]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory-failure.c
thp: fix splitting of hwpoisoned hugepages
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include "internal.h"
56
57 int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59 int sysctl_memory_failure_recovery __read_mostly = 1;
60
61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
65 u32 hwpoison_filter_enable = 0;
66 u32 hwpoison_filter_dev_major = ~0U;
67 u32 hwpoison_filter_dev_minor = ~0U;
68 u64 hwpoison_filter_flags_mask;
69 u64 hwpoison_filter_flags_value;
70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75
76 static int hwpoison_filter_dev(struct page *p)
77 {
78 struct address_space *mapping;
79 dev_t dev;
80
81 if (hwpoison_filter_dev_major == ~0U &&
82 hwpoison_filter_dev_minor == ~0U)
83 return 0;
84
85 /*
86 * page_mapping() does not accept slab pages.
87 */
88 if (PageSlab(p))
89 return -EINVAL;
90
91 mapping = page_mapping(p);
92 if (mapping == NULL || mapping->host == NULL)
93 return -EINVAL;
94
95 dev = mapping->host->i_sb->s_dev;
96 if (hwpoison_filter_dev_major != ~0U &&
97 hwpoison_filter_dev_major != MAJOR(dev))
98 return -EINVAL;
99 if (hwpoison_filter_dev_minor != ~0U &&
100 hwpoison_filter_dev_minor != MINOR(dev))
101 return -EINVAL;
102
103 return 0;
104 }
105
106 static int hwpoison_filter_flags(struct page *p)
107 {
108 if (!hwpoison_filter_flags_mask)
109 return 0;
110
111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 hwpoison_filter_flags_value)
113 return 0;
114 else
115 return -EINVAL;
116 }
117
118 /*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129 u64 hwpoison_filter_memcg;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131 static int hwpoison_filter_task(struct page *p)
132 {
133 struct mem_cgroup *mem;
134 struct cgroup_subsys_state *css;
135 unsigned long ino;
136
137 if (!hwpoison_filter_memcg)
138 return 0;
139
140 mem = try_get_mem_cgroup_from_page(p);
141 if (!mem)
142 return -EINVAL;
143
144 css = mem_cgroup_css(mem);
145 /* root_mem_cgroup has NULL dentries */
146 if (!css->cgroup->dentry)
147 return -EINVAL;
148
149 ino = css->cgroup->dentry->d_inode->i_ino;
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160
161 int hwpoison_filter(struct page *p)
162 {
163 if (!hwpoison_filter_enable)
164 return 0;
165
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
175 return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 return 0;
181 }
182 #endif
183
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186 /*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page)
192 {
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_code = BUS_MCEERR_AO;
202 si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205 #endif
206 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207 /*
208 * Don't use force here, it's convenient if the signal
209 * can be temporarily blocked.
210 * This could cause a loop when the user sets SIGBUS
211 * to SIG_IGN, but hopefully noone will do that?
212 */
213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
214 if (ret < 0)
215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 t->comm, t->pid, ret);
217 return ret;
218 }
219
220 /*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
224 void shake_page(struct page *p, int access)
225 {
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
230 drain_all_pages();
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
234
235 /*
236 * Only all shrink_slab here (which would also
237 * shrink other caches) if access is not potentially fatal.
238 */
239 if (access) {
240 int nr;
241 do {
242 nr = shrink_slab(1000, GFP_KERNEL, 1000);
243 if (page_count(p) == 1)
244 break;
245 } while (nr > 10);
246 }
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249
250 /*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272 struct to_kill {
273 struct list_head nd;
274 struct task_struct *tsk;
275 unsigned long addr;
276 char addr_valid;
277 };
278
279 /*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
282 */
283
284 /*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
293 {
294 struct to_kill *tk;
295
296 if (*tkc) {
297 tk = *tkc;
298 *tkc = NULL;
299 } else {
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 if (!tk) {
302 printk(KERN_ERR
303 "MCE: Out of memory while machine check handling\n");
304 return;
305 }
306 }
307 tk->addr = page_address_in_vma(p, vma);
308 tk->addr_valid = 1;
309
310 /*
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
315 */
316 if (tk->addr == -EFAULT) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p), tsk->comm);
319 tk->addr_valid = 0;
320 }
321 get_task_struct(tsk);
322 tk->tsk = tsk;
323 list_add_tail(&tk->nd, to_kill);
324 }
325
326 /*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
335 int fail, struct page *page, unsigned long pfn)
336 {
337 struct to_kill *tk, *next;
338
339 list_for_each_entry_safe (tk, next, to_kill, nd) {
340 if (doit) {
341 /*
342 * In case something went wrong with munmapping
343 * make sure the process doesn't catch the
344 * signal and then access the memory. Just kill it.
345 */
346 if (fail || tk->addr_valid == 0) {
347 printk(KERN_ERR
348 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349 pfn, tk->tsk->comm, tk->tsk->pid);
350 force_sig(SIGKILL, tk->tsk);
351 }
352
353 /*
354 * In theory the process could have mapped
355 * something else on the address in-between. We could
356 * check for that, but we need to tell the
357 * process anyways.
