]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory-failure.c
mm/memory-failure.c: fix spinlock vs mutex order
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include "internal.h"
57
58 int sysctl_memory_failure_early_kill __read_mostly = 0;
59
60 int sysctl_memory_failure_recovery __read_mostly = 1;
61
62 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
63
64 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
65
66 u32 hwpoison_filter_enable = 0;
67 u32 hwpoison_filter_dev_major = ~0U;
68 u32 hwpoison_filter_dev_minor = ~0U;
69 u64 hwpoison_filter_flags_mask;
70 u64 hwpoison_filter_flags_value;
71 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
76
77 static int hwpoison_filter_dev(struct page *p)
78 {
79 struct address_space *mapping;
80 dev_t dev;
81
82 if (hwpoison_filter_dev_major == ~0U &&
83 hwpoison_filter_dev_minor == ~0U)
84 return 0;
85
86 /*
87 * page_mapping() does not accept slab pages.
88 */
89 if (PageSlab(p))
90 return -EINVAL;
91
92 mapping = page_mapping(p);
93 if (mapping == NULL || mapping->host == NULL)
94 return -EINVAL;
95
96 dev = mapping->host->i_sb->s_dev;
97 if (hwpoison_filter_dev_major != ~0U &&
98 hwpoison_filter_dev_major != MAJOR(dev))
99 return -EINVAL;
100 if (hwpoison_filter_dev_minor != ~0U &&
101 hwpoison_filter_dev_minor != MINOR(dev))
102 return -EINVAL;
103
104 return 0;
105 }
106
107 static int hwpoison_filter_flags(struct page *p)
108 {
109 if (!hwpoison_filter_flags_mask)
110 return 0;
111
112 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
113 hwpoison_filter_flags_value)
114 return 0;
115 else
116 return -EINVAL;
117 }
118
119 /*
120 * This allows stress tests to limit test scope to a collection of tasks
121 * by putting them under some memcg. This prevents killing unrelated/important
122 * processes such as /sbin/init. Note that the target task may share clean
123 * pages with init (eg. libc text), which is harmless. If the target task
124 * share _dirty_ pages with another task B, the test scheme must make sure B
125 * is also included in the memcg. At last, due to race conditions this filter
126 * can only guarantee that the page either belongs to the memcg tasks, or is
127 * a freed page.
128 */
129 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
130 u64 hwpoison_filter_memcg;
131 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
132 static int hwpoison_filter_task(struct page *p)
133 {
134 struct mem_cgroup *mem;
135 struct cgroup_subsys_state *css;
136 unsigned long ino;
137
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 mem = try_get_mem_cgroup_from_page(p);
142 if (!mem)
143 return -EINVAL;
144
145 css = mem_cgroup_css(mem);
146 /* root_mem_cgroup has NULL dentries */
147 if (!css->cgroup->dentry)
148 return -EINVAL;
149
150 ino = css->cgroup->dentry->d_inode->i_ino;
151 css_put(css);
152
153 if (ino != hwpoison_filter_memcg)
154 return -EINVAL;
155
156 return 0;
157 }
158 #else
159 static int hwpoison_filter_task(struct page *p) { return 0; }
160 #endif
161
162 int hwpoison_filter(struct page *p)
163 {
164 if (!hwpoison_filter_enable)
165 return 0;
166
167 if (hwpoison_filter_dev(p))
168 return -EINVAL;
169
170 if (hwpoison_filter_flags(p))
171 return -EINVAL;
172
173 if (hwpoison_filter_task(p))
174 return -EINVAL;
175
176 return 0;
177 }
178 #else
179 int hwpoison_filter(struct page *p)
180 {
181 return 0;
182 }
183 #endif
184
185 EXPORT_SYMBOL_GPL(hwpoison_filter);
186
187 /*
188 * Send all the processes who have the page mapped an ``action optional''
189 * signal.
190 */
191 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
192 unsigned long pfn, struct page *page)
193 {
194 struct siginfo si;
195 int ret;
196
197 printk(KERN_ERR
198 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
199 pfn, t->comm, t->pid);
200 si.si_signo = SIGBUS;
201 si.si_errno = 0;
202 si.si_code = BUS_MCEERR_AO;
203 si.si_addr = (void *)addr;
204 #ifdef __ARCH_SI_TRAPNO
205 si.si_trapno = trapno;
206 #endif
207 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
208 /*
209 * Don't use force here, it's convenient if the signal
210 * can be temporarily blocked.
211 * This could cause a loop when the user sets SIGBUS
212 * to SIG_IGN, but hopefully no one will do that?
213 */
214 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
215 if (ret < 0)
216 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
217 t->comm, t->pid, ret);
218 return ret;
219 }
220
221 /*
222 * When a unknown page type is encountered drain as many buffers as possible
223 * in the hope to turn the page into a LRU or free page, which we can handle.
224 */
225 void shake_page(struct page *p, int access)
226 {
227 if (!PageSlab(p)) {
228 lru_add_drain_all();
229 if (PageLRU(p))
230 return;
231 drain_all_pages();
232 if (PageLRU(p) || is_free_buddy_page(p))
233 return;
234 }
235
236 /*
237 * Only call shrink_slab here (which would also shrink other caches) if
238 * access is not potentially fatal.
