]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory-failure.c
mm/rmap: try_to_migrate() skip zone_device !device_private
[mirror_ubuntu-jammy-kernel.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 static bool __page_handle_poison(struct page *page)
70 {
71 bool ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret;
80 }
81
82 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83 {
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107 }
108
109 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111 u32 hwpoison_filter_enable = 0;
112 u32 hwpoison_filter_dev_major = ~0U;
113 u32 hwpoison_filter_dev_minor = ~0U;
114 u64 hwpoison_filter_flags_mask;
115 u64 hwpoison_filter_flags_value;
116 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122 static int hwpoison_filter_dev(struct page *p)
123 {
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150 }
151
152 static int hwpoison_filter_flags(struct page *p)
153 {
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162 }
163
164 /*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174 #ifdef CONFIG_MEMCG
175 u64 hwpoison_filter_memcg;
176 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177 static int hwpoison_filter_task(struct page *p)
178 {
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186 }
187 #else
188 static int hwpoison_filter_task(struct page *p) { return 0; }
189 #endif
190
191 int hwpoison_filter(struct page *p)
192 {
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206 }
207 #else
208 int hwpoison_filter(struct page *p)
209 {
210 return 0;
211 }
212 #endif
213
214 EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216 /*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238 struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243 };
244
245 /*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251 {
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281 }
282
283 /*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287 void shake_page(struct page *p, int access)
288 {
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304 }
305 EXPORT_SYMBOL_GPL(shake_page);
306
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309 {
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339 }
340
341 /*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346 /*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353 {
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389 }
390
391 /*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401 {
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431 }
432
433 /*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442 {
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455 }
456
457 /*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471 {
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482 }
483
484 /*
485 * Collect processes when the error hit an anonymous page.
486 */
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489 {
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518 }
519
520 /*
521 * Collect processes when the error hit a file mapped page.
522 */
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525 {
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554 }
555
556 /*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559 static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561 {
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569 }
570
571 struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575 };
576
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578 {
579 tk->addr = addr;
580 tk->size_shift = shift;
581 }
582
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585 {
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602 }
603
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607 {
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621 }
622 #else
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625 {
626 return 0;
627 }
628 #endif
629
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632 {
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656 out:
657 cond_resched();
658 return ret;
659 }
660
661 #ifdef CONFIG_HUGETLB_PAGE
662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665 {
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672 }
673 #else
674 #define hwpoison_hugetlb_range NULL
675 #endif
676
677 static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680 };
681
682 /*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697 {
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711 }
712
713 static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718 };
719
720 static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744 };
745
746 /*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752 static int delete_from_lru_cache(struct page *p)
753 {
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775 }
776
777 static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779 {
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808 }
809
810 /*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815 static int me_kernel(struct page *p, unsigned long pfn)
816 {
817 unlock_page(p);
818 return MF_IGNORED;
819 }
820
821 /*
822 * Page in unknown state. Do nothing.
823 */
824 static int me_unknown(struct page *p, unsigned long pfn)
825 {
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829 }
830
831 /*
832 * Clean (or cleaned) page cache page.
833 */
834 static int me_pagecache_clean(struct page *p, unsigned long pfn)
835 {
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872 out:
873 unlock_page(p);
874 return ret;
875 }
876
877 /*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883 {
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927 }
928
929 /*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949 {
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959 }
960
961 static int me_swapcache_clean(struct page *p, unsigned long pfn)
962 {
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970 }
971
972 /*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978 static int me_huge_page(struct page *p, unsigned long pfn)
979 {
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008 }
1009
1010 /*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023 #define dirty (1UL << PG_dirty)
1024 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025 #define unevict (1UL << PG_unevictable)
1026 #define mlock (1UL << PG_mlocked)
1027 #define lru (1UL << PG_lru)
1028 #define head (1UL << PG_head)
1029 #define slab (1UL << PG_slab)
1030 #define reserved (1UL << PG_reserved)
1031
1032 static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039 } error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071 };
1072
1073 #undef dirty
1074 #undef sc
1075 #undef unevict
1076 #undef mlock
1077 #undef lru
1078 #undef head
1079 #undef slab
1080 #undef reserved
1081
1082 /*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088 {
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093 }
1094
1095 static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097 {
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120 }
1121
1122 /*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128 static inline bool HWPoisonHandlable(struct page *page)
1129 {
1130 return PageLRU(page) || __PageMovable(page);
1131 }
1132
1133 static int __get_hwpoison_page(struct page *page)
1134 {
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return 0;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175 }
1176
1177 static int get_any_page(struct page *p, unsigned long flags)
1178 {
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185 try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /* We raced with freeing huge page to buddy, retry. */
1203 if (pass++ < 3)
1204 goto try_again;
1205 goto out;
1206 }
1207 }
1208
1209 if (PageHuge(p) || HWPoisonHandlable(p)) {
1210 ret = 1;
1211 } else {
1212 /*
1213 * A page we cannot handle. Check whether we can turn
1214 * it into something we can handle.
