]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
mm/pgtable: drop pgtable_t variable from pte_fn_t functions
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 1;
117 #else
118 2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123 randomize_va_space = 0;
124 return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136 static int __init init_zero_pfn(void)
137 {
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
154 }
155 }
156 current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
197 {
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
207 {
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
211
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
220
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
228 }
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
241 {
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
245
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
254
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275 {
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
296 }
297 if (end - 1 > ceiling - 1)
298 return;
299
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306 * This function frees user-level page tables of a process.
307 */
308 void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
311 {
312 pgd_t *pgd;
313 unsigned long next;
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
340
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
372 {
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
383
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
400 }
401 vma = next;
402 }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
411
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
432 }
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
444
445 smp_wmb(); /* See comment in __pte_alloc */
446
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 int i;
466
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
478 *
479 * The calling function must still handle the error.
480 */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
483 {
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
534 *
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
538 *
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
547 *
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
561 *
562 *
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
573 */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte, bool with_public_device)
576 {
577 unsigned long pfn = pte_pfn(pte);
578
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588
589 /*
590 * Device public pages are special pages (they are ZONE_DEVICE
591 * pages but different from persistent memory). They behave
592 * allmost like normal pages. The difference is that they are
593 * not on the lru and thus should never be involve with any-
594 * thing that involve lru manipulation (mlock, numa balancing,
595 * ...).
596 *
597 * This is why we still want to return NULL for such page from
598 * vm_normal_page() so that we do not have to special case all
599 * call site of vm_normal_page().
600 */
601 if (likely(pfn <= highest_memmap_pfn)) {
602 struct page *page = pfn_to_page(pfn);
603
604 if (is_device_public_page(page)) {
605 if (with_public_device)
606 return page;
607 return NULL;
608 }
609 }
610
611 if (pte_devmap(pte))
612 return NULL;
613
614 print_bad_pte(vma, addr, pte, NULL);
615 return NULL;
616 }
617
618 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619
620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 if (vma->vm_flags & VM_MIXEDMAP) {
622 if (!pfn_valid(pfn))
623 return NULL;
624 goto out;
625 } else {
626 unsigned long off;
627 off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 if (pfn == vma->vm_pgoff + off)
629 return NULL;
630 if (!is_cow_mapping(vma->vm_flags))
631 return NULL;
632 }
633 }
634
635 if (is_zero_pfn(pfn))
636 return NULL;
637
638 check_pfn:
639 if (unlikely(pfn > highest_memmap_pfn)) {
640 print_bad_pte(vma, addr, pte, NULL);
641 return NULL;
642 }
643
644 /*
645 * NOTE! We still have PageReserved() pages in the page tables.
646 * eg. VDSO mappings can cause them to exist.
647 */
648 out:
649 return pfn_to_page(pfn);
650 }
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654 pmd_t pmd)
655 {
656 unsigned long pfn = pmd_pfn(pmd);
657
658 /*
659 * There is no pmd_special() but there may be special pmds, e.g.
660 * in a direct-access (dax) mapping, so let's just replicate the
661 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662 */
663 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664 if (vma->vm_flags & VM_MIXEDMAP) {
665 if (!pfn_valid(pfn))
666 return NULL;
667 goto out;
668 } else {
669 unsigned long off;
670 off = (addr - vma->vm_start) >> PAGE_SHIFT;
671 if (pfn == vma->vm_pgoff + off)
672 return NULL;
673 if (!is_cow_mapping(vma->vm_flags))
674 return NULL;
675 }
676 }
677
678 if (pmd_devmap(pmd))
679 return NULL;
680 if (is_zero_pfn(pfn))
681 return NULL;
682 if (unlikely(pfn > highest_memmap_pfn))
683 return NULL;
684
685 /*
686 * NOTE! We still have PageReserved() pages in the page tables.
687 * eg. VDSO mappings can cause them to exist.
688 */
689 out:
690 return pfn_to_page(pfn);
691 }
692 #endif
693
694 /*
695 * copy one vm_area from one task to the other. Assumes the page tables
696 * already present in the new task to be cleared in the whole range
697 * covered by this vma.
698 */
699
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703 unsigned long addr, int *rss)
704 {
705 unsigned long vm_flags = vma->vm_flags;
706 pte_t pte = *src_pte;
707 struct page *page;
708
709 /* pte contains position in swap or file, so copy. */
710 if (unlikely(!pte_present(pte))) {
711 swp_entry_t entry = pte_to_swp_entry(pte);
712
713 if (likely(!non_swap_entry(entry))) {
714 if (swap_duplicate(entry) < 0)
715 return entry.val;
716
717 /* make sure dst_mm is on swapoff's mmlist. */
718 if (unlikely(list_empty(&dst_mm->mmlist))) {
719 spin_lock(&mmlist_lock);
720 if (list_empty(&dst_mm->mmlist))
721 list_add(&dst_mm->mmlist,
722 &src_mm->mmlist);
723 spin_unlock(&mmlist_lock);
724 }
725 rss[MM_SWAPENTS]++;
726 } else if (is_migration_entry(entry)) {
727 page = migration_entry_to_page(entry);
728
729 rss[mm_counter(page)]++;
730
731 if (is_write_migration_entry(entry) &&
732 is_cow_mapping(vm_flags)) {
733 /*
734 * COW mappings require pages in both
735 * parent and child to be set to read.
736 */
737 make_migration_entry_read(&entry);
738 pte = swp_entry_to_pte(entry);
739 if (pte_swp_soft_dirty(*src_pte))
740 pte = pte_swp_mksoft_dirty(pte);
741 set_pte_at(src_mm, addr, src_pte, pte);
742 }
743 } else if (is_device_private_entry(entry)) {
744 page = device_private_entry_to_page(entry);
745
746 /*
747 * Update rss count even for unaddressable pages, as
748 * they should treated just like normal pages in this
749 * respect.