239 */
240 if (access) {
241 int nr;
242 do {
243 struct shrink_control shrink = {
244 .gfp_mask = GFP_KERNEL,
245 };
246
247 nr = shrink_slab(&shrink, 1000, 1000);
248 if (page_count(p) == 1)
249 break;
250 } while (nr > 10);
251 }
252 }
253 EXPORT_SYMBOL_GPL(shake_page);
254
255 /*
256 * Kill all processes that have a poisoned page mapped and then isolate
257 * the page.
258 *
259 * General strategy:
260 * Find all processes having the page mapped and kill them.
261 * But we keep a page reference around so that the page is not
262 * actually freed yet.
263 * Then stash the page away
264 *
265 * There's no convenient way to get back to mapped processes
266 * from the VMAs. So do a brute-force search over all
267 * running processes.
268 *
269 * Remember that machine checks are not common (or rather
270 * if they are common you have other problems), so this shouldn't
271 * be a performance issue.
272 *
273 * Also there are some races possible while we get from the
274 * error detection to actually handle it.
275 */
276
277 struct to_kill {
278 struct list_head nd;
279 struct task_struct *tsk;
280 unsigned long addr;
281 char addr_valid;
282 };
283
284 /*
285 * Failure handling: if we can't find or can't kill a process there's
286 * not much we can do. We just print a message and ignore otherwise.
287 */
288
289 /*
290 * Schedule a process for later kill.
291 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292 * TBD would GFP_NOIO be enough?
293 */
294 static void add_to_kill(struct task_struct *tsk, struct page *p,
295 struct vm_area_struct *vma,
296 struct list_head *to_kill,
297 struct to_kill **tkc)
298 {
299 struct to_kill *tk;
300
301 if (*tkc) {
302 tk = *tkc;
303 *tkc = NULL;
304 } else {
305 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306 if (!tk) {
307 printk(KERN_ERR
308 "MCE: Out of memory while machine check handling\n");
309 return;
310 }
311 }
312 tk->addr = page_address_in_vma(p, vma);
313 tk->addr_valid = 1;
314
315 /*
316 * In theory we don't have to kill when the page was
317 * munmaped. But it could be also a mremap. Since that's
318 * likely very rare kill anyways just out of paranoia, but use
319 * a SIGKILL because the error is not contained anymore.
320 */
321 if (tk->addr == -EFAULT) {
322 pr_info("MCE: Unable to find user space address %lx in %s\n",
323 page_to_pfn(p), tsk->comm);
324 tk->addr_valid = 0;
325 }
326 get_task_struct(tsk);
327 tk->tsk = tsk;
328 list_add_tail(&tk->nd, to_kill);
329 }
330
331 /*
332 * Kill the processes that have been collected earlier.
333 *
334 * Only do anything when DOIT is set, otherwise just free the list
335 * (this is used for clean pages which do not need killing)
336 * Also when FAIL is set do a force kill because something went
337 * wrong earlier.
338 */
339 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340 int fail, struct page *page, unsigned long pfn)
341 {
342 struct to_kill *tk, *next;
343
344 list_for_each_entry_safe (tk, next, to_kill, nd) {
345 if (doit) {
346 /*
347 * In case something went wrong with munmapping
348 * make sure the process doesn't catch the
349 * signal and then access the memory. Just kill it.
350 */
351 if (fail || tk->addr_valid == 0) {
352 printk(KERN_ERR
353 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354 pfn, tk->tsk->comm, tk->tsk->pid);
355 force_sig(SIGKILL, tk->tsk);
356 }
357
358 /*
359 * In theory the process could have mapped
360 * something else on the address in-between. We could
361 * check for that, but we need to tell the
362 * process anyways.
363 */
364 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365 pfn, page) < 0)
366 printk(KERN_ERR
367 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368 pfn, tk->tsk->comm, tk->tsk->pid);
369 }
370 put_task_struct(tk->tsk);
371 kfree(tk);
372 }
373 }
374
375 static int task_early_kill(struct task_struct *tsk)
376 {
377 if (!tsk->mm)
378 return 0;
379 if (tsk->flags & PF_MCE_PROCESS)
380 return !!(tsk->flags & PF_MCE_EARLY);
381 return sysctl_memory_failure_early_kill;
382 }
383
384 /*
385 * Collect processes when the error hit an anonymous page.
386 */
387 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388 struct to_kill **tkc)
389 {
390 struct vm_area_struct *vma;
391 struct task_struct *tsk;
392 struct anon_vma *av;
393
394 av = page_lock_anon_vma(page);
395 if (av == NULL) /* Not actually mapped anymore */
396 return;
397
398 read_lock(&tasklist_lock);
399 for_each_process (tsk) {
400 struct anon_vma_chain *vmac;
401
402 if (!task_early_kill(tsk))
403 continue;
404 list_for_each_entry(vmac, &av->head, same_anon_vma) {
405 vma = vmac->vma;
406 if (!page_mapped_in_vma(page, vma))
407 continue;
408 if (vma->vm_mm == tsk->mm)
409 add_to_kill(tsk, page, vma, to_kill, tkc);
410 }
411 }
412 read_unlock(&tasklist_lock);
413 page_unlock_anon_vma(av);
414 }
415
416 /*
417 * Collect processes when the error hit a file mapped page.
