]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory-failure.c
Merge tag 'for-5.9-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109 }
110
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121 }
122
123 /*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149
150 int hwpoison_filter(struct page *p)
151 {
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 return 0;
170 }
171 #endif
172
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175 /*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197 struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
202 };
203
204 /*
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
208 */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
213 int ret = 0;
214
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn, t->comm, t->pid);
217
218 if (flags & MF_ACTION_REQUIRED) {
219 WARN_ON_ONCE(t != current);
220 ret = force_sig_mceerr(BUS_MCEERR_AR,
221 (void __user *)tk->addr, addr_lsb);
222 } else {
223 /*
224 * Don't use force here, it's convenient if the signal
225 * can be temporarily blocked.
226 * This could cause a loop when the user sets SIGBUS
227 * to SIG_IGN, but hopefully no one will do that?
228 */
229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 addr_lsb, t); /* synchronous? */
231 }
232 if (ret < 0)
233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 t->comm, t->pid, ret);
235 return ret;
236 }
237
238 /*
239 * When a unknown page type is encountered drain as many buffers as possible
240 * in the hope to turn the page into a LRU or free page, which we can handle.
241 */
242 void shake_page(struct page *p, int access)
243 {
244 if (PageHuge(p))
245 return;
246
247 if (!PageSlab(p)) {
248 lru_add_drain_all();
249 if (PageLRU(p))
250 return;
251 drain_all_pages(page_zone(p));
252 if (PageLRU(p) || is_free_buddy_page(p))
253 return;
254 }
255
256 /*
257 * Only call shrink_node_slabs here (which would also shrink
258 * other caches) if access is not potentially fatal.
259 */
260 if (access)
261 drop_slab_node(page_to_nid(p));
262 }
263 EXPORT_SYMBOL_GPL(shake_page);
264
265 static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 struct vm_area_struct *vma)
267 {
268 unsigned long address = vma_address(page, vma);
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274
275 pgd = pgd_offset(vma->vm_mm, address);
276 if (!pgd_present(*pgd))
277 return 0;
278 p4d = p4d_offset(pgd, address);
279 if (!p4d_present(*p4d))
280 return 0;
281 pud = pud_offset(p4d, address);
282 if (!pud_present(*pud))
283 return 0;
284 if (pud_devmap(*pud))
285 return PUD_SHIFT;
286 pmd = pmd_offset(pud, address);
287 if (!pmd_present(*pmd))
288 return 0;
289 if (pmd_devmap(*pmd))
290 return PMD_SHIFT;
291 pte = pte_offset_map(pmd, address);
292 if (!pte_present(*pte))
293 return 0;
294 if (pte_devmap(*pte))
295 return PAGE_SHIFT;
296 return 0;
297 }
298
299 /*
300 * Failure handling: if we can't find or can't kill a process there's
301 * not much we can do. We just print a message and ignore otherwise.
302 */
303
304 /*
305 * Schedule a process for later kill.
306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307 */
308 static void add_to_kill(struct task_struct *tsk, struct page *p,
309 struct vm_area_struct *vma,
310 struct list_head *to_kill)
311 {
312 struct to_kill *tk;
313
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 pr_err("Memory failure: Out of memory while machine check handling\n");
317 return;
318 }
319
320 tk->addr = page_address_in_vma(p, vma);
321 if (is_zone_device_page(p))
322 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
323 else
324 tk->size_shift = page_shift(compound_head(p));
325
326 /*
327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 * so "tk->size_shift == 0" effectively checks no mapping on
330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 * to a process' address space, it's possible not all N VMAs
332 * contain mappings for the page, but at least one VMA does.
333 * Only deliver SIGBUS with payload derived from the VMA that
334 * has a mapping for the page.
335 */
336 if (tk->addr == -EFAULT) {
337 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 page_to_pfn(p), tsk->comm);
339 } else if (tk->size_shift == 0) {
340 kfree(tk);
341 return;
342 }
343
344 get_task_struct(tsk);
345 tk->tsk = tsk;
346 list_add_tail(&tk->nd, to_kill);
347 }
348
349 /*
350 * Kill the processes that have been collected earlier.
351 *
352 * Only do anything when DOIT is set, otherwise just free the list
353 * (this is used for clean pages which do not need killing)
354 * Also when FAIL is set do a force kill because something went
355 * wrong earlier.
356 */
357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 unsigned long pfn, int flags)
359 {
360 struct to_kill *tk, *next;
361
362 list_for_each_entry_safe (tk, next, to_kill, nd) {
363 if (forcekill) {
364 /*
365 * In case something went wrong with munmapping
366 * make sure the process doesn't catch the
367 * signal and then access the memory. Just kill it.
368 */
369 if (fail || tk->addr == -EFAULT) {
370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 pfn, tk->tsk->comm, tk->tsk->pid);
372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 tk->tsk, PIDTYPE_PID);
374 }
375
376 /*
377 * In theory the process could have mapped
378 * something else on the address in-between. We could
379 * check for that, but we need to tell the
380 * process anyways.
381 */
382 else if (kill_proc(tk, pfn, flags) < 0)
383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 pfn, tk->tsk->comm, tk->tsk->pid);
385 }
386 put_task_struct(tk->tsk);
387 kfree(tk);
388 }
389 }
390
391 /*
392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393 * on behalf of the thread group. Return task_struct of the (first found)
394 * dedicated thread if found, and return NULL otherwise.
395 *
396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397 * have to call rcu_read_lock/unlock() in this function.