750 *
751 * We will likely want to have some new rss counters
752 * for unaddressable pages, at some point. But for now
753 * keep things as they are.
754 */
755 get_page(page);
756 rss[mm_counter(page)]++;
757 page_dup_rmap(page, false);
758
759 /*
760 * We do not preserve soft-dirty information, because so
761 * far, checkpoint/restore is the only feature that
762 * requires that. And checkpoint/restore does not work
763 * when a device driver is involved (you cannot easily
764 * save and restore device driver state).
765 */
766 if (is_write_device_private_entry(entry) &&
767 is_cow_mapping(vm_flags)) {
768 make_device_private_entry_read(&entry);
769 pte = swp_entry_to_pte(entry);
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
772 }
773 goto out_set_pte;
774 }
775
776 /*
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
779 */
780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 ptep_set_wrprotect(src_mm, addr, src_pte);
782 pte = pte_wrprotect(pte);
783 }
784
785 /*
786 * If it's a shared mapping, mark it clean in
787 * the child
788 */
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
792
793 page = vm_normal_page(vma, addr, pte);
794 if (page) {
795 get_page(page);
796 page_dup_rmap(page, false);
797 rss[mm_counter(page)]++;
798 } else if (pte_devmap(pte)) {
799 page = pte_page(pte);
800
801 /*
802 * Cache coherent device memory behave like regular page and
803 * not like persistent memory page. For more informations see
804 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805 */
806 if (is_device_public_page(page)) {
807 get_page(page);
808 page_dup_rmap(page, false);
809 rss[mm_counter(page)]++;
810 }
811 }
812
813 out_set_pte:
814 set_pte_at(dst_mm, addr, dst_pte, pte);
815 return 0;
816 }
817
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820 unsigned long addr, unsigned long end)
821 {
822 pte_t *orig_src_pte, *orig_dst_pte;
823 pte_t *src_pte, *dst_pte;
824 spinlock_t *src_ptl, *dst_ptl;
825 int progress = 0;
826 int rss[NR_MM_COUNTERS];
827 swp_entry_t entry = (swp_entry_t){0};
828
829 again:
830 init_rss_vec(rss);
831
832 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833 if (!dst_pte)
834 return -ENOMEM;
835 src_pte = pte_offset_map(src_pmd, addr);
836 src_ptl = pte_lockptr(src_mm, src_pmd);
837 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838 orig_src_pte = src_pte;
839 orig_dst_pte = dst_pte;
840 arch_enter_lazy_mmu_mode();
841
842 do {
843 /*
844 * We are holding two locks at this point - either of them
845 * could generate latencies in another task on another CPU.
846 */
847 if (progress >= 32) {
848 progress = 0;
849 if (need_resched() ||
850 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851 break;
852 }
853 if (pte_none(*src_pte)) {
854 progress++;
855 continue;
856 }
857 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858 vma, addr, rss);
859 if (entry.val)
860 break;
861 progress += 8;
862 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863
864 arch_leave_lazy_mmu_mode();
865 spin_unlock(src_ptl);
866 pte_unmap(orig_src_pte);
867 add_mm_rss_vec(dst_mm, rss);
868 pte_unmap_unlock(orig_dst_pte, dst_ptl);
869 cond_resched();
870
871 if (entry.val) {
872 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873 return -ENOMEM;
874 progress = 0;
875 }
876 if (addr != end)
877 goto again;
878 return 0;
879 }
880
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
884 {
885 pmd_t *src_pmd, *dst_pmd;
886 unsigned long next;
887
888 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889 if (!dst_pmd)
890 return -ENOMEM;
891 src_pmd = pmd_offset(src_pud, addr);
892 do {
893 next = pmd_addr_end(addr, end);
894 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895 || pmd_devmap(*src_pmd)) {
896 int err;
897 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898 err = copy_huge_pmd(dst_mm, src_mm,
899 dst_pmd, src_pmd, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
906 if (pmd_none_or_clear_bad(src_pmd))
907 continue;
908 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
912 return 0;
913 }
914
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918 {
919 pud_t *src_pud, *dst_pud;
920 unsigned long next;
921
922 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923 if (!dst_pud)
924 return -ENOMEM;
925 src_pud = pud_offset(src_p4d, addr);
926 do {
927 next = pud_addr_end(addr, end);
928 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929 int err;
930
931 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932 err = copy_huge_pud(dst_mm, src_mm,
933 dst_pud, src_pud, addr, vma);
934 if (err == -ENOMEM)
935 return -ENOMEM;
936 if (!err)
937 continue;
938 /* fall through */
939 }
940 if (pud_none_or_clear_bad(src_pud))
941 continue;
942 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_pud++, src_pud++, addr = next, addr != end);
946 return 0;
947 }
948
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952 {
953 p4d_t *src_p4d, *dst_p4d;
954 unsigned long next;
955
956 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957 if (!dst_p4d)
958 return -ENOMEM;
959 src_p4d = p4d_offset(src_pgd, addr);
960 do {
961 next = p4d_addr_end(addr, end);
962 if (p4d_none_or_clear_bad(src_p4d))
963 continue;
964 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965 vma, addr, next))
966 return -ENOMEM;
967 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
968 return 0;
969 }
970
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 struct vm_area_struct *vma)
973 {
974 pgd_t *src_pgd, *dst_pgd;
975 unsigned long next;
976 unsigned long addr = vma->vm_start;
977 unsigned long end = vma->vm_end;
978 struct mmu_notifier_range range;
979 bool is_cow;
980 int ret;
981
982 /*
983 * Don't copy ptes where a page fault will fill them correctly.