418 */
419 static void collect_procs_file(struct page *page, struct list_head *to_kill,
420 struct to_kill **tkc)
421 {
422 struct vm_area_struct *vma;
423 struct task_struct *tsk;
424 struct prio_tree_iter iter;
425 struct address_space *mapping = page->mapping;
426
427 mutex_lock(&mapping->i_mmap_mutex);
428 read_lock(&tasklist_lock);
429 for_each_process(tsk) {
430 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
431
432 if (!task_early_kill(tsk))
433 continue;
434
435 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
436 pgoff) {
437 /*
438 * Send early kill signal to tasks where a vma covers
439 * the page but the corrupted page is not necessarily
440 * mapped it in its pte.
441 * Assume applications who requested early kill want
442 * to be informed of all such data corruptions.
443 */
444 if (vma->vm_mm == tsk->mm)
445 add_to_kill(tsk, page, vma, to_kill, tkc);
446 }
447 }
448 read_unlock(&tasklist_lock);
449 mutex_unlock(&mapping->i_mmap_mutex);
450 }
451
452 /*
453 * Collect the processes who have the corrupted page mapped to kill.
454 * This is done in two steps for locking reasons.
455 * First preallocate one tokill structure outside the spin locks,
456 * so that we can kill at least one process reasonably reliable.
457 */
458 static void collect_procs(struct page *page, struct list_head *tokill)
459 {
460 struct to_kill *tk;
461
462 if (!page->mapping)
463 return;
464
465 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
466 if (!tk)
467 return;
468 if (PageAnon(page))
469 collect_procs_anon(page, tokill, &tk);
470 else
471 collect_procs_file(page, tokill, &tk);
472 kfree(tk);
473 }
474
475 /*
476 * Error handlers for various types of pages.
477 */
478
479 enum outcome {
480 IGNORED, /* Error: cannot be handled */
481 FAILED, /* Error: handling failed */
482 DELAYED, /* Will be handled later */
483 RECOVERED, /* Successfully recovered */
484 };
485
486 static const char *action_name[] = {
487 [IGNORED] = "Ignored",
488 [FAILED] = "Failed",
489 [DELAYED] = "Delayed",
490 [RECOVERED] = "Recovered",
491 };
492
493 /*
494 * XXX: It is possible that a page is isolated from LRU cache,
495 * and then kept in swap cache or failed to remove from page cache.
496 * The page count will stop it from being freed by unpoison.
497 * Stress tests should be aware of this memory leak problem.
498 */
499 static int delete_from_lru_cache(struct page *p)
500 {
501 if (!isolate_lru_page(p)) {
502 /*
503 * Clear sensible page flags, so that the buddy system won't
504 * complain when the page is unpoison-and-freed.
505 */
506 ClearPageActive(p);
507 ClearPageUnevictable(p);
508 /*
509 * drop the page count elevated by isolate_lru_page()
510 */
511 page_cache_release(p);
512 return 0;
513 }
514 return -EIO;
515 }
516
517 /*
518 * Error hit kernel page.
519 * Do nothing, try to be lucky and not touch this instead. For a few cases we
520 * could be more sophisticated.
521 */
522 static int me_kernel(struct page *p, unsigned long pfn)
523 {
524 return IGNORED;
525 }
526
527 /*
528 * Page in unknown state. Do nothing.
529 */
530 static int me_unknown(struct page *p, unsigned long pfn)
531 {
532 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
533 return FAILED;
534 }
535
536 /*
537 * Clean (or cleaned) page cache page.
538 */
539 static int me_pagecache_clean(struct page *p, unsigned long pfn)
540 {
541 int err;
542 int ret = FAILED;
543 struct address_space *mapping;
544
545 delete_from_lru_cache(p);
546
547 /*
548 * For anonymous pages we're done the only reference left
549 * should be the one m_f() holds.
550 */
551 if (PageAnon(p))
552 return RECOVERED;
553
554 /*
555 * Now truncate the page in the page cache. This is really
556 * more like a "temporary hole punch"
557 * Don't do this for block devices when someone else
558 * has a reference, because it could be file system metadata
559 * and that's not safe to truncate.
560 */
561 mapping = page_mapping(p);
562 if (!mapping) {
563 /*
564 * Page has been teared down in the meanwhile
565 */
566 return FAILED;
567 }
568
569 /*
570 * Truncation is a bit tricky. Enable it per file system for now.
571 *
572 * Open: to take i_mutex or not for this? Right now we don't.
573 */
574 if (mapping->a_ops->error_remove_page) {
575 err = mapping->a_ops->error_remove_page(mapping, p);
576 if (err != 0) {
577 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
578 pfn, err);
579 } else if (page_has_private(p) &&
580 !try_to_release_page(p, GFP_NOIO)) {
581 pr_info("MCE %#lx: failed to release buffers\n", pfn);
582 } else {
583 ret = RECOVERED;
584 }
585 } else {
586 /*
587 * If the file system doesn't support it just invalidate
588 * This fails on dirty or anything with private pages
589 */
590 if (invalidate_inode_page(p))
591 ret = RECOVERED;
592 else
593 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
594 pfn);
595 }
596 return ret;
597 }
598
599 /*
600 * Dirty cache page page
601 * Issues: when the error hit a hole page the error is not properly
602 * propagated.
603 */
604 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
605 {
606 struct address_space *mapping = page_mapping(p);
607
608 SetPageError(p);
609 /* TBD: print more information about the file. */
610 if (mapping) {
611 /*
612 * IO error will be reported by write(), fsync(), etc.
613 * who check the mapping.
614 * This way the application knows that something went
615 * wrong with its dirty file data.
616 *
617 * There's one open issue:
618 *
619 * The EIO will be only reported on the next IO
620 * operation and then cleared through the IO map.
