]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory-failure.c
ath10k: drop fragments with multicast DA for PCIe
[mirror_ubuntu-hirsute-kernel.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 if (hugepage_or_freepage) {
71 /*
72 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 * returns 0 for non-hugetlb pages as well.
74 */
75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 /*
77 * We could fail to take off the target page from buddy
78 * for example due to racy page allocaiton, but that's
79 * acceptable because soft-offlined page is not broken
80 * and if someone really want to use it, they should
81 * take it.
82 */
83 return false;
84 }
85
86 SetPageHWPoison(page);
87 if (release)
88 put_page(page);
89 page_ref_inc(page);
90 num_poisoned_pages_inc();
91
92 return true;
93 }
94
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107
108 static int hwpoison_filter_dev(struct page *p)
109 {
110 struct address_space *mapping;
111 dev_t dev;
112
113 if (hwpoison_filter_dev_major == ~0U &&
114 hwpoison_filter_dev_minor == ~0U)
115 return 0;
116
117 /*
118 * page_mapping() does not accept slab pages.
119 */
120 if (PageSlab(p))
121 return -EINVAL;
122
123 mapping = page_mapping(p);
124 if (mapping == NULL || mapping->host == NULL)
125 return -EINVAL;
126
127 dev = mapping->host->i_sb->s_dev;
128 if (hwpoison_filter_dev_major != ~0U &&
129 hwpoison_filter_dev_major != MAJOR(dev))
130 return -EINVAL;
131 if (hwpoison_filter_dev_minor != ~0U &&
132 hwpoison_filter_dev_minor != MINOR(dev))
133 return -EINVAL;
134
135 return 0;
136 }
137
138 static int hwpoison_filter_flags(struct page *p)
139 {
140 if (!hwpoison_filter_flags_mask)
141 return 0;
142
143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 hwpoison_filter_flags_value)
145 return 0;
146 else
147 return -EINVAL;
148 }
149
150 /*
151 * This allows stress tests to limit test scope to a collection of tasks
152 * by putting them under some memcg. This prevents killing unrelated/important
153 * processes such as /sbin/init. Note that the target task may share clean
154 * pages with init (eg. libc text), which is harmless. If the target task
155 * share _dirty_ pages with another task B, the test scheme must make sure B
156 * is also included in the memcg. At last, due to race conditions this filter
157 * can only guarantee that the page either belongs to the memcg tasks, or is
158 * a freed page.
159 */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163 static int hwpoison_filter_task(struct page *p)
164 {
165 if (!hwpoison_filter_memcg)
166 return 0;
167
168 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 return -EINVAL;
170
171 return 0;
172 }
173 #else
174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176
177 int hwpoison_filter(struct page *p)
178 {
179 if (!hwpoison_filter_enable)
180 return 0;
181
182 if (hwpoison_filter_dev(p))
183 return -EINVAL;
184
185 if (hwpoison_filter_flags(p))
186 return -EINVAL;
187
188 if (hwpoison_filter_task(p))
189 return -EINVAL;
190
191 return 0;
192 }
193 #else
194 int hwpoison_filter(struct page *p)
195 {
196 return 0;
197 }
198 #endif
199
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201
202 /*
203 * Kill all processes that have a poisoned page mapped and then isolate
204 * the page.
205 *
206 * General strategy:
207 * Find all processes having the page mapped and kill them.
208 * But we keep a page reference around so that the page is not
209 * actually freed yet.
210 * Then stash the page away
211 *
212 * There's no convenient way to get back to mapped processes
213 * from the VMAs. So do a brute-force search over all
214 * running processes.
215 *
216 * Remember that machine checks are not common (or rather
217 * if they are common you have other problems), so this shouldn't
218 * be a performance issue.
219 *
220 * Also there are some races possible while we get from the
221 * error detection to actually handle it.
222 */
223
224 struct to_kill {
225 struct list_head nd;
226 struct task_struct *tsk;
227 unsigned long addr;
228 short size_shift;
229 };
230
231 /*
232 * Send all the processes who have the page mapped a signal.
233 * ``action optional'' if they are not immediately affected by the error
234 * ``action required'' if error happened in current execution context
235 */
236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 struct task_struct *t = tk->tsk;
239 short addr_lsb = tk->size_shift;
240 int ret = 0;
241
242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 pfn, t->comm, t->pid);
244
245 if (flags & MF_ACTION_REQUIRED) {
246 WARN_ON_ONCE(t != current);
247 ret = force_sig_mceerr(BUS_MCEERR_AR,
248 (void __user *)tk->addr, addr_lsb);
249 } else {
250 /*
251 * Don't use force here, it's convenient if the signal
252 * can be temporarily blocked.
253 * This could cause a loop when the user sets SIGBUS
254 * to SIG_IGN, but hopefully no one will do that?
255 */
256 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257 addr_lsb, t); /* synchronous? */
258 }
259 if (ret < 0)
260 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261 t->comm, t->pid, ret);
262 return ret;
263 }
264
265 /*
266 * Unknown page type encountered. Try to check whether it can turn PageLRU by
267 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
268 */
269 void shake_page(struct page *p, int access)
270 {
271 if (PageHuge(p))
272 return;
273
274 if (!PageSlab(p)) {
275 lru_add_drain_all();
276 if (PageLRU(p) || is_free_buddy_page(p))
277 return;
278 }
279
280 /*
281 * Only call shrink_node_slabs here (which would also shrink
282 * other caches) if access is not potentially fatal.
283 */
284 if (access)
285 drop_slab_node(page_to_nid(p));
286 }
287 EXPORT_SYMBOL_GPL(shake_page);
288
289 static unsigned long dev_pagemap_mapping_shift(struct page *page,
290 struct vm_area_struct *vma)
291 {
292 unsigned long address = vma_address(page, vma);
293 pgd_t *pgd;
294 p4d_t *p4d;
295 pud_t *pud;
296 pmd_t *pmd;
297 pte_t *pte;
298
299 pgd = pgd_offset(vma->vm_mm, address);
300 if (!pgd_present(*pgd))
301 return 0;
302 p4d = p4d_offset(pgd, address);
303 if (!p4d_present(*p4d))
304 return 0;
305 pud = pud_offset(p4d, address);
306 if (!pud_present(*pud))
307 return 0;
308 if (pud_devmap(*pud))
309 return PUD_SHIFT;
310 pmd = pmd_offset(pud, address);
311 if (!pmd_present(*pmd))
312 return 0;
313 if (pmd_devmap(*pmd))
314 return PMD_SHIFT;
315 pte = pte_offset_map(pmd, address);
316 if (!pte_present(*pte))
317 return 0;
318 if (pte_devmap(*pte))
319 return PAGE_SHIFT;
320 return 0;
321 }
322
323 /*
324 * Failure handling: if we can't find or can't kill a process there's
325 * not much we can do. We just print a message and ignore otherwise.
