]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory-failure.c
Merge tag 'v4.1-next-arm64-fixes' of https://github.com/mbgg/linux-mediatek into...
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107 }
108
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119 }
120
121 /*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
150
151 if (ino != hwpoison_filter_memcg)
152 return -EINVAL;
153
154 return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159
160 int hwpoison_filter(struct page *p)
161 {
162 if (!hwpoison_filter_enable)
163 return 0;
164
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
174 return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 return 0;
180 }
181 #endif
182
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185 /*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224 }
225
226 /*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230 void shake_page(struct page *p, int access)
231 {
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages(page_zone(p));
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
240
241 /*
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
244 */
245 if (access)
246 drop_slab_node(page_to_nid(p));
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249
250 /*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272 struct to_kill {
273 struct list_head nd;
274 struct task_struct *tsk;
275 unsigned long addr;
276 char addr_valid;
277 };
278
279 /*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
282 */
283
284 /*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
293 {
294 struct to_kill *tk;
295
296 if (*tkc) {
297 tk = *tkc;
298 *tkc = NULL;
299 } else {
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 if (!tk) {
302 printk(KERN_ERR
303 "MCE: Out of memory while machine check handling\n");
304 return;
305 }
306 }
307 tk->addr = page_address_in_vma(p, vma);
308 tk->addr_valid = 1;
309
310 /*
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
315 */
316 if (tk->addr == -EFAULT) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p), tsk->comm);
319 tk->addr_valid = 0;
320 }
321 get_task_struct(tsk);
322 tk->tsk = tsk;
323 list_add_tail(&tk->nd, to_kill);
324 }
325
326 /*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335 int fail, struct page *page, unsigned long pfn,
336 int flags)
337 {
338 struct to_kill *tk, *next;
339
340 list_for_each_entry_safe (tk, next, to_kill, nd) {
341 if (forcekill) {
342 /*
343 * In case something went wrong with munmapping
344 * make sure the process doesn't catch the
345 * signal and then access the memory. Just kill it.
346 */
347 if (fail || tk->addr_valid == 0) {
348 printk(KERN_ERR
349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 pfn, tk->tsk->comm, tk->tsk->pid);
351 force_sig(SIGKILL, tk->tsk);
352 }
353
354 /*
355 * In theory the process could have mapped
356 * something else on the address in-between. We could
357 * check for that, but we need to tell the
358 * process anyways.
359 */
360 else if (kill_proc(tk->tsk, tk->addr, trapno,
361 pfn, page, flags) < 0)
362 printk(KERN_ERR
363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 }
366 put_task_struct(tk->tsk);
367 kfree(tk);
368 }
369 }
370
371 /*
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
375 *
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
378 */
379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
380 {
381 struct task_struct *t;
382
383 for_each_thread(tsk, t)
384 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
385 return t;
386 return NULL;
387 }
388
389 /*
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
394 */
395 static struct task_struct *task_early_kill(struct task_struct *tsk,
396 int force_early)
397 {
398 struct task_struct *t;
399 if (!tsk->mm)
400 return NULL;
401 if (force_early)
402 return tsk;
403 t = find_early_kill_thread(tsk);
404 if (t)
405 return t;
406 if (sysctl_memory_failure_early_kill)
407 return tsk;
408 return NULL;
409 }
410
411 /*
412 * Collect processes when the error hit an anonymous page.
413 */
414 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415 struct to_kill **tkc, int force_early)
416 {
417 struct vm_area_struct *vma;
418 struct task_struct *tsk;
419 struct anon_vma *av;
420 pgoff_t pgoff;
421
422 av = page_lock_anon_vma_read(page);
423 if (av == NULL) /* Not actually mapped anymore */
424 return;
425
426 pgoff = page_to_pgoff(page);
427 read_lock(&tasklist_lock);
428 for_each_process (tsk) {
429 struct anon_vma_chain *vmac;
430 struct task_struct *t = task_early_kill(tsk, force_early);
431
432 if (!t)
433 continue;
434 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
435 pgoff, pgoff) {
436 vma = vmac->vma;
437 if (!page_mapped_in_vma(page, vma))
438 continue;
439 if (vma->vm_mm == t->mm)
440 add_to_kill(t, page, vma, to_kill, tkc);
441 }
442 }
443 read_unlock(&tasklist_lock);
444 page_unlock_anon_vma_read(av);
445 }
446
447 /*
448 * Collect processes when the error hit a file mapped page.
449 */
450 static void collect_procs_file(struct page *page, struct list_head *to_kill,
451 struct to_kill **tkc, int force_early)
452 {
453 struct vm_area_struct *vma;
454 struct task_struct *tsk;
455 struct address_space *mapping = page->mapping;
456
457 i_mmap_lock_read(mapping);
458 read_lock(&tasklist_lock);
459 for_each_process(tsk) {
460 pgoff_t pgoff = page_to_pgoff(page);
461 struct task_struct *t = task_early_kill(tsk, force_early);
462
463 if (!t)
464 continue;
465 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
466 pgoff) {
467 /*
468 * Send early kill signal to tasks where a vma covers
469 * the page but the corrupted page is not necessarily
470 * mapped it in its pte.
471 * Assume applications who requested early kill want
472 * to be informed of all such data corruptions.
473 */
474 if (vma->vm_mm == t->mm)
475 add_to_kill(t, page, vma, to_kill, tkc);
476 }
477 }
478 read_unlock(&tasklist_lock);
479 i_mmap_unlock_read(mapping);
480 }
481
482 /*
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
487 */
488 static void collect_procs(struct page *page, struct list_head *tokill,
489 int force_early)
490 {
491 struct to_kill *tk;
492
493 if (!page->mapping)
494 return;
495
496 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
497 if (!tk)
498 return;
499 if (PageAnon(page))
500 collect_procs_anon(page, tokill, &tk, force_early);
501 else
502 collect_procs_file(page, tokill, &tk, force_early);
503 kfree(tk);
504 }
505
506 /*
507 * Error handlers for various types of pages.
