]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory-failure.c
Merge branches 'core-urgent-for-linus' and 'irq-urgent-for-linus' of git://git.kernel...
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107 }
108
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119 }
120
121 /*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
150
151 if (ino != hwpoison_filter_memcg)
152 return -EINVAL;
153
154 return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159
160 int hwpoison_filter(struct page *p)
161 {
162 if (!hwpoison_filter_enable)
163 return 0;
164
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
174 return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 return 0;
180 }
181 #endif
182
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185 /*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224 }
225
226 /*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230 void shake_page(struct page *p, int access)
231 {
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages(page_zone(p));
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
240
241 /*
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
244 */
245 if (access)
246 drop_slab_node(page_to_nid(p));
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249
250 /*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272 struct to_kill {
273 struct list_head nd;
274 struct task_struct *tsk;
275 unsigned long addr;
276 char addr_valid;
277 };
278
279 /*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
282 */
283
284 /*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
293 {
294 struct to_kill *tk;
295
296 if (*tkc) {
297 tk = *tkc;
298 *tkc = NULL;
299 } else {
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 if (!tk) {
302 printk(KERN_ERR
303 "MCE: Out of memory while machine check handling\n");
304 return;
305 }
306 }
307 tk->addr = page_address_in_vma(p, vma);
308 tk->addr_valid = 1;
309
310 /*
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
315 */
316 if (tk->addr == -EFAULT) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p), tsk->comm);
319 tk->addr_valid = 0;
320 }
321 get_task_struct(tsk);
322 tk->tsk = tsk;
323 list_add_tail(&tk->nd, to_kill);
324 }
325
326 /*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335 int fail, struct page *page, unsigned long pfn,
336 int flags)
337 {
338 struct to_kill *tk, *next;
339
340 list_for_each_entry_safe (tk, next, to_kill, nd) {
341 if (forcekill) {
342 /*
343 * In case something went wrong with munmapping
344 * make sure the process doesn't catch the
345 * signal and then access the memory. Just kill it.
346 */
347 if (fail || tk->addr_valid == 0) {
348 printk(KERN_ERR
349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 pfn, tk->tsk->comm, tk->tsk->pid);
351 force_sig(SIGKILL, tk->tsk);
352 }
353
354 /*
355 * In theory the process could have mapped
356 * something else on the address in-between. We could
357 * check for that, but we need to tell the
358 * process anyways.
359 */
360 else if (kill_proc(tk->tsk, tk->addr, trapno,
361 pfn, page, flags) < 0)
362 printk(KERN_ERR
363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 }
366 put_task_struct(tk->tsk);
367 kfree(tk);
368 }
369 }
370
371 /*
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
375 *
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
378 */
379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
380 {
381 struct task_struct *t;
382
383 for_each_thread(tsk, t)
384 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
385 return t;
386 return NULL;
387 }
388
389 /*
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
394 */
395 static struct task_struct *task_early_kill(struct task_struct *tsk,
396 int force_early)
397 {
398 struct task_struct *t;
399 if (!tsk->mm)
400 return NULL;
401 if (force_early)
402 return tsk;
403 t = find_early_kill_thread(tsk);
404 if (t)
405 return t;
406 if (sysctl_memory_failure_early_kill)
407 return tsk;
408 return NULL;
409 }
410
411 /*
412 * Collect processes when the error hit an anonymous page.
413 */
414 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415 struct to_kill **tkc, int force_early)
416 {
417 struct vm_area_struct *vma;
418 struct task_struct *tsk;
419 struct anon_vma *av;
420 pgoff_t pgoff;
421
422 av = page_lock_anon_vma_read(page);
423 if (av == NULL) /* Not actually mapped anymore */
424 return;
425
426 pgoff = page_to_pgoff(page);
427 read_lock(&tasklist_lock);
428 for_each_process (tsk) {
429 struct anon_vma_chain *vmac;
430 struct task_struct *t = task_early_kill(tsk, force_early);
431
432 if (!t)
433 continue;
434 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
435 pgoff, pgoff) {
436 vma = vmac->vma;
437 if (!page_mapped_in_vma(page, vma))
438 continue;
439 if (vma->vm_mm == t->mm)
440 add_to_kill(t, page, vma, to_kill, tkc);
441 }
442 }
443 read_unlock(&tasklist_lock);
444 page_unlock_anon_vma_read(av);
445 }
446
447 /*
448 * Collect processes when the error hit a file mapped page.
449 */
450 static void collect_procs_file(struct page *page, struct list_head *to_kill,
451 struct to_kill **tkc, int force_early)
452 {
453 struct vm_area_struct *vma;
454 struct task_struct *tsk;
455 struct address_space *mapping = page->mapping;
456
457 i_mmap_lock_read(mapping);
458 read_lock(&tasklist_lock);
459 for_each_process(tsk) {
460 pgoff_t pgoff = page_to_pgoff(page);
461 struct task_struct *t = task_early_kill(tsk, force_early);
462
463 if (!t)
464 continue;
465 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
466 pgoff) {
467 /*
468 * Send early kill signal to tasks where a vma covers
469 * the page but the corrupted page is not necessarily
470 * mapped it in its pte.
471 * Assume applications who requested early kill want
472 * to be informed of all such data corruptions.
