]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memory-failure.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 /*
78 * Return values:
79 * 1: the page is dissolved (if needed) and taken off from buddy,
80 * 0: the page is dissolved (if needed) and not taken off from buddy,
81 * < 0: failed to dissolve.
82 */
83 static int __page_handle_poison(struct page *page)
84 {
85 int ret;
86
87 zone_pcp_disable(page_zone(page));
88 ret = dissolve_free_huge_page(page);
89 if (!ret)
90 ret = take_page_off_buddy(page);
91 zone_pcp_enable(page_zone(page));
92
93 return ret;
94 }
95
96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
97 {
98 if (hugepage_or_freepage) {
99 /*
100 * Doing this check for free pages is also fine since dissolve_free_huge_page
101 * returns 0 for non-hugetlb pages as well.
102 */
103 if (__page_handle_poison(page) <= 0)
104 /*
105 * We could fail to take off the target page from buddy
106 * for example due to racy page allocation, but that's
107 * acceptable because soft-offlined page is not broken
108 * and if someone really want to use it, they should
109 * take it.
110 */
111 return false;
112 }
113
114 SetPageHWPoison(page);
115 if (release)
116 put_page(page);
117 page_ref_inc(page);
118 num_poisoned_pages_inc();
119
120 return true;
121 }
122
123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
124
125 u32 hwpoison_filter_enable = 0;
126 u32 hwpoison_filter_dev_major = ~0U;
127 u32 hwpoison_filter_dev_minor = ~0U;
128 u64 hwpoison_filter_flags_mask;
129 u64 hwpoison_filter_flags_value;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
135
136 static int hwpoison_filter_dev(struct page *p)
137 {
138 struct address_space *mapping;
139 dev_t dev;
140
141 if (hwpoison_filter_dev_major == ~0U &&
142 hwpoison_filter_dev_minor == ~0U)
143 return 0;
144
145 mapping = page_mapping(p);
146 if (mapping == NULL || mapping->host == NULL)
147 return -EINVAL;
148
149 dev = mapping->host->i_sb->s_dev;
150 if (hwpoison_filter_dev_major != ~0U &&
151 hwpoison_filter_dev_major != MAJOR(dev))
152 return -EINVAL;
153 if (hwpoison_filter_dev_minor != ~0U &&
154 hwpoison_filter_dev_minor != MINOR(dev))
155 return -EINVAL;
156
157 return 0;
158 }
159
160 static int hwpoison_filter_flags(struct page *p)
161 {
162 if (!hwpoison_filter_flags_mask)
163 return 0;
164
165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
166 hwpoison_filter_flags_value)
167 return 0;
168 else
169 return -EINVAL;
170 }
171
172 /*
173 * This allows stress tests to limit test scope to a collection of tasks
174 * by putting them under some memcg. This prevents killing unrelated/important
175 * processes such as /sbin/init. Note that the target task may share clean
176 * pages with init (eg. libc text), which is harmless. If the target task
177 * share _dirty_ pages with another task B, the test scheme must make sure B
178 * is also included in the memcg. At last, due to race conditions this filter
179 * can only guarantee that the page either belongs to the memcg tasks, or is
180 * a freed page.
181 */
182 #ifdef CONFIG_MEMCG
183 u64 hwpoison_filter_memcg;
184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
185 static int hwpoison_filter_task(struct page *p)
186 {
187 if (!hwpoison_filter_memcg)
188 return 0;
189
190 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
191 return -EINVAL;
192
193 return 0;
194 }
195 #else
196 static int hwpoison_filter_task(struct page *p) { return 0; }
197 #endif
198
199 int hwpoison_filter(struct page *p)
200 {
201 if (!hwpoison_filter_enable)
202 return 0;
203
204 if (hwpoison_filter_dev(p))
205 return -EINVAL;
206
207 if (hwpoison_filter_flags(p))
208 return -EINVAL;
209
210 if (hwpoison_filter_task(p))
211 return -EINVAL;
212
213 return 0;
214 }
215 #else
216 int hwpoison_filter(struct page *p)
217 {
218 return 0;
219 }
220 #endif
221
222 EXPORT_SYMBOL_GPL(hwpoison_filter);
223
224 /*
225 * Kill all processes that have a poisoned page mapped and then isolate
226 * the page.
227 *
228 * General strategy:
229 * Find all processes having the page mapped and kill them.
230 * But we keep a page reference around so that the page is not
231 * actually freed yet.
232 * Then stash the page away
233 *
234 * There's no convenient way to get back to mapped processes
235 * from the VMAs. So do a brute-force search over all
236 * running processes.
237 *
238 * Remember that machine checks are not common (or rather
239 * if they are common you have other problems), so this shouldn't
240 * be a performance issue.
241 *
242 * Also there are some races possible while we get from the
243 * error detection to actually handle it.
244 */
245
246 struct to_kill {
247 struct list_head nd;
248 struct task_struct *tsk;
249 unsigned long addr;
250 short size_shift;
251 };
252
253 /*
254 * Send all the processes who have the page mapped a signal.
255 * ``action optional'' if they are not immediately affected by the error
256 * ``action required'' if error happened in current execution context
257 */
258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
259 {
260 struct task_struct *t = tk->tsk;
261 short addr_lsb = tk->size_shift;
262 int ret = 0;
263
264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
265 pfn, t->comm, t->pid);
266
267 if ((flags & MF_ACTION_REQUIRED) && (t == current))
268 ret = force_sig_mceerr(BUS_MCEERR_AR,
269 (void __user *)tk->addr, addr_lsb);
270 else
271 /*
272 * Signal other processes sharing the page if they have
273 * PF_MCE_EARLY set.
274 * Don't use force here, it's convenient if the signal
275 * can be temporarily blocked.
276 * This could cause a loop when the user sets SIGBUS
277 * to SIG_IGN, but hopefully no one will do that?
278 */
279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
280 addr_lsb, t); /* synchronous? */
281 if (ret < 0)
282 pr_info("Error sending signal to %s:%d: %d\n",
283 t->comm, t->pid, ret);
284 return ret;
285 }
286
287 /*
288 * Unknown page type encountered. Try to check whether it can turn PageLRU by
289 * lru_add_drain_all.
290 */
291 void shake_page(struct page *p)
292 {
293 if (PageHuge(p))
294 return;
295
296 if (!PageSlab(p)) {
297 lru_add_drain_all();
298 if (PageLRU(p) || is_free_buddy_page(p))
299 return;
300 }
301
302 /*
303 * TODO: Could shrink slab caches here if a lightweight range-based
304 * shrinker will be available.
305 */
306 }
307 EXPORT_SYMBOL_GPL(shake_page);
308
309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
310 unsigned long address)
311 {
312 unsigned long ret = 0;
313 pgd_t *pgd;
314 p4d_t *p4d;
315 pud_t *pud;
316 pmd_t *pmd;
317 pte_t *pte;
318
319 VM_BUG_ON_VMA(address == -EFAULT, vma);
320 pgd = pgd_offset(vma->vm_mm, address);
321 if (!pgd_present(*pgd))
322 return 0;
323 p4d = p4d_offset(pgd, address);
324 if (!p4d_present(*p4d))
325 return 0;
326 pud = pud_offset(p4d, address);
327 if (!pud_present(*pud))
328 return 0;
329 if (pud_devmap(*pud))
330 return PUD_SHIFT;
331 pmd = pmd_offset(pud, address);
332 if (!pmd_present(*pmd))
333 return 0;
334 if (pmd_devmap(*pmd))
335 return PMD_SHIFT;
336 pte = pte_offset_map(pmd, address);
337 if (pte_present(*pte) && pte_devmap(*pte))
338 ret = PAGE_SHIFT;
339 pte_unmap(pte);
340 return ret;
341 }
342
343 /*
344 * Failure handling: if we can't find or can't kill a process there's
345 * not much we can do. We just print a message and ignore otherwise.
346 */
347
348 /*
349 * Schedule a process for later kill.
350 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
351 *
352 * Notice: @fsdax_pgoff is used only when @p is a fsdax page.
353 * In other cases, such as anonymous and file-backend page, the address to be
354 * killed can be caculated by @p itself.
355 */
356 static void add_to_kill(struct task_struct *tsk, struct page *p,
357 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
358 struct list_head *to_kill)
359 {
360 struct to_kill *tk;
361
362 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
363 if (!tk) {
364 pr_err("Out of memory while machine check handling\n");
365 return;
366 }
367
368 tk->addr = page_address_in_vma(p, vma);
369 if (is_zone_device_page(p)) {
370 /*
371 * Since page->mapping is not used for fsdax, we need
372 * calculate the address based on the vma.
373 */
374 if (p->pgmap->type == MEMORY_DEVICE_FS_DAX)
375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
377 } else
378 tk->size_shift = page_shift(compound_head(p));
379
380 /*
381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
382 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
383 * so "tk->size_shift == 0" effectively checks no mapping on
384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
385 * to a process' address space, it's possible not all N VMAs
386 * contain mappings for the page, but at least one VMA does.
387 * Only deliver SIGBUS with payload derived from the VMA that
388 * has a mapping for the page.
389 */
390 if (tk->addr == -EFAULT) {
391 pr_info("Unable to find user space address %lx in %s\n",
392 page_to_pfn(p), tsk->comm);
393 } else if (tk->size_shift == 0) {
394 kfree(tk);
395 return;
396 }
397
398 get_task_struct(tsk);
399 tk->tsk = tsk;
400 list_add_tail(&tk->nd, to_kill);
401 }
402
403 /*
404 * Kill the processes that have been collected earlier.