508 */
509
510 enum outcome {
511 IGNORED, /* Error: cannot be handled */
512 FAILED, /* Error: handling failed */
513 DELAYED, /* Will be handled later */
514 RECOVERED, /* Successfully recovered */
515 };
516
517 static const char *action_name[] = {
518 [IGNORED] = "Ignored",
519 [FAILED] = "Failed",
520 [DELAYED] = "Delayed",
521 [RECOVERED] = "Recovered",
522 };
523
524 enum action_page_type {
525 MSG_KERNEL,
526 MSG_KERNEL_HIGH_ORDER,
527 MSG_SLAB,
528 MSG_DIFFERENT_COMPOUND,
529 MSG_POISONED_HUGE,
530 MSG_HUGE,
531 MSG_FREE_HUGE,
532 MSG_UNMAP_FAILED,
533 MSG_DIRTY_SWAPCACHE,
534 MSG_CLEAN_SWAPCACHE,
535 MSG_DIRTY_MLOCKED_LRU,
536 MSG_CLEAN_MLOCKED_LRU,
537 MSG_DIRTY_UNEVICTABLE_LRU,
538 MSG_CLEAN_UNEVICTABLE_LRU,
539 MSG_DIRTY_LRU,
540 MSG_CLEAN_LRU,
541 MSG_TRUNCATED_LRU,
542 MSG_BUDDY,
543 MSG_BUDDY_2ND,
544 MSG_UNKNOWN,
545 };
546
547 static const char * const action_page_types[] = {
548 [MSG_KERNEL] = "reserved kernel page",
549 [MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
550 [MSG_SLAB] = "kernel slab page",
551 [MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
552 [MSG_POISONED_HUGE] = "huge page already hardware poisoned",
553 [MSG_HUGE] = "huge page",
554 [MSG_FREE_HUGE] = "free huge page",
555 [MSG_UNMAP_FAILED] = "unmapping failed page",
556 [MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
557 [MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
558 [MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
559 [MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
560 [MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
561 [MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
562 [MSG_DIRTY_LRU] = "dirty LRU page",
563 [MSG_CLEAN_LRU] = "clean LRU page",
564 [MSG_TRUNCATED_LRU] = "already truncated LRU page",
565 [MSG_BUDDY] = "free buddy page",
566 [MSG_BUDDY_2ND] = "free buddy page (2nd try)",
567 [MSG_UNKNOWN] = "unknown page",
568 };
569
570 /*
571 * XXX: It is possible that a page is isolated from LRU cache,
572 * and then kept in swap cache or failed to remove from page cache.
573 * The page count will stop it from being freed by unpoison.
574 * Stress tests should be aware of this memory leak problem.
575 */
576 static int delete_from_lru_cache(struct page *p)
577 {
578 if (!isolate_lru_page(p)) {
579 /*
580 * Clear sensible page flags, so that the buddy system won't
581 * complain when the page is unpoison-and-freed.
582 */
583 ClearPageActive(p);
584 ClearPageUnevictable(p);
585 /*
586 * drop the page count elevated by isolate_lru_page()
587 */
588 page_cache_release(p);
589 return 0;
590 }
591 return -EIO;
592 }
593
594 /*
595 * Error hit kernel page.
596 * Do nothing, try to be lucky and not touch this instead. For a few cases we
597 * could be more sophisticated.
598 */
599 static int me_kernel(struct page *p, unsigned long pfn)
600 {
601 return IGNORED;
602 }
603
604 /*
605 * Page in unknown state. Do nothing.
606 */
607 static int me_unknown(struct page *p, unsigned long pfn)
608 {
609 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
610 return FAILED;
611 }
612
613 /*
614 * Clean (or cleaned) page cache page.
615 */
616 static int me_pagecache_clean(struct page *p, unsigned long pfn)
617 {
618 int err;
619 int ret = FAILED;
620 struct address_space *mapping;
621
622 delete_from_lru_cache(p);
623
624 /*
625 * For anonymous pages we're done the only reference left
626 * should be the one m_f() holds.
627 */
628 if (PageAnon(p))
629 return RECOVERED;
630
631 /*
632 * Now truncate the page in the page cache. This is really
633 * more like a "temporary hole punch"
634 * Don't do this for block devices when someone else
635 * has a reference, because it could be file system metadata
636 * and that's not safe to truncate.
637 */
638 mapping = page_mapping(p);
639 if (!mapping) {
640 /*
641 * Page has been teared down in the meanwhile
642 */
643 return FAILED;
644 }
645
646 /*
647 * Truncation is a bit tricky. Enable it per file system for now.
648 *
649 * Open: to take i_mutex or not for this? Right now we don't.
650 */
651 if (mapping->a_ops->error_remove_page) {
652 err = mapping->a_ops->error_remove_page(mapping, p);
653 if (err != 0) {
654 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
655 pfn, err);
656 } else if (page_has_private(p) &&
657 !try_to_release_page(p, GFP_NOIO)) {
658 pr_info("MCE %#lx: failed to release buffers\n", pfn);
659 } else {
660 ret = RECOVERED;
661 }
662 } else {
663 /*
664 * If the file system doesn't support it just invalidate
665 * This fails on dirty or anything with private pages
666 */
667 if (invalidate_inode_page(p))
668 ret = RECOVERED;
669 else
670 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
671 pfn);
672 }
673 return ret;
674 }
675
676 /*
677 * Dirty pagecache page
678 * Issues: when the error hit a hole page the error is not properly
679 * propagated.
680 */
681 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
682 {
683 struct address_space *mapping = page_mapping(p);
684
685 SetPageError(p);
686 /* TBD: print more information about the file. */
687 if (mapping) {
688 /*
689 * IO error will be reported by write(), fsync(), etc.
