]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory-failure.c
jbd2: Fix possible overflow in jbd2_log_space_left()
[mirror_ubuntu-hirsute-kernel.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109 }
110
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121 }
122
123 /*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149
150 int hwpoison_filter(struct page *p)
151 {
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 return 0;
170 }
171 #endif
172
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175 /*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197 struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
202 char addr_valid;
203 };
204
205 /*
206 * Send all the processes who have the page mapped a signal.
207 * ``action optional'' if they are not immediately affected by the error
208 * ``action required'' if error happened in current execution context
209 */
210 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
211 {
212 struct task_struct *t = tk->tsk;
213 short addr_lsb = tk->size_shift;
214 int ret;
215
216 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
217 pfn, t->comm, t->pid);
218
219 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
220 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
221 addr_lsb);
222 } else {
223 /*
224 * Don't use force here, it's convenient if the signal
225 * can be temporarily blocked.
226 * This could cause a loop when the user sets SIGBUS
227 * to SIG_IGN, but hopefully no one will do that?
228 */
229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 addr_lsb, t); /* synchronous? */
231 }
232 if (ret < 0)
233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 t->comm, t->pid, ret);
235 return ret;
236 }
237
238 /*
239 * When a unknown page type is encountered drain as many buffers as possible
240 * in the hope to turn the page into a LRU or free page, which we can handle.
241 */
242 void shake_page(struct page *p, int access)
243 {
244 if (PageHuge(p))
245 return;
246
247 if (!PageSlab(p)) {
248 lru_add_drain_all();
249 if (PageLRU(p))
250 return;
251 drain_all_pages(page_zone(p));
252 if (PageLRU(p) || is_free_buddy_page(p))
253 return;
254 }
255
256 /*
257 * Only call shrink_node_slabs here (which would also shrink
258 * other caches) if access is not potentially fatal.
259 */
260 if (access)
261 drop_slab_node(page_to_nid(p));
262 }
263 EXPORT_SYMBOL_GPL(shake_page);
264
265 static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 struct vm_area_struct *vma)
267 {
268 unsigned long address = vma_address(page, vma);
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274
275 pgd = pgd_offset(vma->vm_mm, address);
276 if (!pgd_present(*pgd))
277 return 0;
278 p4d = p4d_offset(pgd, address);
279 if (!p4d_present(*p4d))
280 return 0;
281 pud = pud_offset(p4d, address);
282 if (!pud_present(*pud))
283 return 0;
284 if (pud_devmap(*pud))
285 return PUD_SHIFT;
286 pmd = pmd_offset(pud, address);
287 if (!pmd_present(*pmd))
288 return 0;
289 if (pmd_devmap(*pmd))
290 return PMD_SHIFT;
291 pte = pte_offset_map(pmd, address);
292 if (!pte_present(*pte))
293 return 0;
294 if (pte_devmap(*pte))
295 return PAGE_SHIFT;
296 return 0;
297 }
298
299 /*
300 * Failure handling: if we can't find or can't kill a process there's
301 * not much we can do. We just print a message and ignore otherwise.
302 */
303
304 /*
305 * Schedule a process for later kill.
306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307 * TBD would GFP_NOIO be enough?
308 */
309 static void add_to_kill(struct task_struct *tsk, struct page *p,
310 struct vm_area_struct *vma,
311 struct list_head *to_kill,
312 struct to_kill **tkc)
313 {
314 struct to_kill *tk;
315
316 if (*tkc) {
317 tk = *tkc;
318 *tkc = NULL;
319 } else {
320 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
321 if (!tk) {
322 pr_err("Memory failure: Out of memory while machine check handling\n");
323 return;
324 }
325 }
326 tk->addr = page_address_in_vma(p, vma);
327 tk->addr_valid = 1;
328 if (is_zone_device_page(p))
329 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
330 else
331 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
332
333 /*
334 * In theory we don't have to kill when the page was
335 * munmaped. But it could be also a mremap. Since that's
336 * likely very rare kill anyways just out of paranoia, but use
337 * a SIGKILL because the error is not contained anymore.
338 */
339 if (tk->addr == -EFAULT || tk->size_shift == 0) {
340 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
341 page_to_pfn(p), tsk->comm);
342 tk->addr_valid = 0;
343 }
344 get_task_struct(tsk);
345 tk->tsk = tsk;
346 list_add_tail(&tk->nd, to_kill);
347 }
348
349 /*
350 * Kill the processes that have been collected earlier.
351 *
352 * Only do anything when DOIT is set, otherwise just free the list
353 * (this is used for clean pages which do not need killing)
354 * Also when FAIL is set do a force kill because something went
355 * wrong earlier.
356 */
357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 unsigned long pfn, int flags)
359 {
360 struct to_kill *tk, *next;
361
362 list_for_each_entry_safe (tk, next, to_kill, nd) {
363 if (forcekill) {
364 /*
365 * In case something went wrong with munmapping
366 * make sure the process doesn't catch the
367 * signal and then access the memory. Just kill it.
368 */
369 if (fail || tk->addr_valid == 0) {
370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 pfn, tk->tsk->comm, tk->tsk->pid);
372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 tk->tsk, PIDTYPE_PID);
374 }
375
376 /*
377 * In theory the process could have mapped
378 * something else on the address in-between. We could
379 * check for that, but we need to tell the
380 * process anyways.
381 */
382 else if (kill_proc(tk, pfn, flags) < 0)
383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 pfn, tk->tsk->comm, tk->tsk->pid);
385 }
386 put_task_struct(tk->tsk);
387 kfree(tk);
388 }
389 }
390
391 /*
392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393 * on behalf of the thread group. Return task_struct of the (first found)
394 * dedicated thread if found, and return NULL otherwise.
395 *
396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397 * have to call rcu_read_lock/unlock() in this function.
398 */
399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 {
401 struct task_struct *t;
402
403 for_each_thread(tsk, t)
404 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
405 return t;
406 return NULL;
407 }
408
409 /*
410 * Determine whether a given process is "early kill" process which expects
411 * to be signaled when some page under the process is hwpoisoned.
412 * Return task_struct of the dedicated thread (main thread unless explicitly
413 * specified) if the process is "early kill," and otherwise returns NULL.
