]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory-failure.c
netfilter: nft_ct: allow to set ctnetlink event types of a connection
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/page-isolation.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 struct address_space *mapping;
86 dev_t dev;
87
88 if (hwpoison_filter_dev_major == ~0U &&
89 hwpoison_filter_dev_minor == ~0U)
90 return 0;
91
92 /*
93 * page_mapping() does not accept slab pages.
94 */
95 if (PageSlab(p))
96 return -EINVAL;
97
98 mapping = page_mapping(p);
99 if (mapping == NULL || mapping->host == NULL)
100 return -EINVAL;
101
102 dev = mapping->host->i_sb->s_dev;
103 if (hwpoison_filter_dev_major != ~0U &&
104 hwpoison_filter_dev_major != MAJOR(dev))
105 return -EINVAL;
106 if (hwpoison_filter_dev_minor != ~0U &&
107 hwpoison_filter_dev_minor != MINOR(dev))
108 return -EINVAL;
109
110 return 0;
111 }
112
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 if (!hwpoison_filter_flags_mask)
116 return 0;
117
118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 hwpoison_filter_flags_value)
120 return 0;
121 else
122 return -EINVAL;
123 }
124
125 /*
126 * This allows stress tests to limit test scope to a collection of tasks
127 * by putting them under some memcg. This prevents killing unrelated/important
128 * processes such as /sbin/init. Note that the target task may share clean
129 * pages with init (eg. libc text), which is harmless. If the target task
130 * share _dirty_ pages with another task B, the test scheme must make sure B
131 * is also included in the memcg. At last, due to race conditions this filter
132 * can only guarantee that the page either belongs to the memcg tasks, or is
133 * a freed page.
134 */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 return -EINVAL;
145
146 return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151
152 int hwpoison_filter(struct page *p)
153 {
154 if (!hwpoison_filter_enable)
155 return 0;
156
157 if (hwpoison_filter_dev(p))
158 return -EINVAL;
159
160 if (hwpoison_filter_flags(p))
161 return -EINVAL;
162
163 if (hwpoison_filter_task(p))
164 return -EINVAL;
165
166 return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 return 0;
172 }
173 #endif
174
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176
177 /*
178 * Send all the processes who have the page mapped a signal.
179 * ``action optional'' if they are not immediately affected by the error
180 * ``action required'' if error happened in current execution context
181 */
182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn, struct page *page, int flags)
184 {
185 struct siginfo si;
186 int ret;
187
188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
192 si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195 #endif
196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197
198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 si.si_code = BUS_MCEERR_AR;
200 ret = force_sig_info(SIGBUS, &si, current);
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
211 if (ret < 0)
212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213 t->comm, t->pid, ret);
214 return ret;
215 }
216
217 /*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
221 void shake_page(struct page *p, int access)
222 {
223 if (!PageSlab(p)) {
224 lru_add_drain_all();
225 if (PageLRU(p))
226 return;
227 drain_all_pages(page_zone(p));
228 if (PageLRU(p) || is_free_buddy_page(p))
229 return;
230 }
231
232 /*
233 * Only call shrink_node_slabs here (which would also shrink
234 * other caches) if access is not potentially fatal.
235 */
236 if (access)
237 drop_slab_node(page_to_nid(p));
238 }
239 EXPORT_SYMBOL_GPL(shake_page);
240
241 /*
242 * Kill all processes that have a poisoned page mapped and then isolate
243 * the page.
244 *
245 * General strategy:
246 * Find all processes having the page mapped and kill them.
247 * But we keep a page reference around so that the page is not
248 * actually freed yet.
249 * Then stash the page away
250 *
251 * There's no convenient way to get back to mapped processes
252 * from the VMAs. So do a brute-force search over all
253 * running processes.
254 *
255 * Remember that machine checks are not common (or rather
256 * if they are common you have other problems), so this shouldn't
257 * be a performance issue.
258 *
259 * Also there are some races possible while we get from the
260 * error detection to actually handle it.
261 */
262
263 struct to_kill {
264 struct list_head nd;
265 struct task_struct *tsk;
266 unsigned long addr;
267 char addr_valid;
268 };
269
270 /*
271 * Failure handling: if we can't find or can't kill a process there's
272 * not much we can do. We just print a message and ignore otherwise.
273 */
274
275 /*
276 * Schedule a process for later kill.
277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278 * TBD would GFP_NOIO be enough?
279 */
280 static void add_to_kill(struct task_struct *tsk, struct page *p,
281 struct vm_area_struct *vma,
282 struct list_head *to_kill,
283 struct to_kill **tkc)
284 {
285 struct to_kill *tk;
286
287 if (*tkc) {
288 tk = *tkc;
289 *tkc = NULL;
290 } else {
291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 if (!tk) {
293 pr_err("Memory failure: Out of memory while machine check handling\n");
294 return;
295 }
296 }
297 tk->addr = page_address_in_vma(p, vma);
298 tk->addr_valid = 1;
299
300 /*
301 * In theory we don't have to kill when the page was
302 * munmaped. But it could be also a mremap. Since that's
303 * likely very rare kill anyways just out of paranoia, but use
304 * a SIGKILL because the error is not contained anymore.
305 */
306 if (tk->addr == -EFAULT) {
307 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
308 page_to_pfn(p), tsk->comm);
309 tk->addr_valid = 0;
310 }
311 get_task_struct(tsk);
312 tk->tsk = tsk;
313 list_add_tail(&tk->nd, to_kill);
314 }
315
316 /*
317 * Kill the processes that have been collected earlier.
318 *
319 * Only do anything when DOIT is set, otherwise just free the list
320 * (this is used for clean pages which do not need killing)
321 * Also when FAIL is set do a force kill because something went
322 * wrong earlier.
323 */
324 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
325 int fail, struct page *page, unsigned long pfn,
326 int flags)
327 {
328 struct to_kill *tk, *next;
329
330 list_for_each_entry_safe (tk, next, to_kill, nd) {
331 if (forcekill) {
332 /*
333 * In case something went wrong with munmapping
334 * make sure the process doesn't catch the
335 * signal and then access the memory. Just kill it.
