]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memory-failure.c
mm/hwpoison: fix some obsolete comments
[mirror_ubuntu-kernels.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 static bool __page_handle_poison(struct page *page)
70 {
71 bool ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret;
80 }
81
82 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83 {
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107 }
108
109 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111 u32 hwpoison_filter_enable = 0;
112 u32 hwpoison_filter_dev_major = ~0U;
113 u32 hwpoison_filter_dev_minor = ~0U;
114 u64 hwpoison_filter_flags_mask;
115 u64 hwpoison_filter_flags_value;
116 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122 static int hwpoison_filter_dev(struct page *p)
123 {
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150 }
151
152 static int hwpoison_filter_flags(struct page *p)
153 {
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162 }
163
164 /*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174 #ifdef CONFIG_MEMCG
175 u64 hwpoison_filter_memcg;
176 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177 static int hwpoison_filter_task(struct page *p)
178 {
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186 }
187 #else
188 static int hwpoison_filter_task(struct page *p) { return 0; }
189 #endif
190
191 int hwpoison_filter(struct page *p)
192 {
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206 }
207 #else
208 int hwpoison_filter(struct page *p)
209 {
210 return 0;
211 }
212 #endif
213
214 EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216 /*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238 struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243 };
244
245 /*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251 {
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281 }
282
283 /*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287 void shake_page(struct page *p, int access)
288 {
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call drop_slab_node here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304 }
305 EXPORT_SYMBOL_GPL(shake_page);
306
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309 {
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339 }
340
341 /*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346 /*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353 {
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389 }
390
391 /*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when FORCEKILL is set, otherwise just free the
395 * list (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401 {
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431 }
432
433 /*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442 {
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455 }
456
457 /*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471 {
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482 }
483
484 /*
485 * Collect processes when the error hit an anonymous page.
486 */
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489 {
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518 }
519
520 /*
521 * Collect processes when the error hit a file mapped page.
522 */
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525 {
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554 }
555
556 /*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559 static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561 {
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569 }
570
571 struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575 };
576
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578 {
579 tk->addr = addr;
580 tk->size_shift = shift;
581 }
582
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585 {
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602 }
603
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607 {
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621 }
622 #else
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625 {
626 return 0;
627 }
628 #endif
629
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632 {
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep, *mapped_pte;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
649 addr, &ptl);
650 for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
652 hwp->pfn, &hwp->tk);
653 if (ret == 1)
654 break;
655 }
656 pte_unmap_unlock(mapped_pte, ptl);
657 out:
658 cond_resched();
659 return ret;
660 }
661
662 #ifdef CONFIG_HUGETLB_PAGE
663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 unsigned long addr, unsigned long end,
665 struct mm_walk *walk)
666 {
667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 pte_t pte = huge_ptep_get(ptep);
669 struct hstate *h = hstate_vma(walk->vma);
670
671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
672 hwp->pfn, &hwp->tk);
673 }
674 #else
675 #define hwpoison_hugetlb_range NULL
676 #endif
677
678 static struct mm_walk_ops hwp_walk_ops = {
679 .pmd_entry = hwpoison_pte_range,
680 .hugetlb_entry = hwpoison_hugetlb_range,
681 };
682
683 /*
684 * Sends SIGBUS to the current process with error info.
685 *
686 * This function is intended to handle "Action Required" MCEs on already
687 * hardware poisoned pages. They could happen, for example, when
688 * memory_failure() failed to unmap the error page at the first call, or
689 * when multiple local machine checks happened on different CPUs.
690 *
691 * MCE handler currently has no easy access to the error virtual address,
692 * so this function walks page table to find it. The returned virtual address
693 * is proper in most cases, but it could be wrong when the application
694 * process has multiple entries mapping the error page.
695 */
696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
697 int flags)
698 {
699 int ret;
700 struct hwp_walk priv = {
701 .pfn = pfn,
702 };
703 priv.tk.tsk = p;
704
705 mmap_read_lock(p->mm);
706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
707 (void *)&priv);
708 if (ret == 1 && priv.tk.addr)
709 kill_proc(&priv.tk, pfn, flags);
710 mmap_read_unlock(p->mm);
711 return ret ? -EFAULT : -EHWPOISON;
712 }
713
714 static const char *action_name[] = {
715 [MF_IGNORED] = "Ignored",
716 [MF_FAILED] = "Failed",
717 [MF_DELAYED] = "Delayed",
718 [MF_RECOVERED] = "Recovered",
719 };
720
721 static const char * const action_page_types[] = {
722 [MF_MSG_KERNEL] = "reserved kernel page",
723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
724 [MF_MSG_SLAB] = "kernel slab page",
725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
726 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
727 [MF_MSG_HUGE] = "huge page",
728 [MF_MSG_FREE_HUGE] = "free huge page",
729 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
730 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
731 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
732 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
733 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
734 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
735 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
736 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
737 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
738 [MF_MSG_CLEAN_LRU] = "clean LRU page",
739 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
740 [MF_MSG_BUDDY] = "free buddy page",
741 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
742 [MF_MSG_DAX] = "dax page",
743 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
744 [MF_MSG_UNKNOWN] = "unknown page",
745 };
746
747 /*
748 * XXX: It is possible that a page is isolated from LRU cache,
749 * and then kept in swap cache or failed to remove from page cache.