1215 */
1216 if (pass++ < 3) {
1217 put_page(p);
1218 shake_page(p, 1);
1219 count_increased = false;
1220 goto try_again;
1221 }
1222 put_page(p);
1223 ret = -EIO;
1224 }
1225 out:
1226 return ret;
1227 }
1228
1229 /**
1230 * get_hwpoison_page() - Get refcount for memory error handling
1231 * @p: Raw error page (hit by memory error)
1232 * @flags: Flags controlling behavior of error handling
1233 *
1234 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1235 * error on it, after checking that the error page is in a well-defined state
1236 * (defined as a page-type we can successfully handle the memor error on it,
1237 * such as LRU page and hugetlb page).
1238 *
1239 * Memory error handling could be triggered at any time on any type of page,
1240 * so it's prone to race with typical memory management lifecycle (like
1241 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1242 * extra care for the error page's state (as done in __get_hwpoison_page()),
1243 * and has some retry logic in get_any_page().
1244 *
1245 * Return: 0 on failure,
1246 * 1 on success for in-use pages in a well-defined state,
1247 * -EIO for pages on which we can not handle memory errors,
1248 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1249 * operations like allocation and free.
1250 */
1251 static int get_hwpoison_page(struct page *p, unsigned long flags)
1252 {
1253 int ret;
1254
1255 zone_pcp_disable(page_zone(p));
1256 ret = get_any_page(p, flags);
1257 zone_pcp_enable(page_zone(p));
1258
1259 return ret;
1260 }
1261
1262 /*
1263 * Do all that is necessary to remove user space mappings. Unmap
1264 * the pages and send SIGBUS to the processes if the data was dirty.
1265 */
1266 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1267 int flags, struct page **hpagep)
1268 {
1269 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1270 struct address_space *mapping;
1271 LIST_HEAD(tokill);
1272 bool unmap_success;
1273 int kill = 1, forcekill;
1274 struct page *hpage = *hpagep;
1275 bool mlocked = PageMlocked(hpage);
1276
1277 /*
1278 * Here we are interested only in user-mapped pages, so skip any
1279 * other types of pages.
1280 */
1281 if (PageReserved(p) || PageSlab(p))
1282 return true;
1283 if (!(PageLRU(hpage) || PageHuge(p)))
1284 return true;
1285
1286 /*
1287 * This check implies we don't kill processes if their pages
1288 * are in the swap cache early. Those are always late kills.
1289 */
1290 if (!page_mapped(hpage))
1291 return true;
1292
1293 if (PageKsm(p)) {
1294 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1295 return false;
1296 }
1297
1298 if (PageSwapCache(p)) {
1299 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1300 pfn);
1301 ttu |= TTU_IGNORE_HWPOISON;
1302 }
1303
1304 /*
1305 * Propagate the dirty bit from PTEs to struct page first, because we
1306 * need this to decide if we should kill or just drop the page.
1307 * XXX: the dirty test could be racy: set_page_dirty() may not always
1308 * be called inside page lock (it's recommended but not enforced).
1309 */
1310 mapping = page_mapping(hpage);
1311 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1312 mapping_can_writeback(mapping)) {
1313 if (page_mkclean(hpage)) {
1314 SetPageDirty(hpage);
1315 } else {
1316 kill = 0;
1317 ttu |= TTU_IGNORE_HWPOISON;
1318 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1319 pfn);
1320 }
1321 }
1322
1323 /*
1324 * First collect all the processes that have the page
1325 * mapped in dirty form. This has to be done before try_to_unmap,
1326 * because ttu takes the rmap data structures down.
1327 *
1328 * Error handling: We ignore errors here because
1329 * there's nothing that can be done.