358 */
359 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
360 pfn, page) < 0)
361 printk(KERN_ERR
362 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363 pfn, tk->tsk->comm, tk->tsk->pid);
364 }
365 put_task_struct(tk->tsk);
366 kfree(tk);
367 }
368 }
369
370 static int task_early_kill(struct task_struct *tsk)
371 {
372 if (!tsk->mm)
373 return 0;
374 if (tsk->flags & PF_MCE_PROCESS)
375 return !!(tsk->flags & PF_MCE_EARLY);
376 return sysctl_memory_failure_early_kill;
377 }
378
379 /*
380 * Collect processes when the error hit an anonymous page.
381 */
382 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383 struct to_kill **tkc)
384 {
385 struct vm_area_struct *vma;
386 struct task_struct *tsk;
387 struct anon_vma *av;
388
389 read_lock(&tasklist_lock);
390 av = page_lock_anon_vma(page);
391 if (av == NULL) /* Not actually mapped anymore */
392 goto out;
393 for_each_process (tsk) {
394 struct anon_vma_chain *vmac;
395
396 if (!task_early_kill(tsk))
397 continue;
398 list_for_each_entry(vmac, &av->head, same_anon_vma) {
399 vma = vmac->vma;
400 if (!page_mapped_in_vma(page, vma))
401 continue;
402 if (vma->vm_mm == tsk->mm)
403 add_to_kill(tsk, page, vma, to_kill, tkc);
404 }
405 }
406 page_unlock_anon_vma(av);
407 out:
408 read_unlock(&tasklist_lock);
409 }
410
411 /*
412 * Collect processes when the error hit a file mapped page.
413 */
414 static void collect_procs_file(struct page *page, struct list_head *to_kill,
415 struct to_kill **tkc)
416 {
417 struct vm_area_struct *vma;
418 struct task_struct *tsk;
419 struct prio_tree_iter iter;
420 struct address_space *mapping = page->mapping;
421
422 /*
423 * A note on the locking order between the two locks.
424 * We don't rely on this particular order.
425 * If you have some other code that needs a different order
426 * feel free to switch them around. Or add a reverse link
427 * from mm_struct to task_struct, then this could be all
428 * done without taking tasklist_lock and looping over all tasks.
429 */
430
431 read_lock(&tasklist_lock);
432 spin_lock(&mapping->i_mmap_lock);
433 for_each_process(tsk) {
434 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435
436 if (!task_early_kill(tsk))
437 continue;
438
439 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
440 pgoff) {
441 /*
442 * Send early kill signal to tasks where a vma covers
443 * the page but the corrupted page is not necessarily
444 * mapped it in its pte.
445 * Assume applications who requested early kill want
446 * to be informed of all such data corruptions.
447 */
448 if (vma->vm_mm == tsk->mm)
449 add_to_kill(tsk, page, vma, to_kill, tkc);
450 }
451 }
452 spin_unlock(&mapping->i_mmap_lock);
453 read_unlock(&tasklist_lock);
454 }
455
456 /*
457 * Collect the processes who have the corrupted page mapped to kill.
458 * This is done in two steps for locking reasons.
459 * First preallocate one tokill structure outside the spin locks,
460 * so that we can kill at least one process reasonably reliable.
461 */
462 static void collect_procs(struct page *page, struct list_head *tokill)
463 {
464 struct to_kill *tk;
465
466 if (!page->mapping)
467 return;
468
469 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
470 if (!tk)
471 return;
472 if (PageAnon(page))
473 collect_procs_anon(page, tokill, &tk);
474 else
475 collect_procs_file(page, tokill, &tk);
476 kfree(tk);
477 }
478
479 /*
480 * Error handlers for various types of pages.
481 */
482
483 enum outcome {
484 IGNORED, /* Error: cannot be handled */
485 FAILED, /* Error: handling failed */
486 DELAYED, /* Will be handled later */
487 RECOVERED, /* Successfully recovered */
488 };
489
490 static const char *action_name[] = {
491 [IGNORED] = "Ignored",
492 [FAILED] = "Failed",
493 [DELAYED] = "Delayed",
494 [RECOVERED] = "Recovered",
495 };
496
497 /*
498 * XXX: It is possible that a page is isolated from LRU cache,
499 * and then kept in swap cache or failed to remove from page cache.
500 * The page count will stop it from being freed by unpoison.
501 * Stress tests should be aware of this memory leak problem.
502 */
503 static int delete_from_lru_cache(struct page *p)
504 {
505 if (!isolate_lru_page(p)) {
506 /*
507 * Clear sensible page flags, so that the buddy system won't
508 * complain when the page is unpoison-and-freed.
509 */
510 ClearPageActive(p);
511 ClearPageUnevictable(p);
512 /*
513 * drop the page count elevated by isolate_lru_page()
514 */
515 page_cache_release(p);
516 return 0;
517 }
518 return -EIO;
519 }
520
521 /*
522 * Error hit kernel page.
523 * Do nothing, try to be lucky and not touch this instead. For a few cases we
524 * could be more sophisticated.