414 */
415 static struct task_struct *task_early_kill(struct task_struct *tsk,
416 int force_early)
417 {
418 struct task_struct *t;
419 if (!tsk->mm)
420 return NULL;
421 if (force_early)
422 return tsk;
423 t = find_early_kill_thread(tsk);
424 if (t)
425 return t;
426 if (sysctl_memory_failure_early_kill)
427 return tsk;
428 return NULL;
429 }
430
431 /*
432 * Collect processes when the error hit an anonymous page.
433 */
434 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
436 {
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct anon_vma *av;
440 pgoff_t pgoff;
441
442 av = page_lock_anon_vma_read(page);
443 if (av == NULL) /* Not actually mapped anymore */
444 return;
445
446 pgoff = page_to_pgoff(page);
447 read_lock(&tasklist_lock);
448 for_each_process (tsk) {
449 struct anon_vma_chain *vmac;
450 struct task_struct *t = task_early_kill(tsk, force_early);
451
452 if (!t)
453 continue;
454 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
455 pgoff, pgoff) {
456 vma = vmac->vma;
457 if (!page_mapped_in_vma(page, vma))
458 continue;
459 if (vma->vm_mm == t->mm)
460 add_to_kill(t, page, vma, to_kill, tkc);
461 }
462 }
463 read_unlock(&tasklist_lock);
464 page_unlock_anon_vma_read(av);
465 }
466
467 /*
468 * Collect processes when the error hit a file mapped page.
469 */
470 static void collect_procs_file(struct page *page, struct list_head *to_kill,
471 struct to_kill **tkc, int force_early)
472 {
473 struct vm_area_struct *vma;
474 struct task_struct *tsk;
475 struct address_space *mapping = page->mapping;
476
477 i_mmap_lock_read(mapping);
478 read_lock(&tasklist_lock);
479 for_each_process(tsk) {
480 pgoff_t pgoff = page_to_pgoff(page);
481 struct task_struct *t = task_early_kill(tsk, force_early);
482
483 if (!t)
484 continue;
485 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
486 pgoff) {
487 /*
488 * Send early kill signal to tasks where a vma covers
489 * the page but the corrupted page is not necessarily
490 * mapped it in its pte.
491 * Assume applications who requested early kill want
492 * to be informed of all such data corruptions.
493 */
494 if (vma->vm_mm == t->mm)
495 add_to_kill(t, page, vma, to_kill, tkc);
496 }
497 }
498 read_unlock(&tasklist_lock);
499 i_mmap_unlock_read(mapping);
500 }
501
502 /*
503 * Collect the processes who have the corrupted page mapped to kill.
504 * This is done in two steps for locking reasons.
505 * First preallocate one tokill structure outside the spin locks,
506 * so that we can kill at least one process reasonably reliable.
507 */
508 static void collect_procs(struct page *page, struct list_head *tokill,
509 int force_early)
510 {
511 struct to_kill *tk;
512
513 if (!page->mapping)
514 return;
515
516 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
517 if (!tk)
518 return;
519 if (PageAnon(page))
520 collect_procs_anon(page, tokill, &tk, force_early);
521 else
522 collect_procs_file(page, tokill, &tk, force_early);
523 kfree(tk);
524 }
525
526 static const char *action_name[] = {
527 [MF_IGNORED] = "Ignored",
528 [MF_FAILED] = "Failed",
529 [MF_DELAYED] = "Delayed",
530 [MF_RECOVERED] = "Recovered",
531 };
532
533 static const char * const action_page_types[] = {
534 [MF_MSG_KERNEL] = "reserved kernel page",
535 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
536 [MF_MSG_SLAB] = "kernel slab page",
537 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
538 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
539 [MF_MSG_HUGE] = "huge page",
540 [MF_MSG_FREE_HUGE] = "free huge page",
541 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
542 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
543 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
544 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
545 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
546 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
547 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
548 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
549 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
550 [MF_MSG_CLEAN_LRU] = "clean LRU page",
551 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
552 [MF_MSG_BUDDY] = "free buddy page",
553 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
554 [MF_MSG_DAX] = "dax page",
555 [MF_MSG_UNKNOWN] = "unknown page",
556 };
557
558 /*
559 * XXX: It is possible that a page is isolated from LRU cache,
560 * and then kept in swap cache or failed to remove from page cache.
561 * The page count will stop it from being freed by unpoison.
562 * Stress tests should be aware of this memory leak problem.
563 */
564 static int delete_from_lru_cache(struct page *p)
565 {
566 if (!isolate_lru_page(p)) {
567 /*
568 * Clear sensible page flags, so that the buddy system won't
569 * complain when the page is unpoison-and-freed.
570 */
571 ClearPageActive(p);
572 ClearPageUnevictable(p);
573
574 /*
575 * Poisoned page might never drop its ref count to 0 so we have
576 * to uncharge it manually from its memcg.
577 */
578 mem_cgroup_uncharge(p);
579
580 /*
581 * drop the page count elevated by isolate_lru_page()
582 */
583 put_page(p);
584 return 0;
585 }
586 return -EIO;
587 }
588
589 static int truncate_error_page(struct page *p, unsigned long pfn,
590 struct address_space *mapping)
591 {
592 int ret = MF_FAILED;
593
594 if (mapping->a_ops->error_remove_page) {
595 int err = mapping->a_ops->error_remove_page(mapping, p);
596
597 if (err != 0) {
598 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
599 pfn, err);
600 } else if (page_has_private(p) &&
601 !try_to_release_page(p, GFP_NOIO)) {
602 pr_info("Memory failure: %#lx: failed to release buffers\n",
603 pfn);
604 } else {
605 ret = MF_RECOVERED;
606 }
607 } else {
608 /*
609 * If the file system doesn't support it just invalidate
610 * This fails on dirty or anything with private pages
611 */
612 if (invalidate_inode_page(p))
613 ret = MF_RECOVERED;
614 else
615 pr_info("Memory failure: %#lx: Failed to invalidate\n",
616 pfn);
617 }
618
619 return ret;
620 }
621
622 /*
623 * Error hit kernel page.
624 * Do nothing, try to be lucky and not touch this instead. For a few cases we
625 * could be more sophisticated.
626 */
627 static int me_kernel(struct page *p, unsigned long pfn)
628 {
629 return MF_IGNORED;
630 }
631
632 /*
633 * Page in unknown state. Do nothing.