398 */
399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 {
401 struct task_struct *t;
402
403 for_each_thread(tsk, t) {
404 if (t->flags & PF_MCE_PROCESS) {
405 if (t->flags & PF_MCE_EARLY)
406 return t;
407 } else {
408 if (sysctl_memory_failure_early_kill)
409 return t;
410 }
411 }
412 return NULL;
413 }
414
415 /*
416 * Determine whether a given process is "early kill" process which expects
417 * to be signaled when some page under the process is hwpoisoned.
418 * Return task_struct of the dedicated thread (main thread unless explicitly
419 * specified) if the process is "early kill," and otherwise returns NULL.
420 *
421 * Note that the above is true for Action Optional case, but not for Action
422 * Required case where SIGBUS should sent only to the current thread.
423 */
424 static struct task_struct *task_early_kill(struct task_struct *tsk,
425 int force_early)
426 {
427 if (!tsk->mm)
428 return NULL;
429 if (force_early) {
430 /*
431 * Comparing ->mm here because current task might represent
432 * a subthread, while tsk always points to the main thread.
433 */
434 if (tsk->mm == current->mm)
435 return current;
436 else
437 return NULL;
438 }
439 return find_early_kill_thread(tsk);
440 }
441
442 /*
443 * Collect processes when the error hit an anonymous page.
444 */
445 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446 int force_early)
447 {
448 struct vm_area_struct *vma;
449 struct task_struct *tsk;
450 struct anon_vma *av;
451 pgoff_t pgoff;
452
453 av = page_lock_anon_vma_read(page);
454 if (av == NULL) /* Not actually mapped anymore */
455 return;
456
457 pgoff = page_to_pgoff(page);
458 read_lock(&tasklist_lock);
459 for_each_process (tsk) {
460 struct anon_vma_chain *vmac;
461 struct task_struct *t = task_early_kill(tsk, force_early);
462
463 if (!t)
464 continue;
465 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
466 pgoff, pgoff) {
467 vma = vmac->vma;
468 if (!page_mapped_in_vma(page, vma))
469 continue;
470 if (vma->vm_mm == t->mm)
471 add_to_kill(t, page, vma, to_kill);
472 }
473 }
474 read_unlock(&tasklist_lock);
475 page_unlock_anon_vma_read(av);
476 }
477
478 /*
479 * Collect processes when the error hit a file mapped page.
480 */
481 static void collect_procs_file(struct page *page, struct list_head *to_kill,
482 int force_early)
483 {
484 struct vm_area_struct *vma;
485 struct task_struct *tsk;
486 struct address_space *mapping = page->mapping;
487
488 i_mmap_lock_read(mapping);
489 read_lock(&tasklist_lock);
490 for_each_process(tsk) {
491 pgoff_t pgoff = page_to_pgoff(page);
492 struct task_struct *t = task_early_kill(tsk, force_early);
493
494 if (!t)
495 continue;
496 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
497 pgoff) {
498 /*
499 * Send early kill signal to tasks where a vma covers
500 * the page but the corrupted page is not necessarily
501 * mapped it in its pte.
502 * Assume applications who requested early kill want
503 * to be informed of all such data corruptions.
504 */
505 if (vma->vm_mm == t->mm)
506 add_to_kill(t, page, vma, to_kill);
507 }
508 }
509 read_unlock(&tasklist_lock);
510 i_mmap_unlock_read(mapping);
511 }
512
513 /*
514 * Collect the processes who have the corrupted page mapped to kill.
515 */
516 static void collect_procs(struct page *page, struct list_head *tokill,
517 int force_early)
518 {
519 if (!page->mapping)
520 return;
521
522 if (PageAnon(page))
523 collect_procs_anon(page, tokill, force_early);
524 else
525 collect_procs_file(page, tokill, force_early);
526 }
527
528 static const char *action_name[] = {
529 [MF_IGNORED] = "Ignored",
530 [MF_FAILED] = "Failed",
531 [MF_DELAYED] = "Delayed",
532 [MF_RECOVERED] = "Recovered",
533 };
534
535 static const char * const action_page_types[] = {
536 [MF_MSG_KERNEL] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
538 [MF_MSG_SLAB] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE] = "huge page",
542 [MF_MSG_FREE_HUGE] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
554 [MF_MSG_BUDDY] = "free buddy page",
555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
556 [MF_MSG_DAX] = "dax page",
557 [MF_MSG_UNKNOWN] = "unknown page",
558 };
559
560 /*
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
565 */
566 static int delete_from_lru_cache(struct page *p)
567 {
568 if (!isolate_lru_page(p)) {
569 /*
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
572 */
573 ClearPageActive(p);
574 ClearPageUnevictable(p);
575
576 /*
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
579 */
580 mem_cgroup_uncharge(p);
581
582 /*
583 * drop the page count elevated by isolate_lru_page()
584 */
585 put_page(p);
586 return 0;
587 }
588 return -EIO;
589 }
590
591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 struct address_space *mapping)
593 {
594 int ret = MF_FAILED;
595
596 if (mapping->a_ops->error_remove_page) {
597 int err = mapping->a_ops->error_remove_page(mapping, p);
598
599 if (err != 0) {
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 pfn, err);
602 } else if (page_has_private(p) &&
603 !try_to_release_page(p, GFP_NOIO)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
605 pfn);
606 } else {
607 ret = MF_RECOVERED;
608 }
609 } else {
610 /*
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
613 */
614 if (invalidate_inode_page(p))
615 ret = MF_RECOVERED;
616 else
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 pfn);
619 }
620
621 return ret;
622 }
623
624 /*
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
628 */
629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 return MF_IGNORED;
632 }
633
634 /*
635 * Page in unknown state. Do nothing.
636 */
637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 return MF_FAILED;
641 }
642
643 /*
644 * Clean (or cleaned) page cache page.