750 * The page count will stop it from being freed by unpoison.
751 * Stress tests should be aware of this memory leak problem.
752 */
753 static int delete_from_lru_cache(struct page *p)
754 {
755 if (!isolate_lru_page(p)) {
756 /*
757 * Clear sensible page flags, so that the buddy system won't
758 * complain when the page is unpoison-and-freed.
759 */
760 ClearPageActive(p);
761 ClearPageUnevictable(p);
762
763 /*
764 * Poisoned page might never drop its ref count to 0 so we have
765 * to uncharge it manually from its memcg.
766 */
767 mem_cgroup_uncharge(p);
768
769 /*
770 * drop the page count elevated by isolate_lru_page()
771 */
772 put_page(p);
773 return 0;
774 }
775 return -EIO;
776 }
777
778 static int truncate_error_page(struct page *p, unsigned long pfn,
779 struct address_space *mapping)
780 {
781 int ret = MF_FAILED;
782
783 if (mapping->a_ops->error_remove_page) {
784 int err = mapping->a_ops->error_remove_page(mapping, p);
785
786 if (err != 0) {
787 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
788 pfn, err);
789 } else if (page_has_private(p) &&
790 !try_to_release_page(p, GFP_NOIO)) {
791 pr_info("Memory failure: %#lx: failed to release buffers\n",
792 pfn);
793 } else {
794 ret = MF_RECOVERED;
795 }
796 } else {
797 /*
798 * If the file system doesn't support it just invalidate
799 * This fails on dirty or anything with private pages
800 */
801 if (invalidate_inode_page(p))
802 ret = MF_RECOVERED;
803 else
804 pr_info("Memory failure: %#lx: Failed to invalidate\n",
805 pfn);
806 }
807
808 return ret;
809 }
810
811 /*
812 * Error hit kernel page.
813 * Do nothing, try to be lucky and not touch this instead. For a few cases we
814 * could be more sophisticated.
815 */
816 static int me_kernel(struct page *p, unsigned long pfn)
817 {
818 unlock_page(p);
819 return MF_IGNORED;
820 }
821
822 /*
823 * Page in unknown state. Do nothing.
824 */
825 static int me_unknown(struct page *p, unsigned long pfn)
826 {
827 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
828 unlock_page(p);
829 return MF_FAILED;
830 }
831
832 /*
833 * Clean (or cleaned) page cache page.
834 */
835 static int me_pagecache_clean(struct page *p, unsigned long pfn)
836 {
837 int ret;
838 struct address_space *mapping;
839
840 delete_from_lru_cache(p);
841
842 /*
843 * For anonymous pages we're done the only reference left
844 * should be the one m_f() holds.
845 */
846 if (PageAnon(p)) {
847 ret = MF_RECOVERED;
848 goto out;
849 }
850
851 /*
852 * Now truncate the page in the page cache. This is really
853 * more like a "temporary hole punch"
854 * Don't do this for block devices when someone else
855 * has a reference, because it could be file system metadata
856 * and that's not safe to truncate.
857 */
858 mapping = page_mapping(p);
859 if (!mapping) {
860 /*
861 * Page has been teared down in the meanwhile
862 */
863 ret = MF_FAILED;
864 goto out;
865 }
866
867 /*
868 * Truncation is a bit tricky. Enable it per file system for now.
869 *
870 * Open: to take i_mutex or not for this? Right now we don't.
871 */
872 ret = truncate_error_page(p, pfn, mapping);
873 out:
874 unlock_page(p);
875 return ret;
876 }
877
878 /*
879 * Dirty pagecache page
880 * Issues: when the error hit a hole page the error is not properly
881 * propagated.
882 */
883 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
884 {
885 struct address_space *mapping = page_mapping(p);
886
887 SetPageError(p);
888 /* TBD: print more information about the file. */
889 if (mapping) {
890 /*
891 * IO error will be reported by write(), fsync(), etc.
892 * who check the mapping.
893 * This way the application knows that something went
894 * wrong with its dirty file data.
895 *
896 * There's one open issue:
897 *
898 * The EIO will be only reported on the next IO
899 * operation and then cleared through the IO map.
900 * Normally Linux has two mechanisms to pass IO error
901 * first through the AS_EIO flag in the address space
902 * and then through the PageError flag in the page.
903 * Since we drop pages on memory failure handling the
904 * only mechanism open to use is through AS_AIO.
905 *
906 * This has the disadvantage that it gets cleared on
907 * the first operation that returns an error, while
908 * the PageError bit is more sticky and only cleared
909 * when the page is reread or dropped. If an
910 * application assumes it will always get error on
911 * fsync, but does other operations on the fd before
912 * and the page is dropped between then the error
913 * will not be properly reported.
914 *
915 * This can already happen even without hwpoisoned
916 * pages: first on metadata IO errors (which only
917 * report through AS_EIO) or when the page is dropped
918 * at the wrong time.
919 *
920 * So right now we assume that the application DTRT on
921 * the first EIO, but we're not worse than other parts
922 * of the kernel.
923 */
924 mapping_set_error(mapping, -EIO);
925 }
926
927 return me_pagecache_clean(p, pfn);
928 }
929
930 /*
931 * Clean and dirty swap cache.
