]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory-failure.c
Merge branches 'acpi-ec', 'acpi-irq' and 'acpi-quirks'
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/page-isolation.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 struct address_space *mapping;
86 dev_t dev;
87
88 if (hwpoison_filter_dev_major == ~0U &&
89 hwpoison_filter_dev_minor == ~0U)
90 return 0;
91
92 /*
93 * page_mapping() does not accept slab pages.
94 */
95 if (PageSlab(p))
96 return -EINVAL;
97
98 mapping = page_mapping(p);
99 if (mapping == NULL || mapping->host == NULL)
100 return -EINVAL;
101
102 dev = mapping->host->i_sb->s_dev;
103 if (hwpoison_filter_dev_major != ~0U &&
104 hwpoison_filter_dev_major != MAJOR(dev))
105 return -EINVAL;
106 if (hwpoison_filter_dev_minor != ~0U &&
107 hwpoison_filter_dev_minor != MINOR(dev))
108 return -EINVAL;
109
110 return 0;
111 }
112
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 if (!hwpoison_filter_flags_mask)
116 return 0;
117
118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 hwpoison_filter_flags_value)
120 return 0;
121 else
122 return -EINVAL;
123 }
124
125 /*
126 * This allows stress tests to limit test scope to a collection of tasks
127 * by putting them under some memcg. This prevents killing unrelated/important
128 * processes such as /sbin/init. Note that the target task may share clean
129 * pages with init (eg. libc text), which is harmless. If the target task
130 * share _dirty_ pages with another task B, the test scheme must make sure B
131 * is also included in the memcg. At last, due to race conditions this filter
132 * can only guarantee that the page either belongs to the memcg tasks, or is
133 * a freed page.
134 */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 return -EINVAL;
145
146 return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151
152 int hwpoison_filter(struct page *p)
153 {
154 if (!hwpoison_filter_enable)
155 return 0;
156
157 if (hwpoison_filter_dev(p))
158 return -EINVAL;
159
160 if (hwpoison_filter_flags(p))
161 return -EINVAL;
162
163 if (hwpoison_filter_task(p))
164 return -EINVAL;
165
166 return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 return 0;
172 }
173 #endif
174
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176
177 /*
178 * Send all the processes who have the page mapped a signal.
179 * ``action optional'' if they are not immediately affected by the error
180 * ``action required'' if error happened in current execution context
181 */
182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn, struct page *page, int flags)
184 {
185 struct siginfo si;
186 int ret;
187
188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
192 si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195 #endif
196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197
198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 si.si_code = BUS_MCEERR_AR;
200 ret = force_sig_info(SIGBUS, &si, current);
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
211 if (ret < 0)
212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213 t->comm, t->pid, ret);
214 return ret;
215 }
216
217 /*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
221 void shake_page(struct page *p, int access)
222 {
223 if (PageHuge(p))
224 return;
225
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
230 drain_all_pages(page_zone(p));
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
234
235 /*
236 * Only call shrink_node_slabs here (which would also shrink
237 * other caches) if access is not potentially fatal.
238 */
239 if (access)
240 drop_slab_node(page_to_nid(p));
241 }
242 EXPORT_SYMBOL_GPL(shake_page);
243
244 /*
245 * Kill all processes that have a poisoned page mapped and then isolate
246 * the page.
247 *
248 * General strategy:
249 * Find all processes having the page mapped and kill them.
250 * But we keep a page reference around so that the page is not
251 * actually freed yet.
252 * Then stash the page away
253 *
254 * There's no convenient way to get back to mapped processes
255 * from the VMAs. So do a brute-force search over all
256 * running processes.
257 *
258 * Remember that machine checks are not common (or rather
259 * if they are common you have other problems), so this shouldn't
260 * be a performance issue.
261 *
262 * Also there are some races possible while we get from the
263 * error detection to actually handle it.
264 */
265
266 struct to_kill {
267 struct list_head nd;
268 struct task_struct *tsk;
269 unsigned long addr;
270 char addr_valid;
271 };
272
273 /*
274 * Failure handling: if we can't find or can't kill a process there's
275 * not much we can do. We just print a message and ignore otherwise.
276 */
277
278 /*
279 * Schedule a process for later kill.
280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
281 * TBD would GFP_NOIO be enough?
282 */
283 static void add_to_kill(struct task_struct *tsk, struct page *p,
284 struct vm_area_struct *vma,
285 struct list_head *to_kill,
286 struct to_kill **tkc)
287 {
288 struct to_kill *tk;
289
290 if (*tkc) {
291 tk = *tkc;
292 *tkc = NULL;
293 } else {
294 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
295 if (!tk) {
296 pr_err("Memory failure: Out of memory while machine check handling\n");
297 return;
298 }
299 }
300 tk->addr = page_address_in_vma(p, vma);
301 tk->addr_valid = 1;
302
303 /*
304 * In theory we don't have to kill when the page was
305 * munmaped. But it could be also a mremap. Since that's
306 * likely very rare kill anyways just out of paranoia, but use
307 * a SIGKILL because the error is not contained anymore.
308 */
309 if (tk->addr == -EFAULT) {
310 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
311 page_to_pfn(p), tsk->comm);
312 tk->addr_valid = 0;
313 }
314 get_task_struct(tsk);
315 tk->tsk = tsk;
316 list_add_tail(&tk->nd, to_kill);
317 }
318
319 /*
320 * Kill the processes that have been collected earlier.
321 *
322 * Only do anything when DOIT is set, otherwise just free the list
323 * (this is used for clean pages which do not need killing)
324 * Also when FAIL is set do a force kill because something went
325 * wrong earlier.