473 */
474 if (vma->vm_mm == t->mm)
475 add_to_kill(t, page, vma, to_kill, tkc);
476 }
477 }
478 read_unlock(&tasklist_lock);
479 i_mmap_unlock_read(mapping);
480 }
481
482 /*
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
487 */
488 static void collect_procs(struct page *page, struct list_head *tokill,
489 int force_early)
490 {
491 struct to_kill *tk;
492
493 if (!page->mapping)
494 return;
495
496 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
497 if (!tk)
498 return;
499 if (PageAnon(page))
500 collect_procs_anon(page, tokill, &tk, force_early);
501 else
502 collect_procs_file(page, tokill, &tk, force_early);
503 kfree(tk);
504 }
505
506 /*
507 * Error handlers for various types of pages.
508 */
509
510 enum outcome {
511 IGNORED, /* Error: cannot be handled */
512 FAILED, /* Error: handling failed */
513 DELAYED, /* Will be handled later */
514 RECOVERED, /* Successfully recovered */
515 };
516
517 static const char *action_name[] = {
518 [IGNORED] = "Ignored",
519 [FAILED] = "Failed",
520 [DELAYED] = "Delayed",
521 [RECOVERED] = "Recovered",
522 };
523
524 /*
525 * XXX: It is possible that a page is isolated from LRU cache,
526 * and then kept in swap cache or failed to remove from page cache.
527 * The page count will stop it from being freed by unpoison.
528 * Stress tests should be aware of this memory leak problem.
529 */
530 static int delete_from_lru_cache(struct page *p)
531 {
532 if (!isolate_lru_page(p)) {
533 /*
534 * Clear sensible page flags, so that the buddy system won't
535 * complain when the page is unpoison-and-freed.
536 */
537 ClearPageActive(p);
538 ClearPageUnevictable(p);
539 /*
540 * drop the page count elevated by isolate_lru_page()
541 */
542 page_cache_release(p);
543 return 0;
544 }
545 return -EIO;
546 }
547
548 /*
549 * Error hit kernel page.
550 * Do nothing, try to be lucky and not touch this instead. For a few cases we
551 * could be more sophisticated.
552 */
553 static int me_kernel(struct page *p, unsigned long pfn)
554 {
555 return IGNORED;
556 }
557
558 /*
559 * Page in unknown state. Do nothing.
560 */
561 static int me_unknown(struct page *p, unsigned long pfn)
562 {
563 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
564 return FAILED;
565 }
566
567 /*
568 * Clean (or cleaned) page cache page.
569 */
570 static int me_pagecache_clean(struct page *p, unsigned long pfn)
571 {
572 int err;
573 int ret = FAILED;
574 struct address_space *mapping;
575
576 delete_from_lru_cache(p);
577
578 /*
579 * For anonymous pages we're done the only reference left
580 * should be the one m_f() holds.
581 */
582 if (PageAnon(p))
583 return RECOVERED;
584
585 /*
586 * Now truncate the page in the page cache. This is really
587 * more like a "temporary hole punch"
588 * Don't do this for block devices when someone else
589 * has a reference, because it could be file system metadata
590 * and that's not safe to truncate.
591 */
592 mapping = page_mapping(p);
593 if (!mapping) {
594 /*
595 * Page has been teared down in the meanwhile
596 */
597 return FAILED;
598 }
599
600 /*
601 * Truncation is a bit tricky. Enable it per file system for now.
602 *
603 * Open: to take i_mutex or not for this? Right now we don't.
604 */
605 if (mapping->a_ops->error_remove_page) {
606 err = mapping->a_ops->error_remove_page(mapping, p);
607 if (err != 0) {
608 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
609 pfn, err);
610 } else if (page_has_private(p) &&
611 !try_to_release_page(p, GFP_NOIO)) {
612 pr_info("MCE %#lx: failed to release buffers\n", pfn);
613 } else {
614 ret = RECOVERED;
615 }
616 } else {
617 /*
618 * If the file system doesn't support it just invalidate
619 * This fails on dirty or anything with private pages
620 */
621 if (invalidate_inode_page(p))
622 ret = RECOVERED;
623 else
624 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
625 pfn);
626 }
627 return ret;
628 }
629
630 /*
631 * Dirty pagecache page
632 * Issues: when the error hit a hole page the error is not properly
633 * propagated.
634 */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 struct address_space *mapping = page_mapping(p);
638
639 SetPageError(p);
640 /* TBD: print more information about the file. */
641 if (mapping) {
642 /*
643 * IO error will be reported by write(), fsync(), etc.
644 * who check the mapping.
645 * This way the application knows that something went
646 * wrong with its dirty file data.
647 *
648 * There's one open issue:
649 *
650 * The EIO will be only reported on the next IO
651 * operation and then cleared through the IO map.
652 * Normally Linux has two mechanisms to pass IO error
653 * first through the AS_EIO flag in the address space
654 * and then through the PageError flag in the page.
655 * Since we drop pages on memory failure handling the
656 * only mechanism open to use is through AS_AIO.
657 *
658 * This has the disadvantage that it gets cleared on
659 * the first operation that returns an error, while
660 * the PageError bit is more sticky and only cleared
661 * when the page is reread or dropped. If an
662 * application assumes it will always get error on
663 * fsync, but does other operations on the fd before
664 * and the page is dropped between then the error
665 * will not be properly reported.
666 *
667 * This can already happen even without hwpoisoned
668 * pages: first on metadata IO errors (which only
669 * report through AS_EIO) or when the page is dropped
670 * at the wrong time.
671 *
672 * So right now we assume that the application DTRT on
673 * the first EIO, but we're not worse than other parts
674 * of the kernel.
