]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory-failure.c
coredump: fix the setting of PF_DUMPCORE
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107 }
108
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119 }
120
121 /*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
150
151 if (!ino || ino != hwpoison_filter_memcg)
152 return -EINVAL;
153
154 return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159
160 int hwpoison_filter(struct page *p)
161 {
162 if (!hwpoison_filter_enable)
163 return 0;
164
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
174 return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 return 0;
180 }
181 #endif
182
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185 /*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224 }
225
226 /*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230 void shake_page(struct page *p, int access)
231 {
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
240
241 /*
242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
244 */
245 if (access) {
246 int nr;
247 int nid = page_to_nid(p);
248 do {
249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
251 };
252 node_set(nid, shrink.nodes_to_scan);
253
254 nr = shrink_slab(&shrink, 1000, 1000);
255 if (page_count(p) == 1)
256 break;
257 } while (nr > 10);
258 }
259 }
260 EXPORT_SYMBOL_GPL(shake_page);
261
262 /*
263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
265 *
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
271 *
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
275 *
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
279 *
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
282 */
283
284 struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
288 char addr_valid;
289 };
290
291 /*
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
294 */
295
296 /*
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
300 */
301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
305 {
306 struct to_kill *tk;
307
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
317 }
318 }
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
321
322 /*
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
327 */
328 if (tk->addr == -EFAULT) {
329 pr_info("MCE: Unable to find user space address %lx in %s\n",
330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
332 }
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
336 }
337
338 /*
339 * Kill the processes that have been collected earlier.
340 *
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
345 */
346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 int fail, struct page *page, unsigned long pfn,
348 int flags)
349 {
350 struct to_kill *tk, *next;
351
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
353 if (forcekill) {
354 /*
355 * In case something went wrong with munmapping
356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
358 */
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 force_sig(SIGKILL, tk->tsk);
364 }
365
366 /*
367 * In theory the process could have mapped
368 * something else on the address in-between. We could
369 * check for that, but we need to tell the
370 * process anyways.
371 */
372 else if (kill_proc(tk->tsk, tk->addr, trapno,
373 pfn, page, flags) < 0)
374 printk(KERN_ERR
375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 pfn, tk->tsk->comm, tk->tsk->pid);
377 }
378 put_task_struct(tk->tsk);
379 kfree(tk);
380 }
381 }
382
383 /*
384 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
385 * on behalf of the thread group. Return task_struct of the (first found)
386 * dedicated thread if found, and return NULL otherwise.
387 *
388 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
389 * have to call rcu_read_lock/unlock() in this function.
390 */
391 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
392 {
393 struct task_struct *t;
394
395 for_each_thread(tsk, t)
396 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
397 return t;
398 return NULL;
399 }
400
401 /*
402 * Determine whether a given process is "early kill" process which expects
403 * to be signaled when some page under the process is hwpoisoned.
404 * Return task_struct of the dedicated thread (main thread unless explicitly
405 * specified) if the process is "early kill," and otherwise returns NULL.
406 */
407 static struct task_struct *task_early_kill(struct task_struct *tsk,
408 int force_early)
409 {
410 struct task_struct *t;
411 if (!tsk->mm)
412 return NULL;
413 if (force_early)
414 return tsk;
415 t = find_early_kill_thread(tsk);
416 if (t)
417 return t;
418 if (sysctl_memory_failure_early_kill)
419 return tsk;
420 return NULL;
421 }
422
423 /*
424 * Collect processes when the error hit an anonymous page.
425 */
426 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
427 struct to_kill **tkc, int force_early)
428 {
429 struct vm_area_struct *vma;
430 struct task_struct *tsk;
431 struct anon_vma *av;
432 pgoff_t pgoff;
433
434 av = page_lock_anon_vma_read(page);
435 if (av == NULL) /* Not actually mapped anymore */
436 return;
437
438 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
439 read_lock(&tasklist_lock);
440 for_each_process (tsk) {
441 struct anon_vma_chain *vmac;
442 struct task_struct *t = task_early_kill(tsk, force_early);
443
444 if (!t)
445 continue;
446 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
447 pgoff, pgoff) {
448 vma = vmac->vma;
449 if (!page_mapped_in_vma(page, vma))
450 continue;
451 if (vma->vm_mm == t->mm)
452 add_to_kill(t, page, vma, to_kill, tkc);
453 }
454 }
455 read_unlock(&tasklist_lock);
456 page_unlock_anon_vma_read(av);
457 }
458
459 /*
460 * Collect processes when the error hit a file mapped page.
461 */
462 static void collect_procs_file(struct page *page, struct list_head *to_kill,
463 struct to_kill **tkc, int force_early)
464 {
465 struct vm_area_struct *vma;
466 struct task_struct *tsk;
467 struct address_space *mapping = page->mapping;
468
469 mutex_lock(&mapping->i_mmap_mutex);
470 read_lock(&tasklist_lock);
471 for_each_process(tsk) {
472 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
473 struct task_struct *t = task_early_kill(tsk, force_early);
474
475 if (!t)
476 continue;
477 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
478 pgoff) {
479 /*
480 * Send early kill signal to tasks where a vma covers
481 * the page but the corrupted page is not necessarily
482 * mapped it in its pte.
483 * Assume applications who requested early kill want
484 * to be informed of all such data corruptions.
485 */
486 if (vma->vm_mm == t->mm)
487 add_to_kill(t, page, vma, to_kill, tkc);
488 }
489 }
490 read_unlock(&tasklist_lock);
491 mutex_unlock(&mapping->i_mmap_mutex);
492 }
493
494 /*
495 * Collect the processes who have the corrupted page mapped to kill.