932 *
933 * Dirty swap cache page is tricky to handle. The page could live both in page
934 * cache and swap cache(ie. page is freshly swapped in). So it could be
935 * referenced concurrently by 2 types of PTEs:
936 * normal PTEs and swap PTEs. We try to handle them consistently by calling
937 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
938 * and then
939 * - clear dirty bit to prevent IO
940 * - remove from LRU
941 * - but keep in the swap cache, so that when we return to it on
942 * a later page fault, we know the application is accessing
943 * corrupted data and shall be killed (we installed simple
944 * interception code in do_swap_page to catch it).
945 *
946 * Clean swap cache pages can be directly isolated. A later page fault will
947 * bring in the known good data from disk.
948 */
949 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
950 {
951 int ret;
952
953 ClearPageDirty(p);
954 /* Trigger EIO in shmem: */
955 ClearPageUptodate(p);
956
957 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
958 unlock_page(p);
959 return ret;
960 }
961
962 static int me_swapcache_clean(struct page *p, unsigned long pfn)
963 {
964 int ret;
965
966 delete_from_swap_cache(p);
967
968 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
969 unlock_page(p);
970 return ret;
971 }
972
973 /*
974 * Huge pages. Needs work.
975 * Issues:
976 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
977 * To narrow down kill region to one page, we need to break up pmd.
978 */
979 static int me_huge_page(struct page *p, unsigned long pfn)
980 {
981 int res;
982 struct page *hpage = compound_head(p);
983 struct address_space *mapping;
984
985 if (!PageHuge(hpage))
986 return MF_DELAYED;
987
988 mapping = page_mapping(hpage);
989 if (mapping) {
990 res = truncate_error_page(hpage, pfn, mapping);
991 unlock_page(hpage);
992 } else {
993 res = MF_FAILED;
994 unlock_page(hpage);
995 /*
996 * migration entry prevents later access on error anonymous
997 * hugepage, so we can free and dissolve it into buddy to
998 * save healthy subpages.
999 */
1000 if (PageAnon(hpage))
1001 put_page(hpage);
1002 if (__page_handle_poison(p)) {
1003 page_ref_inc(p);
1004 res = MF_RECOVERED;
1005 }
1006 }
1007
1008 return res;
1009 }
1010
1011 /*
1012 * Various page states we can handle.
1013 *
1014 * A page state is defined by its current page->flags bits.
1015 * The table matches them in order and calls the right handler.
1016 *
1017 * This is quite tricky because we can access page at any time
1018 * in its live cycle, so all accesses have to be extremely careful.
1019 *
1020 * This is not complete. More states could be added.
1021 * For any missing state don't attempt recovery.
1022 */
1023
1024 #define dirty (1UL << PG_dirty)
1025 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1026 #define unevict (1UL << PG_unevictable)
1027 #define mlock (1UL << PG_mlocked)
1028 #define lru (1UL << PG_lru)
1029 #define head (1UL << PG_head)
1030 #define slab (1UL << PG_slab)
1031 #define reserved (1UL << PG_reserved)
1032
1033 static struct page_state {
1034 unsigned long mask;
1035 unsigned long res;
1036 enum mf_action_page_type type;
1037
1038 /* Callback ->action() has to unlock the relevant page inside it. */
1039 int (*action)(struct page *p, unsigned long pfn);
1040 } error_states[] = {
1041 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1042 /*
1043 * free pages are specially detected outside this table:
1044 * PG_buddy pages only make a small fraction of all free pages.
1045 */
1046
1047 /*
1048 * Could in theory check if slab page is free or if we can drop
1049 * currently unused objects without touching them. But just
1050 * treat it as standard kernel for now.
1051 */
1052 { slab, slab, MF_MSG_SLAB, me_kernel },
1053
1054 { head, head, MF_MSG_HUGE, me_huge_page },
1055
1056 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1057 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1058
1059 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1060 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1061
1062 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1063 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1064
1065 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1066 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1067
1068 /*
1069 * Catchall entry: must be at end.
1070 */
1071 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1072 };
1073
1074 #undef dirty
1075 #undef sc
1076 #undef unevict
1077 #undef mlock
1078 #undef lru
1079 #undef head
1080 #undef slab
1081 #undef reserved
1082
1083 /*
1084 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1085 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1086 */
1087 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1088 enum mf_result result)
1089 {
1090 trace_memory_failure_event(pfn, type, result);
1091
1092 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1093 pfn, action_page_types[type], action_name[result]);
1094 }
1095
1096 static int page_action(struct page_state *ps, struct page *p,
1097 unsigned long pfn)
1098 {
1099 int result;
1100 int count;
1101
1102 /* page p should be unlocked after returning from ps->action(). */
1103 result = ps->action(p, pfn);
1104
1105 count = page_count(p) - 1;
1106 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1107 count--;
1108 if (count > 0) {
1109 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1110 pfn, action_page_types[ps->type], count);
1111 result = MF_FAILED;
1112 }
1113 action_result(pfn, ps->type, result);
1114
1115 /* Could do more checks here if page looks ok */
1116 /*
1117 * Could adjust zone counters here to correct for the missing page.
1118 */
1119
1120 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1121 }
1122
1123 /*
1124 * Return true if a page type of a given page is supported by hwpoison
1125 * mechanism (while handling could fail), otherwise false. This function
1126 * does not return true for hugetlb or device memory pages, so it's assumed
1127 * to be called only in the context where we never have such pages.
