]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory-failure.c
mm: fix memory_failure() handling of dax-namespace metadata
[mirror_ubuntu-jammy-kernel.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 if (hugepage_or_freepage) {
71 /*
72 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 * returns 0 for non-hugetlb pages as well.
74 */
75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 /*
77 * We could fail to take off the target page from buddy
78 * for example due to racy page allocaiton, but that's
79 * acceptable because soft-offlined page is not broken
80 * and if someone really want to use it, they should
81 * take it.
82 */
83 return false;
84 }
85
86 SetPageHWPoison(page);
87 if (release)
88 put_page(page);
89 page_ref_inc(page);
90 num_poisoned_pages_inc();
91
92 return true;
93 }
94
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107
108 static int hwpoison_filter_dev(struct page *p)
109 {
110 struct address_space *mapping;
111 dev_t dev;
112
113 if (hwpoison_filter_dev_major == ~0U &&
114 hwpoison_filter_dev_minor == ~0U)
115 return 0;
116
117 /*
118 * page_mapping() does not accept slab pages.
119 */
120 if (PageSlab(p))
121 return -EINVAL;
122
123 mapping = page_mapping(p);
124 if (mapping == NULL || mapping->host == NULL)
125 return -EINVAL;
126
127 dev = mapping->host->i_sb->s_dev;
128 if (hwpoison_filter_dev_major != ~0U &&
129 hwpoison_filter_dev_major != MAJOR(dev))
130 return -EINVAL;
131 if (hwpoison_filter_dev_minor != ~0U &&
132 hwpoison_filter_dev_minor != MINOR(dev))
133 return -EINVAL;
134
135 return 0;
136 }
137
138 static int hwpoison_filter_flags(struct page *p)
139 {
140 if (!hwpoison_filter_flags_mask)
141 return 0;
142
143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 hwpoison_filter_flags_value)
145 return 0;
146 else
147 return -EINVAL;
148 }
149
150 /*
151 * This allows stress tests to limit test scope to a collection of tasks
152 * by putting them under some memcg. This prevents killing unrelated/important
153 * processes such as /sbin/init. Note that the target task may share clean
154 * pages with init (eg. libc text), which is harmless. If the target task
155 * share _dirty_ pages with another task B, the test scheme must make sure B
156 * is also included in the memcg. At last, due to race conditions this filter
157 * can only guarantee that the page either belongs to the memcg tasks, or is
158 * a freed page.
159 */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163 static int hwpoison_filter_task(struct page *p)
164 {
165 if (!hwpoison_filter_memcg)
166 return 0;
167
168 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 return -EINVAL;
170
171 return 0;
172 }
173 #else
174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176
177 int hwpoison_filter(struct page *p)
178 {
179 if (!hwpoison_filter_enable)
180 return 0;
181
182 if (hwpoison_filter_dev(p))
183 return -EINVAL;
184
185 if (hwpoison_filter_flags(p))
186 return -EINVAL;
187
188 if (hwpoison_filter_task(p))
189 return -EINVAL;
190
191 return 0;
192 }
193 #else
194 int hwpoison_filter(struct page *p)
195 {
196 return 0;
197 }
198 #endif
199
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201
202 /*
203 * Kill all processes that have a poisoned page mapped and then isolate
204 * the page.
205 *
206 * General strategy:
207 * Find all processes having the page mapped and kill them.
208 * But we keep a page reference around so that the page is not
209 * actually freed yet.
210 * Then stash the page away
211 *
212 * There's no convenient way to get back to mapped processes
213 * from the VMAs. So do a brute-force search over all
214 * running processes.
215 *
216 * Remember that machine checks are not common (or rather
217 * if they are common you have other problems), so this shouldn't
218 * be a performance issue.
219 *
220 * Also there are some races possible while we get from the
221 * error detection to actually handle it.
222 */
223
224 struct to_kill {
225 struct list_head nd;
226 struct task_struct *tsk;
227 unsigned long addr;
228 short size_shift;
229 };
230
231 /*
232 * Send all the processes who have the page mapped a signal.
233 * ``action optional'' if they are not immediately affected by the error
234 * ``action required'' if error happened in current execution context
235 */
236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 struct task_struct *t = tk->tsk;
239 short addr_lsb = tk->size_shift;
240 int ret = 0;
241
242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 pfn, t->comm, t->pid);
244
245 if (flags & MF_ACTION_REQUIRED) {
246 if (t == current)
247 ret = force_sig_mceerr(BUS_MCEERR_AR,
248 (void __user *)tk->addr, addr_lsb);
249 else
250 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
251 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
252 addr_lsb, t);
253 } else {
254 /*
255 * Don't use force here, it's convenient if the signal
256 * can be temporarily blocked.
257 * This could cause a loop when the user sets SIGBUS
258 * to SIG_IGN, but hopefully no one will do that?
259 */
260 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
261 addr_lsb, t); /* synchronous? */
262 }
263 if (ret < 0)
264 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
265 t->comm, t->pid, ret);
266 return ret;
267 }
268
269 /*
270 * Unknown page type encountered. Try to check whether it can turn PageLRU by
271 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
272 */
273 void shake_page(struct page *p, int access)
274 {
275 if (PageHuge(p))
276 return;
277
278 if (!PageSlab(p)) {
279 lru_add_drain_all();
280 if (PageLRU(p) || is_free_buddy_page(p))
281 return;
282 }
283
284 /*
285 * Only call shrink_node_slabs here (which would also shrink
286 * other caches) if access is not potentially fatal.
287 */
288 if (access)
289 drop_slab_node(page_to_nid(p));
290 }
291 EXPORT_SYMBOL_GPL(shake_page);
292
293 static unsigned long dev_pagemap_mapping_shift(struct page *page,
294 struct vm_area_struct *vma)
295 {
296 unsigned long address = vma_address(page, vma);
297 pgd_t *pgd;
298 p4d_t *p4d;
299 pud_t *pud;
300 pmd_t *pmd;
301 pte_t *pte;
302
303 pgd = pgd_offset(vma->vm_mm, address);
304 if (!pgd_present(*pgd))
305 return 0;
306 p4d = p4d_offset(pgd, address);
307 if (!p4d_present(*p4d))
308 return 0;
309 pud = pud_offset(p4d, address);
310 if (!pud_present(*pud))
311 return 0;
312 if (pud_devmap(*pud))
313 return PUD_SHIFT;
314 pmd = pmd_offset(pud, address);
315 if (!pmd_present(*pmd))
316 return 0;
317 if (pmd_devmap(*pmd))
318 return PMD_SHIFT;
319 pte = pte_offset_map(pmd, address);
320 if (!pte_present(*pte))
321 return 0;
322 if (pte_devmap(*pte))
323 return PAGE_SHIFT;
324 return 0;
325 }
326
327 /*
328 * Failure handling: if we can't find or can't kill a process there's
329 * not much we can do. We just print a message and ignore otherwise.