621 * Normally Linux has two mechanisms to pass IO error
622 * first through the AS_EIO flag in the address space
623 * and then through the PageError flag in the page.
624 * Since we drop pages on memory failure handling the
625 * only mechanism open to use is through AS_AIO.
626 *
627 * This has the disadvantage that it gets cleared on
628 * the first operation that returns an error, while
629 * the PageError bit is more sticky and only cleared
630 * when the page is reread or dropped. If an
631 * application assumes it will always get error on
632 * fsync, but does other operations on the fd before
633 * and the page is dropped between then the error
634 * will not be properly reported.
635 *
636 * This can already happen even without hwpoisoned
637 * pages: first on metadata IO errors (which only
638 * report through AS_EIO) or when the page is dropped
639 * at the wrong time.
640 *
641 * So right now we assume that the application DTRT on
642 * the first EIO, but we're not worse than other parts
643 * of the kernel.
644 */
645 mapping_set_error(mapping, EIO);
646 }
647
648 return me_pagecache_clean(p, pfn);
649 }
650
651 /*
652 * Clean and dirty swap cache.
653 *
654 * Dirty swap cache page is tricky to handle. The page could live both in page
655 * cache and swap cache(ie. page is freshly swapped in). So it could be
656 * referenced concurrently by 2 types of PTEs:
657 * normal PTEs and swap PTEs. We try to handle them consistently by calling
658 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
659 * and then
660 * - clear dirty bit to prevent IO
661 * - remove from LRU
662 * - but keep in the swap cache, so that when we return to it on
663 * a later page fault, we know the application is accessing
664 * corrupted data and shall be killed (we installed simple
665 * interception code in do_swap_page to catch it).
666 *
667 * Clean swap cache pages can be directly isolated. A later page fault will
668 * bring in the known good data from disk.
669 */
670 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
671 {
672 ClearPageDirty(p);
673 /* Trigger EIO in shmem: */
674 ClearPageUptodate(p);
675
676 if (!delete_from_lru_cache(p))
677 return DELAYED;
678 else
679 return FAILED;
680 }
681
682 static int me_swapcache_clean(struct page *p, unsigned long pfn)
683 {
684 delete_from_swap_cache(p);
685
686 if (!delete_from_lru_cache(p))
687 return RECOVERED;
688 else
689 return FAILED;
690 }
691
692 /*
693 * Huge pages. Needs work.
694 * Issues:
695 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
696 * To narrow down kill region to one page, we need to break up pmd.
697 */
698 static int me_huge_page(struct page *p, unsigned long pfn)
699 {
700 int res = 0;
701 struct page *hpage = compound_head(p);
702 /*
703 * We can safely recover from error on free or reserved (i.e.
704 * not in-use) hugepage by dequeuing it from freelist.
705 * To check whether a hugepage is in-use or not, we can't use
706 * page->lru because it can be used in other hugepage operations,
707 * such as __unmap_hugepage_range() and gather_surplus_pages().
708 * So instead we use page_mapping() and PageAnon().
709 * We assume that this function is called with page lock held,
710 * so there is no race between isolation and mapping/unmapping.
711 */
712 if (!(page_mapping(hpage) || PageAnon(hpage))) {
713 res = dequeue_hwpoisoned_huge_page(hpage);
714 if (!res)
715 return RECOVERED;
716 }
717 return DELAYED;
718 }
719
720 /*
721 * Various page states we can handle.
722 *
723 * A page state is defined by its current page->flags bits.
724 * The table matches them in order and calls the right handler.
725 *
726 * This is quite tricky because we can access page at any time
727 * in its live cycle, so all accesses have to be extremely careful.
728 *
729 * This is not complete. More states could be added.
730 * For any missing state don't attempt recovery.
731 */
732
733 #define dirty (1UL << PG_dirty)
734 #define sc (1UL << PG_swapcache)
735 #define unevict (1UL << PG_unevictable)
736 #define mlock (1UL << PG_mlocked)
737 #define writeback (1UL << PG_writeback)
738 #define lru (1UL << PG_lru)
739 #define swapbacked (1UL << PG_swapbacked)
740 #define head (1UL << PG_head)
741 #define tail (1UL << PG_tail)
742 #define compound (1UL << PG_compound)
743 #define slab (1UL << PG_slab)
744 #define reserved (1UL << PG_reserved)
745
746 static struct page_state {
747 unsigned long mask;
748 unsigned long res;
749 char *msg;
750 int (*action)(struct page *p, unsigned long pfn);
751 } error_states[] = {
752 { reserved, reserved, "reserved kernel", me_kernel },
753 /*
754 * free pages are specially detected outside this table:
755 * PG_buddy pages only make a small fraction of all free pages.
756 */
757
758 /*
759 * Could in theory check if slab page is free or if we can drop
760 * currently unused objects without touching them. But just
761 * treat it as standard kernel for now.
762 */
763 { slab, slab, "kernel slab", me_kernel },
764
765 #ifdef CONFIG_PAGEFLAGS_EXTENDED
766 { head, head, "huge", me_huge_page },
767 { tail, tail, "huge", me_huge_page },
768 #else
769 { compound, compound, "huge", me_huge_page },
770 #endif
771
772 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
773 { sc|dirty, sc, "swapcache", me_swapcache_clean },
774
775 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
776 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
777
778 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
779 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
780
781 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
782 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
783
784 /*
785 * Catchall entry: must be at end.