496 * This is done in two steps for locking reasons.
497 * First preallocate one tokill structure outside the spin locks,
498 * so that we can kill at least one process reasonably reliable.
499 */
500 static void collect_procs(struct page *page, struct list_head *tokill,
501 int force_early)
502 {
503 struct to_kill *tk;
504
505 if (!page->mapping)
506 return;
507
508 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
509 if (!tk)
510 return;
511 if (PageAnon(page))
512 collect_procs_anon(page, tokill, &tk, force_early);
513 else
514 collect_procs_file(page, tokill, &tk, force_early);
515 kfree(tk);
516 }
517
518 /*
519 * Error handlers for various types of pages.
520 */
521
522 enum outcome {
523 IGNORED, /* Error: cannot be handled */
524 FAILED, /* Error: handling failed */
525 DELAYED, /* Will be handled later */
526 RECOVERED, /* Successfully recovered */
527 };
528
529 static const char *action_name[] = {
530 [IGNORED] = "Ignored",
531 [FAILED] = "Failed",
532 [DELAYED] = "Delayed",
533 [RECOVERED] = "Recovered",
534 };
535
536 /*
537 * XXX: It is possible that a page is isolated from LRU cache,
538 * and then kept in swap cache or failed to remove from page cache.
539 * The page count will stop it from being freed by unpoison.
540 * Stress tests should be aware of this memory leak problem.
541 */
542 static int delete_from_lru_cache(struct page *p)
543 {
544 if (!isolate_lru_page(p)) {
545 /*
546 * Clear sensible page flags, so that the buddy system won't
547 * complain when the page is unpoison-and-freed.
548 */
549 ClearPageActive(p);
550 ClearPageUnevictable(p);
551 /*
552 * drop the page count elevated by isolate_lru_page()
553 */
554 page_cache_release(p);
555 return 0;
556 }
557 return -EIO;
558 }
559
560 /*
561 * Error hit kernel page.
562 * Do nothing, try to be lucky and not touch this instead. For a few cases we
563 * could be more sophisticated.
564 */
565 static int me_kernel(struct page *p, unsigned long pfn)
566 {
567 return IGNORED;
568 }
569
570 /*
571 * Page in unknown state. Do nothing.
572 */
573 static int me_unknown(struct page *p, unsigned long pfn)
574 {
575 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
576 return FAILED;
577 }
578
579 /*
580 * Clean (or cleaned) page cache page.
581 */
582 static int me_pagecache_clean(struct page *p, unsigned long pfn)
583 {
584 int err;
585 int ret = FAILED;
586 struct address_space *mapping;
587
588 delete_from_lru_cache(p);
589
590 /*
591 * For anonymous pages we're done the only reference left
592 * should be the one m_f() holds.
593 */
594 if (PageAnon(p))
595 return RECOVERED;
596
597 /*
598 * Now truncate the page in the page cache. This is really
599 * more like a "temporary hole punch"
600 * Don't do this for block devices when someone else
601 * has a reference, because it could be file system metadata
602 * and that's not safe to truncate.
603 */
604 mapping = page_mapping(p);
605 if (!mapping) {
606 /*
607 * Page has been teared down in the meanwhile
608 */
609 return FAILED;
610 }
611
612 /*
613 * Truncation is a bit tricky. Enable it per file system for now.
614 *
615 * Open: to take i_mutex or not for this? Right now we don't.
616 */
617 if (mapping->a_ops->error_remove_page) {
618 err = mapping->a_ops->error_remove_page(mapping, p);
619 if (err != 0) {
620 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
621 pfn, err);
622 } else if (page_has_private(p) &&
623 !try_to_release_page(p, GFP_NOIO)) {
624 pr_info("MCE %#lx: failed to release buffers\n", pfn);
625 } else {
626 ret = RECOVERED;
627 }
628 } else {
629 /*
630 * If the file system doesn't support it just invalidate
631 * This fails on dirty or anything with private pages
632 */
633 if (invalidate_inode_page(p))
634 ret = RECOVERED;
635 else
636 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
637 pfn);
638 }
639 return ret;
640 }
641
642 /*
643 * Dirty pagecache page
644 * Issues: when the error hit a hole page the error is not properly
645 * propagated.
646 */
647 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
648 {
649 struct address_space *mapping = page_mapping(p);
650
651 SetPageError(p);
652 /* TBD: print more information about the file. */
653 if (mapping) {
654 /*
655 * IO error will be reported by write(), fsync(), etc.
656 * who check the mapping.
657 * This way the application knows that something went
658 * wrong with its dirty file data.
659 *
660 * There's one open issue:
661 *
662 * The EIO will be only reported on the next IO
663 * operation and then cleared through the IO map.
664 * Normally Linux has two mechanisms to pass IO error
665 * first through the AS_EIO flag in the address space
666 * and then through the PageError flag in the page.
667 * Since we drop pages on memory failure handling the
668 * only mechanism open to use is through AS_AIO.
669 *
670 * This has the disadvantage that it gets cleared on
671 * the first operation that returns an error, while
672 * the PageError bit is more sticky and only cleared
673 * when the page is reread or dropped. If an
674 * application assumes it will always get error on
675 * fsync, but does other operations on the fd before
676 * and the page is dropped between then the error
677 * will not be properly reported.
678 *
679 * This can already happen even without hwpoisoned
680 * pages: first on metadata IO errors (which only
681 * report through AS_EIO) or when the page is dropped
682 * at the wrong time.
