]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory-failure.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220 void shake_page(struct page *p, int access)
221 {
222 if (PageHuge(p))
223 return;
224
225 if (!PageSlab(p)) {
226 lru_add_drain_all();
227 if (PageLRU(p))
228 return;
229 drain_all_pages(page_zone(p));
230 if (PageLRU(p) || is_free_buddy_page(p))
231 return;
232 }
233
234 /*
235 * Only call shrink_node_slabs here (which would also shrink
236 * other caches) if access is not potentially fatal.
237 */
238 if (access)
239 drop_slab_node(page_to_nid(p));
240 }
241 EXPORT_SYMBOL_GPL(shake_page);
242
243 /*
244 * Kill all processes that have a poisoned page mapped and then isolate
245 * the page.
246 *
247 * General strategy:
248 * Find all processes having the page mapped and kill them.
249 * But we keep a page reference around so that the page is not
250 * actually freed yet.
251 * Then stash the page away
252 *
253 * There's no convenient way to get back to mapped processes
254 * from the VMAs. So do a brute-force search over all
255 * running processes.
256 *
257 * Remember that machine checks are not common (or rather
258 * if they are common you have other problems), so this shouldn't
259 * be a performance issue.
260 *
261 * Also there are some races possible while we get from the
262 * error detection to actually handle it.
263 */
264
265 struct to_kill {
266 struct list_head nd;
267 struct task_struct *tsk;
268 unsigned long addr;
269 char addr_valid;
270 };
271
272 /*
273 * Failure handling: if we can't find or can't kill a process there's
274 * not much we can do. We just print a message and ignore otherwise.
275 */
276
277 /*
278 * Schedule a process for later kill.
279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280 * TBD would GFP_NOIO be enough?
281 */
282 static void add_to_kill(struct task_struct *tsk, struct page *p,
283 struct vm_area_struct *vma,
284 struct list_head *to_kill,
285 struct to_kill **tkc)
286 {
287 struct to_kill *tk;
288
289 if (*tkc) {
290 tk = *tkc;
291 *tkc = NULL;
292 } else {
293 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 if (!tk) {
295 pr_err("Memory failure: Out of memory while machine check handling\n");
296 return;
297 }
298 }
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
301
302 /*
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
307 */
308 if (tk->addr == -EFAULT) {
309 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
312 }
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
316 }
317
318 /*
319 * Kill the processes that have been collected earlier.
320 *
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
325 */
326 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
327 bool fail, struct page *page, unsigned long pfn,
328 int flags)
329 {
330 struct to_kill *tk, *next;
331
332 list_for_each_entry_safe (tk, next, to_kill, nd) {
333 if (forcekill) {
334 /*
335 * In case something went wrong with munmapping
336 * make sure the process doesn't catch the
337 * signal and then access the memory. Just kill it.
338 */
339 if (fail || tk->addr_valid == 0) {
340 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
353 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
354 pfn, tk->tsk->comm, tk->tsk->pid);
355 }
356 put_task_struct(tk->tsk);
357 kfree(tk);
358 }
359 }
360
361 /*
362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363 * on behalf of the thread group. Return task_struct of the (first found)
364 * dedicated thread if found, and return NULL otherwise.
365 *
366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367 * have to call rcu_read_lock/unlock() in this function.
368 */
369 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370 {
371 struct task_struct *t;
372
373 for_each_thread(tsk, t)
374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 return t;
376 return NULL;
377 }
378
379 /*
380 * Determine whether a given process is "early kill" process which expects
381 * to be signaled when some page under the process is hwpoisoned.
382 * Return task_struct of the dedicated thread (main thread unless explicitly
383 * specified) if the process is "early kill," and otherwise returns NULL.
384 */
385 static struct task_struct *task_early_kill(struct task_struct *tsk,
386 int force_early)
387 {
388 struct task_struct *t;
389 if (!tsk->mm)
390 return NULL;
391 if (force_early)
392 return tsk;
393 t = find_early_kill_thread(tsk);
394 if (t)
395 return t;
396 if (sysctl_memory_failure_early_kill)
397 return tsk;
398 return NULL;
399 }
400
401 /*
402 * Collect processes when the error hit an anonymous page.
403 */
404 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405 struct to_kill **tkc, int force_early)
406 {
407 struct vm_area_struct *vma;
408 struct task_struct *tsk;
409 struct anon_vma *av;
410 pgoff_t pgoff;
411
412 av = page_lock_anon_vma_read(page);
413 if (av == NULL) /* Not actually mapped anymore */
414 return;
415
416 pgoff = page_to_pgoff(page);
417 read_lock(&tasklist_lock);
418 for_each_process (tsk) {
419 struct anon_vma_chain *vmac;
420 struct task_struct *t = task_early_kill(tsk, force_early);
421
422 if (!t)
423 continue;
424 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 pgoff, pgoff) {
426 vma = vmac->vma;
427 if (!page_mapped_in_vma(page, vma))
428 continue;
429 if (vma->vm_mm == t->mm)
430 add_to_kill(t, page, vma, to_kill, tkc);
431 }
432 }
433 read_unlock(&tasklist_lock);
434 page_unlock_anon_vma_read(av);
435 }
436
437 /*
438 * Collect processes when the error hit a file mapped page.