675 */
676 mapping_set_error(mapping, EIO);
677 }
678
679 return me_pagecache_clean(p, pfn);
680 }
681
682 /*
683 * Clean and dirty swap cache.
684 *
685 * Dirty swap cache page is tricky to handle. The page could live both in page
686 * cache and swap cache(ie. page is freshly swapped in). So it could be
687 * referenced concurrently by 2 types of PTEs:
688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690 * and then
691 * - clear dirty bit to prevent IO
692 * - remove from LRU
693 * - but keep in the swap cache, so that when we return to it on
694 * a later page fault, we know the application is accessing
695 * corrupted data and shall be killed (we installed simple
696 * interception code in do_swap_page to catch it).
697 *
698 * Clean swap cache pages can be directly isolated. A later page fault will
699 * bring in the known good data from disk.
700 */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 ClearPageDirty(p);
704 /* Trigger EIO in shmem: */
705 ClearPageUptodate(p);
706
707 if (!delete_from_lru_cache(p))
708 return DELAYED;
709 else
710 return FAILED;
711 }
712
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 delete_from_swap_cache(p);
716
717 if (!delete_from_lru_cache(p))
718 return RECOVERED;
719 else
720 return FAILED;
721 }
722
723 /*
724 * Huge pages. Needs work.
725 * Issues:
726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727 * To narrow down kill region to one page, we need to break up pmd.
728 */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 int res = 0;
732 struct page *hpage = compound_head(p);
733 /*
734 * We can safely recover from error on free or reserved (i.e.
735 * not in-use) hugepage by dequeuing it from freelist.
736 * To check whether a hugepage is in-use or not, we can't use
737 * page->lru because it can be used in other hugepage operations,
738 * such as __unmap_hugepage_range() and gather_surplus_pages().
739 * So instead we use page_mapping() and PageAnon().
740 * We assume that this function is called with page lock held,
741 * so there is no race between isolation and mapping/unmapping.
742 */
743 if (!(page_mapping(hpage) || PageAnon(hpage))) {
744 res = dequeue_hwpoisoned_huge_page(hpage);
745 if (!res)
746 return RECOVERED;
747 }
748 return DELAYED;
749 }
750
751 /*
752 * Various page states we can handle.
753 *
754 * A page state is defined by its current page->flags bits.
755 * The table matches them in order and calls the right handler.
756 *
757 * This is quite tricky because we can access page at any time
758 * in its live cycle, so all accesses have to be extremely careful.
759 *
760 * This is not complete. More states could be added.
761 * For any missing state don't attempt recovery.
762 */
763
764 #define dirty (1UL << PG_dirty)
765 #define sc (1UL << PG_swapcache)
766 #define unevict (1UL << PG_unevictable)
767 #define mlock (1UL << PG_mlocked)
768 #define writeback (1UL << PG_writeback)
769 #define lru (1UL << PG_lru)
770 #define swapbacked (1UL << PG_swapbacked)
771 #define head (1UL << PG_head)
772 #define tail (1UL << PG_tail)
773 #define compound (1UL << PG_compound)
774 #define slab (1UL << PG_slab)
775 #define reserved (1UL << PG_reserved)
776
777 static struct page_state {
778 unsigned long mask;
779 unsigned long res;
780 char *msg;
781 int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 { reserved, reserved, "reserved kernel", me_kernel },
784 /*
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
787 */
788
789 /*
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
793 */
794 { slab, slab, "kernel slab", me_kernel },
795
796 #ifdef CONFIG_PAGEFLAGS_EXTENDED
797 { head, head, "huge", me_huge_page },
798 { tail, tail, "huge", me_huge_page },
799 #else
800 { compound, compound, "huge", me_huge_page },
801 #endif
802
803 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
804 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
805
806 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
807 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
808
809 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
810 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
811
812 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
813 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
814
815 /*
816 * Catchall entry: must be at end.
817 */
818 { 0, 0, "unknown page state", me_unknown },
819 };
820
821 #undef dirty
822 #undef sc
823 #undef unevict
824 #undef mlock
825 #undef writeback
826 #undef lru
827 #undef swapbacked
828 #undef head
829 #undef tail
830 #undef compound
831 #undef slab
832 #undef reserved
833
834 /*
835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837 */
838 static void action_result(unsigned long pfn, char *msg, int result)
839 {
840 pr_err("MCE %#lx: %s page recovery: %s\n",
841 pfn, msg, action_name[result]);
842 }
843
844 static int page_action(struct page_state *ps, struct page *p,
845 unsigned long pfn)
846 {
847 int result;
848 int count;
849
850 result = ps->action(p, pfn);
851
852 count = page_count(p) - 1;
853 if (ps->action == me_swapcache_dirty && result == DELAYED)
854 count--;
855 if (count != 0) {
856 printk(KERN_ERR
857 "MCE %#lx: %s page still referenced by %d users\n",
858 pfn, ps->msg, count);
859 result = FAILED;
860 }
861 action_result(pfn, ps->msg, result);
862
863 /* Could do more checks here if page looks ok */
864 /*
865 * Could adjust zone counters here to correct for the missing page.
866 */
867
868 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
869 }
870
871 /*
872 * Do all that is necessary to remove user space mappings. Unmap
873 * the pages and send SIGBUS to the processes if the data was dirty.
874 */
875 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
876 int trapno, int flags, struct page **hpagep)
877 {
878 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
879 struct address_space *mapping;
880 LIST_HEAD(tokill);
881 int ret;
882 int kill = 1, forcekill;
883 struct page *hpage = *hpagep;
884 struct page *ppage;
885
886 /*
887 * Here we are interested only in user-mapped pages, so skip any
888 * other types of pages.
