 * without charging it again.
4495 *
4496 * C)
4497 * The "old" page is under lock_page() until the end of
4498 * migration, so, the old page itself will not be swapped-out.
4499 * If the new page is swapped out before end_migraton, our
4500 * hook to usual swap-out path will catch the event.
4501 */
4502 if (PageAnon(page))
4503 SetPageCgroupMigration(pc);
4504 }
4505 unlock_page_cgroup(pc);
4506 /*
4507 * If the page is not charged at this point,
4508 * we return here.
4509 */
4510 if (!memcg)
4511 return;
4512
4513 *memcgp = memcg;
4514 /*
4515 * We charge new page before it's used/mapped. So, even if unlock_page()
4516 * is called before end_migration, we can catch all events on this new
4517 * page. In the case new page is migrated but not remapped, new page's
4518 * mapcount will be finally 0 and we call uncharge in end_migration().
4519 */
4520 if (PageAnon(page))
4521 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4522 else
4523 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4524 /*
4525 * The page is committed to the memcg, but it's not actually
4526 * charged to the res_counter since we plan on replacing the
4527 * old one and only one page is going to be left afterwards.
4528 */
4529 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4530 }
4531
4532 /* remove redundant charge if migration failed*/
4533 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4534 struct page *oldpage, struct page *newpage, bool migration_ok)
4535 {
4536 struct page *used, *unused;
4537 struct page_cgroup *pc;
4538 bool anon;
4539
4540 if (!memcg)
4541 return;
4542
4543 if (!migration_ok) {
4544 used = oldpage;
4545 unused = newpage;
4546 } else {
4547 used = newpage;
4548 unused = oldpage;
4549 }
4550 anon = PageAnon(used);
4551 __mem_cgroup_uncharge_common(unused,
4552 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4553 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4554 true);
4555 css_put(&memcg->css);
4556 /*
4557 * We disallowed uncharge of pages under migration because mapcount
4558 * of the page goes down to zero, temporarly.
4559 * Clear the flag and check the page should be charged.
4560 */
4561 pc = lookup_page_cgroup(oldpage);
4562 lock_page_cgroup(pc);
4563 ClearPageCgroupMigration(pc);
4564 unlock_page_cgroup(pc);
4565
4566 /*
4567 * If a page is a file cache, radix-tree replacement is very atomic
4568 * and we can skip this check. When it was an Anon page, its mapcount
4569 * goes down to 0. But because we added MIGRATION flage, it's not
4570 * uncharged yet. There are several case but page->mapcount check
4571 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4572 * check. (see prepare_charge() also)
4573 */
4574 if (anon)
4575 mem_cgroup_uncharge_page(used);
4576 }
4577
4578 /*
4579 * At replace page cache, newpage is not under any memcg but it's on
4580 * LRU. So, this function doesn't touch res_counter but handles LRU
4581 * in correct way. Both pages are locked so we cannot race with uncharge.
4582 */
4583 void mem_cgroup_replace_page_cache(struct page *oldpage,
4584 struct page *newpage)
4585 {
4586 struct mem_cgroup *memcg = NULL;
4587 struct page_cgroup *pc;
4588 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4589
4590 if (mem_cgroup_disabled())
4591 return;
4592
4593 pc = lookup_page_cgroup(oldpage);
4594 /* fix accounting on old pages */
4595 lock_page_cgroup(pc);
4596 if (PageCgroupUsed(pc)) {
4597 memcg = pc->mem_cgroup;
4598 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4599 ClearPageCgroupUsed(pc);
4600 }
4601 unlock_page_cgroup(pc);
4602
4603 /*
4604 * When called from shmem_replace_page(), in some cases the
4605 * oldpage has already been charged, and in some cases not.
4606 */
4607 if (!memcg)
4608 return;
4609 /*
4610 * Even if newpage->mapping was NULL before starting replacement,
4611 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4612 * LRU while we overwrite pc->mem_cgroup.
4613 */
4614 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4615 }
4616
4617 #ifdef CONFIG_DEBUG_VM
4618 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4619 {
4620 struct page_cgroup *pc;
4621
4622 pc = lookup_page_cgroup(page);
4623 /*
4624 * Can be NULL while feeding pages into the page allocator for
4625 * the first time, i.e. during boot or memory hotplug;
4626 * or when mem_cgroup_disabled().
4627 */
4628 if (likely(pc) && PageCgroupUsed(pc))
4629 return pc;
4630 return NULL;
4631 }
4632
4633 bool mem_cgroup_bad_page_check(struct page *page)
4634 {
4635 if (mem_cgroup_disabled())
4636 return false;
4637
4638 return lookup_page_cgroup_used(page) != NULL;
4639 }
4640
4641 void mem_cgroup_print_bad_page(struct page *page)
4642 {
4643 struct page_cgroup *pc;
4644
4645 pc = lookup_page_cgroup_used(page);
4646 if (pc) {
4647 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4648 pc, pc->flags, pc->mem_cgroup);
4649 }
4650 }
4651 #endif
4652
4653 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4654 unsigned long long val)
4655 {
4656 int retry_count;
4657 u64 memswlimit, memlimit;
4658 int ret = 0;
4659 int children = mem_cgroup_count_children(memcg);
4660 u64 curusage, oldusage;
4661 int enlarge;
4662
4663 /*
4664 * For keeping hierarchical_reclaim simple, how long we should retry
4665 * is depends on callers. We set our retry-count to be function
4666 * of # of children which we should visit in this loop.
4667 */
4668 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4669
4670 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4671
4672 enlarge = 0;
4673 while (retry_count) {
4674 if (signal_pending(current)) {
4675 ret = -EINTR;
4676 break;
4677 }
4678 /*
4679 * Rather than hide all in some function, I do this in
4680 * open coded manner. You see what this really does.
4681 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4682 */
4683 mutex_lock(&set_limit_mutex);
4684 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4685 if (memswlimit < val) {
4686 ret = -EINVAL;
4687 mutex_unlock(&set_limit_mutex);
4688 break;
4689 }
4690
4691 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4692 if (memlimit < val)
4693 enlarge = 1;
4694
4695 ret = res_counter_set_limit(&memcg->res, val);
4696 if (!ret) {
4697 if (memswlimit == val)
4698 memcg->memsw_is_minimum = true;
4699 else
4700 memcg->memsw_is_minimum = false;
4701 }
4702 mutex_unlock(&set_limit_mutex);
4703
4704 if (!ret)
4705 break;
4706
4707 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4708 MEM_CGROUP_RECLAIM_SHRINK);
4709 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4710 /* Usage is reduced ? */
4711 if (curusage >= oldusage)
4712 retry_count--;
4713 else
4714 oldusage = curusage;
4715 }
4716 if (!ret && enlarge)
4717 memcg_oom_recover(memcg);
4718
4719 return ret;
4720 }
4721
4722 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4723 unsigned long long val)
4724 {
4725 int retry_count;
4726 u64 memlimit, memswlimit, oldusage, curusage;
4727 int children = mem_cgroup_count_children(memcg);
4728 int ret = -EBUSY;
4729 int enlarge = 0;
4730
4731 /* see mem_cgroup_resize_res_limit */
4732 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4733 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4734 while (retry_count) {
4735 if (signal_pending(current)) {
4736 ret = -EINTR;
4737 break;
4738 }
4739 /*
4740 * Rather than hide all in some function, I do this in
4741 * open coded manner. You see what this really does.
4742 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4743 */
4744 mutex_lock(&set_limit_mutex);
4745 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4746 if (memlimit > val) {
4747 ret = -EINVAL;
4748 mutex_unlock(&set_limit_mutex);
4749 break;
4750 }
4751 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4752 if (memswlimit < val)
4753 enlarge = 1;
4754 ret = res_counter_set_limit(&memcg->memsw, val);
4755 if (!ret) {
4756 if (memlimit == val)
4757 memcg->memsw_is_minimum = true;
4758 else
4759 memcg->memsw_is_minimum = false;
4760 }
4761 mutex_unlock(&set_limit_mutex);
4762
4763 if (!ret)
4764 break;
4765
4766 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4767 MEM_CGROUP_RECLAIM_NOSWAP |
4768 MEM_CGROUP_RECLAIM_SHRINK);
4769 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4770 /* Usage is reduced ? */
4771 if (curusage >= oldusage)
4772 retry_count--;
4773 else
4774 oldusage = curusage;
4775 }
4776 if (!ret && enlarge)
4777 memcg_oom_recover(memcg);
4778 return ret;
4779 }
4780
4781 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4782 gfp_t gfp_mask,
4783 unsigned long *total_scanned)
4784 {
4785 unsigned long nr_reclaimed = 0;
4786 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4787 unsigned long reclaimed;
4788 int loop = 0;
4789 struct mem_cgroup_tree_per_zone *mctz;
4790 unsigned long long excess;
4791 unsigned long nr_scanned;
4792
4793 if (order > 0)
4794 return 0;
4795
4796 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4797 /*
4798 * This loop can run a while, specially if mem_cgroup's continuously
4799 * keep exceeding their soft limit and putting the system under
4800 * pressure
4801 */
4802 do {
4803 if (next_mz)
4804 mz = next_mz;
4805 else
4806 mz = mem_cgroup_largest_soft_limit_node(mctz);
4807 if (!mz)
4808 break;
4809
4810 nr_scanned = 0;
4811 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4812 gfp_mask, &nr_scanned);
4813 nr_reclaimed += reclaimed;
4814 *total_scanned += nr_scanned;
4815 spin_lock(&mctz->lock);
4816
4817 /*
4818 * If we failed to reclaim anything from this memory cgroup
4819 * it is time to move on to the next cgroup
4820 */
4821 next_mz = NULL;
4822 if (!reclaimed) {
4823 do {
4824 /*
4825 * Loop until we find yet another one.