634 */
635 static int me_unknown(struct page *p, unsigned long pfn)
636 {
637 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
638 return MF_FAILED;
639 }
640
641 /*
642 * Clean (or cleaned) page cache page.
643 */
644 static int me_pagecache_clean(struct page *p, unsigned long pfn)
645 {
646 struct address_space *mapping;
647
648 delete_from_lru_cache(p);
649
650 /*
651 * For anonymous pages we're done the only reference left
652 * should be the one m_f() holds.
653 */
654 if (PageAnon(p))
655 return MF_RECOVERED;
656
657 /*
658 * Now truncate the page in the page cache. This is really
659 * more like a "temporary hole punch"
660 * Don't do this for block devices when someone else
661 * has a reference, because it could be file system metadata
662 * and that's not safe to truncate.
663 */
664 mapping = page_mapping(p);
665 if (!mapping) {
666 /*
667 * Page has been teared down in the meanwhile
668 */
669 return MF_FAILED;
670 }
671
672 /*
673 * Truncation is a bit tricky. Enable it per file system for now.
674 *
675 * Open: to take i_mutex or not for this? Right now we don't.
676 */
677 return truncate_error_page(p, pfn, mapping);
678 }
679
680 /*
681 * Dirty pagecache page
682 * Issues: when the error hit a hole page the error is not properly
683 * propagated.
684 */
685 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
686 {
687 struct address_space *mapping = page_mapping(p);
688
689 SetPageError(p);
690 /* TBD: print more information about the file. */
691 if (mapping) {
692 /*
693 * IO error will be reported by write(), fsync(), etc.
694 * who check the mapping.
695 * This way the application knows that something went
696 * wrong with its dirty file data.
697 *
698 * There's one open issue:
699 *
700 * The EIO will be only reported on the next IO
701 * operation and then cleared through the IO map.
702 * Normally Linux has two mechanisms to pass IO error
703 * first through the AS_EIO flag in the address space
704 * and then through the PageError flag in the page.
705 * Since we drop pages on memory failure handling the
706 * only mechanism open to use is through AS_AIO.
707 *
708 * This has the disadvantage that it gets cleared on
709 * the first operation that returns an error, while
710 * the PageError bit is more sticky and only cleared
711 * when the page is reread or dropped. If an
712 * application assumes it will always get error on
713 * fsync, but does other operations on the fd before
714 * and the page is dropped between then the error
715 * will not be properly reported.
716 *
717 * This can already happen even without hwpoisoned
718 * pages: first on metadata IO errors (which only
719 * report through AS_EIO) or when the page is dropped
720 * at the wrong time.
721 *
722 * So right now we assume that the application DTRT on
723 * the first EIO, but we're not worse than other parts
724 * of the kernel.
725 */
726 mapping_set_error(mapping, -EIO);
727 }
728
729 return me_pagecache_clean(p, pfn);
730 }
731
732 /*
733 * Clean and dirty swap cache.
734 *
735 * Dirty swap cache page is tricky to handle. The page could live both in page
736 * cache and swap cache(ie. page is freshly swapped in). So it could be
737 * referenced concurrently by 2 types of PTEs:
738 * normal PTEs and swap PTEs. We try to handle them consistently by calling
739 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
740 * and then
741 * - clear dirty bit to prevent IO
742 * - remove from LRU
743 * - but keep in the swap cache, so that when we return to it on
744 * a later page fault, we know the application is accessing
745 * corrupted data and shall be killed (we installed simple
746 * interception code in do_swap_page to catch it).
747 *
748 * Clean swap cache pages can be directly isolated. A later page fault will
749 * bring in the known good data from disk.
750 */
751 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
752 {
753 ClearPageDirty(p);
754 /* Trigger EIO in shmem: */
755 ClearPageUptodate(p);
756
757 if (!delete_from_lru_cache(p))
758 return MF_DELAYED;
759 else
760 return MF_FAILED;
761 }
762
763 static int me_swapcache_clean(struct page *p, unsigned long pfn)
764 {
765 delete_from_swap_cache(p);
766
767 if (!delete_from_lru_cache(p))
768 return MF_RECOVERED;
769 else
770 return MF_FAILED;
771 }
772
773 /*
774 * Huge pages. Needs work.
775 * Issues:
776 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
777 * To narrow down kill region to one page, we need to break up pmd.
778 */
779 static int me_huge_page(struct page *p, unsigned long pfn)
780 {
781 int res = 0;
782 struct page *hpage = compound_head(p);
783 struct address_space *mapping;
784
785 if (!PageHuge(hpage))
786 return MF_DELAYED;
787
788 mapping = page_mapping(hpage);
789 if (mapping) {
790 res = truncate_error_page(hpage, pfn, mapping);
791 } else {
792 unlock_page(hpage);
793 /*
794 * migration entry prevents later access on error anonymous
795 * hugepage, so we can free and dissolve it into buddy to
796 * save healthy subpages.
797 */
798 if (PageAnon(hpage))
799 put_page(hpage);
800 dissolve_free_huge_page(p);
801 res = MF_RECOVERED;
802 lock_page(hpage);
803 }
804
805 return res;
806 }
807
808 /*
809 * Various page states we can handle.
810 *
811 * A page state is defined by its current page->flags bits.
812 * The table matches them in order and calls the right handler.
813 *
814 * This is quite tricky because we can access page at any time
815 * in its live cycle, so all accesses have to be extremely careful.
816 *
817 * This is not complete. More states could be added.
818 * For any missing state don't attempt recovery.
819 */
820
821 #define dirty (1UL << PG_dirty)
822 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
823 #define unevict (1UL << PG_unevictable)
824 #define mlock (1UL << PG_mlocked)
825 #define writeback (1UL << PG_writeback)
826 #define lru (1UL << PG_lru)
827 #define head (1UL << PG_head)
828 #define slab (1UL << PG_slab)
829 #define reserved (1UL << PG_reserved)
830
831 static struct page_state {
832 unsigned long mask;
833 unsigned long res;
834 enum mf_action_page_type type;
835 int (*action)(struct page *p, unsigned long pfn);
836 } error_states[] = {
837 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
838 /*
839 * free pages are specially detected outside this table:
840 * PG_buddy pages only make a small fraction of all free pages.