690 * who check the mapping.
691 * This way the application knows that something went
692 * wrong with its dirty file data.
693 *
694 * There's one open issue:
695 *
696 * The EIO will be only reported on the next IO
697 * operation and then cleared through the IO map.
698 * Normally Linux has two mechanisms to pass IO error
699 * first through the AS_EIO flag in the address space
700 * and then through the PageError flag in the page.
701 * Since we drop pages on memory failure handling the
702 * only mechanism open to use is through AS_AIO.
703 *
704 * This has the disadvantage that it gets cleared on
705 * the first operation that returns an error, while
706 * the PageError bit is more sticky and only cleared
707 * when the page is reread or dropped. If an
708 * application assumes it will always get error on
709 * fsync, but does other operations on the fd before
710 * and the page is dropped between then the error
711 * will not be properly reported.
712 *
713 * This can already happen even without hwpoisoned
714 * pages: first on metadata IO errors (which only
715 * report through AS_EIO) or when the page is dropped
716 * at the wrong time.
717 *
718 * So right now we assume that the application DTRT on
719 * the first EIO, but we're not worse than other parts
720 * of the kernel.
721 */
722 mapping_set_error(mapping, EIO);
723 }
724
725 return me_pagecache_clean(p, pfn);
726 }
727
728 /*
729 * Clean and dirty swap cache.
730 *
731 * Dirty swap cache page is tricky to handle. The page could live both in page
732 * cache and swap cache(ie. page is freshly swapped in). So it could be
733 * referenced concurrently by 2 types of PTEs:
734 * normal PTEs and swap PTEs. We try to handle them consistently by calling
735 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
736 * and then
737 * - clear dirty bit to prevent IO
738 * - remove from LRU
739 * - but keep in the swap cache, so that when we return to it on
740 * a later page fault, we know the application is accessing
741 * corrupted data and shall be killed (we installed simple
742 * interception code in do_swap_page to catch it).
743 *
744 * Clean swap cache pages can be directly isolated. A later page fault will
745 * bring in the known good data from disk.
746 */
747 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
748 {
749 ClearPageDirty(p);
750 /* Trigger EIO in shmem: */
751 ClearPageUptodate(p);
752
753 if (!delete_from_lru_cache(p))
754 return DELAYED;
755 else
756 return FAILED;
757 }
758
759 static int me_swapcache_clean(struct page *p, unsigned long pfn)
760 {
761 delete_from_swap_cache(p);
762
763 if (!delete_from_lru_cache(p))
764 return RECOVERED;
765 else
766 return FAILED;
767 }
768
769 /*
770 * Huge pages. Needs work.
771 * Issues:
772 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
773 * To narrow down kill region to one page, we need to break up pmd.
774 */
775 static int me_huge_page(struct page *p, unsigned long pfn)
776 {
777 int res = 0;
778 struct page *hpage = compound_head(p);
779 /*
780 * We can safely recover from error on free or reserved (i.e.
781 * not in-use) hugepage by dequeuing it from freelist.
782 * To check whether a hugepage is in-use or not, we can't use
783 * page->lru because it can be used in other hugepage operations,
784 * such as __unmap_hugepage_range() and gather_surplus_pages().
785 * So instead we use page_mapping() and PageAnon().
786 * We assume that this function is called with page lock held,
787 * so there is no race between isolation and mapping/unmapping.
788 */
789 if (!(page_mapping(hpage) || PageAnon(hpage))) {
790 res = dequeue_hwpoisoned_huge_page(hpage);
791 if (!res)
792 return RECOVERED;
793 }
794 return DELAYED;
795 }
796
797 /*
798 * Various page states we can handle.
799 *
800 * A page state is defined by its current page->flags bits.
801 * The table matches them in order and calls the right handler.
802 *
803 * This is quite tricky because we can access page at any time
804 * in its live cycle, so all accesses have to be extremely careful.
805 *
806 * This is not complete. More states could be added.
807 * For any missing state don't attempt recovery.
808 */
809
810 #define dirty (1UL << PG_dirty)
811 #define sc (1UL << PG_swapcache)
812 #define unevict (1UL << PG_unevictable)
813 #define mlock (1UL << PG_mlocked)
814 #define writeback (1UL << PG_writeback)
815 #define lru (1UL << PG_lru)
816 #define swapbacked (1UL << PG_swapbacked)
817 #define head (1UL << PG_head)
818 #define tail (1UL << PG_tail)
819 #define compound (1UL << PG_compound)
820 #define slab (1UL << PG_slab)
821 #define reserved (1UL << PG_reserved)
822
823 static struct page_state {
824 unsigned long mask;
825 unsigned long res;
826 enum action_page_type type;
827 int (*action)(struct page *p, unsigned long pfn);
828 } error_states[] = {
829 { reserved, reserved, MSG_KERNEL, me_kernel },
830 /*
831 * free pages are specially detected outside this table:
832 * PG_buddy pages only make a small fraction of all free pages.
833 */
834
835 /*
836 * Could in theory check if slab page is free or if we can drop
837 * currently unused objects without touching them. But just
838 * treat it as standard kernel for now.
839 */
840 { slab, slab, MSG_SLAB, me_kernel },
841
842 #ifdef CONFIG_PAGEFLAGS_EXTENDED
843 { head, head, MSG_HUGE, me_huge_page },
844 { tail, tail, MSG_HUGE, me_huge_page },
845 #else
846 { compound, compound, MSG_HUGE, me_huge_page },
847 #endif
848
849 { sc|dirty, sc|dirty, MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
850 { sc|dirty, sc, MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
851
852 { mlock|dirty, mlock|dirty, MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
853 { mlock|dirty, mlock, MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
854
855 { unevict|dirty, unevict|dirty, MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
856 { unevict|dirty, unevict, MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
857
858 { lru|dirty, lru|dirty, MSG_DIRTY_LRU, me_pagecache_dirty },
859 { lru|dirty, lru, MSG_CLEAN_LRU, me_pagecache_clean },
860
861 /*
862 * Catchall entry: must be at end.