984 * Fork becomes much lighter when there are big shared or private
985 * readonly mappings. The tradeoff is that copy_page_range is more
986 * efficient than faulting.
987 */
988 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989 !vma->anon_vma)
990 return 0;
991
992 if (is_vm_hugetlb_page(vma))
993 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994
995 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 /*
997 * We do not free on error cases below as remove_vma
998 * gets called on error from higher level routine
999 */
1000 ret = track_pfn_copy(vma);
1001 if (ret)
1002 return ret;
1003 }
1004
1005 /*
1006 * We need to invalidate the secondary MMU mappings only when
1007 * there could be a permission downgrade on the ptes of the
1008 * parent mm. And a permission downgrade will only happen if
1009 * is_cow_mapping() returns true.
1010 */
1011 is_cow = is_cow_mapping(vma->vm_flags);
1012
1013 if (is_cow) {
1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015 0, vma, src_mm, addr, end);
1016 mmu_notifier_invalidate_range_start(&range);
1017 }
1018
1019 ret = 0;
1020 dst_pgd = pgd_offset(dst_mm, addr);
1021 src_pgd = pgd_offset(src_mm, addr);
1022 do {
1023 next = pgd_addr_end(addr, end);
1024 if (pgd_none_or_clear_bad(src_pgd))
1025 continue;
1026 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027 vma, addr, next))) {
1028 ret = -ENOMEM;
1029 break;
1030 }
1031 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033 if (is_cow)
1034 mmu_notifier_invalidate_range_end(&range);
1035 return ret;
1036 }
1037
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039 struct vm_area_struct *vma, pmd_t *pmd,
1040 unsigned long addr, unsigned long end,
1041 struct zap_details *details)
1042 {
1043 struct mm_struct *mm = tlb->mm;
1044 int force_flush = 0;
1045 int rss[NR_MM_COUNTERS];
1046 spinlock_t *ptl;
1047 pte_t *start_pte;
1048 pte_t *pte;
1049 swp_entry_t entry;
1050
1051 tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053 init_rss_vec(rss);
1054 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055 pte = start_pte;
1056 flush_tlb_batched_pending(mm);
1057 arch_enter_lazy_mmu_mode();
1058 do {
1059 pte_t ptent = *pte;
1060 if (pte_none(ptent))
1061 continue;
1062
1063 if (pte_present(ptent)) {
1064 struct page *page;
1065
1066 page = _vm_normal_page(vma, addr, ptent, true);
1067 if (unlikely(details) && page) {
1068 /*
1069 * unmap_shared_mapping_pages() wants to
1070 * invalidate cache without truncating:
1071 * unmap shared but keep private pages.
1072 */
1073 if (details->check_mapping &&
1074 details->check_mapping != page_rmapping(page))
1075 continue;
1076 }
1077 ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 tlb->fullmm);
1079 tlb_remove_tlb_entry(tlb, pte, addr);
1080 if (unlikely(!page))
1081 continue;
1082
1083 if (!PageAnon(page)) {
1084 if (pte_dirty(ptent)) {
1085 force_flush = 1;
1086 set_page_dirty(page);
1087 }
1088 if (pte_young(ptent) &&
1089 likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 mark_page_accessed(page);
1091 }
1092 rss[mm_counter(page)]--;
1093 page_remove_rmap(page, false);
1094 if (unlikely(page_mapcount(page) < 0))
1095 print_bad_pte(vma, addr, ptent, page);
1096 if (unlikely(__tlb_remove_page(tlb, page))) {
1097 force_flush = 1;
1098 addr += PAGE_SIZE;
1099 break;
1100 }
1101 continue;
1102 }
1103
1104 entry = pte_to_swp_entry(ptent);
1105 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106 struct page *page = device_private_entry_to_page(entry);
1107
1108 if (unlikely(details && details->check_mapping)) {
1109 /*
1110 * unmap_shared_mapping_pages() wants to
1111 * invalidate cache without truncating:
1112 * unmap shared but keep private pages.
1113 */
1114 if (details->check_mapping !=
1115 page_rmapping(page))
1116 continue;
1117 }
1118
1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 rss[mm_counter(page)]--;
1121 page_remove_rmap(page, false);
1122 put_page(page);
1123 continue;
1124 }
1125
1126 /* If details->check_mapping, we leave swap entries. */
1127 if (unlikely(details))
1128 continue;
1129
1130 entry = pte_to_swp_entry(ptent);
1131 if (!non_swap_entry(entry))
1132 rss[MM_SWAPENTS]--;
1133 else if (is_migration_entry(entry)) {
1134 struct page *page;
1135
1136 page = migration_entry_to_page(entry);
1137 rss[mm_counter(page)]--;
1138 }
1139 if (unlikely(!free_swap_and_cache(entry)))
1140 print_bad_pte(vma, addr, ptent, NULL);
1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144 add_mm_rss_vec(mm, rss);
1145 arch_leave_lazy_mmu_mode();
1146
1147 /* Do the actual TLB flush before dropping ptl */
1148 if (force_flush)
1149 tlb_flush_mmu_tlbonly(tlb);
1150 pte_unmap_unlock(start_pte, ptl);
1151
1152 /*
1153 * If we forced a TLB flush (either due to running out of
1154 * batch buffers or because we needed to flush dirty TLB
1155 * entries before releasing the ptl), free the batched
1156 * memory too. Restart if we didn't do everything.
1157 */
1158 if (force_flush) {
1159 force_flush = 0;
1160 tlb_flush_mmu(tlb);
1161 if (addr != end)
1162 goto again;
1163 }
1164
1165 return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 struct vm_area_struct *vma, pud_t *pud,
1170 unsigned long addr, unsigned long end,
1171 struct zap_details *details)
1172 {
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 if (next - addr != HPAGE_PMD_SIZE)
1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 goto next;
1184 /* fall through */
1185 }
1186 /*
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_sem in read
1191 * mode.