683 *
684 * So right now we assume that the application DTRT on
685 * the first EIO, but we're not worse than other parts
686 * of the kernel.
687 */
688 mapping_set_error(mapping, EIO);
689 }
690
691 return me_pagecache_clean(p, pfn);
692 }
693
694 /*
695 * Clean and dirty swap cache.
696 *
697 * Dirty swap cache page is tricky to handle. The page could live both in page
698 * cache and swap cache(ie. page is freshly swapped in). So it could be
699 * referenced concurrently by 2 types of PTEs:
700 * normal PTEs and swap PTEs. We try to handle them consistently by calling
701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
702 * and then
703 * - clear dirty bit to prevent IO
704 * - remove from LRU
705 * - but keep in the swap cache, so that when we return to it on
706 * a later page fault, we know the application is accessing
707 * corrupted data and shall be killed (we installed simple
708 * interception code in do_swap_page to catch it).
709 *
710 * Clean swap cache pages can be directly isolated. A later page fault will
711 * bring in the known good data from disk.
712 */
713 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
714 {
715 ClearPageDirty(p);
716 /* Trigger EIO in shmem: */
717 ClearPageUptodate(p);
718
719 if (!delete_from_lru_cache(p))
720 return DELAYED;
721 else
722 return FAILED;
723 }
724
725 static int me_swapcache_clean(struct page *p, unsigned long pfn)
726 {
727 delete_from_swap_cache(p);
728
729 if (!delete_from_lru_cache(p))
730 return RECOVERED;
731 else
732 return FAILED;
733 }
734
735 /*
736 * Huge pages. Needs work.
737 * Issues:
738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
739 * To narrow down kill region to one page, we need to break up pmd.
740 */
741 static int me_huge_page(struct page *p, unsigned long pfn)
742 {
743 int res = 0;
744 struct page *hpage = compound_head(p);
745 /*
746 * We can safely recover from error on free or reserved (i.e.
747 * not in-use) hugepage by dequeuing it from freelist.
748 * To check whether a hugepage is in-use or not, we can't use
749 * page->lru because it can be used in other hugepage operations,
750 * such as __unmap_hugepage_range() and gather_surplus_pages().
751 * So instead we use page_mapping() and PageAnon().
752 * We assume that this function is called with page lock held,
753 * so there is no race between isolation and mapping/unmapping.
754 */
755 if (!(page_mapping(hpage) || PageAnon(hpage))) {
756 res = dequeue_hwpoisoned_huge_page(hpage);
757 if (!res)
758 return RECOVERED;
759 }
760 return DELAYED;
761 }
762
763 /*
764 * Various page states we can handle.
765 *
766 * A page state is defined by its current page->flags bits.
767 * The table matches them in order and calls the right handler.
768 *
769 * This is quite tricky because we can access page at any time
770 * in its live cycle, so all accesses have to be extremely careful.
771 *
772 * This is not complete. More states could be added.
773 * For any missing state don't attempt recovery.
774 */
775
776 #define dirty (1UL << PG_dirty)
777 #define sc (1UL << PG_swapcache)
778 #define unevict (1UL << PG_unevictable)
779 #define mlock (1UL << PG_mlocked)
780 #define writeback (1UL << PG_writeback)
781 #define lru (1UL << PG_lru)
782 #define swapbacked (1UL << PG_swapbacked)
783 #define head (1UL << PG_head)
784 #define tail (1UL << PG_tail)
785 #define compound (1UL << PG_compound)
786 #define slab (1UL << PG_slab)
787 #define reserved (1UL << PG_reserved)
788
789 static struct page_state {
790 unsigned long mask;
791 unsigned long res;
792 char *msg;
793 int (*action)(struct page *p, unsigned long pfn);
794 } error_states[] = {
795 { reserved, reserved, "reserved kernel", me_kernel },
796 /*
797 * free pages are specially detected outside this table:
798 * PG_buddy pages only make a small fraction of all free pages.
799 */
800
801 /*
802 * Could in theory check if slab page is free or if we can drop
803 * currently unused objects without touching them. But just
804 * treat it as standard kernel for now.
805 */
806 { slab, slab, "kernel slab", me_kernel },
807
808 #ifdef CONFIG_PAGEFLAGS_EXTENDED
809 { head, head, "huge", me_huge_page },
810 { tail, tail, "huge", me_huge_page },
811 #else
812 { compound, compound, "huge", me_huge_page },
813 #endif
814
815 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
816 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
817
818 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
819 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
820
821 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
822 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
823
824 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
825 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
826
827 /*
828 * Catchall entry: must be at end.
829 */
830 { 0, 0, "unknown page state", me_unknown },
831 };
832
833 #undef dirty
834 #undef sc
835 #undef unevict
836 #undef mlock
837 #undef writeback
838 #undef lru
839 #undef swapbacked
840 #undef head
841 #undef tail
842 #undef compound
843 #undef slab
844 #undef reserved
845
846 /*
847 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
848 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
849 */
850 static void action_result(unsigned long pfn, char *msg, int result)
851 {
852 pr_err("MCE %#lx: %s page recovery: %s\n",
853 pfn, msg, action_name[result]);
854 }
855
856 static int page_action(struct page_state *ps, struct page *p,
857 unsigned long pfn)
858 {
859 int result;
860 int count;
861
862 result = ps->action(p, pfn);
863 action_result(pfn, ps->msg, result);
864
865 count = page_count(p) - 1;
866 if (ps->action == me_swapcache_dirty && result == DELAYED)
867 count--;
868 if (count != 0) {
869 printk(KERN_ERR
870 "MCE %#lx: %s page still referenced by %d users\n",
871 pfn, ps->msg, count);
872 result = FAILED;
873 }
874
875 /* Could do more checks here if page looks ok */
876 /*
877 * Could adjust zone counters here to correct for the missing page.