525 */
526 static int me_kernel(struct page *p, unsigned long pfn)
527 {
528 return IGNORED;
529 }
530
531 /*
532 * Page in unknown state. Do nothing.
533 */
534 static int me_unknown(struct page *p, unsigned long pfn)
535 {
536 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
537 return FAILED;
538 }
539
540 /*
541 * Clean (or cleaned) page cache page.
542 */
543 static int me_pagecache_clean(struct page *p, unsigned long pfn)
544 {
545 int err;
546 int ret = FAILED;
547 struct address_space *mapping;
548
549 delete_from_lru_cache(p);
550
551 /*
552 * For anonymous pages we're done the only reference left
553 * should be the one m_f() holds.
554 */
555 if (PageAnon(p))
556 return RECOVERED;
557
558 /*
559 * Now truncate the page in the page cache. This is really
560 * more like a "temporary hole punch"
561 * Don't do this for block devices when someone else
562 * has a reference, because it could be file system metadata
563 * and that's not safe to truncate.
564 */
565 mapping = page_mapping(p);
566 if (!mapping) {
567 /*
568 * Page has been teared down in the meanwhile
569 */
570 return FAILED;
571 }
572
573 /*
574 * Truncation is a bit tricky. Enable it per file system for now.
575 *
576 * Open: to take i_mutex or not for this? Right now we don't.
577 */
578 if (mapping->a_ops->error_remove_page) {
579 err = mapping->a_ops->error_remove_page(mapping, p);
580 if (err != 0) {
581 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
582 pfn, err);
583 } else if (page_has_private(p) &&
584 !try_to_release_page(p, GFP_NOIO)) {
585 pr_info("MCE %#lx: failed to release buffers\n", pfn);
586 } else {
587 ret = RECOVERED;
588 }
589 } else {
590 /*
591 * If the file system doesn't support it just invalidate
592 * This fails on dirty or anything with private pages
593 */
594 if (invalidate_inode_page(p))
595 ret = RECOVERED;
596 else
597 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
598 pfn);
599 }
600 return ret;
601 }
602
603 /*
604 * Dirty cache page page
605 * Issues: when the error hit a hole page the error is not properly
606 * propagated.
607 */
608 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
609 {
610 struct address_space *mapping = page_mapping(p);
611
612 SetPageError(p);
613 /* TBD: print more information about the file. */
614 if (mapping) {
615 /*
616 * IO error will be reported by write(), fsync(), etc.
617 * who check the mapping.
618 * This way the application knows that something went
619 * wrong with its dirty file data.
620 *
621 * There's one open issue:
622 *
623 * The EIO will be only reported on the next IO
624 * operation and then cleared through the IO map.
625 * Normally Linux has two mechanisms to pass IO error
626 * first through the AS_EIO flag in the address space
627 * and then through the PageError flag in the page.
628 * Since we drop pages on memory failure handling the
629 * only mechanism open to use is through AS_AIO.
630 *
631 * This has the disadvantage that it gets cleared on
632 * the first operation that returns an error, while
633 * the PageError bit is more sticky and only cleared
634 * when the page is reread or dropped. If an
635 * application assumes it will always get error on
636 * fsync, but does other operations on the fd before
637 * and the page is dropped inbetween then the error
638 * will not be properly reported.
639 *
640 * This can already happen even without hwpoisoned
641 * pages: first on metadata IO errors (which only
642 * report through AS_EIO) or when the page is dropped
643 * at the wrong time.
644 *
645 * So right now we assume that the application DTRT on
646 * the first EIO, but we're not worse than other parts
647 * of the kernel.
648 */
649 mapping_set_error(mapping, EIO);
650 }
651
652 return me_pagecache_clean(p, pfn);
653 }
654
655 /*
656 * Clean and dirty swap cache.
657 *
658 * Dirty swap cache page is tricky to handle. The page could live both in page
659 * cache and swap cache(ie. page is freshly swapped in). So it could be
660 * referenced concurrently by 2 types of PTEs:
661 * normal PTEs and swap PTEs. We try to handle them consistently by calling
662 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
663 * and then
664 * - clear dirty bit to prevent IO
665 * - remove from LRU
666 * - but keep in the swap cache, so that when we return to it on
667 * a later page fault, we know the application is accessing
668 * corrupted data and shall be killed (we installed simple
669 * interception code in do_swap_page to catch it).
670 *
671 * Clean swap cache pages can be directly isolated. A later page fault will
672 * bring in the known good data from disk.
673 */
674 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
675 {
676 ClearPageDirty(p);
677 /* Trigger EIO in shmem: */
678 ClearPageUptodate(p);
679
680 if (!delete_from_lru_cache(p))
681 return DELAYED;
682 else
683 return FAILED;
684 }
685
686 static int me_swapcache_clean(struct page *p, unsigned long pfn)
687 {
688 delete_from_swap_cache(p);
689
690 if (!delete_from_lru_cache(p))
691 return RECOVERED;
692 else
693 return FAILED;
694 }
695
696 /*
697 * Huge pages. Needs work.