786 */
787 { 0, 0, "unknown page state", me_unknown },
788 };
789
790 #undef dirty
791 #undef sc
792 #undef unevict
793 #undef mlock
794 #undef writeback
795 #undef lru
796 #undef swapbacked
797 #undef head
798 #undef tail
799 #undef compound
800 #undef slab
801 #undef reserved
802
803 static void action_result(unsigned long pfn, char *msg, int result)
804 {
805 struct page *page = pfn_to_page(pfn);
806
807 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
808 pfn,
809 PageDirty(page) ? "dirty " : "",
810 msg, action_name[result]);
811 }
812
813 static int page_action(struct page_state *ps, struct page *p,
814 unsigned long pfn)
815 {
816 int result;
817 int count;
818
819 result = ps->action(p, pfn);
820 action_result(pfn, ps->msg, result);
821
822 count = page_count(p) - 1;
823 if (ps->action == me_swapcache_dirty && result == DELAYED)
824 count--;
825 if (count != 0) {
826 printk(KERN_ERR
827 "MCE %#lx: %s page still referenced by %d users\n",
828 pfn, ps->msg, count);
829 result = FAILED;
830 }
831
832 /* Could do more checks here if page looks ok */
833 /*
834 * Could adjust zone counters here to correct for the missing page.
835 */
836
837 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
838 }
839
840 /*
841 * Do all that is necessary to remove user space mappings. Unmap
842 * the pages and send SIGBUS to the processes if the data was dirty.
843 */
844 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
845 int trapno)
846 {
847 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
848 struct address_space *mapping;
849 LIST_HEAD(tokill);
850 int ret;
851 int kill = 1;
852 struct page *hpage = compound_head(p);
853 struct page *ppage;
854
855 if (PageReserved(p) || PageSlab(p))
856 return SWAP_SUCCESS;
857
858 /*
859 * This check implies we don't kill processes if their pages
860 * are in the swap cache early. Those are always late kills.
861 */
862 if (!page_mapped(hpage))
863 return SWAP_SUCCESS;
864
865 if (PageKsm(p))
866 return SWAP_FAIL;
867
868 if (PageSwapCache(p)) {
869 printk(KERN_ERR
870 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
871 ttu |= TTU_IGNORE_HWPOISON;
872 }
873
874 /*
875 * Propagate the dirty bit from PTEs to struct page first, because we
876 * need this to decide if we should kill or just drop the page.
877 * XXX: the dirty test could be racy: set_page_dirty() may not always
878 * be called inside page lock (it's recommended but not enforced).
879 */
880 mapping = page_mapping(hpage);
881 if (!PageDirty(hpage) && mapping &&
882 mapping_cap_writeback_dirty(mapping)) {
883 if (page_mkclean(hpage)) {
884 SetPageDirty(hpage);
885 } else {
886 kill = 0;
887 ttu |= TTU_IGNORE_HWPOISON;
888 printk(KERN_INFO
889 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
890 pfn);
891 }
892 }
893
894 /*
895 * ppage: poisoned page
896 * if p is regular page(4k page)
897 * ppage == real poisoned page;
898 * else p is hugetlb or THP, ppage == head page.
899 */
900 ppage = hpage;
901
902 if (PageTransHuge(hpage)) {
903 /*
904 * Verify that this isn't a hugetlbfs head page, the check for
905 * PageAnon is just for avoid tripping a split_huge_page
906 * internal debug check, as split_huge_page refuses to deal with
907 * anything that isn't an anon page. PageAnon can't go away fro
908 * under us because we hold a refcount on the hpage, without a
909 * refcount on the hpage. split_huge_page can't be safely called
910 * in the first place, having a refcount on the tail isn't
911 * enough * to be safe.
912 */
913 if (!PageHuge(hpage) && PageAnon(hpage)) {
914 if (unlikely(split_huge_page(hpage))) {
915 /*
916 * FIXME: if splitting THP is failed, it is
917 * better to stop the following operation rather
918 * than causing panic by unmapping. System might
919 * survive if the page is freed later.
920 */
921 printk(KERN_INFO
922 "MCE %#lx: failed to split THP\n", pfn);
923
924 BUG_ON(!PageHWPoison(p));
925 return SWAP_FAIL;
926 }
927 /* THP is split, so ppage should be the real poisoned page. */
928 ppage = p;
929 }
930 }
931
932 /*
933 * First collect all the processes that have the page
934 * mapped in dirty form. This has to be done before try_to_unmap,
935 * because ttu takes the rmap data structures down.
936 *
937 * Error handling: We ignore errors here because
938 * there's nothing that can be done.
939 */
940 if (kill)
941 collect_procs(ppage, &tokill);
942
943 if (hpage != ppage)
944 lock_page(ppage);
945
946 ret = try_to_unmap(ppage, ttu);
947 if (ret != SWAP_SUCCESS)
948 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
949 pfn, page_mapcount(ppage));
950
951 if (hpage != ppage)
952 unlock_page(ppage);
953
954 /*
955 * Now that the dirty bit has been propagated to the
956 * struct page and all unmaps done we can decide if
957 * killing is needed or not. Only kill when the page
958 * was dirty, otherwise the tokill list is merely
959 * freed. When there was a problem unmapping earlier
960 * use a more force-full uncatchable kill to prevent
961 * any accesses to the poisoned memory.