330 */
331
332 /*
333 * Schedule a process for later kill.
334 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
335 */
336 static void add_to_kill(struct task_struct *tsk, struct page *p,
337 struct vm_area_struct *vma,
338 struct list_head *to_kill)
339 {
340 struct to_kill *tk;
341
342 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
343 if (!tk) {
344 pr_err("Memory failure: Out of memory while machine check handling\n");
345 return;
346 }
347
348 tk->addr = page_address_in_vma(p, vma);
349 if (is_zone_device_page(p))
350 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
351 else
352 tk->size_shift = page_shift(compound_head(p));
353
354 /*
355 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
356 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
357 * so "tk->size_shift == 0" effectively checks no mapping on
358 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
359 * to a process' address space, it's possible not all N VMAs
360 * contain mappings for the page, but at least one VMA does.
361 * Only deliver SIGBUS with payload derived from the VMA that
362 * has a mapping for the page.
363 */
364 if (tk->addr == -EFAULT) {
365 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
366 page_to_pfn(p), tsk->comm);
367 } else if (tk->size_shift == 0) {
368 kfree(tk);
369 return;
370 }
371
372 get_task_struct(tsk);
373 tk->tsk = tsk;
374 list_add_tail(&tk->nd, to_kill);
375 }
376
377 /*
378 * Kill the processes that have been collected earlier.
379 *
380 * Only do anything when DOIT is set, otherwise just free the list
381 * (this is used for clean pages which do not need killing)
382 * Also when FAIL is set do a force kill because something went
383 * wrong earlier.
384 */
385 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
386 unsigned long pfn, int flags)
387 {
388 struct to_kill *tk, *next;
389
390 list_for_each_entry_safe (tk, next, to_kill, nd) {
391 if (forcekill) {
392 /*
393 * In case something went wrong with munmapping
394 * make sure the process doesn't catch the
395 * signal and then access the memory. Just kill it.
396 */
397 if (fail || tk->addr == -EFAULT) {
398 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
399 pfn, tk->tsk->comm, tk->tsk->pid);
400 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
401 tk->tsk, PIDTYPE_PID);
402 }
403
404 /*
405 * In theory the process could have mapped
406 * something else on the address in-between. We could
407 * check for that, but we need to tell the
408 * process anyways.
409 */
410 else if (kill_proc(tk, pfn, flags) < 0)
411 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
412 pfn, tk->tsk->comm, tk->tsk->pid);
413 }
414 put_task_struct(tk->tsk);
415 kfree(tk);
416 }
417 }
418
419 /*
420 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
421 * on behalf of the thread group. Return task_struct of the (first found)
422 * dedicated thread if found, and return NULL otherwise.
423 *
424 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
425 * have to call rcu_read_lock/unlock() in this function.
426 */
427 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
428 {
429 struct task_struct *t;
430
431 for_each_thread(tsk, t) {
432 if (t->flags & PF_MCE_PROCESS) {
433 if (t->flags & PF_MCE_EARLY)
434 return t;
435 } else {
436 if (sysctl_memory_failure_early_kill)
437 return t;
438 }
439 }
440 return NULL;
441 }
442
443 /*
444 * Determine whether a given process is "early kill" process which expects
445 * to be signaled when some page under the process is hwpoisoned.
446 * Return task_struct of the dedicated thread (main thread unless explicitly
447 * specified) if the process is "early kill" and otherwise returns NULL.
448 *
449 * Note that the above is true for Action Optional case. For Action Required
450 * case, it's only meaningful to the current thread which need to be signaled
451 * with SIGBUS, this error is Action Optional for other non current
452 * processes sharing the same error page,if the process is "early kill", the
453 * task_struct of the dedicated thread will also be returned.
454 */
455 static struct task_struct *task_early_kill(struct task_struct *tsk,
456 int force_early)
457 {
458 if (!tsk->mm)
459 return NULL;
460 /*
461 * Comparing ->mm here because current task might represent
462 * a subthread, while tsk always points to the main thread.
463 */
464 if (force_early && tsk->mm == current->mm)
465 return current;
466
467 return find_early_kill_thread(tsk);
468 }
469
470 /*
471 * Collect processes when the error hit an anonymous page.
472 */
473 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
474 int force_early)
475 {
476 struct vm_area_struct *vma;
477 struct task_struct *tsk;
478 struct anon_vma *av;
479 pgoff_t pgoff;
480
481 av = page_lock_anon_vma_read(page);
482 if (av == NULL) /* Not actually mapped anymore */
483 return;
484
485 pgoff = page_to_pgoff(page);
486 read_lock(&tasklist_lock);
487 for_each_process (tsk) {
488 struct anon_vma_chain *vmac;
489 struct task_struct *t = task_early_kill(tsk, force_early);
490
491 if (!t)
492 continue;
493 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
494 pgoff, pgoff) {
495 vma = vmac->vma;
496 if (!page_mapped_in_vma(page, vma))
497 continue;
498 if (vma->vm_mm == t->mm)
499 add_to_kill(t, page, vma, to_kill);
500 }
501 }
502 read_unlock(&tasklist_lock);
503 page_unlock_anon_vma_read(av);
504 }
505
506 /*
507 * Collect processes when the error hit a file mapped page.
508 */
509 static void collect_procs_file(struct page *page, struct list_head *to_kill,
510 int force_early)
511 {
512 struct vm_area_struct *vma;
513 struct task_struct *tsk;
514 struct address_space *mapping = page->mapping;
515 pgoff_t pgoff;
516
517 i_mmap_lock_read(mapping);
518 read_lock(&tasklist_lock);
519 pgoff = page_to_pgoff(page);
520 for_each_process(tsk) {
521 struct task_struct *t = task_early_kill(tsk, force_early);
522
523 if (!t)
524 continue;
525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
526 pgoff) {
527 /*
528 * Send early kill signal to tasks where a vma covers
529 * the page but the corrupted page is not necessarily
530 * mapped it in its pte.
531 * Assume applications who requested early kill want
532 * to be informed of all such data corruptions.
533 */
534 if (vma->vm_mm == t->mm)
535 add_to_kill(t, page, vma, to_kill);
536 }
537 }
538 read_unlock(&tasklist_lock);
539 i_mmap_unlock_read(mapping);
540 }
541
542 /*
543 * Collect the processes who have the corrupted page mapped to kill.