326 */
327
328 /*
329 * Schedule a process for later kill.
330 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
331 */
332 static void add_to_kill(struct task_struct *tsk, struct page *p,
333 struct vm_area_struct *vma,
334 struct list_head *to_kill)
335 {
336 struct to_kill *tk;
337
338 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
339 if (!tk) {
340 pr_err("Memory failure: Out of memory while machine check handling\n");
341 return;
342 }
343
344 tk->addr = page_address_in_vma(p, vma);
345 if (is_zone_device_page(p))
346 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
347 else
348 tk->size_shift = page_shift(compound_head(p));
349
350 /*
351 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
352 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
353 * so "tk->size_shift == 0" effectively checks no mapping on
354 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
355 * to a process' address space, it's possible not all N VMAs
356 * contain mappings for the page, but at least one VMA does.
357 * Only deliver SIGBUS with payload derived from the VMA that
358 * has a mapping for the page.
359 */
360 if (tk->addr == -EFAULT) {
361 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
362 page_to_pfn(p), tsk->comm);
363 } else if (tk->size_shift == 0) {
364 kfree(tk);
365 return;
366 }
367
368 get_task_struct(tsk);
369 tk->tsk = tsk;
370 list_add_tail(&tk->nd, to_kill);
371 }
372
373 /*
374 * Kill the processes that have been collected earlier.
375 *
376 * Only do anything when DOIT is set, otherwise just free the list
377 * (this is used for clean pages which do not need killing)
378 * Also when FAIL is set do a force kill because something went
379 * wrong earlier.
380 */
381 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
382 unsigned long pfn, int flags)
383 {
384 struct to_kill *tk, *next;
385
386 list_for_each_entry_safe (tk, next, to_kill, nd) {
387 if (forcekill) {
388 /*
389 * In case something went wrong with munmapping
390 * make sure the process doesn't catch the
391 * signal and then access the memory. Just kill it.
392 */
393 if (fail || tk->addr == -EFAULT) {
394 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
395 pfn, tk->tsk->comm, tk->tsk->pid);
396 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
397 tk->tsk, PIDTYPE_PID);
398 }
399
400 /*
401 * In theory the process could have mapped
402 * something else on the address in-between. We could
403 * check for that, but we need to tell the
404 * process anyways.
405 */
406 else if (kill_proc(tk, pfn, flags) < 0)
407 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
408 pfn, tk->tsk->comm, tk->tsk->pid);
409 }
410 put_task_struct(tk->tsk);
411 kfree(tk);
412 }
413 }
414
415 /*
416 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
417 * on behalf of the thread group. Return task_struct of the (first found)
418 * dedicated thread if found, and return NULL otherwise.
419 *
420 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
421 * have to call rcu_read_lock/unlock() in this function.
422 */
423 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
424 {
425 struct task_struct *t;
426
427 for_each_thread(tsk, t) {
428 if (t->flags & PF_MCE_PROCESS) {
429 if (t->flags & PF_MCE_EARLY)
430 return t;
431 } else {
432 if (sysctl_memory_failure_early_kill)
433 return t;
434 }
435 }
436 return NULL;
437 }
438
439 /*
440 * Determine whether a given process is "early kill" process which expects
441 * to be signaled when some page under the process is hwpoisoned.
442 * Return task_struct of the dedicated thread (main thread unless explicitly
443 * specified) if the process is "early kill," and otherwise returns NULL.
444 *
445 * Note that the above is true for Action Optional case, but not for Action
446 * Required case where SIGBUS should sent only to the current thread.
447 */
448 static struct task_struct *task_early_kill(struct task_struct *tsk,
449 int force_early)
450 {
451 if (!tsk->mm)
452 return NULL;
453 if (force_early) {
454 /*
455 * Comparing ->mm here because current task might represent
456 * a subthread, while tsk always points to the main thread.
457 */
458 if (tsk->mm == current->mm)
459 return current;
460 else
461 return NULL;
462 }
463 return find_early_kill_thread(tsk);
464 }
465
466 /*
467 * Collect processes when the error hit an anonymous page.
468 */
469 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
470 int force_early)
471 {
472 struct vm_area_struct *vma;
473 struct task_struct *tsk;
474 struct anon_vma *av;
475 pgoff_t pgoff;
476
477 av = page_lock_anon_vma_read(page);
478 if (av == NULL) /* Not actually mapped anymore */
479 return;
480
481 pgoff = page_to_pgoff(page);
482 read_lock(&tasklist_lock);
483 for_each_process (tsk) {
484 struct anon_vma_chain *vmac;
485 struct task_struct *t = task_early_kill(tsk, force_early);
486
487 if (!t)
488 continue;
489 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
490 pgoff, pgoff) {
491 vma = vmac->vma;
492 if (!page_mapped_in_vma(page, vma))
493 continue;
494 if (vma->vm_mm == t->mm)
495 add_to_kill(t, page, vma, to_kill);
496 }
497 }
498 read_unlock(&tasklist_lock);
499 page_unlock_anon_vma_read(av);
500 }
501
502 /*
503 * Collect processes when the error hit a file mapped page.
504 */
505 static void collect_procs_file(struct page *page, struct list_head *to_kill,
506 int force_early)
507 {
508 struct vm_area_struct *vma;
509 struct task_struct *tsk;
510 struct address_space *mapping = page->mapping;
511 pgoff_t pgoff;
512
513 i_mmap_lock_read(mapping);
514 read_lock(&tasklist_lock);
515 pgoff = page_to_pgoff(page);
516 for_each_process(tsk) {
517 struct task_struct *t = task_early_kill(tsk, force_early);
518
519 if (!t)
520 continue;
521 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
522 pgoff) {
523 /*
524 * Send early kill signal to tasks where a vma covers
525 * the page but the corrupted page is not necessarily
526 * mapped it in its pte.
527 * Assume applications who requested early kill want
528 * to be informed of all such data corruptions.
529 */
530 if (vma->vm_mm == t->mm)
531 add_to_kill(t, page, vma, to_kill);
532 }
533 }
534 read_unlock(&tasklist_lock);
535 i_mmap_unlock_read(mapping);
536 }
537
538 /*
539 * Collect the processes who have the corrupted page mapped to kill.