645 */
646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 struct address_space *mapping;
649
650 delete_from_lru_cache(p);
651
652 /*
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
655 */
656 if (PageAnon(p))
657 return MF_RECOVERED;
658
659 /*
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
665 */
666 mapping = page_mapping(p);
667 if (!mapping) {
668 /*
669 * Page has been teared down in the meanwhile
670 */
671 return MF_FAILED;
672 }
673
674 /*
675 * Truncation is a bit tricky. Enable it per file system for now.
676 *
677 * Open: to take i_mutex or not for this? Right now we don't.
678 */
679 return truncate_error_page(p, pfn, mapping);
680 }
681
682 /*
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
685 * propagated.
686 */
687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 struct address_space *mapping = page_mapping(p);
690
691 SetPageError(p);
692 /* TBD: print more information about the file. */
693 if (mapping) {
694 /*
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
699 *
700 * There's one open issue:
701 *
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
709 *
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
718 *
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
722 * at the wrong time.
723 *
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
726 * of the kernel.
727 */
728 mapping_set_error(mapping, -EIO);
729 }
730
731 return me_pagecache_clean(p, pfn);
732 }
733
734 /*
735 * Clean and dirty swap cache.
736 *
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742 * and then
743 * - clear dirty bit to prevent IO
744 * - remove from LRU
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
749 *
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
752 */
753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 ClearPageDirty(p);
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p);
758
759 if (!delete_from_lru_cache(p))
760 return MF_DELAYED;
761 else
762 return MF_FAILED;
763 }
764
765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 delete_from_swap_cache(p);
768
769 if (!delete_from_lru_cache(p))
770 return MF_RECOVERED;
771 else
772 return MF_FAILED;
773 }
774
775 /*
776 * Huge pages. Needs work.
777 * Issues:
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
780 */
781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 int res = 0;
784 struct page *hpage = compound_head(p);
785 struct address_space *mapping;
786
787 if (!PageHuge(hpage))
788 return MF_DELAYED;
789
790 mapping = page_mapping(hpage);
791 if (mapping) {
792 res = truncate_error_page(hpage, pfn, mapping);
793 } else {
794 unlock_page(hpage);
795 /*
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
799 */
800 if (PageAnon(hpage))
801 put_page(hpage);
802 dissolve_free_huge_page(p);
803 res = MF_RECOVERED;
804 lock_page(hpage);
805 }
806
807 return res;
808 }
809
810 /*
811 * Various page states we can handle.
812 *
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
815 *
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
818 *
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
821 */
822
823 #define dirty (1UL << PG_dirty)
824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict (1UL << PG_unevictable)
826 #define mlock (1UL << PG_mlocked)
827 #define writeback (1UL << PG_writeback)
828 #define lru (1UL << PG_lru)
829 #define head (1UL << PG_head)
830 #define slab (1UL << PG_slab)
831 #define reserved (1UL << PG_reserved)
832
833 static struct page_state {
834 unsigned long mask;
835 unsigned long res;
836 enum mf_action_page_type type;
837 int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
840 /*
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
843 */
844
845 /*
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
849 */
850 { slab, slab, MF_MSG_SLAB, me_kernel },
851
852 { head, head, MF_MSG_HUGE, me_huge_page },
853
854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
870 };
871
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881
882 /*
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885 */
886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 enum mf_result result)
888 {
889 trace_memory_failure_event(pfn, type, result);
890
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893 }
894
895 static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897 {
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 count--;
906 if (count > 0) {
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn, action_page_types[ps->type], count);
909 result = MF_FAILED;
910 }
911 action_result(pfn, ps->type, result);
912
913 /* Could do more checks here if page looks ok */
914 /*
915 * Could adjust zone counters here to correct for the missing page.
916 */
917
918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920
921 /**
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
924 *
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
926 * non-zero value.)
927 */
928 int get_hwpoison_page(struct page *page)
929 {
930 struct page *head = compound_head(page);
931
932 if (!PageHuge(head) && PageTransHuge(head)) {
933 /*
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
938 */
939 if (!PageAnon(head)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
941 page_to_pfn(page));
942 return 0;
943 }
944 }
945
946 if (get_page_unless_zero(head)) {
947 if (head == compound_head(page))
948 return 1;
949
950 pr_info("Memory failure: %#lx cannot catch tail\n",
951 page_to_pfn(page));
952 put_page(head);
953 }
954
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958
959 /*
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
962 */
963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 int flags, struct page **hpagep)
965 {
966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 struct address_space *mapping;
968 LIST_HEAD(tokill);
969 bool unmap_success = true;
970 int kill = 1, forcekill;
971 struct page *hpage = *hpagep;
972 bool mlocked = PageMlocked(hpage);
973
974 /*
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
977 */
978 if (PageReserved(p) || PageSlab(p))
979 return true;
980 if (!(PageLRU(hpage) || PageHuge(p)))
981 return true;
982
983 /*
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
986 */
987 if (!page_mapped(hpage))
988 return true;
989
990 if (PageKsm(p)) {
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 return false;
993 }
994
995 if (PageSwapCache(p)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 pfn);
998 ttu |= TTU_IGNORE_HWPOISON;
999 }
1000
1001 /*
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1006 */
1007 mapping = page_mapping(hpage);
1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 mapping_cap_writeback_dirty(mapping)) {
1010 if (page_mkclean(hpage)) {
1011 SetPageDirty(hpage);
1012 } else {
1013 kill = 0;
1014 ttu |= TTU_IGNORE_HWPOISON;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 pfn);
1017 }
1018 }
1019
1020 /*
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1024 *
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1027 */
1028 if (kill)
1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031 if (!PageHuge(hpage)) {
1032 unmap_success = try_to_unmap(hpage, ttu);
1033 } else {
1034 /*
1035 * For hugetlb pages, try_to_unmap could potentially call
1036 * huge_pmd_unshare. Because of this, take semaphore in
1037 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 * have taken the lock at this higer level.