439 */
440 static void collect_procs_file(struct page *page, struct list_head *to_kill,
441 struct to_kill **tkc, int force_early)
442 {
443 struct vm_area_struct *vma;
444 struct task_struct *tsk;
445 struct address_space *mapping = page->mapping;
446
447 i_mmap_lock_read(mapping);
448 read_lock(&tasklist_lock);
449 for_each_process(tsk) {
450 pgoff_t pgoff = page_to_pgoff(page);
451 struct task_struct *t = task_early_kill(tsk, force_early);
452
453 if (!t)
454 continue;
455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 pgoff) {
457 /*
458 * Send early kill signal to tasks where a vma covers
459 * the page but the corrupted page is not necessarily
460 * mapped it in its pte.
461 * Assume applications who requested early kill want
462 * to be informed of all such data corruptions.
463 */
464 if (vma->vm_mm == t->mm)
465 add_to_kill(t, page, vma, to_kill, tkc);
466 }
467 }
468 read_unlock(&tasklist_lock);
469 i_mmap_unlock_read(mapping);
470 }
471
472 /*
473 * Collect the processes who have the corrupted page mapped to kill.
474 * This is done in two steps for locking reasons.
475 * First preallocate one tokill structure outside the spin locks,
476 * so that we can kill at least one process reasonably reliable.
477 */
478 static void collect_procs(struct page *page, struct list_head *tokill,
479 int force_early)
480 {
481 struct to_kill *tk;
482
483 if (!page->mapping)
484 return;
485
486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 if (!tk)
488 return;
489 if (PageAnon(page))
490 collect_procs_anon(page, tokill, &tk, force_early);
491 else
492 collect_procs_file(page, tokill, &tk, force_early);
493 kfree(tk);
494 }
495
496 static const char *action_name[] = {
497 [MF_IGNORED] = "Ignored",
498 [MF_FAILED] = "Failed",
499 [MF_DELAYED] = "Delayed",
500 [MF_RECOVERED] = "Recovered",
501 };
502
503 static const char * const action_page_types[] = {
504 [MF_MSG_KERNEL] = "reserved kernel page",
505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
506 [MF_MSG_SLAB] = "kernel slab page",
507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
509 [MF_MSG_HUGE] = "huge page",
510 [MF_MSG_FREE_HUGE] = "free huge page",
511 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
512 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
513 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
514 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
515 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
516 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
517 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
518 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
519 [MF_MSG_CLEAN_LRU] = "clean LRU page",
520 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
521 [MF_MSG_BUDDY] = "free buddy page",
522 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
523 [MF_MSG_UNKNOWN] = "unknown page",
524 };
525
526 /*
527 * XXX: It is possible that a page is isolated from LRU cache,
528 * and then kept in swap cache or failed to remove from page cache.
529 * The page count will stop it from being freed by unpoison.
530 * Stress tests should be aware of this memory leak problem.
531 */
532 static int delete_from_lru_cache(struct page *p)
533 {
534 if (!isolate_lru_page(p)) {
535 /*
536 * Clear sensible page flags, so that the buddy system won't
537 * complain when the page is unpoison-and-freed.
538 */
539 ClearPageActive(p);
540 ClearPageUnevictable(p);
541
542 /*
543 * Poisoned page might never drop its ref count to 0 so we have
544 * to uncharge it manually from its memcg.
545 */
546 mem_cgroup_uncharge(p);
547
548 /*
549 * drop the page count elevated by isolate_lru_page()
550 */
551 put_page(p);
552 return 0;
553 }
554 return -EIO;
555 }
556
557 static int truncate_error_page(struct page *p, unsigned long pfn,
558 struct address_space *mapping)
559 {
560 int ret = MF_FAILED;
561
562 if (mapping->a_ops->error_remove_page) {
563 int err = mapping->a_ops->error_remove_page(mapping, p);
564
565 if (err != 0) {
566 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
567 pfn, err);
568 } else if (page_has_private(p) &&
569 !try_to_release_page(p, GFP_NOIO)) {
570 pr_info("Memory failure: %#lx: failed to release buffers\n",
571 pfn);
572 } else {
573 ret = MF_RECOVERED;
574 }
575 } else {
576 /*
577 * If the file system doesn't support it just invalidate
578 * This fails on dirty or anything with private pages
579 */
580 if (invalidate_inode_page(p))
581 ret = MF_RECOVERED;
582 else
583 pr_info("Memory failure: %#lx: Failed to invalidate\n",
584 pfn);
585 }
586
587 return ret;
588 }
589
590 /*
591 * Error hit kernel page.
592 * Do nothing, try to be lucky and not touch this instead. For a few cases we
593 * could be more sophisticated.
594 */
595 static int me_kernel(struct page *p, unsigned long pfn)
596 {
597 return MF_IGNORED;
598 }
599
600 /*
601 * Page in unknown state. Do nothing.
602 */
603 static int me_unknown(struct page *p, unsigned long pfn)
604 {
605 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
606 return MF_FAILED;
607 }
608
609 /*
610 * Clean (or cleaned) page cache page.
611 */
612 static int me_pagecache_clean(struct page *p, unsigned long pfn)
613 {
614 struct address_space *mapping;
615
616 delete_from_lru_cache(p);
617
618 /*
619 * For anonymous pages we're done the only reference left
620 * should be the one m_f() holds.
621 */
622 if (PageAnon(p))
623 return MF_RECOVERED;
624
625 /*
626 * Now truncate the page in the page cache. This is really
627 * more like a "temporary hole punch"
628 * Don't do this for block devices when someone else
629 * has a reference, because it could be file system metadata
630 * and that's not safe to truncate.