326 */
327 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
328 bool fail, struct page *page, unsigned long pfn,
329 int flags)
330 {
331 struct to_kill *tk, *next;
332
333 list_for_each_entry_safe (tk, next, to_kill, nd) {
334 if (forcekill) {
335 /*
336 * In case something went wrong with munmapping
337 * make sure the process doesn't catch the
338 * signal and then access the memory. Just kill it.
339 */
340 if (fail || tk->addr_valid == 0) {
341 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
342 pfn, tk->tsk->comm, tk->tsk->pid);
343 force_sig(SIGKILL, tk->tsk);
344 }
345
346 /*
347 * In theory the process could have mapped
348 * something else on the address in-between. We could
349 * check for that, but we need to tell the
350 * process anyways.
351 */
352 else if (kill_proc(tk->tsk, tk->addr, trapno,
353 pfn, page, flags) < 0)
354 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360 }
361
362 /*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378 }
379
380 /*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388 {
389 struct task_struct *t;
390 if (!tsk->mm)
391 return NULL;
392 if (force_early)
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
400 }
401
402 /*
403 * Collect processes when the error hit an anonymous page.
404 */
405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 struct to_kill **tkc, int force_early)
407 {
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
411 pgoff_t pgoff;
412
413 av = page_lock_anon_vma_read(page);
414 if (av == NULL) /* Not actually mapped anymore */
415 return;
416
417 pgoff = page_to_pgoff(page);
418 read_lock(&tasklist_lock);
419 for_each_process (tsk) {
420 struct anon_vma_chain *vmac;
421 struct task_struct *t = task_early_kill(tsk, force_early);
422
423 if (!t)
424 continue;
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
427 vma = vmac->vma;
428 if (!page_mapped_in_vma(page, vma))
429 continue;
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
432 }
433 }
434 read_unlock(&tasklist_lock);
435 page_unlock_anon_vma_read(av);
436 }
437
438 /*
439 * Collect processes when the error hit a file mapped page.
440 */
441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 struct to_kill **tkc, int force_early)
443 {
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
446 struct address_space *mapping = page->mapping;
447
448 i_mmap_lock_read(mapping);
449 read_lock(&tasklist_lock);
450 for_each_process(tsk) {
451 pgoff_t pgoff = page_to_pgoff(page);
452 struct task_struct *t = task_early_kill(tsk, force_early);
453
454 if (!t)
455 continue;
456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
467 }
468 }
469 read_unlock(&tasklist_lock);
470 i_mmap_unlock_read(mapping);
471 }
472
473 /*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
479 static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
481 {
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
491 collect_procs_anon(page, tokill, &tk, force_early);
492 else
493 collect_procs_file(page, tokill, &tk, force_early);
494 kfree(tk);
495 }
496
497 static const char *action_name[] = {
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
502 };
503
504 static const char * const action_page_types[] = {
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
525 };
526
527 /*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533 static int delete_from_lru_cache(struct page *p)
534 {
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
542
543 /*
544 * Poisoned page might never drop its ref count to 0 so we have
545 * to uncharge it manually from its memcg.
546 */
547 mem_cgroup_uncharge(p);
548
549 /*
550 * drop the page count elevated by isolate_lru_page()
551 */
552 put_page(p);
553 return 0;
554 }
555 return -EIO;
556 }
557
558 /*
559 * Error hit kernel page.
560 * Do nothing, try to be lucky and not touch this instead. For a few cases we
561 * could be more sophisticated.
562 */
563 static int me_kernel(struct page *p, unsigned long pfn)
564 {
565 return MF_IGNORED;
566 }
567
568 /*
569 * Page in unknown state. Do nothing.
570 */
571 static int me_unknown(struct page *p, unsigned long pfn)
572 {
573 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
574 return MF_FAILED;
575 }
576
577 /*
578 * Clean (or cleaned) page cache page.
579 */
580 static int me_pagecache_clean(struct page *p, unsigned long pfn)
581 {
582 int err;
583 int ret = MF_FAILED;
584 struct address_space *mapping;
585
586 delete_from_lru_cache(p);
587
588 /*
589 * For anonymous pages we're done the only reference left
590 * should be the one m_f() holds.
591 */
592 if (PageAnon(p))
593 return MF_RECOVERED;
594
595 /*
596 * Now truncate the page in the page cache. This is really
597 * more like a "temporary hole punch"
598 * Don't do this for block devices when someone else
599 * has a reference, because it could be file system metadata
600 * and that's not safe to truncate.
601 */
602 mapping = page_mapping(p);
603 if (!mapping) {
604 /*
605 * Page has been teared down in the meanwhile
606 */
607 return MF_FAILED;
608 }
609
610 /*
611 * Truncation is a bit tricky. Enable it per file system for now.
612 *
613 * Open: to take i_mutex or not for this? Right now we don't.
614 */
615 if (mapping->a_ops->error_remove_page) {
616 err = mapping->a_ops->error_remove_page(mapping, p);
617 if (err != 0) {
618 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
619 pfn, err);
620 } else if (page_has_private(p) &&
621 !try_to_release_page(p, GFP_NOIO)) {
622 pr_info("Memory failure: %#lx: failed to release buffers\n",
623 pfn);
624 } else {
625 ret = MF_RECOVERED;
626 }
627 } else {
628 /*
629 * If the file system doesn't support it just invalidate
630 * This fails on dirty or anything with private pages
631 */
632 if (invalidate_inode_page(p))
633 ret = MF_RECOVERED;
634 else
635 pr_info("Memory failure: %#lx: Failed to invalidate\n",
636 pfn);
637 }
638 return ret;
639 }
640
641 /*
642 * Dirty pagecache page
643 * Issues: when the error hit a hole page the error is not properly
644 * propagated.
645 */
646 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
647 {
648 struct address_space *mapping = page_mapping(p);
649
650 SetPageError(p);
651 /* TBD: print more information about the file. */
652 if (mapping) {
653 /*
654 * IO error will be reported by write(), fsync(), etc.