544 */
545 static void collect_procs(struct page *page, struct list_head *tokill,
546 int force_early)
547 {
548 if (!page->mapping)
549 return;
550
551 if (PageAnon(page))
552 collect_procs_anon(page, tokill, force_early);
553 else
554 collect_procs_file(page, tokill, force_early);
555 }
556
557 static const char *action_name[] = {
558 [MF_IGNORED] = "Ignored",
559 [MF_FAILED] = "Failed",
560 [MF_DELAYED] = "Delayed",
561 [MF_RECOVERED] = "Recovered",
562 };
563
564 static const char * const action_page_types[] = {
565 [MF_MSG_KERNEL] = "reserved kernel page",
566 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
567 [MF_MSG_SLAB] = "kernel slab page",
568 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
569 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
570 [MF_MSG_HUGE] = "huge page",
571 [MF_MSG_FREE_HUGE] = "free huge page",
572 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
573 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
574 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
575 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
576 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
577 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
578 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
579 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
580 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
581 [MF_MSG_CLEAN_LRU] = "clean LRU page",
582 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
583 [MF_MSG_BUDDY] = "free buddy page",
584 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
585 [MF_MSG_DAX] = "dax page",
586 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
587 [MF_MSG_UNKNOWN] = "unknown page",
588 };
589
590 /*
591 * XXX: It is possible that a page is isolated from LRU cache,
592 * and then kept in swap cache or failed to remove from page cache.
593 * The page count will stop it from being freed by unpoison.
594 * Stress tests should be aware of this memory leak problem.
595 */
596 static int delete_from_lru_cache(struct page *p)
597 {
598 if (!isolate_lru_page(p)) {
599 /*
600 * Clear sensible page flags, so that the buddy system won't
601 * complain when the page is unpoison-and-freed.
602 */
603 ClearPageActive(p);
604 ClearPageUnevictable(p);
605
606 /*
607 * Poisoned page might never drop its ref count to 0 so we have
608 * to uncharge it manually from its memcg.
609 */
610 mem_cgroup_uncharge(p);
611
612 /*
613 * drop the page count elevated by isolate_lru_page()
614 */
615 put_page(p);
616 return 0;
617 }
618 return -EIO;
619 }
620
621 static int truncate_error_page(struct page *p, unsigned long pfn,
622 struct address_space *mapping)
623 {
624 int ret = MF_FAILED;
625
626 if (mapping->a_ops->error_remove_page) {
627 int err = mapping->a_ops->error_remove_page(mapping, p);
628
629 if (err != 0) {
630 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
631 pfn, err);
632 } else if (page_has_private(p) &&
633 !try_to_release_page(p, GFP_NOIO)) {
634 pr_info("Memory failure: %#lx: failed to release buffers\n",
635 pfn);
636 } else {
637 ret = MF_RECOVERED;
638 }
639 } else {
640 /*
641 * If the file system doesn't support it just invalidate
642 * This fails on dirty or anything with private pages
643 */
644 if (invalidate_inode_page(p))
645 ret = MF_RECOVERED;
646 else
647 pr_info("Memory failure: %#lx: Failed to invalidate\n",
648 pfn);
649 }
650
651 return ret;
652 }
653
654 /*
655 * Error hit kernel page.
656 * Do nothing, try to be lucky and not touch this instead. For a few cases we
657 * could be more sophisticated.
658 */
659 static int me_kernel(struct page *p, unsigned long pfn)
660 {
661 return MF_IGNORED;
662 }
663
664 /*
665 * Page in unknown state. Do nothing.
666 */
667 static int me_unknown(struct page *p, unsigned long pfn)
668 {
669 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
670 return MF_FAILED;
671 }
672
673 /*
674 * Clean (or cleaned) page cache page.
675 */
676 static int me_pagecache_clean(struct page *p, unsigned long pfn)
677 {
678 struct address_space *mapping;
679
680 delete_from_lru_cache(p);
681
682 /*
683 * For anonymous pages we're done the only reference left
684 * should be the one m_f() holds.
685 */
686 if (PageAnon(p))
687 return MF_RECOVERED;
688
689 /*
690 * Now truncate the page in the page cache. This is really
691 * more like a "temporary hole punch"
692 * Don't do this for block devices when someone else
693 * has a reference, because it could be file system metadata
694 * and that's not safe to truncate.
695 */
696 mapping = page_mapping(p);
697 if (!mapping) {
698 /*
699 * Page has been teared down in the meanwhile
700 */
701 return MF_FAILED;
702 }
703
704 /*
705 * Truncation is a bit tricky. Enable it per file system for now.
706 *
707 * Open: to take i_mutex or not for this? Right now we don't.
708 */
709 return truncate_error_page(p, pfn, mapping);
710 }
711
712 /*
713 * Dirty pagecache page
714 * Issues: when the error hit a hole page the error is not properly
715 * propagated.
716 */
717 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
718 {
719 struct address_space *mapping = page_mapping(p);
720
721 SetPageError(p);
722 /* TBD: print more information about the file. */
723 if (mapping) {
724 /*
725 * IO error will be reported by write(), fsync(), etc.
726 * who check the mapping.
727 * This way the application knows that something went
728 * wrong with its dirty file data.
729 *
730 * There's one open issue:
731 *
732 * The EIO will be only reported on the next IO
733 * operation and then cleared through the IO map.
734 * Normally Linux has two mechanisms to pass IO error
735 * first through the AS_EIO flag in the address space
736 * and then through the PageError flag in the page.
737 * Since we drop pages on memory failure handling the
738 * only mechanism open to use is through AS_AIO.
739 *
740 * This has the disadvantage that it gets cleared on
741 * the first operation that returns an error, while
742 * the PageError bit is more sticky and only cleared
743 * when the page is reread or dropped. If an
744 * application assumes it will always get error on
745 * fsync, but does other operations on the fd before
746 * and the page is dropped between then the error
747 * will not be properly reported.
748 *
749 * This can already happen even without hwpoisoned
750 * pages: first on metadata IO errors (which only
751 * report through AS_EIO) or when the page is dropped
752 * at the wrong time.
753 *
754 * So right now we assume that the application DTRT on
755 * the first EIO, but we're not worse than other parts
756 * of the kernel.
757 */
758 mapping_set_error(mapping, -EIO);
759 }
760
761 return me_pagecache_clean(p, pfn);
762 }
763
764 /*
765 * Clean and dirty swap cache.
766 *
767 * Dirty swap cache page is tricky to handle. The page could live both in page
768 * cache and swap cache(ie. page is freshly swapped in). So it could be
769 * referenced concurrently by 2 types of PTEs:
770 * normal PTEs and swap PTEs. We try to handle them consistently by calling
771 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
772 * and then
773 * - clear dirty bit to prevent IO
774 * - remove from LRU
775 * - but keep in the swap cache, so that when we return to it on
776 * a later page fault, we know the application is accessing
777 * corrupted data and shall be killed (we installed simple
778 * interception code in do_swap_page to catch it).
779 *
780 * Clean swap cache pages can be directly isolated. A later page fault will
781 * bring in the known good data from disk.