1192 */
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 goto next;
1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 cond_resched();
1198 } while (pmd++, addr = next, addr != end);
1199
1200 return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, p4d_t *p4d,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207 {
1208 pud_t *pud;
1209 unsigned long next;
1210
1211 pud = pud_offset(p4d, addr);
1212 do {
1213 next = pud_addr_end(addr, end);
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
1216 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1219 goto next;
1220 /* fall through */
1221 }
1222 if (pud_none_or_clear_bad(pud))
1223 continue;
1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 cond_resched();
1227 } while (pud++, addr = next, addr != end);
1228
1229 return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236 {
1237 p4d_t *p4d;
1238 unsigned long next;
1239
1240 p4d = p4d_offset(pgd, addr);
1241 do {
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1244 continue;
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1247
1248 return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1255 {
1256 pgd_t *pgd;
1257 unsigned long next;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1276 {
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 }
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1313 }
1314
1315 /**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1336 {
1337 struct mmu_notifier_range range;
1338
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
1341 mmu_notifier_invalidate_range_start(&range);
1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1352 *
1353 * Caller must protect the VMA list
1354 */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 unsigned long size)
1357 {
1358 struct mmu_notifier_range range;
1359 struct mmu_gather tlb;
1360
1361 lru_add_drain();
1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 start, start + size);
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1379 *
1380 * The range must fit into one VMA.
1381 */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1384 {
1385 struct mmu_notifier_range range;
1386 struct mmu_gather tlb;
1387
1388 lru_add_drain();
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 address, address + size);
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
1409 */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size)
1412 {
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1415 return;
1416
1417 zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422 spinlock_t **ptl)
1423 {
1424 pgd_t *pgd;
1425 p4d_t *p4d;
1426 pud_t *pud;
1427 pmd_t *pmd;
1428
1429 pgd = pgd_offset(mm, addr);
1430 p4d = p4d_alloc(mm, pgd, addr);
1431 if (!p4d)
1432 return NULL;
1433 pud = pud_alloc(mm, p4d, addr);
1434 if (!pud)
1435 return NULL;
1436 pmd = pmd_alloc(mm, pud, addr);
1437 if (!pmd)
1438 return NULL;
1439
1440 VM_BUG_ON(pmd_trans_huge(*pmd));
1441 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443
1444 /*
1445 * This is the old fallback for page remapping.
1446 *
1447 * For historical reasons, it only allows reserved pages. Only
1448 * old drivers should use this, and they needed to mark their
1449 * pages reserved for the old functions anyway.
1450 */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452 struct page *page, pgprot_t prot)
1453 {
1454 struct mm_struct *mm = vma->vm_mm;
1455 int retval;
1456 pte_t *pte;
1457 spinlock_t *ptl;
1458
1459 retval = -EINVAL;
1460 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461 goto out;
1462 retval = -ENOMEM;
1463 flush_dcache_page(page);
1464 pte = get_locked_pte(mm, addr, &ptl);
1465 if (!pte)
1466 goto out;
1467 retval = -EBUSY;
1468 if (!pte_none(*pte))
1469 goto out_unlock;
1470
1471 /* Ok, finally just insert the thing.. */
1472 get_page(page);
1473 inc_mm_counter_fast(mm, mm_counter_file(page));
1474 page_add_file_rmap(page, false);
1475 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477 retval = 0;
1478 out_unlock:
1479 pte_unmap_unlock(pte, ptl);
1480 out:
1481 return retval;
1482 }
1483
1484 /**
1485 * vm_insert_page - insert single page into user vma
1486 * @vma: user vma to map to
1487 * @addr: target user address of this page
1488 * @page: source kernel page
1489 *
1490 * This allows drivers to insert individual pages they've allocated
1491 * into a user vma.
1492 *
1493 * The page has to be a nice clean _individual_ kernel allocation.
1494 * If you allocate a compound page, you need to have marked it as
1495 * such (__GFP_COMP), or manually just split the page up yourself
1496 * (see split_page()).
1497 *
1498 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1499 * took an arbitrary page protection parameter. This doesn't allow
1500 * that. Your vma protection will have to be set up correctly, which
1501 * means that if you want a shared writable mapping, you'd better
1502 * ask for a shared writable mapping!
1503 *
1504 * The page does not need to be reserved.
1505 *
1506 * Usually this function is called from f_op->mmap() handler
1507 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1508 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1509 * function from other places, for example from page-fault handler.
1510 *
1511 * Return: %0 on success, negative error code otherwise.
1512 */
1513 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1514 struct page *page)
1515 {
1516 if (addr < vma->vm_start || addr >= vma->vm_end)
1517 return -EFAULT;
1518 if (!page_count(page))
1519 return -EINVAL;
1520 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1521 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1522 BUG_ON(vma->vm_flags & VM_PFNMAP);
1523 vma->vm_flags |= VM_MIXEDMAP;
1524 }
1525 return insert_page(vma, addr, page, vma->vm_page_prot);
1526 }
1527 EXPORT_SYMBOL(vm_insert_page);
1528
1529 /*
1530 * __vm_map_pages - maps range of kernel pages into user vma
1531 * @vma: user vma to map to
1532 * @pages: pointer to array of source kernel pages
1533 * @num: number of pages in page array
1534 * @offset: user's requested vm_pgoff
1535 *
1536 * This allows drivers to map range of kernel pages into a user vma.
1537 *
1538 * Return: 0 on success and error code otherwise.