336 */
337 if (fail || tk->addr_valid == 0) {
338 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
339 pfn, tk->tsk->comm, tk->tsk->pid);
340 force_sig(SIGKILL, tk->tsk);
341 }
342
343 /*
344 * In theory the process could have mapped
345 * something else on the address in-between. We could
346 * check for that, but we need to tell the
347 * process anyways.
348 */
349 else if (kill_proc(tk->tsk, tk->addr, trapno,
350 pfn, page, flags) < 0)
351 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
352 pfn, tk->tsk->comm, tk->tsk->pid);
353 }
354 put_task_struct(tk->tsk);
355 kfree(tk);
356 }
357 }
358
359 /*
360 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
361 * on behalf of the thread group. Return task_struct of the (first found)
362 * dedicated thread if found, and return NULL otherwise.
363 *
364 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
365 * have to call rcu_read_lock/unlock() in this function.
366 */
367 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
368 {
369 struct task_struct *t;
370
371 for_each_thread(tsk, t)
372 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
373 return t;
374 return NULL;
375 }
376
377 /*
378 * Determine whether a given process is "early kill" process which expects
379 * to be signaled when some page under the process is hwpoisoned.
380 * Return task_struct of the dedicated thread (main thread unless explicitly
381 * specified) if the process is "early kill," and otherwise returns NULL.
382 */
383 static struct task_struct *task_early_kill(struct task_struct *tsk,
384 int force_early)
385 {
386 struct task_struct *t;
387 if (!tsk->mm)
388 return NULL;
389 if (force_early)
390 return tsk;
391 t = find_early_kill_thread(tsk);
392 if (t)
393 return t;
394 if (sysctl_memory_failure_early_kill)
395 return tsk;
396 return NULL;
397 }
398
399 /*
400 * Collect processes when the error hit an anonymous page.
401 */
402 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
403 struct to_kill **tkc, int force_early)
404 {
405 struct vm_area_struct *vma;
406 struct task_struct *tsk;
407 struct anon_vma *av;
408 pgoff_t pgoff;
409
410 av = page_lock_anon_vma_read(page);
411 if (av == NULL) /* Not actually mapped anymore */
412 return;
413
414 pgoff = page_to_pgoff(page);
415 read_lock(&tasklist_lock);
416 for_each_process (tsk) {
417 struct anon_vma_chain *vmac;
418 struct task_struct *t = task_early_kill(tsk, force_early);
419
420 if (!t)
421 continue;
422 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
423 pgoff, pgoff) {
424 vma = vmac->vma;
425 if (!page_mapped_in_vma(page, vma))
426 continue;
427 if (vma->vm_mm == t->mm)
428 add_to_kill(t, page, vma, to_kill, tkc);
429 }
430 }
431 read_unlock(&tasklist_lock);
432 page_unlock_anon_vma_read(av);
433 }
434
435 /*
436 * Collect processes when the error hit a file mapped page.
437 */
438 static void collect_procs_file(struct page *page, struct list_head *to_kill,
439 struct to_kill **tkc, int force_early)
440 {
441 struct vm_area_struct *vma;
442 struct task_struct *tsk;
443 struct address_space *mapping = page->mapping;
444
445 i_mmap_lock_read(mapping);
446 read_lock(&tasklist_lock);
447 for_each_process(tsk) {
448 pgoff_t pgoff = page_to_pgoff(page);
449 struct task_struct *t = task_early_kill(tsk, force_early);
450
451 if (!t)
452 continue;
453 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
454 pgoff) {
455 /*
456 * Send early kill signal to tasks where a vma covers
457 * the page but the corrupted page is not necessarily
458 * mapped it in its pte.
459 * Assume applications who requested early kill want
460 * to be informed of all such data corruptions.
461 */
462 if (vma->vm_mm == t->mm)
463 add_to_kill(t, page, vma, to_kill, tkc);
464 }
465 }
466 read_unlock(&tasklist_lock);
467 i_mmap_unlock_read(mapping);
468 }
469
470 /*
471 * Collect the processes who have the corrupted page mapped to kill.
472 * This is done in two steps for locking reasons.
473 * First preallocate one tokill structure outside the spin locks,
474 * so that we can kill at least one process reasonably reliable.
475 */
476 static void collect_procs(struct page *page, struct list_head *tokill,
477 int force_early)
478 {
479 struct to_kill *tk;
480
481 if (!page->mapping)
482 return;
483
484 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
485 if (!tk)
486 return;
487 if (PageAnon(page))
488 collect_procs_anon(page, tokill, &tk, force_early);
489 else
490 collect_procs_file(page, tokill, &tk, force_early);
491 kfree(tk);
492 }
493
494 static const char *action_name[] = {
495 [MF_IGNORED] = "Ignored",
496 [MF_FAILED] = "Failed",
497 [MF_DELAYED] = "Delayed",
498 [MF_RECOVERED] = "Recovered",
499 };
500
501 static const char * const action_page_types[] = {
502 [MF_MSG_KERNEL] = "reserved kernel page",
503 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
504 [MF_MSG_SLAB] = "kernel slab page",
505 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
506 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
507 [MF_MSG_HUGE] = "huge page",
508 [MF_MSG_FREE_HUGE] = "free huge page",
509 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
510 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
511 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
512 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
513 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
514 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
515 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
516 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
517 [MF_MSG_CLEAN_LRU] = "clean LRU page",
518 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
519 [MF_MSG_BUDDY] = "free buddy page",
520 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
521 [MF_MSG_UNKNOWN] = "unknown page",
522 };
523
524 /*
525 * XXX: It is possible that a page is isolated from LRU cache,
526 * and then kept in swap cache or failed to remove from page cache.
527 * The page count will stop it from being freed by unpoison.
528 * Stress tests should be aware of this memory leak problem.
529 */
530 static int delete_from_lru_cache(struct page *p)
531 {
532 if (!isolate_lru_page(p)) {
533 /*
534 * Clear sensible page flags, so that the buddy system won't
535 * complain when the page is unpoison-and-freed.
536 */
537 ClearPageActive(p);
538 ClearPageUnevictable(p);
539 /*
540 * drop the page count elevated by isolate_lru_page()
541 */
542 put_page(p);
543 return 0;
544 }
545 return -EIO;
546 }
547
548 /*
549 * Error hit kernel page.