1330 */
1331 if (kill)
1332 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1333
1334 if (!PageHuge(hpage)) {
1335 try_to_unmap(hpage, ttu);
1336 } else {
1337 if (!PageAnon(hpage)) {
1338 /*
1339 * For hugetlb pages in shared mappings, try_to_unmap
1340 * could potentially call huge_pmd_unshare. Because of
1341 * this, take semaphore in write mode here and set
1342 * TTU_RMAP_LOCKED to indicate we have taken the lock
1343 * at this higher level.
1344 */
1345 mapping = hugetlb_page_mapping_lock_write(hpage);
1346 if (mapping) {
1347 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1348 i_mmap_unlock_write(mapping);
1349 } else
1350 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1351 } else {
1352 try_to_unmap(hpage, ttu);
1353 }
1354 }
1355
1356 unmap_success = !page_mapped(hpage);
1357 if (!unmap_success)
1358 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1359 pfn, page_mapcount(hpage));
1360
1361 /*
1362 * try_to_unmap() might put mlocked page in lru cache, so call
1363 * shake_page() again to ensure that it's flushed.
1364 */
1365 if (mlocked)
1366 shake_page(hpage, 0);
1367
1368 /*
1369 * Now that the dirty bit has been propagated to the
1370 * struct page and all unmaps done we can decide if
1371 * killing is needed or not. Only kill when the page
1372 * was dirty or the process is not restartable,
1373 * otherwise the tokill list is merely
1374 * freed. When there was a problem unmapping earlier
1375 * use a more force-full uncatchable kill to prevent
1376 * any accesses to the poisoned memory.
1377 */
1378 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1379 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1380
1381 return unmap_success;
1382 }
1383
1384 static int identify_page_state(unsigned long pfn, struct page *p,
1385 unsigned long page_flags)
1386 {
1387 struct page_state *ps;
1388
1389 /*
1390 * The first check uses the current page flags which may not have any
1391 * relevant information. The second check with the saved page flags is
1392 * carried out only if the first check can't determine the page status.
1393 */
1394 for (ps = error_states;; ps++)
1395 if ((p->flags & ps->mask) == ps->res)
1396 break;
1397
1398 page_flags |= (p->flags & (1UL << PG_dirty));
1399
1400 if (!ps->mask)
1401 for (ps = error_states;; ps++)
1402 if ((page_flags & ps->mask) == ps->res)
1403 break;
1404 return page_action(ps, p, pfn);
1405 }
1406
1407 static int try_to_split_thp_page(struct page *page, const char *msg)
1408 {
1409 lock_page(page);
1410 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1411 unsigned long pfn = page_to_pfn(page);
1412
1413 unlock_page(page);
1414 if (!PageAnon(page))
1415 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1416 else
1417 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1418 put_page(page);
1419 return -EBUSY;
1420 }
1421 unlock_page(page);
1422
1423 return 0;
1424 }
1425
1426 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1427 {
1428 struct page *p = pfn_to_page(pfn);
1429 struct page *head = compound_head(p);
1430 int res;
1431 unsigned long page_flags;
1432
1433 if (TestSetPageHWPoison(head)) {
1434 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1435 pfn);
1436 res = -EHWPOISON;
1437 if (flags & MF_ACTION_REQUIRED)
1438 res = kill_accessing_process(current, page_to_pfn(head), flags);
1439 return res;
1440 }
1441
1442 num_poisoned_pages_inc();
1443
1444 if (!(flags & MF_COUNT_INCREASED)) {
1445 res = get_hwpoison_page(p, flags);
1446 if (!res) {
1447 /*
1448 * Check "filter hit" and "race with other subpage."
1449 */
1450 lock_page(head);
1451 if (PageHWPoison(head)) {
1452 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1453 || (p != head && TestSetPageHWPoison(head))) {
1454 num_poisoned_pages_dec();
1455 unlock_page(head);
1456 return 0;
1457 }
1458 }
1459 unlock_page(head);
1460 res = MF_FAILED;
1461 if (__page_handle_poison(p)) {
1462 page_ref_inc(p);
1463 res = MF_RECOVERED;
1464 }
1465 action_result(pfn, MF_MSG_FREE_HUGE, res);
1466 return res == MF_RECOVERED ? 0 : -EBUSY;
1467 } else if (res < 0) {
1468 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1469 return -EBUSY;
1470 }
1471 }
1472
1473 lock_page(head);
1474 page_flags = head->flags;
1475
1476 if (!PageHWPoison(head)) {
1477 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1478 num_poisoned_pages_dec();
1479 unlock_page(head);
1480 put_page(head);
1481 return 0;
1482 }
1483
1484 /*
1485 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1486 * simply disable it. In order to make it work properly, we need
1487 * make sure that:
1488 * - conversion of a pud that maps an error hugetlb into hwpoison
1489 * entry properly works, and
1490 * - other mm code walking over page table is aware of pud-aligned
1491 * hwpoison entries.