405 *
406 * Only do anything when FORCEKILL is set, otherwise just free the
407 * list (this is used for clean pages which do not need killing)
408 * Also when FAIL is set do a force kill because something went
409 * wrong earlier.
410 */
411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
412 unsigned long pfn, int flags)
413 {
414 struct to_kill *tk, *next;
415
416 list_for_each_entry_safe (tk, next, to_kill, nd) {
417 if (forcekill) {
418 /*
419 * In case something went wrong with munmapping
420 * make sure the process doesn't catch the
421 * signal and then access the memory. Just kill it.
422 */
423 if (fail || tk->addr == -EFAULT) {
424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
425 pfn, tk->tsk->comm, tk->tsk->pid);
426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
427 tk->tsk, PIDTYPE_PID);
428 }
429
430 /*
431 * In theory the process could have mapped
432 * something else on the address in-between. We could
433 * check for that, but we need to tell the
434 * process anyways.
435 */
436 else if (kill_proc(tk, pfn, flags) < 0)
437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
438 pfn, tk->tsk->comm, tk->tsk->pid);
439 }
440 put_task_struct(tk->tsk);
441 kfree(tk);
442 }
443 }
444
445 /*
446 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
447 * on behalf of the thread group. Return task_struct of the (first found)
448 * dedicated thread if found, and return NULL otherwise.
449 *
450 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
451 * have to call rcu_read_lock/unlock() in this function.
452 */
453 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
454 {
455 struct task_struct *t;
456
457 for_each_thread(tsk, t) {
458 if (t->flags & PF_MCE_PROCESS) {
459 if (t->flags & PF_MCE_EARLY)
460 return t;
461 } else {
462 if (sysctl_memory_failure_early_kill)
463 return t;
464 }
465 }
466 return NULL;
467 }
468
469 /*
470 * Determine whether a given process is "early kill" process which expects
471 * to be signaled when some page under the process is hwpoisoned.
472 * Return task_struct of the dedicated thread (main thread unless explicitly
473 * specified) if the process is "early kill" and otherwise returns NULL.
474 *
475 * Note that the above is true for Action Optional case. For Action Required
476 * case, it's only meaningful to the current thread which need to be signaled
477 * with SIGBUS, this error is Action Optional for other non current
478 * processes sharing the same error page,if the process is "early kill", the
479 * task_struct of the dedicated thread will also be returned.
480 */
481 static struct task_struct *task_early_kill(struct task_struct *tsk,
482 int force_early)
483 {
484 if (!tsk->mm)
485 return NULL;
486 /*
487 * Comparing ->mm here because current task might represent
488 * a subthread, while tsk always points to the main thread.
489 */
490 if (force_early && tsk->mm == current->mm)
491 return current;
492
493 return find_early_kill_thread(tsk);
494 }
495
496 /*
497 * Collect processes when the error hit an anonymous page.
498 */
499 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
500 int force_early)
501 {
502 struct folio *folio = page_folio(page);
503 struct vm_area_struct *vma;
504 struct task_struct *tsk;
505 struct anon_vma *av;
506 pgoff_t pgoff;
507
508 av = folio_lock_anon_vma_read(folio, NULL);
509 if (av == NULL) /* Not actually mapped anymore */
510 return;
511
512 pgoff = page_to_pgoff(page);
513 read_lock(&tasklist_lock);
514 for_each_process (tsk) {
515 struct anon_vma_chain *vmac;
516 struct task_struct *t = task_early_kill(tsk, force_early);
517
518 if (!t)
519 continue;
520 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
521 pgoff, pgoff) {
522 vma = vmac->vma;
523 if (!page_mapped_in_vma(page, vma))
524 continue;
525 if (vma->vm_mm == t->mm)
526 add_to_kill(t, page, 0, vma, to_kill);
527 }
528 }
529 read_unlock(&tasklist_lock);
530 page_unlock_anon_vma_read(av);
531 }
532
533 /*
534 * Collect processes when the error hit a file mapped page.
535 */
536 static void collect_procs_file(struct page *page, struct list_head *to_kill,
537 int force_early)
538 {
539 struct vm_area_struct *vma;
540 struct task_struct *tsk;
541 struct address_space *mapping = page->mapping;
542 pgoff_t pgoff;
543
544 i_mmap_lock_read(mapping);
545 read_lock(&tasklist_lock);
546 pgoff = page_to_pgoff(page);
547 for_each_process(tsk) {
548 struct task_struct *t = task_early_kill(tsk, force_early);
549
550 if (!t)
551 continue;
552 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
553 pgoff) {
554 /*
555 * Send early kill signal to tasks where a vma covers
556 * the page but the corrupted page is not necessarily
557 * mapped it in its pte.
558 * Assume applications who requested early kill want
559 * to be informed of all such data corruptions.
560 */
561 if (vma->vm_mm == t->mm)
562 add_to_kill(t, page, 0, vma, to_kill);
563 }
564 }
565 read_unlock(&tasklist_lock);
566 i_mmap_unlock_read(mapping);
567 }
568
569 #ifdef CONFIG_FS_DAX
570 /*
571 * Collect processes when the error hit a fsdax page.
572 */
573 static void collect_procs_fsdax(struct page *page,
574 struct address_space *mapping, pgoff_t pgoff,
575 struct list_head *to_kill)
576 {
577 struct vm_area_struct *vma;
578 struct task_struct *tsk;
579
580 i_mmap_lock_read(mapping);
581 read_lock(&tasklist_lock);
582 for_each_process(tsk) {
583 struct task_struct *t = task_early_kill(tsk, true);
584
585 if (!t)
586 continue;
587 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
588 if (vma->vm_mm == t->mm)
589 add_to_kill(t, page, pgoff, vma, to_kill);
590 }
591 }
592 read_unlock(&tasklist_lock);
593 i_mmap_unlock_read(mapping);
594 }
595 #endif /* CONFIG_FS_DAX */
596
597 /*
598 * Collect the processes who have the corrupted page mapped to kill.
599 */
600 static void collect_procs(struct page *page, struct list_head *tokill,
601 int force_early)
602 {
603 if (!page->mapping)
604 return;
605
606 if (PageAnon(page))
607 collect_procs_anon(page, tokill, force_early);
608 else
609 collect_procs_file(page, tokill, force_early);
610 }
611
612 struct hwp_walk {
613 struct to_kill tk;
614 unsigned long pfn;
615 int flags;
616 };
617
618 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
619 {
620 tk->addr = addr;
621 tk->size_shift = shift;
622 }
623
624 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
625 unsigned long poisoned_pfn, struct to_kill *tk)
626 {
627 unsigned long pfn = 0;
628
629 if (pte_present(pte)) {
630 pfn = pte_pfn(pte);
631 } else {
632 swp_entry_t swp = pte_to_swp_entry(pte);
633
634 if (is_hwpoison_entry(swp))
635 pfn = hwpoison_entry_to_pfn(swp);
636 }
637
638 if (!pfn || pfn != poisoned_pfn)
639 return 0;
640
641 set_to_kill(tk, addr, shift);
642 return 1;
643 }
644
645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
646 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
647 struct hwp_walk *hwp)
648 {
649 pmd_t pmd = *pmdp;
650 unsigned long pfn;
651 unsigned long hwpoison_vaddr;
652
653 if (!pmd_present(pmd))
654 return 0;
655 pfn = pmd_pfn(pmd);
656 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
657 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
658 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
659 return 1;
660 }
661 return 0;
662 }
663 #else
664 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
665 struct hwp_walk *hwp)
666 {
667 return 0;
668 }
669 #endif
670
671 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
672 unsigned long end, struct mm_walk *walk)
673 {
674 struct hwp_walk *hwp = walk->private;
675 int ret = 0;
676 pte_t *ptep, *mapped_pte;
677 spinlock_t *ptl;
678
679 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
680 if (ptl) {
681 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
682 spin_unlock(ptl);
683 goto out;
684 }
685
686 if (pmd_trans_unstable(pmdp))
687 goto out;
688
689 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
690 addr, &ptl);
691 for (; addr != end; ptep++, addr += PAGE_SIZE) {
692 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
693 hwp->pfn, &hwp->tk);
694 if (ret == 1)
695 break;
696 }
697 pte_unmap_unlock(mapped_pte, ptl);
698 out:
699 cond_resched();
700 return ret;
701 }
702
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
705 unsigned long addr, unsigned long end,
706 struct mm_walk *walk)
707 {
708 struct hwp_walk *hwp = walk->private;
709 pte_t pte = huge_ptep_get(ptep);
710 struct hstate *h = hstate_vma(walk->vma);
711
712 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
713 hwp->pfn, &hwp->tk);
714 }
715 #else
716 #define hwpoison_hugetlb_range NULL
717 #endif
718
719 static const struct mm_walk_ops hwp_walk_ops = {
720 .pmd_entry = hwpoison_pte_range,
721 .hugetlb_entry = hwpoison_hugetlb_range,
722 };
723
724 /*
725 * Sends SIGBUS to the current process with error info.
726 *
727 * This function is intended to handle "Action Required" MCEs on already
728 * hardware poisoned pages. They could happen, for example, when
729 * memory_failure() failed to unmap the error page at the first call, or
730 * when multiple local machine checks happened on different CPUs.