698 * Issues:
699 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
700 * To narrow down kill region to one page, we need to break up pmd.
701 */
702 static int me_huge_page(struct page *p, unsigned long pfn)
703 {
704 int res = 0;
705 struct page *hpage = compound_head(p);
706 /*
707 * We can safely recover from error on free or reserved (i.e.
708 * not in-use) hugepage by dequeuing it from freelist.
709 * To check whether a hugepage is in-use or not, we can't use
710 * page->lru because it can be used in other hugepage operations,
711 * such as __unmap_hugepage_range() and gather_surplus_pages().
712 * So instead we use page_mapping() and PageAnon().
713 * We assume that this function is called with page lock held,
714 * so there is no race between isolation and mapping/unmapping.
715 */
716 if (!(page_mapping(hpage) || PageAnon(hpage))) {
717 res = dequeue_hwpoisoned_huge_page(hpage);
718 if (!res)
719 return RECOVERED;
720 }
721 return DELAYED;
722 }
723
724 /*
725 * Various page states we can handle.
726 *
727 * A page state is defined by its current page->flags bits.
728 * The table matches them in order and calls the right handler.
729 *
730 * This is quite tricky because we can access page at any time
731 * in its live cycle, so all accesses have to be extremly careful.
732 *
733 * This is not complete. More states could be added.
734 * For any missing state don't attempt recovery.
735 */
736
737 #define dirty (1UL << PG_dirty)
738 #define sc (1UL << PG_swapcache)
739 #define unevict (1UL << PG_unevictable)
740 #define mlock (1UL << PG_mlocked)
741 #define writeback (1UL << PG_writeback)
742 #define lru (1UL << PG_lru)
743 #define swapbacked (1UL << PG_swapbacked)
744 #define head (1UL << PG_head)
745 #define tail (1UL << PG_tail)
746 #define compound (1UL << PG_compound)
747 #define slab (1UL << PG_slab)
748 #define reserved (1UL << PG_reserved)
749
750 static struct page_state {
751 unsigned long mask;
752 unsigned long res;
753 char *msg;
754 int (*action)(struct page *p, unsigned long pfn);
755 } error_states[] = {
756 { reserved, reserved, "reserved kernel", me_kernel },
757 /*
758 * free pages are specially detected outside this table:
759 * PG_buddy pages only make a small fraction of all free pages.
760 */
761
762 /*
763 * Could in theory check if slab page is free or if we can drop
764 * currently unused objects without touching them. But just
765 * treat it as standard kernel for now.
766 */
767 { slab, slab, "kernel slab", me_kernel },
768
769 #ifdef CONFIG_PAGEFLAGS_EXTENDED
770 { head, head, "huge", me_huge_page },
771 { tail, tail, "huge", me_huge_page },
772 #else
773 { compound, compound, "huge", me_huge_page },
774 #endif
775
776 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
777 { sc|dirty, sc, "swapcache", me_swapcache_clean },
778
779 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
780 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
781
782 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
783 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
784
785 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
786 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
787
788 /*
789 * Catchall entry: must be at end.
790 */
791 { 0, 0, "unknown page state", me_unknown },
792 };
793
794 #undef dirty
795 #undef sc
796 #undef unevict
797 #undef mlock
798 #undef writeback
799 #undef lru
800 #undef swapbacked
801 #undef head
802 #undef tail
803 #undef compound
804 #undef slab
805 #undef reserved
806
807 static void action_result(unsigned long pfn, char *msg, int result)
808 {
809 struct page *page = pfn_to_page(pfn);
810
811 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
812 pfn,
813 PageDirty(page) ? "dirty " : "",
814 msg, action_name[result]);
815 }
816
817 static int page_action(struct page_state *ps, struct page *p,
818 unsigned long pfn)
819 {
820 int result;
821 int count;
822
823 result = ps->action(p, pfn);
824 action_result(pfn, ps->msg, result);
825
826 count = page_count(p) - 1;
827 if (ps->action == me_swapcache_dirty && result == DELAYED)
828 count--;
829 if (count != 0) {
830 printk(KERN_ERR
831 "MCE %#lx: %s page still referenced by %d users\n",
832 pfn, ps->msg, count);
833 result = FAILED;
834 }
835
836 /* Could do more checks here if page looks ok */
837 /*
838 * Could adjust zone counters here to correct for the missing page.
839 */
840
841 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
842 }
843
844 /*
845 * Do all that is necessary to remove user space mappings. Unmap
846 * the pages and send SIGBUS to the processes if the data was dirty.
847 */
848 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
849 int trapno)
850 {
851 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
852 struct address_space *mapping;
853 LIST_HEAD(tokill);
854 int ret;
855 int kill = 1;
856 struct page *hpage = compound_head(p);
857
858 if (PageReserved(p) || PageSlab(p))
859 return SWAP_SUCCESS;
860
861 /*
862 * This check implies we don't kill processes if their pages
863 * are in the swap cache early. Those are always late kills.
