]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory-failure.c
mm: soft-offline: close the race against page allocation
[mirror_ubuntu-jammy-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/page-isolation.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 struct address_space *mapping;
86 dev_t dev;
87
88 if (hwpoison_filter_dev_major == ~0U &&
89 hwpoison_filter_dev_minor == ~0U)
90 return 0;
91
92 /*
93 * page_mapping() does not accept slab pages.
94 */
95 if (PageSlab(p))
96 return -EINVAL;
97
98 mapping = page_mapping(p);
99 if (mapping == NULL || mapping->host == NULL)
100 return -EINVAL;
101
102 dev = mapping->host->i_sb->s_dev;
103 if (hwpoison_filter_dev_major != ~0U &&
104 hwpoison_filter_dev_major != MAJOR(dev))
105 return -EINVAL;
106 if (hwpoison_filter_dev_minor != ~0U &&
107 hwpoison_filter_dev_minor != MINOR(dev))
108 return -EINVAL;
109
110 return 0;
111 }
112
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 if (!hwpoison_filter_flags_mask)
116 return 0;
117
118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 hwpoison_filter_flags_value)
120 return 0;
121 else
122 return -EINVAL;
123 }
124
125 /*
126 * This allows stress tests to limit test scope to a collection of tasks
127 * by putting them under some memcg. This prevents killing unrelated/important
128 * processes such as /sbin/init. Note that the target task may share clean
129 * pages with init (eg. libc text), which is harmless. If the target task
130 * share _dirty_ pages with another task B, the test scheme must make sure B
131 * is also included in the memcg. At last, due to race conditions this filter
132 * can only guarantee that the page either belongs to the memcg tasks, or is
133 * a freed page.
134 */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 return -EINVAL;
145
146 return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151
152 int hwpoison_filter(struct page *p)
153 {
154 if (!hwpoison_filter_enable)
155 return 0;
156
157 if (hwpoison_filter_dev(p))
158 return -EINVAL;
159
160 if (hwpoison_filter_flags(p))
161 return -EINVAL;
162
163 if (hwpoison_filter_task(p))
164 return -EINVAL;
165
166 return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 return 0;
172 }
173 #endif
174
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176
177 /*
178 * Send all the processes who have the page mapped a signal.
179 * ``action optional'' if they are not immediately affected by the error
180 * ``action required'' if error happened in current execution context
181 */
182 static int kill_proc(struct task_struct *t, unsigned long addr,
183 unsigned long pfn, struct page *page, int flags)
184 {
185 short addr_lsb;
186 int ret;
187
188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
190 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
191
192 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
193 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
194 addr_lsb, current);
195 } else {
196 /*
197 * Don't use force here, it's convenient if the signal
198 * can be temporarily blocked.
199 * This could cause a loop when the user sets SIGBUS
200 * to SIG_IGN, but hopefully no one will do that?
201 */
202 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
203 addr_lsb, t); /* synchronous? */
204 }
205 if (ret < 0)
206 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
207 t->comm, t->pid, ret);
208 return ret;
209 }
210
211 /*
212 * When a unknown page type is encountered drain as many buffers as possible
213 * in the hope to turn the page into a LRU or free page, which we can handle.
214 */
215 void shake_page(struct page *p, int access)
216 {
217 if (PageHuge(p))
218 return;
219
220 if (!PageSlab(p)) {
221 lru_add_drain_all();
222 if (PageLRU(p))
223 return;
224 drain_all_pages(page_zone(p));
225 if (PageLRU(p) || is_free_buddy_page(p))
226 return;
227 }
228
229 /*
230 * Only call shrink_node_slabs here (which would also shrink
231 * other caches) if access is not potentially fatal.
232 */
233 if (access)
234 drop_slab_node(page_to_nid(p));
235 }
236 EXPORT_SYMBOL_GPL(shake_page);
237
238 /*
239 * Kill all processes that have a poisoned page mapped and then isolate
240 * the page.
241 *
242 * General strategy:
243 * Find all processes having the page mapped and kill them.
244 * But we keep a page reference around so that the page is not
245 * actually freed yet.
246 * Then stash the page away
247 *
248 * There's no convenient way to get back to mapped processes
249 * from the VMAs. So do a brute-force search over all
250 * running processes.
251 *
252 * Remember that machine checks are not common (or rather
253 * if they are common you have other problems), so this shouldn't
254 * be a performance issue.
255 *
256 * Also there are some races possible while we get from the
257 * error detection to actually handle it.
258 */
259
260 struct to_kill {
261 struct list_head nd;
262 struct task_struct *tsk;
263 unsigned long addr;
264 char addr_valid;
265 };
266
267 /*
268 * Failure handling: if we can't find or can't kill a process there's
269 * not much we can do. We just print a message and ignore otherwise.
270 */
271
272 /*
273 * Schedule a process for later kill.
274 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
275 * TBD would GFP_NOIO be enough?
276 */
277 static void add_to_kill(struct task_struct *tsk, struct page *p,
278 struct vm_area_struct *vma,
279 struct list_head *to_kill,
280 struct to_kill **tkc)
281 {
282 struct to_kill *tk;
283
284 if (*tkc) {
285 tk = *tkc;
286 *tkc = NULL;
287 } else {
288 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
289 if (!tk) {
290 pr_err("Memory failure: Out of memory while machine check handling\n");
291 return;
292 }
293 }
294 tk->addr = page_address_in_vma(p, vma);
295 tk->addr_valid = 1;
296
297 /*
298 * In theory we don't have to kill when the page was
299 * munmaped. But it could be also a mremap. Since that's
300 * likely very rare kill anyways just out of paranoia, but use
301 * a SIGKILL because the error is not contained anymore.
302 */
303 if (tk->addr == -EFAULT) {
304 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
305 page_to_pfn(p), tsk->comm);
306 tk->addr_valid = 0;
307 }
308 get_task_struct(tsk);
309 tk->tsk = tsk;
310 list_add_tail(&tk->nd, to_kill);
311 }
312
313 /*
314 * Kill the processes that have been collected earlier.
315 *
316 * Only do anything when DOIT is set, otherwise just free the list
317 * (this is used for clean pages which do not need killing)
318 * Also when FAIL is set do a force kill because something went
319 * wrong earlier.