962 */
963 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
964 ret != SWAP_SUCCESS, p, pfn);
965
966 return ret;
967 }
968
969 static void set_page_hwpoison_huge_page(struct page *hpage)
970 {
971 int i;
972 int nr_pages = 1 << compound_trans_order(hpage);
973 for (i = 0; i < nr_pages; i++)
974 SetPageHWPoison(hpage + i);
975 }
976
977 static void clear_page_hwpoison_huge_page(struct page *hpage)
978 {
979 int i;
980 int nr_pages = 1 << compound_trans_order(hpage);
981 for (i = 0; i < nr_pages; i++)
982 ClearPageHWPoison(hpage + i);
983 }
984
985 int __memory_failure(unsigned long pfn, int trapno, int flags)
986 {
987 struct page_state *ps;
988 struct page *p;
989 struct page *hpage;
990 int res;
991 unsigned int nr_pages;
992
993 if (!sysctl_memory_failure_recovery)
994 panic("Memory failure from trap %d on page %lx", trapno, pfn);
995
996 if (!pfn_valid(pfn)) {
997 printk(KERN_ERR
998 "MCE %#lx: memory outside kernel control\n",
999 pfn);
1000 return -ENXIO;
1001 }
1002
1003 p = pfn_to_page(pfn);
1004 hpage = compound_head(p);
1005 if (TestSetPageHWPoison(p)) {
1006 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1007 return 0;
1008 }
1009
1010 nr_pages = 1 << compound_trans_order(hpage);
1011 atomic_long_add(nr_pages, &mce_bad_pages);
1012
1013 /*
1014 * We need/can do nothing about count=0 pages.
1015 * 1) it's a free page, and therefore in safe hand:
1016 * prep_new_page() will be the gate keeper.
1017 * 2) it's a free hugepage, which is also safe:
1018 * an affected hugepage will be dequeued from hugepage freelist,
1019 * so there's no concern about reusing it ever after.
1020 * 3) it's part of a non-compound high order page.
1021 * Implies some kernel user: cannot stop them from
1022 * R/W the page; let's pray that the page has been
1023 * used and will be freed some time later.
1024 * In fact it's dangerous to directly bump up page count from 0,
1025 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1026 */
1027 if (!(flags & MF_COUNT_INCREASED) &&
1028 !get_page_unless_zero(hpage)) {
1029 if (is_free_buddy_page(p)) {
1030 action_result(pfn, "free buddy", DELAYED);
1031 return 0;
1032 } else if (PageHuge(hpage)) {
1033 /*
1034 * Check "just unpoisoned", "filter hit", and
1035 * "race with other subpage."
1036 */
1037 lock_page(hpage);
1038 if (!PageHWPoison(hpage)
1039 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1040 || (p != hpage && TestSetPageHWPoison(hpage))) {
1041 atomic_long_sub(nr_pages, &mce_bad_pages);
1042 return 0;
1043 }
1044 set_page_hwpoison_huge_page(hpage);
1045 res = dequeue_hwpoisoned_huge_page(hpage);
1046 action_result(pfn, "free huge",
1047 res ? IGNORED : DELAYED);
1048 unlock_page(hpage);
1049 return res;
1050 } else {
1051 action_result(pfn, "high order kernel", IGNORED);
1052 return -EBUSY;
1053 }
1054 }
1055
1056 /*
1057 * We ignore non-LRU pages for good reasons.
1058 * - PG_locked is only well defined for LRU pages and a few others
1059 * - to avoid races with __set_page_locked()
1060 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1061 * The check (unnecessarily) ignores LRU pages being isolated and
1062 * walked by the page reclaim code, however that's not a big loss.
1063 */
1064 if (!PageHuge(p) && !PageTransCompound(p)) {
1065 if (!PageLRU(p))
1066 shake_page(p, 0);
1067 if (!PageLRU(p)) {
1068 /*
1069 * shake_page could have turned it free.
1070 */
1071 if (is_free_buddy_page(p)) {
1072 action_result(pfn, "free buddy, 2nd try",
1073 DELAYED);
1074 return 0;
1075 }
1076 action_result(pfn, "non LRU", IGNORED);
1077 put_page(p);
1078 return -EBUSY;
1079 }
1080 }
1081
1082 /*
1083 * Lock the page and wait for writeback to finish.
1084 * It's very difficult to mess with pages currently under IO
1085 * and in many cases impossible, so we just avoid it here.
1086 */
1087 lock_page(hpage);
1088
1089 /*
1090 * unpoison always clear PG_hwpoison inside page lock
1091 */
1092 if (!PageHWPoison(p)) {
1093 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1094 res = 0;
1095 goto out;
1096 }
1097 if (hwpoison_filter(p)) {
1098 if (TestClearPageHWPoison(p))
1099 atomic_long_sub(nr_pages, &mce_bad_pages);
1100 unlock_page(hpage);
1101 put_page(hpage);
1102 return 0;
1103 }
1104
1105 /*
1106 * For error on the tail page, we should set PG_hwpoison
1107 * on the head page to show that the hugepage is hwpoisoned
1108 */
1109 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1110 action_result(pfn, "hugepage already hardware poisoned",
1111 IGNORED);
1112 unlock_page(hpage);
1113 put_page(hpage);
1114 return 0;
1115 }
1116 /*
1117 * Set PG_hwpoison on all pages in an error hugepage,
1118 * because containment is done in hugepage unit for now.