864 */
865 if (!page_mapped(hpage))
866 return SWAP_SUCCESS;
867
868 if (PageKsm(p))
869 return SWAP_FAIL;
870
871 if (PageSwapCache(p)) {
872 printk(KERN_ERR
873 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
874 ttu |= TTU_IGNORE_HWPOISON;
875 }
876
877 /*
878 * Propagate the dirty bit from PTEs to struct page first, because we
879 * need this to decide if we should kill or just drop the page.
880 * XXX: the dirty test could be racy: set_page_dirty() may not always
881 * be called inside page lock (it's recommended but not enforced).
882 */
883 mapping = page_mapping(hpage);
884 if (!PageDirty(hpage) && mapping &&
885 mapping_cap_writeback_dirty(mapping)) {
886 if (page_mkclean(hpage)) {
887 SetPageDirty(hpage);
888 } else {
889 kill = 0;
890 ttu |= TTU_IGNORE_HWPOISON;
891 printk(KERN_INFO
892 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
893 pfn);
894 }
895 }
896
897 if (PageTransHuge(hpage)) {
898 /*
899 * Verify that this isn't a hugetlbfs head page, the check for
900 * PageAnon is just for avoid tripping a split_huge_page
901 * internal debug check, as split_huge_page refuses to deal with
902 * anything that isn't an anon page. PageAnon can't go away fro
903 * under us because we hold a refcount on the hpage, without a
904 * refcount on the hpage. split_huge_page can't be safely called
905 * in the first place, having a refcount on the tail isn't
906 * enough * to be safe.
907 */
908 if (!PageHuge(hpage) && PageAnon(hpage)) {
909 if (unlikely(split_huge_page(hpage))) {
910 /*
911 * FIXME: if splitting THP is failed, it is
912 * better to stop the following operation rather
913 * than causing panic by unmapping. System might
914 * survive if the page is freed later.
915 */
916 printk(KERN_INFO
917 "MCE %#lx: failed to split THP\n", pfn);
918
919 BUG_ON(!PageHWPoison(p));
920 return SWAP_FAIL;
921 }
922 }
923 }
924
925 /*
926 * First collect all the processes that have the page
927 * mapped in dirty form. This has to be done before try_to_unmap,
928 * because ttu takes the rmap data structures down.
929 *
930 * Error handling: We ignore errors here because
931 * there's nothing that can be done.
932 */
933 if (kill)
934 collect_procs(hpage, &tokill);
935
936 ret = try_to_unmap(hpage, ttu);
937 if (ret != SWAP_SUCCESS)
938 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
939 pfn, page_mapcount(hpage));
940
941 /*
942 * Now that the dirty bit has been propagated to the
943 * struct page and all unmaps done we can decide if
944 * killing is needed or not. Only kill when the page
945 * was dirty, otherwise the tokill list is merely
946 * freed. When there was a problem unmapping earlier
947 * use a more force-full uncatchable kill to prevent
948 * any accesses to the poisoned memory.
949 */
950 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
951 ret != SWAP_SUCCESS, p, pfn);
952
953 return ret;
954 }
955
956 static void set_page_hwpoison_huge_page(struct page *hpage)
957 {
958 int i;
959 int nr_pages = 1 << compound_trans_order(hpage);
960 for (i = 0; i < nr_pages; i++)
961 SetPageHWPoison(hpage + i);
962 }
963
964 static void clear_page_hwpoison_huge_page(struct page *hpage)
965 {
966 int i;
967 int nr_pages = 1 << compound_trans_order(hpage);
968 for (i = 0; i < nr_pages; i++)
969 ClearPageHWPoison(hpage + i);
970 }
971
972 int __memory_failure(unsigned long pfn, int trapno, int flags)
973 {
974 struct page_state *ps;
975 struct page *p;
976 struct page *hpage;
977 int res;
978 unsigned int nr_pages;
979
980 if (!sysctl_memory_failure_recovery)
981 panic("Memory failure from trap %d on page %lx", trapno, pfn);
982
983 if (!pfn_valid(pfn)) {
984 printk(KERN_ERR
985 "MCE %#lx: memory outside kernel control\n",
986 pfn);
987 return -ENXIO;
988 }
989
990 p = pfn_to_page(pfn);
991 hpage = compound_head(p);
992 if (TestSetPageHWPoison(p)) {
993 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
994 return 0;
995 }
996
997 nr_pages = 1 << compound_trans_order(hpage);
998 atomic_long_add(nr_pages, &mce_bad_pages);
999
1000 /*
1001 * We need/can do nothing about count=0 pages.
1002 * 1) it's a free page, and therefore in safe hand:
1003 * prep_new_page() will be the gate keeper.
1004 * 2) it's a free hugepage, which is also safe:
1005 * an affected hugepage will be dequeued from hugepage freelist,
1006 * so there's no concern about reusing it ever after.
1007 * 3) it's part of a non-compound high order page.
1008 * Implies some kernel user: cannot stop them from
1009 * R/W the page; let's pray that the page has been
1010 * used and will be freed some time later.