841 */
842
843 /*
844 * Could in theory check if slab page is free or if we can drop
845 * currently unused objects without touching them. But just
846 * treat it as standard kernel for now.
847 */
848 { slab, slab, MF_MSG_SLAB, me_kernel },
849
850 { head, head, MF_MSG_HUGE, me_huge_page },
851
852 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
853 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
854
855 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
856 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
857
858 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
859 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
860
861 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
862 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
863
864 /*
865 * Catchall entry: must be at end.
866 */
867 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
868 };
869
870 #undef dirty
871 #undef sc
872 #undef unevict
873 #undef mlock
874 #undef writeback
875 #undef lru
876 #undef head
877 #undef slab
878 #undef reserved
879
880 /*
881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
883 */
884 static void action_result(unsigned long pfn, enum mf_action_page_type type,
885 enum mf_result result)
886 {
887 trace_memory_failure_event(pfn, type, result);
888
889 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
890 pfn, action_page_types[type], action_name[result]);
891 }
892
893 static int page_action(struct page_state *ps, struct page *p,
894 unsigned long pfn)
895 {
896 int result;
897 int count;
898
899 result = ps->action(p, pfn);
900
901 count = page_count(p) - 1;
902 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
903 count--;
904 if (count > 0) {
905 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
906 pfn, action_page_types[ps->type], count);
907 result = MF_FAILED;
908 }
909 action_result(pfn, ps->type, result);
910
911 /* Could do more checks here if page looks ok */
912 /*
913 * Could adjust zone counters here to correct for the missing page.
914 */
915
916 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
917 }
918
919 /**
920 * get_hwpoison_page() - Get refcount for memory error handling:
921 * @page: raw error page (hit by memory error)
922 *
923 * Return: return 0 if failed to grab the refcount, otherwise true (some
924 * non-zero value.)
925 */
926 int get_hwpoison_page(struct page *page)
927 {
928 struct page *head = compound_head(page);
929
930 if (!PageHuge(head) && PageTransHuge(head)) {
931 /*
932 * Non anonymous thp exists only in allocation/free time. We
933 * can't handle such a case correctly, so let's give it up.
934 * This should be better than triggering BUG_ON when kernel
935 * tries to touch the "partially handled" page.
936 */
937 if (!PageAnon(head)) {
938 pr_err("Memory failure: %#lx: non anonymous thp\n",
939 page_to_pfn(page));
940 return 0;
941 }
942 }
943
944 if (get_page_unless_zero(head)) {
945 if (head == compound_head(page))
946 return 1;
947
948 pr_info("Memory failure: %#lx cannot catch tail\n",
949 page_to_pfn(page));
950 put_page(head);
951 }
952
953 return 0;
954 }
955 EXPORT_SYMBOL_GPL(get_hwpoison_page);
956
957 /*
958 * Do all that is necessary to remove user space mappings. Unmap
959 * the pages and send SIGBUS to the processes if the data was dirty.
960 */
961 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
962 int flags, struct page **hpagep)
963 {
964 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
965 struct address_space *mapping;
966 LIST_HEAD(tokill);
967 bool unmap_success;
968 int kill = 1, forcekill;
969 struct page *hpage = *hpagep;
970 bool mlocked = PageMlocked(hpage);
971
972 /*
973 * Here we are interested only in user-mapped pages, so skip any
974 * other types of pages.
975 */
976 if (PageReserved(p) || PageSlab(p))
977 return true;
978 if (!(PageLRU(hpage) || PageHuge(p)))
979 return true;
980
981 /*
982 * This check implies we don't kill processes if their pages
983 * are in the swap cache early. Those are always late kills.
984 */
985 if (!page_mapped(hpage))
986 return true;
987
988 if (PageKsm(p)) {
989 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
990 return false;
991 }
992
993 if (PageSwapCache(p)) {
994 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
995 pfn);
996 ttu |= TTU_IGNORE_HWPOISON;
997 }
998
999 /*
1000 * Propagate the dirty bit from PTEs to struct page first, because we
1001 * need this to decide if we should kill or just drop the page.
1002 * XXX: the dirty test could be racy: set_page_dirty() may not always
1003 * be called inside page lock (it's recommended but not enforced).
1004 */
1005 mapping = page_mapping(hpage);
1006 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1007 mapping_cap_writeback_dirty(mapping)) {
1008 if (page_mkclean(hpage)) {
1009 SetPageDirty(hpage);
1010 } else {
1011 kill = 0;
1012 ttu |= TTU_IGNORE_HWPOISON;
1013 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1014 pfn);
1015 }
1016 }
1017
1018 /*
1019 * First collect all the processes that have the page
1020 * mapped in dirty form. This has to be done before try_to_unmap,
1021 * because ttu takes the rmap data structures down.
1022 *
1023 * Error handling: We ignore errors here because
1024 * there's nothing that can be done.
1025 */
1026 if (kill)
1027 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1028
1029 unmap_success = try_to_unmap(hpage, ttu);
1030 if (!unmap_success)
1031 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1032 pfn, page_mapcount(hpage));
1033
1034 /*
1035 * try_to_unmap() might put mlocked page in lru cache, so call
1036 * shake_page() again to ensure that it's flushed.
1037 */
1038 if (mlocked)
1039 shake_page(hpage, 0);
1040
1041 /*
1042 * Now that the dirty bit has been propagated to the
1043 * struct page and all unmaps done we can decide if
1044 * killing is needed or not. Only kill when the page
1045 * was dirty or the process is not restartable,
1046 * otherwise the tokill list is merely
1047 * freed. When there was a problem unmapping earlier
1048 * use a more force-full uncatchable kill to prevent
1049 * any accesses to the poisoned memory.
1050 */
1051 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1052 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1053
1054 return unmap_success;
1055 }
1056
1057 static int identify_page_state(unsigned long pfn, struct page *p,
1058 unsigned long page_flags)
1059 {
1060 struct page_state *ps;
1061
1062 /*
1063 * The first check uses the current page flags which may not have any
1064 * relevant information. The second check with the saved page flags is
1065 * carried out only if the first check can't determine the page status.