782 */
783 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
784 {
785 ClearPageDirty(p);
786 /* Trigger EIO in shmem: */
787 ClearPageUptodate(p);
788
789 if (!delete_from_lru_cache(p))
790 return MF_DELAYED;
791 else
792 return MF_FAILED;
793 }
794
795 static int me_swapcache_clean(struct page *p, unsigned long pfn)
796 {
797 delete_from_swap_cache(p);
798
799 if (!delete_from_lru_cache(p))
800 return MF_RECOVERED;
801 else
802 return MF_FAILED;
803 }
804
805 /*
806 * Huge pages. Needs work.
807 * Issues:
808 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
809 * To narrow down kill region to one page, we need to break up pmd.
810 */
811 static int me_huge_page(struct page *p, unsigned long pfn)
812 {
813 int res;
814 struct page *hpage = compound_head(p);
815 struct address_space *mapping;
816
817 if (!PageHuge(hpage))
818 return MF_DELAYED;
819
820 mapping = page_mapping(hpage);
821 if (mapping) {
822 res = truncate_error_page(hpage, pfn, mapping);
823 } else {
824 res = MF_FAILED;
825 unlock_page(hpage);
826 /*
827 * migration entry prevents later access on error anonymous
828 * hugepage, so we can free and dissolve it into buddy to
829 * save healthy subpages.
830 */
831 if (PageAnon(hpage))
832 put_page(hpage);
833 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
834 page_ref_inc(p);
835 res = MF_RECOVERED;
836 }
837 lock_page(hpage);
838 }
839
840 return res;
841 }
842
843 /*
844 * Various page states we can handle.
845 *
846 * A page state is defined by its current page->flags bits.
847 * The table matches them in order and calls the right handler.
848 *
849 * This is quite tricky because we can access page at any time
850 * in its live cycle, so all accesses have to be extremely careful.
851 *
852 * This is not complete. More states could be added.
853 * For any missing state don't attempt recovery.
854 */
855
856 #define dirty (1UL << PG_dirty)
857 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
858 #define unevict (1UL << PG_unevictable)
859 #define mlock (1UL << PG_mlocked)
860 #define lru (1UL << PG_lru)
861 #define head (1UL << PG_head)
862 #define slab (1UL << PG_slab)
863 #define reserved (1UL << PG_reserved)
864
865 static struct page_state {
866 unsigned long mask;
867 unsigned long res;
868 enum mf_action_page_type type;
869 int (*action)(struct page *p, unsigned long pfn);
870 } error_states[] = {
871 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
872 /*
873 * free pages are specially detected outside this table:
874 * PG_buddy pages only make a small fraction of all free pages.
875 */
876
877 /*
878 * Could in theory check if slab page is free or if we can drop
879 * currently unused objects without touching them. But just
880 * treat it as standard kernel for now.
881 */
882 { slab, slab, MF_MSG_SLAB, me_kernel },
883
884 { head, head, MF_MSG_HUGE, me_huge_page },
885
886 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
887 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
888
889 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
890 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
891
892 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
893 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
894
895 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
896 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
897
898 /*
899 * Catchall entry: must be at end.
900 */
901 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
902 };
903
904 #undef dirty
905 #undef sc
906 #undef unevict
907 #undef mlock
908 #undef lru
909 #undef head
910 #undef slab
911 #undef reserved
912
913 /*
914 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
915 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
916 */
917 static void action_result(unsigned long pfn, enum mf_action_page_type type,
918 enum mf_result result)
919 {
920 trace_memory_failure_event(pfn, type, result);
921
922 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
923 pfn, action_page_types[type], action_name[result]);
924 }
925
926 static int page_action(struct page_state *ps, struct page *p,
927 unsigned long pfn)
928 {
929 int result;
930 int count;
931
932 result = ps->action(p, pfn);
933
934 count = page_count(p) - 1;
935 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
936 count--;
937 if (count > 0) {
938 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
939 pfn, action_page_types[ps->type], count);
940 result = MF_FAILED;
941 }
942 action_result(pfn, ps->type, result);
943
944 /* Could do more checks here if page looks ok */
945 /*
946 * Could adjust zone counters here to correct for the missing page.
947 */
948
949 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
950 }
951
952 /**
953 * __get_hwpoison_page() - Get refcount for memory error handling:
954 * @page: raw error page (hit by memory error)
955 *
956 * Return: return 0 if failed to grab the refcount, otherwise true (some
957 * non-zero value.)
958 */
959 static int __get_hwpoison_page(struct page *page)
960 {
961 struct page *head = compound_head(page);
962
963 if (!PageHuge(head) && PageTransHuge(head)) {
964 /*
965 * Non anonymous thp exists only in allocation/free time. We
966 * can't handle such a case correctly, so let's give it up.
967 * This should be better than triggering BUG_ON when kernel
968 * tries to touch the "partially handled" page.
969 */
970 if (!PageAnon(head)) {
971 pr_err("Memory failure: %#lx: non anonymous thp\n",
972 page_to_pfn(page));
973 return 0;
974 }
975 }
976
977 if (get_page_unless_zero(head)) {
978 if (head == compound_head(page))
979 return 1;
980
981 pr_info("Memory failure: %#lx cannot catch tail\n",
982 page_to_pfn(page));
983 put_page(head);
984 }
985
986 return 0;
987 }
988
989 /*
990 * Safely get reference count of an arbitrary page.
991 *
992 * Returns 0 for a free page, 1 for an in-use page,
993 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
994 * allocation.
995 * We only incremented refcount in case the page was already in-use and it
996 * is a known type we can handle.
997 */
998 static int get_any_page(struct page *p, unsigned long flags)
999 {
1000 int ret = 0, pass = 0;
1001 bool count_increased = false;
1002
1003 if (flags & MF_COUNT_INCREASED)
1004 count_increased = true;
1005
1006 try_again:
1007 if (!count_increased && !__get_hwpoison_page(p)) {
1008 if (page_count(p)) {
1009 /* We raced with an allocation, retry. */
1010 if (pass++ < 3)
1011 goto try_again;
1012 ret = -EBUSY;
1013 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1014 /* We raced with put_page, retry. */
1015 if (pass++ < 3)
1016 goto try_again;
1017 ret = -EIO;
1018 }
1019 } else {
1020 if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1021 ret = 1;
1022 } else {
1023 /*
1024 * A page we cannot handle. Check whether we can turn
1025 * it into something we can handle.
1026 */
1027 if (pass++ < 3) {
1028 put_page(p);
1029 shake_page(p, 1);
1030 count_increased = false;
1031 goto try_again;
1032 }
1033 put_page(p);
1034 ret = -EIO;
1035 }
1036 }
1037
1038 return ret;
1039 }
1040
1041 static int get_hwpoison_page(struct page *p, unsigned long flags,
1042 enum mf_flags ctxt)
1043 {
1044 int ret;
1045
1046 zone_pcp_disable(page_zone(p));
1047 if (ctxt == MF_SOFT_OFFLINE)
1048 ret = get_any_page(p, flags);
1049 else
1050 ret = __get_hwpoison_page(p);
1051 zone_pcp_enable(page_zone(p));
1052
1053 return ret;
1054 }
1055
1056 /*
1057 * Do all that is necessary to remove user space mappings. Unmap
1058 * the pages and send SIGBUS to the processes if the data was dirty.