1119 * Since we have done TestSetPageHWPoison() for the head page with
1120 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1121 */
1122 if (PageHuge(p))
1123 set_page_hwpoison_huge_page(hpage);
1124
1125 wait_on_page_writeback(p);
1126
1127 /*
1128 * Now take care of user space mappings.
1129 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1130 */
1131 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1132 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1133 res = -EBUSY;
1134 goto out;
1135 }
1136
1137 /*
1138 * Torn down by someone else?
1139 */
1140 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1141 action_result(pfn, "already truncated LRU", IGNORED);
1142 res = -EBUSY;
1143 goto out;
1144 }
1145
1146 res = -EBUSY;
1147 for (ps = error_states;; ps++) {
1148 if ((p->flags & ps->mask) == ps->res) {
1149 res = page_action(ps, p, pfn);
1150 break;
1151 }
1152 }
1153 out:
1154 unlock_page(hpage);
1155 return res;
1156 }
1157 EXPORT_SYMBOL_GPL(__memory_failure);
1158
1159 /**
1160 * memory_failure - Handle memory failure of a page.
1161 * @pfn: Page Number of the corrupted page
1162 * @trapno: Trap number reported in the signal to user space.
1163 *
1164 * This function is called by the low level machine check code
1165 * of an architecture when it detects hardware memory corruption
1166 * of a page. It tries its best to recover, which includes
1167 * dropping pages, killing processes etc.
1168 *
1169 * The function is primarily of use for corruptions that
1170 * happen outside the current execution context (e.g. when
1171 * detected by a background scrubber)
1172 *
1173 * Must run in process context (e.g. a work queue) with interrupts
1174 * enabled and no spinlocks hold.
1175 */
1176 void memory_failure(unsigned long pfn, int trapno)
1177 {
1178 __memory_failure(pfn, trapno, 0);
1179 }
1180
1181 /**
1182 * unpoison_memory - Unpoison a previously poisoned page
1183 * @pfn: Page number of the to be unpoisoned page
1184 *
1185 * Software-unpoison a page that has been poisoned by
1186 * memory_failure() earlier.
1187 *
1188 * This is only done on the software-level, so it only works
1189 * for linux injected failures, not real hardware failures
1190 *
1191 * Returns 0 for success, otherwise -errno.
1192 */
1193 int unpoison_memory(unsigned long pfn)
1194 {
1195 struct page *page;
1196 struct page *p;
1197 int freeit = 0;
1198 unsigned int nr_pages;
1199
1200 if (!pfn_valid(pfn))
1201 return -ENXIO;
1202
1203 p = pfn_to_page(pfn);
1204 page = compound_head(p);
1205
1206 if (!PageHWPoison(p)) {
1207 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1208 return 0;
1209 }
1210
1211 nr_pages = 1 << compound_trans_order(page);
1212
1213 if (!get_page_unless_zero(page)) {
1214 /*
1215 * Since HWPoisoned hugepage should have non-zero refcount,
1216 * race between memory failure and unpoison seems to happen.
1217 * In such case unpoison fails and memory failure runs
1218 * to the end.
1219 */
1220 if (PageHuge(page)) {
1221 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1222 return 0;
1223 }
1224 if (TestClearPageHWPoison(p))
1225 atomic_long_sub(nr_pages, &mce_bad_pages);
1226 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1227 return 0;
1228 }
1229
1230 lock_page(page);
1231 /*
1232 * This test is racy because PG_hwpoison is set outside of page lock.
1233 * That's acceptable because that won't trigger kernel panic. Instead,
1234 * the PG_hwpoison page will be caught and isolated on the entrance to
1235 * the free buddy page pool.
1236 */
1237 if (TestClearPageHWPoison(page)) {
1238 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1239 atomic_long_sub(nr_pages, &mce_bad_pages);
1240 freeit = 1;
1241 if (PageHuge(page))
1242 clear_page_hwpoison_huge_page(page);
1243 }
1244 unlock_page(page);
1245
1246 put_page(page);
1247 if (freeit)
1248 put_page(page);
1249
1250 return 0;
1251 }
1252 EXPORT_SYMBOL(unpoison_memory);
1253
1254 static struct page *new_page(struct page *p, unsigned long private, int **x)
1255 {
1256 int nid = page_to_nid(p);
1257 if (PageHuge(p))
1258 return alloc_huge_page_node(page_hstate(compound_head(p)),
1259 nid);
1260 else
1261 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1262 }
1263
1264 /*
1265 * Safely get reference count of an arbitrary page.
1266 * Returns 0 for a free page, -EIO for a zero refcount page
1267 * that is not free, and 1 for any other page type.
1268 * For 1 the page is returned with increased page count, otherwise not.
1269 */
1270 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1271 {
1272 int ret;
1273
1274 if (flags & MF_COUNT_INCREASED)
1275 return 1;
1276
1277 /*
1278 * The lock_memory_hotplug prevents a race with memory hotplug.
1279 * This is a big hammer, a better would be nicer.
1280 */
1281 lock_memory_hotplug();
1282
1283 /*
1284 * Isolate the page, so that it doesn't get reallocated if it
1285 * was free.
1286 */
1287 set_migratetype_isolate(p);
1288 /*
1289 * When the target page is a free hugepage, just remove it
1290 * from free hugepage list.