540 */
541 static void collect_procs(struct page *page, struct list_head *tokill,
542 int force_early)
543 {
544 if (!page->mapping)
545 return;
546
547 if (PageAnon(page))
548 collect_procs_anon(page, tokill, force_early);
549 else
550 collect_procs_file(page, tokill, force_early);
551 }
552
553 static const char *action_name[] = {
554 [MF_IGNORED] = "Ignored",
555 [MF_FAILED] = "Failed",
556 [MF_DELAYED] = "Delayed",
557 [MF_RECOVERED] = "Recovered",
558 };
559
560 static const char * const action_page_types[] = {
561 [MF_MSG_KERNEL] = "reserved kernel page",
562 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
563 [MF_MSG_SLAB] = "kernel slab page",
564 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
565 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
566 [MF_MSG_HUGE] = "huge page",
567 [MF_MSG_FREE_HUGE] = "free huge page",
568 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
569 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
570 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
571 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
572 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
573 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
574 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
575 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
576 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
577 [MF_MSG_CLEAN_LRU] = "clean LRU page",
578 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
579 [MF_MSG_BUDDY] = "free buddy page",
580 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
581 [MF_MSG_DAX] = "dax page",
582 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
583 [MF_MSG_UNKNOWN] = "unknown page",
584 };
585
586 /*
587 * XXX: It is possible that a page is isolated from LRU cache,
588 * and then kept in swap cache or failed to remove from page cache.
589 * The page count will stop it from being freed by unpoison.
590 * Stress tests should be aware of this memory leak problem.
591 */
592 static int delete_from_lru_cache(struct page *p)
593 {
594 if (!isolate_lru_page(p)) {
595 /*
596 * Clear sensible page flags, so that the buddy system won't
597 * complain when the page is unpoison-and-freed.
598 */
599 ClearPageActive(p);
600 ClearPageUnevictable(p);
601
602 /*
603 * Poisoned page might never drop its ref count to 0 so we have
604 * to uncharge it manually from its memcg.
605 */
606 mem_cgroup_uncharge(p);
607
608 /*
609 * drop the page count elevated by isolate_lru_page()
610 */
611 put_page(p);
612 return 0;
613 }
614 return -EIO;
615 }
616
617 static int truncate_error_page(struct page *p, unsigned long pfn,
618 struct address_space *mapping)
619 {
620 int ret = MF_FAILED;
621
622 if (mapping->a_ops->error_remove_page) {
623 int err = mapping->a_ops->error_remove_page(mapping, p);
624
625 if (err != 0) {
626 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
627 pfn, err);
628 } else if (page_has_private(p) &&
629 !try_to_release_page(p, GFP_NOIO)) {
630 pr_info("Memory failure: %#lx: failed to release buffers\n",
631 pfn);
632 } else {
633 ret = MF_RECOVERED;
634 }
635 } else {
636 /*
637 * If the file system doesn't support it just invalidate
638 * This fails on dirty or anything with private pages
639 */
640 if (invalidate_inode_page(p))
641 ret = MF_RECOVERED;
642 else
643 pr_info("Memory failure: %#lx: Failed to invalidate\n",
644 pfn);
645 }
646
647 return ret;
648 }
649
650 /*
651 * Error hit kernel page.
652 * Do nothing, try to be lucky and not touch this instead. For a few cases we
653 * could be more sophisticated.
654 */
655 static int me_kernel(struct page *p, unsigned long pfn)
656 {
657 return MF_IGNORED;
658 }
659
660 /*
661 * Page in unknown state. Do nothing.
662 */
663 static int me_unknown(struct page *p, unsigned long pfn)
664 {
665 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
666 return MF_FAILED;
667 }
668
669 /*
670 * Clean (or cleaned) page cache page.
671 */
672 static int me_pagecache_clean(struct page *p, unsigned long pfn)
673 {
674 struct address_space *mapping;
675
676 delete_from_lru_cache(p);
677
678 /*
679 * For anonymous pages we're done the only reference left
680 * should be the one m_f() holds.
681 */
682 if (PageAnon(p))
683 return MF_RECOVERED;
684
685 /*
686 * Now truncate the page in the page cache. This is really
687 * more like a "temporary hole punch"
688 * Don't do this for block devices when someone else
689 * has a reference, because it could be file system metadata
690 * and that's not safe to truncate.
691 */
692 mapping = page_mapping(p);
693 if (!mapping) {
694 /*
695 * Page has been teared down in the meanwhile
696 */
697 return MF_FAILED;
698 }
699
700 /*
701 * Truncation is a bit tricky. Enable it per file system for now.
702 *
703 * Open: to take i_mutex or not for this? Right now we don't.
704 */
705 return truncate_error_page(p, pfn, mapping);
706 }
707
708 /*
709 * Dirty pagecache page
710 * Issues: when the error hit a hole page the error is not properly
711 * propagated.
712 */
713 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
714 {
715 struct address_space *mapping = page_mapping(p);
716
717 SetPageError(p);
718 /* TBD: print more information about the file. */
719 if (mapping) {
720 /*
721 * IO error will be reported by write(), fsync(), etc.
722 * who check the mapping.
723 * This way the application knows that something went
724 * wrong with its dirty file data.
725 *
726 * There's one open issue:
727 *
728 * The EIO will be only reported on the next IO
729 * operation and then cleared through the IO map.
730 * Normally Linux has two mechanisms to pass IO error
731 * first through the AS_EIO flag in the address space
732 * and then through the PageError flag in the page.
733 * Since we drop pages on memory failure handling the
734 * only mechanism open to use is through AS_AIO.
735 *
736 * This has the disadvantage that it gets cleared on
737 * the first operation that returns an error, while
738 * the PageError bit is more sticky and only cleared
739 * when the page is reread or dropped. If an
740 * application assumes it will always get error on
741 * fsync, but does other operations on the fd before
742 * and the page is dropped between then the error
743 * will not be properly reported.
744 *
745 * This can already happen even without hwpoisoned
746 * pages: first on metadata IO errors (which only
747 * report through AS_EIO) or when the page is dropped
748 * at the wrong time.
749 *
750 * So right now we assume that the application DTRT on
751 * the first EIO, but we're not worse than other parts
752 * of the kernel.
753 */
754 mapping_set_error(mapping, -EIO);
755 }
756
757 return me_pagecache_clean(p, pfn);
758 }
759
760 /*
761 * Clean and dirty swap cache.
762 *
763 * Dirty swap cache page is tricky to handle. The page could live both in page
764 * cache and swap cache(ie. page is freshly swapped in). So it could be
765 * referenced concurrently by 2 types of PTEs:
766 * normal PTEs and swap PTEs. We try to handle them consistently by calling
767 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
768 * and then
769 * - clear dirty bit to prevent IO
770 * - remove from LRU
771 * - but keep in the swap cache, so that when we return to it on
772 * a later page fault, we know the application is accessing
773 * corrupted data and shall be killed (we installed simple
774 * interception code in do_swap_page to catch it).
775 *
776 * Clean swap cache pages can be directly isolated. A later page fault will
777 * bring in the known good data from disk.
778 */
779 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
780 {
781 ClearPageDirty(p);
782 /* Trigger EIO in shmem: */
783 ClearPageUptodate(p);
784
785 if (!delete_from_lru_cache(p))
786 return MF_DELAYED;
787 else
788 return MF_FAILED;
789 }
790
791 static int me_swapcache_clean(struct page *p, unsigned long pfn)
792 {
793 delete_from_swap_cache(p);
794
795 if (!delete_from_lru_cache(p))
796 return MF_RECOVERED;
797 else
798 return MF_FAILED;
799 }
800
801 /*
802 * Huge pages. Needs work.