731 *
732 * MCE handler currently has no easy access to the error virtual address,
733 * so this function walks page table to find it. The returned virtual address
734 * is proper in most cases, but it could be wrong when the application
735 * process has multiple entries mapping the error page.
736 */
737 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
738 int flags)
739 {
740 int ret;
741 struct hwp_walk priv = {
742 .pfn = pfn,
743 };
744 priv.tk.tsk = p;
745
746 mmap_read_lock(p->mm);
747 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
748 (void *)&priv);
749 if (ret == 1 && priv.tk.addr)
750 kill_proc(&priv.tk, pfn, flags);
751 else
752 ret = 0;
753 mmap_read_unlock(p->mm);
754 return ret > 0 ? -EHWPOISON : -EFAULT;
755 }
756
757 static const char *action_name[] = {
758 [MF_IGNORED] = "Ignored",
759 [MF_FAILED] = "Failed",
760 [MF_DELAYED] = "Delayed",
761 [MF_RECOVERED] = "Recovered",
762 };
763
764 static const char * const action_page_types[] = {
765 [MF_MSG_KERNEL] = "reserved kernel page",
766 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
767 [MF_MSG_SLAB] = "kernel slab page",
768 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
769 [MF_MSG_HUGE] = "huge page",
770 [MF_MSG_FREE_HUGE] = "free huge page",
771 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
772 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
773 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
774 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
775 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
776 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
777 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
778 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
779 [MF_MSG_CLEAN_LRU] = "clean LRU page",
780 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
781 [MF_MSG_BUDDY] = "free buddy page",
782 [MF_MSG_DAX] = "dax page",
783 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
784 [MF_MSG_UNKNOWN] = "unknown page",
785 };
786
787 /*
788 * XXX: It is possible that a page is isolated from LRU cache,
789 * and then kept in swap cache or failed to remove from page cache.
790 * The page count will stop it from being freed by unpoison.
791 * Stress tests should be aware of this memory leak problem.
792 */
793 static int delete_from_lru_cache(struct page *p)
794 {
795 if (!isolate_lru_page(p)) {
796 /*
797 * Clear sensible page flags, so that the buddy system won't
798 * complain when the page is unpoison-and-freed.
799 */
800 ClearPageActive(p);
801 ClearPageUnevictable(p);
802
803 /*
804 * Poisoned page might never drop its ref count to 0 so we have
805 * to uncharge it manually from its memcg.
806 */
807 mem_cgroup_uncharge(page_folio(p));
808
809 /*
810 * drop the page count elevated by isolate_lru_page()
811 */
812 put_page(p);
813 return 0;
814 }
815 return -EIO;
816 }
817
818 static int truncate_error_page(struct page *p, unsigned long pfn,
819 struct address_space *mapping)
820 {
821 int ret = MF_FAILED;
822
823 if (mapping->a_ops->error_remove_page) {
824 int err = mapping->a_ops->error_remove_page(mapping, p);
825
826 if (err != 0) {
827 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
828 } else if (page_has_private(p) &&
829 !try_to_release_page(p, GFP_NOIO)) {
830 pr_info("%#lx: failed to release buffers\n", pfn);
831 } else {
832 ret = MF_RECOVERED;
833 }
834 } else {
835 /*
836 * If the file system doesn't support it just invalidate
837 * This fails on dirty or anything with private pages
838 */
839 if (invalidate_inode_page(p))
840 ret = MF_RECOVERED;
841 else
842 pr_info("%#lx: Failed to invalidate\n", pfn);
843 }
844
845 return ret;
846 }
847
848 struct page_state {
849 unsigned long mask;
850 unsigned long res;
851 enum mf_action_page_type type;
852
853 /* Callback ->action() has to unlock the relevant page inside it. */
854 int (*action)(struct page_state *ps, struct page *p);
855 };
856
857 /*
858 * Return true if page is still referenced by others, otherwise return
859 * false.
860 *
861 * The extra_pins is true when one extra refcount is expected.
862 */
863 static bool has_extra_refcount(struct page_state *ps, struct page *p,
864 bool extra_pins)
865 {
866 int count = page_count(p) - 1;
867
868 if (extra_pins)
869 count -= 1;
870
871 if (count > 0) {
872 pr_err("%#lx: %s still referenced by %d users\n",
873 page_to_pfn(p), action_page_types[ps->type], count);
874 return true;
875 }
876
877 return false;
878 }
879
880 /*
881 * Error hit kernel page.
882 * Do nothing, try to be lucky and not touch this instead. For a few cases we
883 * could be more sophisticated.
884 */
885 static int me_kernel(struct page_state *ps, struct page *p)
886 {
887 unlock_page(p);
888 return MF_IGNORED;
889 }
890
891 /*
892 * Page in unknown state. Do nothing.
893 */
894 static int me_unknown(struct page_state *ps, struct page *p)
895 {
896 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
897 unlock_page(p);
898 return MF_FAILED;
899 }
900
901 /*
902 * Clean (or cleaned) page cache page.
903 */
904 static int me_pagecache_clean(struct page_state *ps, struct page *p)
905 {
906 int ret;
907 struct address_space *mapping;
908 bool extra_pins;
909
910 delete_from_lru_cache(p);
911
912 /*
913 * For anonymous pages we're done the only reference left
914 * should be the one m_f() holds.
915 */
916 if (PageAnon(p)) {
917 ret = MF_RECOVERED;
918 goto out;
919 }
920
921 /*
922 * Now truncate the page in the page cache. This is really
923 * more like a "temporary hole punch"
924 * Don't do this for block devices when someone else
925 * has a reference, because it could be file system metadata
926 * and that's not safe to truncate.
927 */
928 mapping = page_mapping(p);
929 if (!mapping) {
930 /*
931 * Page has been teared down in the meanwhile
932 */
933 ret = MF_FAILED;
934 goto out;
935 }
936
937 /*
938 * The shmem page is kept in page cache instead of truncating
939 * so is expected to have an extra refcount after error-handling.
940 */
941 extra_pins = shmem_mapping(mapping);
942
943 /*
944 * Truncation is a bit tricky. Enable it per file system for now.
945 *
946 * Open: to take i_rwsem or not for this? Right now we don't.
947 */
948 ret = truncate_error_page(p, page_to_pfn(p), mapping);
949 if (has_extra_refcount(ps, p, extra_pins))
950 ret = MF_FAILED;
951
952 out:
953 unlock_page(p);
954
955 return ret;
956 }
957
958 /*
959 * Dirty pagecache page
960 * Issues: when the error hit a hole page the error is not properly
961 * propagated.
962 */
963 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
964 {
965 struct address_space *mapping = page_mapping(p);
966
967 SetPageError(p);
968 /* TBD: print more information about the file. */
969 if (mapping) {
970 /*
971 * IO error will be reported by write(), fsync(), etc.
972 * who check the mapping.
973 * This way the application knows that something went
974 * wrong with its dirty file data.
975 *
976 * There's one open issue:
977 *
978 * The EIO will be only reported on the next IO
979 * operation and then cleared through the IO map.
980 * Normally Linux has two mechanisms to pass IO error
981 * first through the AS_EIO flag in the address space
982 * and then through the PageError flag in the page.
983 * Since we drop pages on memory failure handling the
984 * only mechanism open to use is through AS_AIO.
985 *
986 * This has the disadvantage that it gets cleared on
987 * the first operation that returns an error, while
988 * the PageError bit is more sticky and only cleared
989 * when the page is reread or dropped. If an
990 * application assumes it will always get error on
991 * fsync, but does other operations on the fd before
992 * and the page is dropped between then the error
993 * will not be properly reported.
994 *
995 * This can already happen even without hwpoisoned
996 * pages: first on metadata IO errors (which only
997 * report through AS_EIO) or when the page is dropped
998 * at the wrong time.
999 *
1000 * So right now we assume that the application DTRT on
1001 * the first EIO, but we're not worse than other parts
1002 * of the kernel.
1003 */
1004 mapping_set_error(mapping, -EIO);
1005 }
1006
1007 return me_pagecache_clean(ps, p);
1008 }
1009
1010 /*
1011 * Clean and dirty swap cache.
1012 *
1013 * Dirty swap cache page is tricky to handle. The page could live both in page
1014 * cache and swap cache(ie. page is freshly swapped in). So it could be
1015 * referenced concurrently by 2 types of PTEs:
1016 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1017 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1018 * and then
1019 * - clear dirty bit to prevent IO
1020 * - remove from LRU
1021 * - but keep in the swap cache, so that when we return to it on
1022 * a later page fault, we know the application is accessing
1023 * corrupted data and shall be killed (we installed simple
1024 * interception code in do_swap_page to catch it).
1025 *
1026 * Clean swap cache pages can be directly isolated. A later page fault will
1027 * bring in the known good data from disk.
1028 */
1029 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1030 {
1031 int ret;
1032 bool extra_pins = false;
1033
1034 ClearPageDirty(p);
1035 /* Trigger EIO in shmem: */
1036 ClearPageUptodate(p);
1037
1038 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1039 unlock_page(p);
1040
1041 if (ret == MF_DELAYED)
1042 extra_pins = true;
1043
1044 if (has_extra_refcount(ps, p, extra_pins))
1045 ret = MF_FAILED;
1046
1047 return ret;
1048 }
1049
1050 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1051 {
1052 struct folio *folio = page_folio(p);
1053 int ret;
1054
1055 delete_from_swap_cache(folio);
1056
1057 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1058 folio_unlock(folio);
1059
1060 if (has_extra_refcount(ps, p, false))
1061 ret = MF_FAILED;
1062
1063 return ret;
1064 }
1065
1066 /*
1067 * Huge pages. Needs work.