4826 *
4827 * By the time we get the soft_limit lock
4828 * again, someone might have aded the
4829 * group back on the RB tree. Iterate to
4830 * make sure we get a different mem.
4831 * mem_cgroup_largest_soft_limit_node returns
4832 * NULL if no other cgroup is present on
4833 * the tree
4834 */
4835 next_mz =
4836 __mem_cgroup_largest_soft_limit_node(mctz);
4837 if (next_mz == mz)
4838 css_put(&next_mz->memcg->css);
4839 else /* next_mz == NULL or other memcg */
4840 break;
4841 } while (1);
4842 }
4843 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4844 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4845 /*
4846 * One school of thought says that we should not add
4847 * back the node to the tree if reclaim returns 0.
4848 * But our reclaim could return 0, simply because due
4849 * to priority we are exposing a smaller subset of
4850 * memory to reclaim from. Consider this as a longer
4851 * term TODO.
4852 */
4853 /* If excess == 0, no tree ops */
4854 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4855 spin_unlock(&mctz->lock);
4856 css_put(&mz->memcg->css);
4857 loop++;
4858 /*
4859 * Could not reclaim anything and there are no more
4860 * mem cgroups to try or we seem to be looping without
4861 * reclaiming anything.
4862 */
4863 if (!nr_reclaimed &&
4864 (next_mz == NULL ||
4865 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4866 break;
4867 } while (!nr_reclaimed);
4868 if (next_mz)
4869 css_put(&next_mz->memcg->css);
4870 return nr_reclaimed;
4871 }
4872
4873 /**
4874 * mem_cgroup_force_empty_list - clears LRU of a group
4875 * @memcg: group to clear
4876 * @node: NUMA node
4877 * @zid: zone id
4878 * @lru: lru to to clear
4879 *
4880 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4881 * reclaim the pages page themselves - pages are moved to the parent (or root)
4882 * group.
4883 */
4884 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4885 int node, int zid, enum lru_list lru)
4886 {
4887 struct lruvec *lruvec;
4888 unsigned long flags;
4889 struct list_head *list;
4890 struct page *busy;
4891 struct zone *zone;
4892
4893 zone = &NODE_DATA(node)->node_zones[zid];
4894 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4895 list = &lruvec->lists[lru];
4896
4897 busy = NULL;
4898 do {
4899 struct page_cgroup *pc;
4900 struct page *page;
4901
4902 spin_lock_irqsave(&zone->lru_lock, flags);
4903 if (list_empty(list)) {
4904 spin_unlock_irqrestore(&zone->lru_lock, flags);
4905 break;
4906 }
4907 page = list_entry(list->prev, struct page, lru);
4908 if (busy == page) {
4909 list_move(&page->lru, list);
4910 busy = NULL;
4911 spin_unlock_irqrestore(&zone->lru_lock, flags);
4912 continue;
4913 }
4914 spin_unlock_irqrestore(&zone->lru_lock, flags);
4915
4916 pc = lookup_page_cgroup(page);
4917
4918 if (mem_cgroup_move_parent(page, pc, memcg)) {
4919 /* found lock contention or "pc" is obsolete. */
4920 busy = page;
4921 cond_resched();
4922 } else
4923 busy = NULL;
4924 } while (!list_empty(list));
4925 }
4926
4927 /*
4928 * make mem_cgroup's charge to be 0 if there is no task by moving
4929 * all the charges and pages to the parent.
4930 * This enables deleting this mem_cgroup.
4931 *
4932 * Caller is responsible for holding css reference on the memcg.
4933 */
4934 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4935 {
4936 int node, zid;
4937 u64 usage;
4938
4939 do {
4940 /* This is for making all *used* pages to be on LRU. */
4941 lru_add_drain_all();
4942 drain_all_stock_sync(memcg);
4943 mem_cgroup_start_move(memcg);
4944 for_each_node_state(node, N_MEMORY) {
4945 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4946 enum lru_list lru;
4947 for_each_lru(lru) {
4948 mem_cgroup_force_empty_list(memcg,
4949 node, zid, lru);
4950 }
4951 }
4952 }
4953 mem_cgroup_end_move(memcg);
4954 memcg_oom_recover(memcg);
4955 cond_resched();
4956
4957 /*
4958 * Kernel memory may not necessarily be trackable to a specific
4959 * process. So they are not migrated, and therefore we can't
4960 * expect their value to drop to 0 here.
4961 * Having res filled up with kmem only is enough.
4962 *
4963 * This is a safety check because mem_cgroup_force_empty_list
4964 * could have raced with mem_cgroup_replace_page_cache callers
4965 * so the lru seemed empty but the page could have been added
4966 * right after the check. RES_USAGE should be safe as we always
4967 * charge before adding to the LRU.
4968 */
4969 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4970 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4971 } while (usage > 0);
4972 }
4973
4974 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4975 {
4976 lockdep_assert_held(&memcg_create_mutex);
4977 /*
4978 * The lock does not prevent addition or deletion to the list
4979 * of children, but it prevents a new child from being
4980 * initialized based on this parent in css_online(), so it's
4981 * enough to decide whether hierarchically inherited
4982 * attributes can still be changed or not.
4983 */
4984 return memcg->use_hierarchy &&
4985 !list_empty(&memcg->css.cgroup->children);
4986 }
4987
4988 /*
4989 * Reclaims as many pages from the given memcg as possible and moves
4990 * the rest to the parent.
4991 *
4992 * Caller is responsible for holding css reference for memcg.
4993 */
4994 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4995 {
4996 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4997 struct cgroup *cgrp = memcg->css.cgroup;
4998
4999 /* returns EBUSY if there is a task or if we come here twice. */
5000 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5001 return -EBUSY;
5002
5003 /* we call try-to-free pages for make this cgroup empty */
5004 lru_add_drain_all();
5005 /* try to free all pages in this cgroup */
5006 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5007 int progress;
5008
5009 if (signal_pending(current))
5010 return -EINTR;
5011
5012 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5013 false);
5014 if (!progress) {
5015 nr_retries--;
5016 /* maybe some writeback is necessary */
5017 congestion_wait(BLK_RW_ASYNC, HZ/10);
5018 }
5019
5020 }
5021 lru_add_drain();
5022 mem_cgroup_reparent_charges(memcg);
5023
5024 return 0;
5025 }
5026
5027 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5028 unsigned int event)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031
5032 if (mem_cgroup_is_root(memcg))
5033 return -EINVAL;
5034 return mem_cgroup_force_empty(memcg);
5035 }
5036
5037 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5038 struct cftype *cft)
5039 {
5040 return mem_cgroup_from_css(css)->use_hierarchy;
5041 }
5042
5043 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5044 struct cftype *cft, u64 val)
5045 {
5046 int retval = 0;
5047 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5048 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5049
5050 mutex_lock(&memcg_create_mutex);
5051
5052 if (memcg->use_hierarchy == val)
5053 goto out;
5054
5055 /*
5056 * If parent's use_hierarchy is set, we can't make any modifications
5057 * in the child subtrees. If it is unset, then the change can
5058 * occur, provided the current cgroup has no children.
5059 *
5060 * For the root cgroup, parent_mem is NULL, we allow value to be
5061 * set if there are no children.
5062 */
5063 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5064 (val == 1 || val == 0)) {
5065 if (list_empty(&memcg->css.cgroup->children))
5066 memcg->use_hierarchy = val;
5067 else
5068 retval = -EBUSY;
5069 } else
5070 retval = -EINVAL;
5071
5072 out:
5073 mutex_unlock(&memcg_create_mutex);
5074
5075 return retval;
5076 }
5077
5078
5079 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5080 enum mem_cgroup_stat_index idx)
5081 {
5082 struct mem_cgroup *iter;
5083 long val = 0;
5084
5085 /* Per-cpu values can be negative, use a signed accumulator */
5086 for_each_mem_cgroup_tree(iter, memcg)
5087 val += mem_cgroup_read_stat(iter, idx);
5088
5089 if (val < 0) /* race ? */
5090 val = 0;
5091 return val;
5092 }
5093
5094 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5095 {
5096 u64 val;
5097
5098 if (!mem_cgroup_is_root(memcg)) {
5099 if (!swap)
5100 return res_counter_read_u64(&memcg->res, RES_USAGE);
5101 else
5102 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5103 }
5104
5105 /*
5106 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5107 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5108 */
5109 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5110 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5111
5112 if (swap)
5113 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5114
5115 return val << PAGE_SHIFT;
5116 }
5117
5118 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5119 struct cftype *cft, struct file *file,
5120 char __user *buf, size_t nbytes, loff_t *ppos)
5121 {
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5123 char str[64];
5124 u64 val;
5125 int name, len;
5126 enum res_type type;
5127
5128 type = MEMFILE_TYPE(cft->private);
5129 name = MEMFILE_ATTR(cft->private);
5130
5131 switch (type) {
5132 case _MEM:
5133 if (name == RES_USAGE)
5134 val = mem_cgroup_usage(memcg, false);
5135 else
5136 val = res_counter_read_u64(&memcg->res, name);
5137 break;
5138 case _MEMSWAP:
5139 if (name == RES_USAGE)
5140 val = mem_cgroup_usage(memcg, true);
5141 else
5142 val = res_counter_read_u64(&memcg->memsw, name);
5143 break;
5144 case _KMEM:
5145 val = res_counter_read_u64(&memcg->kmem, name);
5146 break;
5147 default:
5148 BUG();
5149 }
5150
5151 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5152 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5153 }
5154
5155 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5156 {
5157 int ret = -EINVAL;
5158 #ifdef CONFIG_MEMCG_KMEM
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5160 /*
5161 * For simplicity, we won't allow this to be disabled. It also can't
5162 * be changed if the cgroup has children already, or if tasks had
5163 * already joined.