1011 * In fact it's dangerous to directly bump up page count from 0,
1012 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1013 */
1014 if (!(flags & MF_COUNT_INCREASED) &&
1015 !get_page_unless_zero(hpage)) {
1016 if (is_free_buddy_page(p)) {
1017 action_result(pfn, "free buddy", DELAYED);
1018 return 0;
1019 } else if (PageHuge(hpage)) {
1020 /*
1021 * Check "just unpoisoned", "filter hit", and
1022 * "race with other subpage."
1023 */
1024 lock_page_nosync(hpage);
1025 if (!PageHWPoison(hpage)
1026 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1027 || (p != hpage && TestSetPageHWPoison(hpage))) {
1028 atomic_long_sub(nr_pages, &mce_bad_pages);
1029 return 0;
1030 }
1031 set_page_hwpoison_huge_page(hpage);
1032 res = dequeue_hwpoisoned_huge_page(hpage);
1033 action_result(pfn, "free huge",
1034 res ? IGNORED : DELAYED);
1035 unlock_page(hpage);
1036 return res;
1037 } else {
1038 action_result(pfn, "high order kernel", IGNORED);
1039 return -EBUSY;
1040 }
1041 }
1042
1043 /*
1044 * We ignore non-LRU pages for good reasons.
1045 * - PG_locked is only well defined for LRU pages and a few others
1046 * - to avoid races with __set_page_locked()
1047 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1048 * The check (unnecessarily) ignores LRU pages being isolated and
1049 * walked by the page reclaim code, however that's not a big loss.
1050 */
1051 if (!PageLRU(p) && !PageHuge(p))
1052 shake_page(p, 0);
1053 if (!PageLRU(p) && !PageHuge(p)) {
1054 /*
1055 * shake_page could have turned it free.
1056 */
1057 if (is_free_buddy_page(p)) {
1058 action_result(pfn, "free buddy, 2nd try", DELAYED);
1059 return 0;
1060 }
1061 action_result(pfn, "non LRU", IGNORED);
1062 put_page(p);
1063 return -EBUSY;
1064 }
1065
1066 /*
1067 * Lock the page and wait for writeback to finish.
1068 * It's very difficult to mess with pages currently under IO
1069 * and in many cases impossible, so we just avoid it here.
1070 */
1071 lock_page_nosync(hpage);
1072
1073 /*
1074 * unpoison always clear PG_hwpoison inside page lock
1075 */
1076 if (!PageHWPoison(p)) {
1077 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1078 res = 0;
1079 goto out;
1080 }
1081 if (hwpoison_filter(p)) {
1082 if (TestClearPageHWPoison(p))
1083 atomic_long_sub(nr_pages, &mce_bad_pages);
1084 unlock_page(hpage);
1085 put_page(hpage);
1086 return 0;
1087 }
1088
1089 /*
1090 * For error on the tail page, we should set PG_hwpoison
1091 * on the head page to show that the hugepage is hwpoisoned
1092 */
1093 if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1094 action_result(pfn, "hugepage already hardware poisoned",
1095 IGNORED);
1096 unlock_page(hpage);
1097 put_page(hpage);
1098 return 0;
1099 }
1100 /*
1101 * Set PG_hwpoison on all pages in an error hugepage,
1102 * because containment is done in hugepage unit for now.
1103 * Since we have done TestSetPageHWPoison() for the head page with
1104 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1105 */
1106 if (PageHuge(p))
1107 set_page_hwpoison_huge_page(hpage);
1108
1109 wait_on_page_writeback(p);
1110
1111 /*
1112 * Now take care of user space mappings.
1113 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1114 */
1115 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1116 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1117 res = -EBUSY;
1118 goto out;
1119 }
1120
1121 /*
1122 * Torn down by someone else?
1123 */
1124 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1125 action_result(pfn, "already truncated LRU", IGNORED);
1126 res = -EBUSY;
1127 goto out;
1128 }
1129
1130 res = -EBUSY;
1131 for (ps = error_states;; ps++) {
1132 if ((p->flags & ps->mask) == ps->res) {
1133 res = page_action(ps, p, pfn);
1134 break;
1135 }
1136 }
1137 out:
1138 unlock_page(hpage);
1139 return res;
1140 }
1141 EXPORT_SYMBOL_GPL(__memory_failure);
1142
1143 /**
1144 * memory_failure - Handle memory failure of a page.
1145 * @pfn: Page Number of the corrupted page
1146 * @trapno: Trap number reported in the signal to user space.
1147 *
1148 * This function is called by the low level machine check code
1149 * of an architecture when it detects hardware memory corruption
1150 * of a page. It tries its best to recover, which includes
1151 * dropping pages, killing processes etc.
1152 *
1153 * The function is primarily of use for corruptions that
1154 * happen outside the current execution context (e.g. when
1155 * detected by a background scrubber)
1156 *
1157 * Must run in process context (e.g. a work queue) with interrupts
1158 * enabled and no spinlocks hold.
1159 */
1160 void memory_failure(unsigned long pfn, int trapno)
1161 {
1162 __memory_failure(pfn, trapno, 0);
1163 }
1164
1165 /**
1166 * unpoison_memory - Unpoison a previously poisoned page
1167 * @pfn: Page number of the to be unpoisoned page
1168 *
1169 * Software-unpoison a page that has been poisoned by
1170 * memory_failure() earlier.