550 * Do nothing, try to be lucky and not touch this instead. For a few cases we
551 * could be more sophisticated.
552 */
553 static int me_kernel(struct page *p, unsigned long pfn)
554 {
555 return MF_IGNORED;
556 }
557
558 /*
559 * Page in unknown state. Do nothing.
560 */
561 static int me_unknown(struct page *p, unsigned long pfn)
562 {
563 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
564 return MF_FAILED;
565 }
566
567 /*
568 * Clean (or cleaned) page cache page.
569 */
570 static int me_pagecache_clean(struct page *p, unsigned long pfn)
571 {
572 int err;
573 int ret = MF_FAILED;
574 struct address_space *mapping;
575
576 delete_from_lru_cache(p);
577
578 /*
579 * For anonymous pages we're done the only reference left
580 * should be the one m_f() holds.
581 */
582 if (PageAnon(p))
583 return MF_RECOVERED;
584
585 /*
586 * Now truncate the page in the page cache. This is really
587 * more like a "temporary hole punch"
588 * Don't do this for block devices when someone else
589 * has a reference, because it could be file system metadata
590 * and that's not safe to truncate.
591 */
592 mapping = page_mapping(p);
593 if (!mapping) {
594 /*
595 * Page has been teared down in the meanwhile
596 */
597 return MF_FAILED;
598 }
599
600 /*
601 * Truncation is a bit tricky. Enable it per file system for now.
602 *
603 * Open: to take i_mutex or not for this? Right now we don't.
604 */
605 if (mapping->a_ops->error_remove_page) {
606 err = mapping->a_ops->error_remove_page(mapping, p);
607 if (err != 0) {
608 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
609 pfn, err);
610 } else if (page_has_private(p) &&
611 !try_to_release_page(p, GFP_NOIO)) {
612 pr_info("Memory failure: %#lx: failed to release buffers\n",
613 pfn);
614 } else {
615 ret = MF_RECOVERED;
616 }
617 } else {
618 /*
619 * If the file system doesn't support it just invalidate
620 * This fails on dirty or anything with private pages
621 */
622 if (invalidate_inode_page(p))
623 ret = MF_RECOVERED;
624 else
625 pr_info("Memory failure: %#lx: Failed to invalidate\n",
626 pfn);
627 }
628 return ret;
629 }
630
631 /*
632 * Dirty pagecache page
633 * Issues: when the error hit a hole page the error is not properly
634 * propagated.
635 */
636 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
637 {
638 struct address_space *mapping = page_mapping(p);
639
640 SetPageError(p);
641 /* TBD: print more information about the file. */
642 if (mapping) {
643 /*
644 * IO error will be reported by write(), fsync(), etc.
645 * who check the mapping.
646 * This way the application knows that something went
647 * wrong with its dirty file data.
648 *
649 * There's one open issue:
650 *
651 * The EIO will be only reported on the next IO
652 * operation and then cleared through the IO map.
653 * Normally Linux has two mechanisms to pass IO error
654 * first through the AS_EIO flag in the address space
655 * and then through the PageError flag in the page.
656 * Since we drop pages on memory failure handling the
657 * only mechanism open to use is through AS_AIO.
658 *
659 * This has the disadvantage that it gets cleared on
660 * the first operation that returns an error, while
661 * the PageError bit is more sticky and only cleared
662 * when the page is reread or dropped. If an
663 * application assumes it will always get error on
664 * fsync, but does other operations on the fd before
665 * and the page is dropped between then the error
666 * will not be properly reported.
667 *
668 * This can already happen even without hwpoisoned
669 * pages: first on metadata IO errors (which only
670 * report through AS_EIO) or when the page is dropped
671 * at the wrong time.
672 *
673 * So right now we assume that the application DTRT on
674 * the first EIO, but we're not worse than other parts
675 * of the kernel.
676 */
677 mapping_set_error(mapping, EIO);
678 }
679
680 return me_pagecache_clean(p, pfn);
681 }
682
683 /*
684 * Clean and dirty swap cache.
685 *
686 * Dirty swap cache page is tricky to handle. The page could live both in page
687 * cache and swap cache(ie. page is freshly swapped in). So it could be
688 * referenced concurrently by 2 types of PTEs:
689 * normal PTEs and swap PTEs. We try to handle them consistently by calling
690 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
691 * and then
692 * - clear dirty bit to prevent IO
693 * - remove from LRU
694 * - but keep in the swap cache, so that when we return to it on
695 * a later page fault, we know the application is accessing
696 * corrupted data and shall be killed (we installed simple
697 * interception code in do_swap_page to catch it).
698 *
699 * Clean swap cache pages can be directly isolated. A later page fault will
700 * bring in the known good data from disk.
701 */
702 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
703 {
704 ClearPageDirty(p);
705 /* Trigger EIO in shmem: */
706 ClearPageUptodate(p);
707
708 if (!delete_from_lru_cache(p))
709 return MF_DELAYED;
710 else
711 return MF_FAILED;
712 }
713
714 static int me_swapcache_clean(struct page *p, unsigned long pfn)
715 {
716 delete_from_swap_cache(p);
717
718 if (!delete_from_lru_cache(p))
719 return MF_RECOVERED;
720 else
721 return MF_FAILED;
722 }
723
724 /*
725 * Huge pages. Needs work.
726 * Issues:
727 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
728 * To narrow down kill region to one page, we need to break up pmd.
729 */
730 static int me_huge_page(struct page *p, unsigned long pfn)
731 {
732 int res = 0;
733 struct page *hpage = compound_head(p);
734
735 if (!PageHuge(hpage))
736 return MF_DELAYED;
737
738 /*
739 * We can safely recover from error on free or reserved (i.e.
740 * not in-use) hugepage by dequeuing it from freelist.
741 * To check whether a hugepage is in-use or not, we can't use
742 * page->lru because it can be used in other hugepage operations,
743 * such as __unmap_hugepage_range() and gather_surplus_pages().
744 * So instead we use page_mapping() and PageAnon().