863 */
864 { 0, 0, MSG_UNKNOWN, me_unknown },
865 };
866
867 #undef dirty
868 #undef sc
869 #undef unevict
870 #undef mlock
871 #undef writeback
872 #undef lru
873 #undef swapbacked
874 #undef head
875 #undef tail
876 #undef compound
877 #undef slab
878 #undef reserved
879
880 /*
881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
883 */
884 static void action_result(unsigned long pfn, enum action_page_type type, int result)
885 {
886 pr_err("MCE %#lx: recovery action for %s: %s\n",
887 pfn, action_page_types[type], action_name[result]);
888 }
889
890 static int page_action(struct page_state *ps, struct page *p,
891 unsigned long pfn)
892 {
893 int result;
894 int count;
895
896 result = ps->action(p, pfn);
897
898 count = page_count(p) - 1;
899 if (ps->action == me_swapcache_dirty && result == DELAYED)
900 count--;
901 if (count != 0) {
902 printk(KERN_ERR
903 "MCE %#lx: %s still referenced by %d users\n",
904 pfn, action_page_types[ps->type], count);
905 result = FAILED;
906 }
907 action_result(pfn, ps->type, result);
908
909 /* Could do more checks here if page looks ok */
910 /*
911 * Could adjust zone counters here to correct for the missing page.
912 */
913
914 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
915 }
916
917 /*
918 * Do all that is necessary to remove user space mappings. Unmap
919 * the pages and send SIGBUS to the processes if the data was dirty.
920 */
921 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
922 int trapno, int flags, struct page **hpagep)
923 {
924 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
925 struct address_space *mapping;
926 LIST_HEAD(tokill);
927 int ret;
928 int kill = 1, forcekill;
929 struct page *hpage = *hpagep;
930 struct page *ppage;
931
932 /*
933 * Here we are interested only in user-mapped pages, so skip any
934 * other types of pages.
935 */
936 if (PageReserved(p) || PageSlab(p))
937 return SWAP_SUCCESS;
938 if (!(PageLRU(hpage) || PageHuge(p)))
939 return SWAP_SUCCESS;
940
941 /*
942 * This check implies we don't kill processes if their pages
943 * are in the swap cache early. Those are always late kills.
944 */
945 if (!page_mapped(hpage))
946 return SWAP_SUCCESS;
947
948 if (PageKsm(p)) {
949 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
950 return SWAP_FAIL;
951 }
952
953 if (PageSwapCache(p)) {
954 printk(KERN_ERR
955 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
956 ttu |= TTU_IGNORE_HWPOISON;
957 }
958
959 /*
960 * Propagate the dirty bit from PTEs to struct page first, because we
961 * need this to decide if we should kill or just drop the page.
962 * XXX: the dirty test could be racy: set_page_dirty() may not always
963 * be called inside page lock (it's recommended but not enforced).
964 */
965 mapping = page_mapping(hpage);
966 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
967 mapping_cap_writeback_dirty(mapping)) {
968 if (page_mkclean(hpage)) {
969 SetPageDirty(hpage);
970 } else {
971 kill = 0;
972 ttu |= TTU_IGNORE_HWPOISON;
973 printk(KERN_INFO
974 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
975 pfn);
976 }
977 }
978
979 /*
980 * ppage: poisoned page
981 * if p is regular page(4k page)
982 * ppage == real poisoned page;
983 * else p is hugetlb or THP, ppage == head page.
984 */
985 ppage = hpage;
986
987 if (PageTransHuge(hpage)) {
988 /*
989 * Verify that this isn't a hugetlbfs head page, the check for
990 * PageAnon is just for avoid tripping a split_huge_page
991 * internal debug check, as split_huge_page refuses to deal with
992 * anything that isn't an anon page. PageAnon can't go away fro
993 * under us because we hold a refcount on the hpage, without a
994 * refcount on the hpage. split_huge_page can't be safely called
995 * in the first place, having a refcount on the tail isn't
996 * enough * to be safe.
997 */
998 if (!PageHuge(hpage) && PageAnon(hpage)) {
999 if (unlikely(split_huge_page(hpage))) {
1000 /*
1001 * FIXME: if splitting THP is failed, it is
1002 * better to stop the following operation rather
1003 * than causing panic by unmapping. System might
1004 * survive if the page is freed later.
1005 */
1006 printk(KERN_INFO
1007 "MCE %#lx: failed to split THP\n", pfn);
1008
1009 BUG_ON(!PageHWPoison(p));
1010 return SWAP_FAIL;
1011 }
1012 /*
1013 * We pinned the head page for hwpoison handling,
1014 * now we split the thp and we are interested in
1015 * the hwpoisoned raw page, so move the refcount
1016 * to it. Similarly, page lock is shifted.
1017 */
1018 if (hpage != p) {
1019 if (!(flags & MF_COUNT_INCREASED)) {
1020 put_page(hpage);
1021 get_page(p);
1022 }
1023 lock_page(p);
1024 unlock_page(hpage);
1025 *hpagep = p;
1026 }
1027 /* THP is split, so ppage should be the real poisoned page. */
1028 ppage = p;
1029 }
1030 }
1031
1032 /*
1033 * First collect all the processes that have the page
1034 * mapped in dirty form. This has to be done before try_to_unmap,
1035 * because ttu takes the rmap data structures down.
1036 *
1037 * Error handling: We ignore errors here because
1038 * there's nothing that can be done.