1039 *
1040 * Note that the call to hugetlb_page_mapping_lock_write
1041 * is necessary even if mapping is already set. It handles
1042 * ugliness of potentially having to drop page lock to obtain
1043 * i_mmap_rwsem.
1044 */
1045 mapping = hugetlb_page_mapping_lock_write(hpage);
1046
1047 if (mapping) {
1048 unmap_success = try_to_unmap(hpage,
1049 ttu|TTU_RMAP_LOCKED);
1050 i_mmap_unlock_write(mapping);
1051 } else {
1052 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1053 pfn);
1054 unmap_success = false;
1055 }
1056 }
1057 if (!unmap_success)
1058 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059 pfn, page_mapcount(hpage));
1060
1061 /*
1062 * try_to_unmap() might put mlocked page in lru cache, so call
1063 * shake_page() again to ensure that it's flushed.
1064 */
1065 if (mlocked)
1066 shake_page(hpage, 0);
1067
1068 /*
1069 * Now that the dirty bit has been propagated to the
1070 * struct page and all unmaps done we can decide if
1071 * killing is needed or not. Only kill when the page
1072 * was dirty or the process is not restartable,
1073 * otherwise the tokill list is merely
1074 * freed. When there was a problem unmapping earlier
1075 * use a more force-full uncatchable kill to prevent
1076 * any accesses to the poisoned memory.
1077 */
1078 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1079 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1080
1081 return unmap_success;
1082 }
1083
1084 static int identify_page_state(unsigned long pfn, struct page *p,
1085 unsigned long page_flags)
1086 {
1087 struct page_state *ps;
1088
1089 /*
1090 * The first check uses the current page flags which may not have any
1091 * relevant information. The second check with the saved page flags is
1092 * carried out only if the first check can't determine the page status.
1093 */
1094 for (ps = error_states;; ps++)
1095 if ((p->flags & ps->mask) == ps->res)
1096 break;
1097
1098 page_flags |= (p->flags & (1UL << PG_dirty));
1099
1100 if (!ps->mask)
1101 for (ps = error_states;; ps++)
1102 if ((page_flags & ps->mask) == ps->res)
1103 break;
1104 return page_action(ps, p, pfn);
1105 }
1106
1107 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1108 {
1109 struct page *p = pfn_to_page(pfn);
1110 struct page *head = compound_head(p);
1111 int res;
1112 unsigned long page_flags;
1113
1114 if (TestSetPageHWPoison(head)) {
1115 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1116 pfn);
1117 return 0;
1118 }
1119
1120 num_poisoned_pages_inc();
1121
1122 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123 /*
1124 * Check "filter hit" and "race with other subpage."
1125 */
1126 lock_page(head);
1127 if (PageHWPoison(head)) {
1128 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1129 || (p != head && TestSetPageHWPoison(head))) {
1130 num_poisoned_pages_dec();
1131 unlock_page(head);
1132 return 0;
1133 }
1134 }
1135 unlock_page(head);
1136 dissolve_free_huge_page(p);
1137 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1138 return 0;
1139 }
1140
1141 lock_page(head);
1142 page_flags = head->flags;
1143
1144 if (!PageHWPoison(head)) {
1145 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1146 num_poisoned_pages_dec();
1147 unlock_page(head);
1148 put_hwpoison_page(head);
1149 return 0;
1150 }
1151
1152 /*
1153 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154 * simply disable it. In order to make it work properly, we need
1155 * make sure that:
1156 * - conversion of a pud that maps an error hugetlb into hwpoison
1157 * entry properly works, and
1158 * - other mm code walking over page table is aware of pud-aligned
1159 * hwpoison entries.
1160 */
1161 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1162 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1163 res = -EBUSY;
1164 goto out;
1165 }
1166
1167 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1168 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1169 res = -EBUSY;
1170 goto out;
1171 }
1172
1173 res = identify_page_state(pfn, p, page_flags);
1174 out:
1175 unlock_page(head);
1176 return res;
1177 }
1178
1179 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1180 struct dev_pagemap *pgmap)
1181 {
1182 struct page *page = pfn_to_page(pfn);
1183 const bool unmap_success = true;
1184 unsigned long size = 0;
1185 struct to_kill *tk;
1186 LIST_HEAD(tokill);
1187 int rc = -EBUSY;
1188 loff_t start;
1189 dax_entry_t cookie;
1190
1191 /*
1192 * Prevent the inode from being freed while we are interrogating
1193 * the address_space, typically this would be handled by
1194 * lock_page(), but dax pages do not use the page lock. This
1195 * also prevents changes to the mapping of this pfn until
1196 * poison signaling is complete.
1197 */
1198 cookie = dax_lock_page(page);
1199 if (!cookie)
1200 goto out;
1201
1202 if (hwpoison_filter(page)) {
1203 rc = 0;
1204 goto unlock;
1205 }
1206
1207 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1208 /*
1209 * TODO: Handle HMM pages which may need coordination
1210 * with device-side memory.
1211 */
1212 goto unlock;
1213 }
1214
1215 /*
1216 * Use this flag as an indication that the dax page has been
1217 * remapped UC to prevent speculative consumption of poison.