1291 */
1292 if (!get_page_unless_zero(compound_head(p))) {
1293 if (PageHuge(p)) {
1294 pr_info("get_any_page: %#lx free huge page\n", pfn);
1295 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1296 } else if (is_free_buddy_page(p)) {
1297 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1298 /* Set hwpoison bit while page is still isolated */
1299 SetPageHWPoison(p);
1300 ret = 0;
1301 } else {
1302 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1303 pfn, p->flags);
1304 ret = -EIO;
1305 }
1306 } else {
1307 /* Not a free page */
1308 ret = 1;
1309 }
1310 unset_migratetype_isolate(p);
1311 unlock_memory_hotplug();
1312 return ret;
1313 }
1314
1315 static int soft_offline_huge_page(struct page *page, int flags)
1316 {
1317 int ret;
1318 unsigned long pfn = page_to_pfn(page);
1319 struct page *hpage = compound_head(page);
1320 LIST_HEAD(pagelist);
1321
1322 ret = get_any_page(page, pfn, flags);
1323 if (ret < 0)
1324 return ret;
1325 if (ret == 0)
1326 goto done;
1327
1328 if (PageHWPoison(hpage)) {
1329 put_page(hpage);
1330 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1331 return -EBUSY;
1332 }
1333
1334 /* Keep page count to indicate a given hugepage is isolated. */
1335
1336 list_add(&hpage->lru, &pagelist);
1337 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1338 true);
1339 if (ret) {
1340 struct page *page1, *page2;
1341 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1342 put_page(page1);
1343
1344 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1345 pfn, ret, page->flags);
1346 if (ret > 0)
1347 ret = -EIO;
1348 return ret;
1349 }
1350 done:
1351 if (!PageHWPoison(hpage))
1352 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1353 set_page_hwpoison_huge_page(hpage);
1354 dequeue_hwpoisoned_huge_page(hpage);
1355 /* keep elevated page count for bad page */
1356 return ret;
1357 }
1358
1359 /**
1360 * soft_offline_page - Soft offline a page.
1361 * @page: page to offline
1362 * @flags: flags. Same as memory_failure().
1363 *
1364 * Returns 0 on success, otherwise negated errno.
1365 *
1366 * Soft offline a page, by migration or invalidation,
1367 * without killing anything. This is for the case when
1368 * a page is not corrupted yet (so it's still valid to access),
1369 * but has had a number of corrected errors and is better taken
1370 * out.
1371 *
1372 * The actual policy on when to do that is maintained by
1373 * user space.
1374 *
1375 * This should never impact any application or cause data loss,
1376 * however it might take some time.
1377 *
1378 * This is not a 100% solution for all memory, but tries to be
1379 * ``good enough'' for the majority of memory.
1380 */
1381 int soft_offline_page(struct page *page, int flags)
1382 {
1383 int ret;
1384 unsigned long pfn = page_to_pfn(page);
1385
1386 if (PageHuge(page))
1387 return soft_offline_huge_page(page, flags);
1388
1389 ret = get_any_page(page, pfn, flags);
1390 if (ret < 0)
1391 return ret;
1392 if (ret == 0)
1393 goto done;
1394
1395 /*
1396 * Page cache page we can handle?
1397 */
1398 if (!PageLRU(page)) {
1399 /*
1400 * Try to free it.
1401 */
1402 put_page(page);
1403 shake_page(page, 1);
1404
1405 /*
1406 * Did it turn free?
1407 */
1408 ret = get_any_page(page, pfn, 0);
1409 if (ret < 0)
1410 return ret;
1411 if (ret == 0)
1412 goto done;
1413 }
1414 if (!PageLRU(page)) {
1415 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1416 pfn, page->flags);
1417 return -EIO;
1418 }
1419
1420 lock_page(page);
1421 wait_on_page_writeback(page);
1422
1423 /*
1424 * Synchronized using the page lock with memory_failure()
1425 */
1426 if (PageHWPoison(page)) {
1427 unlock_page(page);
1428 put_page(page);
1429 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1430 return -EBUSY;
1431 }
1432
1433 /*
1434 * Try to invalidate first. This should work for
1435 * non dirty unmapped page cache pages.
1436 */
1437 ret = invalidate_inode_page(page);
1438 unlock_page(page);
1439 /*
1440 * RED-PEN would be better to keep it isolated here, but we
1441 * would need to fix isolation locking first.
1442 */
1443 if (ret == 1) {
1444 put_page(page);
1445 ret = 0;
1446 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1447 goto done;
1448 }
1449
1450 /*
1451 * Simple invalidation didn't work.
1452 * Try to migrate to a new page instead. migrate.c
1453 * handles a large number of cases for us.
1454 */
1455 ret = isolate_lru_page(page);
1456 /*
1457 * Drop page reference which is came from get_any_page()
1458 * successful isolate_lru_page() already took another one.
1459 */
1460 put_page(page);
1461 if (!ret) {
1462 LIST_HEAD(pagelist);
1463 inc_zone_page_state(page, NR_ISOLATED_ANON +
1464 page_is_file_cache(page));
1465 list_add(&page->lru, &pagelist);
1466 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1467 0, true);
1468 if (ret) {
1469 putback_lru_pages(&pagelist);
1470 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1471 pfn, ret, page->flags);
1472 if (ret > 0)
1473 ret = -EIO;
1474 }
1475 } else {
1476 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1477 pfn, ret, page_count(page), page->flags);
1478 }
1479 if (ret)
1480 return ret;
1481
1482 done:
1483 atomic_long_add(1, &mce_bad_pages);
1484 SetPageHWPoison(page);
1485 /* keep elevated page count for bad page */
1486 return ret;
1487 }