1066 */
1067 for (ps = error_states;; ps++)
1068 if ((p->flags & ps->mask) == ps->res)
1069 break;
1070
1071 page_flags |= (p->flags & (1UL << PG_dirty));
1072
1073 if (!ps->mask)
1074 for (ps = error_states;; ps++)
1075 if ((page_flags & ps->mask) == ps->res)
1076 break;
1077 return page_action(ps, p, pfn);
1078 }
1079
1080 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1081 {
1082 struct page *p = pfn_to_page(pfn);
1083 struct page *head = compound_head(p);
1084 int res;
1085 unsigned long page_flags;
1086
1087 if (TestSetPageHWPoison(head)) {
1088 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1089 pfn);
1090 return 0;
1091 }
1092
1093 num_poisoned_pages_inc();
1094
1095 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1096 /*
1097 * Check "filter hit" and "race with other subpage."
1098 */
1099 lock_page(head);
1100 if (PageHWPoison(head)) {
1101 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1102 || (p != head && TestSetPageHWPoison(head))) {
1103 num_poisoned_pages_dec();
1104 unlock_page(head);
1105 return 0;
1106 }
1107 }
1108 unlock_page(head);
1109 dissolve_free_huge_page(p);
1110 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1111 return 0;
1112 }
1113
1114 lock_page(head);
1115 page_flags = head->flags;
1116
1117 if (!PageHWPoison(head)) {
1118 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1119 num_poisoned_pages_dec();
1120 unlock_page(head);
1121 put_hwpoison_page(head);
1122 return 0;
1123 }
1124
1125 /*
1126 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1127 * simply disable it. In order to make it work properly, we need
1128 * make sure that:
1129 * - conversion of a pud that maps an error hugetlb into hwpoison
1130 * entry properly works, and
1131 * - other mm code walking over page table is aware of pud-aligned
1132 * hwpoison entries.
1133 */
1134 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1135 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1136 res = -EBUSY;
1137 goto out;
1138 }
1139
1140 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1141 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1142 res = -EBUSY;
1143 goto out;
1144 }
1145
1146 res = identify_page_state(pfn, p, page_flags);
1147 out:
1148 unlock_page(head);
1149 return res;
1150 }
1151
1152 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1153 struct dev_pagemap *pgmap)
1154 {
1155 struct page *page = pfn_to_page(pfn);
1156 const bool unmap_success = true;
1157 unsigned long size = 0;
1158 struct to_kill *tk;
1159 LIST_HEAD(tokill);
1160 int rc = -EBUSY;
1161 loff_t start;
1162 dax_entry_t cookie;
1163
1164 /*
1165 * Prevent the inode from being freed while we are interrogating
1166 * the address_space, typically this would be handled by
1167 * lock_page(), but dax pages do not use the page lock. This
1168 * also prevents changes to the mapping of this pfn until
1169 * poison signaling is complete.
1170 */
1171 cookie = dax_lock_page(page);
1172 if (!cookie)
1173 goto out;
1174
1175 if (hwpoison_filter(page)) {
1176 rc = 0;
1177 goto unlock;
1178 }
1179
1180 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1181 /*
1182 * TODO: Handle HMM pages which may need coordination
1183 * with device-side memory.
1184 */
1185 goto unlock;
1186 }
1187
1188 /*
1189 * Use this flag as an indication that the dax page has been
1190 * remapped UC to prevent speculative consumption of poison.
1191 */
1192 SetPageHWPoison(page);
1193
1194 /*
1195 * Unlike System-RAM there is no possibility to swap in a
1196 * different physical page at a given virtual address, so all
1197 * userspace consumption of ZONE_DEVICE memory necessitates
1198 * SIGBUS (i.e. MF_MUST_KILL)
1199 */
1200 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1201 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1202
1203 list_for_each_entry(tk, &tokill, nd)
1204 if (tk->size_shift)
1205 size = max(size, 1UL << tk->size_shift);
1206 if (size) {
1207 /*
1208 * Unmap the largest mapping to avoid breaking up
1209 * device-dax mappings which are constant size. The
1210 * actual size of the mapping being torn down is
1211 * communicated in siginfo, see kill_proc()
1212 */
1213 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1214 unmap_mapping_range(page->mapping, start, start + size, 0);
1215 }
1216 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1217 rc = 0;
1218 unlock:
1219 dax_unlock_page(page, cookie);
1220 out:
1221 /* drop pgmap ref acquired in caller */
1222 put_dev_pagemap(pgmap);
1223 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1224 return rc;
1225 }
1226
1227 /**
1228 * memory_failure - Handle memory failure of a page.
1229 * @pfn: Page Number of the corrupted page
1230 * @flags: fine tune action taken
1231 *
1232 * This function is called by the low level machine check code
1233 * of an architecture when it detects hardware memory corruption
1234 * of a page. It tries its best to recover, which includes
1235 * dropping pages, killing processes etc.
1236 *
1237 * The function is primarily of use for corruptions that
1238 * happen outside the current execution context (e.g. when
1239 * detected by a background scrubber)
1240 *
1241 * Must run in process context (e.g. a work queue) with interrupts
1242 * enabled and no spinlocks hold.
1243 */
1244 int memory_failure(unsigned long pfn, int flags)
1245 {
1246 struct page *p;
1247 struct page *hpage;
1248 struct page *orig_head;
1249 struct dev_pagemap *pgmap;
1250 int res;
1251 unsigned long page_flags;
1252
1253 if (!sysctl_memory_failure_recovery)
1254 panic("Memory failure on page %lx", pfn);
1255
1256 if (!pfn_valid(pfn)) {
1257 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1258 pfn);
1259 return -ENXIO;
1260 }
1261
1262 pgmap = get_dev_pagemap(pfn, NULL);
1263 if (pgmap)
1264 return memory_failure_dev_pagemap(pfn, flags, pgmap);
1265
1266 p = pfn_to_page(pfn);
1267 if (PageHuge(p))
1268 return memory_failure_hugetlb(pfn, flags);
1269 if (TestSetPageHWPoison(p)) {
1270 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1271 pfn);
1272 return 0;
1273 }
1274
1275 orig_head = hpage = compound_head(p);
1276 num_poisoned_pages_inc();
1277
1278 /*
1279 * We need/can do nothing about count=0 pages.
1280 * 1) it's a free page, and therefore in safe hand:
1281 * prep_new_page() will be the gate keeper.
1282 * 2) it's part of a non-compound high order page.
1283 * Implies some kernel user: cannot stop them from
1284 * R/W the page; let's pray that the page has been
1285 * used and will be freed some time later.