1218 */
1219 SetPageHWPoison(page);
1220
1221 /*
1222 * Unlike System-RAM there is no possibility to swap in a
1223 * different physical page at a given virtual address, so all
1224 * userspace consumption of ZONE_DEVICE memory necessitates
1225 * SIGBUS (i.e. MF_MUST_KILL)
1226 */
1227 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1228 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1229
1230 list_for_each_entry(tk, &tokill, nd)
1231 if (tk->size_shift)
1232 size = max(size, 1UL << tk->size_shift);
1233 if (size) {
1234 /*
1235 * Unmap the largest mapping to avoid breaking up
1236 * device-dax mappings which are constant size. The
1237 * actual size of the mapping being torn down is
1238 * communicated in siginfo, see kill_proc()
1239 */
1240 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1241 unmap_mapping_range(page->mapping, start, start + size, 0);
1242 }
1243 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1244 rc = 0;
1245 unlock:
1246 dax_unlock_page(page, cookie);
1247 out:
1248 /* drop pgmap ref acquired in caller */
1249 put_dev_pagemap(pgmap);
1250 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1251 return rc;
1252 }
1253
1254 /**
1255 * memory_failure - Handle memory failure of a page.
1256 * @pfn: Page Number of the corrupted page
1257 * @flags: fine tune action taken
1258 *
1259 * This function is called by the low level machine check code
1260 * of an architecture when it detects hardware memory corruption
1261 * of a page. It tries its best to recover, which includes
1262 * dropping pages, killing processes etc.
1263 *
1264 * The function is primarily of use for corruptions that
1265 * happen outside the current execution context (e.g. when
1266 * detected by a background scrubber)
1267 *
1268 * Must run in process context (e.g. a work queue) with interrupts
1269 * enabled and no spinlocks hold.
1270 */
1271 int memory_failure(unsigned long pfn, int flags)
1272 {
1273 struct page *p;
1274 struct page *hpage;
1275 struct page *orig_head;
1276 struct dev_pagemap *pgmap;
1277 int res;
1278 unsigned long page_flags;
1279
1280 if (!sysctl_memory_failure_recovery)
1281 panic("Memory failure on page %lx", pfn);
1282
1283 p = pfn_to_online_page(pfn);
1284 if (!p) {
1285 if (pfn_valid(pfn)) {
1286 pgmap = get_dev_pagemap(pfn, NULL);
1287 if (pgmap)
1288 return memory_failure_dev_pagemap(pfn, flags,
1289 pgmap);
1290 }
1291 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1292 pfn);
1293 return -ENXIO;
1294 }
1295
1296 if (PageHuge(p))
1297 return memory_failure_hugetlb(pfn, flags);
1298 if (TestSetPageHWPoison(p)) {
1299 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1300 pfn);
1301 return 0;
1302 }
1303
1304 orig_head = hpage = compound_head(p);
1305 num_poisoned_pages_inc();
1306
1307 /*
1308 * We need/can do nothing about count=0 pages.
1309 * 1) it's a free page, and therefore in safe hand:
1310 * prep_new_page() will be the gate keeper.
1311 * 2) it's part of a non-compound high order page.
1312 * Implies some kernel user: cannot stop them from
1313 * R/W the page; let's pray that the page has been
1314 * used and will be freed some time later.
1315 * In fact it's dangerous to directly bump up page count from 0,
1316 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1317 */
1318 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1319 if (is_free_buddy_page(p)) {
1320 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1321 return 0;
1322 } else {
1323 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1324 return -EBUSY;
1325 }
1326 }
1327
1328 if (PageTransHuge(hpage)) {
1329 lock_page(p);
1330 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1331 unlock_page(p);
1332 if (!PageAnon(p))
1333 pr_err("Memory failure: %#lx: non anonymous thp\n",
1334 pfn);
1335 else
1336 pr_err("Memory failure: %#lx: thp split failed\n",
1337 pfn);
1338 if (TestClearPageHWPoison(p))
1339 num_poisoned_pages_dec();
1340 put_hwpoison_page(p);
1341 return -EBUSY;
1342 }
1343 unlock_page(p);
1344 VM_BUG_ON_PAGE(!page_count(p), p);
1345 hpage = compound_head(p);
1346 }
1347
1348 /*
1349 * We ignore non-LRU pages for good reasons.
1350 * - PG_locked is only well defined for LRU pages and a few others
1351 * - to avoid races with __SetPageLocked()
1352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353 * The check (unnecessarily) ignores LRU pages being isolated and
1354 * walked by the page reclaim code, however that's not a big loss.
1355 */
1356 shake_page(p, 0);
1357 /* shake_page could have turned it free. */
1358 if (!PageLRU(p) && is_free_buddy_page(p)) {
1359 if (flags & MF_COUNT_INCREASED)
1360 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1361 else
1362 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1363 return 0;
1364 }
1365
1366 lock_page(p);
1367
1368 /*
1369 * The page could have changed compound pages during the locking.
1370 * If this happens just bail out.
1371 */
1372 if (PageCompound(p) && compound_head(p) != orig_head) {
1373 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1374 res = -EBUSY;
1375 goto out;
1376 }
1377
1378 /*
1379 * We use page flags to determine what action should be taken, but
1380 * the flags can be modified by the error containment action. One
1381 * example is an mlocked page, where PG_mlocked is cleared by
1382 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383 * correctly, we save a copy of the page flags at this time.