1539 */
1540 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1541 unsigned long num, unsigned long offset)
1542 {
1543 unsigned long count = vma_pages(vma);
1544 unsigned long uaddr = vma->vm_start;
1545 int ret, i;
1546
1547 /* Fail if the user requested offset is beyond the end of the object */
1548 if (offset > num)
1549 return -ENXIO;
1550
1551 /* Fail if the user requested size exceeds available object size */
1552 if (count > num - offset)
1553 return -ENXIO;
1554
1555 for (i = 0; i < count; i++) {
1556 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1557 if (ret < 0)
1558 return ret;
1559 uaddr += PAGE_SIZE;
1560 }
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * vm_map_pages - maps range of kernel pages starts with non zero offset
1567 * @vma: user vma to map to
1568 * @pages: pointer to array of source kernel pages
1569 * @num: number of pages in page array
1570 *
1571 * Maps an object consisting of @num pages, catering for the user's
1572 * requested vm_pgoff
1573 *
1574 * If we fail to insert any page into the vma, the function will return
1575 * immediately leaving any previously inserted pages present. Callers
1576 * from the mmap handler may immediately return the error as their caller
1577 * will destroy the vma, removing any successfully inserted pages. Other
1578 * callers should make their own arrangements for calling unmap_region().
1579 *
1580 * Context: Process context. Called by mmap handlers.
1581 * Return: 0 on success and error code otherwise.
1582 */
1583 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1584 unsigned long num)
1585 {
1586 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1587 }
1588 EXPORT_SYMBOL(vm_map_pages);
1589
1590 /**
1591 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1592 * @vma: user vma to map to
1593 * @pages: pointer to array of source kernel pages
1594 * @num: number of pages in page array
1595 *
1596 * Similar to vm_map_pages(), except that it explicitly sets the offset
1597 * to 0. This function is intended for the drivers that did not consider
1598 * vm_pgoff.
1599 *
1600 * Context: Process context. Called by mmap handlers.
1601 * Return: 0 on success and error code otherwise.
1602 */
1603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1604 unsigned long num)
1605 {
1606 return __vm_map_pages(vma, pages, num, 0);
1607 }
1608 EXPORT_SYMBOL(vm_map_pages_zero);
1609
1610 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 pfn_t pfn, pgprot_t prot, bool mkwrite)
1612 {
1613 struct mm_struct *mm = vma->vm_mm;
1614 pte_t *pte, entry;
1615 spinlock_t *ptl;
1616
1617 pte = get_locked_pte(mm, addr, &ptl);
1618 if (!pte)
1619 return VM_FAULT_OOM;
1620 if (!pte_none(*pte)) {
1621 if (mkwrite) {
1622 /*
1623 * For read faults on private mappings the PFN passed
1624 * in may not match the PFN we have mapped if the
1625 * mapped PFN is a writeable COW page. In the mkwrite
1626 * case we are creating a writable PTE for a shared
1627 * mapping and we expect the PFNs to match. If they
1628 * don't match, we are likely racing with block
1629 * allocation and mapping invalidation so just skip the
1630 * update.
1631 */
1632 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1633 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1634 goto out_unlock;
1635 }
1636 entry = pte_mkyoung(*pte);
1637 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1638 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1639 update_mmu_cache(vma, addr, pte);
1640 }
1641 goto out_unlock;
1642 }
1643
1644 /* Ok, finally just insert the thing.. */
1645 if (pfn_t_devmap(pfn))
1646 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1647 else
1648 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1649
1650 if (mkwrite) {
1651 entry = pte_mkyoung(entry);
1652 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1653 }
1654
1655 set_pte_at(mm, addr, pte, entry);
1656 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1657
1658 out_unlock:
1659 pte_unmap_unlock(pte, ptl);
1660 return VM_FAULT_NOPAGE;
1661 }
1662
1663 /**
1664 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1665 * @vma: user vma to map to
1666 * @addr: target user address of this page
1667 * @pfn: source kernel pfn
1668 * @pgprot: pgprot flags for the inserted page
1669 *
1670 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1671 * to override pgprot on a per-page basis.
1672 *
1673 * This only makes sense for IO mappings, and it makes no sense for
1674 * COW mappings. In general, using multiple vmas is preferable;
1675 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1676 * impractical.
1677 *
1678 * Context: Process context. May allocate using %GFP_KERNEL.
1679 * Return: vm_fault_t value.
1680 */
1681 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1682 unsigned long pfn, pgprot_t pgprot)
1683 {
1684 /*
1685 * Technically, architectures with pte_special can avoid all these
1686 * restrictions (same for remap_pfn_range). However we would like
1687 * consistency in testing and feature parity among all, so we should
1688 * try to keep these invariants in place for everybody.
1689 */
1690 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1691 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1692 (VM_PFNMAP|VM_MIXEDMAP));
1693 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1694 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1695
1696 if (addr < vma->vm_start || addr >= vma->vm_end)
1697 return VM_FAULT_SIGBUS;
1698
1699 if (!pfn_modify_allowed(pfn, pgprot))
1700 return VM_FAULT_SIGBUS;
1701
1702 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1703
1704 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1705 false);
1706 }
1707 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1708
1709 /**
1710 * vmf_insert_pfn - insert single pfn into user vma
1711 * @vma: user vma to map to
1712 * @addr: target user address of this page
1713 * @pfn: source kernel pfn
1714 *
1715 * Similar to vm_insert_page, this allows drivers to insert individual pages
1716 * they've allocated into a user vma. Same comments apply.
1717 *
1718 * This function should only be called from a vm_ops->fault handler, and
1719 * in that case the handler should return the result of this function.
1720 *
1721 * vma cannot be a COW mapping.