878 */
879
880 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
881 }
882
883 /*
884 * Do all that is necessary to remove user space mappings. Unmap
885 * the pages and send SIGBUS to the processes if the data was dirty.
886 */
887 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
888 int trapno, int flags, struct page **hpagep)
889 {
890 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
891 struct address_space *mapping;
892 LIST_HEAD(tokill);
893 int ret;
894 int kill = 1, forcekill;
895 struct page *hpage = *hpagep;
896 struct page *ppage;
897
898 if (PageReserved(p) || PageSlab(p) || !PageLRU(p))
899 return SWAP_SUCCESS;
900
901 /*
902 * This check implies we don't kill processes if their pages
903 * are in the swap cache early. Those are always late kills.
904 */
905 if (!page_mapped(hpage))
906 return SWAP_SUCCESS;
907
908 if (PageKsm(p))
909 return SWAP_FAIL;
910
911 if (PageSwapCache(p)) {
912 printk(KERN_ERR
913 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
914 ttu |= TTU_IGNORE_HWPOISON;
915 }
916
917 /*
918 * Propagate the dirty bit from PTEs to struct page first, because we
919 * need this to decide if we should kill or just drop the page.
920 * XXX: the dirty test could be racy: set_page_dirty() may not always
921 * be called inside page lock (it's recommended but not enforced).
922 */
923 mapping = page_mapping(hpage);
924 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
925 mapping_cap_writeback_dirty(mapping)) {
926 if (page_mkclean(hpage)) {
927 SetPageDirty(hpage);
928 } else {
929 kill = 0;
930 ttu |= TTU_IGNORE_HWPOISON;
931 printk(KERN_INFO
932 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
933 pfn);
934 }
935 }
936
937 /*
938 * ppage: poisoned page
939 * if p is regular page(4k page)
940 * ppage == real poisoned page;
941 * else p is hugetlb or THP, ppage == head page.
942 */
943 ppage = hpage;
944
945 if (PageTransHuge(hpage)) {
946 /*
947 * Verify that this isn't a hugetlbfs head page, the check for
948 * PageAnon is just for avoid tripping a split_huge_page
949 * internal debug check, as split_huge_page refuses to deal with
950 * anything that isn't an anon page. PageAnon can't go away fro
951 * under us because we hold a refcount on the hpage, without a
952 * refcount on the hpage. split_huge_page can't be safely called
953 * in the first place, having a refcount on the tail isn't
954 * enough * to be safe.
955 */
956 if (!PageHuge(hpage) && PageAnon(hpage)) {
957 if (unlikely(split_huge_page(hpage))) {
958 /*
959 * FIXME: if splitting THP is failed, it is
960 * better to stop the following operation rather
961 * than causing panic by unmapping. System might
962 * survive if the page is freed later.
963 */
964 printk(KERN_INFO
965 "MCE %#lx: failed to split THP\n", pfn);
966
967 BUG_ON(!PageHWPoison(p));
968 return SWAP_FAIL;
969 }
970 /*
971 * We pinned the head page for hwpoison handling,
972 * now we split the thp and we are interested in
973 * the hwpoisoned raw page, so move the refcount
974 * to it. Similarly, page lock is shifted.
975 */
976 if (hpage != p) {
977 if (!(flags & MF_COUNT_INCREASED)) {
978 put_page(hpage);
979 get_page(p);
980 }
981 lock_page(p);
982 unlock_page(hpage);
983 *hpagep = p;
984 }
985 /* THP is split, so ppage should be the real poisoned page. */
986 ppage = p;
987 }
988 }
989
990 /*
991 * First collect all the processes that have the page
992 * mapped in dirty form. This has to be done before try_to_unmap,
993 * because ttu takes the rmap data structures down.
994 *
995 * Error handling: We ignore errors here because
996 * there's nothing that can be done.
997 */
998 if (kill)
999 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1000
1001 ret = try_to_unmap(ppage, ttu);
1002 if (ret != SWAP_SUCCESS)
1003 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1004 pfn, page_mapcount(ppage));
1005
1006 /*
1007 * Now that the dirty bit has been propagated to the
1008 * struct page and all unmaps done we can decide if
1009 * killing is needed or not. Only kill when the page
1010 * was dirty or the process is not restartable,
1011 * otherwise the tokill list is merely
1012 * freed. When there was a problem unmapping earlier
1013 * use a more force-full uncatchable kill to prevent
1014 * any accesses to the poisoned memory.
1015 */
1016 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1017 kill_procs(&tokill, forcekill, trapno,
1018 ret != SWAP_SUCCESS, p, pfn, flags);
1019
1020 return ret;
1021 }
1022
1023 static void set_page_hwpoison_huge_page(struct page *hpage)
1024 {
1025 int i;
1026 int nr_pages = 1 << compound_order(hpage);
1027 for (i = 0; i < nr_pages; i++)
1028 SetPageHWPoison(hpage + i);
1029 }
1030
1031 static void clear_page_hwpoison_huge_page(struct page *hpage)
1032 {
1033 int i;
1034 int nr_pages = 1 << compound_order(hpage);
1035 for (i = 0; i < nr_pages; i++)
1036 ClearPageHWPoison(hpage + i);
1037 }
1038
1039 /**
1040 * memory_failure - Handle memory failure of a page.