1384 */
1385 if (PageHuge(p))
1386 page_flags = hpage->flags;
1387 else
1388 page_flags = p->flags;
1389
1390 /*
1391 * unpoison always clear PG_hwpoison inside page lock
1392 */
1393 if (!PageHWPoison(p)) {
1394 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1395 num_poisoned_pages_dec();
1396 unlock_page(p);
1397 put_hwpoison_page(p);
1398 return 0;
1399 }
1400 if (hwpoison_filter(p)) {
1401 if (TestClearPageHWPoison(p))
1402 num_poisoned_pages_dec();
1403 unlock_page(p);
1404 put_hwpoison_page(p);
1405 return 0;
1406 }
1407
1408 if (!PageTransTail(p) && !PageLRU(p))
1409 goto identify_page_state;
1410
1411 /*
1412 * It's very difficult to mess with pages currently under IO
1413 * and in many cases impossible, so we just avoid it here.
1414 */
1415 wait_on_page_writeback(p);
1416
1417 /*
1418 * Now take care of user space mappings.
1419 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1420 *
1421 * When the raw error page is thp tail page, hpage points to the raw
1422 * page after thp split.
1423 */
1424 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1425 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1426 res = -EBUSY;
1427 goto out;
1428 }
1429
1430 /*
1431 * Torn down by someone else?
1432 */
1433 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1434 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1435 res = -EBUSY;
1436 goto out;
1437 }
1438
1439 identify_page_state:
1440 res = identify_page_state(pfn, p, page_flags);
1441 out:
1442 unlock_page(p);
1443 return res;
1444 }
1445 EXPORT_SYMBOL_GPL(memory_failure);
1446
1447 #define MEMORY_FAILURE_FIFO_ORDER 4
1448 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1449
1450 struct memory_failure_entry {
1451 unsigned long pfn;
1452 int flags;
1453 };
1454
1455 struct memory_failure_cpu {
1456 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1457 MEMORY_FAILURE_FIFO_SIZE);
1458 spinlock_t lock;
1459 struct work_struct work;
1460 };
1461
1462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1463
1464 /**
1465 * memory_failure_queue - Schedule handling memory failure of a page.
1466 * @pfn: Page Number of the corrupted page
1467 * @flags: Flags for memory failure handling
1468 *
1469 * This function is called by the low level hardware error handler
1470 * when it detects hardware memory corruption of a page. It schedules
1471 * the recovering of error page, including dropping pages, killing
1472 * processes etc.
1473 *
1474 * The function is primarily of use for corruptions that
1475 * happen outside the current execution context (e.g. when
1476 * detected by a background scrubber)
1477 *
1478 * Can run in IRQ context.
1479 */
1480 void memory_failure_queue(unsigned long pfn, int flags)
1481 {
1482 struct memory_failure_cpu *mf_cpu;
1483 unsigned long proc_flags;
1484 struct memory_failure_entry entry = {
1485 .pfn = pfn,
1486 .flags = flags,
1487 };
1488
1489 mf_cpu = &get_cpu_var(memory_failure_cpu);
1490 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1491 if (kfifo_put(&mf_cpu->fifo, entry))
1492 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1493 else
1494 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1495 pfn);
1496 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1497 put_cpu_var(memory_failure_cpu);
1498 }
1499 EXPORT_SYMBOL_GPL(memory_failure_queue);
1500
1501 static void memory_failure_work_func(struct work_struct *work)
1502 {
1503 struct memory_failure_cpu *mf_cpu;
1504 struct memory_failure_entry entry = { 0, };
1505 unsigned long proc_flags;
1506 int gotten;
1507
1508 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1509 for (;;) {
1510 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1511 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1512 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1513 if (!gotten)
1514 break;
1515 if (entry.flags & MF_SOFT_OFFLINE)
1516 soft_offline_page(entry.pfn, entry.flags);
1517 else
1518 memory_failure(entry.pfn, entry.flags);
1519 }
1520 }
1521
1522 /*
1523 * Process memory_failure work queued on the specified CPU.
1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1525 */
1526 void memory_failure_queue_kick(int cpu)
1527 {
1528 struct memory_failure_cpu *mf_cpu;
1529
1530 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1531 cancel_work_sync(&mf_cpu->work);
1532 memory_failure_work_func(&mf_cpu->work);
1533 }
1534
1535 static int __init memory_failure_init(void)
1536 {
1537 struct memory_failure_cpu *mf_cpu;
1538 int cpu;
1539
1540 for_each_possible_cpu(cpu) {
1541 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1542 spin_lock_init(&mf_cpu->lock);
1543 INIT_KFIFO(mf_cpu->fifo);
1544 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1545 }
1546
1547 return 0;
1548 }
1549 core_initcall(memory_failure_init);
1550
1551 #define unpoison_pr_info(fmt, pfn, rs) \
1552 ({ \
1553 if (__ratelimit(rs)) \
1554 pr_info(fmt, pfn); \
1555 })
1556
1557 /**
1558 * unpoison_memory - Unpoison a previously poisoned page
1559 * @pfn: Page number of the to be unpoisoned page
1560 *
1561 * Software-unpoison a page that has been poisoned by
1562 * memory_failure() earlier.
1563 *
1564 * This is only done on the software-level, so it only works
1565 * for linux injected failures, not real hardware failures
1566 *
1567 * Returns 0 for success, otherwise -errno.
1568 */
1569 int unpoison_memory(unsigned long pfn)
1570 {
1571 struct page *page;
1572 struct page *p;
1573 int freeit = 0;
1574 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1576
1577 if (!pfn_valid(pfn))
1578 return -ENXIO;
1579
1580 p = pfn_to_page(pfn);
1581 page = compound_head(p);
1582
1583 if (!PageHWPoison(p)) {
1584 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1585 pfn, &unpoison_rs);
1586 return 0;
1587 }
1588
1589 if (page_count(page) > 1) {
1590 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1591 pfn, &unpoison_rs);
1592 return 0;
1593 }
1594
1595 if (page_mapped(page)) {
1596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1597 pfn, &unpoison_rs);
1598 return 0;
1599 }
1600
1601 if (page_mapping(page)) {
1602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1603 pfn, &unpoison_rs);
1604 return 0;
1605 }
1606
1607 /*
1608 * unpoison_memory() can encounter thp only when the thp is being
1609 * worked by memory_failure() and the page lock is not held yet.