1059 */
1060 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1061 int flags, struct page **hpagep)
1062 {
1063 enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1064 struct address_space *mapping;
1065 LIST_HEAD(tokill);
1066 bool unmap_success = true;
1067 int kill = 1, forcekill;
1068 struct page *hpage = *hpagep;
1069 bool mlocked = PageMlocked(hpage);
1070
1071 /*
1072 * Here we are interested only in user-mapped pages, so skip any
1073 * other types of pages.
1074 */
1075 if (PageReserved(p) || PageSlab(p))
1076 return true;
1077 if (!(PageLRU(hpage) || PageHuge(p)))
1078 return true;
1079
1080 /*
1081 * This check implies we don't kill processes if their pages
1082 * are in the swap cache early. Those are always late kills.
1083 */
1084 if (!page_mapped(hpage))
1085 return true;
1086
1087 if (PageKsm(p)) {
1088 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1089 return false;
1090 }
1091
1092 if (PageSwapCache(p)) {
1093 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1094 pfn);
1095 ttu |= TTU_IGNORE_HWPOISON;
1096 }
1097
1098 /*
1099 * Propagate the dirty bit from PTEs to struct page first, because we
1100 * need this to decide if we should kill or just drop the page.
1101 * XXX: the dirty test could be racy: set_page_dirty() may not always
1102 * be called inside page lock (it's recommended but not enforced).
1103 */
1104 mapping = page_mapping(hpage);
1105 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1106 mapping_can_writeback(mapping)) {
1107 if (page_mkclean(hpage)) {
1108 SetPageDirty(hpage);
1109 } else {
1110 kill = 0;
1111 ttu |= TTU_IGNORE_HWPOISON;
1112 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1113 pfn);
1114 }
1115 }
1116
1117 /*
1118 * First collect all the processes that have the page
1119 * mapped in dirty form. This has to be done before try_to_unmap,
1120 * because ttu takes the rmap data structures down.
1121 *
1122 * Error handling: We ignore errors here because
1123 * there's nothing that can be done.
1124 */
1125 if (kill)
1126 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1127
1128 if (!PageHuge(hpage)) {
1129 unmap_success = try_to_unmap(hpage, ttu);
1130 } else {
1131 if (!PageAnon(hpage)) {
1132 /*
1133 * For hugetlb pages in shared mappings, try_to_unmap
1134 * could potentially call huge_pmd_unshare. Because of
1135 * this, take semaphore in write mode here and set
1136 * TTU_RMAP_LOCKED to indicate we have taken the lock
1137 * at this higer level.
1138 */
1139 mapping = hugetlb_page_mapping_lock_write(hpage);
1140 if (mapping) {
1141 unmap_success = try_to_unmap(hpage,
1142 ttu|TTU_RMAP_LOCKED);
1143 i_mmap_unlock_write(mapping);
1144 } else {
1145 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1146 unmap_success = false;
1147 }
1148 } else {
1149 unmap_success = try_to_unmap(hpage, ttu);
1150 }
1151 }
1152 if (!unmap_success)
1153 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1154 pfn, page_mapcount(hpage));
1155
1156 /*
1157 * try_to_unmap() might put mlocked page in lru cache, so call
1158 * shake_page() again to ensure that it's flushed.
1159 */
1160 if (mlocked)
1161 shake_page(hpage, 0);
1162
1163 /*
1164 * Now that the dirty bit has been propagated to the
1165 * struct page and all unmaps done we can decide if
1166 * killing is needed or not. Only kill when the page
1167 * was dirty or the process is not restartable,
1168 * otherwise the tokill list is merely
1169 * freed. When there was a problem unmapping earlier
1170 * use a more force-full uncatchable kill to prevent
1171 * any accesses to the poisoned memory.
1172 */
1173 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1174 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1175
1176 return unmap_success;
1177 }
1178
1179 static int identify_page_state(unsigned long pfn, struct page *p,
1180 unsigned long page_flags)
1181 {
1182 struct page_state *ps;
1183
1184 /*
1185 * The first check uses the current page flags which may not have any
1186 * relevant information. The second check with the saved page flags is
1187 * carried out only if the first check can't determine the page status.
1188 */
1189 for (ps = error_states;; ps++)
1190 if ((p->flags & ps->mask) == ps->res)
1191 break;
1192
1193 page_flags |= (p->flags & (1UL << PG_dirty));
1194
1195 if (!ps->mask)
1196 for (ps = error_states;; ps++)
1197 if ((page_flags & ps->mask) == ps->res)
1198 break;
1199 return page_action(ps, p, pfn);
1200 }
1201
1202 static int try_to_split_thp_page(struct page *page, const char *msg)
1203 {
1204 lock_page(page);
1205 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1206 unsigned long pfn = page_to_pfn(page);
1207
1208 unlock_page(page);
1209 if (!PageAnon(page))
1210 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1211 else
1212 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1213 put_page(page);
1214 return -EBUSY;
1215 }
1216 unlock_page(page);
1217
1218 return 0;
1219 }
1220
1221 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1222 {
1223 struct page *p = pfn_to_page(pfn);
1224 struct page *head = compound_head(p);
1225 int res;
1226 unsigned long page_flags;
1227
1228 if (TestSetPageHWPoison(head)) {
1229 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1230 pfn);
1231 return 0;
1232 }
1233
1234 num_poisoned_pages_inc();
1235
1236 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1237 /*
1238 * Check "filter hit" and "race with other subpage."
1239 */
1240 lock_page(head);
1241 if (PageHWPoison(head)) {
1242 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1243 || (p != head && TestSetPageHWPoison(head))) {
1244 num_poisoned_pages_dec();
1245 unlock_page(head);
1246 return 0;
1247 }
1248 }
1249 unlock_page(head);
1250 res = MF_FAILED;
1251 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1252 page_ref_inc(p);
1253 res = MF_RECOVERED;
1254 }
1255 action_result(pfn, MF_MSG_FREE_HUGE, res);
1256 return res == MF_RECOVERED ? 0 : -EBUSY;
1257 }
1258
1259 lock_page(head);
1260 page_flags = head->flags;
1261
1262 if (!PageHWPoison(head)) {
1263 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1264 num_poisoned_pages_dec();
1265 unlock_page(head);
1266 put_page(head);
1267 return 0;
1268 }
1269
1270 /*
1271 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1272 * simply disable it. In order to make it work properly, we need
1273 * make sure that:
1274 * - conversion of a pud that maps an error hugetlb into hwpoison
1275 * entry properly works, and
1276 * - other mm code walking over page table is aware of pud-aligned
1277 * hwpoison entries.