320 */
321 static void kill_procs(struct list_head *to_kill, int forcekill,
322 bool fail, struct page *page, unsigned long pfn,
323 int flags)
324 {
325 struct to_kill *tk, *next;
326
327 list_for_each_entry_safe (tk, next, to_kill, nd) {
328 if (forcekill) {
329 /*
330 * In case something went wrong with munmapping
331 * make sure the process doesn't catch the
332 * signal and then access the memory. Just kill it.
333 */
334 if (fail || tk->addr_valid == 0) {
335 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
336 pfn, tk->tsk->comm, tk->tsk->pid);
337 force_sig(SIGKILL, tk->tsk);
338 }
339
340 /*
341 * In theory the process could have mapped
342 * something else on the address in-between. We could
343 * check for that, but we need to tell the
344 * process anyways.
345 */
346 else if (kill_proc(tk->tsk, tk->addr,
347 pfn, page, flags) < 0)
348 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
349 pfn, tk->tsk->comm, tk->tsk->pid);
350 }
351 put_task_struct(tk->tsk);
352 kfree(tk);
353 }
354 }
355
356 /*
357 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
358 * on behalf of the thread group. Return task_struct of the (first found)
359 * dedicated thread if found, and return NULL otherwise.
360 *
361 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
362 * have to call rcu_read_lock/unlock() in this function.
363 */
364 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
365 {
366 struct task_struct *t;
367
368 for_each_thread(tsk, t)
369 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
370 return t;
371 return NULL;
372 }
373
374 /*
375 * Determine whether a given process is "early kill" process which expects
376 * to be signaled when some page under the process is hwpoisoned.
377 * Return task_struct of the dedicated thread (main thread unless explicitly
378 * specified) if the process is "early kill," and otherwise returns NULL.
379 */
380 static struct task_struct *task_early_kill(struct task_struct *tsk,
381 int force_early)
382 {
383 struct task_struct *t;
384 if (!tsk->mm)
385 return NULL;
386 if (force_early)
387 return tsk;
388 t = find_early_kill_thread(tsk);
389 if (t)
390 return t;
391 if (sysctl_memory_failure_early_kill)
392 return tsk;
393 return NULL;
394 }
395
396 /*
397 * Collect processes when the error hit an anonymous page.
398 */
399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 struct to_kill **tkc, int force_early)
401 {
402 struct vm_area_struct *vma;
403 struct task_struct *tsk;
404 struct anon_vma *av;
405 pgoff_t pgoff;
406
407 av = page_lock_anon_vma_read(page);
408 if (av == NULL) /* Not actually mapped anymore */
409 return;
410
411 pgoff = page_to_pgoff(page);
412 read_lock(&tasklist_lock);
413 for_each_process (tsk) {
414 struct anon_vma_chain *vmac;
415 struct task_struct *t = task_early_kill(tsk, force_early);
416
417 if (!t)
418 continue;
419 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
420 pgoff, pgoff) {
421 vma = vmac->vma;
422 if (!page_mapped_in_vma(page, vma))
423 continue;
424 if (vma->vm_mm == t->mm)
425 add_to_kill(t, page, vma, to_kill, tkc);
426 }
427 }
428 read_unlock(&tasklist_lock);
429 page_unlock_anon_vma_read(av);
430 }
431
432 /*
433 * Collect processes when the error hit a file mapped page.
434 */
435 static void collect_procs_file(struct page *page, struct list_head *to_kill,
436 struct to_kill **tkc, int force_early)
437 {
438 struct vm_area_struct *vma;
439 struct task_struct *tsk;
440 struct address_space *mapping = page->mapping;
441
442 i_mmap_lock_read(mapping);
443 read_lock(&tasklist_lock);
444 for_each_process(tsk) {
445 pgoff_t pgoff = page_to_pgoff(page);
446 struct task_struct *t = task_early_kill(tsk, force_early);
447
448 if (!t)
449 continue;
450 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
451 pgoff) {
452 /*
453 * Send early kill signal to tasks where a vma covers
454 * the page but the corrupted page is not necessarily
455 * mapped it in its pte.
456 * Assume applications who requested early kill want
457 * to be informed of all such data corruptions.
458 */
459 if (vma->vm_mm == t->mm)
460 add_to_kill(t, page, vma, to_kill, tkc);
461 }
462 }
463 read_unlock(&tasklist_lock);
464 i_mmap_unlock_read(mapping);
465 }
466
467 /*
468 * Collect the processes who have the corrupted page mapped to kill.
469 * This is done in two steps for locking reasons.
470 * First preallocate one tokill structure outside the spin locks,
471 * so that we can kill at least one process reasonably reliable.
472 */
473 static void collect_procs(struct page *page, struct list_head *tokill,
474 int force_early)
475 {
476 struct to_kill *tk;
477
478 if (!page->mapping)
479 return;
480
481 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
482 if (!tk)
483 return;
484 if (PageAnon(page))
485 collect_procs_anon(page, tokill, &tk, force_early);
486 else
487 collect_procs_file(page, tokill, &tk, force_early);
488 kfree(tk);
489 }
490
491 static const char *action_name[] = {
492 [MF_IGNORED] = "Ignored",
493 [MF_FAILED] = "Failed",
494 [MF_DELAYED] = "Delayed",
495 [MF_RECOVERED] = "Recovered",
496 };
497
498 static const char * const action_page_types[] = {
499 [MF_MSG_KERNEL] = "reserved kernel page",
500 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
501 [MF_MSG_SLAB] = "kernel slab page",
502 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
503 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
504 [MF_MSG_HUGE] = "huge page",
505 [MF_MSG_FREE_HUGE] = "free huge page",
506 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
507 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
508 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
509 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
510 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
511 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
512 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
513 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
514 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
515 [MF_MSG_CLEAN_LRU] = "clean LRU page",
516 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
517 [MF_MSG_BUDDY] = "free buddy page",
518 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
519 [MF_MSG_UNKNOWN] = "unknown page",
520 };
521
522 /*
523 * XXX: It is possible that a page is isolated from LRU cache,
524 * and then kept in swap cache or failed to remove from page cache.