1041 * @pfn: Page Number of the corrupted page
1042 * @trapno: Trap number reported in the signal to user space.
1043 * @flags: fine tune action taken
1044 *
1045 * This function is called by the low level machine check code
1046 * of an architecture when it detects hardware memory corruption
1047 * of a page. It tries its best to recover, which includes
1048 * dropping pages, killing processes etc.
1049 *
1050 * The function is primarily of use for corruptions that
1051 * happen outside the current execution context (e.g. when
1052 * detected by a background scrubber)
1053 *
1054 * Must run in process context (e.g. a work queue) with interrupts
1055 * enabled and no spinlocks hold.
1056 */
1057 int memory_failure(unsigned long pfn, int trapno, int flags)
1058 {
1059 struct page_state *ps;
1060 struct page *p;
1061 struct page *hpage;
1062 int res;
1063 unsigned int nr_pages;
1064 unsigned long page_flags;
1065
1066 if (!sysctl_memory_failure_recovery)
1067 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1068
1069 if (!pfn_valid(pfn)) {
1070 printk(KERN_ERR
1071 "MCE %#lx: memory outside kernel control\n",
1072 pfn);
1073 return -ENXIO;
1074 }
1075
1076 p = pfn_to_page(pfn);
1077 hpage = compound_head(p);
1078 if (TestSetPageHWPoison(p)) {
1079 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1080 return 0;
1081 }
1082
1083 /*
1084 * Currently errors on hugetlbfs pages are measured in hugepage units,
1085 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1086 * transparent hugepages, they are supposed to be split and error
1087 * measurement is done in normal page units. So nr_pages should be one
1088 * in this case.
1089 */
1090 if (PageHuge(p))
1091 nr_pages = 1 << compound_order(hpage);
1092 else /* normal page or thp */
1093 nr_pages = 1;
1094 atomic_long_add(nr_pages, &num_poisoned_pages);
1095
1096 /*
1097 * We need/can do nothing about count=0 pages.
1098 * 1) it's a free page, and therefore in safe hand:
1099 * prep_new_page() will be the gate keeper.
1100 * 2) it's a free hugepage, which is also safe:
1101 * an affected hugepage will be dequeued from hugepage freelist,
1102 * so there's no concern about reusing it ever after.
1103 * 3) it's part of a non-compound high order page.
1104 * Implies some kernel user: cannot stop them from
1105 * R/W the page; let's pray that the page has been
1106 * used and will be freed some time later.
1107 * In fact it's dangerous to directly bump up page count from 0,
1108 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1109 */
1110 if (!(flags & MF_COUNT_INCREASED) &&
1111 !get_page_unless_zero(hpage)) {
1112 if (is_free_buddy_page(p)) {
1113 action_result(pfn, "free buddy", DELAYED);
1114 return 0;
1115 } else if (PageHuge(hpage)) {
1116 /*
1117 * Check "filter hit" and "race with other subpage."
1118 */
1119 lock_page(hpage);
1120 if (PageHWPoison(hpage)) {
1121 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1122 || (p != hpage && TestSetPageHWPoison(hpage))) {
1123 atomic_long_sub(nr_pages, &num_poisoned_pages);
1124 unlock_page(hpage);
1125 return 0;
1126 }
1127 }
1128 set_page_hwpoison_huge_page(hpage);
1129 res = dequeue_hwpoisoned_huge_page(hpage);
1130 action_result(pfn, "free huge",
1131 res ? IGNORED : DELAYED);
1132 unlock_page(hpage);
1133 return res;
1134 } else {
1135 action_result(pfn, "high order kernel", IGNORED);
1136 return -EBUSY;
1137 }
1138 }
1139
1140 /*
1141 * We ignore non-LRU pages for good reasons.
1142 * - PG_locked is only well defined for LRU pages and a few others
1143 * - to avoid races with __set_page_locked()
1144 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1145 * The check (unnecessarily) ignores LRU pages being isolated and
1146 * walked by the page reclaim code, however that's not a big loss.
1147 */
1148 if (!PageHuge(p) && !PageTransTail(p)) {
1149 if (!PageLRU(p))
1150 shake_page(p, 0);
1151 if (!PageLRU(p)) {
1152 /*
1153 * shake_page could have turned it free.
1154 */
1155 if (is_free_buddy_page(p)) {
1156 if (flags & MF_COUNT_INCREASED)
1157 action_result(pfn, "free buddy", DELAYED);
1158 else
1159 action_result(pfn, "free buddy, 2nd try", DELAYED);
1160 return 0;
1161 }
1162 }
1163 }
1164
1165 lock_page(hpage);
1166
1167 /*
1168 * We use page flags to determine what action should be taken, but
1169 * the flags can be modified by the error containment action. One
1170 * example is an mlocked page, where PG_mlocked is cleared by
1171 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1172 * correctly, we save a copy of the page flags at this time.
1173 */
1174 page_flags = p->flags;
1175
1176 /*
1177 * unpoison always clear PG_hwpoison inside page lock
1178 */
1179 if (!PageHWPoison(p)) {
1180 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1181 atomic_long_sub(nr_pages, &num_poisoned_pages);
1182 put_page(hpage);
1183 res = 0;
1184 goto out;
1185 }
1186 if (hwpoison_filter(p)) {
1187 if (TestClearPageHWPoison(p))
1188 atomic_long_sub(nr_pages, &num_poisoned_pages);
1189 unlock_page(hpage);
1190 put_page(hpage);
1191 return 0;
1192 }
1193
1194 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1195 goto identify_page_state;
1196
1197 /*
1198 * For error on the tail page, we should set PG_hwpoison
1199 * on the head page to show that the hugepage is hwpoisoned
1200 */
1201 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1202 action_result(pfn, "hugepage already hardware poisoned",
1203 IGNORED);
1204 unlock_page(hpage);
1205 put_page(hpage);
1206 return 0;
1207 }
1208 /*
1209 * Set PG_hwpoison on all pages in an error hugepage,
1210 * because containment is done in hugepage unit for now.