803 * Issues:
804 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
805 * To narrow down kill region to one page, we need to break up pmd.
806 */
807 static int me_huge_page(struct page *p, unsigned long pfn)
808 {
809 int res;
810 struct page *hpage = compound_head(p);
811 struct address_space *mapping;
812
813 if (!PageHuge(hpage))
814 return MF_DELAYED;
815
816 mapping = page_mapping(hpage);
817 if (mapping) {
818 res = truncate_error_page(hpage, pfn, mapping);
819 } else {
820 res = MF_FAILED;
821 unlock_page(hpage);
822 /*
823 * migration entry prevents later access on error anonymous
824 * hugepage, so we can free and dissolve it into buddy to
825 * save healthy subpages.
826 */
827 if (PageAnon(hpage))
828 put_page(hpage);
829 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
830 page_ref_inc(p);
831 res = MF_RECOVERED;
832 }
833 lock_page(hpage);
834 }
835
836 return res;
837 }
838
839 /*
840 * Various page states we can handle.
841 *
842 * A page state is defined by its current page->flags bits.
843 * The table matches them in order and calls the right handler.
844 *
845 * This is quite tricky because we can access page at any time
846 * in its live cycle, so all accesses have to be extremely careful.
847 *
848 * This is not complete. More states could be added.
849 * For any missing state don't attempt recovery.
850 */
851
852 #define dirty (1UL << PG_dirty)
853 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
854 #define unevict (1UL << PG_unevictable)
855 #define mlock (1UL << PG_mlocked)
856 #define lru (1UL << PG_lru)
857 #define head (1UL << PG_head)
858 #define slab (1UL << PG_slab)
859 #define reserved (1UL << PG_reserved)
860
861 static struct page_state {
862 unsigned long mask;
863 unsigned long res;
864 enum mf_action_page_type type;
865 int (*action)(struct page *p, unsigned long pfn);
866 } error_states[] = {
867 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
868 /*
869 * free pages are specially detected outside this table:
870 * PG_buddy pages only make a small fraction of all free pages.
871 */
872
873 /*
874 * Could in theory check if slab page is free or if we can drop
875 * currently unused objects without touching them. But just
876 * treat it as standard kernel for now.
877 */
878 { slab, slab, MF_MSG_SLAB, me_kernel },
879
880 { head, head, MF_MSG_HUGE, me_huge_page },
881
882 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
883 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
884
885 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
886 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
887
888 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
889 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
890
891 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
892 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
893
894 /*
895 * Catchall entry: must be at end.
896 */
897 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
898 };
899
900 #undef dirty
901 #undef sc
902 #undef unevict
903 #undef mlock
904 #undef lru
905 #undef head
906 #undef slab
907 #undef reserved
908
909 /*
910 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
911 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
912 */
913 static void action_result(unsigned long pfn, enum mf_action_page_type type,
914 enum mf_result result)
915 {
916 trace_memory_failure_event(pfn, type, result);
917
918 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
919 pfn, action_page_types[type], action_name[result]);
920 }
921
922 static int page_action(struct page_state *ps, struct page *p,
923 unsigned long pfn)
924 {
925 int result;
926 int count;
927
928 result = ps->action(p, pfn);
929
930 count = page_count(p) - 1;
931 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
932 count--;
933 if (count > 0) {
934 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
935 pfn, action_page_types[ps->type], count);
936 result = MF_FAILED;
937 }
938 action_result(pfn, ps->type, result);
939
940 /* Could do more checks here if page looks ok */
941 /*
942 * Could adjust zone counters here to correct for the missing page.
943 */
944
945 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
946 }
947
948 /**
949 * __get_hwpoison_page() - Get refcount for memory error handling:
950 * @page: raw error page (hit by memory error)
951 *
952 * Return: return 0 if failed to grab the refcount, otherwise true (some
953 * non-zero value.)
954 */
955 static int __get_hwpoison_page(struct page *page)
956 {
957 struct page *head = compound_head(page);
958
959 if (!PageHuge(head) && PageTransHuge(head)) {
960 /*
961 * Non anonymous thp exists only in allocation/free time. We
962 * can't handle such a case correctly, so let's give it up.
963 * This should be better than triggering BUG_ON when kernel
964 * tries to touch the "partially handled" page.
965 */
966 if (!PageAnon(head)) {
967 pr_err("Memory failure: %#lx: non anonymous thp\n",
968 page_to_pfn(page));
969 return 0;
970 }
971 }
972
973 if (get_page_unless_zero(head)) {
974 if (head == compound_head(page))
975 return 1;
976
977 pr_info("Memory failure: %#lx cannot catch tail\n",
978 page_to_pfn(page));
979 put_page(head);
980 }
981
982 return 0;
983 }
984
985 /*
986 * Safely get reference count of an arbitrary page.
987 *
988 * Returns 0 for a free page, 1 for an in-use page,
989 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
990 * allocation.
991 * We only incremented refcount in case the page was already in-use and it
992 * is a known type we can handle.
993 */
994 static int get_any_page(struct page *p, unsigned long flags)
995 {
996 int ret = 0, pass = 0;
997 bool count_increased = false;
998
999 if (flags & MF_COUNT_INCREASED)
1000 count_increased = true;
1001
1002 try_again:
1003 if (!count_increased && !__get_hwpoison_page(p)) {
1004 if (page_count(p)) {
1005 /* We raced with an allocation, retry. */
1006 if (pass++ < 3)
1007 goto try_again;
1008 ret = -EBUSY;
1009 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1010 /* We raced with put_page, retry. */
1011 if (pass++ < 3)
1012 goto try_again;
1013 ret = -EIO;
1014 }
1015 } else {
1016 if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1017 ret = 1;
1018 } else {
1019 /*
1020 * A page we cannot handle. Check whether we can turn
1021 * it into something we can handle.
1022 */
1023 if (pass++ < 3) {
1024 put_page(p);
1025 shake_page(p, 1);
1026 count_increased = false;
1027 goto try_again;
1028 }
1029 put_page(p);
1030 ret = -EIO;
1031 }
1032 }
1033
1034 return ret;
1035 }
1036
1037 static int get_hwpoison_page(struct page *p, unsigned long flags,
1038 enum mf_flags ctxt)
1039 {
1040 int ret;
1041
1042 zone_pcp_disable(page_zone(p));
1043 if (ctxt == MF_SOFT_OFFLINE)
1044 ret = get_any_page(p, flags);
1045 else
1046 ret = __get_hwpoison_page(p);
1047 zone_pcp_enable(page_zone(p));
1048
1049 return ret;
1050 }
1051
1052 /*
1053 * Do all that is necessary to remove user space mappings. Unmap
1054 * the pages and send SIGBUS to the processes if the data was dirty.