5164 *
5165 * If tasks join before we set the limit, a person looking at
5166 * kmem.usage_in_bytes will have no way to determine when it took
5167 * place, which makes the value quite meaningless.
5168 *
5169 * After it first became limited, changes in the value of the limit are
5170 * of course permitted.
5171 */
5172 mutex_lock(&memcg_create_mutex);
5173 mutex_lock(&set_limit_mutex);
5174 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5175 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5176 ret = -EBUSY;
5177 goto out;
5178 }
5179 ret = res_counter_set_limit(&memcg->kmem, val);
5180 VM_BUG_ON(ret);
5181
5182 ret = memcg_update_cache_sizes(memcg);
5183 if (ret) {
5184 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5185 goto out;
5186 }
5187 static_key_slow_inc(&memcg_kmem_enabled_key);
5188 /*
5189 * setting the active bit after the inc will guarantee no one
5190 * starts accounting before all call sites are patched
5191 */
5192 memcg_kmem_set_active(memcg);
5193 } else
5194 ret = res_counter_set_limit(&memcg->kmem, val);
5195 out:
5196 mutex_unlock(&set_limit_mutex);
5197 mutex_unlock(&memcg_create_mutex);
5198 #endif
5199 return ret;
5200 }
5201
5202 #ifdef CONFIG_MEMCG_KMEM
5203 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5204 {
5205 int ret = 0;
5206 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5207 if (!parent)
5208 goto out;
5209
5210 memcg->kmem_account_flags = parent->kmem_account_flags;
5211 /*
5212 * When that happen, we need to disable the static branch only on those
5213 * memcgs that enabled it. To achieve this, we would be forced to
5214 * complicate the code by keeping track of which memcgs were the ones
5215 * that actually enabled limits, and which ones got it from its
5216 * parents.
5217 *
5218 * It is a lot simpler just to do static_key_slow_inc() on every child
5219 * that is accounted.
5220 */
5221 if (!memcg_kmem_is_active(memcg))
5222 goto out;
5223
5224 /*
5225 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5226 * memcg is active already. If the later initialization fails then the
5227 * cgroup core triggers the cleanup so we do not have to do it here.
5228 */
5229 static_key_slow_inc(&memcg_kmem_enabled_key);
5230
5231 mutex_lock(&set_limit_mutex);
5232 memcg_stop_kmem_account();
5233 ret = memcg_update_cache_sizes(memcg);
5234 memcg_resume_kmem_account();
5235 mutex_unlock(&set_limit_mutex);
5236 out:
5237 return ret;
5238 }
5239 #endif /* CONFIG_MEMCG_KMEM */
5240
5241 /*
5242 * The user of this function is...
5243 * RES_LIMIT.
5244 */
5245 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5246 const char *buffer)
5247 {
5248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5249 enum res_type type;
5250 int name;
5251 unsigned long long val;
5252 int ret;
5253
5254 type = MEMFILE_TYPE(cft->private);
5255 name = MEMFILE_ATTR(cft->private);
5256
5257 switch (name) {
5258 case RES_LIMIT:
5259 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5260 ret = -EINVAL;
5261 break;
5262 }
5263 /* This function does all necessary parse...reuse it */
5264 ret = res_counter_memparse_write_strategy(buffer, &val);
5265 if (ret)
5266 break;
5267 if (type == _MEM)
5268 ret = mem_cgroup_resize_limit(memcg, val);
5269 else if (type == _MEMSWAP)
5270 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5271 else if (type == _KMEM)
5272 ret = memcg_update_kmem_limit(css, val);
5273 else
5274 return -EINVAL;
5275 break;
5276 case RES_SOFT_LIMIT:
5277 ret = res_counter_memparse_write_strategy(buffer, &val);
5278 if (ret)
5279 break;
5280 /*
5281 * For memsw, soft limits are hard to implement in terms
5282 * of semantics, for now, we support soft limits for
5283 * control without swap
5284 */
5285 if (type == _MEM)
5286 ret = res_counter_set_soft_limit(&memcg->res, val);
5287 else
5288 ret = -EINVAL;
5289 break;
5290 default:
5291 ret = -EINVAL; /* should be BUG() ? */
5292 break;
5293 }
5294 return ret;
5295 }
5296
5297 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5298 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5299 {
5300 unsigned long long min_limit, min_memsw_limit, tmp;
5301
5302 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5303 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5304 if (!memcg->use_hierarchy)
5305 goto out;
5306
5307 while (css_parent(&memcg->css)) {
5308 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5309 if (!memcg->use_hierarchy)
5310 break;
5311 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5312 min_limit = min(min_limit, tmp);
5313 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5314 min_memsw_limit = min(min_memsw_limit, tmp);
5315 }
5316 out:
5317 *mem_limit = min_limit;
5318 *memsw_limit = min_memsw_limit;
5319 }
5320
5321 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5324 int name;
5325 enum res_type type;
5326
5327 type = MEMFILE_TYPE(event);
5328 name = MEMFILE_ATTR(event);
5329
5330 switch (name) {
5331 case RES_MAX_USAGE:
5332 if (type == _MEM)
5333 res_counter_reset_max(&memcg->res);
5334 else if (type == _MEMSWAP)
5335 res_counter_reset_max(&memcg->memsw);
5336 else if (type == _KMEM)
5337 res_counter_reset_max(&memcg->kmem);
5338 else
5339 return -EINVAL;
5340 break;
5341 case RES_FAILCNT:
5342 if (type == _MEM)
5343 res_counter_reset_failcnt(&memcg->res);
5344 else if (type == _MEMSWAP)
5345 res_counter_reset_failcnt(&memcg->memsw);
5346 else if (type == _KMEM)
5347 res_counter_reset_failcnt(&memcg->kmem);
5348 else
5349 return -EINVAL;
5350 break;
5351 }
5352
5353 return 0;
5354 }
5355
5356 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5357 struct cftype *cft)
5358 {
5359 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5360 }
5361
5362 #ifdef CONFIG_MMU
5363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5364 struct cftype *cft, u64 val)
5365 {
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367
5368 if (val >= (1 << NR_MOVE_TYPE))
5369 return -EINVAL;
5370
5371 /*
5372 * No kind of locking is needed in here, because ->can_attach() will
5373 * check this value once in the beginning of the process, and then carry
5374 * on with stale data. This means that changes to this value will only
5375 * affect task migrations starting after the change.