745 */
746 if (!(page_mapping(hpage) || PageAnon(hpage))) {
747 res = dequeue_hwpoisoned_huge_page(hpage);
748 if (!res)
749 return MF_RECOVERED;
750 }
751 return MF_DELAYED;
752 }
753
754 /*
755 * Various page states we can handle.
756 *
757 * A page state is defined by its current page->flags bits.
758 * The table matches them in order and calls the right handler.
759 *
760 * This is quite tricky because we can access page at any time
761 * in its live cycle, so all accesses have to be extremely careful.
762 *
763 * This is not complete. More states could be added.
764 * For any missing state don't attempt recovery.
765 */
766
767 #define dirty (1UL << PG_dirty)
768 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
769 #define unevict (1UL << PG_unevictable)
770 #define mlock (1UL << PG_mlocked)
771 #define writeback (1UL << PG_writeback)
772 #define lru (1UL << PG_lru)
773 #define head (1UL << PG_head)
774 #define slab (1UL << PG_slab)
775 #define reserved (1UL << PG_reserved)
776
777 static struct page_state {
778 unsigned long mask;
779 unsigned long res;
780 enum mf_action_page_type type;
781 int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
784 /*
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
787 */
788
789 /*
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
793 */
794 { slab, slab, MF_MSG_SLAB, me_kernel },
795
796 { head, head, MF_MSG_HUGE, me_huge_page },
797
798 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
799 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
800
801 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
802 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
803
804 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
805 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
806
807 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
808 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
809
810 /*
811 * Catchall entry: must be at end.
812 */
813 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
814 };
815
816 #undef dirty
817 #undef sc
818 #undef unevict
819 #undef mlock
820 #undef writeback
821 #undef lru
822 #undef head
823 #undef slab
824 #undef reserved
825
826 /*
827 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
828 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
829 */
830 static void action_result(unsigned long pfn, enum mf_action_page_type type,
831 enum mf_result result)
832 {
833 trace_memory_failure_event(pfn, type, result);
834
835 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
836 pfn, action_page_types[type], action_name[result]);
837 }
838
839 static int page_action(struct page_state *ps, struct page *p,
840 unsigned long pfn)
841 {
842 int result;
843 int count;
844
845 result = ps->action(p, pfn);
846
847 count = page_count(p) - 1;
848 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
849 count--;
850 if (count != 0) {
851 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
852 pfn, action_page_types[ps->type], count);
853 result = MF_FAILED;
854 }
855 action_result(pfn, ps->type, result);
856
857 /* Could do more checks here if page looks ok */
858 /*
859 * Could adjust zone counters here to correct for the missing page.
860 */
861
862 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
863 }
864
865 /**
866 * get_hwpoison_page() - Get refcount for memory error handling:
867 * @page: raw error page (hit by memory error)
868 *
869 * Return: return 0 if failed to grab the refcount, otherwise true (some
870 * non-zero value.)
871 */
872 int get_hwpoison_page(struct page *page)
873 {
874 struct page *head = compound_head(page);
875
876 if (!PageHuge(head) && PageTransHuge(head)) {
877 /*
878 * Non anonymous thp exists only in allocation/free time. We
879 * can't handle such a case correctly, so let's give it up.
880 * This should be better than triggering BUG_ON when kernel
881 * tries to touch the "partially handled" page.
882 */
883 if (!PageAnon(head)) {
884 pr_err("Memory failure: %#lx: non anonymous thp\n",
885 page_to_pfn(page));
886 return 0;
887 }
888 }
889
890 if (get_page_unless_zero(head)) {
891 if (head == compound_head(page))
892 return 1;
893
894 pr_info("Memory failure: %#lx cannot catch tail\n",
895 page_to_pfn(page));
896 put_page(head);
897 }
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(get_hwpoison_page);
902
903 /*
904 * Do all that is necessary to remove user space mappings. Unmap
905 * the pages and send SIGBUS to the processes if the data was dirty.
906 */
907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
908 int trapno, int flags, struct page **hpagep)
909 {
910 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
911 struct address_space *mapping;
912 LIST_HEAD(tokill);
913 int ret;
914 int kill = 1, forcekill;
915 struct page *hpage = *hpagep;
916
917 /*
918 * Here we are interested only in user-mapped pages, so skip any
919 * other types of pages.
920 */
921 if (PageReserved(p) || PageSlab(p))
922 return SWAP_SUCCESS;
923 if (!(PageLRU(hpage) || PageHuge(p)))
924 return SWAP_SUCCESS;
925
926 /*
927 * This check implies we don't kill processes if their pages
928 * are in the swap cache early. Those are always late kills.
929 */
930 if (!page_mapped(hpage))
931 return SWAP_SUCCESS;
932
933 if (PageKsm(p)) {
934 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
935 return SWAP_FAIL;
936 }
937
938 if (PageSwapCache(p)) {
939 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
940 pfn);
941 ttu |= TTU_IGNORE_HWPOISON;
942 }
943
944 /*
945 * Propagate the dirty bit from PTEs to struct page first, because we
946 * need this to decide if we should kill or just drop the page.
947 * XXX: the dirty test could be racy: set_page_dirty() may not always
948 * be called inside page lock (it's recommended but not enforced).
949 */
950 mapping = page_mapping(hpage);
951 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
952 mapping_cap_writeback_dirty(mapping)) {
953 if (page_mkclean(hpage)) {
954 SetPageDirty(hpage);
955 } else {
956 kill = 0;
957 ttu |= TTU_IGNORE_HWPOISON;
958 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
959 pfn);
960 }
961 }
962
963 /*
964 * First collect all the processes that have the page
965 * mapped in dirty form. This has to be done before try_to_unmap,
966 * because ttu takes the rmap data structures down.
967 *
968 * Error handling: We ignore errors here because
969 * there's nothing that can be done.
970 */
971 if (kill)
972 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
973
974 ret = try_to_unmap(hpage, ttu);
975 if (ret != SWAP_SUCCESS)
976 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
977 pfn, page_mapcount(hpage));
978
979 /*
980 * Now that the dirty bit has been propagated to the
981 * struct page and all unmaps done we can decide if
982 * killing is needed or not. Only kill when the page
983 * was dirty or the process is not restartable,
984 * otherwise the tokill list is merely
985 * freed. When there was a problem unmapping earlier
986 * use a more force-full uncatchable kill to prevent
987 * any accesses to the poisoned memory.