1286 * In fact it's dangerous to directly bump up page count from 0,
1287 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1288 */
1289 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1290 if (is_free_buddy_page(p)) {
1291 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1292 return 0;
1293 } else {
1294 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1295 return -EBUSY;
1296 }
1297 }
1298
1299 if (PageTransHuge(hpage)) {
1300 lock_page(p);
1301 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1302 unlock_page(p);
1303 if (!PageAnon(p))
1304 pr_err("Memory failure: %#lx: non anonymous thp\n",
1305 pfn);
1306 else
1307 pr_err("Memory failure: %#lx: thp split failed\n",
1308 pfn);
1309 if (TestClearPageHWPoison(p))
1310 num_poisoned_pages_dec();
1311 put_hwpoison_page(p);
1312 return -EBUSY;
1313 }
1314 unlock_page(p);
1315 VM_BUG_ON_PAGE(!page_count(p), p);
1316 hpage = compound_head(p);
1317 }
1318
1319 /*
1320 * We ignore non-LRU pages for good reasons.
1321 * - PG_locked is only well defined for LRU pages and a few others
1322 * - to avoid races with __SetPageLocked()
1323 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1324 * The check (unnecessarily) ignores LRU pages being isolated and
1325 * walked by the page reclaim code, however that's not a big loss.
1326 */
1327 shake_page(p, 0);
1328 /* shake_page could have turned it free. */
1329 if (!PageLRU(p) && is_free_buddy_page(p)) {
1330 if (flags & MF_COUNT_INCREASED)
1331 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1332 else
1333 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1334 return 0;
1335 }
1336
1337 lock_page(p);
1338
1339 /*
1340 * The page could have changed compound pages during the locking.
1341 * If this happens just bail out.
1342 */
1343 if (PageCompound(p) && compound_head(p) != orig_head) {
1344 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1345 res = -EBUSY;
1346 goto out;
1347 }
1348
1349 /*
1350 * We use page flags to determine what action should be taken, but
1351 * the flags can be modified by the error containment action. One
1352 * example is an mlocked page, where PG_mlocked is cleared by
1353 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1354 * correctly, we save a copy of the page flags at this time.
1355 */
1356 if (PageHuge(p))
1357 page_flags = hpage->flags;
1358 else
1359 page_flags = p->flags;
1360
1361 /*
1362 * unpoison always clear PG_hwpoison inside page lock
1363 */
1364 if (!PageHWPoison(p)) {
1365 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1366 num_poisoned_pages_dec();
1367 unlock_page(p);
1368 put_hwpoison_page(p);
1369 return 0;
1370 }
1371 if (hwpoison_filter(p)) {
1372 if (TestClearPageHWPoison(p))
1373 num_poisoned_pages_dec();
1374 unlock_page(p);
1375 put_hwpoison_page(p);
1376 return 0;
1377 }
1378
1379 if (!PageTransTail(p) && !PageLRU(p))
1380 goto identify_page_state;
1381
1382 /*
1383 * It's very difficult to mess with pages currently under IO
1384 * and in many cases impossible, so we just avoid it here.
1385 */
1386 wait_on_page_writeback(p);
1387
1388 /*
1389 * Now take care of user space mappings.
1390 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1391 *
1392 * When the raw error page is thp tail page, hpage points to the raw
1393 * page after thp split.
1394 */
1395 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1396 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1397 res = -EBUSY;
1398 goto out;
1399 }
1400
1401 /*
1402 * Torn down by someone else?
1403 */
1404 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1405 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1406 res = -EBUSY;
1407 goto out;
1408 }
1409
1410 identify_page_state:
1411 res = identify_page_state(pfn, p, page_flags);
1412 out:
1413 unlock_page(p);
1414 return res;
1415 }
1416 EXPORT_SYMBOL_GPL(memory_failure);
1417
1418 #define MEMORY_FAILURE_FIFO_ORDER 4
1419 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1420
1421 struct memory_failure_entry {
1422 unsigned long pfn;
1423 int flags;
1424 };
1425
1426 struct memory_failure_cpu {
1427 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1428 MEMORY_FAILURE_FIFO_SIZE);
1429 spinlock_t lock;
1430 struct work_struct work;
1431 };
1432
1433 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1434
1435 /**
1436 * memory_failure_queue - Schedule handling memory failure of a page.
1437 * @pfn: Page Number of the corrupted page
1438 * @flags: Flags for memory failure handling
1439 *
1440 * This function is called by the low level hardware error handler
1441 * when it detects hardware memory corruption of a page. It schedules
1442 * the recovering of error page, including dropping pages, killing
1443 * processes etc.
1444 *
1445 * The function is primarily of use for corruptions that
1446 * happen outside the current execution context (e.g. when
1447 * detected by a background scrubber)
1448 *
1449 * Can run in IRQ context.
1450 */
1451 void memory_failure_queue(unsigned long pfn, int flags)
1452 {
1453 struct memory_failure_cpu *mf_cpu;
1454 unsigned long proc_flags;
1455 struct memory_failure_entry entry = {
1456 .pfn = pfn,
1457 .flags = flags,
1458 };
1459
1460 mf_cpu = &get_cpu_var(memory_failure_cpu);
1461 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1462 if (kfifo_put(&mf_cpu->fifo, entry))
1463 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1464 else
1465 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1466 pfn);
1467 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1468 put_cpu_var(memory_failure_cpu);
1469 }
1470 EXPORT_SYMBOL_GPL(memory_failure_queue);
1471
1472 static void memory_failure_work_func(struct work_struct *work)
1473 {
1474 struct memory_failure_cpu *mf_cpu;
1475 struct memory_failure_entry entry = { 0, };
1476 unsigned long proc_flags;
1477 int gotten;
1478
1479 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1480 for (;;) {
1481 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1482 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1483 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1484 if (!gotten)
1485 break;
1486 if (entry.flags & MF_SOFT_OFFLINE)
1487 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1488 else
1489 memory_failure(entry.pfn, entry.flags);
1490 }
1491 }
1492
1493 static int __init memory_failure_init(void)
1494 {
1495 struct memory_failure_cpu *mf_cpu;
1496 int cpu;
1497
1498 for_each_possible_cpu(cpu) {
1499 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1500 spin_lock_init(&mf_cpu->lock);
1501 INIT_KFIFO(mf_cpu->fifo);
1502 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1503 }
1504
1505 return 0;
1506 }
1507 core_initcall(memory_failure_init);
1508
1509 #define unpoison_pr_info(fmt, pfn, rs) \
1510 ({ \
1511 if (__ratelimit(rs)) \
1512 pr_info(fmt, pfn); \
1513 })
1514
1515 /**
1516 * unpoison_memory - Unpoison a previously poisoned page
1517 * @pfn: Page number of the to be unpoisoned page
1518 *
1519 * Software-unpoison a page that has been poisoned by
1520 * memory_failure() earlier.