1039 */
1040 if (kill)
1041 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1042
1043 ret = try_to_unmap(ppage, ttu);
1044 if (ret != SWAP_SUCCESS)
1045 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1046 pfn, page_mapcount(ppage));
1047
1048 /*
1049 * Now that the dirty bit has been propagated to the
1050 * struct page and all unmaps done we can decide if
1051 * killing is needed or not. Only kill when the page
1052 * was dirty or the process is not restartable,
1053 * otherwise the tokill list is merely
1054 * freed. When there was a problem unmapping earlier
1055 * use a more force-full uncatchable kill to prevent
1056 * any accesses to the poisoned memory.
1057 */
1058 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1059 kill_procs(&tokill, forcekill, trapno,
1060 ret != SWAP_SUCCESS, p, pfn, flags);
1061
1062 return ret;
1063 }
1064
1065 static void set_page_hwpoison_huge_page(struct page *hpage)
1066 {
1067 int i;
1068 int nr_pages = 1 << compound_order(hpage);
1069 for (i = 0; i < nr_pages; i++)
1070 SetPageHWPoison(hpage + i);
1071 }
1072
1073 static void clear_page_hwpoison_huge_page(struct page *hpage)
1074 {
1075 int i;
1076 int nr_pages = 1 << compound_order(hpage);
1077 for (i = 0; i < nr_pages; i++)
1078 ClearPageHWPoison(hpage + i);
1079 }
1080
1081 /**
1082 * memory_failure - Handle memory failure of a page.
1083 * @pfn: Page Number of the corrupted page
1084 * @trapno: Trap number reported in the signal to user space.
1085 * @flags: fine tune action taken
1086 *
1087 * This function is called by the low level machine check code
1088 * of an architecture when it detects hardware memory corruption
1089 * of a page. It tries its best to recover, which includes
1090 * dropping pages, killing processes etc.
1091 *
1092 * The function is primarily of use for corruptions that
1093 * happen outside the current execution context (e.g. when
1094 * detected by a background scrubber)
1095 *
1096 * Must run in process context (e.g. a work queue) with interrupts
1097 * enabled and no spinlocks hold.
1098 */
1099 int memory_failure(unsigned long pfn, int trapno, int flags)
1100 {
1101 struct page_state *ps;
1102 struct page *p;
1103 struct page *hpage;
1104 int res;
1105 unsigned int nr_pages;
1106 unsigned long page_flags;
1107
1108 if (!sysctl_memory_failure_recovery)
1109 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1110
1111 if (!pfn_valid(pfn)) {
1112 printk(KERN_ERR
1113 "MCE %#lx: memory outside kernel control\n",
1114 pfn);
1115 return -ENXIO;
1116 }
1117
1118 p = pfn_to_page(pfn);
1119 hpage = compound_head(p);
1120 if (TestSetPageHWPoison(p)) {
1121 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1122 return 0;
1123 }
1124
1125 /*
1126 * Currently errors on hugetlbfs pages are measured in hugepage units,
1127 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1128 * transparent hugepages, they are supposed to be split and error
1129 * measurement is done in normal page units. So nr_pages should be one
1130 * in this case.
1131 */
1132 if (PageHuge(p))
1133 nr_pages = 1 << compound_order(hpage);
1134 else /* normal page or thp */
1135 nr_pages = 1;
1136 atomic_long_add(nr_pages, &num_poisoned_pages);
1137
1138 /*
1139 * We need/can do nothing about count=0 pages.
1140 * 1) it's a free page, and therefore in safe hand:
1141 * prep_new_page() will be the gate keeper.
1142 * 2) it's a free hugepage, which is also safe:
1143 * an affected hugepage will be dequeued from hugepage freelist,
1144 * so there's no concern about reusing it ever after.
1145 * 3) it's part of a non-compound high order page.
1146 * Implies some kernel user: cannot stop them from
1147 * R/W the page; let's pray that the page has been
1148 * used and will be freed some time later.
1149 * In fact it's dangerous to directly bump up page count from 0,
1150 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1151 */
1152 if (!(flags & MF_COUNT_INCREASED) &&
1153 !get_page_unless_zero(hpage)) {
1154 if (is_free_buddy_page(p)) {
1155 action_result(pfn, MSG_BUDDY, DELAYED);
1156 return 0;
1157 } else if (PageHuge(hpage)) {
1158 /*
1159 * Check "filter hit" and "race with other subpage."
1160 */
1161 lock_page(hpage);
1162 if (PageHWPoison(hpage)) {
1163 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1164 || (p != hpage && TestSetPageHWPoison(hpage))) {
1165 atomic_long_sub(nr_pages, &num_poisoned_pages);
1166 unlock_page(hpage);
1167 return 0;
1168 }
1169 }
1170 set_page_hwpoison_huge_page(hpage);
1171 res = dequeue_hwpoisoned_huge_page(hpage);
1172 action_result(pfn, MSG_FREE_HUGE,
1173 res ? IGNORED : DELAYED);
1174 unlock_page(hpage);
1175 return res;
1176 } else {
1177 action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1178 return -EBUSY;
1179 }
1180 }
1181
1182 /*
1183 * We ignore non-LRU pages for good reasons.
1184 * - PG_locked is only well defined for LRU pages and a few others
1185 * - to avoid races with __set_page_locked()
1186 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1187 * The check (unnecessarily) ignores LRU pages being isolated and
1188 * walked by the page reclaim code, however that's not a big loss.
1189 */
1190 if (!PageHuge(p)) {
1191 if (!PageLRU(hpage))
1192 shake_page(hpage, 0);
1193 if (!PageLRU(hpage)) {
1194 /*
1195 * shake_page could have turned it free.
1196 */
1197 if (is_free_buddy_page(p)) {
1198 if (flags & MF_COUNT_INCREASED)
1199 action_result(pfn, MSG_BUDDY, DELAYED);
1200 else
1201 action_result(pfn, MSG_BUDDY_2ND,
1202 DELAYED);
1203 return 0;
1204 }
1205 }
1206 }
1207
1208 lock_page(hpage);
1209
1210 /*
1211 * The page could have changed compound pages during the locking.
1212 * If this happens just bail out.