1055 */
1056 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1057 int flags, struct page **hpagep)
1058 {
1059 enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1060 struct address_space *mapping;
1061 LIST_HEAD(tokill);
1062 bool unmap_success = true;
1063 int kill = 1, forcekill;
1064 struct page *hpage = *hpagep;
1065 bool mlocked = PageMlocked(hpage);
1066
1067 /*
1068 * Here we are interested only in user-mapped pages, so skip any
1069 * other types of pages.
1070 */
1071 if (PageReserved(p) || PageSlab(p))
1072 return true;
1073 if (!(PageLRU(hpage) || PageHuge(p)))
1074 return true;
1075
1076 /*
1077 * This check implies we don't kill processes if their pages
1078 * are in the swap cache early. Those are always late kills.
1079 */
1080 if (!page_mapped(hpage))
1081 return true;
1082
1083 if (PageKsm(p)) {
1084 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1085 return false;
1086 }
1087
1088 if (PageSwapCache(p)) {
1089 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1090 pfn);
1091 ttu |= TTU_IGNORE_HWPOISON;
1092 }
1093
1094 /*
1095 * Propagate the dirty bit from PTEs to struct page first, because we
1096 * need this to decide if we should kill or just drop the page.
1097 * XXX: the dirty test could be racy: set_page_dirty() may not always
1098 * be called inside page lock (it's recommended but not enforced).
1099 */
1100 mapping = page_mapping(hpage);
1101 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1102 mapping_can_writeback(mapping)) {
1103 if (page_mkclean(hpage)) {
1104 SetPageDirty(hpage);
1105 } else {
1106 kill = 0;
1107 ttu |= TTU_IGNORE_HWPOISON;
1108 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1109 pfn);
1110 }
1111 }
1112
1113 /*
1114 * First collect all the processes that have the page
1115 * mapped in dirty form. This has to be done before try_to_unmap,
1116 * because ttu takes the rmap data structures down.
1117 *
1118 * Error handling: We ignore errors here because
1119 * there's nothing that can be done.
1120 */
1121 if (kill)
1122 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1123
1124 if (!PageHuge(hpage)) {
1125 unmap_success = try_to_unmap(hpage, ttu);
1126 } else {
1127 if (!PageAnon(hpage)) {
1128 /*
1129 * For hugetlb pages in shared mappings, try_to_unmap
1130 * could potentially call huge_pmd_unshare. Because of
1131 * this, take semaphore in write mode here and set
1132 * TTU_RMAP_LOCKED to indicate we have taken the lock
1133 * at this higer level.
1134 */
1135 mapping = hugetlb_page_mapping_lock_write(hpage);
1136 if (mapping) {
1137 unmap_success = try_to_unmap(hpage,
1138 ttu|TTU_RMAP_LOCKED);
1139 i_mmap_unlock_write(mapping);
1140 } else {
1141 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1142 unmap_success = false;
1143 }
1144 } else {
1145 unmap_success = try_to_unmap(hpage, ttu);
1146 }
1147 }
1148 if (!unmap_success)
1149 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1150 pfn, page_mapcount(hpage));
1151
1152 /*
1153 * try_to_unmap() might put mlocked page in lru cache, so call
1154 * shake_page() again to ensure that it's flushed.
1155 */
1156 if (mlocked)
1157 shake_page(hpage, 0);
1158
1159 /*
1160 * Now that the dirty bit has been propagated to the
1161 * struct page and all unmaps done we can decide if
1162 * killing is needed or not. Only kill when the page
1163 * was dirty or the process is not restartable,
1164 * otherwise the tokill list is merely
1165 * freed. When there was a problem unmapping earlier
1166 * use a more force-full uncatchable kill to prevent
1167 * any accesses to the poisoned memory.
1168 */
1169 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1170 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1171
1172 return unmap_success;
1173 }
1174
1175 static int identify_page_state(unsigned long pfn, struct page *p,
1176 unsigned long page_flags)
1177 {
1178 struct page_state *ps;
1179
1180 /*
1181 * The first check uses the current page flags which may not have any
1182 * relevant information. The second check with the saved page flags is
1183 * carried out only if the first check can't determine the page status.
1184 */
1185 for (ps = error_states;; ps++)
1186 if ((p->flags & ps->mask) == ps->res)
1187 break;
1188
1189 page_flags |= (p->flags & (1UL << PG_dirty));
1190
1191 if (!ps->mask)
1192 for (ps = error_states;; ps++)
1193 if ((page_flags & ps->mask) == ps->res)
1194 break;
1195 return page_action(ps, p, pfn);
1196 }
1197
1198 static int try_to_split_thp_page(struct page *page, const char *msg)
1199 {
1200 lock_page(page);
1201 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1202 unsigned long pfn = page_to_pfn(page);
1203
1204 unlock_page(page);
1205 if (!PageAnon(page))
1206 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1207 else
1208 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1209 put_page(page);
1210 return -EBUSY;
1211 }
1212 unlock_page(page);
1213
1214 return 0;
1215 }
1216
1217 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1218 {
1219 struct page *p = pfn_to_page(pfn);
1220 struct page *head = compound_head(p);
1221 int res;
1222 unsigned long page_flags;
1223
1224 if (TestSetPageHWPoison(head)) {
1225 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1226 pfn);
1227 return 0;
1228 }
1229
1230 num_poisoned_pages_inc();
1231
1232 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1233 /*
1234 * Check "filter hit" and "race with other subpage."
1235 */
1236 lock_page(head);
1237 if (PageHWPoison(head)) {
1238 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1239 || (p != head && TestSetPageHWPoison(head))) {
1240 num_poisoned_pages_dec();
1241 unlock_page(head);
1242 return 0;
1243 }
1244 }
1245 unlock_page(head);
1246 res = MF_FAILED;
1247 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1248 page_ref_inc(p);
1249 res = MF_RECOVERED;
1250 }
1251 action_result(pfn, MF_MSG_FREE_HUGE, res);
1252 return res == MF_RECOVERED ? 0 : -EBUSY;
1253 }
1254
1255 lock_page(head);
1256 page_flags = head->flags;
1257
1258 if (!PageHWPoison(head)) {
1259 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1260 num_poisoned_pages_dec();
1261 unlock_page(head);
1262 put_page(head);
1263 return 0;
1264 }
1265
1266 /*
1267 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1268 * simply disable it. In order to make it work properly, we need
1269 * make sure that:
1270 * - conversion of a pud that maps an error hugetlb into hwpoison
1271 * entry properly works, and
1272 * - other mm code walking over page table is aware of pud-aligned
1273 * hwpoison entries.