631 */
632 mapping = page_mapping(p);
633 if (!mapping) {
634 /*
635 * Page has been teared down in the meanwhile
636 */
637 return MF_FAILED;
638 }
639
640 /*
641 * Truncation is a bit tricky. Enable it per file system for now.
642 *
643 * Open: to take i_mutex or not for this? Right now we don't.
644 */
645 return truncate_error_page(p, pfn, mapping);
646 }
647
648 /*
649 * Dirty pagecache page
650 * Issues: when the error hit a hole page the error is not properly
651 * propagated.
652 */
653 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
654 {
655 struct address_space *mapping = page_mapping(p);
656
657 SetPageError(p);
658 /* TBD: print more information about the file. */
659 if (mapping) {
660 /*
661 * IO error will be reported by write(), fsync(), etc.
662 * who check the mapping.
663 * This way the application knows that something went
664 * wrong with its dirty file data.
665 *
666 * There's one open issue:
667 *
668 * The EIO will be only reported on the next IO
669 * operation and then cleared through the IO map.
670 * Normally Linux has two mechanisms to pass IO error
671 * first through the AS_EIO flag in the address space
672 * and then through the PageError flag in the page.
673 * Since we drop pages on memory failure handling the
674 * only mechanism open to use is through AS_AIO.
675 *
676 * This has the disadvantage that it gets cleared on
677 * the first operation that returns an error, while
678 * the PageError bit is more sticky and only cleared
679 * when the page is reread or dropped. If an
680 * application assumes it will always get error on
681 * fsync, but does other operations on the fd before
682 * and the page is dropped between then the error
683 * will not be properly reported.
684 *
685 * This can already happen even without hwpoisoned
686 * pages: first on metadata IO errors (which only
687 * report through AS_EIO) or when the page is dropped
688 * at the wrong time.
689 *
690 * So right now we assume that the application DTRT on
691 * the first EIO, but we're not worse than other parts
692 * of the kernel.
693 */
694 mapping_set_error(mapping, -EIO);
695 }
696
697 return me_pagecache_clean(p, pfn);
698 }
699
700 /*
701 * Clean and dirty swap cache.
702 *
703 * Dirty swap cache page is tricky to handle. The page could live both in page
704 * cache and swap cache(ie. page is freshly swapped in). So it could be
705 * referenced concurrently by 2 types of PTEs:
706 * normal PTEs and swap PTEs. We try to handle them consistently by calling
707 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
708 * and then
709 * - clear dirty bit to prevent IO
710 * - remove from LRU
711 * - but keep in the swap cache, so that when we return to it on
712 * a later page fault, we know the application is accessing
713 * corrupted data and shall be killed (we installed simple
714 * interception code in do_swap_page to catch it).
715 *
716 * Clean swap cache pages can be directly isolated. A later page fault will
717 * bring in the known good data from disk.
718 */
719 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
720 {
721 ClearPageDirty(p);
722 /* Trigger EIO in shmem: */
723 ClearPageUptodate(p);
724
725 if (!delete_from_lru_cache(p))
726 return MF_DELAYED;
727 else
728 return MF_FAILED;
729 }
730
731 static int me_swapcache_clean(struct page *p, unsigned long pfn)
732 {
733 delete_from_swap_cache(p);
734
735 if (!delete_from_lru_cache(p))
736 return MF_RECOVERED;
737 else
738 return MF_FAILED;
739 }
740
741 /*
742 * Huge pages. Needs work.
743 * Issues:
744 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
745 * To narrow down kill region to one page, we need to break up pmd.
746 */
747 static int me_huge_page(struct page *p, unsigned long pfn)
748 {
749 int res = 0;
750 struct page *hpage = compound_head(p);
751 struct address_space *mapping;
752
753 if (!PageHuge(hpage))
754 return MF_DELAYED;
755
756 mapping = page_mapping(hpage);
757 if (mapping) {
758 res = truncate_error_page(hpage, pfn, mapping);
759 } else {
760 unlock_page(hpage);
761 /*
762 * migration entry prevents later access on error anonymous
763 * hugepage, so we can free and dissolve it into buddy to
764 * save healthy subpages.
765 */
766 if (PageAnon(hpage))
767 put_page(hpage);
768 dissolve_free_huge_page(p);
769 res = MF_RECOVERED;
770 lock_page(hpage);
771 }
772
773 return res;
774 }
775
776 /*
777 * Various page states we can handle.
778 *
779 * A page state is defined by its current page->flags bits.
780 * The table matches them in order and calls the right handler.
781 *
782 * This is quite tricky because we can access page at any time
783 * in its live cycle, so all accesses have to be extremely careful.
784 *
785 * This is not complete. More states could be added.
786 * For any missing state don't attempt recovery.
787 */
788
789 #define dirty (1UL << PG_dirty)
790 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
791 #define unevict (1UL << PG_unevictable)
792 #define mlock (1UL << PG_mlocked)
793 #define writeback (1UL << PG_writeback)
794 #define lru (1UL << PG_lru)
795 #define head (1UL << PG_head)
796 #define slab (1UL << PG_slab)
797 #define reserved (1UL << PG_reserved)
798
799 static struct page_state {
800 unsigned long mask;
801 unsigned long res;
802 enum mf_action_page_type type;
803 int (*action)(struct page *p, unsigned long pfn);
804 } error_states[] = {
805 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
806 /*
807 * free pages are specially detected outside this table:
808 * PG_buddy pages only make a small fraction of all free pages.
809 */
810
811 /*
812 * Could in theory check if slab page is free or if we can drop
813 * currently unused objects without touching them. But just
814 * treat it as standard kernel for now.