5376 */
5377 memcg->move_charge_at_immigrate = val;
5378 return 0;
5379 }
5380 #else
5381 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5382 struct cftype *cft, u64 val)
5383 {
5384 return -ENOSYS;
5385 }
5386 #endif
5387
5388 #ifdef CONFIG_NUMA
5389 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5390 struct cftype *cft, struct seq_file *m)
5391 {
5392 int nid;
5393 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5394 unsigned long node_nr;
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396
5397 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5398 seq_printf(m, "total=%lu", total_nr);
5399 for_each_node_state(nid, N_MEMORY) {
5400 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5401 seq_printf(m, " N%d=%lu", nid, node_nr);
5402 }
5403 seq_putc(m, '\n');
5404
5405 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5406 seq_printf(m, "file=%lu", file_nr);
5407 for_each_node_state(nid, N_MEMORY) {
5408 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5409 LRU_ALL_FILE);
5410 seq_printf(m, " N%d=%lu", nid, node_nr);
5411 }
5412 seq_putc(m, '\n');
5413
5414 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5415 seq_printf(m, "anon=%lu", anon_nr);
5416 for_each_node_state(nid, N_MEMORY) {
5417 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5418 LRU_ALL_ANON);
5419 seq_printf(m, " N%d=%lu", nid, node_nr);
5420 }
5421 seq_putc(m, '\n');
5422
5423 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5424 seq_printf(m, "unevictable=%lu", unevictable_nr);
5425 for_each_node_state(nid, N_MEMORY) {
5426 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5427 BIT(LRU_UNEVICTABLE));
5428 seq_printf(m, " N%d=%lu", nid, node_nr);
5429 }
5430 seq_putc(m, '\n');
5431 return 0;
5432 }
5433 #endif /* CONFIG_NUMA */
5434
5435 static inline void mem_cgroup_lru_names_not_uptodate(void)
5436 {
5437 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5438 }
5439
5440 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5441 struct seq_file *m)
5442 {
5443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5444 struct mem_cgroup *mi;
5445 unsigned int i;
5446
5447 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5448 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5449 continue;
5450 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5451 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5452 }
5453
5454 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5455 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5456 mem_cgroup_read_events(memcg, i));
5457
5458 for (i = 0; i < NR_LRU_LISTS; i++)
5459 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5460 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5461
5462 /* Hierarchical information */
5463 {
5464 unsigned long long limit, memsw_limit;
5465 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5466 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5467 if (do_swap_account)
5468 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5469 memsw_limit);
5470 }
5471
5472 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5473 long long val = 0;
5474
5475 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5476 continue;
5477 for_each_mem_cgroup_tree(mi, memcg)
5478 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5479 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5480 }
5481
5482 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5483 unsigned long long val = 0;
5484
5485 for_each_mem_cgroup_tree(mi, memcg)
5486 val += mem_cgroup_read_events(mi, i);
5487 seq_printf(m, "total_%s %llu\n",
5488 mem_cgroup_events_names[i], val);
5489 }
5490
5491 for (i = 0; i < NR_LRU_LISTS; i++) {
5492 unsigned long long val = 0;
5493
5494 for_each_mem_cgroup_tree(mi, memcg)
5495 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5496 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5497 }
5498
5499 #ifdef CONFIG_DEBUG_VM
5500 {
5501 int nid, zid;
5502 struct mem_cgroup_per_zone *mz;
5503 struct zone_reclaim_stat *rstat;
5504 unsigned long recent_rotated[2] = {0, 0};
5505 unsigned long recent_scanned[2] = {0, 0};
5506
5507 for_each_online_node(nid)
5508 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5509 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5510 rstat = &mz->lruvec.reclaim_stat;
5511
5512 recent_rotated[0] += rstat->recent_rotated[0];
5513 recent_rotated[1] += rstat->recent_rotated[1];
5514 recent_scanned[0] += rstat->recent_scanned[0];
5515 recent_scanned[1] += rstat->recent_scanned[1];
5516 }
5517 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5518 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5519 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5520 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5521 }
5522 #endif
5523
5524 return 0;
5525 }
5526
5527 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5528 struct cftype *cft)
5529 {
5530 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5531
5532 return mem_cgroup_swappiness(memcg);
5533 }
5534
5535 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5536 struct cftype *cft, u64 val)
5537 {
5538 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5539 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5540
5541 if (val > 100 || !parent)
5542 return -EINVAL;
5543
5544 mutex_lock(&memcg_create_mutex);
5545
5546 /* If under hierarchy, only empty-root can set this value */
5547 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5548 mutex_unlock(&memcg_create_mutex);
5549 return -EINVAL;
5550 }
5551
5552 memcg->swappiness = val;
5553
5554 mutex_unlock(&memcg_create_mutex);
5555
5556 return 0;
5557 }
5558
5559 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5560 {
5561 struct mem_cgroup_threshold_ary *t;
5562 u64 usage;
5563 int i;
5564
5565 rcu_read_lock();
5566 if (!swap)
5567 t = rcu_dereference(memcg->thresholds.primary);
5568 else
5569 t = rcu_dereference(memcg->memsw_thresholds.primary);
5570
5571 if (!t)
5572 goto unlock;
5573
5574 usage = mem_cgroup_usage(memcg, swap);
5575
5576 /*
5577 * current_threshold points to threshold just below or equal to usage.
5578 * If it's not true, a threshold was crossed after last
5579 * call of __mem_cgroup_threshold().
5580 */
5581 i = t->current_threshold;
5582
5583 /*
5584 * Iterate backward over array of thresholds starting from
5585 * current_threshold and check if a threshold is crossed.
5586 * If none of thresholds below usage is crossed, we read
5587 * only one element of the array here.
5588 */
5589 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5590 eventfd_signal(t->entries[i].eventfd, 1);
5591
5592 /* i = current_threshold + 1 */
5593 i++;
5594
5595 /*
5596 * Iterate forward over array of thresholds starting from
5597 * current_threshold+1 and check if a threshold is crossed.
5598 * If none of thresholds above usage is crossed, we read
5599 * only one element of the array here.
5600 */
5601 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5602 eventfd_signal(t->entries[i].eventfd, 1);
5603
5604 /* Update current_threshold */
5605 t->current_threshold = i - 1;
5606 unlock:
5607 rcu_read_unlock();
5608 }
5609
5610 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5611 {
5612 while (memcg) {
5613 __mem_cgroup_threshold(memcg, false);
5614 if (do_swap_account)
5615 __mem_cgroup_threshold(memcg, true);
5616
5617 memcg = parent_mem_cgroup(memcg);
5618 }
5619 }
5620
5621 static int compare_thresholds(const void *a, const void *b)
5622 {
5623 const struct mem_cgroup_threshold *_a = a;
5624 const struct mem_cgroup_threshold *_b = b;
5625
5626 if (_a->threshold > _b->threshold)
5627 return 1;
5628
5629 if (_a->threshold < _b->threshold)
5630 return -1;
5631
5632 return 0;
5633 }
5634
5635 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5636 {
5637 struct mem_cgroup_eventfd_list *ev;
5638
5639 list_for_each_entry(ev, &memcg->oom_notify, list)
5640 eventfd_signal(ev->eventfd, 1);
5641 return 0;
5642 }
5643
5644 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5645 {
5646 struct mem_cgroup *iter;
5647
5648 for_each_mem_cgroup_tree(iter, memcg)
5649 mem_cgroup_oom_notify_cb(iter);
5650 }
5651
5652 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5653 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5654 {
5655 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5656 struct mem_cgroup_thresholds *thresholds;
5657 struct mem_cgroup_threshold_ary *new;
5658 enum res_type type = MEMFILE_TYPE(cft->private);
5659 u64 threshold, usage;
5660 int i, size, ret;
5661
5662 ret = res_counter_memparse_write_strategy(args, &threshold);
5663 if (ret)
5664 return ret;
5665
5666 mutex_lock(&memcg->thresholds_lock);
5667
5668 if (type == _MEM)
5669 thresholds = &memcg->thresholds;
5670 else if (type == _MEMSWAP)
5671 thresholds = &memcg->memsw_thresholds;
5672 else
5673 BUG();
5674
5675 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5676
5677 /* Check if a threshold crossed before adding a new one */
5678 if (thresholds->primary)
5679 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5680
5681 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5682
5683 /* Allocate memory for new array of thresholds */
5684 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5685 GFP_KERNEL);
5686 if (!new) {
5687 ret = -ENOMEM;
5688 goto unlock;
5689 }
5690 new->size = size;
5691
5692 /* Copy thresholds (if any) to new array */
5693 if (thresholds->primary) {
5694 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5695 sizeof(struct mem_cgroup_threshold));
5696 }
5697
5698 /* Add new threshold */
5699 new->entries[size - 1].eventfd = eventfd;
5700 new->entries[size - 1].threshold = threshold;
5701
5702 /* Sort thresholds. Registering of new threshold isn't time-critical */
5703 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5704 compare_thresholds, NULL);
5705
5706 /* Find current threshold */
5707 new->current_threshold = -1;
5708 for (i = 0; i < size; i++) {
5709 if (new->entries[i].threshold <= usage) {
5710 /*
5711 * new->current_threshold will not be used until
5712 * rcu_assign_pointer(), so it's safe to increment
5713 * it here.
5714 */
5715 ++new->current_threshold;
5716 } else
5717 break;
5718 }
5719
5720 /* Free old spare buffer and save old primary buffer as spare */
5721 kfree(thresholds->spare);
5722 thresholds->spare = thresholds->primary;
5723
5724 rcu_assign_pointer(thresholds->primary, new);
5725
5726 /* To be sure that nobody uses thresholds */
5727 synchronize_rcu();
5728
5729 unlock:
5730 mutex_unlock(&memcg->thresholds_lock);
5731
5732 return ret;
5733 }
5734
5735 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5736 struct cftype *cft, struct eventfd_ctx *eventfd)
5737 {
5738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739 struct mem_cgroup_thresholds *thresholds;
5740 struct mem_cgroup_threshold_ary *new;
5741 enum res_type type = MEMFILE_TYPE(cft->private);
5742 u64 usage;
5743 int i, j, size;
5744
5745 mutex_lock(&memcg->thresholds_lock);
5746 if (type == _MEM)
5747 thresholds = &memcg->thresholds;
5748 else if (type == _MEMSWAP)
5749 thresholds = &memcg->memsw_thresholds;
5750 else
5751 BUG();
5752
5753 if (!thresholds->primary)
5754 goto unlock;
5755
5756 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5757
5758 /* Check if a threshold crossed before removing */
5759 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5760
5761 /* Calculate new number of threshold */
5762 size = 0;
5763 for (i = 0; i < thresholds->primary->size; i++) {
5764 if (thresholds->primary->entries[i].eventfd != eventfd)
5765 size++;
5766 }
5767
5768 new = thresholds->spare;
5769
5770 /* Set thresholds array to NULL if we don't have thresholds */
5771 if (!size) {
5772 kfree(new);
5773 new = NULL;
5774 goto swap_buffers;
5775 }
5776
5777 new->size = size;
5778
5779 /* Copy thresholds and find current threshold */
5780 new->current_threshold = -1;
5781 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5782 if (thresholds->primary->entries[i].eventfd == eventfd)
5783 continue;
5784
5785 new->entries[j] = thresholds->primary->entries[i];
5786 if (new->entries[j].threshold <= usage) {
5787 /*
5788 * new->current_threshold will not be used
5789 * until rcu_assign_pointer(), so it's safe to increment
5790 * it here.