525 * The page count will stop it from being freed by unpoison.
526 * Stress tests should be aware of this memory leak problem.
527 */
528 static int delete_from_lru_cache(struct page *p)
529 {
530 if (!isolate_lru_page(p)) {
531 /*
532 * Clear sensible page flags, so that the buddy system won't
533 * complain when the page is unpoison-and-freed.
534 */
535 ClearPageActive(p);
536 ClearPageUnevictable(p);
537
538 /*
539 * Poisoned page might never drop its ref count to 0 so we have
540 * to uncharge it manually from its memcg.
541 */
542 mem_cgroup_uncharge(p);
543
544 /*
545 * drop the page count elevated by isolate_lru_page()
546 */
547 put_page(p);
548 return 0;
549 }
550 return -EIO;
551 }
552
553 static int truncate_error_page(struct page *p, unsigned long pfn,
554 struct address_space *mapping)
555 {
556 int ret = MF_FAILED;
557
558 if (mapping->a_ops->error_remove_page) {
559 int err = mapping->a_ops->error_remove_page(mapping, p);
560
561 if (err != 0) {
562 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
563 pfn, err);
564 } else if (page_has_private(p) &&
565 !try_to_release_page(p, GFP_NOIO)) {
566 pr_info("Memory failure: %#lx: failed to release buffers\n",
567 pfn);
568 } else {
569 ret = MF_RECOVERED;
570 }
571 } else {
572 /*
573 * If the file system doesn't support it just invalidate
574 * This fails on dirty or anything with private pages
575 */
576 if (invalidate_inode_page(p))
577 ret = MF_RECOVERED;
578 else
579 pr_info("Memory failure: %#lx: Failed to invalidate\n",
580 pfn);
581 }
582
583 return ret;
584 }
585
586 /*
587 * Error hit kernel page.
588 * Do nothing, try to be lucky and not touch this instead. For a few cases we
589 * could be more sophisticated.
590 */
591 static int me_kernel(struct page *p, unsigned long pfn)
592 {
593 return MF_IGNORED;
594 }
595
596 /*
597 * Page in unknown state. Do nothing.
598 */
599 static int me_unknown(struct page *p, unsigned long pfn)
600 {
601 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
602 return MF_FAILED;
603 }
604
605 /*
606 * Clean (or cleaned) page cache page.
607 */
608 static int me_pagecache_clean(struct page *p, unsigned long pfn)
609 {
610 struct address_space *mapping;
611
612 delete_from_lru_cache(p);
613
614 /*
615 * For anonymous pages we're done the only reference left
616 * should be the one m_f() holds.
617 */
618 if (PageAnon(p))
619 return MF_RECOVERED;
620
621 /*
622 * Now truncate the page in the page cache. This is really
623 * more like a "temporary hole punch"
624 * Don't do this for block devices when someone else
625 * has a reference, because it could be file system metadata
626 * and that's not safe to truncate.
627 */
628 mapping = page_mapping(p);
629 if (!mapping) {
630 /*
631 * Page has been teared down in the meanwhile
632 */
633 return MF_FAILED;
634 }
635
636 /*
637 * Truncation is a bit tricky. Enable it per file system for now.
638 *
639 * Open: to take i_mutex or not for this? Right now we don't.
640 */
641 return truncate_error_page(p, pfn, mapping);
642 }
643
644 /*
645 * Dirty pagecache page
646 * Issues: when the error hit a hole page the error is not properly
647 * propagated.
648 */
649 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650 {
651 struct address_space *mapping = page_mapping(p);
652
653 SetPageError(p);
654 /* TBD: print more information about the file. */
655 if (mapping) {
656 /*
657 * IO error will be reported by write(), fsync(), etc.
658 * who check the mapping.
659 * This way the application knows that something went
660 * wrong with its dirty file data.
661 *
662 * There's one open issue:
663 *
664 * The EIO will be only reported on the next IO
665 * operation and then cleared through the IO map.
666 * Normally Linux has two mechanisms to pass IO error
667 * first through the AS_EIO flag in the address space
668 * and then through the PageError flag in the page.
669 * Since we drop pages on memory failure handling the
670 * only mechanism open to use is through AS_AIO.
671 *
672 * This has the disadvantage that it gets cleared on
673 * the first operation that returns an error, while
674 * the PageError bit is more sticky and only cleared
675 * when the page is reread or dropped. If an
676 * application assumes it will always get error on
677 * fsync, but does other operations on the fd before
678 * and the page is dropped between then the error
679 * will not be properly reported.
680 *
681 * This can already happen even without hwpoisoned
682 * pages: first on metadata IO errors (which only
683 * report through AS_EIO) or when the page is dropped
684 * at the wrong time.
685 *
686 * So right now we assume that the application DTRT on
687 * the first EIO, but we're not worse than other parts
688 * of the kernel.
689 */
690 mapping_set_error(mapping, -EIO);
691 }
692
693 return me_pagecache_clean(p, pfn);
694 }
695
696 /*
697 * Clean and dirty swap cache.
698 *
699 * Dirty swap cache page is tricky to handle. The page could live both in page
700 * cache and swap cache(ie. page is freshly swapped in). So it could be
701 * referenced concurrently by 2 types of PTEs:
702 * normal PTEs and swap PTEs. We try to handle them consistently by calling
703 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
704 * and then
705 * - clear dirty bit to prevent IO
706 * - remove from LRU
707 * - but keep in the swap cache, so that when we return to it on
708 * a later page fault, we know the application is accessing
709 * corrupted data and shall be killed (we installed simple
710 * interception code in do_swap_page to catch it).
711 *
712 * Clean swap cache pages can be directly isolated. A later page fault will
713 * bring in the known good data from disk.
714 */
715 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716 {
717 ClearPageDirty(p);
718 /* Trigger EIO in shmem: */
719 ClearPageUptodate(p);
720
721 if (!delete_from_lru_cache(p))
722 return MF_DELAYED;
723 else
724 return MF_FAILED;
725 }
726
727 static int me_swapcache_clean(struct page *p, unsigned long pfn)
728 {
729 delete_from_swap_cache(p);
730
731 if (!delete_from_lru_cache(p))
732 return MF_RECOVERED;
733 else
734 return MF_FAILED;
735 }
736
737 /*
738 * Huge pages. Needs work.