1068 * Issues:
1069 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1070 * To narrow down kill region to one page, we need to break up pmd.
1071 */
1072 static int me_huge_page(struct page_state *ps, struct page *p)
1073 {
1074 int res;
1075 struct page *hpage = compound_head(p);
1076 struct address_space *mapping;
1077
1078 if (!PageHuge(hpage))
1079 return MF_DELAYED;
1080
1081 mapping = page_mapping(hpage);
1082 if (mapping) {
1083 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1084 unlock_page(hpage);
1085 } else {
1086 unlock_page(hpage);
1087 /*
1088 * migration entry prevents later access on error hugepage,
1089 * so we can free and dissolve it into buddy to save healthy
1090 * subpages.
1091 */
1092 put_page(hpage);
1093 if (__page_handle_poison(p) >= 0) {
1094 page_ref_inc(p);
1095 res = MF_RECOVERED;
1096 } else {
1097 res = MF_FAILED;
1098 }
1099 }
1100
1101 if (has_extra_refcount(ps, p, false))
1102 res = MF_FAILED;
1103
1104 return res;
1105 }
1106
1107 /*
1108 * Various page states we can handle.
1109 *
1110 * A page state is defined by its current page->flags bits.
1111 * The table matches them in order and calls the right handler.
1112 *
1113 * This is quite tricky because we can access page at any time
1114 * in its live cycle, so all accesses have to be extremely careful.
1115 *
1116 * This is not complete. More states could be added.
1117 * For any missing state don't attempt recovery.
1118 */
1119
1120 #define dirty (1UL << PG_dirty)
1121 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1122 #define unevict (1UL << PG_unevictable)
1123 #define mlock (1UL << PG_mlocked)
1124 #define lru (1UL << PG_lru)
1125 #define head (1UL << PG_head)
1126 #define slab (1UL << PG_slab)
1127 #define reserved (1UL << PG_reserved)
1128
1129 static struct page_state error_states[] = {
1130 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1131 /*
1132 * free pages are specially detected outside this table:
1133 * PG_buddy pages only make a small fraction of all free pages.
1134 */
1135
1136 /*
1137 * Could in theory check if slab page is free or if we can drop
1138 * currently unused objects without touching them. But just
1139 * treat it as standard kernel for now.
1140 */
1141 { slab, slab, MF_MSG_SLAB, me_kernel },
1142
1143 { head, head, MF_MSG_HUGE, me_huge_page },
1144
1145 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1146 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1147
1148 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1149 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1150
1151 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1152 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1153
1154 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1155 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1156
1157 /*
1158 * Catchall entry: must be at end.
1159 */
1160 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1161 };
1162
1163 #undef dirty
1164 #undef sc
1165 #undef unevict
1166 #undef mlock
1167 #undef lru
1168 #undef head
1169 #undef slab
1170 #undef reserved
1171
1172 /*
1173 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1174 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1175 */
1176 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1177 enum mf_result result)
1178 {
1179 trace_memory_failure_event(pfn, type, result);
1180
1181 num_poisoned_pages_inc();
1182 pr_err("%#lx: recovery action for %s: %s\n",
1183 pfn, action_page_types[type], action_name[result]);
1184 }
1185
1186 static int page_action(struct page_state *ps, struct page *p,
1187 unsigned long pfn)
1188 {
1189 int result;
1190
1191 /* page p should be unlocked after returning from ps->action(). */
1192 result = ps->action(ps, p);
1193
1194 action_result(pfn, ps->type, result);
1195
1196 /* Could do more checks here if page looks ok */
1197 /*
1198 * Could adjust zone counters here to correct for the missing page.
1199 */
1200
1201 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1202 }
1203
1204 static inline bool PageHWPoisonTakenOff(struct page *page)
1205 {
1206 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1207 }
1208
1209 void SetPageHWPoisonTakenOff(struct page *page)
1210 {
1211 set_page_private(page, MAGIC_HWPOISON);
1212 }
1213
1214 void ClearPageHWPoisonTakenOff(struct page *page)
1215 {
1216 if (PageHWPoison(page))
1217 set_page_private(page, 0);
1218 }
1219
1220 /*
1221 * Return true if a page type of a given page is supported by hwpoison
1222 * mechanism (while handling could fail), otherwise false. This function
1223 * does not return true for hugetlb or device memory pages, so it's assumed
1224 * to be called only in the context where we never have such pages.
1225 */
1226 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1227 {
1228 /* Soft offline could migrate non-LRU movable pages */
1229 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1230 return true;
1231
1232 return PageLRU(page) || is_free_buddy_page(page);
1233 }
1234
1235 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1236 {
1237 struct page *head = compound_head(page);
1238 int ret = 0;
1239 bool hugetlb = false;
1240
1241 ret = get_hwpoison_huge_page(head, &hugetlb);
1242 if (hugetlb)
1243 return ret;
1244
1245 /*
1246 * This check prevents from calling get_hwpoison_unless_zero()
1247 * for any unsupported type of page in order to reduce the risk of
1248 * unexpected races caused by taking a page refcount.
1249 */
1250 if (!HWPoisonHandlable(head, flags))
1251 return -EBUSY;
1252
1253 if (get_page_unless_zero(head)) {
1254 if (head == compound_head(page))
1255 return 1;
1256
1257 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1258 put_page(head);
1259 }
1260
1261 return 0;
1262 }
1263
1264 static int get_any_page(struct page *p, unsigned long flags)
1265 {
1266 int ret = 0, pass = 0;
1267 bool count_increased = false;
1268
1269 if (flags & MF_COUNT_INCREASED)
1270 count_increased = true;
1271
1272 try_again:
1273 if (!count_increased) {
1274 ret = __get_hwpoison_page(p, flags);
1275 if (!ret) {
1276 if (page_count(p)) {
1277 /* We raced with an allocation, retry. */
1278 if (pass++ < 3)
1279 goto try_again;
1280 ret = -EBUSY;
1281 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1282 /* We raced with put_page, retry. */
1283 if (pass++ < 3)
1284 goto try_again;
1285 ret = -EIO;
1286 }
1287 goto out;
1288 } else if (ret == -EBUSY) {
1289 /*
1290 * We raced with (possibly temporary) unhandlable
1291 * page, retry.
1292 */
1293 if (pass++ < 3) {
1294 shake_page(p);
1295 goto try_again;
1296 }
1297 ret = -EIO;
1298 goto out;
1299 }
1300 }
1301
1302 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1303 ret = 1;
1304 } else {
1305 /*
1306 * A page we cannot handle. Check whether we can turn
1307 * it into something we can handle.
1308 */
1309 if (pass++ < 3) {
1310 put_page(p);
1311 shake_page(p);
1312 count_increased = false;
1313 goto try_again;
1314 }
1315 put_page(p);
1316 ret = -EIO;
1317 }
1318 out:
1319 if (ret == -EIO)
1320 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1321
1322 return ret;
1323 }
1324
1325 static int __get_unpoison_page(struct page *page)
1326 {
1327 struct page *head = compound_head(page);
1328 int ret = 0;
1329 bool hugetlb = false;
1330
1331 ret = get_hwpoison_huge_page(head, &hugetlb);
1332 if (hugetlb)
1333 return ret;
1334
1335 /*
1336 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1337 * but also isolated from buddy freelist, so need to identify the
1338 * state and have to cancel both operations to unpoison.
1339 */
1340 if (PageHWPoisonTakenOff(page))
1341 return -EHWPOISON;
1342
1343 return get_page_unless_zero(page) ? 1 : 0;
1344 }
1345
1346 /**
1347 * get_hwpoison_page() - Get refcount for memory error handling
1348 * @p: Raw error page (hit by memory error)
1349 * @flags: Flags controlling behavior of error handling
1350 *
1351 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1352 * error on it, after checking that the error page is in a well-defined state
1353 * (defined as a page-type we can successfully handle the memory error on it,
1354 * such as LRU page and hugetlb page).
1355 *
1356 * Memory error handling could be triggered at any time on any type of page,
1357 * so it's prone to race with typical memory management lifecycle (like
1358 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1359 * extra care for the error page's state (as done in __get_hwpoison_page()),
1360 * and has some retry logic in get_any_page().
1361 *
1362 * When called from unpoison_memory(), the caller should already ensure that
1363 * the given page has PG_hwpoison. So it's never reused for other page
1364 * allocations, and __get_unpoison_page() never races with them.
1365 *
1366 * Return: 0 on failure,
1367 * 1 on success for in-use pages in a well-defined state,
1368 * -EIO for pages on which we can not handle memory errors,
1369 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1370 * operations like allocation and free,
1371 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1372 */
1373 static int get_hwpoison_page(struct page *p, unsigned long flags)
1374 {
1375 int ret;
1376
1377 zone_pcp_disable(page_zone(p));
1378 if (flags & MF_UNPOISON)
1379 ret = __get_unpoison_page(p);
1380 else
1381 ret = get_any_page(p, flags);
1382 zone_pcp_enable(page_zone(p));
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * Do all that is necessary to remove user space mappings. Unmap
1389 * the pages and send SIGBUS to the processes if the data was dirty.