1492 */
1493 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1494 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1495 res = -EBUSY;
1496 goto out;
1497 }
1498
1499 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1500 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 return identify_page_state(pfn, p, page_flags);
1506 out:
1507 unlock_page(head);
1508 return res;
1509 }
1510
1511 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1512 struct dev_pagemap *pgmap)
1513 {
1514 struct page *page = pfn_to_page(pfn);
1515 const bool unmap_success = true;
1516 unsigned long size = 0;
1517 struct to_kill *tk;
1518 LIST_HEAD(tokill);
1519 int rc = -EBUSY;
1520 loff_t start;
1521 dax_entry_t cookie;
1522
1523 if (flags & MF_COUNT_INCREASED)
1524 /*
1525 * Drop the extra refcount in case we come from madvise().
1526 */
1527 put_page(page);
1528
1529 /* device metadata space is not recoverable */
1530 if (!pgmap_pfn_valid(pgmap, pfn)) {
1531 rc = -ENXIO;
1532 goto out;
1533 }
1534
1535 /*
1536 * Prevent the inode from being freed while we are interrogating
1537 * the address_space, typically this would be handled by
1538 * lock_page(), but dax pages do not use the page lock. This
1539 * also prevents changes to the mapping of this pfn until
1540 * poison signaling is complete.
1541 */
1542 cookie = dax_lock_page(page);
1543 if (!cookie)
1544 goto out;
1545
1546 if (hwpoison_filter(page)) {
1547 rc = 0;
1548 goto unlock;
1549 }
1550
1551 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1552 /*
1553 * TODO: Handle HMM pages which may need coordination
1554 * with device-side memory.
1555 */
1556 goto unlock;
1557 }
1558
1559 /*
1560 * Use this flag as an indication that the dax page has been
1561 * remapped UC to prevent speculative consumption of poison.
1562 */
1563 SetPageHWPoison(page);
1564
1565 /*
1566 * Unlike System-RAM there is no possibility to swap in a
1567 * different physical page at a given virtual address, so all
1568 * userspace consumption of ZONE_DEVICE memory necessitates
1569 * SIGBUS (i.e. MF_MUST_KILL)
1570 */
1571 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1572 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1573
1574 list_for_each_entry(tk, &tokill, nd)
1575 if (tk->size_shift)
1576 size = max(size, 1UL << tk->size_shift);
1577 if (size) {
1578 /*
1579 * Unmap the largest mapping to avoid breaking up
1580 * device-dax mappings which are constant size. The
1581 * actual size of the mapping being torn down is
1582 * communicated in siginfo, see kill_proc()
1583 */
1584 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1585 unmap_mapping_range(page->mapping, start, size, 0);
1586 }
1587 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1588 rc = 0;
1589 unlock:
1590 dax_unlock_page(page, cookie);
1591 out:
1592 /* drop pgmap ref acquired in caller */
1593 put_dev_pagemap(pgmap);
1594 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1595 return rc;
1596 }
1597
1598 /**
1599 * memory_failure - Handle memory failure of a page.
1600 * @pfn: Page Number of the corrupted page
1601 * @flags: fine tune action taken
1602 *
1603 * This function is called by the low level machine check code
1604 * of an architecture when it detects hardware memory corruption
1605 * of a page. It tries its best to recover, which includes
1606 * dropping pages, killing processes etc.
1607 *
1608 * The function is primarily of use for corruptions that
1609 * happen outside the current execution context (e.g. when
1610 * detected by a background scrubber)
1611 *
1612 * Must run in process context (e.g. a work queue) with interrupts
1613 * enabled and no spinlocks hold.