815 */
816 { slab, slab, MF_MSG_SLAB, me_kernel },
817
818 { head, head, MF_MSG_HUGE, me_huge_page },
819
820 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
821 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
822
823 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
824 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
825
826 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
827 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
828
829 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
830 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
831
832 /*
833 * Catchall entry: must be at end.
834 */
835 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
836 };
837
838 #undef dirty
839 #undef sc
840 #undef unevict
841 #undef mlock
842 #undef writeback
843 #undef lru
844 #undef head
845 #undef slab
846 #undef reserved
847
848 /*
849 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
850 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
851 */
852 static void action_result(unsigned long pfn, enum mf_action_page_type type,
853 enum mf_result result)
854 {
855 trace_memory_failure_event(pfn, type, result);
856
857 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
858 pfn, action_page_types[type], action_name[result]);
859 }
860
861 static int page_action(struct page_state *ps, struct page *p,
862 unsigned long pfn)
863 {
864 int result;
865 int count;
866
867 result = ps->action(p, pfn);
868
869 count = page_count(p) - 1;
870 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
871 count--;
872 if (count > 0) {
873 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
874 pfn, action_page_types[ps->type], count);
875 result = MF_FAILED;
876 }
877 action_result(pfn, ps->type, result);
878
879 /* Could do more checks here if page looks ok */
880 /*
881 * Could adjust zone counters here to correct for the missing page.
882 */
883
884 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
885 }
886
887 /**
888 * get_hwpoison_page() - Get refcount for memory error handling:
889 * @page: raw error page (hit by memory error)
890 *
891 * Return: return 0 if failed to grab the refcount, otherwise true (some
892 * non-zero value.)
893 */
894 int get_hwpoison_page(struct page *page)
895 {
896 struct page *head = compound_head(page);
897
898 if (!PageHuge(head) && PageTransHuge(head)) {
899 /*
900 * Non anonymous thp exists only in allocation/free time. We
901 * can't handle such a case correctly, so let's give it up.
902 * This should be better than triggering BUG_ON when kernel
903 * tries to touch the "partially handled" page.
904 */
905 if (!PageAnon(head)) {
906 pr_err("Memory failure: %#lx: non anonymous thp\n",
907 page_to_pfn(page));
908 return 0;
909 }
910 }
911
912 if (get_page_unless_zero(head)) {
913 if (head == compound_head(page))
914 return 1;
915
916 pr_info("Memory failure: %#lx cannot catch tail\n",
917 page_to_pfn(page));
918 put_page(head);
919 }
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(get_hwpoison_page);
924
925 /*
926 * Do all that is necessary to remove user space mappings. Unmap
927 * the pages and send SIGBUS to the processes if the data was dirty.
928 */
929 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
930 int trapno, int flags, struct page **hpagep)
931 {
932 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
933 struct address_space *mapping;
934 LIST_HEAD(tokill);
935 bool unmap_success;
936 int kill = 1, forcekill;
937 struct page *hpage = *hpagep;
938 bool mlocked = PageMlocked(hpage);
939
940 /*
941 * Here we are interested only in user-mapped pages, so skip any
942 * other types of pages.
943 */
944 if (PageReserved(p) || PageSlab(p))
945 return true;
946 if (!(PageLRU(hpage) || PageHuge(p)))
947 return true;
948
949 /*
950 * This check implies we don't kill processes if their pages
951 * are in the swap cache early. Those are always late kills.
952 */
953 if (!page_mapped(hpage))
954 return true;
955
956 if (PageKsm(p)) {
957 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
958 return false;
959 }
960
961 if (PageSwapCache(p)) {
962 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
963 pfn);
964 ttu |= TTU_IGNORE_HWPOISON;
965 }
966
967 /*
968 * Propagate the dirty bit from PTEs to struct page first, because we
969 * need this to decide if we should kill or just drop the page.
970 * XXX: the dirty test could be racy: set_page_dirty() may not always
971 * be called inside page lock (it's recommended but not enforced).
972 */
973 mapping = page_mapping(hpage);
974 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
975 mapping_cap_writeback_dirty(mapping)) {
976 if (page_mkclean(hpage)) {
977 SetPageDirty(hpage);
978 } else {
979 kill = 0;
980 ttu |= TTU_IGNORE_HWPOISON;
981 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
982 pfn);
983 }
984 }
985
986 /*
987 * First collect all the processes that have the page
988 * mapped in dirty form. This has to be done before try_to_unmap,
989 * because ttu takes the rmap data structures down.
990 *
991 * Error handling: We ignore errors here because
992 * there's nothing that can be done.
993 */
994 if (kill)
995 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
996
997 unmap_success = try_to_unmap(hpage, ttu);
998 if (!unmap_success)
999 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1000 pfn, page_mapcount(hpage));
1001
1002 /*
1003 * try_to_unmap() might put mlocked page in lru cache, so call
1004 * shake_page() again to ensure that it's flushed.
1005 */
1006 if (mlocked)
1007 shake_page(hpage, 0);
1008
1009 /*
1010 * Now that the dirty bit has been propagated to the
1011 * struct page and all unmaps done we can decide if
1012 * killing is needed or not. Only kill when the page
1013 * was dirty or the process is not restartable,
1014 * otherwise the tokill list is merely
1015 * freed. When there was a problem unmapping earlier
1016 * use a more force-full uncatchable kill to prevent
1017 * any accesses to the poisoned memory.