5791 */
5792 ++new->current_threshold;
5793 }
5794 j++;
5795 }
5796
5797 swap_buffers:
5798 /* Swap primary and spare array */
5799 thresholds->spare = thresholds->primary;
5800 /* If all events are unregistered, free the spare array */
5801 if (!new) {
5802 kfree(thresholds->spare);
5803 thresholds->spare = NULL;
5804 }
5805
5806 rcu_assign_pointer(thresholds->primary, new);
5807
5808 /* To be sure that nobody uses thresholds */
5809 synchronize_rcu();
5810 unlock:
5811 mutex_unlock(&memcg->thresholds_lock);
5812 }
5813
5814 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5815 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5816 {
5817 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5818 struct mem_cgroup_eventfd_list *event;
5819 enum res_type type = MEMFILE_TYPE(cft->private);
5820
5821 BUG_ON(type != _OOM_TYPE);
5822 event = kmalloc(sizeof(*event), GFP_KERNEL);
5823 if (!event)
5824 return -ENOMEM;
5825
5826 spin_lock(&memcg_oom_lock);
5827
5828 event->eventfd = eventfd;
5829 list_add(&event->list, &memcg->oom_notify);
5830
5831 /* already in OOM ? */
5832 if (atomic_read(&memcg->under_oom))
5833 eventfd_signal(eventfd, 1);
5834 spin_unlock(&memcg_oom_lock);
5835
5836 return 0;
5837 }
5838
5839 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5840 struct cftype *cft, struct eventfd_ctx *eventfd)
5841 {
5842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5843 struct mem_cgroup_eventfd_list *ev, *tmp;
5844 enum res_type type = MEMFILE_TYPE(cft->private);
5845
5846 BUG_ON(type != _OOM_TYPE);
5847
5848 spin_lock(&memcg_oom_lock);
5849
5850 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5851 if (ev->eventfd == eventfd) {
5852 list_del(&ev->list);
5853 kfree(ev);
5854 }
5855 }
5856
5857 spin_unlock(&memcg_oom_lock);
5858 }
5859
5860 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5861 struct cftype *cft, struct cgroup_map_cb *cb)
5862 {
5863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5864
5865 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5866
5867 if (atomic_read(&memcg->under_oom))
5868 cb->fill(cb, "under_oom", 1);
5869 else
5870 cb->fill(cb, "under_oom", 0);
5871 return 0;
5872 }
5873
5874 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5875 struct cftype *cft, u64 val)
5876 {
5877 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5878 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5879
5880 /* cannot set to root cgroup and only 0 and 1 are allowed */
5881 if (!parent || !((val == 0) || (val == 1)))
5882 return -EINVAL;
5883
5884 mutex_lock(&memcg_create_mutex);
5885 /* oom-kill-disable is a flag for subhierarchy. */
5886 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5887 mutex_unlock(&memcg_create_mutex);
5888 return -EINVAL;
5889 }
5890 memcg->oom_kill_disable = val;
5891 if (!val)
5892 memcg_oom_recover(memcg);
5893 mutex_unlock(&memcg_create_mutex);
5894 return 0;
5895 }
5896
5897 #ifdef CONFIG_MEMCG_KMEM
5898 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5899 {
5900 int ret;
5901
5902 memcg->kmemcg_id = -1;
5903 ret = memcg_propagate_kmem(memcg);
5904 if (ret)
5905 return ret;
5906
5907 return mem_cgroup_sockets_init(memcg, ss);
5908 }
5909
5910 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5911 {
5912 mem_cgroup_sockets_destroy(memcg);
5913 }
5914
5915 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5916 {
5917 if (!memcg_kmem_is_active(memcg))
5918 return;
5919
5920 /*
5921 * kmem charges can outlive the cgroup. In the case of slab
5922 * pages, for instance, a page contain objects from various
5923 * processes. As we prevent from taking a reference for every
5924 * such allocation we have to be careful when doing uncharge
5925 * (see memcg_uncharge_kmem) and here during offlining.
5926 *
5927 * The idea is that that only the _last_ uncharge which sees
5928 * the dead memcg will drop the last reference. An additional
5929 * reference is taken here before the group is marked dead
5930 * which is then paired with css_put during uncharge resp. here.
5931 *
5932 * Although this might sound strange as this path is called from
5933 * css_offline() when the referencemight have dropped down to 0
5934 * and shouldn't be incremented anymore (css_tryget would fail)
5935 * we do not have other options because of the kmem allocations
5936 * lifetime.
5937 */
5938 css_get(&memcg->css);
5939
5940 memcg_kmem_mark_dead(memcg);
5941
5942 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5943 return;
5944
5945 if (memcg_kmem_test_and_clear_dead(memcg))
5946 css_put(&memcg->css);
5947 }
5948 #else
5949 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5950 {
5951 return 0;
5952 }
5953
5954 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5955 {
5956 }
5957
5958 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5959 {
5960 }
5961 #endif
5962
5963 static struct cftype mem_cgroup_files[] = {
5964 {
5965 .name = "usage_in_bytes",
5966 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5967 .read = mem_cgroup_read,
5968 .register_event = mem_cgroup_usage_register_event,
5969 .unregister_event = mem_cgroup_usage_unregister_event,
5970 },
5971 {
5972 .name = "max_usage_in_bytes",
5973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5974 .trigger = mem_cgroup_reset,
5975 .read = mem_cgroup_read,
5976 },
5977 {
5978 .name = "limit_in_bytes",
5979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5980 .write_string = mem_cgroup_write,
5981 .read = mem_cgroup_read,
5982 },
5983 {
5984 .name = "soft_limit_in_bytes",
5985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5986 .write_string = mem_cgroup_write,
5987 .read = mem_cgroup_read,
5988 },
5989 {
5990 .name = "failcnt",
5991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5992 .trigger = mem_cgroup_reset,
5993 .read = mem_cgroup_read,
5994 },
5995 {
5996 .name = "stat",
5997 .read_seq_string = memcg_stat_show,
5998 },
5999 {
6000 .name = "force_empty",
6001 .trigger = mem_cgroup_force_empty_write,
6002 },
6003 {
6004 .name = "use_hierarchy",
6005 .flags = CFTYPE_INSANE,
6006 .write_u64 = mem_cgroup_hierarchy_write,
6007 .read_u64 = mem_cgroup_hierarchy_read,
6008 },
6009 {
6010 .name = "swappiness",
6011 .read_u64 = mem_cgroup_swappiness_read,
6012 .write_u64 = mem_cgroup_swappiness_write,
6013 },
6014 {
6015 .name = "move_charge_at_immigrate",
6016 .read_u64 = mem_cgroup_move_charge_read,
6017 .write_u64 = mem_cgroup_move_charge_write,
6018 },
6019 {
6020 .name = "oom_control",
6021 .read_map = mem_cgroup_oom_control_read,
6022 .write_u64 = mem_cgroup_oom_control_write,
6023 .register_event = mem_cgroup_oom_register_event,
6024 .unregister_event = mem_cgroup_oom_unregister_event,
6025 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6026 },
6027 {
6028 .name = "pressure_level",
6029 .register_event = vmpressure_register_event,
6030 .unregister_event = vmpressure_unregister_event,
6031 },
6032 #ifdef CONFIG_NUMA
6033 {
6034 .name = "numa_stat",
6035 .read_seq_string = memcg_numa_stat_show,
6036 },
6037 #endif
6038 #ifdef CONFIG_MEMCG_KMEM
6039 {
6040 .name = "kmem.limit_in_bytes",
6041 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6042 .write_string = mem_cgroup_write,
6043 .read = mem_cgroup_read,
6044 },
6045 {
6046 .name = "kmem.usage_in_bytes",
6047 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6048 .read = mem_cgroup_read,
6049 },
6050 {
6051 .name = "kmem.failcnt",
6052 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6053 .trigger = mem_cgroup_reset,
6054 .read = mem_cgroup_read,
6055 },
6056 {
6057 .name = "kmem.max_usage_in_bytes",
6058 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6059 .trigger = mem_cgroup_reset,
6060 .read = mem_cgroup_read,
6061 },
6062 #ifdef CONFIG_SLABINFO
6063 {
6064 .name = "kmem.slabinfo",
6065 .read_seq_string = mem_cgroup_slabinfo_read,
6066 },
6067 #endif
6068 #endif
6069 { }, /* terminate */
6070 };
6071
6072 #ifdef CONFIG_MEMCG_SWAP
6073 static struct cftype memsw_cgroup_files[] = {
6074 {
6075 .name = "memsw.usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6077 .read = mem_cgroup_read,
6078 .register_event = mem_cgroup_usage_register_event,
6079 .unregister_event = mem_cgroup_usage_unregister_event,
6080 },
6081 {
6082 .name = "memsw.max_usage_in_bytes",
6083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6084 .trigger = mem_cgroup_reset,
6085 .read = mem_cgroup_read,
6086 },
6087 {
6088 .name = "memsw.limit_in_bytes",
6089 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6090 .write_string = mem_cgroup_write,
6091 .read = mem_cgroup_read,
6092 },
6093 {
6094 .name = "memsw.failcnt",
6095 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6096 .trigger = mem_cgroup_reset,
6097 .read = mem_cgroup_read,
6098 },
6099 { }, /* terminate */
6100 };
6101 #endif
6102 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6103 {
6104 struct mem_cgroup_per_node *pn;
6105 struct mem_cgroup_per_zone *mz;
6106 int zone, tmp = node;
6107 /*
6108 * This routine is called against possible nodes.
6109 * But it's BUG to call kmalloc() against offline node.