1722 *
1723 * As this is called only for pages that do not currently exist, we
1724 * do not need to flush old virtual caches or the TLB.
1725 *
1726 * Context: Process context. May allocate using %GFP_KERNEL.
1727 * Return: vm_fault_t value.
1728 */
1729 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1730 unsigned long pfn)
1731 {
1732 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1733 }
1734 EXPORT_SYMBOL(vmf_insert_pfn);
1735
1736 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1737 {
1738 /* these checks mirror the abort conditions in vm_normal_page */
1739 if (vma->vm_flags & VM_MIXEDMAP)
1740 return true;
1741 if (pfn_t_devmap(pfn))
1742 return true;
1743 if (pfn_t_special(pfn))
1744 return true;
1745 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1746 return true;
1747 return false;
1748 }
1749
1750 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1751 unsigned long addr, pfn_t pfn, bool mkwrite)
1752 {
1753 pgprot_t pgprot = vma->vm_page_prot;
1754 int err;
1755
1756 BUG_ON(!vm_mixed_ok(vma, pfn));
1757
1758 if (addr < vma->vm_start || addr >= vma->vm_end)
1759 return VM_FAULT_SIGBUS;
1760
1761 track_pfn_insert(vma, &pgprot, pfn);
1762
1763 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1764 return VM_FAULT_SIGBUS;
1765
1766 /*
1767 * If we don't have pte special, then we have to use the pfn_valid()
1768 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1769 * refcount the page if pfn_valid is true (hence insert_page rather
1770 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1771 * without pte special, it would there be refcounted as a normal page.
1772 */
1773 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1774 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1775 struct page *page;
1776
1777 /*
1778 * At this point we are committed to insert_page()
1779 * regardless of whether the caller specified flags that
1780 * result in pfn_t_has_page() == false.
1781 */
1782 page = pfn_to_page(pfn_t_to_pfn(pfn));
1783 err = insert_page(vma, addr, page, pgprot);
1784 } else {
1785 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1786 }
1787
1788 if (err == -ENOMEM)
1789 return VM_FAULT_OOM;
1790 if (err < 0 && err != -EBUSY)
1791 return VM_FAULT_SIGBUS;
1792
1793 return VM_FAULT_NOPAGE;
1794 }
1795
1796 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1797 pfn_t pfn)
1798 {
1799 return __vm_insert_mixed(vma, addr, pfn, false);
1800 }
1801 EXPORT_SYMBOL(vmf_insert_mixed);
1802
1803 /*
1804 * If the insertion of PTE failed because someone else already added a
1805 * different entry in the mean time, we treat that as success as we assume
1806 * the same entry was actually inserted.
1807 */
1808 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1809 unsigned long addr, pfn_t pfn)
1810 {
1811 return __vm_insert_mixed(vma, addr, pfn, true);
1812 }
1813 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1814
1815 /*
1816 * maps a range of physical memory into the requested pages. the old
1817 * mappings are removed. any references to nonexistent pages results
1818 * in null mappings (currently treated as "copy-on-access")
1819 */
1820 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1821 unsigned long addr, unsigned long end,
1822 unsigned long pfn, pgprot_t prot)
1823 {
1824 pte_t *pte;
1825 spinlock_t *ptl;
1826 int err = 0;
1827
1828 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1829 if (!pte)
1830 return -ENOMEM;
1831 arch_enter_lazy_mmu_mode();
1832 do {
1833 BUG_ON(!pte_none(*pte));
1834 if (!pfn_modify_allowed(pfn, prot)) {
1835 err = -EACCES;
1836 break;
1837 }
1838 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1839 pfn++;
1840 } while (pte++, addr += PAGE_SIZE, addr != end);
1841 arch_leave_lazy_mmu_mode();
1842 pte_unmap_unlock(pte - 1, ptl);
1843 return err;
1844 }
1845
1846 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1847 unsigned long addr, unsigned long end,
1848 unsigned long pfn, pgprot_t prot)
1849 {
1850 pmd_t *pmd;
1851 unsigned long next;
1852 int err;
1853
1854 pfn -= addr >> PAGE_SHIFT;
1855 pmd = pmd_alloc(mm, pud, addr);
1856 if (!pmd)
1857 return -ENOMEM;
1858 VM_BUG_ON(pmd_trans_huge(*pmd));
1859 do {
1860 next = pmd_addr_end(addr, end);
1861 err = remap_pte_range(mm, pmd, addr, next,
1862 pfn + (addr >> PAGE_SHIFT), prot);
1863 if (err)
1864 return err;
1865 } while (pmd++, addr = next, addr != end);
1866 return 0;
1867 }
1868
1869 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1870 unsigned long addr, unsigned long end,
1871 unsigned long pfn, pgprot_t prot)
1872 {
1873 pud_t *pud;
1874 unsigned long next;
1875 int err;
1876
1877 pfn -= addr >> PAGE_SHIFT;
1878 pud = pud_alloc(mm, p4d, addr);
1879 if (!pud)
1880 return -ENOMEM;
1881 do {
1882 next = pud_addr_end(addr, end);
1883 err = remap_pmd_range(mm, pud, addr, next,
1884 pfn + (addr >> PAGE_SHIFT), prot);
1885 if (err)
1886 return err;
1887 } while (pud++, addr = next, addr != end);
1888 return 0;
1889 }
1890
1891 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1892 unsigned long addr, unsigned long end,
1893 unsigned long pfn, pgprot_t prot)
1894 {
1895 p4d_t *p4d;
1896 unsigned long next;
1897 int err;
1898
1899 pfn -= addr >> PAGE_SHIFT;
1900 p4d = p4d_alloc(mm, pgd, addr);
1901 if (!p4d)
1902 return -ENOMEM;
1903 do {
1904 next = p4d_addr_end(addr, end);
1905 err = remap_pud_range(mm, p4d, addr, next,
1906 pfn + (addr >> PAGE_SHIFT), prot);
1907 if (err)
1908 return err;
1909 } while (p4d++, addr = next, addr != end);
1910 return 0;
1911 }
1912
1913 /**
1914 * remap_pfn_range - remap kernel memory to userspace
1915 * @vma: user vma to map to
1916 * @addr: target user address to start at
1917 * @pfn: physical address of kernel memory
1918 * @size: size of map area
1919 * @prot: page protection flags for this mapping
1920 *
1921 * Note: this is only safe if the mm semaphore is held when called.