988 */
989 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
990 kill_procs(&tokill, forcekill, trapno,
991 ret != SWAP_SUCCESS, p, pfn, flags);
992
993 return ret;
994 }
995
996 static void set_page_hwpoison_huge_page(struct page *hpage)
997 {
998 int i;
999 int nr_pages = 1 << compound_order(hpage);
1000 for (i = 0; i < nr_pages; i++)
1001 SetPageHWPoison(hpage + i);
1002 }
1003
1004 static void clear_page_hwpoison_huge_page(struct page *hpage)
1005 {
1006 int i;
1007 int nr_pages = 1 << compound_order(hpage);
1008 for (i = 0; i < nr_pages; i++)
1009 ClearPageHWPoison(hpage + i);
1010 }
1011
1012 /**
1013 * memory_failure - Handle memory failure of a page.
1014 * @pfn: Page Number of the corrupted page
1015 * @trapno: Trap number reported in the signal to user space.
1016 * @flags: fine tune action taken
1017 *
1018 * This function is called by the low level machine check code
1019 * of an architecture when it detects hardware memory corruption
1020 * of a page. It tries its best to recover, which includes
1021 * dropping pages, killing processes etc.
1022 *
1023 * The function is primarily of use for corruptions that
1024 * happen outside the current execution context (e.g. when
1025 * detected by a background scrubber)
1026 *
1027 * Must run in process context (e.g. a work queue) with interrupts
1028 * enabled and no spinlocks hold.
1029 */
1030 int memory_failure(unsigned long pfn, int trapno, int flags)
1031 {
1032 struct page_state *ps;
1033 struct page *p;
1034 struct page *hpage;
1035 struct page *orig_head;
1036 int res;
1037 unsigned int nr_pages;
1038 unsigned long page_flags;
1039
1040 if (!sysctl_memory_failure_recovery)
1041 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1042
1043 if (!pfn_valid(pfn)) {
1044 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1045 pfn);
1046 return -ENXIO;
1047 }
1048
1049 p = pfn_to_page(pfn);
1050 orig_head = hpage = compound_head(p);
1051 if (TestSetPageHWPoison(p)) {
1052 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1053 pfn);
1054 return 0;
1055 }
1056
1057 /*
1058 * Currently errors on hugetlbfs pages are measured in hugepage units,
1059 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1060 * transparent hugepages, they are supposed to be split and error
1061 * measurement is done in normal page units. So nr_pages should be one
1062 * in this case.
1063 */
1064 if (PageHuge(p))
1065 nr_pages = 1 << compound_order(hpage);
1066 else /* normal page or thp */
1067 nr_pages = 1;
1068 num_poisoned_pages_add(nr_pages);
1069
1070 /*
1071 * We need/can do nothing about count=0 pages.
1072 * 1) it's a free page, and therefore in safe hand:
1073 * prep_new_page() will be the gate keeper.
1074 * 2) it's a free hugepage, which is also safe:
1075 * an affected hugepage will be dequeued from hugepage freelist,
1076 * so there's no concern about reusing it ever after.
1077 * 3) it's part of a non-compound high order page.
1078 * Implies some kernel user: cannot stop them from
1079 * R/W the page; let's pray that the page has been
1080 * used and will be freed some time later.
1081 * In fact it's dangerous to directly bump up page count from 0,
1082 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1083 */
1084 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1085 if (is_free_buddy_page(p)) {
1086 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1087 return 0;
1088 } else if (PageHuge(hpage)) {
1089 /*
1090 * Check "filter hit" and "race with other subpage."
1091 */
1092 lock_page(hpage);
1093 if (PageHWPoison(hpage)) {
1094 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1095 || (p != hpage && TestSetPageHWPoison(hpage))) {
1096 num_poisoned_pages_sub(nr_pages);
1097 unlock_page(hpage);
1098 return 0;
1099 }
1100 }
1101 set_page_hwpoison_huge_page(hpage);
1102 res = dequeue_hwpoisoned_huge_page(hpage);
1103 action_result(pfn, MF_MSG_FREE_HUGE,
1104 res ? MF_IGNORED : MF_DELAYED);
1105 unlock_page(hpage);
1106 return res;
1107 } else {
1108 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1109 return -EBUSY;
1110 }
1111 }
1112
1113 if (!PageHuge(p) && PageTransHuge(hpage)) {
1114 lock_page(p);
1115 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1116 unlock_page(p);
1117 if (!PageAnon(p))
1118 pr_err("Memory failure: %#lx: non anonymous thp\n",
1119 pfn);
1120 else
1121 pr_err("Memory failure: %#lx: thp split failed\n",
1122 pfn);
1123 if (TestClearPageHWPoison(p))
1124 num_poisoned_pages_sub(nr_pages);
1125 put_hwpoison_page(p);
1126 return -EBUSY;
1127 }
1128 unlock_page(p);
1129 VM_BUG_ON_PAGE(!page_count(p), p);
1130 hpage = compound_head(p);
1131 }
1132
1133 /*
1134 * We ignore non-LRU pages for good reasons.
1135 * - PG_locked is only well defined for LRU pages and a few others
1136 * - to avoid races with __SetPageLocked()
1137 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1138 * The check (unnecessarily) ignores LRU pages being isolated and
1139 * walked by the page reclaim code, however that's not a big loss.
1140 */
1141 if (!PageHuge(p)) {
1142 if (!PageLRU(p))
1143 shake_page(p, 0);
1144 if (!PageLRU(p)) {
1145 /*
1146 * shake_page could have turned it free.
1147 */
1148 if (is_free_buddy_page(p)) {
1149 if (flags & MF_COUNT_INCREASED)
1150 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1151 else
1152 action_result(pfn, MF_MSG_BUDDY_2ND,
1153 MF_DELAYED);
1154 return 0;
1155 }
1156 }
1157 }
1158
1159 lock_page(hpage);
1160
1161 /*
1162 * The page could have changed compound pages during the locking.
1163 * If this happens just bail out.