889 */
890 if (PageReserved(p) || PageSlab(p))
891 return SWAP_SUCCESS;
892 if (!(PageLRU(hpage) || PageHuge(p)))
893 return SWAP_SUCCESS;
894
895 /*
896 * This check implies we don't kill processes if their pages
897 * are in the swap cache early. Those are always late kills.
898 */
899 if (!page_mapped(hpage))
900 return SWAP_SUCCESS;
901
902 if (PageKsm(p)) {
903 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
904 return SWAP_FAIL;
905 }
906
907 if (PageSwapCache(p)) {
908 printk(KERN_ERR
909 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
910 ttu |= TTU_IGNORE_HWPOISON;
911 }
912
913 /*
914 * Propagate the dirty bit from PTEs to struct page first, because we
915 * need this to decide if we should kill or just drop the page.
916 * XXX: the dirty test could be racy: set_page_dirty() may not always
917 * be called inside page lock (it's recommended but not enforced).
918 */
919 mapping = page_mapping(hpage);
920 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
921 mapping_cap_writeback_dirty(mapping)) {
922 if (page_mkclean(hpage)) {
923 SetPageDirty(hpage);
924 } else {
925 kill = 0;
926 ttu |= TTU_IGNORE_HWPOISON;
927 printk(KERN_INFO
928 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
929 pfn);
930 }
931 }
932
933 /*
934 * ppage: poisoned page
935 * if p is regular page(4k page)
936 * ppage == real poisoned page;
937 * else p is hugetlb or THP, ppage == head page.
938 */
939 ppage = hpage;
940
941 if (PageTransHuge(hpage)) {
942 /*
943 * Verify that this isn't a hugetlbfs head page, the check for
944 * PageAnon is just for avoid tripping a split_huge_page
945 * internal debug check, as split_huge_page refuses to deal with
946 * anything that isn't an anon page. PageAnon can't go away fro
947 * under us because we hold a refcount on the hpage, without a
948 * refcount on the hpage. split_huge_page can't be safely called
949 * in the first place, having a refcount on the tail isn't
950 * enough * to be safe.
951 */
952 if (!PageHuge(hpage) && PageAnon(hpage)) {
953 if (unlikely(split_huge_page(hpage))) {
954 /*
955 * FIXME: if splitting THP is failed, it is
956 * better to stop the following operation rather
957 * than causing panic by unmapping. System might
958 * survive if the page is freed later.
959 */
960 printk(KERN_INFO
961 "MCE %#lx: failed to split THP\n", pfn);
962
963 BUG_ON(!PageHWPoison(p));
964 return SWAP_FAIL;
965 }
966 /*
967 * We pinned the head page for hwpoison handling,
968 * now we split the thp and we are interested in
969 * the hwpoisoned raw page, so move the refcount
970 * to it. Similarly, page lock is shifted.
971 */
972 if (hpage != p) {
973 if (!(flags & MF_COUNT_INCREASED)) {
974 put_page(hpage);
975 get_page(p);
976 }
977 lock_page(p);
978 unlock_page(hpage);
979 *hpagep = p;
980 }
981 /* THP is split, so ppage should be the real poisoned page. */
982 ppage = p;
983 }
984 }
985
986 /*
987 * First collect all the processes that have the page
988 * mapped in dirty form. This has to be done before try_to_unmap,
989 * because ttu takes the rmap data structures down.
990 *
991 * Error handling: We ignore errors here because
992 * there's nothing that can be done.
993 */
994 if (kill)
995 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
996
997 ret = try_to_unmap(ppage, ttu);
998 if (ret != SWAP_SUCCESS)
999 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1000 pfn, page_mapcount(ppage));
1001
1002 /*
1003 * Now that the dirty bit has been propagated to the
1004 * struct page and all unmaps done we can decide if
1005 * killing is needed or not. Only kill when the page
1006 * was dirty or the process is not restartable,
1007 * otherwise the tokill list is merely
1008 * freed. When there was a problem unmapping earlier
1009 * use a more force-full uncatchable kill to prevent
1010 * any accesses to the poisoned memory.
1011 */
1012 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1013 kill_procs(&tokill, forcekill, trapno,
1014 ret != SWAP_SUCCESS, p, pfn, flags);
1015
1016 return ret;
1017 }
1018
1019 static void set_page_hwpoison_huge_page(struct page *hpage)
1020 {
1021 int i;
1022 int nr_pages = 1 << compound_order(hpage);
1023 for (i = 0; i < nr_pages; i++)
1024 SetPageHWPoison(hpage + i);
1025 }
1026
1027 static void clear_page_hwpoison_huge_page(struct page *hpage)
1028 {
1029 int i;
1030 int nr_pages = 1 << compound_order(hpage);
1031 for (i = 0; i < nr_pages; i++)
1032 ClearPageHWPoison(hpage + i);
1033 }
1034
1035 /**
1036 * memory_failure - Handle memory failure of a page.
1037 * @pfn: Page Number of the corrupted page
1038 * @trapno: Trap number reported in the signal to user space.
1039 * @flags: fine tune action taken
1040 *
1041 * This function is called by the low level machine check code
1042 * of an architecture when it detects hardware memory corruption
1043 * of a page. It tries its best to recover, which includes
1044 * dropping pages, killing processes etc.