1278 */
1279 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1280 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1281 res = -EBUSY;
1282 goto out;
1283 }
1284
1285 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1286 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1287 res = -EBUSY;
1288 goto out;
1289 }
1290
1291 res = identify_page_state(pfn, p, page_flags);
1292 out:
1293 unlock_page(head);
1294 return res;
1295 }
1296
1297 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1298 struct dev_pagemap *pgmap)
1299 {
1300 struct page *page = pfn_to_page(pfn);
1301 const bool unmap_success = true;
1302 unsigned long size = 0;
1303 struct to_kill *tk;
1304 LIST_HEAD(tokill);
1305 int rc = -EBUSY;
1306 loff_t start;
1307 dax_entry_t cookie;
1308
1309 if (flags & MF_COUNT_INCREASED)
1310 /*
1311 * Drop the extra refcount in case we come from madvise().
1312 */
1313 put_page(page);
1314
1315 /* device metadata space is not recoverable */
1316 if (!pgmap_pfn_valid(pgmap, pfn)) {
1317 rc = -ENXIO;
1318 goto out;
1319 }
1320
1321 /*
1322 * Prevent the inode from being freed while we are interrogating
1323 * the address_space, typically this would be handled by
1324 * lock_page(), but dax pages do not use the page lock. This
1325 * also prevents changes to the mapping of this pfn until
1326 * poison signaling is complete.
1327 */
1328 cookie = dax_lock_page(page);
1329 if (!cookie)
1330 goto out;
1331
1332 if (hwpoison_filter(page)) {
1333 rc = 0;
1334 goto unlock;
1335 }
1336
1337 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1338 /*
1339 * TODO: Handle HMM pages which may need coordination
1340 * with device-side memory.
1341 */
1342 goto unlock;
1343 }
1344
1345 /*
1346 * Use this flag as an indication that the dax page has been
1347 * remapped UC to prevent speculative consumption of poison.
1348 */
1349 SetPageHWPoison(page);
1350
1351 /*
1352 * Unlike System-RAM there is no possibility to swap in a
1353 * different physical page at a given virtual address, so all
1354 * userspace consumption of ZONE_DEVICE memory necessitates
1355 * SIGBUS (i.e. MF_MUST_KILL)
1356 */
1357 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1358 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1359
1360 list_for_each_entry(tk, &tokill, nd)
1361 if (tk->size_shift)
1362 size = max(size, 1UL << tk->size_shift);
1363 if (size) {
1364 /*
1365 * Unmap the largest mapping to avoid breaking up
1366 * device-dax mappings which are constant size. The
1367 * actual size of the mapping being torn down is
1368 * communicated in siginfo, see kill_proc()
1369 */
1370 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1371 unmap_mapping_range(page->mapping, start, start + size, 0);
1372 }
1373 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1374 rc = 0;
1375 unlock:
1376 dax_unlock_page(page, cookie);
1377 out:
1378 /* drop pgmap ref acquired in caller */
1379 put_dev_pagemap(pgmap);
1380 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1381 return rc;
1382 }
1383
1384 /**
1385 * memory_failure - Handle memory failure of a page.
1386 * @pfn: Page Number of the corrupted page
1387 * @flags: fine tune action taken
1388 *
1389 * This function is called by the low level machine check code
1390 * of an architecture when it detects hardware memory corruption
1391 * of a page. It tries its best to recover, which includes
1392 * dropping pages, killing processes etc.
1393 *
1394 * The function is primarily of use for corruptions that
1395 * happen outside the current execution context (e.g. when
1396 * detected by a background scrubber)
1397 *
1398 * Must run in process context (e.g. a work queue) with interrupts
1399 * enabled and no spinlocks hold.
1400 */
1401 int memory_failure(unsigned long pfn, int flags)
1402 {
1403 struct page *p;
1404 struct page *hpage;
1405 struct page *orig_head;
1406 struct dev_pagemap *pgmap;
1407 int res;
1408 unsigned long page_flags;
1409 bool retry = true;
1410
1411 if (!sysctl_memory_failure_recovery)
1412 panic("Memory failure on page %lx", pfn);
1413
1414 p = pfn_to_online_page(pfn);
1415 if (!p) {
1416 if (pfn_valid(pfn)) {
1417 pgmap = get_dev_pagemap(pfn, NULL);
1418 if (pgmap)
1419 return memory_failure_dev_pagemap(pfn, flags,
1420 pgmap);
1421 }
1422 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1423 pfn);
1424 return -ENXIO;
1425 }
1426
1427 try_again:
1428 if (PageHuge(p))
1429 return memory_failure_hugetlb(pfn, flags);
1430 if (TestSetPageHWPoison(p)) {
1431 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1432 pfn);
1433 return 0;
1434 }
1435
1436 orig_head = hpage = compound_head(p);
1437 num_poisoned_pages_inc();
1438
1439 /*
1440 * We need/can do nothing about count=0 pages.
1441 * 1) it's a free page, and therefore in safe hand:
1442 * prep_new_page() will be the gate keeper.
1443 * 2) it's part of a non-compound high order page.
1444 * Implies some kernel user: cannot stop them from
1445 * R/W the page; let's pray that the page has been
1446 * used and will be freed some time later.
1447 * In fact it's dangerous to directly bump up page count from 0,
1448 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1449 */
1450 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1451 if (is_free_buddy_page(p)) {
1452 if (take_page_off_buddy(p)) {
1453 page_ref_inc(p);
1454 res = MF_RECOVERED;
1455 } else {
1456 /* We lost the race, try again */
1457 if (retry) {
1458 ClearPageHWPoison(p);
1459 num_poisoned_pages_dec();
1460 retry = false;
1461 goto try_again;
1462 }
1463 res = MF_FAILED;
1464 }
1465 action_result(pfn, MF_MSG_BUDDY, res);
1466 return res == MF_RECOVERED ? 0 : -EBUSY;
1467 } else {
1468 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1469 return -EBUSY;
1470 }
1471 }
1472
1473 if (PageTransHuge(hpage)) {
1474 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1475 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1476 return -EBUSY;
1477 }
1478 VM_BUG_ON_PAGE(!page_count(p), p);
1479 }
1480
1481 /*
1482 * We ignore non-LRU pages for good reasons.
1483 * - PG_locked is only well defined for LRU pages and a few others
1484 * - to avoid races with __SetPageLocked()
1485 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1486 * The check (unnecessarily) ignores LRU pages being isolated and
1487 * walked by the page reclaim code, however that's not a big loss.
1488 */
1489 shake_page(p, 0);
1490
1491 lock_page(p);
1492
1493 /*
1494 * The page could have changed compound pages during the locking.
1495 * If this happens just bail out.