1614 */
1615 int memory_failure(unsigned long pfn, int flags)
1616 {
1617 struct page *p;
1618 struct page *hpage;
1619 struct page *orig_head;
1620 struct dev_pagemap *pgmap;
1621 int res = 0;
1622 unsigned long page_flags;
1623 bool retry = true;
1624 static DEFINE_MUTEX(mf_mutex);
1625
1626 if (!sysctl_memory_failure_recovery)
1627 panic("Memory failure on page %lx", pfn);
1628
1629 p = pfn_to_online_page(pfn);
1630 if (!p) {
1631 if (pfn_valid(pfn)) {
1632 pgmap = get_dev_pagemap(pfn, NULL);
1633 if (pgmap)
1634 return memory_failure_dev_pagemap(pfn, flags,
1635 pgmap);
1636 }
1637 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1638 pfn);
1639 return -ENXIO;
1640 }
1641
1642 mutex_lock(&mf_mutex);
1643
1644 try_again:
1645 if (PageHuge(p)) {
1646 res = memory_failure_hugetlb(pfn, flags);
1647 goto unlock_mutex;
1648 }
1649
1650 if (TestSetPageHWPoison(p)) {
1651 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1652 pfn);
1653 res = -EHWPOISON;
1654 if (flags & MF_ACTION_REQUIRED)
1655 res = kill_accessing_process(current, pfn, flags);
1656 goto unlock_mutex;
1657 }
1658
1659 orig_head = hpage = compound_head(p);
1660 num_poisoned_pages_inc();
1661
1662 /*
1663 * We need/can do nothing about count=0 pages.
1664 * 1) it's a free page, and therefore in safe hand:
1665 * prep_new_page() will be the gate keeper.
1666 * 2) it's part of a non-compound high order page.
1667 * Implies some kernel user: cannot stop them from
1668 * R/W the page; let's pray that the page has been
1669 * used and will be freed some time later.
1670 * In fact it's dangerous to directly bump up page count from 0,
1671 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1672 */
1673 if (!(flags & MF_COUNT_INCREASED)) {
1674 res = get_hwpoison_page(p, flags);
1675 if (!res) {
1676 if (is_free_buddy_page(p)) {
1677 if (take_page_off_buddy(p)) {
1678 page_ref_inc(p);
1679 res = MF_RECOVERED;
1680 } else {
1681 /* We lost the race, try again */
1682 if (retry) {
1683 ClearPageHWPoison(p);
1684 num_poisoned_pages_dec();
1685 retry = false;
1686 goto try_again;
1687 }
1688 res = MF_FAILED;
1689 }
1690 action_result(pfn, MF_MSG_BUDDY, res);
1691 res = res == MF_RECOVERED ? 0 : -EBUSY;
1692 } else {
1693 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1694 res = -EBUSY;
1695 }
1696 goto unlock_mutex;
1697 } else if (res < 0) {
1698 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1699 res = -EBUSY;
1700 goto unlock_mutex;
1701 }
1702 }
1703
1704 if (PageTransHuge(hpage)) {
1705 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1706 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1707 res = -EBUSY;
1708 goto unlock_mutex;
1709 }
1710 VM_BUG_ON_PAGE(!page_count(p), p);
1711 }
1712
1713 /*
1714 * We ignore non-LRU pages for good reasons.
1715 * - PG_locked is only well defined for LRU pages and a few others
1716 * - to avoid races with __SetPageLocked()
1717 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1718 * The check (unnecessarily) ignores LRU pages being isolated and
1719 * walked by the page reclaim code, however that's not a big loss.
1720 */
1721 shake_page(p, 0);
1722
1723 lock_page(p);
1724
1725 /*
1726 * The page could have changed compound pages during the locking.
1727 * If this happens just bail out.
1728 */
1729 if (PageCompound(p) && compound_head(p) != orig_head) {
1730 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1731 res = -EBUSY;
1732 goto unlock_page;
1733 }
1734
1735 /*
1736 * We use page flags to determine what action should be taken, but
1737 * the flags can be modified by the error containment action. One
1738 * example is an mlocked page, where PG_mlocked is cleared by
1739 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1740 * correctly, we save a copy of the page flags at this time.
1741 */
1742 page_flags = p->flags;
1743
1744 /*
1745 * unpoison always clear PG_hwpoison inside page lock
1746 */
1747 if (!PageHWPoison(p)) {
1748 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1749 num_poisoned_pages_dec();
1750 unlock_page(p);
1751 put_page(p);
1752 goto unlock_mutex;
1753 }
1754 if (hwpoison_filter(p)) {
1755 if (TestClearPageHWPoison(p))
1756 num_poisoned_pages_dec();
1757 unlock_page(p);
1758 put_page(p);
1759 goto unlock_mutex;
1760 }
1761
1762 /*
1763 * __munlock_pagevec may clear a writeback page's LRU flag without
1764 * page_lock. We need wait writeback completion for this page or it
1765 * may trigger vfs BUG while evict inode.