739 * Issues:
740 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
741 * To narrow down kill region to one page, we need to break up pmd.
742 */
743 static int me_huge_page(struct page *p, unsigned long pfn)
744 {
745 int res = 0;
746 struct page *hpage = compound_head(p);
747 struct address_space *mapping;
748
749 if (!PageHuge(hpage))
750 return MF_DELAYED;
751
752 mapping = page_mapping(hpage);
753 if (mapping) {
754 res = truncate_error_page(hpage, pfn, mapping);
755 } else {
756 unlock_page(hpage);
757 /*
758 * migration entry prevents later access on error anonymous
759 * hugepage, so we can free and dissolve it into buddy to
760 * save healthy subpages.
761 */
762 if (PageAnon(hpage))
763 put_page(hpage);
764 dissolve_free_huge_page(p);
765 res = MF_RECOVERED;
766 lock_page(hpage);
767 }
768
769 return res;
770 }
771
772 /*
773 * Various page states we can handle.
774 *
775 * A page state is defined by its current page->flags bits.
776 * The table matches them in order and calls the right handler.
777 *
778 * This is quite tricky because we can access page at any time
779 * in its live cycle, so all accesses have to be extremely careful.
780 *
781 * This is not complete. More states could be added.
782 * For any missing state don't attempt recovery.
783 */
784
785 #define dirty (1UL << PG_dirty)
786 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
787 #define unevict (1UL << PG_unevictable)
788 #define mlock (1UL << PG_mlocked)
789 #define writeback (1UL << PG_writeback)
790 #define lru (1UL << PG_lru)
791 #define head (1UL << PG_head)
792 #define slab (1UL << PG_slab)
793 #define reserved (1UL << PG_reserved)
794
795 static struct page_state {
796 unsigned long mask;
797 unsigned long res;
798 enum mf_action_page_type type;
799 int (*action)(struct page *p, unsigned long pfn);
800 } error_states[] = {
801 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
802 /*
803 * free pages are specially detected outside this table:
804 * PG_buddy pages only make a small fraction of all free pages.
805 */
806
807 /*
808 * Could in theory check if slab page is free or if we can drop
809 * currently unused objects without touching them. But just
810 * treat it as standard kernel for now.
811 */
812 { slab, slab, MF_MSG_SLAB, me_kernel },
813
814 { head, head, MF_MSG_HUGE, me_huge_page },
815
816 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
817 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
818
819 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
820 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
821
822 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
823 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
824
825 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
826 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
827
828 /*
829 * Catchall entry: must be at end.
830 */
831 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
832 };
833
834 #undef dirty
835 #undef sc
836 #undef unevict
837 #undef mlock
838 #undef writeback
839 #undef lru
840 #undef head
841 #undef slab
842 #undef reserved
843
844 /*
845 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
846 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
847 */
848 static void action_result(unsigned long pfn, enum mf_action_page_type type,
849 enum mf_result result)
850 {
851 trace_memory_failure_event(pfn, type, result);
852
853 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
854 pfn, action_page_types[type], action_name[result]);
855 }
856
857 static int page_action(struct page_state *ps, struct page *p,
858 unsigned long pfn)
859 {
860 int result;
861 int count;
862
863 result = ps->action(p, pfn);
864
865 count = page_count(p) - 1;
866 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
867 count--;
868 if (count > 0) {
869 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
870 pfn, action_page_types[ps->type], count);
871 result = MF_FAILED;
872 }
873 action_result(pfn, ps->type, result);
874
875 /* Could do more checks here if page looks ok */
876 /*
877 * Could adjust zone counters here to correct for the missing page.
878 */
879
880 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
881 }
882
883 /**
884 * get_hwpoison_page() - Get refcount for memory error handling:
885 * @page: raw error page (hit by memory error)
886 *
887 * Return: return 0 if failed to grab the refcount, otherwise true (some
888 * non-zero value.)
889 */
890 int get_hwpoison_page(struct page *page)
891 {
892 struct page *head = compound_head(page);
893
894 if (!PageHuge(head) && PageTransHuge(head)) {
895 /*
896 * Non anonymous thp exists only in allocation/free time. We
897 * can't handle such a case correctly, so let's give it up.
898 * This should be better than triggering BUG_ON when kernel
899 * tries to touch the "partially handled" page.
900 */
901 if (!PageAnon(head)) {
902 pr_err("Memory failure: %#lx: non anonymous thp\n",
903 page_to_pfn(page));
904 return 0;
905 }
906 }
907
908 if (get_page_unless_zero(head)) {
909 if (head == compound_head(page))
910 return 1;
911
912 pr_info("Memory failure: %#lx cannot catch tail\n",
913 page_to_pfn(page));
914 put_page(head);
915 }
916
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(get_hwpoison_page);
920
921 /*
922 * Do all that is necessary to remove user space mappings. Unmap
923 * the pages and send SIGBUS to the processes if the data was dirty.
924 */
925 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
926 int flags, struct page **hpagep)
927 {
928 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
929 struct address_space *mapping;
930 LIST_HEAD(tokill);
931 bool unmap_success;
932 int kill = 1, forcekill;
933 struct page *hpage = *hpagep;
934 bool mlocked = PageMlocked(hpage);
935
936 /*
937 * Here we are interested only in user-mapped pages, so skip any
938 * other types of pages.
939 */
940 if (PageReserved(p) || PageSlab(p))
941 return true;
942 if (!(PageLRU(hpage) || PageHuge(p)))
943 return true;
944
945 /*
946 * This check implies we don't kill processes if their pages
947 * are in the swap cache early. Those are always late kills.
948 */
949 if (!page_mapped(hpage))
950 return true;
951
952 if (PageKsm(p)) {
953 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
954 return false;
955 }
956
957 if (PageSwapCache(p)) {
958 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
959 pfn);
960 ttu |= TTU_IGNORE_HWPOISON;
961 }
962
963 /*
964 * Propagate the dirty bit from PTEs to struct page first, because we
965 * need this to decide if we should kill or just drop the page.
966 * XXX: the dirty test could be racy: set_page_dirty() may not always
967 * be called inside page lock (it's recommended but not enforced).