1390 */
1391 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1392 int flags, struct page *hpage)
1393 {
1394 struct folio *folio = page_folio(hpage);
1395 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1396 struct address_space *mapping;
1397 LIST_HEAD(tokill);
1398 bool unmap_success;
1399 int kill = 1, forcekill;
1400 bool mlocked = PageMlocked(hpage);
1401
1402 /*
1403 * Here we are interested only in user-mapped pages, so skip any
1404 * other types of pages.
1405 */
1406 if (PageReserved(p) || PageSlab(p))
1407 return true;
1408 if (!(PageLRU(hpage) || PageHuge(p)))
1409 return true;
1410
1411 /*
1412 * This check implies we don't kill processes if their pages
1413 * are in the swap cache early. Those are always late kills.
1414 */
1415 if (!page_mapped(hpage))
1416 return true;
1417
1418 if (PageKsm(p)) {
1419 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1420 return false;
1421 }
1422
1423 if (PageSwapCache(p)) {
1424 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1425 ttu |= TTU_IGNORE_HWPOISON;
1426 }
1427
1428 /*
1429 * Propagate the dirty bit from PTEs to struct page first, because we
1430 * need this to decide if we should kill or just drop the page.
1431 * XXX: the dirty test could be racy: set_page_dirty() may not always
1432 * be called inside page lock (it's recommended but not enforced).
1433 */
1434 mapping = page_mapping(hpage);
1435 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1436 mapping_can_writeback(mapping)) {
1437 if (page_mkclean(hpage)) {
1438 SetPageDirty(hpage);
1439 } else {
1440 kill = 0;
1441 ttu |= TTU_IGNORE_HWPOISON;
1442 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1443 pfn);
1444 }
1445 }
1446
1447 /*
1448 * First collect all the processes that have the page
1449 * mapped in dirty form. This has to be done before try_to_unmap,
1450 * because ttu takes the rmap data structures down.
1451 *
1452 * Error handling: We ignore errors here because
1453 * there's nothing that can be done.
1454 */
1455 if (kill)
1456 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1457
1458 if (PageHuge(hpage) && !PageAnon(hpage)) {
1459 /*
1460 * For hugetlb pages in shared mappings, try_to_unmap
1461 * could potentially call huge_pmd_unshare. Because of
1462 * this, take semaphore in write mode here and set
1463 * TTU_RMAP_LOCKED to indicate we have taken the lock
1464 * at this higher level.
1465 */
1466 mapping = hugetlb_page_mapping_lock_write(hpage);
1467 if (mapping) {
1468 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1469 i_mmap_unlock_write(mapping);
1470 } else
1471 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1472 } else {
1473 try_to_unmap(folio, ttu);
1474 }
1475
1476 unmap_success = !page_mapped(hpage);
1477 if (!unmap_success)
1478 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1479 pfn, page_mapcount(hpage));
1480
1481 /*
1482 * try_to_unmap() might put mlocked page in lru cache, so call
1483 * shake_page() again to ensure that it's flushed.
1484 */
1485 if (mlocked)
1486 shake_page(hpage);
1487
1488 /*
1489 * Now that the dirty bit has been propagated to the
1490 * struct page and all unmaps done we can decide if
1491 * killing is needed or not. Only kill when the page
1492 * was dirty or the process is not restartable,
1493 * otherwise the tokill list is merely
1494 * freed. When there was a problem unmapping earlier
1495 * use a more force-full uncatchable kill to prevent
1496 * any accesses to the poisoned memory.
1497 */
1498 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1499 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1500
1501 return unmap_success;
1502 }
1503
1504 static int identify_page_state(unsigned long pfn, struct page *p,
1505 unsigned long page_flags)
1506 {
1507 struct page_state *ps;
1508
1509 /*
1510 * The first check uses the current page flags which may not have any
1511 * relevant information. The second check with the saved page flags is
1512 * carried out only if the first check can't determine the page status.
1513 */
1514 for (ps = error_states;; ps++)
1515 if ((p->flags & ps->mask) == ps->res)
1516 break;
1517
1518 page_flags |= (p->flags & (1UL << PG_dirty));
1519
1520 if (!ps->mask)
1521 for (ps = error_states;; ps++)
1522 if ((page_flags & ps->mask) == ps->res)
1523 break;
1524 return page_action(ps, p, pfn);
1525 }
1526
1527 static int try_to_split_thp_page(struct page *page, const char *msg)
1528 {
1529 lock_page(page);
1530 if (unlikely(split_huge_page(page))) {
1531 unsigned long pfn = page_to_pfn(page);
1532
1533 unlock_page(page);
1534 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1535 put_page(page);
1536 return -EBUSY;
1537 }
1538 unlock_page(page);
1539
1540 return 0;
1541 }
1542
1543 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1544 struct address_space *mapping, pgoff_t index, int flags)
1545 {
1546 struct to_kill *tk;
1547 unsigned long size = 0;
1548
1549 list_for_each_entry(tk, to_kill, nd)
1550 if (tk->size_shift)
1551 size = max(size, 1UL << tk->size_shift);
1552
1553 if (size) {
1554 /*
1555 * Unmap the largest mapping to avoid breaking up device-dax
1556 * mappings which are constant size. The actual size of the
1557 * mapping being torn down is communicated in siginfo, see
1558 * kill_proc()
1559 */
1560 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1561
1562 unmap_mapping_range(mapping, start, size, 0);
1563 }
1564
1565 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1566 }
1567
1568 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1569 struct dev_pagemap *pgmap)
1570 {
1571 struct page *page = pfn_to_page(pfn);
1572 LIST_HEAD(to_kill);
1573 dax_entry_t cookie;
1574 int rc = 0;
1575
1576 /*
1577 * Pages instantiated by device-dax (not filesystem-dax)
1578 * may be compound pages.
1579 */
1580 page = compound_head(page);
1581
1582 /*
1583 * Prevent the inode from being freed while we are interrogating
1584 * the address_space, typically this would be handled by
1585 * lock_page(), but dax pages do not use the page lock. This
1586 * also prevents changes to the mapping of this pfn until
1587 * poison signaling is complete.
1588 */
1589 cookie = dax_lock_page(page);
1590 if (!cookie)
1591 return -EBUSY;
1592
1593 if (hwpoison_filter(page)) {
1594 rc = -EOPNOTSUPP;
1595 goto unlock;
1596 }
1597
1598 switch (pgmap->type) {
1599 case MEMORY_DEVICE_PRIVATE:
1600 case MEMORY_DEVICE_COHERENT:
1601 /*
1602 * TODO: Handle device pages which may need coordination
1603 * with device-side memory.
1604 */
1605 rc = -ENXIO;
1606 goto unlock;
1607 default:
1608 break;
1609 }
1610
1611 /*
1612 * Use this flag as an indication that the dax page has been
1613 * remapped UC to prevent speculative consumption of poison.
1614 */
1615 SetPageHWPoison(page);
1616
1617 /*
1618 * Unlike System-RAM there is no possibility to swap in a
1619 * different physical page at a given virtual address, so all
1620 * userspace consumption of ZONE_DEVICE memory necessitates
1621 * SIGBUS (i.e. MF_MUST_KILL)
1622 */
1623 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1624 collect_procs(page, &to_kill, true);
1625
1626 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1627 unlock:
1628 dax_unlock_page(page, cookie);
1629 return rc;
1630 }
1631
1632 #ifdef CONFIG_FS_DAX
1633 /**
1634 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1635 * @mapping: address_space of the file in use
1636 * @index: start pgoff of the range within the file
1637 * @count: length of the range, in unit of PAGE_SIZE
1638 * @mf_flags: memory failure flags
1639 */
1640 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1641 unsigned long count, int mf_flags)
1642 {
1643 LIST_HEAD(to_kill);
1644 dax_entry_t cookie;
1645 struct page *page;
1646 size_t end = index + count;
1647
1648 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1649
1650 for (; index < end; index++) {
1651 page = NULL;
1652 cookie = dax_lock_mapping_entry(mapping, index, &page);
1653 if (!cookie)
1654 return -EBUSY;
1655 if (!page)
1656 goto unlock;
1657
1658 SetPageHWPoison(page);
1659
1660 collect_procs_fsdax(page, mapping, index, &to_kill);
1661 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1662 index, mf_flags);
1663 unlock:
1664 dax_unlock_mapping_entry(mapping, index, cookie);
1665 }
1666 return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1669 #endif /* CONFIG_FS_DAX */
1670
1671 #ifdef CONFIG_HUGETLB_PAGE
1672 /*
1673 * Struct raw_hwp_page represents information about "raw error page",
1674 * constructing singly linked list originated from ->private field of
1675 * SUBPAGE_INDEX_HWPOISON-th tail page.