1213 */
1214 if (compound_head(p) != hpage) {
1215 action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1216 res = -EBUSY;
1217 goto out;
1218 }
1219
1220 /*
1221 * We use page flags to determine what action should be taken, but
1222 * the flags can be modified by the error containment action. One
1223 * example is an mlocked page, where PG_mlocked is cleared by
1224 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1225 * correctly, we save a copy of the page flags at this time.
1226 */
1227 page_flags = p->flags;
1228
1229 /*
1230 * unpoison always clear PG_hwpoison inside page lock
1231 */
1232 if (!PageHWPoison(p)) {
1233 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1234 atomic_long_sub(nr_pages, &num_poisoned_pages);
1235 put_page(hpage);
1236 res = 0;
1237 goto out;
1238 }
1239 if (hwpoison_filter(p)) {
1240 if (TestClearPageHWPoison(p))
1241 atomic_long_sub(nr_pages, &num_poisoned_pages);
1242 unlock_page(hpage);
1243 put_page(hpage);
1244 return 0;
1245 }
1246
1247 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1248 goto identify_page_state;
1249
1250 /*
1251 * For error on the tail page, we should set PG_hwpoison
1252 * on the head page to show that the hugepage is hwpoisoned
1253 */
1254 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1255 action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1256 unlock_page(hpage);
1257 put_page(hpage);
1258 return 0;
1259 }
1260 /*
1261 * Set PG_hwpoison on all pages in an error hugepage,
1262 * because containment is done in hugepage unit for now.
1263 * Since we have done TestSetPageHWPoison() for the head page with
1264 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1265 */
1266 if (PageHuge(p))
1267 set_page_hwpoison_huge_page(hpage);
1268
1269 /*
1270 * It's very difficult to mess with pages currently under IO
1271 * and in many cases impossible, so we just avoid it here.
1272 */
1273 wait_on_page_writeback(p);
1274
1275 /*
1276 * Now take care of user space mappings.
1277 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1278 *
1279 * When the raw error page is thp tail page, hpage points to the raw
1280 * page after thp split.
1281 */
1282 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1283 != SWAP_SUCCESS) {
1284 action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
1285 res = -EBUSY;
1286 goto out;
1287 }
1288
1289 /*
1290 * Torn down by someone else?
1291 */
1292 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1293 action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1294 res = -EBUSY;
1295 goto out;
1296 }
1297
1298 identify_page_state:
1299 res = -EBUSY;
1300 /*
1301 * The first check uses the current page flags which may not have any
1302 * relevant information. The second check with the saved page flagss is
1303 * carried out only if the first check can't determine the page status.
1304 */
1305 for (ps = error_states;; ps++)
1306 if ((p->flags & ps->mask) == ps->res)
1307 break;
1308
1309 page_flags |= (p->flags & (1UL << PG_dirty));
1310
1311 if (!ps->mask)
1312 for (ps = error_states;; ps++)
1313 if ((page_flags & ps->mask) == ps->res)
1314 break;
1315 res = page_action(ps, p, pfn);
1316 out:
1317 unlock_page(hpage);
1318 return res;
1319 }
1320 EXPORT_SYMBOL_GPL(memory_failure);
1321
1322 #define MEMORY_FAILURE_FIFO_ORDER 4
1323 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1324
1325 struct memory_failure_entry {
1326 unsigned long pfn;
1327 int trapno;
1328 int flags;
1329 };
1330
1331 struct memory_failure_cpu {
1332 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1333 MEMORY_FAILURE_FIFO_SIZE);
1334 spinlock_t lock;
1335 struct work_struct work;
1336 };
1337
1338 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1339
1340 /**
1341 * memory_failure_queue - Schedule handling memory failure of a page.
1342 * @pfn: Page Number of the corrupted page
1343 * @trapno: Trap number reported in the signal to user space.
1344 * @flags: Flags for memory failure handling
1345 *
1346 * This function is called by the low level hardware error handler
1347 * when it detects hardware memory corruption of a page. It schedules
1348 * the recovering of error page, including dropping pages, killing
1349 * processes etc.
1350 *
1351 * The function is primarily of use for corruptions that
1352 * happen outside the current execution context (e.g. when
1353 * detected by a background scrubber)
1354 *
1355 * Can run in IRQ context.
1356 */
1357 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1358 {
1359 struct memory_failure_cpu *mf_cpu;
1360 unsigned long proc_flags;
1361 struct memory_failure_entry entry = {
1362 .pfn = pfn,
1363 .trapno = trapno,
1364 .flags = flags,
1365 };
1366
1367 mf_cpu = &get_cpu_var(memory_failure_cpu);
1368 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1369 if (kfifo_put(&mf_cpu->fifo, entry))
1370 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1371 else
1372 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1373 pfn);
1374 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1375 put_cpu_var(memory_failure_cpu);
1376 }
1377 EXPORT_SYMBOL_GPL(memory_failure_queue);
1378
1379 static void memory_failure_work_func(struct work_struct *work)
1380 {
1381 struct memory_failure_cpu *mf_cpu;
1382 struct memory_failure_entry entry = { 0, };
1383 unsigned long proc_flags;
1384 int gotten;
1385
1386 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1387 for (;;) {
1388 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1389 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1390 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1391 if (!gotten)
1392 break;
1393 if (entry.flags & MF_SOFT_OFFLINE)
1394 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1395 else
1396 memory_failure(entry.pfn, entry.trapno, entry.flags);
1397 }
1398 }
1399
1400 static int __init memory_failure_init(void)
1401 {
1402 struct memory_failure_cpu *mf_cpu;
1403 int cpu;
1404
1405 for_each_possible_cpu(cpu) {
1406 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1407 spin_lock_init(&mf_cpu->lock);
1408 INIT_KFIFO(mf_cpu->fifo);
1409 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1410 }
1411
1412 return 0;
1413 }
1414 core_initcall(memory_failure_init);
1415
1416 /**
1417 * unpoison_memory - Unpoison a previously poisoned page
1418 * @pfn: Page number of the to be unpoisoned page
1419 *
1420 * Software-unpoison a page that has been poisoned by
1421 * memory_failure() earlier.