1766 */
1767 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1768 goto identify_page_state;
1769
1770 /*
1771 * It's very difficult to mess with pages currently under IO
1772 * and in many cases impossible, so we just avoid it here.
1773 */
1774 wait_on_page_writeback(p);
1775
1776 /*
1777 * Now take care of user space mappings.
1778 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1779 */
1780 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1781 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1782 res = -EBUSY;
1783 goto unlock_page;
1784 }
1785
1786 /*
1787 * Torn down by someone else?
1788 */
1789 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1790 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1791 res = -EBUSY;
1792 goto unlock_page;
1793 }
1794
1795 identify_page_state:
1796 res = identify_page_state(pfn, p, page_flags);
1797 mutex_unlock(&mf_mutex);
1798 return res;
1799 unlock_page:
1800 unlock_page(p);
1801 unlock_mutex:
1802 mutex_unlock(&mf_mutex);
1803 return res;
1804 }
1805 EXPORT_SYMBOL_GPL(memory_failure);
1806
1807 #define MEMORY_FAILURE_FIFO_ORDER 4
1808 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1809
1810 struct memory_failure_entry {
1811 unsigned long pfn;
1812 int flags;
1813 };
1814
1815 struct memory_failure_cpu {
1816 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1817 MEMORY_FAILURE_FIFO_SIZE);
1818 spinlock_t lock;
1819 struct work_struct work;
1820 };
1821
1822 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1823
1824 /**
1825 * memory_failure_queue - Schedule handling memory failure of a page.
1826 * @pfn: Page Number of the corrupted page
1827 * @flags: Flags for memory failure handling
1828 *
1829 * This function is called by the low level hardware error handler
1830 * when it detects hardware memory corruption of a page. It schedules
1831 * the recovering of error page, including dropping pages, killing
1832 * processes etc.
1833 *
1834 * The function is primarily of use for corruptions that
1835 * happen outside the current execution context (e.g. when
1836 * detected by a background scrubber)
1837 *
1838 * Can run in IRQ context.
1839 */
1840 void memory_failure_queue(unsigned long pfn, int flags)
1841 {
1842 struct memory_failure_cpu *mf_cpu;
1843 unsigned long proc_flags;
1844 struct memory_failure_entry entry = {
1845 .pfn = pfn,
1846 .flags = flags,
1847 };
1848
1849 mf_cpu = &get_cpu_var(memory_failure_cpu);
1850 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1851 if (kfifo_put(&mf_cpu->fifo, entry))
1852 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1853 else
1854 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1855 pfn);
1856 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1857 put_cpu_var(memory_failure_cpu);
1858 }
1859 EXPORT_SYMBOL_GPL(memory_failure_queue);
1860
1861 static void memory_failure_work_func(struct work_struct *work)
1862 {
1863 struct memory_failure_cpu *mf_cpu;
1864 struct memory_failure_entry entry = { 0, };
1865 unsigned long proc_flags;
1866 int gotten;
1867
1868 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1869 for (;;) {
1870 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1871 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1872 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1873 if (!gotten)
1874 break;
1875 if (entry.flags & MF_SOFT_OFFLINE)
1876 soft_offline_page(entry.pfn, entry.flags);
1877 else
1878 memory_failure(entry.pfn, entry.flags);
1879 }
1880 }
1881
1882 /*
1883 * Process memory_failure work queued on the specified CPU.
1884 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1885 */
1886 void memory_failure_queue_kick(int cpu)
1887 {
1888 struct memory_failure_cpu *mf_cpu;
1889
1890 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1891 cancel_work_sync(&mf_cpu->work);
1892 memory_failure_work_func(&mf_cpu->work);
1893 }
1894
1895 static int __init memory_failure_init(void)
1896 {
1897 struct memory_failure_cpu *mf_cpu;
1898 int cpu;
1899
1900 for_each_possible_cpu(cpu) {
1901 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1902 spin_lock_init(&mf_cpu->lock);
1903 INIT_KFIFO(mf_cpu->fifo);
1904 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1905 }
1906
1907 return 0;
1908 }
1909 core_initcall(memory_failure_init);
1910
1911 #define unpoison_pr_info(fmt, pfn, rs) \
1912 ({ \
1913 if (__ratelimit(rs)) \
1914 pr_info(fmt, pfn); \
1915 })
1916
1917 /**
1918 * unpoison_memory - Unpoison a previously poisoned page
1919 * @pfn: Page number of the to be unpoisoned page
1920 *
1921 * Software-unpoison a page that has been poisoned by
1922 * memory_failure() earlier.