1922 *
1923 * Return: %0 on success, negative error code otherwise.
1924 */
1925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1926 unsigned long pfn, unsigned long size, pgprot_t prot)
1927 {
1928 pgd_t *pgd;
1929 unsigned long next;
1930 unsigned long end = addr + PAGE_ALIGN(size);
1931 struct mm_struct *mm = vma->vm_mm;
1932 unsigned long remap_pfn = pfn;
1933 int err;
1934
1935 /*
1936 * Physically remapped pages are special. Tell the
1937 * rest of the world about it:
1938 * VM_IO tells people not to look at these pages
1939 * (accesses can have side effects).
1940 * VM_PFNMAP tells the core MM that the base pages are just
1941 * raw PFN mappings, and do not have a "struct page" associated
1942 * with them.
1943 * VM_DONTEXPAND
1944 * Disable vma merging and expanding with mremap().
1945 * VM_DONTDUMP
1946 * Omit vma from core dump, even when VM_IO turned off.
1947 *
1948 * There's a horrible special case to handle copy-on-write
1949 * behaviour that some programs depend on. We mark the "original"
1950 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1951 * See vm_normal_page() for details.
1952 */
1953 if (is_cow_mapping(vma->vm_flags)) {
1954 if (addr != vma->vm_start || end != vma->vm_end)
1955 return -EINVAL;
1956 vma->vm_pgoff = pfn;
1957 }
1958
1959 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1960 if (err)
1961 return -EINVAL;
1962
1963 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1964
1965 BUG_ON(addr >= end);
1966 pfn -= addr >> PAGE_SHIFT;
1967 pgd = pgd_offset(mm, addr);
1968 flush_cache_range(vma, addr, end);
1969 do {
1970 next = pgd_addr_end(addr, end);
1971 err = remap_p4d_range(mm, pgd, addr, next,
1972 pfn + (addr >> PAGE_SHIFT), prot);
1973 if (err)
1974 break;
1975 } while (pgd++, addr = next, addr != end);
1976
1977 if (err)
1978 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1979
1980 return err;
1981 }
1982 EXPORT_SYMBOL(remap_pfn_range);
1983
1984 /**
1985 * vm_iomap_memory - remap memory to userspace
1986 * @vma: user vma to map to
1987 * @start: start of area
1988 * @len: size of area
1989 *
1990 * This is a simplified io_remap_pfn_range() for common driver use. The
1991 * driver just needs to give us the physical memory range to be mapped,
1992 * we'll figure out the rest from the vma information.
1993 *
1994 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1995 * whatever write-combining details or similar.
1996 *
1997 * Return: %0 on success, negative error code otherwise.
1998 */
1999 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2000 {
2001 unsigned long vm_len, pfn, pages;
2002
2003 /* Check that the physical memory area passed in looks valid */
2004 if (start + len < start)
2005 return -EINVAL;
2006 /*
2007 * You *really* shouldn't map things that aren't page-aligned,
2008 * but we've historically allowed it because IO memory might
2009 * just have smaller alignment.
2010 */
2011 len += start & ~PAGE_MASK;
2012 pfn = start >> PAGE_SHIFT;
2013 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2014 if (pfn + pages < pfn)
2015 return -EINVAL;
2016
2017 /* We start the mapping 'vm_pgoff' pages into the area */
2018 if (vma->vm_pgoff > pages)
2019 return -EINVAL;
2020 pfn += vma->vm_pgoff;
2021 pages -= vma->vm_pgoff;
2022
2023 /* Can we fit all of the mapping? */
2024 vm_len = vma->vm_end - vma->vm_start;
2025 if (vm_len >> PAGE_SHIFT > pages)
2026 return -EINVAL;
2027
2028 /* Ok, let it rip */
2029 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_iomap_memory);
2032
2033 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2034 unsigned long addr, unsigned long end,
2035 pte_fn_t fn, void *data)
2036 {
2037 pte_t *pte;
2038 int err;
2039 spinlock_t *uninitialized_var(ptl);
2040
2041 pte = (mm == &init_mm) ?