1422 *
1423 * This is only done on the software-level, so it only works
1424 * for linux injected failures, not real hardware failures
1425 *
1426 * Returns 0 for success, otherwise -errno.
1427 */
1428 int unpoison_memory(unsigned long pfn)
1429 {
1430 struct page *page;
1431 struct page *p;
1432 int freeit = 0;
1433 unsigned int nr_pages;
1434
1435 if (!pfn_valid(pfn))
1436 return -ENXIO;
1437
1438 p = pfn_to_page(pfn);
1439 page = compound_head(p);
1440
1441 if (!PageHWPoison(p)) {
1442 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1443 return 0;
1444 }
1445
1446 /*
1447 * unpoison_memory() can encounter thp only when the thp is being
1448 * worked by memory_failure() and the page lock is not held yet.
1449 * In such case, we yield to memory_failure() and make unpoison fail.
1450 */
1451 if (!PageHuge(page) && PageTransHuge(page)) {
1452 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1453 return 0;
1454 }
1455
1456 nr_pages = 1 << compound_order(page);
1457
1458 if (!get_page_unless_zero(page)) {
1459 /*
1460 * Since HWPoisoned hugepage should have non-zero refcount,
1461 * race between memory failure and unpoison seems to happen.
1462 * In such case unpoison fails and memory failure runs
1463 * to the end.
1464 */
1465 if (PageHuge(page)) {
1466 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1467 return 0;
1468 }
1469 if (TestClearPageHWPoison(p))
1470 atomic_long_dec(&num_poisoned_pages);
1471 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1472 return 0;
1473 }
1474
1475 lock_page(page);
1476 /*
1477 * This test is racy because PG_hwpoison is set outside of page lock.
1478 * That's acceptable because that won't trigger kernel panic. Instead,
1479 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 * the free buddy page pool.
1481 */
1482 if (TestClearPageHWPoison(page)) {
1483 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1484 atomic_long_sub(nr_pages, &num_poisoned_pages);
1485 freeit = 1;
1486 if (PageHuge(page))
1487 clear_page_hwpoison_huge_page(page);
1488 }
1489 unlock_page(page);
1490
1491 put_page(page);
1492 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1493 put_page(page);
1494
1495 return 0;
1496 }
1497 EXPORT_SYMBOL(unpoison_memory);
1498
1499 static struct page *new_page(struct page *p, unsigned long private, int **x)
1500 {
1501 int nid = page_to_nid(p);
1502 if (PageHuge(p))
1503 return alloc_huge_page_node(page_hstate(compound_head(p)),
1504 nid);
1505 else
1506 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1507 }
1508
1509 /*
1510 * Safely get reference count of an arbitrary page.
1511 * Returns 0 for a free page, -EIO for a zero refcount page
1512 * that is not free, and 1 for any other page type.
1513 * For 1 the page is returned with increased page count, otherwise not.
1514 */
1515 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1516 {
1517 int ret;
1518
1519 if (flags & MF_COUNT_INCREASED)
1520 return 1;
1521
1522 /*
1523 * When the target page is a free hugepage, just remove it
1524 * from free hugepage list.
1525 */
1526 if (!get_page_unless_zero(compound_head(p))) {
1527 if (PageHuge(p)) {
1528 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1529 ret = 0;
1530 } else if (is_free_buddy_page(p)) {
1531 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1532 ret = 0;
1533 } else {
1534 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1535 __func__, pfn, p->flags);
1536 ret = -EIO;
1537 }
1538 } else {
1539 /* Not a free page */
1540 ret = 1;
1541 }
1542 return ret;
1543 }
1544
1545 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1546 {
1547 int ret = __get_any_page(page, pfn, flags);
1548
1549 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1550 /*
1551 * Try to free it.
1552 */
1553 put_page(page);
1554 shake_page(page, 1);
1555
1556 /*
1557 * Did it turn free?
1558 */
1559 ret = __get_any_page(page, pfn, 0);
1560 if (!PageLRU(page)) {
1561 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1562 pfn, page->flags);
1563 return -EIO;
1564 }
1565 }
1566 return ret;
1567 }
1568
1569 static int soft_offline_huge_page(struct page *page, int flags)
1570 {
1571 int ret;
1572 unsigned long pfn = page_to_pfn(page);
1573 struct page *hpage = compound_head(page);
1574 LIST_HEAD(pagelist);
1575
1576 /*
1577 * This double-check of PageHWPoison is to avoid the race with
1578 * memory_failure(). See also comment in __soft_offline_page().
1579 */
1580 lock_page(hpage);
1581 if (PageHWPoison(hpage)) {
1582 unlock_page(hpage);
1583 put_page(hpage);
1584 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1585 return -EBUSY;
1586 }
1587 unlock_page(hpage);
1588
1589 ret = isolate_huge_page(hpage, &pagelist);
1590 if (ret) {
1591 /*
1592 * get_any_page() and isolate_huge_page() takes a refcount each,
1593 * so need to drop one here.
1594 */
1595 put_page(hpage);
1596 } else {
1597 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1598 return -EBUSY;
1599 }
1600
1601 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1602 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1603 if (ret) {
1604 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1605 pfn, ret, page->flags);
1606 /*
1607 * We know that soft_offline_huge_page() tries to migrate
1608 * only one hugepage pointed to by hpage, so we need not
1609 * run through the pagelist here.