1128 */
1129 static inline bool HWPoisonHandlable(struct page *page)
1130 {
1131 return PageLRU(page) || __PageMovable(page);
1132 }
1133
1134 static int __get_hwpoison_page(struct page *page)
1135 {
1136 struct page *head = compound_head(page);
1137 int ret = 0;
1138 bool hugetlb = false;
1139
1140 ret = get_hwpoison_huge_page(head, &hugetlb);
1141 if (hugetlb)
1142 return ret;
1143
1144 /*
1145 * This check prevents from calling get_hwpoison_unless_zero()
1146 * for any unsupported type of page in order to reduce the risk of
1147 * unexpected races caused by taking a page refcount.
1148 */
1149 if (!HWPoisonHandlable(head))
1150 return -EBUSY;
1151
1152 if (PageTransHuge(head)) {
1153 /*
1154 * Non anonymous thp exists only in allocation/free time. We
1155 * can't handle such a case correctly, so let's give it up.
1156 * This should be better than triggering BUG_ON when kernel
1157 * tries to touch the "partially handled" page.
1158 */
1159 if (!PageAnon(head)) {
1160 pr_err("Memory failure: %#lx: non anonymous thp\n",
1161 page_to_pfn(page));
1162 return 0;
1163 }
1164 }
1165
1166 if (get_page_unless_zero(head)) {
1167 if (head == compound_head(page))
1168 return 1;
1169
1170 pr_info("Memory failure: %#lx cannot catch tail\n",
1171 page_to_pfn(page));
1172 put_page(head);
1173 }
1174
1175 return 0;
1176 }
1177
1178 static int get_any_page(struct page *p, unsigned long flags)
1179 {
1180 int ret = 0, pass = 0;
1181 bool count_increased = false;
1182
1183 if (flags & MF_COUNT_INCREASED)
1184 count_increased = true;
1185
1186 try_again:
1187 if (!count_increased) {
1188 ret = __get_hwpoison_page(p);
1189 if (!ret) {
1190 if (page_count(p)) {
1191 /* We raced with an allocation, retry. */
1192 if (pass++ < 3)
1193 goto try_again;
1194 ret = -EBUSY;
1195 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1196 /* We raced with put_page, retry. */
1197 if (pass++ < 3)
1198 goto try_again;
1199 ret = -EIO;
1200 }
1201 goto out;
1202 } else if (ret == -EBUSY) {
1203 /*
1204 * We raced with (possibly temporary) unhandlable
1205 * page, retry.
1206 */
1207 if (pass++ < 3) {
1208 shake_page(p, 1);
1209 goto try_again;
1210 }
1211 ret = -EIO;
1212 goto out;
1213 }
1214 }
1215
1216 if (PageHuge(p) || HWPoisonHandlable(p)) {
1217 ret = 1;
1218 } else {
1219 /*
1220 * A page we cannot handle. Check whether we can turn
1221 * it into something we can handle.
1222 */
1223 if (pass++ < 3) {
1224 put_page(p);
1225 shake_page(p, 1);
1226 count_increased = false;
1227 goto try_again;
1228 }
1229 put_page(p);
1230 ret = -EIO;
1231 }
1232 out:
1233 return ret;
1234 }
1235
1236 /**
1237 * get_hwpoison_page() - Get refcount for memory error handling
1238 * @p: Raw error page (hit by memory error)
1239 * @flags: Flags controlling behavior of error handling
1240 *
1241 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1242 * error on it, after checking that the error page is in a well-defined state
1243 * (defined as a page-type we can successfully handle the memor error on it,
1244 * such as LRU page and hugetlb page).
1245 *
1246 * Memory error handling could be triggered at any time on any type of page,
1247 * so it's prone to race with typical memory management lifecycle (like
1248 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1249 * extra care for the error page's state (as done in __get_hwpoison_page()),
1250 * and has some retry logic in get_any_page().
1251 *
1252 * Return: 0 on failure,
1253 * 1 on success for in-use pages in a well-defined state,
1254 * -EIO for pages on which we can not handle memory errors,
1255 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1256 * operations like allocation and free.
1257 */
1258 static int get_hwpoison_page(struct page *p, unsigned long flags)
1259 {
1260 int ret;
1261
1262 zone_pcp_disable(page_zone(p));
1263 ret = get_any_page(p, flags);
1264 zone_pcp_enable(page_zone(p));
1265
1266 return ret;
1267 }
1268
1269 /*
1270 * Do all that is necessary to remove user space mappings. Unmap
1271 * the pages and send SIGBUS to the processes if the data was dirty.
1272 */
1273 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1274 int flags, struct page *hpage)
1275 {
1276 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1277 struct address_space *mapping;
1278 LIST_HEAD(tokill);
1279 bool unmap_success;
1280 int kill = 1, forcekill;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388 }
1389
1390 static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392 {
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411 }
1412
1413 static int try_to_split_thp_page(struct page *page, const char *msg)
1414 {
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430 }
1431
1432 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433 {
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512 out:
1513 unlock_page(head);
1514 return res;
1515 }
1516
1517 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519 {
1520 struct page *page = pfn_to_page(pfn);
1521 unsigned long size = 0;
1522 struct to_kill *tk;
1523 LIST_HEAD(tokill);
1524 int rc = -EBUSY;
1525 loff_t start;
1526 dax_entry_t cookie;
1527
1528 if (flags & MF_COUNT_INCREASED)
1529 /*
1530 * Drop the extra refcount in case we come from madvise().