1274 */
1275 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1276 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1277 res = -EBUSY;
1278 goto out;
1279 }
1280
1281 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1282 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1283 res = -EBUSY;
1284 goto out;
1285 }
1286
1287 res = identify_page_state(pfn, p, page_flags);
1288 out:
1289 unlock_page(head);
1290 return res;
1291 }
1292
1293 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1294 struct dev_pagemap *pgmap)
1295 {
1296 struct page *page = pfn_to_page(pfn);
1297 const bool unmap_success = true;
1298 unsigned long size = 0;
1299 struct to_kill *tk;
1300 LIST_HEAD(tokill);
1301 int rc = -EBUSY;
1302 loff_t start;
1303 dax_entry_t cookie;
1304
1305 if (flags & MF_COUNT_INCREASED)
1306 /*
1307 * Drop the extra refcount in case we come from madvise().
1308 */
1309 put_page(page);
1310
1311 /* device metadata space is not recoverable */
1312 if (!pgmap_pfn_valid(pgmap, pfn)) {
1313 rc = -ENXIO;
1314 goto out;
1315 }
1316
1317 /*
1318 * Prevent the inode from being freed while we are interrogating
1319 * the address_space, typically this would be handled by
1320 * lock_page(), but dax pages do not use the page lock. This
1321 * also prevents changes to the mapping of this pfn until
1322 * poison signaling is complete.
1323 */
1324 cookie = dax_lock_page(page);
1325 if (!cookie)
1326 goto out;
1327
1328 if (hwpoison_filter(page)) {
1329 rc = 0;
1330 goto unlock;
1331 }
1332
1333 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1334 /*
1335 * TODO: Handle HMM pages which may need coordination
1336 * with device-side memory.
1337 */
1338 goto unlock;
1339 }
1340
1341 /*
1342 * Use this flag as an indication that the dax page has been
1343 * remapped UC to prevent speculative consumption of poison.
1344 */
1345 SetPageHWPoison(page);
1346
1347 /*
1348 * Unlike System-RAM there is no possibility to swap in a
1349 * different physical page at a given virtual address, so all
1350 * userspace consumption of ZONE_DEVICE memory necessitates
1351 * SIGBUS (i.e. MF_MUST_KILL)
1352 */
1353 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1354 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1355
1356 list_for_each_entry(tk, &tokill, nd)
1357 if (tk->size_shift)
1358 size = max(size, 1UL << tk->size_shift);
1359 if (size) {
1360 /*
1361 * Unmap the largest mapping to avoid breaking up
1362 * device-dax mappings which are constant size. The
1363 * actual size of the mapping being torn down is
1364 * communicated in siginfo, see kill_proc()
1365 */
1366 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1367 unmap_mapping_range(page->mapping, start, size, 0);
1368 }
1369 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1370 rc = 0;
1371 unlock:
1372 dax_unlock_page(page, cookie);
1373 out:
1374 /* drop pgmap ref acquired in caller */
1375 put_dev_pagemap(pgmap);
1376 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1377 return rc;
1378 }
1379
1380 /**
1381 * memory_failure - Handle memory failure of a page.
1382 * @pfn: Page Number of the corrupted page
1383 * @flags: fine tune action taken
1384 *
1385 * This function is called by the low level machine check code
1386 * of an architecture when it detects hardware memory corruption
1387 * of a page. It tries its best to recover, which includes
1388 * dropping pages, killing processes etc.
1389 *
1390 * The function is primarily of use for corruptions that
1391 * happen outside the current execution context (e.g. when
1392 * detected by a background scrubber)
1393 *
1394 * Must run in process context (e.g. a work queue) with interrupts
1395 * enabled and no spinlocks hold.
1396 */
1397 int memory_failure(unsigned long pfn, int flags)
1398 {
1399 struct page *p;
1400 struct page *hpage;
1401 struct page *orig_head;
1402 struct dev_pagemap *pgmap;
1403 int res;
1404 unsigned long page_flags;
1405 bool retry = true;
1406
1407 if (!sysctl_memory_failure_recovery)
1408 panic("Memory failure on page %lx", pfn);
1409
1410 p = pfn_to_online_page(pfn);
1411 if (!p) {
1412 if (pfn_valid(pfn)) {
1413 pgmap = get_dev_pagemap(pfn, NULL);
1414 if (pgmap)
1415 return memory_failure_dev_pagemap(pfn, flags,
1416 pgmap);
1417 }
1418 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1419 pfn);
1420 return -ENXIO;
1421 }
1422
1423 try_again:
1424 if (PageHuge(p))
1425 return memory_failure_hugetlb(pfn, flags);
1426 if (TestSetPageHWPoison(p)) {
1427 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1428 pfn);
1429 return 0;
1430 }
1431
1432 orig_head = hpage = compound_head(p);
1433 num_poisoned_pages_inc();
1434
1435 /*
1436 * We need/can do nothing about count=0 pages.
1437 * 1) it's a free page, and therefore in safe hand:
1438 * prep_new_page() will be the gate keeper.
1439 * 2) it's part of a non-compound high order page.
1440 * Implies some kernel user: cannot stop them from
1441 * R/W the page; let's pray that the page has been
1442 * used and will be freed some time later.
1443 * In fact it's dangerous to directly bump up page count from 0,
1444 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1445 */
1446 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1447 if (is_free_buddy_page(p)) {
1448 if (take_page_off_buddy(p)) {
1449 page_ref_inc(p);
1450 res = MF_RECOVERED;
1451 } else {
1452 /* We lost the race, try again */
1453 if (retry) {
1454 ClearPageHWPoison(p);
1455 num_poisoned_pages_dec();
1456 retry = false;
1457 goto try_again;
1458 }
1459 res = MF_FAILED;
1460 }
1461 action_result(pfn, MF_MSG_BUDDY, res);
1462 return res == MF_RECOVERED ? 0 : -EBUSY;
1463 } else {
1464 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1465 return -EBUSY;
1466 }
1467 }
1468
1469 if (PageTransHuge(hpage)) {
1470 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1471 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1472 return -EBUSY;
1473 }
1474 VM_BUG_ON_PAGE(!page_count(p), p);
1475 }
1476
1477 /*
1478 * We ignore non-LRU pages for good reasons.
1479 * - PG_locked is only well defined for LRU pages and a few others
1480 * - to avoid races with __SetPageLocked()
1481 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1482 * The check (unnecessarily) ignores LRU pages being isolated and
1483 * walked by the page reclaim code, however that's not a big loss.
1484 */
1485 shake_page(p, 0);
1486
1487 lock_page(p);
1488
1489 /*
1490 * The page could have changed compound pages during the locking.
1491 * If this happens just bail out.