1211 * Since we have done TestSetPageHWPoison() for the head page with
1212 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1213 */
1214 if (PageHuge(p))
1215 set_page_hwpoison_huge_page(hpage);
1216
1217 /*
1218 * It's very difficult to mess with pages currently under IO
1219 * and in many cases impossible, so we just avoid it here.
1220 */
1221 wait_on_page_writeback(p);
1222
1223 /*
1224 * Now take care of user space mappings.
1225 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1226 *
1227 * When the raw error page is thp tail page, hpage points to the raw
1228 * page after thp split.
1229 */
1230 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1231 != SWAP_SUCCESS) {
1232 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1233 res = -EBUSY;
1234 goto out;
1235 }
1236
1237 /*
1238 * Torn down by someone else?
1239 */
1240 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1241 action_result(pfn, "already truncated LRU", IGNORED);
1242 res = -EBUSY;
1243 goto out;
1244 }
1245
1246 identify_page_state:
1247 res = -EBUSY;
1248 /*
1249 * The first check uses the current page flags which may not have any
1250 * relevant information. The second check with the saved page flagss is
1251 * carried out only if the first check can't determine the page status.
1252 */
1253 for (ps = error_states;; ps++)
1254 if ((p->flags & ps->mask) == ps->res)
1255 break;
1256
1257 page_flags |= (p->flags & (1UL << PG_dirty));
1258
1259 if (!ps->mask)
1260 for (ps = error_states;; ps++)
1261 if ((page_flags & ps->mask) == ps->res)
1262 break;
1263 res = page_action(ps, p, pfn);
1264 out:
1265 unlock_page(hpage);
1266 return res;
1267 }
1268 EXPORT_SYMBOL_GPL(memory_failure);
1269
1270 #define MEMORY_FAILURE_FIFO_ORDER 4
1271 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1272
1273 struct memory_failure_entry {
1274 unsigned long pfn;
1275 int trapno;
1276 int flags;
1277 };
1278
1279 struct memory_failure_cpu {
1280 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1281 MEMORY_FAILURE_FIFO_SIZE);
1282 spinlock_t lock;
1283 struct work_struct work;
1284 };
1285
1286 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1287
1288 /**
1289 * memory_failure_queue - Schedule handling memory failure of a page.
1290 * @pfn: Page Number of the corrupted page
1291 * @trapno: Trap number reported in the signal to user space.
1292 * @flags: Flags for memory failure handling
1293 *
1294 * This function is called by the low level hardware error handler
1295 * when it detects hardware memory corruption of a page. It schedules
1296 * the recovering of error page, including dropping pages, killing
1297 * processes etc.
1298 *
1299 * The function is primarily of use for corruptions that
1300 * happen outside the current execution context (e.g. when
1301 * detected by a background scrubber)
1302 *
1303 * Can run in IRQ context.
1304 */
1305 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1306 {
1307 struct memory_failure_cpu *mf_cpu;
1308 unsigned long proc_flags;
1309 struct memory_failure_entry entry = {
1310 .pfn = pfn,
1311 .trapno = trapno,
1312 .flags = flags,
1313 };
1314
1315 mf_cpu = &get_cpu_var(memory_failure_cpu);
1316 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1317 if (kfifo_put(&mf_cpu->fifo, entry))
1318 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1319 else
1320 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1321 pfn);
1322 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1323 put_cpu_var(memory_failure_cpu);
1324 }
1325 EXPORT_SYMBOL_GPL(memory_failure_queue);
1326
1327 static void memory_failure_work_func(struct work_struct *work)
1328 {
1329 struct memory_failure_cpu *mf_cpu;
1330 struct memory_failure_entry entry = { 0, };
1331 unsigned long proc_flags;
1332 int gotten;
1333
1334 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1335 for (;;) {
1336 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1337 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1338 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1339 if (!gotten)
1340 break;
1341 if (entry.flags & MF_SOFT_OFFLINE)
1342 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1343 else
1344 memory_failure(entry.pfn, entry.trapno, entry.flags);
1345 }
1346 }
1347
1348 static int __init memory_failure_init(void)
1349 {
1350 struct memory_failure_cpu *mf_cpu;
1351 int cpu;
1352
1353 for_each_possible_cpu(cpu) {
1354 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1355 spin_lock_init(&mf_cpu->lock);
1356 INIT_KFIFO(mf_cpu->fifo);
1357 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1358 }
1359
1360 return 0;
1361 }
1362 core_initcall(memory_failure_init);
1363
1364 /**
1365 * unpoison_memory - Unpoison a previously poisoned page
1366 * @pfn: Page number of the to be unpoisoned page
1367 *
1368 * Software-unpoison a page that has been poisoned by
1369 * memory_failure() earlier.
1370 *
1371 * This is only done on the software-level, so it only works
1372 * for linux injected failures, not real hardware failures
1373 *
1374 * Returns 0 for success, otherwise -errno.