1610 * In such case, we yield to memory_failure() and make unpoison fail.
1611 */
1612 if (!PageHuge(page) && PageTransHuge(page)) {
1613 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1614 pfn, &unpoison_rs);
1615 return 0;
1616 }
1617
1618 if (!get_hwpoison_page(p)) {
1619 if (TestClearPageHWPoison(p))
1620 num_poisoned_pages_dec();
1621 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1622 pfn, &unpoison_rs);
1623 return 0;
1624 }
1625
1626 lock_page(page);
1627 /*
1628 * This test is racy because PG_hwpoison is set outside of page lock.
1629 * That's acceptable because that won't trigger kernel panic. Instead,
1630 * the PG_hwpoison page will be caught and isolated on the entrance to
1631 * the free buddy page pool.
1632 */
1633 if (TestClearPageHWPoison(page)) {
1634 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1635 pfn, &unpoison_rs);
1636 num_poisoned_pages_dec();
1637 freeit = 1;
1638 }
1639 unlock_page(page);
1640
1641 put_hwpoison_page(page);
1642 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1643 put_hwpoison_page(page);
1644
1645 return 0;
1646 }
1647 EXPORT_SYMBOL(unpoison_memory);
1648
1649 static struct page *new_page(struct page *p, unsigned long private)
1650 {
1651 struct migration_target_control mtc = {
1652 .nid = page_to_nid(p),
1653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1654 };
1655
1656 return alloc_migration_target(p, (unsigned long)&mtc);
1657 }
1658
1659 /*
1660 * Safely get reference count of an arbitrary page.
1661 * Returns 0 for a free page, -EIO for a zero refcount page
1662 * that is not free, and 1 for any other page type.
1663 * For 1 the page is returned with increased page count, otherwise not.
1664 */
1665 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1666 {
1667 int ret;
1668
1669 if (flags & MF_COUNT_INCREASED)
1670 return 1;
1671
1672 /*
1673 * When the target page is a free hugepage, just remove it
1674 * from free hugepage list.
1675 */
1676 if (!get_hwpoison_page(p)) {
1677 if (PageHuge(p)) {
1678 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1679 ret = 0;
1680 } else if (is_free_buddy_page(p)) {
1681 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1682 ret = 0;
1683 } else {
1684 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1685 __func__, pfn, p->flags);
1686 ret = -EIO;
1687 }
1688 } else {
1689 /* Not a free page */
1690 ret = 1;
1691 }
1692 return ret;
1693 }
1694
1695 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1696 {
1697 int ret = __get_any_page(page, pfn, flags);
1698
1699 if (ret == 1 && !PageHuge(page) &&
1700 !PageLRU(page) && !__PageMovable(page)) {
1701 /*
1702 * Try to free it.
1703 */
1704 put_hwpoison_page(page);
1705 shake_page(page, 1);
1706
1707 /*
1708 * Did it turn free?
1709 */
1710 ret = __get_any_page(page, pfn, 0);
1711 if (ret == 1 && !PageLRU(page)) {
1712 /* Drop page reference which is from __get_any_page() */
1713 put_hwpoison_page(page);
1714 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1715 pfn, page->flags, &page->flags);
1716 return -EIO;
1717 }
1718 }
1719 return ret;
1720 }
1721
1722 static int soft_offline_huge_page(struct page *page, int flags)
1723 {
1724 int ret;
1725 unsigned long pfn = page_to_pfn(page);
1726 struct page *hpage = compound_head(page);
1727 LIST_HEAD(pagelist);
1728
1729 /*
1730 * This double-check of PageHWPoison is to avoid the race with
1731 * memory_failure(). See also comment in __soft_offline_page().
1732 */
1733 lock_page(hpage);
1734 if (PageHWPoison(hpage)) {
1735 unlock_page(hpage);
1736 put_hwpoison_page(hpage);
1737 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1738 return -EBUSY;
1739 }
1740 unlock_page(hpage);
1741
1742 ret = isolate_huge_page(hpage, &pagelist);
1743 /*
1744 * get_any_page() and isolate_huge_page() takes a refcount each,
1745 * so need to drop one here.
1746 */
1747 put_hwpoison_page(hpage);
1748 if (!ret) {
1749 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1750 return -EBUSY;
1751 }
1752
1753 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1754 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1755 if (ret) {
1756 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1757 pfn, ret, page->flags, &page->flags);
1758 if (!list_empty(&pagelist))
1759 putback_movable_pages(&pagelist);
1760 if (ret > 0)
1761 ret = -EIO;
1762 } else {
1763 /*
1764 * We set PG_hwpoison only when the migration source hugepage
1765 * was successfully dissolved, because otherwise hwpoisoned
1766 * hugepage remains on free hugepage list, then userspace will
1767 * find it as SIGBUS by allocation failure. That's not expected
1768 * in soft-offlining.
1769 */
1770 ret = dissolve_free_huge_page(page);
1771 if (!ret) {
1772 if (set_hwpoison_free_buddy_page(page))
1773 num_poisoned_pages_inc();
1774 else
1775 ret = -EBUSY;
1776 }
1777 }
1778 return ret;
1779 }
1780
1781 static int __soft_offline_page(struct page *page, int flags)
1782 {
1783 int ret;
1784 unsigned long pfn = page_to_pfn(page);
1785
1786 /*
1787 * Check PageHWPoison again inside page lock because PageHWPoison
1788 * is set by memory_failure() outside page lock. Note that
1789 * memory_failure() also double-checks PageHWPoison inside page lock,
1790 * so there's no race between soft_offline_page() and memory_failure().