968 */
969 mapping = page_mapping(hpage);
970 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
971 mapping_cap_writeback_dirty(mapping)) {
972 if (page_mkclean(hpage)) {
973 SetPageDirty(hpage);
974 } else {
975 kill = 0;
976 ttu |= TTU_IGNORE_HWPOISON;
977 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
978 pfn);
979 }
980 }
981
982 /*
983 * First collect all the processes that have the page
984 * mapped in dirty form. This has to be done before try_to_unmap,
985 * because ttu takes the rmap data structures down.
986 *
987 * Error handling: We ignore errors here because
988 * there's nothing that can be done.
989 */
990 if (kill)
991 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
992
993 unmap_success = try_to_unmap(hpage, ttu);
994 if (!unmap_success)
995 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
996 pfn, page_mapcount(hpage));
997
998 /*
999 * try_to_unmap() might put mlocked page in lru cache, so call
1000 * shake_page() again to ensure that it's flushed.
1001 */
1002 if (mlocked)
1003 shake_page(hpage, 0);
1004
1005 /*
1006 * Now that the dirty bit has been propagated to the
1007 * struct page and all unmaps done we can decide if
1008 * killing is needed or not. Only kill when the page
1009 * was dirty or the process is not restartable,
1010 * otherwise the tokill list is merely
1011 * freed. When there was a problem unmapping earlier
1012 * use a more force-full uncatchable kill to prevent
1013 * any accesses to the poisoned memory.
1014 */
1015 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1016 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1017
1018 return unmap_success;
1019 }
1020
1021 static int identify_page_state(unsigned long pfn, struct page *p,
1022 unsigned long page_flags)
1023 {
1024 struct page_state *ps;
1025
1026 /*
1027 * The first check uses the current page flags which may not have any
1028 * relevant information. The second check with the saved page flags is
1029 * carried out only if the first check can't determine the page status.
1030 */
1031 for (ps = error_states;; ps++)
1032 if ((p->flags & ps->mask) == ps->res)
1033 break;
1034
1035 page_flags |= (p->flags & (1UL << PG_dirty));
1036
1037 if (!ps->mask)
1038 for (ps = error_states;; ps++)
1039 if ((page_flags & ps->mask) == ps->res)
1040 break;
1041 return page_action(ps, p, pfn);
1042 }
1043
1044 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1045 {
1046 struct page *p = pfn_to_page(pfn);
1047 struct page *head = compound_head(p);
1048 int res;
1049 unsigned long page_flags;
1050
1051 if (TestSetPageHWPoison(head)) {
1052 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1053 pfn);
1054 return 0;
1055 }
1056
1057 num_poisoned_pages_inc();
1058
1059 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1060 /*
1061 * Check "filter hit" and "race with other subpage."
1062 */
1063 lock_page(head);
1064 if (PageHWPoison(head)) {
1065 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1066 || (p != head && TestSetPageHWPoison(head))) {
1067 num_poisoned_pages_dec();
1068 unlock_page(head);
1069 return 0;
1070 }
1071 }
1072 unlock_page(head);
1073 dissolve_free_huge_page(p);
1074 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1075 return 0;
1076 }
1077
1078 lock_page(head);
1079 page_flags = head->flags;
1080
1081 if (!PageHWPoison(head)) {
1082 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1083 num_poisoned_pages_dec();
1084 unlock_page(head);
1085 put_hwpoison_page(head);
1086 return 0;
1087 }
1088
1089 /*
1090 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1091 * simply disable it. In order to make it work properly, we need
1092 * make sure that:
1093 * - conversion of a pud that maps an error hugetlb into hwpoison
1094 * entry properly works, and
1095 * - other mm code walking over page table is aware of pud-aligned
1096 * hwpoison entries.
1097 */
1098 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1099 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1100 res = -EBUSY;
1101 goto out;
1102 }
1103
1104 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1105 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1106 res = -EBUSY;
1107 goto out;
1108 }
1109
1110 res = identify_page_state(pfn, p, page_flags);
1111 out:
1112 unlock_page(head);
1113 return res;
1114 }
1115
1116 /**
1117 * memory_failure - Handle memory failure of a page.
1118 * @pfn: Page Number of the corrupted page
1119 * @flags: fine tune action taken
1120 *
1121 * This function is called by the low level machine check code
1122 * of an architecture when it detects hardware memory corruption
1123 * of a page. It tries its best to recover, which includes
1124 * dropping pages, killing processes etc.
1125 *
1126 * The function is primarily of use for corruptions that
1127 * happen outside the current execution context (e.g. when
1128 * detected by a background scrubber)
1129 *
1130 * Must run in process context (e.g. a work queue) with interrupts
1131 * enabled and no spinlocks hold.
1132 */
1133 int memory_failure(unsigned long pfn, int flags)
1134 {
1135 struct page *p;
1136 struct page *hpage;
1137 struct page *orig_head;
1138 int res;
1139 unsigned long page_flags;
1140
1141 if (!sysctl_memory_failure_recovery)
1142 panic("Memory failure on page %lx", pfn);
1143
1144 if (!pfn_valid(pfn)) {
1145 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1146 pfn);
1147 return -ENXIO;
1148 }
1149
1150 p = pfn_to_page(pfn);
1151 if (PageHuge(p))
1152 return memory_failure_hugetlb(pfn, flags);
1153 if (TestSetPageHWPoison(p)) {
1154 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1155 pfn);
1156 return 0;
1157 }
1158
1159 orig_head = hpage = compound_head(p);
1160 num_poisoned_pages_inc();
1161
1162 /*
1163 * We need/can do nothing about count=0 pages.
1164 * 1) it's a free page, and therefore in safe hand:
1165 * prep_new_page() will be the gate keeper.
1166 * 2) it's part of a non-compound high order page.
1167 * Implies some kernel user: cannot stop them from
1168 * R/W the page; let's pray that the page has been
1169 * used and will be freed some time later.