655 * who check the mapping.
656 * This way the application knows that something went
657 * wrong with its dirty file data.
658 *
659 * There's one open issue:
660 *
661 * The EIO will be only reported on the next IO
662 * operation and then cleared through the IO map.
663 * Normally Linux has two mechanisms to pass IO error
664 * first through the AS_EIO flag in the address space
665 * and then through the PageError flag in the page.
666 * Since we drop pages on memory failure handling the
667 * only mechanism open to use is through AS_AIO.
668 *
669 * This has the disadvantage that it gets cleared on
670 * the first operation that returns an error, while
671 * the PageError bit is more sticky and only cleared
672 * when the page is reread or dropped. If an
673 * application assumes it will always get error on
674 * fsync, but does other operations on the fd before
675 * and the page is dropped between then the error
676 * will not be properly reported.
677 *
678 * This can already happen even without hwpoisoned
679 * pages: first on metadata IO errors (which only
680 * report through AS_EIO) or when the page is dropped
681 * at the wrong time.
682 *
683 * So right now we assume that the application DTRT on
684 * the first EIO, but we're not worse than other parts
685 * of the kernel.
686 */
687 mapping_set_error(mapping, -EIO);
688 }
689
690 return me_pagecache_clean(p, pfn);
691 }
692
693 /*
694 * Clean and dirty swap cache.
695 *
696 * Dirty swap cache page is tricky to handle. The page could live both in page
697 * cache and swap cache(ie. page is freshly swapped in). So it could be
698 * referenced concurrently by 2 types of PTEs:
699 * normal PTEs and swap PTEs. We try to handle them consistently by calling
700 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
701 * and then
702 * - clear dirty bit to prevent IO
703 * - remove from LRU
704 * - but keep in the swap cache, so that when we return to it on
705 * a later page fault, we know the application is accessing
706 * corrupted data and shall be killed (we installed simple
707 * interception code in do_swap_page to catch it).
708 *
709 * Clean swap cache pages can be directly isolated. A later page fault will
710 * bring in the known good data from disk.
711 */
712 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
713 {
714 ClearPageDirty(p);
715 /* Trigger EIO in shmem: */
716 ClearPageUptodate(p);
717
718 if (!delete_from_lru_cache(p))
719 return MF_DELAYED;
720 else
721 return MF_FAILED;
722 }
723
724 static int me_swapcache_clean(struct page *p, unsigned long pfn)
725 {
726 delete_from_swap_cache(p);
727
728 if (!delete_from_lru_cache(p))
729 return MF_RECOVERED;
730 else
731 return MF_FAILED;
732 }
733
734 /*
735 * Huge pages. Needs work.
736 * Issues:
737 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
738 * To narrow down kill region to one page, we need to break up pmd.
739 */
740 static int me_huge_page(struct page *p, unsigned long pfn)
741 {
742 int res = 0;
743 struct page *hpage = compound_head(p);
744
745 if (!PageHuge(hpage))
746 return MF_DELAYED;
747
748 /*
749 * We can safely recover from error on free or reserved (i.e.
750 * not in-use) hugepage by dequeuing it from freelist.
751 * To check whether a hugepage is in-use or not, we can't use
752 * page->lru because it can be used in other hugepage operations,
753 * such as __unmap_hugepage_range() and gather_surplus_pages().
754 * So instead we use page_mapping() and PageAnon().
755 */
756 if (!(page_mapping(hpage) || PageAnon(hpage))) {
757 res = dequeue_hwpoisoned_huge_page(hpage);
758 if (!res)
759 return MF_RECOVERED;
760 }
761 return MF_DELAYED;
762 }
763
764 /*
765 * Various page states we can handle.
766 *
767 * A page state is defined by its current page->flags bits.
768 * The table matches them in order and calls the right handler.
769 *
770 * This is quite tricky because we can access page at any time
771 * in its live cycle, so all accesses have to be extremely careful.
772 *
773 * This is not complete. More states could be added.
774 * For any missing state don't attempt recovery.
775 */
776
777 #define dirty (1UL << PG_dirty)
778 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
779 #define unevict (1UL << PG_unevictable)
780 #define mlock (1UL << PG_mlocked)
781 #define writeback (1UL << PG_writeback)
782 #define lru (1UL << PG_lru)
783 #define head (1UL << PG_head)
784 #define slab (1UL << PG_slab)
785 #define reserved (1UL << PG_reserved)
786
787 static struct page_state {
788 unsigned long mask;
789 unsigned long res;
790 enum mf_action_page_type type;
791 int (*action)(struct page *p, unsigned long pfn);
792 } error_states[] = {
793 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
794 /*
795 * free pages are specially detected outside this table:
796 * PG_buddy pages only make a small fraction of all free pages.
797 */
798
799 /*
800 * Could in theory check if slab page is free or if we can drop
801 * currently unused objects without touching them. But just
802 * treat it as standard kernel for now.
803 */
804 { slab, slab, MF_MSG_SLAB, me_kernel },
805
806 { head, head, MF_MSG_HUGE, me_huge_page },
807
808 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
809 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
810
811 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
812 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
813
814 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
815 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
816
817 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
818 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
819
820 /*
821 * Catchall entry: must be at end.
822 */
823 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
824 };
825
826 #undef dirty
827 #undef sc
828 #undef unevict
829 #undef mlock
830 #undef writeback
831 #undef lru
832 #undef head
833 #undef slab
834 #undef reserved
835
836 /*
837 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
838 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
839 */
840 static void action_result(unsigned long pfn, enum mf_action_page_type type,
841 enum mf_result result)
842 {
843 trace_memory_failure_event(pfn, type, result);
844
845 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
846 pfn, action_page_types[type], action_name[result]);
847 }
848
849 static int page_action(struct page_state *ps, struct page *p,
850 unsigned long pfn)
851 {
852 int result;
853 int count;
854
855 result = ps->action(p, pfn);
856
857 count = page_count(p) - 1;
858 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
859 count--;
860 if (count != 0) {
861 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
862 pfn, action_page_types[ps->type], count);
863 result = MF_FAILED;
864 }
865 action_result(pfn, ps->type, result);
866
867 /* Could do more checks here if page looks ok */
868 /*
869 * Could adjust zone counters here to correct for the missing page.