6110 *
6111 * TODO: this routine can waste much memory for nodes which will
6112 * never be onlined. It's better to use memory hotplug callback
6113 * function.
6114 */
6115 if (!node_state(node, N_NORMAL_MEMORY))
6116 tmp = -1;
6117 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6118 if (!pn)
6119 return 1;
6120
6121 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6122 mz = &pn->zoneinfo[zone];
6123 lruvec_init(&mz->lruvec);
6124 mz->usage_in_excess = 0;
6125 mz->on_tree = false;
6126 mz->memcg = memcg;
6127 }
6128 memcg->nodeinfo[node] = pn;
6129 return 0;
6130 }
6131
6132 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6133 {
6134 kfree(memcg->nodeinfo[node]);
6135 }
6136
6137 static struct mem_cgroup *mem_cgroup_alloc(void)
6138 {
6139 struct mem_cgroup *memcg;
6140 size_t size = memcg_size();
6141
6142 /* Can be very big if nr_node_ids is very big */
6143 if (size < PAGE_SIZE)
6144 memcg = kzalloc(size, GFP_KERNEL);
6145 else
6146 memcg = vzalloc(size);
6147
6148 if (!memcg)
6149 return NULL;
6150
6151 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6152 if (!memcg->stat)
6153 goto out_free;
6154 spin_lock_init(&memcg->pcp_counter_lock);
6155 return memcg;
6156
6157 out_free:
6158 if (size < PAGE_SIZE)
6159 kfree(memcg);
6160 else
6161 vfree(memcg);
6162 return NULL;
6163 }
6164
6165 /*
6166 * At destroying mem_cgroup, references from swap_cgroup can remain.
6167 * (scanning all at force_empty is too costly...)
6168 *
6169 * Instead of clearing all references at force_empty, we remember
6170 * the number of reference from swap_cgroup and free mem_cgroup when
6171 * it goes down to 0.
6172 *
6173 * Removal of cgroup itself succeeds regardless of refs from swap.
6174 */
6175
6176 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6177 {
6178 int node;
6179 size_t size = memcg_size();
6180
6181 mem_cgroup_remove_from_trees(memcg);
6182
6183 for_each_node(node)
6184 free_mem_cgroup_per_zone_info(memcg, node);
6185
6186 free_percpu(memcg->stat);
6187
6188 /*
6189 * We need to make sure that (at least for now), the jump label
6190 * destruction code runs outside of the cgroup lock. This is because
6191 * get_online_cpus(), which is called from the static_branch update,
6192 * can't be called inside the cgroup_lock. cpusets are the ones
6193 * enforcing this dependency, so if they ever change, we might as well.
6194 *
6195 * schedule_work() will guarantee this happens. Be careful if you need
6196 * to move this code around, and make sure it is outside
6197 * the cgroup_lock.
6198 */
6199 disarm_static_keys(memcg);
6200 if (size < PAGE_SIZE)
6201 kfree(memcg);
6202 else
6203 vfree(memcg);
6204 }
6205
6206 /*
6207 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6208 */
6209 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6210 {
6211 if (!memcg->res.parent)
6212 return NULL;
6213 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6214 }
6215 EXPORT_SYMBOL(parent_mem_cgroup);
6216
6217 static void __init mem_cgroup_soft_limit_tree_init(void)
6218 {
6219 struct mem_cgroup_tree_per_node *rtpn;
6220 struct mem_cgroup_tree_per_zone *rtpz;
6221 int tmp, node, zone;
6222
6223 for_each_node(node) {
6224 tmp = node;
6225 if (!node_state(node, N_NORMAL_MEMORY))
6226 tmp = -1;
6227 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6228 BUG_ON(!rtpn);
6229
6230 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6231
6232 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6233 rtpz = &rtpn->rb_tree_per_zone[zone];
6234 rtpz->rb_root = RB_ROOT;
6235 spin_lock_init(&rtpz->lock);
6236 }
6237 }
6238 }
6239
6240 static struct cgroup_subsys_state * __ref
6241 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6242 {
6243 struct mem_cgroup *memcg;
6244 long error = -ENOMEM;
6245 int node;
6246
6247 memcg = mem_cgroup_alloc();
6248 if (!memcg)
6249 return ERR_PTR(error);
6250
6251 for_each_node(node)
6252 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6253 goto free_out;
6254
6255 /* root ? */
6256 if (parent_css == NULL) {
6257 root_mem_cgroup = memcg;
6258 res_counter_init(&memcg->res, NULL);
6259 res_counter_init(&memcg->memsw, NULL);
6260 res_counter_init(&memcg->kmem, NULL);
6261 }
6262
6263 memcg->last_scanned_node = MAX_NUMNODES;
6264 INIT_LIST_HEAD(&memcg->oom_notify);
6265 memcg->move_charge_at_immigrate = 0;
6266 mutex_init(&memcg->thresholds_lock);
6267 spin_lock_init(&memcg->move_lock);
6268 vmpressure_init(&memcg->vmpressure);
6269
6270 return &memcg->css;
6271
6272 free_out:
6273 __mem_cgroup_free(memcg);
6274 return ERR_PTR(error);
6275 }
6276
6277 static int
6278 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6279 {
6280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6281 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6282 int error = 0;
6283
6284 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6285 return -ENOSPC;
6286
6287 if (!parent)
6288 return 0;
6289
6290 mutex_lock(&memcg_create_mutex);
6291
6292 memcg->use_hierarchy = parent->use_hierarchy;
6293 memcg->oom_kill_disable = parent->oom_kill_disable;
6294 memcg->swappiness = mem_cgroup_swappiness(parent);
6295
6296 if (parent->use_hierarchy) {
6297 res_counter_init(&memcg->res, &parent->res);
6298 res_counter_init(&memcg->memsw, &parent->memsw);
6299 res_counter_init(&memcg->kmem, &parent->kmem);
6300
6301 /*
6302 * No need to take a reference to the parent because cgroup
6303 * core guarantees its existence.
6304 */
6305 } else {
6306 res_counter_init(&memcg->res, NULL);
6307 res_counter_init(&memcg->memsw, NULL);
6308 res_counter_init(&memcg->kmem, NULL);
6309 /*
6310 * Deeper hierachy with use_hierarchy == false doesn't make
6311 * much sense so let cgroup subsystem know about this
6312 * unfortunate state in our controller.
6313 */
6314 if (parent != root_mem_cgroup)
6315 mem_cgroup_subsys.broken_hierarchy = true;
6316 }
6317
6318 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6319 mutex_unlock(&memcg_create_mutex);
6320 return error;
6321 }
6322
6323 /*
6324 * Announce all parents that a group from their hierarchy is gone.
6325 */
6326 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6327 {
6328 struct mem_cgroup *parent = memcg;
6329
6330 while ((parent = parent_mem_cgroup(parent)))
6331 mem_cgroup_iter_invalidate(parent);
6332
6333 /*
6334 * if the root memcg is not hierarchical we have to check it
6335 * explicitely.
6336 */
6337 if (!root_mem_cgroup->use_hierarchy)
6338 mem_cgroup_iter_invalidate(root_mem_cgroup);
6339 }
6340
6341 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6342 {
6343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6344
6345 kmem_cgroup_css_offline(memcg);
6346
6347 mem_cgroup_invalidate_reclaim_iterators(memcg);
6348 mem_cgroup_reparent_charges(memcg);
6349 mem_cgroup_destroy_all_caches(memcg);
6350 vmpressure_cleanup(&memcg->vmpressure);
6351 }
6352
6353 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6354 {
6355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6356
6357 memcg_destroy_kmem(memcg);
6358 __mem_cgroup_free(memcg);
6359 }
6360
6361 #ifdef CONFIG_MMU
6362 /* Handlers for move charge at task migration. */
6363 #define PRECHARGE_COUNT_AT_ONCE 256
6364 static int mem_cgroup_do_precharge(unsigned long count)
6365 {
6366 int ret = 0;
6367 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6368 struct mem_cgroup *memcg = mc.to;
6369
6370 if (mem_cgroup_is_root(memcg)) {
6371 mc.precharge += count;
6372 /* we don't need css_get for root */
6373 return ret;
6374 }
6375 /* try to charge at once */
6376 if (count > 1) {
6377 struct res_counter *dummy;
6378 /*
6379 * "memcg" cannot be under rmdir() because we've already checked
6380 * by cgroup_lock_live_cgroup() that it is not removed and we
6381 * are still under the same cgroup_mutex. So we can postpone
6382 * css_get().
6383 */
6384 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6385 goto one_by_one;
6386 if (do_swap_account && res_counter_charge(&memcg->memsw,
6387 PAGE_SIZE * count, &dummy)) {
6388 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6389 goto one_by_one;
6390 }
6391 mc.precharge += count;
6392 return ret;
6393 }
6394 one_by_one:
6395 /* fall back to one by one charge */
6396 while (count--) {
6397 if (signal_pending(current)) {
6398 ret = -EINTR;
6399 break;
6400 }
6401 if (!batch_count--) {
6402 batch_count = PRECHARGE_COUNT_AT_ONCE;
6403 cond_resched();
6404 }
6405 ret = __mem_cgroup_try_charge(NULL,
6406 GFP_KERNEL, 1, &memcg, false);
6407 if (ret)
6408 /* mem_cgroup_clear_mc() will do uncharge later */
6409 return ret;
6410 mc.precharge++;
6411 }
6412 return ret;
6413 }
6414
6415 /**
6416 * get_mctgt_type - get target type of moving charge
6417 * @vma: the vma the pte to be checked belongs
6418 * @addr: the address corresponding to the pte to be checked
6419 * @ptent: the pte to be checked
6420 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6421 *
6422 * Returns
6423 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6424 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6425 * move charge. if @target is not NULL, the page is stored in target->page
6426 * with extra refcnt got(Callers should handle it).