1170 * In fact it's dangerous to directly bump up page count from 0,
1171 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1172 */
1173 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1174 if (is_free_buddy_page(p)) {
1175 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1176 return 0;
1177 } else {
1178 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1179 return -EBUSY;
1180 }
1181 }
1182
1183 if (PageTransHuge(hpage)) {
1184 lock_page(p);
1185 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1186 unlock_page(p);
1187 if (!PageAnon(p))
1188 pr_err("Memory failure: %#lx: non anonymous thp\n",
1189 pfn);
1190 else
1191 pr_err("Memory failure: %#lx: thp split failed\n",
1192 pfn);
1193 if (TestClearPageHWPoison(p))
1194 num_poisoned_pages_dec();
1195 put_hwpoison_page(p);
1196 return -EBUSY;
1197 }
1198 unlock_page(p);
1199 VM_BUG_ON_PAGE(!page_count(p), p);
1200 hpage = compound_head(p);
1201 }
1202
1203 /*
1204 * We ignore non-LRU pages for good reasons.
1205 * - PG_locked is only well defined for LRU pages and a few others
1206 * - to avoid races with __SetPageLocked()
1207 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1208 * The check (unnecessarily) ignores LRU pages being isolated and
1209 * walked by the page reclaim code, however that's not a big loss.
1210 */
1211 shake_page(p, 0);
1212 /* shake_page could have turned it free. */
1213 if (!PageLRU(p) && is_free_buddy_page(p)) {
1214 if (flags & MF_COUNT_INCREASED)
1215 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1216 else
1217 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1218 return 0;
1219 }
1220
1221 lock_page(p);
1222
1223 /*
1224 * The page could have changed compound pages during the locking.
1225 * If this happens just bail out.
1226 */
1227 if (PageCompound(p) && compound_head(p) != orig_head) {
1228 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1229 res = -EBUSY;
1230 goto out;
1231 }
1232
1233 /*
1234 * We use page flags to determine what action should be taken, but
1235 * the flags can be modified by the error containment action. One
1236 * example is an mlocked page, where PG_mlocked is cleared by
1237 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1238 * correctly, we save a copy of the page flags at this time.
1239 */
1240 if (PageHuge(p))
1241 page_flags = hpage->flags;
1242 else
1243 page_flags = p->flags;
1244
1245 /*
1246 * unpoison always clear PG_hwpoison inside page lock
1247 */
1248 if (!PageHWPoison(p)) {
1249 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1250 num_poisoned_pages_dec();
1251 unlock_page(p);
1252 put_hwpoison_page(p);
1253 return 0;
1254 }
1255 if (hwpoison_filter(p)) {
1256 if (TestClearPageHWPoison(p))
1257 num_poisoned_pages_dec();
1258 unlock_page(p);
1259 put_hwpoison_page(p);
1260 return 0;
1261 }
1262
1263 if (!PageTransTail(p) && !PageLRU(p))
1264 goto identify_page_state;
1265
1266 /*
1267 * It's very difficult to mess with pages currently under IO
1268 * and in many cases impossible, so we just avoid it here.
1269 */
1270 wait_on_page_writeback(p);
1271
1272 /*
1273 * Now take care of user space mappings.
1274 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1275 *
1276 * When the raw error page is thp tail page, hpage points to the raw
1277 * page after thp split.
1278 */
1279 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1280 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1281 res = -EBUSY;
1282 goto out;
1283 }
1284
1285 /*
1286 * Torn down by someone else?
1287 */
1288 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1289 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1290 res = -EBUSY;
1291 goto out;
1292 }
1293
1294 identify_page_state:
1295 res = identify_page_state(pfn, p, page_flags);
1296 out:
1297 unlock_page(p);
1298 return res;
1299 }
1300 EXPORT_SYMBOL_GPL(memory_failure);
1301
1302 #define MEMORY_FAILURE_FIFO_ORDER 4
1303 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1304
1305 struct memory_failure_entry {
1306 unsigned long pfn;
1307 int flags;
1308 };
1309
1310 struct memory_failure_cpu {
1311 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1312 MEMORY_FAILURE_FIFO_SIZE);
1313 spinlock_t lock;
1314 struct work_struct work;
1315 };
1316
1317 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1318
1319 /**
1320 * memory_failure_queue - Schedule handling memory failure of a page.
1321 * @pfn: Page Number of the corrupted page
1322 * @flags: Flags for memory failure handling
1323 *
1324 * This function is called by the low level hardware error handler
1325 * when it detects hardware memory corruption of a page. It schedules
1326 * the recovering of error page, including dropping pages, killing
1327 * processes etc.
1328 *
1329 * The function is primarily of use for corruptions that
1330 * happen outside the current execution context (e.g. when
1331 * detected by a background scrubber)
1332 *
1333 * Can run in IRQ context.
1334 */
1335 void memory_failure_queue(unsigned long pfn, int flags)
1336 {
1337 struct memory_failure_cpu *mf_cpu;
1338 unsigned long proc_flags;
1339 struct memory_failure_entry entry = {
1340 .pfn = pfn,
1341 .flags = flags,
1342 };
1343
1344 mf_cpu = &get_cpu_var(memory_failure_cpu);
1345 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1346 if (kfifo_put(&mf_cpu->fifo, entry))
1347 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1348 else
1349 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1350 pfn);
1351 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352 put_cpu_var(memory_failure_cpu);
1353 }
1354 EXPORT_SYMBOL_GPL(memory_failure_queue);
1355
1356 static void memory_failure_work_func(struct work_struct *work)
1357 {
1358 struct memory_failure_cpu *mf_cpu;
1359 struct memory_failure_entry entry = { 0, };
1360 unsigned long proc_flags;
1361 int gotten;
1362
1363 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1364 for (;;) {
1365 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1366 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1367 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1368 if (!gotten)
1369 break;
1370 if (entry.flags & MF_SOFT_OFFLINE)
1371 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1372 else
1373 memory_failure(entry.pfn, entry.flags);
1374 }
1375 }
1376
1377 static int __init memory_failure_init(void)
1378 {
1379 struct memory_failure_cpu *mf_cpu;
1380 int cpu;
1381
1382 for_each_possible_cpu(cpu) {
1383 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1384 spin_lock_init(&mf_cpu->lock);
1385 INIT_KFIFO(mf_cpu->fifo);
1386 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1387 }
1388
1389 return 0;
1390 }
1391 core_initcall(memory_failure_init);
1392
1393 #define unpoison_pr_info(fmt, pfn, rs) \
1394 ({ \
1395 if (__ratelimit(rs)) \
1396 pr_info(fmt, pfn); \
1397 })
1398
1399 /**
1400 * unpoison_memory - Unpoison a previously poisoned page
1401 * @pfn: Page number of the to be unpoisoned page
1402 *
1403 * Software-unpoison a page that has been poisoned by
1404 * memory_failure() earlier.