1676 */
1677 struct raw_hwp_page {
1678 struct llist_node node;
1679 struct page *page;
1680 };
1681
1682 static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1683 {
1684 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON);
1685 }
1686
1687 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1688 {
1689 struct llist_head *head;
1690 struct llist_node *t, *tnode;
1691 unsigned long count = 0;
1692
1693 head = raw_hwp_list_head(hpage);
1694 llist_for_each_safe(tnode, t, head->first) {
1695 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1696
1697 if (move_flag)
1698 SetPageHWPoison(p->page);
1699 kfree(p);
1700 count++;
1701 }
1702 llist_del_all(head);
1703 return count;
1704 }
1705
1706 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1707 {
1708 struct llist_head *head;
1709 struct raw_hwp_page *raw_hwp;
1710 struct llist_node *t, *tnode;
1711 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1712
1713 /*
1714 * Once the hwpoison hugepage has lost reliable raw error info,
1715 * there is little meaning to keep additional error info precisely,
1716 * so skip to add additional raw error info.
1717 */
1718 if (HPageRawHwpUnreliable(hpage))
1719 return -EHWPOISON;
1720 head = raw_hwp_list_head(hpage);
1721 llist_for_each_safe(tnode, t, head->first) {
1722 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1723
1724 if (p->page == page)
1725 return -EHWPOISON;
1726 }
1727
1728 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1729 if (raw_hwp) {
1730 raw_hwp->page = page;
1731 llist_add(&raw_hwp->node, head);
1732 /* the first error event will be counted in action_result(). */
1733 if (ret)
1734 num_poisoned_pages_inc();
1735 } else {
1736 /*
1737 * Failed to save raw error info. We no longer trace all
1738 * hwpoisoned subpages, and we need refuse to free/dissolve
1739 * this hwpoisoned hugepage.
1740 */
1741 SetHPageRawHwpUnreliable(hpage);
1742 /*
1743 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1744 * used any more, so free it.
1745 */
1746 __free_raw_hwp_pages(hpage, false);
1747 }
1748 return ret;
1749 }
1750
1751 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1752 {
1753 /*
1754 * HPageVmemmapOptimized hugepages can't be freed because struct
1755 * pages for tail pages are required but they don't exist.
1756 */
1757 if (move_flag && HPageVmemmapOptimized(hpage))
1758 return 0;
1759
1760 /*
1761 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1762 * definition.
1763 */
1764 if (HPageRawHwpUnreliable(hpage))
1765 return 0;
1766
1767 return __free_raw_hwp_pages(hpage, move_flag);
1768 }
1769
1770 void hugetlb_clear_page_hwpoison(struct page *hpage)
1771 {
1772 if (HPageRawHwpUnreliable(hpage))
1773 return;
1774 ClearPageHWPoison(hpage);
1775 free_raw_hwp_pages(hpage, true);
1776 }
1777
1778 /*
1779 * Called from hugetlb code with hugetlb_lock held.
1780 *
1781 * Return values:
1782 * 0 - free hugepage
1783 * 1 - in-use hugepage
1784 * 2 - not a hugepage
1785 * -EBUSY - the hugepage is busy (try to retry)
1786 * -EHWPOISON - the hugepage is already hwpoisoned
1787 */
1788 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1789 {
1790 struct page *page = pfn_to_page(pfn);
1791 struct page *head = compound_head(page);
1792 int ret = 2; /* fallback to normal page handling */
1793 bool count_increased = false;
1794
1795 if (!PageHeadHuge(head))
1796 goto out;
1797
1798 if (flags & MF_COUNT_INCREASED) {
1799 ret = 1;
1800 count_increased = true;
1801 } else if (HPageFreed(head)) {
1802 ret = 0;
1803 } else if (HPageMigratable(head)) {
1804 ret = get_page_unless_zero(head);
1805 if (ret)
1806 count_increased = true;
1807 } else {
1808 ret = -EBUSY;
1809 if (!(flags & MF_NO_RETRY))
1810 goto out;
1811 }
1812
1813 if (hugetlb_set_page_hwpoison(head, page)) {
1814 ret = -EHWPOISON;
1815 goto out;
1816 }
1817
1818 return ret;
1819 out:
1820 if (count_increased)
1821 put_page(head);
1822 return ret;
1823 }
1824
1825 /*
1826 * Taking refcount of hugetlb pages needs extra care about race conditions
1827 * with basic operations like hugepage allocation/free/demotion.
1828 * So some of prechecks for hwpoison (pinning, and testing/setting
1829 * PageHWPoison) should be done in single hugetlb_lock range.
1830 */
1831 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1832 {
1833 int res;
1834 struct page *p = pfn_to_page(pfn);
1835 struct page *head;
1836 unsigned long page_flags;
1837
1838 *hugetlb = 1;
1839 retry:
1840 res = get_huge_page_for_hwpoison(pfn, flags);
1841 if (res == 2) { /* fallback to normal page handling */
1842 *hugetlb = 0;
1843 return 0;
1844 } else if (res == -EHWPOISON) {
1845 pr_err("%#lx: already hardware poisoned\n", pfn);
1846 if (flags & MF_ACTION_REQUIRED) {
1847 head = compound_head(p);
1848 res = kill_accessing_process(current, page_to_pfn(head), flags);
1849 }
1850 return res;
1851 } else if (res == -EBUSY) {
1852 if (!(flags & MF_NO_RETRY)) {
1853 flags |= MF_NO_RETRY;
1854 goto retry;
1855 }
1856 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1857 return res;
1858 }
1859
1860 head = compound_head(p);
1861 lock_page(head);
1862
1863 if (hwpoison_filter(p)) {
1864 hugetlb_clear_page_hwpoison(head);
1865 res = -EOPNOTSUPP;
1866 goto out;
1867 }
1868
1869 /*
1870 * Handling free hugepage. The possible race with hugepage allocation
1871 * or demotion can be prevented by PageHWPoison flag.
1872 */
1873 if (res == 0) {
1874 unlock_page(head);
1875 if (__page_handle_poison(p) >= 0) {
1876 page_ref_inc(p);
1877 res = MF_RECOVERED;
1878 } else {
1879 res = MF_FAILED;
1880 }
1881 action_result(pfn, MF_MSG_FREE_HUGE, res);
1882 return res == MF_RECOVERED ? 0 : -EBUSY;
1883 }
1884
1885 page_flags = head->flags;
1886
1887 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1888 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1889 res = -EBUSY;
1890 goto out;
1891 }
1892
1893 return identify_page_state(pfn, p, page_flags);
1894 out:
1895 unlock_page(head);
1896 return res;
1897 }
1898
1899 #else
1900 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1901 {
1902 return 0;
1903 }
1904
1905 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1906 {
1907 return 0;
1908 }
1909 #endif /* CONFIG_HUGETLB_PAGE */
1910
1911 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1912 struct dev_pagemap *pgmap)
1913 {
1914 struct page *page = pfn_to_page(pfn);
1915 int rc = -ENXIO;
1916
1917 if (flags & MF_COUNT_INCREASED)
1918 /*
1919 * Drop the extra refcount in case we come from madvise().
1920 */
1921 put_page(page);
1922
1923 /* device metadata space is not recoverable */
1924 if (!pgmap_pfn_valid(pgmap, pfn))
1925 goto out;
1926
1927 /*
1928 * Call driver's implementation to handle the memory failure, otherwise
1929 * fall back to generic handler.
1930 */
1931 if (pgmap->ops->memory_failure) {
1932 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1933 /*
1934 * Fall back to generic handler too if operation is not
1935 * supported inside the driver/device/filesystem.
1936 */
1937 if (rc != -EOPNOTSUPP)
1938 goto out;
1939 }
1940
1941 rc = mf_generic_kill_procs(pfn, flags, pgmap);
1942 out:
1943 /* drop pgmap ref acquired in caller */
1944 put_dev_pagemap(pgmap);
1945 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1946 return rc;
1947 }
1948
1949 static DEFINE_MUTEX(mf_mutex);
1950
1951 /**
1952 * memory_failure - Handle memory failure of a page.
1953 * @pfn: Page Number of the corrupted page
1954 * @flags: fine tune action taken
1955 *
1956 * This function is called by the low level machine check code
1957 * of an architecture when it detects hardware memory corruption
1958 * of a page. It tries its best to recover, which includes
1959 * dropping pages, killing processes etc.
1960 *
1961 * The function is primarily of use for corruptions that
1962 * happen outside the current execution context (e.g. when
1963 * detected by a background scrubber)
1964 *
1965 * Must run in process context (e.g. a work queue) with interrupts
1966 * enabled and no spinlocks hold.
1967 *
1968 * Return: 0 for successfully handled the memory error,
1969 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1970 * < 0(except -EOPNOTSUPP) on failure.
1971 */
1972 int memory_failure(unsigned long pfn, int flags)
1973 {
1974 struct page *p;
1975 struct page *hpage;
1976 struct dev_pagemap *pgmap;
1977 int res = 0;
1978 unsigned long page_flags;
1979 bool retry = true;
1980 int hugetlb = 0;
1981
1982 if (!sysctl_memory_failure_recovery)
1983 panic("Memory failure on page %lx", pfn);
1984
1985 mutex_lock(&mf_mutex);
1986
1987 if (!(flags & MF_SW_SIMULATED))
1988 hw_memory_failure = true;
1989
1990 p = pfn_to_online_page(pfn);
1991 if (!p) {
1992 res = arch_memory_failure(pfn, flags);
1993 if (res == 0)
1994 goto unlock_mutex;
1995
1996 if (pfn_valid(pfn)) {
1997 pgmap = get_dev_pagemap(pfn, NULL);
1998 if (pgmap) {
1999 res = memory_failure_dev_pagemap(pfn, flags,
2000 pgmap);
2001 goto unlock_mutex;
2002 }
2003 }
2004 pr_err("%#lx: memory outside kernel control\n", pfn);
2005 res = -ENXIO;
2006 goto unlock_mutex;
2007 }
2008
2009 try_again:
2010 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2011 if (hugetlb)
2012 goto unlock_mutex;
2013
2014 if (TestSetPageHWPoison(p)) {
2015 pr_err("%#lx: already hardware poisoned\n", pfn);
2016 res = -EHWPOISON;
2017 if (flags & MF_ACTION_REQUIRED)
2018 res = kill_accessing_process(current, pfn, flags);
2019 if (flags & MF_COUNT_INCREASED)
2020 put_page(p);
2021 goto unlock_mutex;
2022 }
2023
2024 hpage = compound_head(p);
2025
2026 /*
2027 * We need/can do nothing about count=0 pages.