6427 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6428 * target for charge migration. if @target is not NULL, the entry is stored
6429 * in target->ent.
6430 *
6431 * Called with pte lock held.
6432 */
6433 union mc_target {
6434 struct page *page;
6435 swp_entry_t ent;
6436 };
6437
6438 enum mc_target_type {
6439 MC_TARGET_NONE = 0,
6440 MC_TARGET_PAGE,
6441 MC_TARGET_SWAP,
6442 };
6443
6444 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6445 unsigned long addr, pte_t ptent)
6446 {
6447 struct page *page = vm_normal_page(vma, addr, ptent);
6448
6449 if (!page || !page_mapped(page))
6450 return NULL;
6451 if (PageAnon(page)) {
6452 /* we don't move shared anon */
6453 if (!move_anon())
6454 return NULL;
6455 } else if (!move_file())
6456 /* we ignore mapcount for file pages */
6457 return NULL;
6458 if (!get_page_unless_zero(page))
6459 return NULL;
6460
6461 return page;
6462 }
6463
6464 #ifdef CONFIG_SWAP
6465 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6466 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6467 {
6468 struct page *page = NULL;
6469 swp_entry_t ent = pte_to_swp_entry(ptent);
6470
6471 if (!move_anon() || non_swap_entry(ent))
6472 return NULL;
6473 /*
6474 * Because lookup_swap_cache() updates some statistics counter,
6475 * we call find_get_page() with swapper_space directly.
6476 */
6477 page = find_get_page(swap_address_space(ent), ent.val);
6478 if (do_swap_account)
6479 entry->val = ent.val;
6480
6481 return page;
6482 }
6483 #else
6484 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6485 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6486 {
6487 return NULL;
6488 }
6489 #endif
6490
6491 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6492 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6493 {
6494 struct page *page = NULL;
6495 struct address_space *mapping;
6496 pgoff_t pgoff;
6497
6498 if (!vma->vm_file) /* anonymous vma */
6499 return NULL;
6500 if (!move_file())
6501 return NULL;
6502
6503 mapping = vma->vm_file->f_mapping;
6504 if (pte_none(ptent))
6505 pgoff = linear_page_index(vma, addr);
6506 else /* pte_file(ptent) is true */
6507 pgoff = pte_to_pgoff(ptent);
6508
6509 /* page is moved even if it's not RSS of this task(page-faulted). */
6510 page = find_get_page(mapping, pgoff);
6511
6512 #ifdef CONFIG_SWAP
6513 /* shmem/tmpfs may report page out on swap: account for that too. */
6514 if (radix_tree_exceptional_entry(page)) {
6515 swp_entry_t swap = radix_to_swp_entry(page);
6516 if (do_swap_account)
6517 *entry = swap;
6518 page = find_get_page(swap_address_space(swap), swap.val);
6519 }
6520 #endif
6521 return page;
6522 }
6523
6524 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6525 unsigned long addr, pte_t ptent, union mc_target *target)
6526 {
6527 struct page *page = NULL;
6528 struct page_cgroup *pc;
6529 enum mc_target_type ret = MC_TARGET_NONE;
6530 swp_entry_t ent = { .val = 0 };
6531
6532 if (pte_present(ptent))
6533 page = mc_handle_present_pte(vma, addr, ptent);
6534 else if (is_swap_pte(ptent))
6535 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6536 else if (pte_none(ptent) || pte_file(ptent))
6537 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6538
6539 if (!page && !ent.val)
6540 return ret;
6541 if (page) {
6542 pc = lookup_page_cgroup(page);
6543 /*
6544 * Do only loose check w/o page_cgroup lock.
6545 * mem_cgroup_move_account() checks the pc is valid or not under
6546 * the lock.
6547 */
6548 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6549 ret = MC_TARGET_PAGE;
6550 if (target)
6551 target->page = page;
6552 }
6553 if (!ret || !target)
6554 put_page(page);
6555 }
6556 /* There is a swap entry and a page doesn't exist or isn't charged */
6557 if (ent.val && !ret &&
6558 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6559 ret = MC_TARGET_SWAP;
6560 if (target)
6561 target->ent = ent;
6562 }
6563 return ret;
6564 }
6565
6566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6567 /*
6568 * We don't consider swapping or file mapped pages because THP does not
6569 * support them for now.
6570 * Caller should make sure that pmd_trans_huge(pmd) is true.
6571 */
6572 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6573 unsigned long addr, pmd_t pmd, union mc_target *target)
6574 {
6575 struct page *page = NULL;
6576 struct page_cgroup *pc;
6577 enum mc_target_type ret = MC_TARGET_NONE;
6578
6579 page = pmd_page(pmd);
6580 VM_BUG_ON(!page || !PageHead(page));
6581 if (!move_anon())
6582 return ret;
6583 pc = lookup_page_cgroup(page);
6584 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6585 ret = MC_TARGET_PAGE;
6586 if (target) {
6587 get_page(page);
6588 target->page = page;
6589 }
6590 }
6591 return ret;
6592 }
6593 #else
6594 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6595 unsigned long addr, pmd_t pmd, union mc_target *target)
6596 {
6597 return MC_TARGET_NONE;
6598 }
6599 #endif
6600
6601 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6602 unsigned long addr, unsigned long end,
6603 struct mm_walk *walk)
6604 {
6605 struct vm_area_struct *vma = walk->private;
6606 pte_t *pte;
6607 spinlock_t *ptl;
6608
6609 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6610 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6611 mc.precharge += HPAGE_PMD_NR;
6612 spin_unlock(&vma->vm_mm->page_table_lock);
6613 return 0;
6614 }
6615
6616 if (pmd_trans_unstable(pmd))
6617 return 0;
6618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6619 for (; addr != end; pte++, addr += PAGE_SIZE)
6620 if (get_mctgt_type(vma, addr, *pte, NULL))
6621 mc.precharge++; /* increment precharge temporarily */
6622 pte_unmap_unlock(pte - 1, ptl);
6623 cond_resched();
6624
6625 return 0;
6626 }
6627
6628 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6629 {
6630 unsigned long precharge;
6631 struct vm_area_struct *vma;
6632
6633 down_read(&mm->mmap_sem);
6634 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6635 struct mm_walk mem_cgroup_count_precharge_walk = {
6636 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6637 .mm = mm,
6638 .private = vma,
6639 };
6640 if (is_vm_hugetlb_page(vma))
6641 continue;
6642 walk_page_range(vma->vm_start, vma->vm_end,
6643 &mem_cgroup_count_precharge_walk);
6644 }
6645 up_read(&mm->mmap_sem);
6646
6647 precharge = mc.precharge;
6648 mc.precharge = 0;
6649
6650 return precharge;
6651 }
6652
6653 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6654 {
6655 unsigned long precharge = mem_cgroup_count_precharge(mm);
6656
6657 VM_BUG_ON(mc.moving_task);
6658 mc.moving_task = current;
6659 return mem_cgroup_do_precharge(precharge);
6660 }
6661
6662 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6663 static void __mem_cgroup_clear_mc(void)
6664 {
6665 struct mem_cgroup *from = mc.from;
6666 struct mem_cgroup *to = mc.to;
6667 int i;
6668
6669 /* we must uncharge all the leftover precharges from mc.to */
6670 if (mc.precharge) {
6671 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6672 mc.precharge = 0;
6673 }
6674 /*
6675 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6676 * we must uncharge here.
6677 */
6678 if (mc.moved_charge) {
6679 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6680 mc.moved_charge = 0;
6681 }
6682 /* we must fixup refcnts and charges */
6683 if (mc.moved_swap) {
6684 /* uncharge swap account from the old cgroup */
6685 if (!mem_cgroup_is_root(mc.from))
6686 res_counter_uncharge(&mc.from->memsw,
6687 PAGE_SIZE * mc.moved_swap);
6688
6689 for (i = 0; i < mc.moved_swap; i++)
6690 css_put(&mc.from->css);
6691
6692 if (!mem_cgroup_is_root(mc.to)) {
6693 /*
6694 * we charged both to->res and to->memsw, so we should
6695 * uncharge to->res.
6696 */
6697 res_counter_uncharge(&mc.to->res,
6698 PAGE_SIZE * mc.moved_swap);
6699 }
6700 /* we've already done css_get(mc.to) */
6701 mc.moved_swap = 0;
6702 }
6703 memcg_oom_recover(from);
6704 memcg_oom_recover(to);
6705 wake_up_all(&mc.waitq);
6706 }
6707
6708 static void mem_cgroup_clear_mc(void)
6709 {
6710 struct mem_cgroup *from = mc.from;
6711
6712 /*
6713 * we must clear moving_task before waking up waiters at the end of
6714 * task migration.
6715 */
6716 mc.moving_task = NULL;
6717 __mem_cgroup_clear_mc();
6718 spin_lock(&mc.lock);
6719 mc.from = NULL;
6720 mc.to = NULL;
6721 spin_unlock(&mc.lock);
6722 mem_cgroup_end_move(from);
6723 }
6724
6725 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6726 struct cgroup_taskset *tset)
6727 {
6728 struct task_struct *p = cgroup_taskset_first(tset);
6729 int ret = 0;
6730 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6731 unsigned long move_charge_at_immigrate;
6732
6733 /*
6734 * We are now commited to this value whatever it is. Changes in this
6735 * tunable will only affect upcoming migrations, not the current one.