1164 */
1165 if (PageCompound(p) && compound_head(p) != orig_head) {
1166 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1167 res = -EBUSY;
1168 goto out;
1169 }
1170
1171 /*
1172 * We use page flags to determine what action should be taken, but
1173 * the flags can be modified by the error containment action. One
1174 * example is an mlocked page, where PG_mlocked is cleared by
1175 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1176 * correctly, we save a copy of the page flags at this time.
1177 */
1178 page_flags = p->flags;
1179
1180 /*
1181 * unpoison always clear PG_hwpoison inside page lock
1182 */
1183 if (!PageHWPoison(p)) {
1184 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1185 num_poisoned_pages_sub(nr_pages);
1186 unlock_page(hpage);
1187 put_hwpoison_page(hpage);
1188 return 0;
1189 }
1190 if (hwpoison_filter(p)) {
1191 if (TestClearPageHWPoison(p))
1192 num_poisoned_pages_sub(nr_pages);
1193 unlock_page(hpage);
1194 put_hwpoison_page(hpage);
1195 return 0;
1196 }
1197
1198 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1199 goto identify_page_state;
1200
1201 /*
1202 * For error on the tail page, we should set PG_hwpoison
1203 * on the head page to show that the hugepage is hwpoisoned
1204 */
1205 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1206 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1207 unlock_page(hpage);
1208 put_hwpoison_page(hpage);
1209 return 0;
1210 }
1211 /*
1212 * Set PG_hwpoison on all pages in an error hugepage,
1213 * because containment is done in hugepage unit for now.
1214 * Since we have done TestSetPageHWPoison() for the head page with
1215 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1216 */
1217 if (PageHuge(p))
1218 set_page_hwpoison_huge_page(hpage);
1219
1220 /*
1221 * It's very difficult to mess with pages currently under IO
1222 * and in many cases impossible, so we just avoid it here.
1223 */
1224 wait_on_page_writeback(p);
1225
1226 /*
1227 * Now take care of user space mappings.
1228 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1229 *
1230 * When the raw error page is thp tail page, hpage points to the raw
1231 * page after thp split.
1232 */
1233 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1234 != SWAP_SUCCESS) {
1235 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1236 res = -EBUSY;
1237 goto out;
1238 }
1239
1240 /*
1241 * Torn down by someone else?
1242 */
1243 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1244 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1245 res = -EBUSY;
1246 goto out;
1247 }
1248
1249 identify_page_state:
1250 res = -EBUSY;
1251 /*
1252 * The first check uses the current page flags which may not have any
1253 * relevant information. The second check with the saved page flagss is
1254 * carried out only if the first check can't determine the page status.
1255 */
1256 for (ps = error_states;; ps++)
1257 if ((p->flags & ps->mask) == ps->res)
1258 break;
1259
1260 page_flags |= (p->flags & (1UL << PG_dirty));
1261
1262 if (!ps->mask)
1263 for (ps = error_states;; ps++)
1264 if ((page_flags & ps->mask) == ps->res)
1265 break;
1266 res = page_action(ps, p, pfn);
1267 out:
1268 unlock_page(hpage);
1269 return res;
1270 }
1271 EXPORT_SYMBOL_GPL(memory_failure);
1272
1273 #define MEMORY_FAILURE_FIFO_ORDER 4
1274 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1275
1276 struct memory_failure_entry {
1277 unsigned long pfn;
1278 int trapno;
1279 int flags;
1280 };
1281
1282 struct memory_failure_cpu {
1283 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1284 MEMORY_FAILURE_FIFO_SIZE);
1285 spinlock_t lock;
1286 struct work_struct work;
1287 };
1288
1289 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1290
1291 /**
1292 * memory_failure_queue - Schedule handling memory failure of a page.
1293 * @pfn: Page Number of the corrupted page
1294 * @trapno: Trap number reported in the signal to user space.
1295 * @flags: Flags for memory failure handling
1296 *
1297 * This function is called by the low level hardware error handler
1298 * when it detects hardware memory corruption of a page. It schedules
1299 * the recovering of error page, including dropping pages, killing
1300 * processes etc.
1301 *
1302 * The function is primarily of use for corruptions that
1303 * happen outside the current execution context (e.g. when
1304 * detected by a background scrubber)
1305 *
1306 * Can run in IRQ context.
1307 */
1308 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1309 {
1310 struct memory_failure_cpu *mf_cpu;
1311 unsigned long proc_flags;
1312 struct memory_failure_entry entry = {
1313 .pfn = pfn,
1314 .trapno = trapno,
1315 .flags = flags,
1316 };
1317
1318 mf_cpu = &get_cpu_var(memory_failure_cpu);
1319 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1320 if (kfifo_put(&mf_cpu->fifo, entry))
1321 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1322 else
1323 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1324 pfn);
1325 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1326 put_cpu_var(memory_failure_cpu);
1327 }
1328 EXPORT_SYMBOL_GPL(memory_failure_queue);
1329
1330 static void memory_failure_work_func(struct work_struct *work)
1331 {
1332 struct memory_failure_cpu *mf_cpu;
1333 struct memory_failure_entry entry = { 0, };
1334 unsigned long proc_flags;
1335 int gotten;
1336
1337 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1338 for (;;) {
1339 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1340 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1341 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1342 if (!gotten)
1343 break;
1344 if (entry.flags & MF_SOFT_OFFLINE)
1345 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1346 else
1347 memory_failure(entry.pfn, entry.trapno, entry.flags);
1348 }
1349 }
1350
1351 static int __init memory_failure_init(void)
1352 {
1353 struct memory_failure_cpu *mf_cpu;
1354 int cpu;
1355
1356 for_each_possible_cpu(cpu) {
1357 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1358 spin_lock_init(&mf_cpu->lock);
1359 INIT_KFIFO(mf_cpu->fifo);
1360 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1361 }
1362
1363 return 0;
1364 }
1365 core_initcall(memory_failure_init);
1366
1367 #define unpoison_pr_info(fmt, pfn, rs) \
1368 ({ \
1369 if (__ratelimit(rs)) \
1370 pr_info(fmt, pfn); \
1371 })
1372
1373 /**
1374 * unpoison_memory - Unpoison a previously poisoned page
1375 * @pfn: Page number of the to be unpoisoned page
1376 *
1377 * Software-unpoison a page that has been poisoned by
1378 * memory_failure() earlier.