1045 *
1046 * The function is primarily of use for corruptions that
1047 * happen outside the current execution context (e.g. when
1048 * detected by a background scrubber)
1049 *
1050 * Must run in process context (e.g. a work queue) with interrupts
1051 * enabled and no spinlocks hold.
1052 */
1053 int memory_failure(unsigned long pfn, int trapno, int flags)
1054 {
1055 struct page_state *ps;
1056 struct page *p;
1057 struct page *hpage;
1058 int res;
1059 unsigned int nr_pages;
1060 unsigned long page_flags;
1061
1062 if (!sysctl_memory_failure_recovery)
1063 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1064
1065 if (!pfn_valid(pfn)) {
1066 printk(KERN_ERR
1067 "MCE %#lx: memory outside kernel control\n",
1068 pfn);
1069 return -ENXIO;
1070 }
1071
1072 p = pfn_to_page(pfn);
1073 hpage = compound_head(p);
1074 if (TestSetPageHWPoison(p)) {
1075 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1076 return 0;
1077 }
1078
1079 /*
1080 * Currently errors on hugetlbfs pages are measured in hugepage units,
1081 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1082 * transparent hugepages, they are supposed to be split and error
1083 * measurement is done in normal page units. So nr_pages should be one
1084 * in this case.
1085 */
1086 if (PageHuge(p))
1087 nr_pages = 1 << compound_order(hpage);
1088 else /* normal page or thp */
1089 nr_pages = 1;
1090 atomic_long_add(nr_pages, &num_poisoned_pages);
1091
1092 /*
1093 * We need/can do nothing about count=0 pages.
1094 * 1) it's a free page, and therefore in safe hand:
1095 * prep_new_page() will be the gate keeper.
1096 * 2) it's a free hugepage, which is also safe:
1097 * an affected hugepage will be dequeued from hugepage freelist,
1098 * so there's no concern about reusing it ever after.
1099 * 3) it's part of a non-compound high order page.
1100 * Implies some kernel user: cannot stop them from
1101 * R/W the page; let's pray that the page has been
1102 * used and will be freed some time later.
1103 * In fact it's dangerous to directly bump up page count from 0,
1104 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1105 */
1106 if (!(flags & MF_COUNT_INCREASED) &&
1107 !get_page_unless_zero(hpage)) {
1108 if (is_free_buddy_page(p)) {
1109 action_result(pfn, "free buddy", DELAYED);
1110 return 0;
1111 } else if (PageHuge(hpage)) {
1112 /*
1113 * Check "filter hit" and "race with other subpage."
1114 */
1115 lock_page(hpage);
1116 if (PageHWPoison(hpage)) {
1117 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1118 || (p != hpage && TestSetPageHWPoison(hpage))) {
1119 atomic_long_sub(nr_pages, &num_poisoned_pages);
1120 unlock_page(hpage);
1121 return 0;
1122 }
1123 }
1124 set_page_hwpoison_huge_page(hpage);
1125 res = dequeue_hwpoisoned_huge_page(hpage);
1126 action_result(pfn, "free huge",
1127 res ? IGNORED : DELAYED);
1128 unlock_page(hpage);
1129 return res;
1130 } else {
1131 action_result(pfn, "high order kernel", IGNORED);
1132 return -EBUSY;
1133 }
1134 }
1135
1136 /*
1137 * We ignore non-LRU pages for good reasons.
1138 * - PG_locked is only well defined for LRU pages and a few others
1139 * - to avoid races with __set_page_locked()
1140 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1141 * The check (unnecessarily) ignores LRU pages being isolated and
1142 * walked by the page reclaim code, however that's not a big loss.
1143 */
1144 if (!PageHuge(p) && !PageTransTail(p)) {
1145 if (!PageLRU(p))
1146 shake_page(p, 0);
1147 if (!PageLRU(p)) {
1148 /*
1149 * shake_page could have turned it free.
1150 */
1151 if (is_free_buddy_page(p)) {
1152 if (flags & MF_COUNT_INCREASED)
1153 action_result(pfn, "free buddy", DELAYED);
1154 else
1155 action_result(pfn, "free buddy, 2nd try", DELAYED);
1156 return 0;
1157 }
1158 }
1159 }
1160
1161 lock_page(hpage);
1162
1163 /*
1164 * The page could have changed compound pages during the locking.
1165 * If this happens just bail out.
1166 */
1167 if (compound_head(p) != hpage) {
1168 action_result(pfn, "different compound page after locking", IGNORED);
1169 res = -EBUSY;
1170 goto out;
1171 }
1172
1173 /*
1174 * We use page flags to determine what action should be taken, but
1175 * the flags can be modified by the error containment action. One
1176 * example is an mlocked page, where PG_mlocked is cleared by
1177 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1178 * correctly, we save a copy of the page flags at this time.
1179 */
1180 page_flags = p->flags;
1181
1182 /*
1183 * unpoison always clear PG_hwpoison inside page lock
1184 */
1185 if (!PageHWPoison(p)) {
1186 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1187 atomic_long_sub(nr_pages, &num_poisoned_pages);
1188 put_page(hpage);
1189 res = 0;
1190 goto out;
1191 }
1192 if (hwpoison_filter(p)) {
1193 if (TestClearPageHWPoison(p))
1194 atomic_long_sub(nr_pages, &num_poisoned_pages);
1195 unlock_page(hpage);
1196 put_page(hpage);
1197 return 0;
1198 }
1199
1200 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1201 goto identify_page_state;
1202
1203 /*
1204 * For error on the tail page, we should set PG_hwpoison
1205 * on the head page to show that the hugepage is hwpoisoned
1206 */
1207 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1208 action_result(pfn, "hugepage already hardware poisoned",
1209 IGNORED);
1210 unlock_page(hpage);
1211 put_page(hpage);
1212 return 0;
1213 }
1214 /*
1215 * Set PG_hwpoison on all pages in an error hugepage,
1216 * because containment is done in hugepage unit for now.