1496 */
1497 if (PageCompound(p) && compound_head(p) != orig_head) {
1498 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1499 res = -EBUSY;
1500 goto out;
1501 }
1502
1503 /*
1504 * We use page flags to determine what action should be taken, but
1505 * the flags can be modified by the error containment action. One
1506 * example is an mlocked page, where PG_mlocked is cleared by
1507 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1508 * correctly, we save a copy of the page flags at this time.
1509 */
1510 page_flags = p->flags;
1511
1512 /*
1513 * unpoison always clear PG_hwpoison inside page lock
1514 */
1515 if (!PageHWPoison(p)) {
1516 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1517 num_poisoned_pages_dec();
1518 unlock_page(p);
1519 put_page(p);
1520 return 0;
1521 }
1522 if (hwpoison_filter(p)) {
1523 if (TestClearPageHWPoison(p))
1524 num_poisoned_pages_dec();
1525 unlock_page(p);
1526 put_page(p);
1527 return 0;
1528 }
1529
1530 if (!PageTransTail(p) && !PageLRU(p))
1531 goto identify_page_state;
1532
1533 /*
1534 * It's very difficult to mess with pages currently under IO
1535 * and in many cases impossible, so we just avoid it here.
1536 */
1537 wait_on_page_writeback(p);
1538
1539 /*
1540 * Now take care of user space mappings.
1541 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1542 */
1543 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1544 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1545 res = -EBUSY;
1546 goto out;
1547 }
1548
1549 /*
1550 * Torn down by someone else?
1551 */
1552 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1553 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1554 res = -EBUSY;
1555 goto out;
1556 }
1557
1558 identify_page_state:
1559 res = identify_page_state(pfn, p, page_flags);
1560 out:
1561 unlock_page(p);
1562 return res;
1563 }
1564 EXPORT_SYMBOL_GPL(memory_failure);
1565
1566 #define MEMORY_FAILURE_FIFO_ORDER 4
1567 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1568
1569 struct memory_failure_entry {
1570 unsigned long pfn;
1571 int flags;
1572 };
1573
1574 struct memory_failure_cpu {
1575 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1576 MEMORY_FAILURE_FIFO_SIZE);
1577 spinlock_t lock;
1578 struct work_struct work;
1579 };
1580
1581 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1582
1583 /**
1584 * memory_failure_queue - Schedule handling memory failure of a page.
1585 * @pfn: Page Number of the corrupted page
1586 * @flags: Flags for memory failure handling
1587 *
1588 * This function is called by the low level hardware error handler
1589 * when it detects hardware memory corruption of a page. It schedules
1590 * the recovering of error page, including dropping pages, killing
1591 * processes etc.
1592 *
1593 * The function is primarily of use for corruptions that
1594 * happen outside the current execution context (e.g. when
1595 * detected by a background scrubber)
1596 *
1597 * Can run in IRQ context.
1598 */
1599 void memory_failure_queue(unsigned long pfn, int flags)
1600 {
1601 struct memory_failure_cpu *mf_cpu;
1602 unsigned long proc_flags;
1603 struct memory_failure_entry entry = {
1604 .pfn = pfn,
1605 .flags = flags,
1606 };
1607
1608 mf_cpu = &get_cpu_var(memory_failure_cpu);
1609 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1610 if (kfifo_put(&mf_cpu->fifo, entry))
1611 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1612 else
1613 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1614 pfn);
1615 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1616 put_cpu_var(memory_failure_cpu);
1617 }
1618 EXPORT_SYMBOL_GPL(memory_failure_queue);
1619
1620 static void memory_failure_work_func(struct work_struct *work)
1621 {
1622 struct memory_failure_cpu *mf_cpu;
1623 struct memory_failure_entry entry = { 0, };
1624 unsigned long proc_flags;
1625 int gotten;
1626
1627 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1628 for (;;) {
1629 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1630 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1631 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1632 if (!gotten)
1633 break;
1634 if (entry.flags & MF_SOFT_OFFLINE)
1635 soft_offline_page(entry.pfn, entry.flags);
1636 else
1637 memory_failure(entry.pfn, entry.flags);
1638 }
1639 }
1640
1641 /*
1642 * Process memory_failure work queued on the specified CPU.
1643 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1644 */
1645 void memory_failure_queue_kick(int cpu)
1646 {
1647 struct memory_failure_cpu *mf_cpu;
1648
1649 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1650 cancel_work_sync(&mf_cpu->work);
1651 memory_failure_work_func(&mf_cpu->work);
1652 }
1653
1654 static int __init memory_failure_init(void)
1655 {
1656 struct memory_failure_cpu *mf_cpu;
1657 int cpu;
1658
1659 for_each_possible_cpu(cpu) {
1660 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1661 spin_lock_init(&mf_cpu->lock);
1662 INIT_KFIFO(mf_cpu->fifo);
1663 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1664 }
1665
1666 return 0;
1667 }
1668 core_initcall(memory_failure_init);
1669
1670 #define unpoison_pr_info(fmt, pfn, rs) \
1671 ({ \
1672 if (__ratelimit(rs)) \
1673 pr_info(fmt, pfn); \
1674 })
1675
1676 /**
1677 * unpoison_memory - Unpoison a previously poisoned page
1678 * @pfn: Page number of the to be unpoisoned page
1679 *
1680 * Software-unpoison a page that has been poisoned by
1681 * memory_failure() earlier.
1682 *
1683 * This is only done on the software-level, so it only works
1684 * for linux injected failures, not real hardware failures
1685 *
1686 * Returns 0 for success, otherwise -errno.
1687 */
1688 int unpoison_memory(unsigned long pfn)
1689 {
1690 struct page *page;
1691 struct page *p;
1692 int freeit = 0;
1693 unsigned long flags = 0;
1694 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1695 DEFAULT_RATELIMIT_BURST);
1696
1697 if (!pfn_valid(pfn))
1698 return -ENXIO;
1699
1700 p = pfn_to_page(pfn);
1701 page = compound_head(p);
1702
1703 if (!PageHWPoison(p)) {
1704 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1705 pfn, &unpoison_rs);
1706 return 0;
1707 }
1708
1709 if (page_count(page) > 1) {
1710 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1711 pfn, &unpoison_rs);
1712 return 0;
1713 }
1714
1715 if (page_mapped(page)) {
1716 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1717 pfn, &unpoison_rs);
1718 return 0;
1719 }
1720
1721 if (page_mapping(page)) {
1722 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1723 pfn, &unpoison_rs);
1724 return 0;
1725 }
1726
1727 /*
1728 * unpoison_memory() can encounter thp only when the thp is being
1729 * worked by memory_failure() and the page lock is not held yet.
1730 * In such case, we yield to memory_failure() and make unpoison fail.