1531 */
1532 put_page(page);
1533
1534 /* device metadata space is not recoverable */
1535 if (!pgmap_pfn_valid(pgmap, pfn)) {
1536 rc = -ENXIO;
1537 goto out;
1538 }
1539
1540 /*
1541 * Prevent the inode from being freed while we are interrogating
1542 * the address_space, typically this would be handled by
1543 * lock_page(), but dax pages do not use the page lock. This
1544 * also prevents changes to the mapping of this pfn until
1545 * poison signaling is complete.
1546 */
1547 cookie = dax_lock_page(page);
1548 if (!cookie)
1549 goto out;
1550
1551 if (hwpoison_filter(page)) {
1552 rc = 0;
1553 goto unlock;
1554 }
1555
1556 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1557 /*
1558 * TODO: Handle HMM pages which may need coordination
1559 * with device-side memory.
1560 */
1561 goto unlock;
1562 }
1563
1564 /*
1565 * Use this flag as an indication that the dax page has been
1566 * remapped UC to prevent speculative consumption of poison.
1567 */
1568 SetPageHWPoison(page);
1569
1570 /*
1571 * Unlike System-RAM there is no possibility to swap in a
1572 * different physical page at a given virtual address, so all
1573 * userspace consumption of ZONE_DEVICE memory necessitates
1574 * SIGBUS (i.e. MF_MUST_KILL)
1575 */
1576 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1577 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1578
1579 list_for_each_entry(tk, &tokill, nd)
1580 if (tk->size_shift)
1581 size = max(size, 1UL << tk->size_shift);
1582 if (size) {
1583 /*
1584 * Unmap the largest mapping to avoid breaking up
1585 * device-dax mappings which are constant size. The
1586 * actual size of the mapping being torn down is
1587 * communicated in siginfo, see kill_proc()
1588 */
1589 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1590 unmap_mapping_range(page->mapping, start, size, 0);
1591 }
1592 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1593 rc = 0;
1594 unlock:
1595 dax_unlock_page(page, cookie);
1596 out:
1597 /* drop pgmap ref acquired in caller */
1598 put_dev_pagemap(pgmap);
1599 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1600 return rc;
1601 }
1602
1603 /**
1604 * memory_failure - Handle memory failure of a page.
1605 * @pfn: Page Number of the corrupted page
1606 * @flags: fine tune action taken
1607 *
1608 * This function is called by the low level machine check code
1609 * of an architecture when it detects hardware memory corruption
1610 * of a page. It tries its best to recover, which includes
1611 * dropping pages, killing processes etc.
1612 *
1613 * The function is primarily of use for corruptions that
1614 * happen outside the current execution context (e.g. when
1615 * detected by a background scrubber)
1616 *
1617 * Must run in process context (e.g. a work queue) with interrupts
1618 * enabled and no spinlocks hold.
1619 */
1620 int memory_failure(unsigned long pfn, int flags)
1621 {
1622 struct page *p;
1623 struct page *hpage;
1624 struct page *orig_head;
1625 struct dev_pagemap *pgmap;
1626 int res = 0;
1627 unsigned long page_flags;
1628 bool retry = true;
1629 static DEFINE_MUTEX(mf_mutex);
1630
1631 if (!sysctl_memory_failure_recovery)
1632 panic("Memory failure on page %lx", pfn);
1633
1634 p = pfn_to_online_page(pfn);
1635 if (!p) {
1636 if (pfn_valid(pfn)) {
1637 pgmap = get_dev_pagemap(pfn, NULL);
1638 if (pgmap)
1639 return memory_failure_dev_pagemap(pfn, flags,
1640 pgmap);
1641 }
1642 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1643 pfn);
1644 return -ENXIO;
1645 }
1646
1647 mutex_lock(&mf_mutex);
1648
1649 try_again:
1650 if (PageHuge(p)) {
1651 res = memory_failure_hugetlb(pfn, flags);
1652 goto unlock_mutex;
1653 }
1654
1655 if (TestSetPageHWPoison(p)) {
1656 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1657 pfn);
1658 res = -EHWPOISON;
1659 if (flags & MF_ACTION_REQUIRED)
1660 res = kill_accessing_process(current, pfn, flags);
1661 goto unlock_mutex;
1662 }
1663
1664 orig_head = hpage = compound_head(p);
1665 num_poisoned_pages_inc();
1666
1667 /*
1668 * We need/can do nothing about count=0 pages.
1669 * 1) it's a free page, and therefore in safe hand:
1670 * prep_new_page() will be the gate keeper.
1671 * 2) it's part of a non-compound high order page.
1672 * Implies some kernel user: cannot stop them from
1673 * R/W the page; let's pray that the page has been
1674 * used and will be freed some time later.