1405 *
1406 * This is only done on the software-level, so it only works
1407 * for linux injected failures, not real hardware failures
1408 *
1409 * Returns 0 for success, otherwise -errno.
1410 */
1411 int unpoison_memory(unsigned long pfn)
1412 {
1413 struct page *page;
1414 struct page *p;
1415 int freeit = 0;
1416 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1417 DEFAULT_RATELIMIT_BURST);
1418
1419 if (!pfn_valid(pfn))
1420 return -ENXIO;
1421
1422 p = pfn_to_page(pfn);
1423 page = compound_head(p);
1424
1425 if (!PageHWPoison(p)) {
1426 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1427 pfn, &unpoison_rs);
1428 return 0;
1429 }
1430
1431 if (page_count(page) > 1) {
1432 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1433 pfn, &unpoison_rs);
1434 return 0;
1435 }
1436
1437 if (page_mapped(page)) {
1438 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1439 pfn, &unpoison_rs);
1440 return 0;
1441 }
1442
1443 if (page_mapping(page)) {
1444 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1445 pfn, &unpoison_rs);
1446 return 0;
1447 }
1448
1449 /*
1450 * unpoison_memory() can encounter thp only when the thp is being
1451 * worked by memory_failure() and the page lock is not held yet.
1452 * In such case, we yield to memory_failure() and make unpoison fail.
1453 */
1454 if (!PageHuge(page) && PageTransHuge(page)) {
1455 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1456 pfn, &unpoison_rs);
1457 return 0;
1458 }
1459
1460 if (!get_hwpoison_page(p)) {
1461 if (TestClearPageHWPoison(p))
1462 num_poisoned_pages_dec();
1463 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1464 pfn, &unpoison_rs);
1465 return 0;
1466 }
1467
1468 lock_page(page);
1469 /*
1470 * This test is racy because PG_hwpoison is set outside of page lock.
1471 * That's acceptable because that won't trigger kernel panic. Instead,
1472 * the PG_hwpoison page will be caught and isolated on the entrance to
1473 * the free buddy page pool.
1474 */
1475 if (TestClearPageHWPoison(page)) {
1476 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1477 pfn, &unpoison_rs);
1478 num_poisoned_pages_dec();
1479 freeit = 1;
1480 }
1481 unlock_page(page);
1482
1483 put_hwpoison_page(page);
1484 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1485 put_hwpoison_page(page);
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL(unpoison_memory);
1490
1491 static struct page *new_page(struct page *p, unsigned long private)
1492 {
1493 int nid = page_to_nid(p);
1494
1495 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1496 }
1497
1498 /*
1499 * Safely get reference count of an arbitrary page.
1500 * Returns 0 for a free page, -EIO for a zero refcount page
1501 * that is not free, and 1 for any other page type.
1502 * For 1 the page is returned with increased page count, otherwise not.
1503 */
1504 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1505 {
1506 int ret;
1507
1508 if (flags & MF_COUNT_INCREASED)
1509 return 1;
1510
1511 /*
1512 * When the target page is a free hugepage, just remove it
1513 * from free hugepage list.
1514 */
1515 if (!get_hwpoison_page(p)) {
1516 if (PageHuge(p)) {
1517 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1518 ret = 0;
1519 } else if (is_free_buddy_page(p)) {
1520 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1521 ret = 0;
1522 } else {
1523 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1524 __func__, pfn, p->flags);
1525 ret = -EIO;
1526 }
1527 } else {
1528 /* Not a free page */
1529 ret = 1;
1530 }
1531 return ret;
1532 }
1533
1534 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1535 {
1536 int ret = __get_any_page(page, pfn, flags);
1537
1538 if (ret == 1 && !PageHuge(page) &&
1539 !PageLRU(page) && !__PageMovable(page)) {
1540 /*
1541 * Try to free it.
1542 */
1543 put_hwpoison_page(page);
1544 shake_page(page, 1);
1545
1546 /*
1547 * Did it turn free?
1548 */
1549 ret = __get_any_page(page, pfn, 0);
1550 if (ret == 1 && !PageLRU(page)) {
1551 /* Drop page reference which is from __get_any_page() */
1552 put_hwpoison_page(page);
1553 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1554 pfn, page->flags, &page->flags);
1555 return -EIO;
1556 }
1557 }
1558 return ret;
1559 }
1560
1561 static int soft_offline_huge_page(struct page *page, int flags)
1562 {
1563 int ret;
1564 unsigned long pfn = page_to_pfn(page);
1565 struct page *hpage = compound_head(page);
1566 LIST_HEAD(pagelist);
1567
1568 /*
1569 * This double-check of PageHWPoison is to avoid the race with
1570 * memory_failure(). See also comment in __soft_offline_page().
1571 */
1572 lock_page(hpage);
1573 if (PageHWPoison(hpage)) {
1574 unlock_page(hpage);
1575 put_hwpoison_page(hpage);
1576 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1577 return -EBUSY;
1578 }
1579 unlock_page(hpage);
1580
1581 ret = isolate_huge_page(hpage, &pagelist);
1582 /*
1583 * get_any_page() and isolate_huge_page() takes a refcount each,
1584 * so need to drop one here.
1585 */
1586 put_hwpoison_page(hpage);
1587 if (!ret) {
1588 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1589 return -EBUSY;
1590 }
1591
1592 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1593 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1594 if (ret) {
1595 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1596 pfn, ret, page->flags, &page->flags);
1597 if (!list_empty(&pagelist))
1598 putback_movable_pages(&pagelist);
1599 if (ret > 0)
1600 ret = -EIO;
1601 } else {
1602 /*
1603 * We set PG_hwpoison only when the migration source hugepage
1604 * was successfully dissolved, because otherwise hwpoisoned
1605 * hugepage remains on free hugepage list, then userspace will
1606 * find it as SIGBUS by allocation failure. That's not expected
1607 * in soft-offlining.