1521 *
1522 * This is only done on the software-level, so it only works
1523 * for linux injected failures, not real hardware failures
1524 *
1525 * Returns 0 for success, otherwise -errno.
1526 */
1527 int unpoison_memory(unsigned long pfn)
1528 {
1529 struct page *page;
1530 struct page *p;
1531 int freeit = 0;
1532 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1533 DEFAULT_RATELIMIT_BURST);
1534
1535 if (!pfn_valid(pfn))
1536 return -ENXIO;
1537
1538 p = pfn_to_page(pfn);
1539 page = compound_head(p);
1540
1541 if (!PageHWPoison(p)) {
1542 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1543 pfn, &unpoison_rs);
1544 return 0;
1545 }
1546
1547 if (page_count(page) > 1) {
1548 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1549 pfn, &unpoison_rs);
1550 return 0;
1551 }
1552
1553 if (page_mapped(page)) {
1554 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1555 pfn, &unpoison_rs);
1556 return 0;
1557 }
1558
1559 if (page_mapping(page)) {
1560 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1561 pfn, &unpoison_rs);
1562 return 0;
1563 }
1564
1565 /*
1566 * unpoison_memory() can encounter thp only when the thp is being
1567 * worked by memory_failure() and the page lock is not held yet.
1568 * In such case, we yield to memory_failure() and make unpoison fail.
1569 */
1570 if (!PageHuge(page) && PageTransHuge(page)) {
1571 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1572 pfn, &unpoison_rs);
1573 return 0;
1574 }
1575
1576 if (!get_hwpoison_page(p)) {
1577 if (TestClearPageHWPoison(p))
1578 num_poisoned_pages_dec();
1579 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1580 pfn, &unpoison_rs);
1581 return 0;
1582 }
1583
1584 lock_page(page);
1585 /*
1586 * This test is racy because PG_hwpoison is set outside of page lock.
1587 * That's acceptable because that won't trigger kernel panic. Instead,
1588 * the PG_hwpoison page will be caught and isolated on the entrance to
1589 * the free buddy page pool.
1590 */
1591 if (TestClearPageHWPoison(page)) {
1592 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1593 pfn, &unpoison_rs);
1594 num_poisoned_pages_dec();
1595 freeit = 1;
1596 }
1597 unlock_page(page);
1598
1599 put_hwpoison_page(page);
1600 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1601 put_hwpoison_page(page);
1602
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(unpoison_memory);
1606
1607 static struct page *new_page(struct page *p, unsigned long private)
1608 {
1609 int nid = page_to_nid(p);
1610
1611 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1612 }
1613
1614 /*
1615 * Safely get reference count of an arbitrary page.
1616 * Returns 0 for a free page, -EIO for a zero refcount page
1617 * that is not free, and 1 for any other page type.
1618 * For 1 the page is returned with increased page count, otherwise not.
1619 */
1620 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1621 {
1622 int ret;
1623
1624 if (flags & MF_COUNT_INCREASED)
1625 return 1;
1626
1627 /*
1628 * When the target page is a free hugepage, just remove it
1629 * from free hugepage list.
1630 */
1631 if (!get_hwpoison_page(p)) {
1632 if (PageHuge(p)) {
1633 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1634 ret = 0;
1635 } else if (is_free_buddy_page(p)) {
1636 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1637 ret = 0;
1638 } else {
1639 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1640 __func__, pfn, p->flags);
1641 ret = -EIO;
1642 }
1643 } else {
1644 /* Not a free page */
1645 ret = 1;
1646 }
1647 return ret;
1648 }
1649
1650 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1651 {
1652 int ret = __get_any_page(page, pfn, flags);
1653
1654 if (ret == 1 && !PageHuge(page) &&
1655 !PageLRU(page) && !__PageMovable(page)) {
1656 /*
1657 * Try to free it.
1658 */
1659 put_hwpoison_page(page);
1660 shake_page(page, 1);
1661
1662 /*
1663 * Did it turn free?
1664 */
1665 ret = __get_any_page(page, pfn, 0);
1666 if (ret == 1 && !PageLRU(page)) {
1667 /* Drop page reference which is from __get_any_page() */
1668 put_hwpoison_page(page);
1669 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1670 pfn, page->flags, &page->flags);
1671 return -EIO;
1672 }
1673 }
1674 return ret;
1675 }
1676
1677 static int soft_offline_huge_page(struct page *page, int flags)
1678 {
1679 int ret;
1680 unsigned long pfn = page_to_pfn(page);
1681 struct page *hpage = compound_head(page);
1682 LIST_HEAD(pagelist);
1683
1684 /*
1685 * This double-check of PageHWPoison is to avoid the race with
1686 * memory_failure(). See also comment in __soft_offline_page().
1687 */
1688 lock_page(hpage);
1689 if (PageHWPoison(hpage)) {
1690 unlock_page(hpage);
1691 put_hwpoison_page(hpage);
1692 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1693 return -EBUSY;
1694 }
1695 unlock_page(hpage);
1696
1697 ret = isolate_huge_page(hpage, &pagelist);
1698 /*
1699 * get_any_page() and isolate_huge_page() takes a refcount each,
1700 * so need to drop one here.
1701 */
1702 put_hwpoison_page(hpage);
1703 if (!ret) {
1704 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1705 return -EBUSY;
1706 }
1707
1708 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1709 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1710 if (ret) {
1711 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1712 pfn, ret, page->flags, &page->flags);
1713 if (!list_empty(&pagelist))
1714 putback_movable_pages(&pagelist);
1715 if (ret > 0)
1716 ret = -EIO;
1717 } else {
1718 /*
1719 * We set PG_hwpoison only when the migration source hugepage
1720 * was successfully dissolved, because otherwise hwpoisoned
1721 * hugepage remains on free hugepage list, then userspace will
1722 * find it as SIGBUS by allocation failure. That's not expected
1723 * in soft-offlining.