2028 * 1) it's a free page, and therefore in safe hand:
2029 * prep_new_page() will be the gate keeper.
2030 * 2) it's part of a non-compound high order page.
2031 * Implies some kernel user: cannot stop them from
2032 * R/W the page; let's pray that the page has been
2033 * used and will be freed some time later.
2034 * In fact it's dangerous to directly bump up page count from 0,
2035 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2036 */
2037 if (!(flags & MF_COUNT_INCREASED)) {
2038 res = get_hwpoison_page(p, flags);
2039 if (!res) {
2040 if (is_free_buddy_page(p)) {
2041 if (take_page_off_buddy(p)) {
2042 page_ref_inc(p);
2043 res = MF_RECOVERED;
2044 } else {
2045 /* We lost the race, try again */
2046 if (retry) {
2047 ClearPageHWPoison(p);
2048 retry = false;
2049 goto try_again;
2050 }
2051 res = MF_FAILED;
2052 }
2053 action_result(pfn, MF_MSG_BUDDY, res);
2054 res = res == MF_RECOVERED ? 0 : -EBUSY;
2055 } else {
2056 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2057 res = -EBUSY;
2058 }
2059 goto unlock_mutex;
2060 } else if (res < 0) {
2061 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2062 res = -EBUSY;
2063 goto unlock_mutex;
2064 }
2065 }
2066
2067 if (PageTransHuge(hpage)) {
2068 /*
2069 * The flag must be set after the refcount is bumped
2070 * otherwise it may race with THP split.
2071 * And the flag can't be set in get_hwpoison_page() since
2072 * it is called by soft offline too and it is just called
2073 * for !MF_COUNT_INCREASE. So here seems to be the best
2074 * place.
2075 *
2076 * Don't need care about the above error handling paths for
2077 * get_hwpoison_page() since they handle either free page
2078 * or unhandlable page. The refcount is bumped iff the
2079 * page is a valid handlable page.
2080 */
2081 SetPageHasHWPoisoned(hpage);
2082 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
2083 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2084 res = -EBUSY;
2085 goto unlock_mutex;
2086 }
2087 VM_BUG_ON_PAGE(!page_count(p), p);
2088 }
2089
2090 /*
2091 * We ignore non-LRU pages for good reasons.
2092 * - PG_locked is only well defined for LRU pages and a few others
2093 * - to avoid races with __SetPageLocked()
2094 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2095 * The check (unnecessarily) ignores LRU pages being isolated and
2096 * walked by the page reclaim code, however that's not a big loss.
2097 */
2098 shake_page(p);
2099
2100 lock_page(p);
2101
2102 /*
2103 * We're only intended to deal with the non-Compound page here.
2104 * However, the page could have changed compound pages due to
2105 * race window. If this happens, we could try again to hopefully
2106 * handle the page next round.
2107 */
2108 if (PageCompound(p)) {
2109 if (retry) {
2110 ClearPageHWPoison(p);
2111 unlock_page(p);
2112 put_page(p);
2113 flags &= ~MF_COUNT_INCREASED;
2114 retry = false;
2115 goto try_again;
2116 }
2117 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2118 res = -EBUSY;
2119 goto unlock_page;
2120 }
2121
2122 /*
2123 * We use page flags to determine what action should be taken, but
2124 * the flags can be modified by the error containment action. One
2125 * example is an mlocked page, where PG_mlocked is cleared by
2126 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2127 * correctly, we save a copy of the page flags at this time.
2128 */
2129 page_flags = p->flags;
2130
2131 if (hwpoison_filter(p)) {
2132 TestClearPageHWPoison(p);
2133 unlock_page(p);
2134 put_page(p);
2135 res = -EOPNOTSUPP;
2136 goto unlock_mutex;
2137 }
2138
2139 /*
2140 * __munlock_pagevec may clear a writeback page's LRU flag without
2141 * page_lock. We need wait writeback completion for this page or it
2142 * may trigger vfs BUG while evict inode.
2143 */
2144 if (!PageLRU(p) && !PageWriteback(p))
2145 goto identify_page_state;
2146
2147 /*
2148 * It's very difficult to mess with pages currently under IO
2149 * and in many cases impossible, so we just avoid it here.
2150 */
2151 wait_on_page_writeback(p);
2152
2153 /*
2154 * Now take care of user space mappings.
2155 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2156 */
2157 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2158 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2159 res = -EBUSY;
2160 goto unlock_page;
2161 }
2162
2163 /*
2164 * Torn down by someone else?
2165 */
2166 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2167 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2168 res = -EBUSY;
2169 goto unlock_page;
2170 }
2171
2172 identify_page_state:
2173 res = identify_page_state(pfn, p, page_flags);
2174 mutex_unlock(&mf_mutex);
2175 return res;
2176 unlock_page:
2177 unlock_page(p);
2178 unlock_mutex:
2179 mutex_unlock(&mf_mutex);
2180 return res;
2181 }
2182 EXPORT_SYMBOL_GPL(memory_failure);
2183
2184 #define MEMORY_FAILURE_FIFO_ORDER 4
2185 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2186
2187 struct memory_failure_entry {
2188 unsigned long pfn;
2189 int flags;
2190 };
2191
2192 struct memory_failure_cpu {
2193 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2194 MEMORY_FAILURE_FIFO_SIZE);
2195 spinlock_t lock;
2196 struct work_struct work;
2197 };
2198
2199 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2200
2201 /**
2202 * memory_failure_queue - Schedule handling memory failure of a page.
2203 * @pfn: Page Number of the corrupted page
2204 * @flags: Flags for memory failure handling
2205 *
2206 * This function is called by the low level hardware error handler
2207 * when it detects hardware memory corruption of a page. It schedules
2208 * the recovering of error page, including dropping pages, killing
2209 * processes etc.
2210 *
2211 * The function is primarily of use for corruptions that
2212 * happen outside the current execution context (e.g. when
2213 * detected by a background scrubber)
2214 *
2215 * Can run in IRQ context.
2216 */
2217 void memory_failure_queue(unsigned long pfn, int flags)
2218 {
2219 struct memory_failure_cpu *mf_cpu;
2220 unsigned long proc_flags;
2221 struct memory_failure_entry entry = {
2222 .pfn = pfn,
2223 .flags = flags,
2224 };
2225
2226 mf_cpu = &get_cpu_var(memory_failure_cpu);
2227 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2228 if (kfifo_put(&mf_cpu->fifo, entry))
2229 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2230 else
2231 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2232 pfn);
2233 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2234 put_cpu_var(memory_failure_cpu);
2235 }
2236 EXPORT_SYMBOL_GPL(memory_failure_queue);
2237
2238 static void memory_failure_work_func(struct work_struct *work)
2239 {
2240 struct memory_failure_cpu *mf_cpu;
2241 struct memory_failure_entry entry = { 0, };
2242 unsigned long proc_flags;
2243 int gotten;
2244
2245 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2246 for (;;) {
2247 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2248 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2249 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2250 if (!gotten)
2251 break;
2252 if (entry.flags & MF_SOFT_OFFLINE)
2253 soft_offline_page(entry.pfn, entry.flags);
2254 else
2255 memory_failure(entry.pfn, entry.flags);
2256 }
2257 }
2258
2259 /*
2260 * Process memory_failure work queued on the specified CPU.
2261 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2262 */
2263 void memory_failure_queue_kick(int cpu)
2264 {
2265 struct memory_failure_cpu *mf_cpu;
2266
2267 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2268 cancel_work_sync(&mf_cpu->work);
2269 memory_failure_work_func(&mf_cpu->work);
2270 }
2271
2272 static int __init memory_failure_init(void)
2273 {
2274 struct memory_failure_cpu *mf_cpu;
2275 int cpu;
2276
2277 for_each_possible_cpu(cpu) {
2278 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2279 spin_lock_init(&mf_cpu->lock);
2280 INIT_KFIFO(mf_cpu->fifo);
2281 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2282 }
2283
2284 return 0;
2285 }
2286 core_initcall(memory_failure_init);
2287
2288 #undef pr_fmt
2289 #define pr_fmt(fmt) "" fmt
2290 #define unpoison_pr_info(fmt, pfn, rs) \
2291 ({ \
2292 if (__ratelimit(rs)) \
2293 pr_info(fmt, pfn); \
2294 })
2295
2296 /**
2297 * unpoison_memory - Unpoison a previously poisoned page
2298 * @pfn: Page number of the to be unpoisoned page
2299 *
2300 * Software-unpoison a page that has been poisoned by
2301 * memory_failure() earlier.