1923 *
1924 * This is only done on the software-level, so it only works
1925 * for linux injected failures, not real hardware failures
1926 *
1927 * Returns 0 for success, otherwise -errno.
1928 */
1929 int unpoison_memory(unsigned long pfn)
1930 {
1931 struct page *page;
1932 struct page *p;
1933 int freeit = 0;
1934 unsigned long flags = 0;
1935 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1936 DEFAULT_RATELIMIT_BURST);
1937
1938 if (!pfn_valid(pfn))
1939 return -ENXIO;
1940
1941 p = pfn_to_page(pfn);
1942 page = compound_head(p);
1943
1944 if (!PageHWPoison(p)) {
1945 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1946 pfn, &unpoison_rs);
1947 return 0;
1948 }
1949
1950 if (page_count(page) > 1) {
1951 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_mapped(page)) {
1957 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapping(page)) {
1963 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 /*
1969 * unpoison_memory() can encounter thp only when the thp is being
1970 * worked by memory_failure() and the page lock is not held yet.
1971 * In such case, we yield to memory_failure() and make unpoison fail.
1972 */
1973 if (!PageHuge(page) && PageTransHuge(page)) {
1974 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1975 pfn, &unpoison_rs);
1976 return 0;
1977 }
1978
1979 if (!get_hwpoison_page(p, flags)) {
1980 if (TestClearPageHWPoison(p))
1981 num_poisoned_pages_dec();
1982 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1983 pfn, &unpoison_rs);
1984 return 0;
1985 }
1986
1987 lock_page(page);
1988 /*
1989 * This test is racy because PG_hwpoison is set outside of page lock.
1990 * That's acceptable because that won't trigger kernel panic. Instead,
1991 * the PG_hwpoison page will be caught and isolated on the entrance to
1992 * the free buddy page pool.
1993 */
1994 if (TestClearPageHWPoison(page)) {
1995 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1996 pfn, &unpoison_rs);
1997 num_poisoned_pages_dec();
1998 freeit = 1;
1999 }
2000 unlock_page(page);
2001
2002 put_page(page);
2003 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2004 put_page(page);
2005
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(unpoison_memory);
2009
2010 static bool isolate_page(struct page *page, struct list_head *pagelist)
2011 {
2012 bool isolated = false;
2013 bool lru = PageLRU(page);
2014
2015 if (PageHuge(page)) {
2016 isolated = isolate_huge_page(page, pagelist);
2017 } else {
2018 if (lru)
2019 isolated = !isolate_lru_page(page);
2020 else
2021 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2022
2023 if (isolated)
2024 list_add(&page->lru, pagelist);
2025 }
2026
2027 if (isolated && lru)
2028 inc_node_page_state(page, NR_ISOLATED_ANON +
2029 page_is_file_lru(page));
2030
2031 /*
2032 * If we succeed to isolate the page, we grabbed another refcount on
2033 * the page, so we can safely drop the one we got from get_any_pages().
2034 * If we failed to isolate the page, it means that we cannot go further
2035 * and we will return an error, so drop the reference we got from
2036 * get_any_pages() as well.
2037 */
2038 put_page(page);
2039 return isolated;
2040 }
2041
2042 /*
2043 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2044 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2045 * If the page is mapped, it migrates the contents over.
2046 */
2047 static int __soft_offline_page(struct page *page)
2048 {
2049 int ret = 0;
2050 unsigned long pfn = page_to_pfn(page);
2051 struct page *hpage = compound_head(page);
2052 char const *msg_page[] = {"page", "hugepage"};
2053 bool huge = PageHuge(page);
2054 LIST_HEAD(pagelist);
2055 struct migration_target_control mtc = {
2056 .nid = NUMA_NO_NODE,
2057 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2058 };
2059
2060 /*
2061 * Check PageHWPoison again inside page lock because PageHWPoison
2062 * is set by memory_failure() outside page lock. Note that
2063 * memory_failure() also double-checks PageHWPoison inside page lock,
2064 * so there's no race between soft_offline_page() and memory_failure().