1018 */
1019 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1020 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1021
1022 return unmap_success;
1023 }
1024
1025 static int identify_page_state(unsigned long pfn, struct page *p,
1026 unsigned long page_flags)
1027 {
1028 struct page_state *ps;
1029
1030 /*
1031 * The first check uses the current page flags which may not have any
1032 * relevant information. The second check with the saved page flags is
1033 * carried out only if the first check can't determine the page status.
1034 */
1035 for (ps = error_states;; ps++)
1036 if ((p->flags & ps->mask) == ps->res)
1037 break;
1038
1039 page_flags |= (p->flags & (1UL << PG_dirty));
1040
1041 if (!ps->mask)
1042 for (ps = error_states;; ps++)
1043 if ((page_flags & ps->mask) == ps->res)
1044 break;
1045 return page_action(ps, p, pfn);
1046 }
1047
1048 static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1049 {
1050 struct page *p = pfn_to_page(pfn);
1051 struct page *head = compound_head(p);
1052 int res;
1053 unsigned long page_flags;
1054
1055 if (TestSetPageHWPoison(head)) {
1056 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1057 pfn);
1058 return 0;
1059 }
1060
1061 num_poisoned_pages_inc();
1062
1063 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1064 /*
1065 * Check "filter hit" and "race with other subpage."
1066 */
1067 lock_page(head);
1068 if (PageHWPoison(head)) {
1069 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1070 || (p != head && TestSetPageHWPoison(head))) {
1071 num_poisoned_pages_dec();
1072 unlock_page(head);
1073 return 0;
1074 }
1075 }
1076 unlock_page(head);
1077 dissolve_free_huge_page(p);
1078 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1079 return 0;
1080 }
1081
1082 lock_page(head);
1083 page_flags = head->flags;
1084
1085 if (!PageHWPoison(head)) {
1086 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1087 num_poisoned_pages_dec();
1088 unlock_page(head);
1089 put_hwpoison_page(head);
1090 return 0;
1091 }
1092
1093 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1094 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1095 res = -EBUSY;
1096 goto out;
1097 }
1098
1099 res = identify_page_state(pfn, p, page_flags);
1100 out:
1101 unlock_page(head);
1102 return res;
1103 }
1104
1105 /**
1106 * memory_failure - Handle memory failure of a page.
1107 * @pfn: Page Number of the corrupted page
1108 * @trapno: Trap number reported in the signal to user space.
1109 * @flags: fine tune action taken
1110 *
1111 * This function is called by the low level machine check code
1112 * of an architecture when it detects hardware memory corruption
1113 * of a page. It tries its best to recover, which includes
1114 * dropping pages, killing processes etc.
1115 *
1116 * The function is primarily of use for corruptions that
1117 * happen outside the current execution context (e.g. when
1118 * detected by a background scrubber)
1119 *
1120 * Must run in process context (e.g. a work queue) with interrupts
1121 * enabled and no spinlocks hold.
1122 */
1123 int memory_failure(unsigned long pfn, int trapno, int flags)
1124 {
1125 struct page *p;
1126 struct page *hpage;
1127 struct page *orig_head;
1128 int res;
1129 unsigned long page_flags;
1130
1131 if (!sysctl_memory_failure_recovery)
1132 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1133
1134 if (!pfn_valid(pfn)) {
1135 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1136 pfn);
1137 return -ENXIO;
1138 }
1139
1140 p = pfn_to_page(pfn);
1141 if (PageHuge(p))
1142 return memory_failure_hugetlb(pfn, trapno, flags);
1143 if (TestSetPageHWPoison(p)) {
1144 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1145 pfn);
1146 return 0;
1147 }
1148
1149 arch_unmap_kpfn(pfn);
1150
1151 orig_head = hpage = compound_head(p);
1152 num_poisoned_pages_inc();
1153
1154 /*
1155 * We need/can do nothing about count=0 pages.
1156 * 1) it's a free page, and therefore in safe hand:
1157 * prep_new_page() will be the gate keeper.
1158 * 2) it's part of a non-compound high order page.
1159 * Implies some kernel user: cannot stop them from
1160 * R/W the page; let's pray that the page has been
1161 * used and will be freed some time later.
1162 * In fact it's dangerous to directly bump up page count from 0,
1163 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1164 */
1165 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1166 if (is_free_buddy_page(p)) {
1167 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1168 return 0;
1169 } else {
1170 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1171 return -EBUSY;
1172 }
1173 }
1174
1175 if (PageTransHuge(hpage)) {
1176 lock_page(p);
1177 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1178 unlock_page(p);
1179 if (!PageAnon(p))
1180 pr_err("Memory failure: %#lx: non anonymous thp\n",
1181 pfn);
1182 else
1183 pr_err("Memory failure: %#lx: thp split failed\n",
1184 pfn);
1185 if (TestClearPageHWPoison(p))
1186 num_poisoned_pages_dec();
1187 put_hwpoison_page(p);
1188 return -EBUSY;
1189 }
1190 unlock_page(p);
1191 VM_BUG_ON_PAGE(!page_count(p), p);
1192 hpage = compound_head(p);
1193 }
1194
1195 /*
1196 * We ignore non-LRU pages for good reasons.
1197 * - PG_locked is only well defined for LRU pages and a few others
1198 * - to avoid races with __SetPageLocked()
1199 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1200 * The check (unnecessarily) ignores LRU pages being isolated and
1201 * walked by the page reclaim code, however that's not a big loss.