870 */
871
872 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
873 }
874
875 /**
876 * get_hwpoison_page() - Get refcount for memory error handling:
877 * @page: raw error page (hit by memory error)
878 *
879 * Return: return 0 if failed to grab the refcount, otherwise true (some
880 * non-zero value.)
881 */
882 int get_hwpoison_page(struct page *page)
883 {
884 struct page *head = compound_head(page);
885
886 if (!PageHuge(head) && PageTransHuge(head)) {
887 /*
888 * Non anonymous thp exists only in allocation/free time. We
889 * can't handle such a case correctly, so let's give it up.
890 * This should be better than triggering BUG_ON when kernel
891 * tries to touch the "partially handled" page.
892 */
893 if (!PageAnon(head)) {
894 pr_err("Memory failure: %#lx: non anonymous thp\n",
895 page_to_pfn(page));
896 return 0;
897 }
898 }
899
900 if (get_page_unless_zero(head)) {
901 if (head == compound_head(page))
902 return 1;
903
904 pr_info("Memory failure: %#lx cannot catch tail\n",
905 page_to_pfn(page));
906 put_page(head);
907 }
908
909 return 0;
910 }
911 EXPORT_SYMBOL_GPL(get_hwpoison_page);
912
913 /*
914 * Do all that is necessary to remove user space mappings. Unmap
915 * the pages and send SIGBUS to the processes if the data was dirty.
916 */
917 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
918 int trapno, int flags, struct page **hpagep)
919 {
920 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
921 struct address_space *mapping;
922 LIST_HEAD(tokill);
923 bool unmap_success;
924 int kill = 1, forcekill;
925 struct page *hpage = *hpagep;
926 bool mlocked = PageMlocked(hpage);
927
928 /*
929 * Here we are interested only in user-mapped pages, so skip any
930 * other types of pages.
931 */
932 if (PageReserved(p) || PageSlab(p))
933 return true;
934 if (!(PageLRU(hpage) || PageHuge(p)))
935 return true;
936
937 /*
938 * This check implies we don't kill processes if their pages
939 * are in the swap cache early. Those are always late kills.
940 */
941 if (!page_mapped(hpage))
942 return true;
943
944 if (PageKsm(p)) {
945 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
946 return false;
947 }
948
949 if (PageSwapCache(p)) {
950 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
951 pfn);
952 ttu |= TTU_IGNORE_HWPOISON;
953 }
954
955 /*
956 * Propagate the dirty bit from PTEs to struct page first, because we
957 * need this to decide if we should kill or just drop the page.
958 * XXX: the dirty test could be racy: set_page_dirty() may not always
959 * be called inside page lock (it's recommended but not enforced).
960 */
961 mapping = page_mapping(hpage);
962 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
963 mapping_cap_writeback_dirty(mapping)) {
964 if (page_mkclean(hpage)) {
965 SetPageDirty(hpage);
966 } else {
967 kill = 0;
968 ttu |= TTU_IGNORE_HWPOISON;
969 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
970 pfn);
971 }
972 }
973
974 /*
975 * First collect all the processes that have the page
976 * mapped in dirty form. This has to be done before try_to_unmap,
977 * because ttu takes the rmap data structures down.
978 *
979 * Error handling: We ignore errors here because
980 * there's nothing that can be done.
981 */
982 if (kill)
983 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
984
985 unmap_success = try_to_unmap(hpage, ttu);
986 if (!unmap_success)
987 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
988 pfn, page_mapcount(hpage));
989
990 /*
991 * try_to_unmap() might put mlocked page in lru cache, so call
992 * shake_page() again to ensure that it's flushed.
993 */
994 if (mlocked)
995 shake_page(hpage, 0);
996
997 /*
998 * Now that the dirty bit has been propagated to the
999 * struct page and all unmaps done we can decide if
1000 * killing is needed or not. Only kill when the page
1001 * was dirty or the process is not restartable,
1002 * otherwise the tokill list is merely
1003 * freed. When there was a problem unmapping earlier
1004 * use a more force-full uncatchable kill to prevent
1005 * any accesses to the poisoned memory.
1006 */
1007 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1008 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1009
1010 return unmap_success;
1011 }
1012
1013 static void set_page_hwpoison_huge_page(struct page *hpage)
1014 {
1015 int i;
1016 int nr_pages = 1 << compound_order(hpage);
1017 for (i = 0; i < nr_pages; i++)
1018 SetPageHWPoison(hpage + i);
1019 }
1020
1021 static void clear_page_hwpoison_huge_page(struct page *hpage)
1022 {
1023 int i;
1024 int nr_pages = 1 << compound_order(hpage);
1025 for (i = 0; i < nr_pages; i++)
1026 ClearPageHWPoison(hpage + i);
1027 }
1028
1029 /**
1030 * memory_failure - Handle memory failure of a page.
1031 * @pfn: Page Number of the corrupted page
1032 * @trapno: Trap number reported in the signal to user space.
1033 * @flags: fine tune action taken
1034 *
1035 * This function is called by the low level machine check code
1036 * of an architecture when it detects hardware memory corruption
1037 * of a page. It tries its best to recover, which includes
1038 * dropping pages, killing processes etc.
1039 *
1040 * The function is primarily of use for corruptions that
1041 * happen outside the current execution context (e.g. when
1042 * detected by a background scrubber)
1043 *
1044 * Must run in process context (e.g. a work queue) with interrupts
1045 * enabled and no spinlocks hold.