1724 */
1725 ret = dissolve_free_huge_page(page);
1726 if (!ret) {
1727 if (set_hwpoison_free_buddy_page(page))
1728 num_poisoned_pages_inc();
1729 else
1730 ret = -EBUSY;
1731 }
1732 }
1733 return ret;
1734 }
1735
1736 static int __soft_offline_page(struct page *page, int flags)
1737 {
1738 int ret;
1739 unsigned long pfn = page_to_pfn(page);
1740
1741 /*
1742 * Check PageHWPoison again inside page lock because PageHWPoison
1743 * is set by memory_failure() outside page lock. Note that
1744 * memory_failure() also double-checks PageHWPoison inside page lock,
1745 * so there's no race between soft_offline_page() and memory_failure().
1746 */
1747 lock_page(page);
1748 wait_on_page_writeback(page);
1749 if (PageHWPoison(page)) {
1750 unlock_page(page);
1751 put_hwpoison_page(page);
1752 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1753 return -EBUSY;
1754 }
1755 /*
1756 * Try to invalidate first. This should work for
1757 * non dirty unmapped page cache pages.
1758 */
1759 ret = invalidate_inode_page(page);
1760 unlock_page(page);
1761 /*
1762 * RED-PEN would be better to keep it isolated here, but we
1763 * would need to fix isolation locking first.
1764 */
1765 if (ret == 1) {
1766 put_hwpoison_page(page);
1767 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1768 SetPageHWPoison(page);
1769 num_poisoned_pages_inc();
1770 return 0;
1771 }
1772
1773 /*
1774 * Simple invalidation didn't work.
1775 * Try to migrate to a new page instead. migrate.c
1776 * handles a large number of cases for us.
1777 */
1778 if (PageLRU(page))
1779 ret = isolate_lru_page(page);
1780 else
1781 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1782 /*
1783 * Drop page reference which is came from get_any_page()
1784 * successful isolate_lru_page() already took another one.
1785 */
1786 put_hwpoison_page(page);
1787 if (!ret) {
1788 LIST_HEAD(pagelist);
1789 /*
1790 * After isolated lru page, the PageLRU will be cleared,
1791 * so use !__PageMovable instead for LRU page's mapping
1792 * cannot have PAGE_MAPPING_MOVABLE.
1793 */
1794 if (!__PageMovable(page))
1795 inc_node_page_state(page, NR_ISOLATED_ANON +
1796 page_is_file_cache(page));
1797 list_add(&page->lru, &pagelist);
1798 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1799 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1800 if (ret) {
1801 if (!list_empty(&pagelist))
1802 putback_movable_pages(&pagelist);
1803
1804 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1805 pfn, ret, page->flags, &page->flags);
1806 if (ret > 0)
1807 ret = -EIO;
1808 }
1809 } else {
1810 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1811 pfn, ret, page_count(page), page->flags, &page->flags);
1812 }
1813 return ret;
1814 }
1815
1816 static int soft_offline_in_use_page(struct page *page, int flags)
1817 {
1818 int ret;
1819 int mt;
1820 struct page *hpage = compound_head(page);
1821
1822 if (!PageHuge(page) && PageTransHuge(hpage)) {
1823 lock_page(page);
1824 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1825 unlock_page(page);
1826 if (!PageAnon(page))
1827 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1828 else
1829 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1830 put_hwpoison_page(page);
1831 return -EBUSY;
1832 }
1833 unlock_page(page);
1834 }
1835
1836 /*
1837 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1838 * to free list immediately (not via pcplist) when released after
1839 * successful page migration. Otherwise we can't guarantee that the
1840 * page is really free after put_page() returns, so
1841 * set_hwpoison_free_buddy_page() highly likely fails.
1842 */
1843 mt = get_pageblock_migratetype(page);
1844 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1845 if (PageHuge(page))
1846 ret = soft_offline_huge_page(page, flags);
1847 else
1848 ret = __soft_offline_page(page, flags);
1849 set_pageblock_migratetype(page, mt);
1850 return ret;
1851 }
1852
1853 static int soft_offline_free_page(struct page *page)
1854 {
1855 int rc = dissolve_free_huge_page(page);
1856
1857 if (!rc) {
1858 if (set_hwpoison_free_buddy_page(page))
1859 num_poisoned_pages_inc();
1860 else
1861 rc = -EBUSY;
1862 }
1863 return rc;
1864 }
1865
1866 /**
1867 * soft_offline_page - Soft offline a page.
1868 * @page: page to offline
1869 * @flags: flags. Same as memory_failure().
1870 *
1871 * Returns 0 on success, otherwise negated errno.
1872 *
1873 * Soft offline a page, by migration or invalidation,
1874 * without killing anything. This is for the case when
1875 * a page is not corrupted yet (so it's still valid to access),
1876 * but has had a number of corrected errors and is better taken
1877 * out.
1878 *
1879 * The actual policy on when to do that is maintained by
1880 * user space.
1881 *
1882 * This should never impact any application or cause data loss,
1883 * however it might take some time.
1884 *
1885 * This is not a 100% solution for all memory, but tries to be
1886 * ``good enough'' for the majority of memory.
1887 */
1888 int soft_offline_page(struct page *page, int flags)
1889 {
1890 int ret;
1891 unsigned long pfn = page_to_pfn(page);
1892
1893 if (is_zone_device_page(page)) {
1894 pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1895 pfn);
1896 if (flags & MF_COUNT_INCREASED)
1897 put_page(page);
1898 return -EIO;
1899 }
1900
1901 if (PageHWPoison(page)) {
1902 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1903 if (flags & MF_COUNT_INCREASED)
1904 put_hwpoison_page(page);
1905 return -EBUSY;
1906 }
1907
1908 get_online_mems();
1909 ret = get_any_page(page, pfn, flags);
1910 put_online_mems();
1911
1912 if (ret > 0)
1913 ret = soft_offline_in_use_page(page, flags);
1914 else if (ret == 0)
1915 ret = soft_offline_free_page(page);
1916
1917 return ret;
1918 }