1791 */
1792 lock_page(page);
1793 wait_on_page_writeback(page);
1794 if (PageHWPoison(page)) {
1795 unlock_page(page);
1796 put_hwpoison_page(page);
1797 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1798 return -EBUSY;
1799 }
1800 /*
1801 * Try to invalidate first. This should work for
1802 * non dirty unmapped page cache pages.
1803 */
1804 ret = invalidate_inode_page(page);
1805 unlock_page(page);
1806 /*
1807 * RED-PEN would be better to keep it isolated here, but we
1808 * would need to fix isolation locking first.
1809 */
1810 if (ret == 1) {
1811 put_hwpoison_page(page);
1812 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1813 SetPageHWPoison(page);
1814 num_poisoned_pages_inc();
1815 return 0;
1816 }
1817
1818 /*
1819 * Simple invalidation didn't work.
1820 * Try to migrate to a new page instead. migrate.c
1821 * handles a large number of cases for us.
1822 */
1823 if (PageLRU(page))
1824 ret = isolate_lru_page(page);
1825 else
1826 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1827 /*
1828 * Drop page reference which is came from get_any_page()
1829 * successful isolate_lru_page() already took another one.
1830 */
1831 put_hwpoison_page(page);
1832 if (!ret) {
1833 LIST_HEAD(pagelist);
1834 /*
1835 * After isolated lru page, the PageLRU will be cleared,
1836 * so use !__PageMovable instead for LRU page's mapping
1837 * cannot have PAGE_MAPPING_MOVABLE.
1838 */
1839 if (!__PageMovable(page))
1840 inc_node_page_state(page, NR_ISOLATED_ANON +
1841 page_is_file_lru(page));
1842 list_add(&page->lru, &pagelist);
1843 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1844 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1845 if (ret) {
1846 if (!list_empty(&pagelist))
1847 putback_movable_pages(&pagelist);
1848
1849 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1850 pfn, ret, page->flags, &page->flags);
1851 if (ret > 0)
1852 ret = -EIO;
1853 }
1854 } else {
1855 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1856 pfn, ret, page_count(page), page->flags, &page->flags);
1857 }
1858 return ret;
1859 }
1860
1861 static int soft_offline_in_use_page(struct page *page, int flags)
1862 {
1863 int ret;
1864 int mt;
1865 struct page *hpage = compound_head(page);
1866
1867 if (!PageHuge(page) && PageTransHuge(hpage)) {
1868 lock_page(page);
1869 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1870 unlock_page(page);
1871 if (!PageAnon(page))
1872 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1873 else
1874 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1875 put_hwpoison_page(page);
1876 return -EBUSY;
1877 }
1878 unlock_page(page);
1879 }
1880
1881 /*
1882 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1883 * to free list immediately (not via pcplist) when released after
1884 * successful page migration. Otherwise we can't guarantee that the
1885 * page is really free after put_page() returns, so
1886 * set_hwpoison_free_buddy_page() highly likely fails.
1887 */
1888 mt = get_pageblock_migratetype(page);
1889 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1890 if (PageHuge(page))
1891 ret = soft_offline_huge_page(page, flags);
1892 else
1893 ret = __soft_offline_page(page, flags);
1894 set_pageblock_migratetype(page, mt);
1895 return ret;
1896 }
1897
1898 static int soft_offline_free_page(struct page *page)
1899 {
1900 int rc = dissolve_free_huge_page(page);
1901
1902 if (!rc) {
1903 if (set_hwpoison_free_buddy_page(page))
1904 num_poisoned_pages_inc();
1905 else
1906 rc = -EBUSY;
1907 }
1908 return rc;
1909 }
1910
1911 /**
1912 * soft_offline_page - Soft offline a page.
1913 * @pfn: pfn to soft-offline
1914 * @flags: flags. Same as memory_failure().
1915 *
1916 * Returns 0 on success, otherwise negated errno.
1917 *
1918 * Soft offline a page, by migration or invalidation,
1919 * without killing anything. This is for the case when
1920 * a page is not corrupted yet (so it's still valid to access),
1921 * but has had a number of corrected errors and is better taken
1922 * out.
1923 *
1924 * The actual policy on when to do that is maintained by
1925 * user space.
1926 *
1927 * This should never impact any application or cause data loss,
1928 * however it might take some time.
1929 *
1930 * This is not a 100% solution for all memory, but tries to be
1931 * ``good enough'' for the majority of memory.
1932 */
1933 int soft_offline_page(unsigned long pfn, int flags)
1934 {
1935 int ret;
1936 struct page *page;
1937
1938 if (!pfn_valid(pfn))
1939 return -ENXIO;
1940 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1941 page = pfn_to_online_page(pfn);
1942 if (!page)
1943 return -EIO;
1944
1945 if (PageHWPoison(page)) {
1946 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1947 if (flags & MF_COUNT_INCREASED)
1948 put_hwpoison_page(page);
1949 return -EBUSY;
1950 }
1951
1952 get_online_mems();
1953 ret = get_any_page(page, pfn, flags);
1954 put_online_mems();
1955
1956 if (ret > 0)
1957 ret = soft_offline_in_use_page(page, flags);
1958 else if (ret == 0)
1959 ret = soft_offline_free_page(page);
1960
1961 return ret;
1962 }