1046 */
1047 int memory_failure(unsigned long pfn, int trapno, int flags)
1048 {
1049 struct page_state *ps;
1050 struct page *p;
1051 struct page *hpage;
1052 struct page *orig_head;
1053 int res;
1054 unsigned int nr_pages;
1055 unsigned long page_flags;
1056
1057 if (!sysctl_memory_failure_recovery)
1058 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1059
1060 if (!pfn_valid(pfn)) {
1061 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1062 pfn);
1063 return -ENXIO;
1064 }
1065
1066 p = pfn_to_page(pfn);
1067 orig_head = hpage = compound_head(p);
1068 if (TestSetPageHWPoison(p)) {
1069 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1070 pfn);
1071 return 0;
1072 }
1073
1074 /*
1075 * Currently errors on hugetlbfs pages are measured in hugepage units,
1076 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1077 * transparent hugepages, they are supposed to be split and error
1078 * measurement is done in normal page units. So nr_pages should be one
1079 * in this case.
1080 */
1081 if (PageHuge(p))
1082 nr_pages = 1 << compound_order(hpage);
1083 else /* normal page or thp */
1084 nr_pages = 1;
1085 num_poisoned_pages_add(nr_pages);
1086
1087 /*
1088 * We need/can do nothing about count=0 pages.
1089 * 1) it's a free page, and therefore in safe hand:
1090 * prep_new_page() will be the gate keeper.
1091 * 2) it's a free hugepage, which is also safe:
1092 * an affected hugepage will be dequeued from hugepage freelist,
1093 * so there's no concern about reusing it ever after.
1094 * 3) it's part of a non-compound high order page.
1095 * Implies some kernel user: cannot stop them from
1096 * R/W the page; let's pray that the page has been
1097 * used and will be freed some time later.
1098 * In fact it's dangerous to directly bump up page count from 0,
1099 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1100 */
1101 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1102 if (is_free_buddy_page(p)) {
1103 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1104 return 0;
1105 } else if (PageHuge(hpage)) {
1106 /*
1107 * Check "filter hit" and "race with other subpage."
1108 */
1109 lock_page(hpage);
1110 if (PageHWPoison(hpage)) {
1111 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1112 || (p != hpage && TestSetPageHWPoison(hpage))) {
1113 num_poisoned_pages_sub(nr_pages);
1114 unlock_page(hpage);
1115 return 0;
1116 }
1117 }
1118 set_page_hwpoison_huge_page(hpage);
1119 res = dequeue_hwpoisoned_huge_page(hpage);
1120 action_result(pfn, MF_MSG_FREE_HUGE,
1121 res ? MF_IGNORED : MF_DELAYED);
1122 unlock_page(hpage);
1123 return res;
1124 } else {
1125 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1126 return -EBUSY;
1127 }
1128 }
1129
1130 if (!PageHuge(p) && PageTransHuge(hpage)) {
1131 lock_page(p);
1132 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1133 unlock_page(p);
1134 if (!PageAnon(p))
1135 pr_err("Memory failure: %#lx: non anonymous thp\n",
1136 pfn);
1137 else
1138 pr_err("Memory failure: %#lx: thp split failed\n",
1139 pfn);
1140 if (TestClearPageHWPoison(p))
1141 num_poisoned_pages_sub(nr_pages);
1142 put_hwpoison_page(p);
1143 return -EBUSY;
1144 }
1145 unlock_page(p);
1146 VM_BUG_ON_PAGE(!page_count(p), p);
1147 hpage = compound_head(p);
1148 }
1149
1150 /*
1151 * We ignore non-LRU pages for good reasons.
1152 * - PG_locked is only well defined for LRU pages and a few others
1153 * - to avoid races with __SetPageLocked()
1154 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1155 * The check (unnecessarily) ignores LRU pages being isolated and
1156 * walked by the page reclaim code, however that's not a big loss.
1157 */
1158 shake_page(p, 0);
1159 /* shake_page could have turned it free. */
1160 if (!PageLRU(p) && is_free_buddy_page(p)) {
1161 if (flags & MF_COUNT_INCREASED)
1162 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1163 else
1164 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1165 return 0;
1166 }
1167
1168 lock_page(hpage);
1169
1170 /*
1171 * The page could have changed compound pages during the locking.
1172 * If this happens just bail out.
1173 */
1174 if (PageCompound(p) && compound_head(p) != orig_head) {
1175 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1176 res = -EBUSY;
1177 goto out;
1178 }
1179
1180 /*
1181 * We use page flags to determine what action should be taken, but
1182 * the flags can be modified by the error containment action. One
1183 * example is an mlocked page, where PG_mlocked is cleared by
1184 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185 * correctly, we save a copy of the page flags at this time.
1186 */
1187 if (PageHuge(p))
1188 page_flags = hpage->flags;
1189 else
1190 page_flags = p->flags;
1191
1192 /*
1193 * unpoison always clear PG_hwpoison inside page lock
1194 */
1195 if (!PageHWPoison(p)) {
1196 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1197 num_poisoned_pages_sub(nr_pages);
1198 unlock_page(hpage);
1199 put_hwpoison_page(hpage);
1200 return 0;
1201 }
1202 if (hwpoison_filter(p)) {
1203 if (TestClearPageHWPoison(p))
1204 num_poisoned_pages_sub(nr_pages);
1205 unlock_page(hpage);
1206 put_hwpoison_page(hpage);
1207 return 0;
1208 }
1209
1210 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1211 goto identify_page_state;
1212
1213 /*
1214 * For error on the tail page, we should set PG_hwpoison
1215 * on the head page to show that the hugepage is hwpoisoned
1216 */
1217 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1218 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1219 unlock_page(hpage);
1220 put_hwpoison_page(hpage);
1221 return 0;
1222 }
1223 /*
1224 * Set PG_hwpoison on all pages in an error hugepage,
1225 * because containment is done in hugepage unit for now.