1202 */
1203 shake_page(p, 0);
1204 /* shake_page could have turned it free. */
1205 if (!PageLRU(p) && is_free_buddy_page(p)) {
1206 if (flags & MF_COUNT_INCREASED)
1207 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1208 else
1209 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1210 return 0;
1211 }
1212
1213 lock_page(p);
1214
1215 /*
1216 * The page could have changed compound pages during the locking.
1217 * If this happens just bail out.
1218 */
1219 if (PageCompound(p) && compound_head(p) != orig_head) {
1220 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1221 res = -EBUSY;
1222 goto out;
1223 }
1224
1225 /*
1226 * We use page flags to determine what action should be taken, but
1227 * the flags can be modified by the error containment action. One
1228 * example is an mlocked page, where PG_mlocked is cleared by
1229 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1230 * correctly, we save a copy of the page flags at this time.
1231 */
1232 if (PageHuge(p))
1233 page_flags = hpage->flags;
1234 else
1235 page_flags = p->flags;
1236
1237 /*
1238 * unpoison always clear PG_hwpoison inside page lock
1239 */
1240 if (!PageHWPoison(p)) {
1241 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1242 num_poisoned_pages_dec();
1243 unlock_page(p);
1244 put_hwpoison_page(p);
1245 return 0;
1246 }
1247 if (hwpoison_filter(p)) {
1248 if (TestClearPageHWPoison(p))
1249 num_poisoned_pages_dec();
1250 unlock_page(p);
1251 put_hwpoison_page(p);
1252 return 0;
1253 }
1254
1255 if (!PageTransTail(p) && !PageLRU(p))
1256 goto identify_page_state;
1257
1258 /*
1259 * It's very difficult to mess with pages currently under IO
1260 * and in many cases impossible, so we just avoid it here.
1261 */
1262 wait_on_page_writeback(p);
1263
1264 /*
1265 * Now take care of user space mappings.
1266 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1267 *
1268 * When the raw error page is thp tail page, hpage points to the raw
1269 * page after thp split.
1270 */
1271 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1272 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1273 res = -EBUSY;
1274 goto out;
1275 }
1276
1277 /*
1278 * Torn down by someone else?
1279 */
1280 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1281 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1282 res = -EBUSY;
1283 goto out;
1284 }
1285
1286 identify_page_state:
1287 res = identify_page_state(pfn, p, page_flags);
1288 out:
1289 unlock_page(p);
1290 return res;
1291 }
1292 EXPORT_SYMBOL_GPL(memory_failure);
1293
1294 #define MEMORY_FAILURE_FIFO_ORDER 4
1295 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1296
1297 struct memory_failure_entry {
1298 unsigned long pfn;
1299 int trapno;
1300 int flags;
1301 };
1302
1303 struct memory_failure_cpu {
1304 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1305 MEMORY_FAILURE_FIFO_SIZE);
1306 spinlock_t lock;
1307 struct work_struct work;
1308 };
1309
1310 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1311
1312 /**
1313 * memory_failure_queue - Schedule handling memory failure of a page.
1314 * @pfn: Page Number of the corrupted page
1315 * @trapno: Trap number reported in the signal to user space.
1316 * @flags: Flags for memory failure handling
1317 *
1318 * This function is called by the low level hardware error handler
1319 * when it detects hardware memory corruption of a page. It schedules
1320 * the recovering of error page, including dropping pages, killing
1321 * processes etc.
1322 *
1323 * The function is primarily of use for corruptions that
1324 * happen outside the current execution context (e.g. when
1325 * detected by a background scrubber)
1326 *
1327 * Can run in IRQ context.
1328 */
1329 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1330 {
1331 struct memory_failure_cpu *mf_cpu;
1332 unsigned long proc_flags;
1333 struct memory_failure_entry entry = {
1334 .pfn = pfn,
1335 .trapno = trapno,
1336 .flags = flags,
1337 };
1338
1339 mf_cpu = &get_cpu_var(memory_failure_cpu);
1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1341 if (kfifo_put(&mf_cpu->fifo, entry))
1342 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1343 else
1344 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1345 pfn);
1346 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347 put_cpu_var(memory_failure_cpu);
1348 }
1349 EXPORT_SYMBOL_GPL(memory_failure_queue);
1350
1351 static void memory_failure_work_func(struct work_struct *work)
1352 {
1353 struct memory_failure_cpu *mf_cpu;
1354 struct memory_failure_entry entry = { 0, };
1355 unsigned long proc_flags;
1356 int gotten;
1357
1358 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1359 for (;;) {
1360 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1361 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1362 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1363 if (!gotten)
1364 break;
1365 if (entry.flags & MF_SOFT_OFFLINE)
1366 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1367 else
1368 memory_failure(entry.pfn, entry.trapno, entry.flags);
1369 }
1370 }
1371
1372 static int __init memory_failure_init(void)
1373 {
1374 struct memory_failure_cpu *mf_cpu;
1375 int cpu;
1376
1377 for_each_possible_cpu(cpu) {
1378 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1379 spin_lock_init(&mf_cpu->lock);
1380 INIT_KFIFO(mf_cpu->fifo);
1381 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1382 }
1383
1384 return 0;
1385 }
1386 core_initcall(memory_failure_init);
1387
1388 #define unpoison_pr_info(fmt, pfn, rs) \
1389 ({ \
1390 if (__ratelimit(rs)) \
1391 pr_info(fmt, pfn); \
1392 })
1393
1394 /**
1395 * unpoison_memory - Unpoison a previously poisoned page
1396 * @pfn: Page number of the to be unpoisoned page
1397 *
1398 * Software-unpoison a page that has been poisoned by
1399 * memory_failure() earlier.