1608 */
1609 ret = dissolve_free_huge_page(page);
1610 if (!ret) {
1611 if (set_hwpoison_free_buddy_page(page))
1612 num_poisoned_pages_inc();
1613 }
1614 }
1615 return ret;
1616 }
1617
1618 static int __soft_offline_page(struct page *page, int flags)
1619 {
1620 int ret;
1621 unsigned long pfn = page_to_pfn(page);
1622
1623 /*
1624 * Check PageHWPoison again inside page lock because PageHWPoison
1625 * is set by memory_failure() outside page lock. Note that
1626 * memory_failure() also double-checks PageHWPoison inside page lock,
1627 * so there's no race between soft_offline_page() and memory_failure().
1628 */
1629 lock_page(page);
1630 wait_on_page_writeback(page);
1631 if (PageHWPoison(page)) {
1632 unlock_page(page);
1633 put_hwpoison_page(page);
1634 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1635 return -EBUSY;
1636 }
1637 /*
1638 * Try to invalidate first. This should work for
1639 * non dirty unmapped page cache pages.
1640 */
1641 ret = invalidate_inode_page(page);
1642 unlock_page(page);
1643 /*
1644 * RED-PEN would be better to keep it isolated here, but we
1645 * would need to fix isolation locking first.
1646 */
1647 if (ret == 1) {
1648 put_hwpoison_page(page);
1649 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1650 SetPageHWPoison(page);
1651 num_poisoned_pages_inc();
1652 return 0;
1653 }
1654
1655 /*
1656 * Simple invalidation didn't work.
1657 * Try to migrate to a new page instead. migrate.c
1658 * handles a large number of cases for us.
1659 */
1660 if (PageLRU(page))
1661 ret = isolate_lru_page(page);
1662 else
1663 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1664 /*
1665 * Drop page reference which is came from get_any_page()
1666 * successful isolate_lru_page() already took another one.
1667 */
1668 put_hwpoison_page(page);
1669 if (!ret) {
1670 LIST_HEAD(pagelist);
1671 /*
1672 * After isolated lru page, the PageLRU will be cleared,
1673 * so use !__PageMovable instead for LRU page's mapping
1674 * cannot have PAGE_MAPPING_MOVABLE.
1675 */
1676 if (!__PageMovable(page))
1677 inc_node_page_state(page, NR_ISOLATED_ANON +
1678 page_is_file_cache(page));
1679 list_add(&page->lru, &pagelist);
1680 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1681 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1682 if (ret) {
1683 if (!list_empty(&pagelist))
1684 putback_movable_pages(&pagelist);
1685
1686 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1687 pfn, ret, page->flags, &page->flags);
1688 if (ret > 0)
1689 ret = -EIO;
1690 }
1691 } else {
1692 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1693 pfn, ret, page_count(page), page->flags, &page->flags);
1694 }
1695 return ret;
1696 }
1697
1698 static int soft_offline_in_use_page(struct page *page, int flags)
1699 {
1700 int ret;
1701 int mt;
1702 struct page *hpage = compound_head(page);
1703
1704 if (!PageHuge(page) && PageTransHuge(hpage)) {
1705 lock_page(hpage);
1706 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1707 unlock_page(hpage);
1708 if (!PageAnon(hpage))
1709 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1710 else
1711 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1712 put_hwpoison_page(hpage);
1713 return -EBUSY;
1714 }
1715 unlock_page(hpage);
1716 get_hwpoison_page(page);
1717 put_hwpoison_page(hpage);
1718 }
1719
1720 /*
1721 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1722 * to free list immediately (not via pcplist) when released after
1723 * successful page migration. Otherwise we can't guarantee that the
1724 * page is really free after put_page() returns, so
1725 * set_hwpoison_free_buddy_page() highly likely fails.
1726 */
1727 mt = get_pageblock_migratetype(page);
1728 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1729 if (PageHuge(page))
1730 ret = soft_offline_huge_page(page, flags);
1731 else
1732 ret = __soft_offline_page(page, flags);
1733 set_pageblock_migratetype(page, mt);
1734 return ret;
1735 }
1736
1737 static int soft_offline_free_page(struct page *page)
1738 {
1739 int rc = 0;
1740 struct page *head = compound_head(page);
1741
1742 if (PageHuge(head))
1743 rc = dissolve_free_huge_page(page);
1744 if (!rc) {
1745 if (set_hwpoison_free_buddy_page(page))
1746 num_poisoned_pages_inc();
1747 else
1748 rc = -EBUSY;
1749 }
1750 return rc;
1751 }
1752
1753 /**
1754 * soft_offline_page - Soft offline a page.
1755 * @page: page to offline
1756 * @flags: flags. Same as memory_failure().
1757 *
1758 * Returns 0 on success, otherwise negated errno.
1759 *
1760 * Soft offline a page, by migration or invalidation,
1761 * without killing anything. This is for the case when
1762 * a page is not corrupted yet (so it's still valid to access),
1763 * but has had a number of corrected errors and is better taken
1764 * out.
1765 *
1766 * The actual policy on when to do that is maintained by
1767 * user space.
1768 *
1769 * This should never impact any application or cause data loss,
1770 * however it might take some time.
1771 *
1772 * This is not a 100% solution for all memory, but tries to be
1773 * ``good enough'' for the majority of memory.
1774 */
1775 int soft_offline_page(struct page *page, int flags)
1776 {
1777 int ret;
1778 unsigned long pfn = page_to_pfn(page);
1779
1780 if (PageHWPoison(page)) {
1781 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1782 if (flags & MF_COUNT_INCREASED)
1783 put_hwpoison_page(page);
1784 return -EBUSY;
1785 }
1786
1787 get_online_mems();
1788 ret = get_any_page(page, pfn, flags);
1789 put_online_mems();
1790
1791 if (ret > 0)
1792 ret = soft_offline_in_use_page(page, flags);
1793 else if (ret == 0)
1794 ret = soft_offline_free_page(page);
1795
1796 return ret;
1797 }