1492 */
1493 if (PageCompound(p) && compound_head(p) != orig_head) {
1494 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1495 res = -EBUSY;
1496 goto out;
1497 }
1498
1499 /*
1500 * We use page flags to determine what action should be taken, but
1501 * the flags can be modified by the error containment action. One
1502 * example is an mlocked page, where PG_mlocked is cleared by
1503 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1504 * correctly, we save a copy of the page flags at this time.
1505 */
1506 page_flags = p->flags;
1507
1508 /*
1509 * unpoison always clear PG_hwpoison inside page lock
1510 */
1511 if (!PageHWPoison(p)) {
1512 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1513 num_poisoned_pages_dec();
1514 unlock_page(p);
1515 put_page(p);
1516 return 0;
1517 }
1518 if (hwpoison_filter(p)) {
1519 if (TestClearPageHWPoison(p))
1520 num_poisoned_pages_dec();
1521 unlock_page(p);
1522 put_page(p);
1523 return 0;
1524 }
1525
1526 if (!PageTransTail(p) && !PageLRU(p))
1527 goto identify_page_state;
1528
1529 /*
1530 * It's very difficult to mess with pages currently under IO
1531 * and in many cases impossible, so we just avoid it here.
1532 */
1533 wait_on_page_writeback(p);
1534
1535 /*
1536 * Now take care of user space mappings.
1537 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1538 */
1539 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1540 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1541 res = -EBUSY;
1542 goto out;
1543 }
1544
1545 /*
1546 * Torn down by someone else?
1547 */
1548 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1549 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1550 res = -EBUSY;
1551 goto out;
1552 }
1553
1554 identify_page_state:
1555 res = identify_page_state(pfn, p, page_flags);
1556 out:
1557 unlock_page(p);
1558 return res;
1559 }
1560 EXPORT_SYMBOL_GPL(memory_failure);
1561
1562 #define MEMORY_FAILURE_FIFO_ORDER 4
1563 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1564
1565 struct memory_failure_entry {
1566 unsigned long pfn;
1567 int flags;
1568 };
1569
1570 struct memory_failure_cpu {
1571 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1572 MEMORY_FAILURE_FIFO_SIZE);
1573 spinlock_t lock;
1574 struct work_struct work;
1575 };
1576
1577 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1578
1579 /**
1580 * memory_failure_queue - Schedule handling memory failure of a page.
1581 * @pfn: Page Number of the corrupted page
1582 * @flags: Flags for memory failure handling
1583 *
1584 * This function is called by the low level hardware error handler
1585 * when it detects hardware memory corruption of a page. It schedules
1586 * the recovering of error page, including dropping pages, killing
1587 * processes etc.
1588 *
1589 * The function is primarily of use for corruptions that
1590 * happen outside the current execution context (e.g. when
1591 * detected by a background scrubber)
1592 *
1593 * Can run in IRQ context.
1594 */
1595 void memory_failure_queue(unsigned long pfn, int flags)
1596 {
1597 struct memory_failure_cpu *mf_cpu;
1598 unsigned long proc_flags;
1599 struct memory_failure_entry entry = {
1600 .pfn = pfn,
1601 .flags = flags,
1602 };
1603
1604 mf_cpu = &get_cpu_var(memory_failure_cpu);
1605 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1606 if (kfifo_put(&mf_cpu->fifo, entry))
1607 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1608 else
1609 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1610 pfn);
1611 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1612 put_cpu_var(memory_failure_cpu);
1613 }
1614 EXPORT_SYMBOL_GPL(memory_failure_queue);
1615
1616 static void memory_failure_work_func(struct work_struct *work)
1617 {
1618 struct memory_failure_cpu *mf_cpu;
1619 struct memory_failure_entry entry = { 0, };
1620 unsigned long proc_flags;
1621 int gotten;
1622
1623 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1624 for (;;) {
1625 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1626 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1627 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1628 if (!gotten)
1629 break;
1630 if (entry.flags & MF_SOFT_OFFLINE)
1631 soft_offline_page(entry.pfn, entry.flags);
1632 else
1633 memory_failure(entry.pfn, entry.flags);
1634 }
1635 }
1636
1637 /*
1638 * Process memory_failure work queued on the specified CPU.
1639 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1640 */
1641 void memory_failure_queue_kick(int cpu)
1642 {
1643 struct memory_failure_cpu *mf_cpu;
1644
1645 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1646 cancel_work_sync(&mf_cpu->work);
1647 memory_failure_work_func(&mf_cpu->work);
1648 }
1649
1650 static int __init memory_failure_init(void)
1651 {
1652 struct memory_failure_cpu *mf_cpu;
1653 int cpu;
1654
1655 for_each_possible_cpu(cpu) {
1656 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1657 spin_lock_init(&mf_cpu->lock);
1658 INIT_KFIFO(mf_cpu->fifo);
1659 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1660 }
1661
1662 return 0;
1663 }
1664 core_initcall(memory_failure_init);
1665
1666 #define unpoison_pr_info(fmt, pfn, rs) \
1667 ({ \
1668 if (__ratelimit(rs)) \
1669 pr_info(fmt, pfn); \
1670 })
1671
1672 /**
1673 * unpoison_memory - Unpoison a previously poisoned page
1674 * @pfn: Page number of the to be unpoisoned page
1675 *
1676 * Software-unpoison a page that has been poisoned by
1677 * memory_failure() earlier.
1678 *
1679 * This is only done on the software-level, so it only works
1680 * for linux injected failures, not real hardware failures
1681 *
1682 * Returns 0 for success, otherwise -errno.
1683 */
1684 int unpoison_memory(unsigned long pfn)
1685 {
1686 struct page *page;
1687 struct page *p;
1688 int freeit = 0;
1689 unsigned long flags = 0;
1690 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1691 DEFAULT_RATELIMIT_BURST);
1692
1693 if (!pfn_valid(pfn))
1694 return -ENXIO;
1695
1696 p = pfn_to_page(pfn);
1697 page = compound_head(p);
1698
1699 if (!PageHWPoison(p)) {
1700 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1701 pfn, &unpoison_rs);
1702 return 0;
1703 }
1704
1705 if (page_count(page) > 1) {
1706 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1707 pfn, &unpoison_rs);
1708 return 0;
1709 }
1710
1711 if (page_mapped(page)) {
1712 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1713 pfn, &unpoison_rs);
1714 return 0;
1715 }
1716
1717 if (page_mapping(page)) {
1718 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1719 pfn, &unpoison_rs);
1720 return 0;
1721 }
1722
1723 /*
1724 * unpoison_memory() can encounter thp only when the thp is being
1725 * worked by memory_failure() and the page lock is not held yet.
1726 * In such case, we yield to memory_failure() and make unpoison fail.