1675 * In fact it's dangerous to directly bump up page count from 0,
1676 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1677 */
1678 if (!(flags & MF_COUNT_INCREASED)) {
1679 res = get_hwpoison_page(p, flags);
1680 if (!res) {
1681 if (is_free_buddy_page(p)) {
1682 if (take_page_off_buddy(p)) {
1683 page_ref_inc(p);
1684 res = MF_RECOVERED;
1685 } else {
1686 /* We lost the race, try again */
1687 if (retry) {
1688 ClearPageHWPoison(p);
1689 num_poisoned_pages_dec();
1690 retry = false;
1691 goto try_again;
1692 }
1693 res = MF_FAILED;
1694 }
1695 action_result(pfn, MF_MSG_BUDDY, res);
1696 res = res == MF_RECOVERED ? 0 : -EBUSY;
1697 } else {
1698 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1699 res = -EBUSY;
1700 }
1701 goto unlock_mutex;
1702 } else if (res < 0) {
1703 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1704 res = -EBUSY;
1705 goto unlock_mutex;
1706 }
1707 }
1708
1709 if (PageTransHuge(hpage)) {
1710 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1711 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1712 res = -EBUSY;
1713 goto unlock_mutex;
1714 }
1715 VM_BUG_ON_PAGE(!page_count(p), p);
1716 }
1717
1718 /*
1719 * We ignore non-LRU pages for good reasons.
1720 * - PG_locked is only well defined for LRU pages and a few others
1721 * - to avoid races with __SetPageLocked()
1722 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1723 * The check (unnecessarily) ignores LRU pages being isolated and
1724 * walked by the page reclaim code, however that's not a big loss.
1725 */
1726 shake_page(p, 0);
1727
1728 lock_page(p);
1729
1730 /*
1731 * The page could have changed compound pages during the locking.
1732 * If this happens just bail out.
1733 */
1734 if (PageCompound(p) && compound_head(p) != orig_head) {
1735 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1736 res = -EBUSY;
1737 goto unlock_page;
1738 }
1739
1740 /*
1741 * We use page flags to determine what action should be taken, but
1742 * the flags can be modified by the error containment action. One
1743 * example is an mlocked page, where PG_mlocked is cleared by
1744 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1745 * correctly, we save a copy of the page flags at this time.
1746 */
1747 page_flags = p->flags;
1748
1749 /*
1750 * unpoison always clear PG_hwpoison inside page lock
1751 */
1752 if (!PageHWPoison(p)) {
1753 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1754 num_poisoned_pages_dec();
1755 unlock_page(p);
1756 put_page(p);
1757 goto unlock_mutex;
1758 }
1759 if (hwpoison_filter(p)) {
1760 if (TestClearPageHWPoison(p))
1761 num_poisoned_pages_dec();
1762 unlock_page(p);
1763 put_page(p);
1764 goto unlock_mutex;
1765 }
1766
1767 /*
1768 * __munlock_pagevec may clear a writeback page's LRU flag without
1769 * page_lock. We need wait writeback completion for this page or it
1770 * may trigger vfs BUG while evict inode.
1771 */
1772 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1773 goto identify_page_state;
1774
1775 /*
1776 * It's very difficult to mess with pages currently under IO
1777 * and in many cases impossible, so we just avoid it here.
1778 */
1779 wait_on_page_writeback(p);
1780
1781 /*
1782 * Now take care of user space mappings.
1783 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1784 */
1785 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1786 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1787 res = -EBUSY;
1788 goto unlock_page;
1789 }
1790
1791 /*
1792 * Torn down by someone else?
1793 */
1794 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1795 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1796 res = -EBUSY;
1797 goto unlock_page;
1798 }
1799
1800 identify_page_state:
1801 res = identify_page_state(pfn, p, page_flags);
1802 mutex_unlock(&mf_mutex);
1803 return res;
1804 unlock_page:
1805 unlock_page(p);
1806 unlock_mutex:
1807 mutex_unlock(&mf_mutex);
1808 return res;
1809 }
1810 EXPORT_SYMBOL_GPL(memory_failure);
1811
1812 #define MEMORY_FAILURE_FIFO_ORDER 4
1813 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1814
1815 struct memory_failure_entry {
1816 unsigned long pfn;
1817 int flags;
1818 };
1819
1820 struct memory_failure_cpu {
1821 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1822 MEMORY_FAILURE_FIFO_SIZE);
1823 spinlock_t lock;
1824 struct work_struct work;
1825 };
1826
1827 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1828
1829 /**
1830 * memory_failure_queue - Schedule handling memory failure of a page.
1831 * @pfn: Page Number of the corrupted page
1832 * @flags: Flags for memory failure handling
1833 *
1834 * This function is called by the low level hardware error handler
1835 * when it detects hardware memory corruption of a page. It schedules
1836 * the recovering of error page, including dropping pages, killing
1837 * processes etc.
1838 *
1839 * The function is primarily of use for corruptions that
1840 * happen outside the current execution context (e.g. when
1841 * detected by a background scrubber)
1842 *
1843 * Can run in IRQ context.