1171 *
1172 * This is only done on the software-level, so it only works
1173 * for linux injected failures, not real hardware failures
1174 *
1175 * Returns 0 for success, otherwise -errno.
1176 */
1177 int unpoison_memory(unsigned long pfn)
1178 {
1179 struct page *page;
1180 struct page *p;
1181 int freeit = 0;
1182 unsigned int nr_pages;
1183
1184 if (!pfn_valid(pfn))
1185 return -ENXIO;
1186
1187 p = pfn_to_page(pfn);
1188 page = compound_head(p);
1189
1190 if (!PageHWPoison(p)) {
1191 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1192 return 0;
1193 }
1194
1195 nr_pages = 1 << compound_trans_order(page);
1196
1197 if (!get_page_unless_zero(page)) {
1198 /*
1199 * Since HWPoisoned hugepage should have non-zero refcount,
1200 * race between memory failure and unpoison seems to happen.
1201 * In such case unpoison fails and memory failure runs
1202 * to the end.
1203 */
1204 if (PageHuge(page)) {
1205 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1206 return 0;
1207 }
1208 if (TestClearPageHWPoison(p))
1209 atomic_long_sub(nr_pages, &mce_bad_pages);
1210 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1211 return 0;
1212 }
1213
1214 lock_page_nosync(page);
1215 /*
1216 * This test is racy because PG_hwpoison is set outside of page lock.
1217 * That's acceptable because that won't trigger kernel panic. Instead,
1218 * the PG_hwpoison page will be caught and isolated on the entrance to
1219 * the free buddy page pool.
1220 */
1221 if (TestClearPageHWPoison(page)) {
1222 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1223 atomic_long_sub(nr_pages, &mce_bad_pages);
1224 freeit = 1;
1225 if (PageHuge(page))
1226 clear_page_hwpoison_huge_page(page);
1227 }
1228 unlock_page(page);
1229
1230 put_page(page);
1231 if (freeit)
1232 put_page(page);
1233
1234 return 0;
1235 }
1236 EXPORT_SYMBOL(unpoison_memory);
1237
1238 static struct page *new_page(struct page *p, unsigned long private, int **x)
1239 {
1240 int nid = page_to_nid(p);
1241 if (PageHuge(p))
1242 return alloc_huge_page_node(page_hstate(compound_head(p)),
1243 nid);
1244 else
1245 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1246 }
1247
1248 /*
1249 * Safely get reference count of an arbitrary page.
1250 * Returns 0 for a free page, -EIO for a zero refcount page
1251 * that is not free, and 1 for any other page type.
1252 * For 1 the page is returned with increased page count, otherwise not.
1253 */
1254 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1255 {
1256 int ret;
1257
1258 if (flags & MF_COUNT_INCREASED)
1259 return 1;
1260
1261 /*
1262 * The lock_memory_hotplug prevents a race with memory hotplug.
1263 * This is a big hammer, a better would be nicer.
1264 */
1265 lock_memory_hotplug();
1266
1267 /*
1268 * Isolate the page, so that it doesn't get reallocated if it
1269 * was free.
1270 */
1271 set_migratetype_isolate(p);
1272 /*
1273 * When the target page is a free hugepage, just remove it
1274 * from free hugepage list.
1275 */
1276 if (!get_page_unless_zero(compound_head(p))) {
1277 if (PageHuge(p)) {
1278 pr_info("get_any_page: %#lx free huge page\n", pfn);
1279 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1280 } else if (is_free_buddy_page(p)) {
1281 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1282 /* Set hwpoison bit while page is still isolated */
1283 SetPageHWPoison(p);
1284 ret = 0;
1285 } else {
1286 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1287 pfn, p->flags);
1288 ret = -EIO;
1289 }
1290 } else {
1291 /* Not a free page */
1292 ret = 1;
1293 }
1294 unset_migratetype_isolate(p);
1295 unlock_memory_hotplug();
1296 return ret;
1297 }
1298
1299 static int soft_offline_huge_page(struct page *page, int flags)
1300 {
1301 int ret;
1302 unsigned long pfn = page_to_pfn(page);
1303 struct page *hpage = compound_head(page);
1304 LIST_HEAD(pagelist);
1305
1306 ret = get_any_page(page, pfn, flags);
1307 if (ret < 0)
1308 return ret;
1309 if (ret == 0)
1310 goto done;
1311
1312 if (PageHWPoison(hpage)) {
1313 put_page(hpage);
1314 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1315 return -EBUSY;
1316 }
1317
1318 /* Keep page count to indicate a given hugepage is isolated. */
1319
1320 list_add(&hpage->lru, &pagelist);
1321 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1322 true);
1323 if (ret) {
1324 struct page *page1, *page2;
1325 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1326 put_page(page1);
1327
1328 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1329 pfn, ret, page->flags);
1330 if (ret > 0)
1331 ret = -EIO;
1332 return ret;
1333 }
1334 done:
1335 if (!PageHWPoison(hpage))
1336 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1337 set_page_hwpoison_huge_page(hpage);
1338 dequeue_hwpoisoned_huge_page(hpage);
1339 /* keep elevated page count for bad page */
1340 return ret;
1341 }
1342
1343 /**
1344 * soft_offline_page - Soft offline a page.