2302 *
2303 * This is only done on the software-level, so it only works
2304 * for linux injected failures, not real hardware failures
2305 *
2306 * Returns 0 for success, otherwise -errno.
2307 */
2308 int unpoison_memory(unsigned long pfn)
2309 {
2310 struct page *page;
2311 struct page *p;
2312 int ret = -EBUSY;
2313 int freeit = 0;
2314 unsigned long count = 1;
2315 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2316 DEFAULT_RATELIMIT_BURST);
2317
2318 if (!pfn_valid(pfn))
2319 return -ENXIO;
2320
2321 p = pfn_to_page(pfn);
2322 page = compound_head(p);
2323
2324 mutex_lock(&mf_mutex);
2325
2326 if (hw_memory_failure) {
2327 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2328 pfn, &unpoison_rs);
2329 ret = -EOPNOTSUPP;
2330 goto unlock_mutex;
2331 }
2332
2333 if (!PageHWPoison(p)) {
2334 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2335 pfn, &unpoison_rs);
2336 goto unlock_mutex;
2337 }
2338
2339 if (page_count(page) > 1) {
2340 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2341 pfn, &unpoison_rs);
2342 goto unlock_mutex;
2343 }
2344
2345 if (page_mapped(page)) {
2346 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2347 pfn, &unpoison_rs);
2348 goto unlock_mutex;
2349 }
2350
2351 if (page_mapping(page)) {
2352 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2353 pfn, &unpoison_rs);
2354 goto unlock_mutex;
2355 }
2356
2357 if (PageSlab(page) || PageTable(page))
2358 goto unlock_mutex;
2359
2360 ret = get_hwpoison_page(p, MF_UNPOISON);
2361 if (!ret) {
2362 if (PageHuge(p)) {
2363 count = free_raw_hwp_pages(page, false);
2364 if (count == 0) {
2365 ret = -EBUSY;
2366 goto unlock_mutex;
2367 }
2368 }
2369 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2370 } else if (ret < 0) {
2371 if (ret == -EHWPOISON) {
2372 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2373 } else
2374 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2375 pfn, &unpoison_rs);
2376 } else {
2377 if (PageHuge(p)) {
2378 count = free_raw_hwp_pages(page, false);
2379 if (count == 0) {
2380 ret = -EBUSY;
2381 goto unlock_mutex;
2382 }
2383 }
2384 freeit = !!TestClearPageHWPoison(p);
2385
2386 put_page(page);
2387 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2388 put_page(page);
2389 ret = 0;
2390 }
2391 }
2392
2393 unlock_mutex:
2394 mutex_unlock(&mf_mutex);
2395 if (!ret || freeit) {
2396 num_poisoned_pages_sub(count);
2397 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2398 page_to_pfn(p), &unpoison_rs);
2399 }
2400 return ret;
2401 }
2402 EXPORT_SYMBOL(unpoison_memory);
2403
2404 static bool isolate_page(struct page *page, struct list_head *pagelist)
2405 {
2406 bool isolated = false;
2407 bool lru = PageLRU(page);
2408
2409 if (PageHuge(page)) {
2410 isolated = !isolate_hugetlb(page, pagelist);
2411 } else {
2412 if (lru)
2413 isolated = !isolate_lru_page(page);
2414 else
2415 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2416
2417 if (isolated)
2418 list_add(&page->lru, pagelist);
2419 }
2420
2421 if (isolated && lru)
2422 inc_node_page_state(page, NR_ISOLATED_ANON +
2423 page_is_file_lru(page));
2424
2425 /*
2426 * If we succeed to isolate the page, we grabbed another refcount on
2427 * the page, so we can safely drop the one we got from get_any_pages().
2428 * If we failed to isolate the page, it means that we cannot go further
2429 * and we will return an error, so drop the reference we got from
2430 * get_any_pages() as well.
2431 */
2432 put_page(page);
2433 return isolated;
2434 }
2435
2436 /*
2437 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2438 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2439 * If the page is mapped, it migrates the contents over.
2440 */
2441 static int __soft_offline_page(struct page *page)
2442 {
2443 long ret = 0;
2444 unsigned long pfn = page_to_pfn(page);
2445 struct page *hpage = compound_head(page);
2446 char const *msg_page[] = {"page", "hugepage"};
2447 bool huge = PageHuge(page);
2448 LIST_HEAD(pagelist);
2449 struct migration_target_control mtc = {
2450 .nid = NUMA_NO_NODE,
2451 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2452 };
2453
2454 lock_page(page);
2455 if (!PageHuge(page))
2456 wait_on_page_writeback(page);
2457 if (PageHWPoison(page)) {
2458 unlock_page(page);
2459 put_page(page);
2460 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2461 return 0;
2462 }
2463
2464 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2465 /*
2466 * Try to invalidate first. This should work for
2467 * non dirty unmapped page cache pages.
2468 */
2469 ret = invalidate_inode_page(page);
2470 unlock_page(page);
2471
2472 if (ret) {
2473 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2474 page_handle_poison(page, false, true);
2475 return 0;
2476 }
2477
2478 if (isolate_page(hpage, &pagelist)) {
2479 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2480 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2481 if (!ret) {
2482 bool release = !huge;
2483
2484 if (!page_handle_poison(page, huge, release))
2485 ret = -EBUSY;
2486 } else {
2487 if (!list_empty(&pagelist))
2488 putback_movable_pages(&pagelist);
2489
2490 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2491 pfn, msg_page[huge], ret, &page->flags);
2492 if (ret > 0)
2493 ret = -EBUSY;
2494 }
2495 } else {
2496 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2497 pfn, msg_page[huge], page_count(page), &page->flags);
2498 ret = -EBUSY;
2499 }
2500 return ret;
2501 }
2502
2503 static int soft_offline_in_use_page(struct page *page)
2504 {
2505 struct page *hpage = compound_head(page);
2506
2507 if (!PageHuge(page) && PageTransHuge(hpage))
2508 if (try_to_split_thp_page(page, "soft offline") < 0)
2509 return -EBUSY;
2510 return __soft_offline_page(page);
2511 }
2512
2513 static int soft_offline_free_page(struct page *page)
2514 {
2515 int rc = 0;
2516
2517 if (!page_handle_poison(page, true, false))
2518 rc = -EBUSY;
2519
2520 return rc;
2521 }
2522
2523 static void put_ref_page(struct page *page)
2524 {
2525 if (page)
2526 put_page(page);
2527 }
2528
2529 /**
2530 * soft_offline_page - Soft offline a page.
2531 * @pfn: pfn to soft-offline
2532 * @flags: flags. Same as memory_failure().
2533 *
2534 * Returns 0 on success
2535 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2536 * < 0 otherwise negated errno.
2537 *
2538 * Soft offline a page, by migration or invalidation,
2539 * without killing anything. This is for the case when
2540 * a page is not corrupted yet (so it's still valid to access),
2541 * but has had a number of corrected errors and is better taken
2542 * out.
2543 *
2544 * The actual policy on when to do that is maintained by
2545 * user space.
2546 *
2547 * This should never impact any application or cause data loss,
2548 * however it might take some time.
2549 *
2550 * This is not a 100% solution for all memory, but tries to be
2551 * ``good enough'' for the majority of memory.
2552 */
2553 int soft_offline_page(unsigned long pfn, int flags)
2554 {
2555 int ret;
2556 bool try_again = true;
2557 struct page *page, *ref_page = NULL;
2558
2559 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2560
2561 if (!pfn_valid(pfn))
2562 return -ENXIO;
2563 if (flags & MF_COUNT_INCREASED)
2564 ref_page = pfn_to_page(pfn);
2565
2566 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2567 page = pfn_to_online_page(pfn);
2568 if (!page) {
2569 put_ref_page(ref_page);
2570 return -EIO;
2571 }
2572
2573 mutex_lock(&mf_mutex);
2574
2575 if (PageHWPoison(page)) {
2576 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2577 put_ref_page(ref_page);
2578 mutex_unlock(&mf_mutex);
2579 return 0;
2580 }
2581
2582 retry:
2583 get_online_mems();
2584 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2585 put_online_mems();
2586
2587 if (hwpoison_filter(page)) {
2588 if (ret > 0)
2589 put_page(page);
2590 else
2591 put_ref_page(ref_page);
2592
2593 mutex_unlock(&mf_mutex);
2594 return -EOPNOTSUPP;
2595 }
2596
2597 if (ret > 0) {
2598 ret = soft_offline_in_use_page(page);
2599 } else if (ret == 0) {
2600 if (soft_offline_free_page(page) && try_again) {
2601 try_again = false;
2602 flags &= ~MF_COUNT_INCREASED;
2603 goto retry;
2604 }
2605 }
2606
2607 mutex_unlock(&mf_mutex);
2608
2609 return ret;
2610 }
2611
2612 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2613 {
2614 int i;
2615
2616 /*
2617 * A further optimization is to have per section refcounted
2618 * num_poisoned_pages. But that would need more space per memmap, so
2619 * for now just do a quick global check to speed up this routine in the
2620 * absence of bad pages.
2621 */
2622 if (atomic_long_read(&num_poisoned_pages) == 0)
2623 return;
2624
2625 for (i = 0; i < nr_pages; i++) {
2626 if (PageHWPoison(&memmap[i])) {
2627 num_poisoned_pages_dec();
2628 ClearPageHWPoison(&memmap[i]);
2629 }
2630 }
2631 }