6736 * So we need to save it, and keep it going.
6737 */
6738 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6739 if (move_charge_at_immigrate) {
6740 struct mm_struct *mm;
6741 struct mem_cgroup *from = mem_cgroup_from_task(p);
6742
6743 VM_BUG_ON(from == memcg);
6744
6745 mm = get_task_mm(p);
6746 if (!mm)
6747 return 0;
6748 /* We move charges only when we move a owner of the mm */
6749 if (mm->owner == p) {
6750 VM_BUG_ON(mc.from);
6751 VM_BUG_ON(mc.to);
6752 VM_BUG_ON(mc.precharge);
6753 VM_BUG_ON(mc.moved_charge);
6754 VM_BUG_ON(mc.moved_swap);
6755 mem_cgroup_start_move(from);
6756 spin_lock(&mc.lock);
6757 mc.from = from;
6758 mc.to = memcg;
6759 mc.immigrate_flags = move_charge_at_immigrate;
6760 spin_unlock(&mc.lock);
6761 /* We set mc.moving_task later */
6762
6763 ret = mem_cgroup_precharge_mc(mm);
6764 if (ret)
6765 mem_cgroup_clear_mc();
6766 }
6767 mmput(mm);
6768 }
6769 return ret;
6770 }
6771
6772 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6773 struct cgroup_taskset *tset)
6774 {
6775 mem_cgroup_clear_mc();
6776 }
6777
6778 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6779 unsigned long addr, unsigned long end,
6780 struct mm_walk *walk)
6781 {
6782 int ret = 0;
6783 struct vm_area_struct *vma = walk->private;
6784 pte_t *pte;
6785 spinlock_t *ptl;
6786 enum mc_target_type target_type;
6787 union mc_target target;
6788 struct page *page;
6789 struct page_cgroup *pc;
6790
6791 /*
6792 * We don't take compound_lock() here but no race with splitting thp
6793 * happens because:
6794 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6795 * under splitting, which means there's no concurrent thp split,
6796 * - if another thread runs into split_huge_page() just after we
6797 * entered this if-block, the thread must wait for page table lock
6798 * to be unlocked in __split_huge_page_splitting(), where the main
6799 * part of thp split is not executed yet.
6800 */
6801 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6802 if (mc.precharge < HPAGE_PMD_NR) {
6803 spin_unlock(&vma->vm_mm->page_table_lock);
6804 return 0;
6805 }
6806 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6807 if (target_type == MC_TARGET_PAGE) {
6808 page = target.page;
6809 if (!isolate_lru_page(page)) {
6810 pc = lookup_page_cgroup(page);
6811 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6812 pc, mc.from, mc.to)) {
6813 mc.precharge -= HPAGE_PMD_NR;
6814 mc.moved_charge += HPAGE_PMD_NR;
6815 }
6816 putback_lru_page(page);
6817 }
6818 put_page(page);
6819 }
6820 spin_unlock(&vma->vm_mm->page_table_lock);
6821 return 0;
6822 }
6823
6824 if (pmd_trans_unstable(pmd))
6825 return 0;
6826 retry:
6827 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6828 for (; addr != end; addr += PAGE_SIZE) {
6829 pte_t ptent = *(pte++);
6830 swp_entry_t ent;
6831
6832 if (!mc.precharge)
6833 break;
6834
6835 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6836 case MC_TARGET_PAGE:
6837 page = target.page;
6838 if (isolate_lru_page(page))
6839 goto put;
6840 pc = lookup_page_cgroup(page);
6841 if (!mem_cgroup_move_account(page, 1, pc,
6842 mc.from, mc.to)) {
6843 mc.precharge--;
6844 /* we uncharge from mc.from later. */
6845 mc.moved_charge++;
6846 }
6847 putback_lru_page(page);
6848 put: /* get_mctgt_type() gets the page */
6849 put_page(page);
6850 break;
6851 case MC_TARGET_SWAP:
6852 ent = target.ent;
6853 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6854 mc.precharge--;
6855 /* we fixup refcnts and charges later. */
6856 mc.moved_swap++;
6857 }
6858 break;
6859 default:
6860 break;
6861 }
6862 }
6863 pte_unmap_unlock(pte - 1, ptl);
6864 cond_resched();
6865
6866 if (addr != end) {
6867 /*
6868 * We have consumed all precharges we got in can_attach().
6869 * We try charge one by one, but don't do any additional
6870 * charges to mc.to if we have failed in charge once in attach()
6871 * phase.
6872 */
6873 ret = mem_cgroup_do_precharge(1);
6874 if (!ret)
6875 goto retry;
6876 }
6877
6878 return ret;
6879 }
6880
6881 static void mem_cgroup_move_charge(struct mm_struct *mm)
6882 {
6883 struct vm_area_struct *vma;
6884
6885 lru_add_drain_all();
6886 retry:
6887 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6888 /*
6889 * Someone who are holding the mmap_sem might be waiting in
6890 * waitq. So we cancel all extra charges, wake up all waiters,
6891 * and retry. Because we cancel precharges, we might not be able
6892 * to move enough charges, but moving charge is a best-effort
6893 * feature anyway, so it wouldn't be a big problem.
6894 */
6895 __mem_cgroup_clear_mc();
6896 cond_resched();
6897 goto retry;
6898 }
6899 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6900 int ret;
6901 struct mm_walk mem_cgroup_move_charge_walk = {
6902 .pmd_entry = mem_cgroup_move_charge_pte_range,
6903 .mm = mm,
6904 .private = vma,
6905 };
6906 if (is_vm_hugetlb_page(vma))
6907 continue;
6908 ret = walk_page_range(vma->vm_start, vma->vm_end,
6909 &mem_cgroup_move_charge_walk);
6910 if (ret)
6911 /*
6912 * means we have consumed all precharges and failed in
6913 * doing additional charge. Just abandon here.
6914 */
6915 break;
6916 }
6917 up_read(&mm->mmap_sem);
6918 }
6919
6920 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6921 struct cgroup_taskset *tset)
6922 {
6923 struct task_struct *p = cgroup_taskset_first(tset);
6924 struct mm_struct *mm = get_task_mm(p);
6925
6926 if (mm) {
6927 if (mc.to)
6928 mem_cgroup_move_charge(mm);
6929 mmput(mm);
6930 }
6931 if (mc.to)
6932 mem_cgroup_clear_mc();
6933 }
6934 #else /* !CONFIG_MMU */
6935 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6936 struct cgroup_taskset *tset)
6937 {
6938 return 0;
6939 }
6940 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6941 struct cgroup_taskset *tset)
6942 {
6943 }
6944 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6945 struct cgroup_taskset *tset)
6946 {
6947 }
6948 #endif
6949
6950 /*
6951 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6952 * to verify sane_behavior flag on each mount attempt.
6953 */
6954 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6955 {
6956 /*
6957 * use_hierarchy is forced with sane_behavior. cgroup core
6958 * guarantees that @root doesn't have any children, so turning it
6959 * on for the root memcg is enough.
6960 */
6961 if (cgroup_sane_behavior(root_css->cgroup))
6962 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6963 }
6964
6965 struct cgroup_subsys mem_cgroup_subsys = {
6966 .name = "memory",
6967 .subsys_id = mem_cgroup_subsys_id,
6968 .css_alloc = mem_cgroup_css_alloc,
6969 .css_online = mem_cgroup_css_online,
6970 .css_offline = mem_cgroup_css_offline,
6971 .css_free = mem_cgroup_css_free,
6972 .can_attach = mem_cgroup_can_attach,
6973 .cancel_attach = mem_cgroup_cancel_attach,
6974 .attach = mem_cgroup_move_task,
6975 .bind = mem_cgroup_bind,
6976 .base_cftypes = mem_cgroup_files,
6977 .early_init = 0,
6978 };
6979
6980 #ifdef CONFIG_MEMCG_SWAP
6981 static int __init enable_swap_account(char *s)
6982 {
6983 if (!strcmp(s, "1"))
6984 really_do_swap_account = 1;
6985 else if (!strcmp(s, "0"))
6986 really_do_swap_account = 0;
6987 return 1;
6988 }
6989 __setup("swapaccount=", enable_swap_account);
6990
6991 static void __init memsw_file_init(void)
6992 {
6993 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6994 }
6995
6996 static void __init enable_swap_cgroup(void)
6997 {
6998 if (!mem_cgroup_disabled() && really_do_swap_account) {
6999 do_swap_account = 1;
7000 memsw_file_init();
7001 }
7002 }
7003
7004 #else
7005 static void __init enable_swap_cgroup(void)
7006 {
7007 }
7008 #endif
7009
7010 /*
7011 * subsys_initcall() for memory controller.
7012 *
7013 * Some parts like hotcpu_notifier() have to be initialized from this context
7014 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7015 * everything that doesn't depend on a specific mem_cgroup structure should
7016 * be initialized from here.
7017 */
7018 static int __init mem_cgroup_init(void)
7019 {
7020 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7021 enable_swap_cgroup();
7022 mem_cgroup_soft_limit_tree_init();
7023 memcg_stock_init();
7024 return 0;
7025 }
7026 subsys_initcall(mem_cgroup_init);