1610 */
1611 putback_active_hugepage(hpage);
1612 if (ret > 0)
1613 ret = -EIO;
1614 } else {
1615 /* overcommit hugetlb page will be freed to buddy */
1616 if (PageHuge(page)) {
1617 set_page_hwpoison_huge_page(hpage);
1618 dequeue_hwpoisoned_huge_page(hpage);
1619 atomic_long_add(1 << compound_order(hpage),
1620 &num_poisoned_pages);
1621 } else {
1622 SetPageHWPoison(page);
1623 atomic_long_inc(&num_poisoned_pages);
1624 }
1625 }
1626 return ret;
1627 }
1628
1629 static int __soft_offline_page(struct page *page, int flags)
1630 {
1631 int ret;
1632 unsigned long pfn = page_to_pfn(page);
1633
1634 /*
1635 * Check PageHWPoison again inside page lock because PageHWPoison
1636 * is set by memory_failure() outside page lock. Note that
1637 * memory_failure() also double-checks PageHWPoison inside page lock,
1638 * so there's no race between soft_offline_page() and memory_failure().
1639 */
1640 lock_page(page);
1641 wait_on_page_writeback(page);
1642 if (PageHWPoison(page)) {
1643 unlock_page(page);
1644 put_page(page);
1645 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1646 return -EBUSY;
1647 }
1648 /*
1649 * Try to invalidate first. This should work for
1650 * non dirty unmapped page cache pages.
1651 */
1652 ret = invalidate_inode_page(page);
1653 unlock_page(page);
1654 /*
1655 * RED-PEN would be better to keep it isolated here, but we
1656 * would need to fix isolation locking first.
1657 */
1658 if (ret == 1) {
1659 put_page(page);
1660 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1661 SetPageHWPoison(page);
1662 atomic_long_inc(&num_poisoned_pages);
1663 return 0;
1664 }
1665
1666 /*
1667 * Simple invalidation didn't work.
1668 * Try to migrate to a new page instead. migrate.c
1669 * handles a large number of cases for us.
1670 */
1671 ret = isolate_lru_page(page);
1672 /*
1673 * Drop page reference which is came from get_any_page()
1674 * successful isolate_lru_page() already took another one.
1675 */
1676 put_page(page);
1677 if (!ret) {
1678 LIST_HEAD(pagelist);
1679 inc_zone_page_state(page, NR_ISOLATED_ANON +
1680 page_is_file_cache(page));
1681 list_add(&page->lru, &pagelist);
1682 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1683 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1684 if (ret) {
1685 if (!list_empty(&pagelist)) {
1686 list_del(&page->lru);
1687 dec_zone_page_state(page, NR_ISOLATED_ANON +
1688 page_is_file_cache(page));
1689 putback_lru_page(page);
1690 }
1691
1692 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1693 pfn, ret, page->flags);
1694 if (ret > 0)
1695 ret = -EIO;
1696 } else {
1697 /*
1698 * After page migration succeeds, the source page can
1699 * be trapped in pagevec and actual freeing is delayed.
1700 * Freeing code works differently based on PG_hwpoison,
1701 * so there's a race. We need to make sure that the
1702 * source page should be freed back to buddy before
1703 * setting PG_hwpoison.
1704 */
1705 if (!is_free_buddy_page(page))
1706 drain_all_pages(page_zone(page));
1707 SetPageHWPoison(page);
1708 if (!is_free_buddy_page(page))
1709 pr_info("soft offline: %#lx: page leaked\n",
1710 pfn);
1711 atomic_long_inc(&num_poisoned_pages);
1712 }
1713 } else {
1714 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1715 pfn, ret, page_count(page), page->flags);
1716 }
1717 return ret;
1718 }
1719
1720 /**
1721 * soft_offline_page - Soft offline a page.
1722 * @page: page to offline
1723 * @flags: flags. Same as memory_failure().
1724 *
1725 * Returns 0 on success, otherwise negated errno.
1726 *
1727 * Soft offline a page, by migration or invalidation,
1728 * without killing anything. This is for the case when
1729 * a page is not corrupted yet (so it's still valid to access),
1730 * but has had a number of corrected errors and is better taken
1731 * out.
1732 *
1733 * The actual policy on when to do that is maintained by
1734 * user space.
1735 *
1736 * This should never impact any application or cause data loss,
1737 * however it might take some time.
1738 *
1739 * This is not a 100% solution for all memory, but tries to be
1740 * ``good enough'' for the majority of memory.
1741 */
1742 int soft_offline_page(struct page *page, int flags)
1743 {
1744 int ret;
1745 unsigned long pfn = page_to_pfn(page);
1746 struct page *hpage = compound_head(page);
1747
1748 if (PageHWPoison(page)) {
1749 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1750 return -EBUSY;
1751 }
1752 if (!PageHuge(page) && PageTransHuge(hpage)) {
1753 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1754 pr_info("soft offline: %#lx: failed to split THP\n",
1755 pfn);
1756 return -EBUSY;
1757 }
1758 }
1759
1760 get_online_mems();
1761
1762 /*
1763 * Isolate the page, so that it doesn't get reallocated if it
1764 * was free. This flag should be kept set until the source page
1765 * is freed and PG_hwpoison on it is set.
1766 */
1767 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1768 set_migratetype_isolate(page, true);
1769
1770 ret = get_any_page(page, pfn, flags);
1771 put_online_mems();
1772 if (ret > 0) { /* for in-use pages */
1773 if (PageHuge(page))
1774 ret = soft_offline_huge_page(page, flags);
1775 else
1776 ret = __soft_offline_page(page, flags);
1777 } else if (ret == 0) { /* for free pages */
1778 if (PageHuge(page)) {
1779 set_page_hwpoison_huge_page(hpage);
1780 if (!dequeue_hwpoisoned_huge_page(hpage))
1781 atomic_long_add(1 << compound_order(hpage),
1782 &num_poisoned_pages);
1783 } else {
1784 if (!TestSetPageHWPoison(page))
1785 atomic_long_inc(&num_poisoned_pages);
1786 }
1787 }
1788 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1789 return ret;
1790 }