1226 * Since we have done TestSetPageHWPoison() for the head page with
1227 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1228 */
1229 if (PageHuge(p))
1230 set_page_hwpoison_huge_page(hpage);
1231
1232 /*
1233 * It's very difficult to mess with pages currently under IO
1234 * and in many cases impossible, so we just avoid it here.
1235 */
1236 wait_on_page_writeback(p);
1237
1238 /*
1239 * Now take care of user space mappings.
1240 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1241 *
1242 * When the raw error page is thp tail page, hpage points to the raw
1243 * page after thp split.
1244 */
1245 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1246 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1247 res = -EBUSY;
1248 goto out;
1249 }
1250
1251 /*
1252 * Torn down by someone else?
1253 */
1254 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1255 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1256 res = -EBUSY;
1257 goto out;
1258 }
1259
1260 identify_page_state:
1261 res = -EBUSY;
1262 /*
1263 * The first check uses the current page flags which may not have any
1264 * relevant information. The second check with the saved page flagss is
1265 * carried out only if the first check can't determine the page status.
1266 */
1267 for (ps = error_states;; ps++)
1268 if ((p->flags & ps->mask) == ps->res)
1269 break;
1270
1271 page_flags |= (p->flags & (1UL << PG_dirty));
1272
1273 if (!ps->mask)
1274 for (ps = error_states;; ps++)
1275 if ((page_flags & ps->mask) == ps->res)
1276 break;
1277 res = page_action(ps, p, pfn);
1278 out:
1279 unlock_page(hpage);
1280 return res;
1281 }
1282 EXPORT_SYMBOL_GPL(memory_failure);
1283
1284 #define MEMORY_FAILURE_FIFO_ORDER 4
1285 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1286
1287 struct memory_failure_entry {
1288 unsigned long pfn;
1289 int trapno;
1290 int flags;
1291 };
1292
1293 struct memory_failure_cpu {
1294 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1295 MEMORY_FAILURE_FIFO_SIZE);
1296 spinlock_t lock;
1297 struct work_struct work;
1298 };
1299
1300 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1301
1302 /**
1303 * memory_failure_queue - Schedule handling memory failure of a page.
1304 * @pfn: Page Number of the corrupted page
1305 * @trapno: Trap number reported in the signal to user space.
1306 * @flags: Flags for memory failure handling
1307 *
1308 * This function is called by the low level hardware error handler
1309 * when it detects hardware memory corruption of a page. It schedules
1310 * the recovering of error page, including dropping pages, killing
1311 * processes etc.
1312 *
1313 * The function is primarily of use for corruptions that
1314 * happen outside the current execution context (e.g. when
1315 * detected by a background scrubber)
1316 *
1317 * Can run in IRQ context.
1318 */
1319 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1320 {
1321 struct memory_failure_cpu *mf_cpu;
1322 unsigned long proc_flags;
1323 struct memory_failure_entry entry = {
1324 .pfn = pfn,
1325 .trapno = trapno,
1326 .flags = flags,
1327 };
1328
1329 mf_cpu = &get_cpu_var(memory_failure_cpu);
1330 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1331 if (kfifo_put(&mf_cpu->fifo, entry))
1332 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1333 else
1334 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1335 pfn);
1336 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1337 put_cpu_var(memory_failure_cpu);
1338 }
1339 EXPORT_SYMBOL_GPL(memory_failure_queue);
1340
1341 static void memory_failure_work_func(struct work_struct *work)
1342 {
1343 struct memory_failure_cpu *mf_cpu;
1344 struct memory_failure_entry entry = { 0, };
1345 unsigned long proc_flags;
1346 int gotten;
1347
1348 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1349 for (;;) {
1350 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1351 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1352 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1353 if (!gotten)
1354 break;
1355 if (entry.flags & MF_SOFT_OFFLINE)
1356 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1357 else
1358 memory_failure(entry.pfn, entry.trapno, entry.flags);
1359 }
1360 }
1361
1362 static int __init memory_failure_init(void)
1363 {
1364 struct memory_failure_cpu *mf_cpu;
1365 int cpu;
1366
1367 for_each_possible_cpu(cpu) {
1368 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1369 spin_lock_init(&mf_cpu->lock);
1370 INIT_KFIFO(mf_cpu->fifo);
1371 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1372 }
1373
1374 return 0;
1375 }
1376 core_initcall(memory_failure_init);
1377
1378 #define unpoison_pr_info(fmt, pfn, rs) \
1379 ({ \
1380 if (__ratelimit(rs)) \
1381 pr_info(fmt, pfn); \
1382 })
1383
1384 /**
1385 * unpoison_memory - Unpoison a previously poisoned page
1386 * @pfn: Page number of the to be unpoisoned page
1387 *
1388 * Software-unpoison a page that has been poisoned by
1389 * memory_failure() earlier.
1390 *
1391 * This is only done on the software-level, so it only works
1392 * for linux injected failures, not real hardware failures
1393 *
1394 * Returns 0 for success, otherwise -errno.
1395 */
1396 int unpoison_memory(unsigned long pfn)
1397 {
1398 struct page *page;
1399 struct page *p;
1400 int freeit = 0;
1401 unsigned int nr_pages;
1402 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1403 DEFAULT_RATELIMIT_BURST);
1404
1405 if (!pfn_valid(pfn))
1406 return -ENXIO;
1407
1408 p = pfn_to_page(pfn);
1409 page = compound_head(p);
1410
1411 if (!PageHWPoison(p)) {
1412 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1413 pfn, &unpoison_rs);
1414 return 0;
1415 }
1416
1417 if (page_count(page) > 1) {
1418 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1419 pfn, &unpoison_rs);
1420 return 0;
1421 }
1422
1423 if (page_mapped(page)) {
1424 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1425 pfn, &unpoison_rs);
1426 return 0;
1427 }
1428
1429 if (page_mapping(page)) {
1430 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1431 pfn, &unpoison_rs);
1432 return 0;
1433 }
1434
1435 /*
1436 * unpoison_memory() can encounter thp only when the thp is being
1437 * worked by memory_failure() and the page lock is not held yet.