1844 */
1845 void memory_failure_queue(unsigned long pfn, int flags)
1846 {
1847 struct memory_failure_cpu *mf_cpu;
1848 unsigned long proc_flags;
1849 struct memory_failure_entry entry = {
1850 .pfn = pfn,
1851 .flags = flags,
1852 };
1853
1854 mf_cpu = &get_cpu_var(memory_failure_cpu);
1855 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1856 if (kfifo_put(&mf_cpu->fifo, entry))
1857 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1858 else
1859 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1860 pfn);
1861 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1862 put_cpu_var(memory_failure_cpu);
1863 }
1864 EXPORT_SYMBOL_GPL(memory_failure_queue);
1865
1866 static void memory_failure_work_func(struct work_struct *work)
1867 {
1868 struct memory_failure_cpu *mf_cpu;
1869 struct memory_failure_entry entry = { 0, };
1870 unsigned long proc_flags;
1871 int gotten;
1872
1873 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1874 for (;;) {
1875 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1876 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1877 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1878 if (!gotten)
1879 break;
1880 if (entry.flags & MF_SOFT_OFFLINE)
1881 soft_offline_page(entry.pfn, entry.flags);
1882 else
1883 memory_failure(entry.pfn, entry.flags);
1884 }
1885 }
1886
1887 /*
1888 * Process memory_failure work queued on the specified CPU.
1889 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1890 */
1891 void memory_failure_queue_kick(int cpu)
1892 {
1893 struct memory_failure_cpu *mf_cpu;
1894
1895 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1896 cancel_work_sync(&mf_cpu->work);
1897 memory_failure_work_func(&mf_cpu->work);
1898 }
1899
1900 static int __init memory_failure_init(void)
1901 {
1902 struct memory_failure_cpu *mf_cpu;
1903 int cpu;
1904
1905 for_each_possible_cpu(cpu) {
1906 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1907 spin_lock_init(&mf_cpu->lock);
1908 INIT_KFIFO(mf_cpu->fifo);
1909 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1910 }
1911
1912 return 0;
1913 }
1914 core_initcall(memory_failure_init);
1915
1916 #define unpoison_pr_info(fmt, pfn, rs) \
1917 ({ \
1918 if (__ratelimit(rs)) \
1919 pr_info(fmt, pfn); \
1920 })
1921
1922 /**
1923 * unpoison_memory - Unpoison a previously poisoned page
1924 * @pfn: Page number of the to be unpoisoned page
1925 *
1926 * Software-unpoison a page that has been poisoned by
1927 * memory_failure() earlier.
1928 *
1929 * This is only done on the software-level, so it only works
1930 * for linux injected failures, not real hardware failures
1931 *
1932 * Returns 0 for success, otherwise -errno.
1933 */
1934 int unpoison_memory(unsigned long pfn)
1935 {
1936 struct page *page;
1937 struct page *p;
1938 int freeit = 0;
1939 unsigned long flags = 0;
1940 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1941 DEFAULT_RATELIMIT_BURST);
1942
1943 if (!pfn_valid(pfn))
1944 return -ENXIO;
1945
1946 p = pfn_to_page(pfn);
1947 page = compound_head(p);
1948
1949 if (!PageHWPoison(p)) {
1950 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1951 pfn, &unpoison_rs);
1952 return 0;
1953 }
1954
1955 if (page_count(page) > 1) {
1956 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1957 pfn, &unpoison_rs);
1958 return 0;
1959 }
1960
1961 if (page_mapped(page)) {
1962 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1963 pfn, &unpoison_rs);
1964 return 0;
1965 }
1966
1967 if (page_mapping(page)) {
1968 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1969 pfn, &unpoison_rs);
1970 return 0;
1971 }
1972
1973 /*
1974 * unpoison_memory() can encounter thp only when the thp is being
1975 * worked by memory_failure() and the page lock is not held yet.
1976 * In such case, we yield to memory_failure() and make unpoison fail.
1977 */
1978 if (!PageHuge(page) && PageTransHuge(page)) {
1979 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1980 pfn, &unpoison_rs);
1981 return 0;
1982 }
1983
1984 if (!get_hwpoison_page(p, flags)) {
1985 if (TestClearPageHWPoison(p))
1986 num_poisoned_pages_dec();
1987 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1988 pfn, &unpoison_rs);
1989 return 0;
1990 }
1991
1992 lock_page(page);
1993 /*
1994 * This test is racy because PG_hwpoison is set outside of page lock.
1995 * That's acceptable because that won't trigger kernel panic. Instead,
1996 * the PG_hwpoison page will be caught and isolated on the entrance to
1997 * the free buddy page pool.
1998 */
1999 if (TestClearPageHWPoison(page)) {
2000 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2001 pfn, &unpoison_rs);
2002 num_poisoned_pages_dec();
2003 freeit = 1;
2004 }
2005 unlock_page(page);
2006
2007 put_page(page);
2008 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2009 put_page(page);
2010
2011 return 0;
2012 }
2013 EXPORT_SYMBOL(unpoison_memory);
2014
2015 static bool isolate_page(struct page *page, struct list_head *pagelist)
2016 {
2017 bool isolated = false;
2018 bool lru = PageLRU(page);
2019
2020 if (PageHuge(page)) {
2021 isolated = isolate_huge_page(page, pagelist);
2022 } else {
2023 if (lru)
2024 isolated = !isolate_lru_page(page);
2025 else
2026 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2027
2028 if (isolated)
2029 list_add(&page->lru, pagelist);
2030 }
2031
2032 if (isolated && lru)
2033 inc_node_page_state(page, NR_ISOLATED_ANON +
2034 page_is_file_lru(page));
2035
2036 /*
2037 * If we succeed to isolate the page, we grabbed another refcount on
2038 * the page, so we can safely drop the one we got from get_any_pages().