1217 * Since we have done TestSetPageHWPoison() for the head page with
1218 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1219 */
1220 if (PageHuge(p))
1221 set_page_hwpoison_huge_page(hpage);
1222
1223 /*
1224 * It's very difficult to mess with pages currently under IO
1225 * and in many cases impossible, so we just avoid it here.
1226 */
1227 wait_on_page_writeback(p);
1228
1229 /*
1230 * Now take care of user space mappings.
1231 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1232 *
1233 * When the raw error page is thp tail page, hpage points to the raw
1234 * page after thp split.
1235 */
1236 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1237 != SWAP_SUCCESS) {
1238 action_result(pfn, "unmapping failed", IGNORED);
1239 res = -EBUSY;
1240 goto out;
1241 }
1242
1243 /*
1244 * Torn down by someone else?
1245 */
1246 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1247 action_result(pfn, "already truncated LRU", IGNORED);
1248 res = -EBUSY;
1249 goto out;
1250 }
1251
1252 identify_page_state:
1253 res = -EBUSY;
1254 /*
1255 * The first check uses the current page flags which may not have any
1256 * relevant information. The second check with the saved page flagss is
1257 * carried out only if the first check can't determine the page status.
1258 */
1259 for (ps = error_states;; ps++)
1260 if ((p->flags & ps->mask) == ps->res)
1261 break;
1262
1263 page_flags |= (p->flags & (1UL << PG_dirty));
1264
1265 if (!ps->mask)
1266 for (ps = error_states;; ps++)
1267 if ((page_flags & ps->mask) == ps->res)
1268 break;
1269 res = page_action(ps, p, pfn);
1270 out:
1271 unlock_page(hpage);
1272 return res;
1273 }
1274 EXPORT_SYMBOL_GPL(memory_failure);
1275
1276 #define MEMORY_FAILURE_FIFO_ORDER 4
1277 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1278
1279 struct memory_failure_entry {
1280 unsigned long pfn;
1281 int trapno;
1282 int flags;
1283 };
1284
1285 struct memory_failure_cpu {
1286 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1287 MEMORY_FAILURE_FIFO_SIZE);
1288 spinlock_t lock;
1289 struct work_struct work;
1290 };
1291
1292 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1293
1294 /**
1295 * memory_failure_queue - Schedule handling memory failure of a page.
1296 * @pfn: Page Number of the corrupted page
1297 * @trapno: Trap number reported in the signal to user space.
1298 * @flags: Flags for memory failure handling
1299 *
1300 * This function is called by the low level hardware error handler
1301 * when it detects hardware memory corruption of a page. It schedules
1302 * the recovering of error page, including dropping pages, killing
1303 * processes etc.
1304 *
1305 * The function is primarily of use for corruptions that
1306 * happen outside the current execution context (e.g. when
1307 * detected by a background scrubber)
1308 *
1309 * Can run in IRQ context.
1310 */
1311 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1312 {
1313 struct memory_failure_cpu *mf_cpu;
1314 unsigned long proc_flags;
1315 struct memory_failure_entry entry = {
1316 .pfn = pfn,
1317 .trapno = trapno,
1318 .flags = flags,
1319 };
1320
1321 mf_cpu = &get_cpu_var(memory_failure_cpu);
1322 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1323 if (kfifo_put(&mf_cpu->fifo, entry))
1324 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1325 else
1326 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1327 pfn);
1328 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1329 put_cpu_var(memory_failure_cpu);
1330 }
1331 EXPORT_SYMBOL_GPL(memory_failure_queue);
1332
1333 static void memory_failure_work_func(struct work_struct *work)
1334 {
1335 struct memory_failure_cpu *mf_cpu;
1336 struct memory_failure_entry entry = { 0, };
1337 unsigned long proc_flags;
1338 int gotten;
1339
1340 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1341 for (;;) {
1342 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1343 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1344 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1345 if (!gotten)
1346 break;
1347 if (entry.flags & MF_SOFT_OFFLINE)
1348 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1349 else
1350 memory_failure(entry.pfn, entry.trapno, entry.flags);
1351 }
1352 }
1353
1354 static int __init memory_failure_init(void)
1355 {
1356 struct memory_failure_cpu *mf_cpu;
1357 int cpu;
1358
1359 for_each_possible_cpu(cpu) {
1360 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1361 spin_lock_init(&mf_cpu->lock);
1362 INIT_KFIFO(mf_cpu->fifo);
1363 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1364 }
1365
1366 return 0;
1367 }
1368 core_initcall(memory_failure_init);
1369
1370 /**
1371 * unpoison_memory - Unpoison a previously poisoned page
1372 * @pfn: Page number of the to be unpoisoned page
1373 *
1374 * Software-unpoison a page that has been poisoned by
1375 * memory_failure() earlier.
1376 *
1377 * This is only done on the software-level, so it only works
1378 * for linux injected failures, not real hardware failures
1379 *
1380 * Returns 0 for success, otherwise -errno.