1438 * In such case, we yield to memory_failure() and make unpoison fail.
1439 */
1440 if (!PageHuge(page) && PageTransHuge(page)) {
1441 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1442 pfn, &unpoison_rs);
1443 return 0;
1444 }
1445
1446 nr_pages = 1 << compound_order(page);
1447
1448 if (!get_hwpoison_page(p)) {
1449 /*
1450 * Since HWPoisoned hugepage should have non-zero refcount,
1451 * race between memory failure and unpoison seems to happen.
1452 * In such case unpoison fails and memory failure runs
1453 * to the end.
1454 */
1455 if (PageHuge(page)) {
1456 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1457 pfn, &unpoison_rs);
1458 return 0;
1459 }
1460 if (TestClearPageHWPoison(p))
1461 num_poisoned_pages_dec();
1462 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463 pfn, &unpoison_rs);
1464 return 0;
1465 }
1466
1467 lock_page(page);
1468 /*
1469 * This test is racy because PG_hwpoison is set outside of page lock.
1470 * That's acceptable because that won't trigger kernel panic. Instead,
1471 * the PG_hwpoison page will be caught and isolated on the entrance to
1472 * the free buddy page pool.
1473 */
1474 if (TestClearPageHWPoison(page)) {
1475 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476 pfn, &unpoison_rs);
1477 num_poisoned_pages_sub(nr_pages);
1478 freeit = 1;
1479 if (PageHuge(page))
1480 clear_page_hwpoison_huge_page(page);
1481 }
1482 unlock_page(page);
1483
1484 put_hwpoison_page(page);
1485 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1486 put_hwpoison_page(page);
1487
1488 return 0;
1489 }
1490 EXPORT_SYMBOL(unpoison_memory);
1491
1492 static struct page *new_page(struct page *p, unsigned long private, int **x)
1493 {
1494 int nid = page_to_nid(p);
1495 if (PageHuge(p)) {
1496 struct hstate *hstate = page_hstate(compound_head(p));
1497
1498 if (hstate_is_gigantic(hstate))
1499 return alloc_huge_page_node(hstate, NUMA_NO_NODE);
1500
1501 return alloc_huge_page_node(hstate, nid);
1502 } else {
1503 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1504 }
1505 }
1506
1507 /*
1508 * Safely get reference count of an arbitrary page.
1509 * Returns 0 for a free page, -EIO for a zero refcount page
1510 * that is not free, and 1 for any other page type.
1511 * For 1 the page is returned with increased page count, otherwise not.
1512 */
1513 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1514 {
1515 int ret;
1516
1517 if (flags & MF_COUNT_INCREASED)
1518 return 1;
1519
1520 /*
1521 * When the target page is a free hugepage, just remove it
1522 * from free hugepage list.
1523 */
1524 if (!get_hwpoison_page(p)) {
1525 if (PageHuge(p)) {
1526 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1527 ret = 0;
1528 } else if (is_free_buddy_page(p)) {
1529 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1530 ret = 0;
1531 } else {
1532 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1533 __func__, pfn, p->flags);
1534 ret = -EIO;
1535 }
1536 } else {
1537 /* Not a free page */
1538 ret = 1;
1539 }
1540 return ret;
1541 }
1542
1543 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1544 {
1545 int ret = __get_any_page(page, pfn, flags);
1546
1547 if (ret == 1 && !PageHuge(page) &&
1548 !PageLRU(page) && !__PageMovable(page)) {
1549 /*
1550 * Try to free it.
1551 */
1552 put_hwpoison_page(page);
1553 shake_page(page, 1);
1554
1555 /*
1556 * Did it turn free?
1557 */
1558 ret = __get_any_page(page, pfn, 0);
1559 if (ret == 1 && !PageLRU(page)) {
1560 /* Drop page reference which is from __get_any_page() */
1561 put_hwpoison_page(page);
1562 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1563 pfn, page->flags, &page->flags);
1564 return -EIO;
1565 }
1566 }
1567 return ret;
1568 }
1569
1570 static int soft_offline_huge_page(struct page *page, int flags)
1571 {
1572 int ret;
1573 unsigned long pfn = page_to_pfn(page);
1574 struct page *hpage = compound_head(page);
1575 LIST_HEAD(pagelist);
1576
1577 /*
1578 * This double-check of PageHWPoison is to avoid the race with
1579 * memory_failure(). See also comment in __soft_offline_page().
1580 */
1581 lock_page(hpage);
1582 if (PageHWPoison(hpage)) {
1583 unlock_page(hpage);
1584 put_hwpoison_page(hpage);
1585 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1586 return -EBUSY;
1587 }
1588 unlock_page(hpage);
1589
1590 ret = isolate_huge_page(hpage, &pagelist);
1591 /*
1592 * get_any_page() and isolate_huge_page() takes a refcount each,
1593 * so need to drop one here.