1400 *
1401 * This is only done on the software-level, so it only works
1402 * for linux injected failures, not real hardware failures
1403 *
1404 * Returns 0 for success, otherwise -errno.
1405 */
1406 int unpoison_memory(unsigned long pfn)
1407 {
1408 struct page *page;
1409 struct page *p;
1410 int freeit = 0;
1411 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1412 DEFAULT_RATELIMIT_BURST);
1413
1414 if (!pfn_valid(pfn))
1415 return -ENXIO;
1416
1417 p = pfn_to_page(pfn);
1418 page = compound_head(p);
1419
1420 if (!PageHWPoison(p)) {
1421 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1422 pfn, &unpoison_rs);
1423 return 0;
1424 }
1425
1426 if (page_count(page) > 1) {
1427 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1428 pfn, &unpoison_rs);
1429 return 0;
1430 }
1431
1432 if (page_mapped(page)) {
1433 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1434 pfn, &unpoison_rs);
1435 return 0;
1436 }
1437
1438 if (page_mapping(page)) {
1439 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1440 pfn, &unpoison_rs);
1441 return 0;
1442 }
1443
1444 /*
1445 * unpoison_memory() can encounter thp only when the thp is being
1446 * worked by memory_failure() and the page lock is not held yet.
1447 * In such case, we yield to memory_failure() and make unpoison fail.
1448 */
1449 if (!PageHuge(page) && PageTransHuge(page)) {
1450 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1451 pfn, &unpoison_rs);
1452 return 0;
1453 }
1454
1455 if (!get_hwpoison_page(p)) {
1456 if (TestClearPageHWPoison(p))
1457 num_poisoned_pages_dec();
1458 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1459 pfn, &unpoison_rs);
1460 return 0;
1461 }
1462
1463 lock_page(page);
1464 /*
1465 * This test is racy because PG_hwpoison is set outside of page lock.
1466 * That's acceptable because that won't trigger kernel panic. Instead,
1467 * the PG_hwpoison page will be caught and isolated on the entrance to
1468 * the free buddy page pool.
1469 */
1470 if (TestClearPageHWPoison(page)) {
1471 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1472 pfn, &unpoison_rs);
1473 num_poisoned_pages_dec();
1474 freeit = 1;
1475 }
1476 unlock_page(page);
1477
1478 put_hwpoison_page(page);
1479 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1480 put_hwpoison_page(page);
1481
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(unpoison_memory);
1485
1486 static struct page *new_page(struct page *p, unsigned long private, int **x)
1487 {
1488 int nid = page_to_nid(p);
1489
1490 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1491 }
1492
1493 /*
1494 * Safely get reference count of an arbitrary page.
1495 * Returns 0 for a free page, -EIO for a zero refcount page
1496 * that is not free, and 1 for any other page type.
1497 * For 1 the page is returned with increased page count, otherwise not.
1498 */
1499 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1500 {
1501 int ret;
1502
1503 if (flags & MF_COUNT_INCREASED)
1504 return 1;
1505
1506 /*
1507 * When the target page is a free hugepage, just remove it
1508 * from free hugepage list.
1509 */
1510 if (!get_hwpoison_page(p)) {
1511 if (PageHuge(p)) {
1512 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1513 ret = 0;
1514 } else if (is_free_buddy_page(p)) {
1515 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1516 ret = 0;
1517 } else {
1518 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1519 __func__, pfn, p->flags);
1520 ret = -EIO;
1521 }
1522 } else {
1523 /* Not a free page */
1524 ret = 1;
1525 }
1526 return ret;
1527 }
1528
1529 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1530 {
1531 int ret = __get_any_page(page, pfn, flags);
1532
1533 if (ret == 1 && !PageHuge(page) &&
1534 !PageLRU(page) && !__PageMovable(page)) {
1535 /*
1536 * Try to free it.
1537 */
1538 put_hwpoison_page(page);
1539 shake_page(page, 1);
1540
1541 /*
1542 * Did it turn free?
1543 */
1544 ret = __get_any_page(page, pfn, 0);
1545 if (ret == 1 && !PageLRU(page)) {
1546 /* Drop page reference which is from __get_any_page() */
1547 put_hwpoison_page(page);
1548 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1549 pfn, page->flags, &page->flags);
1550 return -EIO;
1551 }
1552 }
1553 return ret;
1554 }
1555
1556 static int soft_offline_huge_page(struct page *page, int flags)
1557 {
1558 int ret;
1559 unsigned long pfn = page_to_pfn(page);
1560 struct page *hpage = compound_head(page);
1561 LIST_HEAD(pagelist);
1562
1563 /*
1564 * This double-check of PageHWPoison is to avoid the race with
1565 * memory_failure(). See also comment in __soft_offline_page().
1566 */
1567 lock_page(hpage);
1568 if (PageHWPoison(hpage)) {
1569 unlock_page(hpage);
1570 put_hwpoison_page(hpage);
1571 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1572 return -EBUSY;
1573 }
1574 unlock_page(hpage);
1575
1576 ret = isolate_huge_page(hpage, &pagelist);
1577 /*
1578 * get_any_page() and isolate_huge_page() takes a refcount each,
1579 * so need to drop one here.