1727 */
1728 if (!PageHuge(page) && PageTransHuge(page)) {
1729 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1730 pfn, &unpoison_rs);
1731 return 0;
1732 }
1733
1734 if (!get_hwpoison_page(p, flags, 0)) {
1735 if (TestClearPageHWPoison(p))
1736 num_poisoned_pages_dec();
1737 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1738 pfn, &unpoison_rs);
1739 return 0;
1740 }
1741
1742 lock_page(page);
1743 /*
1744 * This test is racy because PG_hwpoison is set outside of page lock.
1745 * That's acceptable because that won't trigger kernel panic. Instead,
1746 * the PG_hwpoison page will be caught and isolated on the entrance to
1747 * the free buddy page pool.
1748 */
1749 if (TestClearPageHWPoison(page)) {
1750 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1751 pfn, &unpoison_rs);
1752 num_poisoned_pages_dec();
1753 freeit = 1;
1754 }
1755 unlock_page(page);
1756
1757 put_page(page);
1758 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1759 put_page(page);
1760
1761 return 0;
1762 }
1763 EXPORT_SYMBOL(unpoison_memory);
1764
1765 static bool isolate_page(struct page *page, struct list_head *pagelist)
1766 {
1767 bool isolated = false;
1768 bool lru = PageLRU(page);
1769
1770 if (PageHuge(page)) {
1771 isolated = isolate_huge_page(page, pagelist);
1772 } else {
1773 if (lru)
1774 isolated = !isolate_lru_page(page);
1775 else
1776 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1777
1778 if (isolated)
1779 list_add(&page->lru, pagelist);
1780 }
1781
1782 if (isolated && lru)
1783 inc_node_page_state(page, NR_ISOLATED_ANON +
1784 page_is_file_lru(page));
1785
1786 /*
1787 * If we succeed to isolate the page, we grabbed another refcount on
1788 * the page, so we can safely drop the one we got from get_any_pages().
1789 * If we failed to isolate the page, it means that we cannot go further
1790 * and we will return an error, so drop the reference we got from
1791 * get_any_pages() as well.
1792 */
1793 put_page(page);
1794 return isolated;
1795 }
1796
1797 /*
1798 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1799 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1800 * If the page is mapped, it migrates the contents over.
1801 */
1802 static int __soft_offline_page(struct page *page)
1803 {
1804 int ret = 0;
1805 unsigned long pfn = page_to_pfn(page);
1806 struct page *hpage = compound_head(page);
1807 char const *msg_page[] = {"page", "hugepage"};
1808 bool huge = PageHuge(page);
1809 LIST_HEAD(pagelist);
1810 struct migration_target_control mtc = {
1811 .nid = NUMA_NO_NODE,
1812 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1813 };
1814
1815 /*
1816 * Check PageHWPoison again inside page lock because PageHWPoison
1817 * is set by memory_failure() outside page lock. Note that
1818 * memory_failure() also double-checks PageHWPoison inside page lock,
1819 * so there's no race between soft_offline_page() and memory_failure().
1820 */
1821 lock_page(page);
1822 if (!PageHuge(page))
1823 wait_on_page_writeback(page);
1824 if (PageHWPoison(page)) {
1825 unlock_page(page);
1826 put_page(page);
1827 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1828 return 0;
1829 }
1830
1831 if (!PageHuge(page))
1832 /*
1833 * Try to invalidate first. This should work for
1834 * non dirty unmapped page cache pages.
1835 */
1836 ret = invalidate_inode_page(page);
1837 unlock_page(page);
1838
1839 /*
1840 * RED-PEN would be better to keep it isolated here, but we
1841 * would need to fix isolation locking first.
1842 */
1843 if (ret) {
1844 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1845 page_handle_poison(page, false, true);
1846 return 0;
1847 }
1848
1849 if (isolate_page(hpage, &pagelist)) {
1850 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1851 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1852 if (!ret) {
1853 bool release = !huge;
1854
1855 if (!page_handle_poison(page, huge, release))
1856 ret = -EBUSY;
1857 } else {
1858 if (!list_empty(&pagelist))
1859 putback_movable_pages(&pagelist);
1860
1861 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1862 pfn, msg_page[huge], ret, page->flags, &page->flags);
1863 if (ret > 0)
1864 ret = -EBUSY;
1865 }
1866 } else {
1867 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1868 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1869 ret = -EBUSY;
1870 }
1871 return ret;
1872 }
1873
1874 static int soft_offline_in_use_page(struct page *page)
1875 {
1876 struct page *hpage = compound_head(page);
1877
1878 if (!PageHuge(page) && PageTransHuge(hpage))
1879 if (try_to_split_thp_page(page, "soft offline") < 0)
1880 return -EBUSY;
1881 return __soft_offline_page(page);
1882 }
1883
1884 static int soft_offline_free_page(struct page *page)
1885 {
1886 int rc = 0;
1887
1888 if (!page_handle_poison(page, true, false))
1889 rc = -EBUSY;
1890
1891 return rc;
1892 }
1893
1894 static void put_ref_page(struct page *page)
1895 {
1896 if (page)
1897 put_page(page);
1898 }
1899
1900 /**
1901 * soft_offline_page - Soft offline a page.
1902 * @pfn: pfn to soft-offline
1903 * @flags: flags. Same as memory_failure().
1904 *
1905 * Returns 0 on success, otherwise negated errno.
1906 *
1907 * Soft offline a page, by migration or invalidation,
1908 * without killing anything. This is for the case when
1909 * a page is not corrupted yet (so it's still valid to access),
1910 * but has had a number of corrected errors and is better taken
1911 * out.
1912 *
1913 * The actual policy on when to do that is maintained by
1914 * user space.
1915 *
1916 * This should never impact any application or cause data loss,
1917 * however it might take some time.
1918 *
1919 * This is not a 100% solution for all memory, but tries to be
1920 * ``good enough'' for the majority of memory.
1921 */
1922 int soft_offline_page(unsigned long pfn, int flags)
1923 {
1924 int ret;
1925 bool try_again = true;
1926 struct page *page, *ref_page = NULL;
1927
1928 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1929
1930 if (!pfn_valid(pfn))
1931 return -ENXIO;
1932 if (flags & MF_COUNT_INCREASED)
1933 ref_page = pfn_to_page(pfn);
1934
1935 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1936 page = pfn_to_online_page(pfn);
1937 if (!page) {
1938 put_ref_page(ref_page);
1939 return -EIO;
1940 }
1941
1942 if (PageHWPoison(page)) {
1943 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1944 put_ref_page(ref_page);
1945 return 0;
1946 }
1947
1948 retry:
1949 get_online_mems();
1950 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1951 put_online_mems();
1952
1953 if (ret > 0) {
1954 ret = soft_offline_in_use_page(page);
1955 } else if (ret == 0) {
1956 if (soft_offline_free_page(page) && try_again) {
1957 try_again = false;
1958 goto retry;
1959 }
1960 } else if (ret == -EIO) {
1961 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1962 __func__, pfn, page->flags, &page->flags);
1963 }
1964
1965 return ret;
1966 }