1594 */
1595 put_hwpoison_page(hpage);
1596 if (!ret) {
1597 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1598 return -EBUSY;
1599 }
1600
1601 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1602 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1603 if (ret) {
1604 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1605 pfn, ret, page->flags, &page->flags);
1606 if (!list_empty(&pagelist))
1607 putback_movable_pages(&pagelist);
1608 if (ret > 0)
1609 ret = -EIO;
1610 } else {
1611 /* overcommit hugetlb page will be freed to buddy */
1612 if (PageHuge(page)) {
1613 set_page_hwpoison_huge_page(hpage);
1614 dequeue_hwpoisoned_huge_page(hpage);
1615 num_poisoned_pages_add(1 << compound_order(hpage));
1616 } else {
1617 SetPageHWPoison(page);
1618 num_poisoned_pages_inc();
1619 }
1620 }
1621 return ret;
1622 }
1623
1624 static int __soft_offline_page(struct page *page, int flags)
1625 {
1626 int ret;
1627 unsigned long pfn = page_to_pfn(page);
1628
1629 /*
1630 * Check PageHWPoison again inside page lock because PageHWPoison
1631 * is set by memory_failure() outside page lock. Note that
1632 * memory_failure() also double-checks PageHWPoison inside page lock,
1633 * so there's no race between soft_offline_page() and memory_failure().
1634 */
1635 lock_page(page);
1636 wait_on_page_writeback(page);
1637 if (PageHWPoison(page)) {
1638 unlock_page(page);
1639 put_hwpoison_page(page);
1640 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1641 return -EBUSY;
1642 }
1643 /*
1644 * Try to invalidate first. This should work for
1645 * non dirty unmapped page cache pages.
1646 */
1647 ret = invalidate_inode_page(page);
1648 unlock_page(page);
1649 /*
1650 * RED-PEN would be better to keep it isolated here, but we
1651 * would need to fix isolation locking first.
1652 */
1653 if (ret == 1) {
1654 put_hwpoison_page(page);
1655 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1656 SetPageHWPoison(page);
1657 num_poisoned_pages_inc();
1658 return 0;
1659 }
1660
1661 /*
1662 * Simple invalidation didn't work.
1663 * Try to migrate to a new page instead. migrate.c
1664 * handles a large number of cases for us.
1665 */
1666 if (PageLRU(page))
1667 ret = isolate_lru_page(page);
1668 else
1669 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1670 /*
1671 * Drop page reference which is came from get_any_page()
1672 * successful isolate_lru_page() already took another one.
1673 */
1674 put_hwpoison_page(page);
1675 if (!ret) {
1676 LIST_HEAD(pagelist);
1677 /*
1678 * After isolated lru page, the PageLRU will be cleared,
1679 * so use !__PageMovable instead for LRU page's mapping
1680 * cannot have PAGE_MAPPING_MOVABLE.
1681 */
1682 if (!__PageMovable(page))
1683 inc_node_page_state(page, NR_ISOLATED_ANON +
1684 page_is_file_cache(page));
1685 list_add(&page->lru, &pagelist);
1686 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1687 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1688 if (ret) {
1689 if (!list_empty(&pagelist))
1690 putback_movable_pages(&pagelist);
1691
1692 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1693 pfn, ret, page->flags, &page->flags);
1694 if (ret > 0)
1695 ret = -EIO;
1696 }
1697 } else {
1698 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1699 pfn, ret, page_count(page), page->flags, &page->flags);
1700 }
1701 return ret;
1702 }
1703
1704 static int soft_offline_in_use_page(struct page *page, int flags)
1705 {
1706 int ret;
1707 struct page *hpage = compound_head(page);
1708
1709 if (!PageHuge(page) && PageTransHuge(hpage)) {
1710 lock_page(hpage);
1711 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1712 unlock_page(hpage);
1713 if (!PageAnon(hpage))
1714 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1715 else
1716 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1717 put_hwpoison_page(hpage);
1718 return -EBUSY;
1719 }
1720 unlock_page(hpage);
1721 get_hwpoison_page(page);
1722 put_hwpoison_page(hpage);
1723 }
1724
1725 if (PageHuge(page))
1726 ret = soft_offline_huge_page(page, flags);
1727 else
1728 ret = __soft_offline_page(page, flags);
1729
1730 return ret;
1731 }
1732
1733 static void soft_offline_free_page(struct page *page)
1734 {
1735 if (PageHuge(page)) {
1736 struct page *hpage = compound_head(page);
1737
1738 set_page_hwpoison_huge_page(hpage);
1739 if (!dequeue_hwpoisoned_huge_page(hpage))
1740 num_poisoned_pages_add(1 << compound_order(hpage));
1741 } else {
1742 if (!TestSetPageHWPoison(page))
1743 num_poisoned_pages_inc();
1744 }
1745 }
1746
1747 /**
1748 * soft_offline_page - Soft offline a page.
1749 * @page: page to offline
1750 * @flags: flags. Same as memory_failure().
1751 *
1752 * Returns 0 on success, otherwise negated errno.
1753 *
1754 * Soft offline a page, by migration or invalidation,
1755 * without killing anything. This is for the case when
1756 * a page is not corrupted yet (so it's still valid to access),
1757 * but has had a number of corrected errors and is better taken
1758 * out.
1759 *
1760 * The actual policy on when to do that is maintained by
1761 * user space.
1762 *
1763 * This should never impact any application or cause data loss,
1764 * however it might take some time.
1765 *
1766 * This is not a 100% solution for all memory, but tries to be
1767 * ``good enough'' for the majority of memory.
1768 */
1769 int soft_offline_page(struct page *page, int flags)
1770 {
1771 int ret;
1772 unsigned long pfn = page_to_pfn(page);
1773
1774 if (PageHWPoison(page)) {
1775 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1776 if (flags & MF_COUNT_INCREASED)
1777 put_hwpoison_page(page);
1778 return -EBUSY;
1779 }
1780
1781 get_online_mems();
1782 ret = get_any_page(page, pfn, flags);
1783 put_online_mems();
1784
1785 if (ret > 0)
1786 ret = soft_offline_in_use_page(page, flags);
1787 else if (ret == 0)
1788 soft_offline_free_page(page);
1789
1790 return ret;
1791 }