2065 */
2066 lock_page(page);
2067 if (!PageHuge(page))
2068 wait_on_page_writeback(page);
2069 if (PageHWPoison(page)) {
2070 unlock_page(page);
2071 put_page(page);
2072 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2073 return 0;
2074 }
2075
2076 if (!PageHuge(page))
2077 /*
2078 * Try to invalidate first. This should work for
2079 * non dirty unmapped page cache pages.
2080 */
2081 ret = invalidate_inode_page(page);
2082 unlock_page(page);
2083
2084 /*
2085 * RED-PEN would be better to keep it isolated here, but we
2086 * would need to fix isolation locking first.
2087 */
2088 if (ret) {
2089 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2090 page_handle_poison(page, false, true);
2091 return 0;
2092 }
2093
2094 if (isolate_page(hpage, &pagelist)) {
2095 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2096 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2097 if (!ret) {
2098 bool release = !huge;
2099
2100 if (!page_handle_poison(page, huge, release))
2101 ret = -EBUSY;
2102 } else {
2103 if (!list_empty(&pagelist))
2104 putback_movable_pages(&pagelist);
2105
2106 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2107 pfn, msg_page[huge], ret, page->flags, &page->flags);
2108 if (ret > 0)
2109 ret = -EBUSY;
2110 }
2111 } else {
2112 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2114 ret = -EBUSY;
2115 }
2116 return ret;
2117 }
2118
2119 static int soft_offline_in_use_page(struct page *page)
2120 {
2121 struct page *hpage = compound_head(page);
2122
2123 if (!PageHuge(page) && PageTransHuge(hpage))
2124 if (try_to_split_thp_page(page, "soft offline") < 0)
2125 return -EBUSY;
2126 return __soft_offline_page(page);
2127 }
2128
2129 static int soft_offline_free_page(struct page *page)
2130 {
2131 int rc = 0;
2132
2133 if (!page_handle_poison(page, true, false))
2134 rc = -EBUSY;
2135
2136 return rc;
2137 }
2138
2139 static void put_ref_page(struct page *page)
2140 {
2141 if (page)
2142 put_page(page);
2143 }
2144
2145 /**
2146 * soft_offline_page - Soft offline a page.
2147 * @pfn: pfn to soft-offline
2148 * @flags: flags. Same as memory_failure().
2149 *
2150 * Returns 0 on success, otherwise negated errno.
2151 *
2152 * Soft offline a page, by migration or invalidation,
2153 * without killing anything. This is for the case when
2154 * a page is not corrupted yet (so it's still valid to access),
2155 * but has had a number of corrected errors and is better taken
2156 * out.
2157 *
2158 * The actual policy on when to do that is maintained by
2159 * user space.
2160 *
2161 * This should never impact any application or cause data loss,
2162 * however it might take some time.
2163 *
2164 * This is not a 100% solution for all memory, but tries to be
2165 * ``good enough'' for the majority of memory.
2166 */
2167 int soft_offline_page(unsigned long pfn, int flags)
2168 {
2169 int ret;
2170 bool try_again = true;
2171 struct page *page, *ref_page = NULL;
2172
2173 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2174
2175 if (!pfn_valid(pfn))
2176 return -ENXIO;
2177 if (flags & MF_COUNT_INCREASED)
2178 ref_page = pfn_to_page(pfn);
2179
2180 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2181 page = pfn_to_online_page(pfn);
2182 if (!page) {
2183 put_ref_page(ref_page);
2184 return -EIO;
2185 }
2186
2187 if (PageHWPoison(page)) {
2188 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2189 put_ref_page(ref_page);
2190 return 0;
2191 }
2192
2193 retry:
2194 get_online_mems();
2195 ret = get_hwpoison_page(page, flags);
2196 put_online_mems();
2197
2198 if (ret > 0) {
2199 ret = soft_offline_in_use_page(page);
2200 } else if (ret == 0) {
2201 if (soft_offline_free_page(page) && try_again) {
2202 try_again = false;
2203 goto retry;
2204 }
2205 } else if (ret == -EIO) {
2206 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2207 __func__, pfn, page->flags, &page->flags);
2208 }
2209
2210 return ret;
2211 }