1379 *
1380 * This is only done on the software-level, so it only works
1381 * for linux injected failures, not real hardware failures
1382 *
1383 * Returns 0 for success, otherwise -errno.
1384 */
1385 int unpoison_memory(unsigned long pfn)
1386 {
1387 struct page *page;
1388 struct page *p;
1389 int freeit = 0;
1390 unsigned int nr_pages;
1391 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1392 DEFAULT_RATELIMIT_BURST);
1393
1394 if (!pfn_valid(pfn))
1395 return -ENXIO;
1396
1397 p = pfn_to_page(pfn);
1398 page = compound_head(p);
1399
1400 if (!PageHWPoison(p)) {
1401 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1402 pfn, &unpoison_rs);
1403 return 0;
1404 }
1405
1406 if (page_count(page) > 1) {
1407 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1408 pfn, &unpoison_rs);
1409 return 0;
1410 }
1411
1412 if (page_mapped(page)) {
1413 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1414 pfn, &unpoison_rs);
1415 return 0;
1416 }
1417
1418 if (page_mapping(page)) {
1419 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1420 pfn, &unpoison_rs);
1421 return 0;
1422 }
1423
1424 /*
1425 * unpoison_memory() can encounter thp only when the thp is being
1426 * worked by memory_failure() and the page lock is not held yet.
1427 * In such case, we yield to memory_failure() and make unpoison fail.
1428 */
1429 if (!PageHuge(page) && PageTransHuge(page)) {
1430 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1431 pfn, &unpoison_rs);
1432 return 0;
1433 }
1434
1435 nr_pages = 1 << compound_order(page);
1436
1437 if (!get_hwpoison_page(p)) {
1438 /*
1439 * Since HWPoisoned hugepage should have non-zero refcount,
1440 * race between memory failure and unpoison seems to happen.
1441 * In such case unpoison fails and memory failure runs
1442 * to the end.
1443 */
1444 if (PageHuge(page)) {
1445 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1446 pfn, &unpoison_rs);
1447 return 0;
1448 }
1449 if (TestClearPageHWPoison(p))
1450 num_poisoned_pages_dec();
1451 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1452 pfn, &unpoison_rs);
1453 return 0;
1454 }
1455
1456 lock_page(page);
1457 /*
1458 * This test is racy because PG_hwpoison is set outside of page lock.
1459 * That's acceptable because that won't trigger kernel panic. Instead,
1460 * the PG_hwpoison page will be caught and isolated on the entrance to
1461 * the free buddy page pool.
1462 */
1463 if (TestClearPageHWPoison(page)) {
1464 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1465 pfn, &unpoison_rs);
1466 num_poisoned_pages_sub(nr_pages);
1467 freeit = 1;
1468 if (PageHuge(page))
1469 clear_page_hwpoison_huge_page(page);
1470 }
1471 unlock_page(page);
1472
1473 put_hwpoison_page(page);
1474 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1475 put_hwpoison_page(page);
1476
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(unpoison_memory);
1480
1481 static struct page *new_page(struct page *p, unsigned long private, int **x)
1482 {
1483 int nid = page_to_nid(p);
1484 if (PageHuge(p))
1485 return alloc_huge_page_node(page_hstate(compound_head(p)),
1486 nid);
1487 else
1488 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1489 }
1490
1491 /*
1492 * Safely get reference count of an arbitrary page.
1493 * Returns 0 for a free page, -EIO for a zero refcount page
1494 * that is not free, and 1 for any other page type.
1495 * For 1 the page is returned with increased page count, otherwise not.
1496 */
1497 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1498 {
1499 int ret;
1500
1501 if (flags & MF_COUNT_INCREASED)
1502 return 1;
1503
1504 /*
1505 * When the target page is a free hugepage, just remove it
1506 * from free hugepage list.
1507 */
1508 if (!get_hwpoison_page(p)) {
1509 if (PageHuge(p)) {
1510 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1511 ret = 0;
1512 } else if (is_free_buddy_page(p)) {
1513 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1514 ret = 0;
1515 } else {
1516 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1517 __func__, pfn, p->flags);
1518 ret = -EIO;
1519 }
1520 } else {
1521 /* Not a free page */
1522 ret = 1;
1523 }
1524 return ret;
1525 }
1526
1527 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1528 {
1529 int ret = __get_any_page(page, pfn, flags);
1530
1531 if (ret == 1 && !PageHuge(page) &&
1532 !PageLRU(page) && !__PageMovable(page)) {
1533 /*
1534 * Try to free it.
1535 */
1536 put_hwpoison_page(page);
1537 shake_page(page, 1);
1538
1539 /*
1540 * Did it turn free?
1541 */
1542 ret = __get_any_page(page, pfn, 0);
1543 if (ret == 1 && !PageLRU(page)) {
1544 /* Drop page reference which is from __get_any_page() */
1545 put_hwpoison_page(page);
1546 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1547 pfn, page->flags);
1548 return -EIO;
1549 }
1550 }
1551 return ret;
1552 }
1553
1554 static int soft_offline_huge_page(struct page *page, int flags)
1555 {
1556 int ret;
1557 unsigned long pfn = page_to_pfn(page);
1558 struct page *hpage = compound_head(page);
1559 LIST_HEAD(pagelist);
1560
1561 /*
1562 * This double-check of PageHWPoison is to avoid the race with
1563 * memory_failure(). See also comment in __soft_offline_page().
1564 */
1565 lock_page(hpage);
1566 if (PageHWPoison(hpage)) {
1567 unlock_page(hpage);
1568 put_hwpoison_page(hpage);
1569 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1570 return -EBUSY;
1571 }
1572 unlock_page(hpage);
1573
1574 ret = isolate_huge_page(hpage, &pagelist);
1575 /*
1576 * get_any_page() and isolate_huge_page() takes a refcount each,
1577 * so need to drop one here.