1731 */
1732 if (!PageHuge(page) && PageTransHuge(page)) {
1733 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1734 pfn, &unpoison_rs);
1735 return 0;
1736 }
1737
1738 if (!get_hwpoison_page(p, flags, 0)) {
1739 if (TestClearPageHWPoison(p))
1740 num_poisoned_pages_dec();
1741 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1742 pfn, &unpoison_rs);
1743 return 0;
1744 }
1745
1746 lock_page(page);
1747 /*
1748 * This test is racy because PG_hwpoison is set outside of page lock.
1749 * That's acceptable because that won't trigger kernel panic. Instead,
1750 * the PG_hwpoison page will be caught and isolated on the entrance to
1751 * the free buddy page pool.
1752 */
1753 if (TestClearPageHWPoison(page)) {
1754 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1755 pfn, &unpoison_rs);
1756 num_poisoned_pages_dec();
1757 freeit = 1;
1758 }
1759 unlock_page(page);
1760
1761 put_page(page);
1762 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1763 put_page(page);
1764
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(unpoison_memory);
1768
1769 static bool isolate_page(struct page *page, struct list_head *pagelist)
1770 {
1771 bool isolated = false;
1772 bool lru = PageLRU(page);
1773
1774 if (PageHuge(page)) {
1775 isolated = isolate_huge_page(page, pagelist);
1776 } else {
1777 if (lru)
1778 isolated = !isolate_lru_page(page);
1779 else
1780 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1781
1782 if (isolated)
1783 list_add(&page->lru, pagelist);
1784 }
1785
1786 if (isolated && lru)
1787 inc_node_page_state(page, NR_ISOLATED_ANON +
1788 page_is_file_lru(page));
1789
1790 /*
1791 * If we succeed to isolate the page, we grabbed another refcount on
1792 * the page, so we can safely drop the one we got from get_any_pages().
1793 * If we failed to isolate the page, it means that we cannot go further
1794 * and we will return an error, so drop the reference we got from
1795 * get_any_pages() as well.
1796 */
1797 put_page(page);
1798 return isolated;
1799 }
1800
1801 /*
1802 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1803 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1804 * If the page is mapped, it migrates the contents over.
1805 */
1806 static int __soft_offline_page(struct page *page)
1807 {
1808 int ret = 0;
1809 unsigned long pfn = page_to_pfn(page);
1810 struct page *hpage = compound_head(page);
1811 char const *msg_page[] = {"page", "hugepage"};
1812 bool huge = PageHuge(page);
1813 LIST_HEAD(pagelist);
1814 struct migration_target_control mtc = {
1815 .nid = NUMA_NO_NODE,
1816 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1817 };
1818
1819 /*
1820 * Check PageHWPoison again inside page lock because PageHWPoison
1821 * is set by memory_failure() outside page lock. Note that
1822 * memory_failure() also double-checks PageHWPoison inside page lock,
1823 * so there's no race between soft_offline_page() and memory_failure().
1824 */
1825 lock_page(page);
1826 if (!PageHuge(page))
1827 wait_on_page_writeback(page);
1828 if (PageHWPoison(page)) {
1829 unlock_page(page);
1830 put_page(page);
1831 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1832 return 0;
1833 }
1834
1835 if (!PageHuge(page))
1836 /*
1837 * Try to invalidate first. This should work for
1838 * non dirty unmapped page cache pages.
1839 */
1840 ret = invalidate_inode_page(page);
1841 unlock_page(page);
1842
1843 /*
1844 * RED-PEN would be better to keep it isolated here, but we
1845 * would need to fix isolation locking first.
1846 */
1847 if (ret) {
1848 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1849 page_handle_poison(page, false, true);
1850 return 0;
1851 }
1852
1853 if (isolate_page(hpage, &pagelist)) {
1854 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1855 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1856 if (!ret) {
1857 bool release = !huge;
1858
1859 if (!page_handle_poison(page, huge, release))
1860 ret = -EBUSY;
1861 } else {
1862 if (!list_empty(&pagelist))
1863 putback_movable_pages(&pagelist);
1864
1865 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1866 pfn, msg_page[huge], ret, page->flags, &page->flags);
1867 if (ret > 0)
1868 ret = -EBUSY;
1869 }
1870 } else {
1871 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1872 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1873 ret = -EBUSY;
1874 }
1875 return ret;
1876 }
1877
1878 static int soft_offline_in_use_page(struct page *page)
1879 {
1880 struct page *hpage = compound_head(page);
1881
1882 if (!PageHuge(page) && PageTransHuge(hpage))
1883 if (try_to_split_thp_page(page, "soft offline") < 0)
1884 return -EBUSY;
1885 return __soft_offline_page(page);
1886 }
1887
1888 static int soft_offline_free_page(struct page *page)
1889 {
1890 int rc = 0;
1891
1892 if (!page_handle_poison(page, true, false))
1893 rc = -EBUSY;
1894
1895 return rc;
1896 }
1897
1898 static void put_ref_page(struct page *page)
1899 {
1900 if (page)
1901 put_page(page);
1902 }
1903
1904 /**
1905 * soft_offline_page - Soft offline a page.
1906 * @pfn: pfn to soft-offline
1907 * @flags: flags. Same as memory_failure().
1908 *
1909 * Returns 0 on success, otherwise negated errno.
1910 *
1911 * Soft offline a page, by migration or invalidation,
1912 * without killing anything. This is for the case when
1913 * a page is not corrupted yet (so it's still valid to access),
1914 * but has had a number of corrected errors and is better taken
1915 * out.
1916 *
1917 * The actual policy on when to do that is maintained by
1918 * user space.
1919 *
1920 * This should never impact any application or cause data loss,
1921 * however it might take some time.
1922 *
1923 * This is not a 100% solution for all memory, but tries to be
1924 * ``good enough'' for the majority of memory.
1925 */
1926 int soft_offline_page(unsigned long pfn, int flags)
1927 {
1928 int ret;
1929 bool try_again = true;
1930 struct page *page, *ref_page = NULL;
1931
1932 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1933
1934 if (!pfn_valid(pfn))
1935 return -ENXIO;
1936 if (flags & MF_COUNT_INCREASED)
1937 ref_page = pfn_to_page(pfn);
1938
1939 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1940 page = pfn_to_online_page(pfn);
1941 if (!page) {
1942 put_ref_page(ref_page);
1943 return -EIO;
1944 }
1945
1946 if (PageHWPoison(page)) {
1947 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1948 put_ref_page(ref_page);
1949 return 0;
1950 }
1951
1952 retry:
1953 get_online_mems();
1954 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1955 put_online_mems();
1956
1957 if (ret > 0) {
1958 ret = soft_offline_in_use_page(page);
1959 } else if (ret == 0) {
1960 if (soft_offline_free_page(page) && try_again) {
1961 try_again = false;
1962 goto retry;
1963 }
1964 } else if (ret == -EIO) {
1965 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1966 __func__, pfn, page->flags, &page->flags);
1967 }
1968
1969 return ret;
1970 }