2039 * If we failed to isolate the page, it means that we cannot go further
2040 * and we will return an error, so drop the reference we got from
2041 * get_any_pages() as well.
2042 */
2043 put_page(page);
2044 return isolated;
2045 }
2046
2047 /*
2048 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2049 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2050 * If the page is mapped, it migrates the contents over.
2051 */
2052 static int __soft_offline_page(struct page *page)
2053 {
2054 int ret = 0;
2055 unsigned long pfn = page_to_pfn(page);
2056 struct page *hpage = compound_head(page);
2057 char const *msg_page[] = {"page", "hugepage"};
2058 bool huge = PageHuge(page);
2059 LIST_HEAD(pagelist);
2060 struct migration_target_control mtc = {
2061 .nid = NUMA_NO_NODE,
2062 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2063 };
2064
2065 /*
2066 * Check PageHWPoison again inside page lock because PageHWPoison
2067 * is set by memory_failure() outside page lock. Note that
2068 * memory_failure() also double-checks PageHWPoison inside page lock,
2069 * so there's no race between soft_offline_page() and memory_failure().
2070 */
2071 lock_page(page);
2072 if (!PageHuge(page))
2073 wait_on_page_writeback(page);
2074 if (PageHWPoison(page)) {
2075 unlock_page(page);
2076 put_page(page);
2077 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2078 return 0;
2079 }
2080
2081 if (!PageHuge(page))
2082 /*
2083 * Try to invalidate first. This should work for
2084 * non dirty unmapped page cache pages.
2085 */
2086 ret = invalidate_inode_page(page);
2087 unlock_page(page);
2088
2089 /*
2090 * RED-PEN would be better to keep it isolated here, but we
2091 * would need to fix isolation locking first.
2092 */
2093 if (ret) {
2094 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2095 page_handle_poison(page, false, true);
2096 return 0;
2097 }
2098
2099 if (isolate_page(hpage, &pagelist)) {
2100 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2101 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2102 if (!ret) {
2103 bool release = !huge;
2104
2105 if (!page_handle_poison(page, huge, release))
2106 ret = -EBUSY;
2107 } else {
2108 if (!list_empty(&pagelist))
2109 putback_movable_pages(&pagelist);
2110
2111 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2112 pfn, msg_page[huge], ret, page->flags, &page->flags);
2113 if (ret > 0)
2114 ret = -EBUSY;
2115 }
2116 } else {
2117 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2118 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2119 ret = -EBUSY;
2120 }
2121 return ret;
2122 }
2123
2124 static int soft_offline_in_use_page(struct page *page)
2125 {
2126 struct page *hpage = compound_head(page);
2127
2128 if (!PageHuge(page) && PageTransHuge(hpage))
2129 if (try_to_split_thp_page(page, "soft offline") < 0)
2130 return -EBUSY;
2131 return __soft_offline_page(page);
2132 }
2133
2134 static int soft_offline_free_page(struct page *page)
2135 {
2136 int rc = 0;
2137
2138 if (!page_handle_poison(page, true, false))
2139 rc = -EBUSY;
2140
2141 return rc;
2142 }
2143
2144 static void put_ref_page(struct page *page)
2145 {
2146 if (page)
2147 put_page(page);
2148 }
2149
2150 /**
2151 * soft_offline_page - Soft offline a page.
2152 * @pfn: pfn to soft-offline
2153 * @flags: flags. Same as memory_failure().
2154 *
2155 * Returns 0 on success, otherwise negated errno.
2156 *
2157 * Soft offline a page, by migration or invalidation,
2158 * without killing anything. This is for the case when
2159 * a page is not corrupted yet (so it's still valid to access),
2160 * but has had a number of corrected errors and is better taken
2161 * out.
2162 *
2163 * The actual policy on when to do that is maintained by
2164 * user space.
2165 *
2166 * This should never impact any application or cause data loss,
2167 * however it might take some time.
2168 *
2169 * This is not a 100% solution for all memory, but tries to be
2170 * ``good enough'' for the majority of memory.
2171 */
2172 int soft_offline_page(unsigned long pfn, int flags)
2173 {
2174 int ret;
2175 bool try_again = true;
2176 struct page *page, *ref_page = NULL;
2177
2178 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2179
2180 if (!pfn_valid(pfn))
2181 return -ENXIO;
2182 if (flags & MF_COUNT_INCREASED)
2183 ref_page = pfn_to_page(pfn);
2184
2185 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2186 page = pfn_to_online_page(pfn);
2187 if (!page) {
2188 put_ref_page(ref_page);
2189 return -EIO;
2190 }
2191
2192 if (PageHWPoison(page)) {
2193 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2194 put_ref_page(ref_page);
2195 return 0;
2196 }
2197
2198 retry:
2199 get_online_mems();
2200 ret = get_hwpoison_page(page, flags);
2201 put_online_mems();
2202
2203 if (ret > 0) {
2204 ret = soft_offline_in_use_page(page);
2205 } else if (ret == 0) {
2206 if (soft_offline_free_page(page) && try_again) {
2207 try_again = false;
2208 goto retry;
2209 }
2210 } else if (ret == -EIO) {
2211 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2212 __func__, pfn, page->flags, &page->flags);
2213 }
2214
2215 return ret;
2216 }