1375 */
1376 int unpoison_memory(unsigned long pfn)
1377 {
1378 struct page *page;
1379 struct page *p;
1380 int freeit = 0;
1381 unsigned int nr_pages;
1382
1383 if (!pfn_valid(pfn))
1384 return -ENXIO;
1385
1386 p = pfn_to_page(pfn);
1387 page = compound_head(p);
1388
1389 if (!PageHWPoison(p)) {
1390 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1391 return 0;
1392 }
1393
1394 /*
1395 * unpoison_memory() can encounter thp only when the thp is being
1396 * worked by memory_failure() and the page lock is not held yet.
1397 * In such case, we yield to memory_failure() and make unpoison fail.
1398 */
1399 if (!PageHuge(page) && PageTransHuge(page)) {
1400 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1401 return 0;
1402 }
1403
1404 nr_pages = 1 << compound_order(page);
1405
1406 if (!get_page_unless_zero(page)) {
1407 /*
1408 * Since HWPoisoned hugepage should have non-zero refcount,
1409 * race between memory failure and unpoison seems to happen.
1410 * In such case unpoison fails and memory failure runs
1411 * to the end.
1412 */
1413 if (PageHuge(page)) {
1414 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1415 return 0;
1416 }
1417 if (TestClearPageHWPoison(p))
1418 atomic_long_dec(&num_poisoned_pages);
1419 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1420 return 0;
1421 }
1422
1423 lock_page(page);
1424 /*
1425 * This test is racy because PG_hwpoison is set outside of page lock.
1426 * That's acceptable because that won't trigger kernel panic. Instead,
1427 * the PG_hwpoison page will be caught and isolated on the entrance to
1428 * the free buddy page pool.
1429 */
1430 if (TestClearPageHWPoison(page)) {
1431 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1432 atomic_long_sub(nr_pages, &num_poisoned_pages);
1433 freeit = 1;
1434 if (PageHuge(page))
1435 clear_page_hwpoison_huge_page(page);
1436 }
1437 unlock_page(page);
1438
1439 put_page(page);
1440 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1441 put_page(page);
1442
1443 return 0;
1444 }
1445 EXPORT_SYMBOL(unpoison_memory);
1446
1447 static struct page *new_page(struct page *p, unsigned long private, int **x)
1448 {
1449 int nid = page_to_nid(p);
1450 if (PageHuge(p))
1451 return alloc_huge_page_node(page_hstate(compound_head(p)),
1452 nid);
1453 else
1454 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1455 }
1456
1457 /*
1458 * Safely get reference count of an arbitrary page.
1459 * Returns 0 for a free page, -EIO for a zero refcount page
1460 * that is not free, and 1 for any other page type.
1461 * For 1 the page is returned with increased page count, otherwise not.
1462 */
1463 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1464 {
1465 int ret;
1466
1467 if (flags & MF_COUNT_INCREASED)
1468 return 1;
1469
1470 /*
1471 * When the target page is a free hugepage, just remove it
1472 * from free hugepage list.
1473 */
1474 if (!get_page_unless_zero(compound_head(p))) {
1475 if (PageHuge(p)) {
1476 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1477 ret = 0;
1478 } else if (is_free_buddy_page(p)) {
1479 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1480 ret = 0;
1481 } else {
1482 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1483 __func__, pfn, p->flags);
1484 ret = -EIO;
1485 }
1486 } else {
1487 /* Not a free page */
1488 ret = 1;
1489 }
1490 return ret;
1491 }
1492
1493 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1494 {
1495 int ret = __get_any_page(page, pfn, flags);
1496
1497 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1498 /*
1499 * Try to free it.
1500 */
1501 put_page(page);
1502 shake_page(page, 1);
1503
1504 /*
1505 * Did it turn free?
1506 */
1507 ret = __get_any_page(page, pfn, 0);
1508 if (!PageLRU(page)) {
1509 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1510 pfn, page->flags);
1511 return -EIO;
1512 }
1513 }
1514 return ret;
1515 }
1516
1517 static int soft_offline_huge_page(struct page *page, int flags)
1518 {
1519 int ret;
1520 unsigned long pfn = page_to_pfn(page);
1521 struct page *hpage = compound_head(page);
1522 LIST_HEAD(pagelist);
1523
1524 /*
1525 * This double-check of PageHWPoison is to avoid the race with
1526 * memory_failure(). See also comment in __soft_offline_page().
1527 */
1528 lock_page(hpage);
1529 if (PageHWPoison(hpage)) {
1530 unlock_page(hpage);
1531 put_page(hpage);
1532 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1533 return -EBUSY;
1534 }
1535 unlock_page(hpage);
1536
1537 /* Keep page count to indicate a given hugepage is isolated. */
1538 list_move(&hpage->lru, &pagelist);
1539 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1540 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1541 if (ret) {
1542 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1543 pfn, ret, page->flags);
1544 /*
1545 * We know that soft_offline_huge_page() tries to migrate
1546 * only one hugepage pointed to by hpage, so we need not
1547 * run through the pagelist here.
1548 */
1549 putback_active_hugepage(hpage);
1550 if (ret > 0)
1551 ret = -EIO;
1552 } else {
1553 /* overcommit hugetlb page will be freed to buddy */
1554 if (PageHuge(page)) {
1555 set_page_hwpoison_huge_page(hpage);
1556 dequeue_hwpoisoned_huge_page(hpage);
1557 atomic_long_add(1 << compound_order(hpage),
1558 &num_poisoned_pages);
1559 } else {
1560 SetPageHWPoison(page);
1561 atomic_long_inc(&num_poisoned_pages);
1562 }
1563 }
1564 return ret;
1565 }
1566
1567 static int __soft_offline_page(struct page *page, int flags)
1568 {
1569 int ret;
1570 unsigned long pfn = page_to_pfn(page);
1571
1572 /*
1573 * Check PageHWPoison again inside page lock because PageHWPoison
1574 * is set by memory_failure() outside page lock. Note that
1575 * memory_failure() also double-checks PageHWPoison inside page lock,
1576 * so there's no race between soft_offline_page() and memory_failure().