1381 */
1382 int unpoison_memory(unsigned long pfn)
1383 {
1384 struct page *page;
1385 struct page *p;
1386 int freeit = 0;
1387 unsigned int nr_pages;
1388
1389 if (!pfn_valid(pfn))
1390 return -ENXIO;
1391
1392 p = pfn_to_page(pfn);
1393 page = compound_head(p);
1394
1395 if (!PageHWPoison(p)) {
1396 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1397 return 0;
1398 }
1399
1400 /*
1401 * unpoison_memory() can encounter thp only when the thp is being
1402 * worked by memory_failure() and the page lock is not held yet.
1403 * In such case, we yield to memory_failure() and make unpoison fail.
1404 */
1405 if (!PageHuge(page) && PageTransHuge(page)) {
1406 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1407 return 0;
1408 }
1409
1410 nr_pages = 1 << compound_order(page);
1411
1412 if (!get_page_unless_zero(page)) {
1413 /*
1414 * Since HWPoisoned hugepage should have non-zero refcount,
1415 * race between memory failure and unpoison seems to happen.
1416 * In such case unpoison fails and memory failure runs
1417 * to the end.
1418 */
1419 if (PageHuge(page)) {
1420 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1421 return 0;
1422 }
1423 if (TestClearPageHWPoison(p))
1424 atomic_long_dec(&num_poisoned_pages);
1425 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1426 return 0;
1427 }
1428
1429 lock_page(page);
1430 /*
1431 * This test is racy because PG_hwpoison is set outside of page lock.
1432 * That's acceptable because that won't trigger kernel panic. Instead,
1433 * the PG_hwpoison page will be caught and isolated on the entrance to
1434 * the free buddy page pool.
1435 */
1436 if (TestClearPageHWPoison(page)) {
1437 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1438 atomic_long_sub(nr_pages, &num_poisoned_pages);
1439 freeit = 1;
1440 if (PageHuge(page))
1441 clear_page_hwpoison_huge_page(page);
1442 }
1443 unlock_page(page);
1444
1445 put_page(page);
1446 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1447 put_page(page);
1448
1449 return 0;
1450 }
1451 EXPORT_SYMBOL(unpoison_memory);
1452
1453 static struct page *new_page(struct page *p, unsigned long private, int **x)
1454 {
1455 int nid = page_to_nid(p);
1456 if (PageHuge(p))
1457 return alloc_huge_page_node(page_hstate(compound_head(p)),
1458 nid);
1459 else
1460 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1461 }
1462
1463 /*
1464 * Safely get reference count of an arbitrary page.
1465 * Returns 0 for a free page, -EIO for a zero refcount page
1466 * that is not free, and 1 for any other page type.
1467 * For 1 the page is returned with increased page count, otherwise not.
1468 */
1469 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1470 {
1471 int ret;
1472
1473 if (flags & MF_COUNT_INCREASED)
1474 return 1;
1475
1476 /*
1477 * When the target page is a free hugepage, just remove it
1478 * from free hugepage list.
1479 */
1480 if (!get_page_unless_zero(compound_head(p))) {
1481 if (PageHuge(p)) {
1482 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1483 ret = 0;
1484 } else if (is_free_buddy_page(p)) {
1485 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1486 ret = 0;
1487 } else {
1488 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1489 __func__, pfn, p->flags);
1490 ret = -EIO;
1491 }
1492 } else {
1493 /* Not a free page */
1494 ret = 1;
1495 }
1496 return ret;
1497 }
1498
1499 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1500 {
1501 int ret = __get_any_page(page, pfn, flags);
1502
1503 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1504 /*
1505 * Try to free it.
1506 */
1507 put_page(page);
1508 shake_page(page, 1);
1509
1510 /*
1511 * Did it turn free?
1512 */
1513 ret = __get_any_page(page, pfn, 0);
1514 if (!PageLRU(page)) {
1515 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1516 pfn, page->flags);
1517 return -EIO;
1518 }
1519 }
1520 return ret;
1521 }
1522
1523 static int soft_offline_huge_page(struct page *page, int flags)
1524 {
1525 int ret;
1526 unsigned long pfn = page_to_pfn(page);
1527 struct page *hpage = compound_head(page);
1528 LIST_HEAD(pagelist);
1529
1530 /*
1531 * This double-check of PageHWPoison is to avoid the race with
1532 * memory_failure(). See also comment in __soft_offline_page().
1533 */
1534 lock_page(hpage);
1535 if (PageHWPoison(hpage)) {
1536 unlock_page(hpage);
1537 put_page(hpage);
1538 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1539 return -EBUSY;
1540 }
1541 unlock_page(hpage);
1542
1543 /* Keep page count to indicate a given hugepage is isolated. */
1544 list_move(&hpage->lru, &pagelist);
1545 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1546 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1547 if (ret) {
1548 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1549 pfn, ret, page->flags);
1550 /*
1551 * We know that soft_offline_huge_page() tries to migrate
1552 * only one hugepage pointed to by hpage, so we need not
1553 * run through the pagelist here.
1554 */
1555 putback_active_hugepage(hpage);
1556 if (ret > 0)
1557 ret = -EIO;
1558 } else {
1559 /* overcommit hugetlb page will be freed to buddy */
1560 if (PageHuge(page)) {
1561 set_page_hwpoison_huge_page(hpage);
1562 dequeue_hwpoisoned_huge_page(hpage);
1563 atomic_long_add(1 << compound_order(hpage),
1564 &num_poisoned_pages);
1565 } else {
1566 SetPageHWPoison(page);
1567 atomic_long_inc(&num_poisoned_pages);
1568 }
1569 }
1570 return ret;
1571 }
1572
1573 static int __soft_offline_page(struct page *page, int flags)
1574 {
1575 int ret;
1576 unsigned long pfn = page_to_pfn(page);
1577
1578 /*
1579 * Check PageHWPoison again inside page lock because PageHWPoison
1580 * is set by memory_failure() outside page lock. Note that
1581 * memory_failure() also double-checks PageHWPoison inside page lock,
1582 * so there's no race between soft_offline_page() and memory_failure().