1578 */
1579 put_hwpoison_page(hpage);
1580 if (!ret) {
1581 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1582 return -EBUSY;
1583 }
1584
1585 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1586 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1587 if (ret) {
1588 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1589 pfn, ret, page->flags);
1590 /*
1591 * We know that soft_offline_huge_page() tries to migrate
1592 * only one hugepage pointed to by hpage, so we need not
1593 * run through the pagelist here.
1594 */
1595 putback_active_hugepage(hpage);
1596 if (ret > 0)
1597 ret = -EIO;
1598 } else {
1599 /* overcommit hugetlb page will be freed to buddy */
1600 if (PageHuge(page)) {
1601 set_page_hwpoison_huge_page(hpage);
1602 dequeue_hwpoisoned_huge_page(hpage);
1603 num_poisoned_pages_add(1 << compound_order(hpage));
1604 } else {
1605 SetPageHWPoison(page);
1606 num_poisoned_pages_inc();
1607 }
1608 }
1609 return ret;
1610 }
1611
1612 static int __soft_offline_page(struct page *page, int flags)
1613 {
1614 int ret;
1615 unsigned long pfn = page_to_pfn(page);
1616
1617 /*
1618 * Check PageHWPoison again inside page lock because PageHWPoison
1619 * is set by memory_failure() outside page lock. Note that
1620 * memory_failure() also double-checks PageHWPoison inside page lock,
1621 * so there's no race between soft_offline_page() and memory_failure().
1622 */
1623 lock_page(page);
1624 wait_on_page_writeback(page);
1625 if (PageHWPoison(page)) {
1626 unlock_page(page);
1627 put_hwpoison_page(page);
1628 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1629 return -EBUSY;
1630 }
1631 /*
1632 * Try to invalidate first. This should work for
1633 * non dirty unmapped page cache pages.
1634 */
1635 ret = invalidate_inode_page(page);
1636 unlock_page(page);
1637 /*
1638 * RED-PEN would be better to keep it isolated here, but we
1639 * would need to fix isolation locking first.
1640 */
1641 if (ret == 1) {
1642 put_hwpoison_page(page);
1643 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1644 SetPageHWPoison(page);
1645 num_poisoned_pages_inc();
1646 return 0;
1647 }
1648
1649 /*
1650 * Simple invalidation didn't work.
1651 * Try to migrate to a new page instead. migrate.c
1652 * handles a large number of cases for us.
1653 */
1654 if (PageLRU(page))
1655 ret = isolate_lru_page(page);
1656 else
1657 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1658 /*
1659 * Drop page reference which is came from get_any_page()
1660 * successful isolate_lru_page() already took another one.
1661 */
1662 put_hwpoison_page(page);
1663 if (!ret) {
1664 LIST_HEAD(pagelist);
1665 /*
1666 * After isolated lru page, the PageLRU will be cleared,
1667 * so use !__PageMovable instead for LRU page's mapping
1668 * cannot have PAGE_MAPPING_MOVABLE.
1669 */
1670 if (!__PageMovable(page))
1671 inc_node_page_state(page, NR_ISOLATED_ANON +
1672 page_is_file_cache(page));
1673 list_add(&page->lru, &pagelist);
1674 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1675 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1676 if (ret) {
1677 if (!list_empty(&pagelist))
1678 putback_movable_pages(&pagelist);
1679
1680 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1681 pfn, ret, page->flags);
1682 if (ret > 0)
1683 ret = -EIO;
1684 }
1685 } else {
1686 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1687 pfn, ret, page_count(page), page->flags);
1688 }
1689 return ret;
1690 }
1691
1692 static int soft_offline_in_use_page(struct page *page, int flags)
1693 {
1694 int ret;
1695 struct page *hpage = compound_head(page);
1696
1697 if (!PageHuge(page) && PageTransHuge(hpage)) {
1698 lock_page(hpage);
1699 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1700 unlock_page(hpage);
1701 if (!PageAnon(hpage))
1702 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1703 else
1704 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1705 put_hwpoison_page(hpage);
1706 return -EBUSY;
1707 }
1708 unlock_page(hpage);
1709 get_hwpoison_page(page);
1710 put_hwpoison_page(hpage);
1711 }
1712
1713 if (PageHuge(page))
1714 ret = soft_offline_huge_page(page, flags);
1715 else
1716 ret = __soft_offline_page(page, flags);
1717
1718 return ret;
1719 }
1720
1721 static void soft_offline_free_page(struct page *page)
1722 {
1723 if (PageHuge(page)) {
1724 struct page *hpage = compound_head(page);
1725
1726 set_page_hwpoison_huge_page(hpage);
1727 if (!dequeue_hwpoisoned_huge_page(hpage))
1728 num_poisoned_pages_add(1 << compound_order(hpage));
1729 } else {
1730 if (!TestSetPageHWPoison(page))
1731 num_poisoned_pages_inc();
1732 }
1733 }
1734
1735 /**
1736 * soft_offline_page - Soft offline a page.
1737 * @page: page to offline
1738 * @flags: flags. Same as memory_failure().
1739 *
1740 * Returns 0 on success, otherwise negated errno.
1741 *
1742 * Soft offline a page, by migration or invalidation,
1743 * without killing anything. This is for the case when
1744 * a page is not corrupted yet (so it's still valid to access),
1745 * but has had a number of corrected errors and is better taken
1746 * out.
1747 *
1748 * The actual policy on when to do that is maintained by
1749 * user space.
1750 *
1751 * This should never impact any application or cause data loss,
1752 * however it might take some time.
1753 *
1754 * This is not a 100% solution for all memory, but tries to be
1755 * ``good enough'' for the majority of memory.
1756 */
1757 int soft_offline_page(struct page *page, int flags)
1758 {
1759 int ret;
1760 unsigned long pfn = page_to_pfn(page);
1761
1762 if (PageHWPoison(page)) {
1763 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1764 if (flags & MF_COUNT_INCREASED)
1765 put_hwpoison_page(page);
1766 return -EBUSY;
1767 }
1768
1769 get_online_mems();
1770 ret = get_any_page(page, pfn, flags);
1771 put_online_mems();
1772
1773 if (ret > 0)
1774 ret = soft_offline_in_use_page(page, flags);
1775 else if (ret == 0)
1776 soft_offline_free_page(page);
1777
1778 return ret;
1779 }