1577 */
1578 lock_page(page);
1579 wait_on_page_writeback(page);
1580 if (PageHWPoison(page)) {
1581 unlock_page(page);
1582 put_page(page);
1583 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1584 return -EBUSY;
1585 }
1586 /*
1587 * Try to invalidate first. This should work for
1588 * non dirty unmapped page cache pages.
1589 */
1590 ret = invalidate_inode_page(page);
1591 unlock_page(page);
1592 /*
1593 * RED-PEN would be better to keep it isolated here, but we
1594 * would need to fix isolation locking first.
1595 */
1596 if (ret == 1) {
1597 put_page(page);
1598 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1599 SetPageHWPoison(page);
1600 atomic_long_inc(&num_poisoned_pages);
1601 return 0;
1602 }
1603
1604 /*
1605 * Simple invalidation didn't work.
1606 * Try to migrate to a new page instead. migrate.c
1607 * handles a large number of cases for us.
1608 */
1609 ret = isolate_lru_page(page);
1610 /*
1611 * Drop page reference which is came from get_any_page()
1612 * successful isolate_lru_page() already took another one.
1613 */
1614 put_page(page);
1615 if (!ret) {
1616 LIST_HEAD(pagelist);
1617 inc_zone_page_state(page, NR_ISOLATED_ANON +
1618 page_is_file_cache(page));
1619 list_add(&page->lru, &pagelist);
1620 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1621 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1622 if (ret) {
1623 if (!list_empty(&pagelist)) {
1624 list_del(&page->lru);
1625 dec_zone_page_state(page, NR_ISOLATED_ANON +
1626 page_is_file_cache(page));
1627 putback_lru_page(page);
1628 }
1629
1630 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1631 pfn, ret, page->flags);
1632 if (ret > 0)
1633 ret = -EIO;
1634 } else {
1635 /*
1636 * After page migration succeeds, the source page can
1637 * be trapped in pagevec and actual freeing is delayed.
1638 * Freeing code works differently based on PG_hwpoison,
1639 * so there's a race. We need to make sure that the
1640 * source page should be freed back to buddy before
1641 * setting PG_hwpoison.
1642 */
1643 if (!is_free_buddy_page(page))
1644 lru_add_drain_all();
1645 if (!is_free_buddy_page(page))
1646 drain_all_pages();
1647 SetPageHWPoison(page);
1648 if (!is_free_buddy_page(page))
1649 pr_info("soft offline: %#lx: page leaked\n",
1650 pfn);
1651 atomic_long_inc(&num_poisoned_pages);
1652 }
1653 } else {
1654 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1655 pfn, ret, page_count(page), page->flags);
1656 }
1657 return ret;
1658 }
1659
1660 /**
1661 * soft_offline_page - Soft offline a page.
1662 * @page: page to offline
1663 * @flags: flags. Same as memory_failure().
1664 *
1665 * Returns 0 on success, otherwise negated errno.
1666 *
1667 * Soft offline a page, by migration or invalidation,
1668 * without killing anything. This is for the case when
1669 * a page is not corrupted yet (so it's still valid to access),
1670 * but has had a number of corrected errors and is better taken
1671 * out.
1672 *
1673 * The actual policy on when to do that is maintained by
1674 * user space.
1675 *
1676 * This should never impact any application or cause data loss,
1677 * however it might take some time.
1678 *
1679 * This is not a 100% solution for all memory, but tries to be
1680 * ``good enough'' for the majority of memory.
1681 */
1682 int soft_offline_page(struct page *page, int flags)
1683 {
1684 int ret;
1685 unsigned long pfn = page_to_pfn(page);
1686 struct page *hpage = compound_head(page);
1687
1688 if (PageHWPoison(page)) {
1689 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1690 return -EBUSY;
1691 }
1692 if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1694 pr_info("soft offline: %#lx: failed to split THP\n",
1695 pfn);
1696 return -EBUSY;
1697 }
1698 }
1699
1700 get_online_mems();
1701
1702 /*
1703 * Isolate the page, so that it doesn't get reallocated if it
1704 * was free. This flag should be kept set until the source page
1705 * is freed and PG_hwpoison on it is set.
1706 */
1707 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1708 set_migratetype_isolate(page, true);
1709
1710 ret = get_any_page(page, pfn, flags);
1711 put_online_mems();
1712 if (ret > 0) { /* for in-use pages */
1713 if (PageHuge(page))
1714 ret = soft_offline_huge_page(page, flags);
1715 else
1716 ret = __soft_offline_page(page, flags);
1717 } else if (ret == 0) { /* for free pages */
1718 if (PageHuge(page)) {
1719 set_page_hwpoison_huge_page(hpage);
1720 dequeue_hwpoisoned_huge_page(hpage);
1721 atomic_long_add(1 << compound_order(hpage),
1722 &num_poisoned_pages);
1723 } else {
1724 SetPageHWPoison(page);
1725 atomic_long_inc(&num_poisoned_pages);
1726 }
1727 }
1728 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1729 return ret;
1730 }