1583 */
1584 lock_page(page);
1585 wait_on_page_writeback(page);
1586 if (PageHWPoison(page)) {
1587 unlock_page(page);
1588 put_page(page);
1589 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1590 return -EBUSY;
1591 }
1592 /*
1593 * Try to invalidate first. This should work for
1594 * non dirty unmapped page cache pages.
1595 */
1596 ret = invalidate_inode_page(page);
1597 unlock_page(page);
1598 /*
1599 * RED-PEN would be better to keep it isolated here, but we
1600 * would need to fix isolation locking first.
1601 */
1602 if (ret == 1) {
1603 put_page(page);
1604 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1605 SetPageHWPoison(page);
1606 atomic_long_inc(&num_poisoned_pages);
1607 return 0;
1608 }
1609
1610 /*
1611 * Simple invalidation didn't work.
1612 * Try to migrate to a new page instead. migrate.c
1613 * handles a large number of cases for us.
1614 */
1615 ret = isolate_lru_page(page);
1616 /*
1617 * Drop page reference which is came from get_any_page()
1618 * successful isolate_lru_page() already took another one.
1619 */
1620 put_page(page);
1621 if (!ret) {
1622 LIST_HEAD(pagelist);
1623 inc_zone_page_state(page, NR_ISOLATED_ANON +
1624 page_is_file_cache(page));
1625 list_add(&page->lru, &pagelist);
1626 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1627 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1628 if (ret) {
1629 if (!list_empty(&pagelist)) {
1630 list_del(&page->lru);
1631 dec_zone_page_state(page, NR_ISOLATED_ANON +
1632 page_is_file_cache(page));
1633 putback_lru_page(page);
1634 }
1635
1636 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1637 pfn, ret, page->flags);
1638 if (ret > 0)
1639 ret = -EIO;
1640 } else {
1641 /*
1642 * After page migration succeeds, the source page can
1643 * be trapped in pagevec and actual freeing is delayed.
1644 * Freeing code works differently based on PG_hwpoison,
1645 * so there's a race. We need to make sure that the
1646 * source page should be freed back to buddy before
1647 * setting PG_hwpoison.
1648 */
1649 if (!is_free_buddy_page(page))
1650 drain_all_pages(page_zone(page));
1651 SetPageHWPoison(page);
1652 if (!is_free_buddy_page(page))
1653 pr_info("soft offline: %#lx: page leaked\n",
1654 pfn);
1655 atomic_long_inc(&num_poisoned_pages);
1656 }
1657 } else {
1658 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1659 pfn, ret, page_count(page), page->flags);
1660 }
1661 return ret;
1662 }
1663
1664 /**
1665 * soft_offline_page - Soft offline a page.
1666 * @page: page to offline
1667 * @flags: flags. Same as memory_failure().
1668 *
1669 * Returns 0 on success, otherwise negated errno.
1670 *
1671 * Soft offline a page, by migration or invalidation,
1672 * without killing anything. This is for the case when
1673 * a page is not corrupted yet (so it's still valid to access),
1674 * but has had a number of corrected errors and is better taken
1675 * out.
1676 *
1677 * The actual policy on when to do that is maintained by
1678 * user space.
1679 *
1680 * This should never impact any application or cause data loss,
1681 * however it might take some time.
1682 *
1683 * This is not a 100% solution for all memory, but tries to be
1684 * ``good enough'' for the majority of memory.
1685 */
1686 int soft_offline_page(struct page *page, int flags)
1687 {
1688 int ret;
1689 unsigned long pfn = page_to_pfn(page);
1690 struct page *hpage = compound_head(page);
1691
1692 if (PageHWPoison(page)) {
1693 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1694 return -EBUSY;
1695 }
1696 if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1698 pr_info("soft offline: %#lx: failed to split THP\n",
1699 pfn);
1700 return -EBUSY;
1701 }
1702 }
1703
1704 get_online_mems();
1705
1706 /*
1707 * Isolate the page, so that it doesn't get reallocated if it
1708 * was free. This flag should be kept set until the source page
1709 * is freed and PG_hwpoison on it is set.
1710 */
1711 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1712 set_migratetype_isolate(page, true);
1713
1714 ret = get_any_page(page, pfn, flags);
1715 put_online_mems();
1716 if (ret > 0) { /* for in-use pages */
1717 if (PageHuge(page))
1718 ret = soft_offline_huge_page(page, flags);
1719 else
1720 ret = __soft_offline_page(page, flags);
1721 } else if (ret == 0) { /* for free pages */
1722 if (PageHuge(page)) {
1723 set_page_hwpoison_huge_page(hpage);
1724 dequeue_hwpoisoned_huge_page(hpage);
1725 atomic_long_add(1 << compound_order(hpage),
1726 &num_poisoned_pages);
1727 } else {
1728 SetPageHWPoison(page);
1729 atomic_long_inc(&num_poisoned_pages);
1730 }
1731 }
1732 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1733 return ret;
1734 }