1345 * @page: page to offline
1346 * @flags: flags. Same as memory_failure().
1347 *
1348 * Returns 0 on success, otherwise negated errno.
1349 *
1350 * Soft offline a page, by migration or invalidation,
1351 * without killing anything. This is for the case when
1352 * a page is not corrupted yet (so it's still valid to access),
1353 * but has had a number of corrected errors and is better taken
1354 * out.
1355 *
1356 * The actual policy on when to do that is maintained by
1357 * user space.
1358 *
1359 * This should never impact any application or cause data loss,
1360 * however it might take some time.
1361 *
1362 * This is not a 100% solution for all memory, but tries to be
1363 * ``good enough'' for the majority of memory.
1364 */
1365 int soft_offline_page(struct page *page, int flags)
1366 {
1367 int ret;
1368 unsigned long pfn = page_to_pfn(page);
1369
1370 if (PageHuge(page))
1371 return soft_offline_huge_page(page, flags);
1372
1373 ret = get_any_page(page, pfn, flags);
1374 if (ret < 0)
1375 return ret;
1376 if (ret == 0)
1377 goto done;
1378
1379 /*
1380 * Page cache page we can handle?
1381 */
1382 if (!PageLRU(page)) {
1383 /*
1384 * Try to free it.
1385 */
1386 put_page(page);
1387 shake_page(page, 1);
1388
1389 /*
1390 * Did it turn free?
1391 */
1392 ret = get_any_page(page, pfn, 0);
1393 if (ret < 0)
1394 return ret;
1395 if (ret == 0)
1396 goto done;
1397 }
1398 if (!PageLRU(page)) {
1399 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1400 pfn, page->flags);
1401 return -EIO;
1402 }
1403
1404 lock_page(page);
1405 wait_on_page_writeback(page);
1406
1407 /*
1408 * Synchronized using the page lock with memory_failure()
1409 */
1410 if (PageHWPoison(page)) {
1411 unlock_page(page);
1412 put_page(page);
1413 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1414 return -EBUSY;
1415 }
1416
1417 /*
1418 * Try to invalidate first. This should work for
1419 * non dirty unmapped page cache pages.
1420 */
1421 ret = invalidate_inode_page(page);
1422 unlock_page(page);
1423
1424 /*
1425 * Drop count because page migration doesn't like raised
1426 * counts. The page could get re-allocated, but if it becomes
1427 * LRU the isolation will just fail.
1428 * RED-PEN would be better to keep it isolated here, but we
1429 * would need to fix isolation locking first.
1430 */
1431 put_page(page);
1432 if (ret == 1) {
1433 ret = 0;
1434 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1435 goto done;
1436 }
1437
1438 /*
1439 * Simple invalidation didn't work.
1440 * Try to migrate to a new page instead. migrate.c
1441 * handles a large number of cases for us.
1442 */
1443 ret = isolate_lru_page(page);
1444 if (!ret) {
1445 LIST_HEAD(pagelist);
1446
1447 list_add(&page->lru, &pagelist);
1448 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1449 0, true);
1450 if (ret) {
1451 putback_lru_pages(&pagelist);
1452 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1453 pfn, ret, page->flags);
1454 if (ret > 0)
1455 ret = -EIO;
1456 }
1457 } else {
1458 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1459 pfn, ret, page_count(page), page->flags);
1460 }
1461 if (ret)
1462 return ret;
1463
1464 done:
1465 atomic_long_add(1, &mce_bad_pages);
1466 SetPageHWPoison(page);
1467 /* keep elevated page count for bad page */
1468 return ret;
1469 }
1470
1471 /*
1472 * The caller must hold current->mm->mmap_sem in read mode.
1473 */
1474 int is_hwpoison_address(unsigned long addr)
1475 {
1476 pgd_t *pgdp;
1477 pud_t pud, *pudp;
1478 pmd_t pmd, *pmdp;
1479 pte_t pte, *ptep;
1480 swp_entry_t entry;
1481
1482 pgdp = pgd_offset(current->mm, addr);
1483 if (!pgd_present(*pgdp))
1484 return 0;
1485 pudp = pud_offset(pgdp, addr);
1486 pud = *pudp;
1487 if (!pud_present(pud) || pud_large(pud))
1488 return 0;
1489 pmdp = pmd_offset(pudp, addr);
1490 pmd = *pmdp;
1491 if (!pmd_present(pmd) || pmd_large(pmd))
1492 return 0;
1493 ptep = pte_offset_map(pmdp, addr);
1494 pte = *ptep;
1495 pte_unmap(ptep);
1496 if (!is_swap_pte(pte))
1497 return 0;
1498 entry = pte_to_swp_entry(pte);
1499 return is_hwpoison_entry(entry);
1500 }
1501 EXPORT_SYMBOL_GPL(is_hwpoison_address);