1580 */
1581 put_hwpoison_page(hpage);
1582 if (!ret) {
1583 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1584 return -EBUSY;
1585 }
1586
1587 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1588 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1589 if (ret) {
1590 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1591 pfn, ret, page->flags, &page->flags);
1592 if (!list_empty(&pagelist))
1593 putback_movable_pages(&pagelist);
1594 if (ret > 0)
1595 ret = -EIO;
1596 } else {
1597 if (PageHuge(page))
1598 dissolve_free_huge_page(page);
1599 }
1600 return ret;
1601 }
1602
1603 static int __soft_offline_page(struct page *page, int flags)
1604 {
1605 int ret;
1606 unsigned long pfn = page_to_pfn(page);
1607
1608 /*
1609 * Check PageHWPoison again inside page lock because PageHWPoison
1610 * is set by memory_failure() outside page lock. Note that
1611 * memory_failure() also double-checks PageHWPoison inside page lock,
1612 * so there's no race between soft_offline_page() and memory_failure().
1613 */
1614 lock_page(page);
1615 wait_on_page_writeback(page);
1616 if (PageHWPoison(page)) {
1617 unlock_page(page);
1618 put_hwpoison_page(page);
1619 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1620 return -EBUSY;
1621 }
1622 /*
1623 * Try to invalidate first. This should work for
1624 * non dirty unmapped page cache pages.
1625 */
1626 ret = invalidate_inode_page(page);
1627 unlock_page(page);
1628 /*
1629 * RED-PEN would be better to keep it isolated here, but we
1630 * would need to fix isolation locking first.
1631 */
1632 if (ret == 1) {
1633 put_hwpoison_page(page);
1634 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1635 SetPageHWPoison(page);
1636 num_poisoned_pages_inc();
1637 return 0;
1638 }
1639
1640 /*
1641 * Simple invalidation didn't work.
1642 * Try to migrate to a new page instead. migrate.c
1643 * handles a large number of cases for us.
1644 */
1645 if (PageLRU(page))
1646 ret = isolate_lru_page(page);
1647 else
1648 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1649 /*
1650 * Drop page reference which is came from get_any_page()
1651 * successful isolate_lru_page() already took another one.
1652 */
1653 put_hwpoison_page(page);
1654 if (!ret) {
1655 LIST_HEAD(pagelist);
1656 /*
1657 * After isolated lru page, the PageLRU will be cleared,
1658 * so use !__PageMovable instead for LRU page's mapping
1659 * cannot have PAGE_MAPPING_MOVABLE.
1660 */
1661 if (!__PageMovable(page))
1662 inc_node_page_state(page, NR_ISOLATED_ANON +
1663 page_is_file_cache(page));
1664 list_add(&page->lru, &pagelist);
1665 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1666 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1667 if (ret) {
1668 if (!list_empty(&pagelist))
1669 putback_movable_pages(&pagelist);
1670
1671 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1672 pfn, ret, page->flags, &page->flags);
1673 if (ret > 0)
1674 ret = -EIO;
1675 }
1676 } else {
1677 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1678 pfn, ret, page_count(page), page->flags, &page->flags);
1679 }
1680 return ret;
1681 }
1682
1683 static int soft_offline_in_use_page(struct page *page, int flags)
1684 {
1685 int ret;
1686 struct page *hpage = compound_head(page);
1687
1688 if (!PageHuge(page) && PageTransHuge(hpage)) {
1689 lock_page(hpage);
1690 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1691 unlock_page(hpage);
1692 if (!PageAnon(hpage))
1693 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1694 else
1695 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1696 put_hwpoison_page(hpage);
1697 return -EBUSY;
1698 }
1699 unlock_page(hpage);
1700 get_hwpoison_page(page);
1701 put_hwpoison_page(hpage);
1702 }
1703
1704 if (PageHuge(page))
1705 ret = soft_offline_huge_page(page, flags);
1706 else
1707 ret = __soft_offline_page(page, flags);
1708
1709 return ret;
1710 }
1711
1712 static void soft_offline_free_page(struct page *page)
1713 {
1714 struct page *head = compound_head(page);
1715
1716 if (!TestSetPageHWPoison(head)) {
1717 num_poisoned_pages_inc();
1718 if (PageHuge(head))
1719 dissolve_free_huge_page(page);
1720 }
1721 }
1722
1723 /**
1724 * soft_offline_page - Soft offline a page.
1725 * @page: page to offline
1726 * @flags: flags. Same as memory_failure().
1727 *
1728 * Returns 0 on success, otherwise negated errno.
1729 *
1730 * Soft offline a page, by migration or invalidation,
1731 * without killing anything. This is for the case when
1732 * a page is not corrupted yet (so it's still valid to access),
1733 * but has had a number of corrected errors and is better taken
1734 * out.
1735 *
1736 * The actual policy on when to do that is maintained by
1737 * user space.
1738 *
1739 * This should never impact any application or cause data loss,
1740 * however it might take some time.
1741 *
1742 * This is not a 100% solution for all memory, but tries to be
1743 * ``good enough'' for the majority of memory.
1744 */
1745 int soft_offline_page(struct page *page, int flags)
1746 {
1747 int ret;
1748 unsigned long pfn = page_to_pfn(page);
1749
1750 if (PageHWPoison(page)) {
1751 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1752 if (flags & MF_COUNT_INCREASED)
1753 put_hwpoison_page(page);
1754 return -EBUSY;
1755 }
1756
1757 get_online_mems();
1758 ret = get_any_page(page, pfn, flags);
1759 put_online_mems();
1760
1761 if (ret > 0)
1762 ret = soft_offline_in_use_page(page, flags);
1763 else if (ret == 0)
1764 soft_offline_free_page(page);
1765
1766 return ret;
1767 }