2042 pte_alloc_kernel(pmd, addr) :
2043 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2044 if (!pte)
2045 return -ENOMEM;
2046
2047 BUG_ON(pmd_huge(*pmd));
2048
2049 arch_enter_lazy_mmu_mode();
2050
2051 do {
2052 err = fn(pte++, addr, data);
2053 if (err)
2054 break;
2055 } while (addr += PAGE_SIZE, addr != end);
2056
2057 arch_leave_lazy_mmu_mode();
2058
2059 if (mm != &init_mm)
2060 pte_unmap_unlock(pte-1, ptl);
2061 return err;
2062 }
2063
2064 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2065 unsigned long addr, unsigned long end,
2066 pte_fn_t fn, void *data)
2067 {
2068 pmd_t *pmd;
2069 unsigned long next;
2070 int err;
2071
2072 BUG_ON(pud_huge(*pud));
2073
2074 pmd = pmd_alloc(mm, pud, addr);
2075 if (!pmd)
2076 return -ENOMEM;
2077 do {
2078 next = pmd_addr_end(addr, end);
2079 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2080 if (err)
2081 break;
2082 } while (pmd++, addr = next, addr != end);
2083 return err;
2084 }
2085
2086 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2087 unsigned long addr, unsigned long end,
2088 pte_fn_t fn, void *data)
2089 {
2090 pud_t *pud;
2091 unsigned long next;
2092 int err;
2093
2094 pud = pud_alloc(mm, p4d, addr);
2095 if (!pud)
2096 return -ENOMEM;
2097 do {
2098 next = pud_addr_end(addr, end);
2099 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2100 if (err)
2101 break;
2102 } while (pud++, addr = next, addr != end);
2103 return err;
2104 }
2105
2106 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2107 unsigned long addr, unsigned long end,
2108 pte_fn_t fn, void *data)
2109 {
2110 p4d_t *p4d;
2111 unsigned long next;
2112 int err;
2113
2114 p4d = p4d_alloc(mm, pgd, addr);
2115 if (!p4d)
2116 return -ENOMEM;
2117 do {
2118 next = p4d_addr_end(addr, end);
2119 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2120 if (err)
2121 break;
2122 } while (p4d++, addr = next, addr != end);
2123 return err;
2124 }
2125
2126 /*
2127 * Scan a region of virtual memory, filling in page tables as necessary
2128 * and calling a provided function on each leaf page table.
2129 */
2130 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2131 unsigned long size, pte_fn_t fn, void *data)
2132 {
2133 pgd_t *pgd;
2134 unsigned long next;
2135 unsigned long end = addr + size;
2136 int err;
2137
2138 if (WARN_ON(addr >= end))
2139 return -EINVAL;
2140
2141 pgd = pgd_offset(mm, addr);
2142 do {
2143 next = pgd_addr_end(addr, end);
2144 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2145 if (err)
2146 break;
2147 } while (pgd++, addr = next, addr != end);
2148
2149 return err;
2150 }
2151 EXPORT_SYMBOL_GPL(apply_to_page_range);
2152
2153 /*
2154 * handle_pte_fault chooses page fault handler according to an entry which was
2155 * read non-atomically. Before making any commitment, on those architectures
2156 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2157 * parts, do_swap_page must check under lock before unmapping the pte and
2158 * proceeding (but do_wp_page is only called after already making such a check;
2159 * and do_anonymous_page can safely check later on).
2160 */
2161 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2162 pte_t *page_table, pte_t orig_pte)
2163 {
2164 int same = 1;
2165 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2166 if (sizeof(pte_t) > sizeof(unsigned long)) {
2167 spinlock_t *ptl = pte_lockptr(mm, pmd);
2168 spin_lock(ptl);
2169 same = pte_same(*page_table, orig_pte);
2170 spin_unlock(ptl);
2171 }
2172 #endif
2173 pte_unmap(page_table);
2174 return same;
2175 }
2176
2177 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2178 {
2179 debug_dma_assert_idle(src);
2180
2181 /*
2182 * If the source page was a PFN mapping, we don't have
2183 * a "struct page" for it. We do a best-effort copy by
2184 * just copying from the original user address. If that
2185 * fails, we just zero-fill it. Live with it.
2186 */
2187 if (unlikely(!src)) {
2188 void *kaddr = kmap_atomic(dst);
2189 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2190
2191 /*
2192 * This really shouldn't fail, because the page is there
2193 * in the page tables. But it might just be unreadable,
2194 * in which case we just give up and fill the result with
2195 * zeroes.
2196 */
2197 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2198 clear_page(kaddr);
2199 kunmap_atomic(kaddr);
2200 flush_dcache_page(dst);
2201 } else
2202 copy_user_highpage(dst, src, va, vma);
2203 }
2204
2205 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2206 {
2207 struct file *vm_file = vma->vm_file;
2208
2209 if (vm_file)
2210 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2211
2212 /*
2213 * Special mappings (e.g. VDSO) do not have any file so fake
2214 * a default GFP_KERNEL for them.
2215 */
2216 return GFP_KERNEL;
2217 }
2218
2219 /*
2220 * Notify the address space that the page is about to become writable so that
2221 * it can prohibit this or wait for the page to get into an appropriate state.
2222 *
2223 * We do this without the lock held, so that it can sleep if it needs to.
2224 */
2225 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2226 {
2227 vm_fault_t ret;
2228 struct page *page = vmf->page;
2229 unsigned int old_flags = vmf->flags;
2230
2231 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2232
2233 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2234 /* Restore original flags so that caller is not surprised */
2235 vmf->flags = old_flags;
2236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2237 return ret;
2238 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2239 lock_page(page);
2240 if (!page->mapping) {
2241 unlock_page(page);
2242 return 0; /* retry */
2243 }
2244 ret |= VM_FAULT_LOCKED;
2245 } else
2246 VM_BUG_ON_PAGE(!PageLocked(page), page);
2247 return ret;
2248 }
2249
2250 /*
2251 * Handle dirtying of a page in shared file mapping on a write fault.
2252 *
2253 * The function expects the page to be locked and unlocks it.
2254 */
2255 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2256 struct page *page)
2257 {
2258 struct address_space *mapping;
2259 bool dirtied;
2260 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2261
2262 dirtied = set_page_dirty(page);
2263 VM_BUG_ON_PAGE(PageAnon(page), page);
2264 /*
2265 * Take a local copy of the address_space - page.mapping may be zeroed
2266 * by truncate after unlock_page(). The address_space itself remains
2267 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2268 * release semantics to prevent the compiler from undoing this copying.
2269 */
2270 mapping = page_rmapping(page);
2271 unlock_page(page);
2272
2273 if ((dirtied || page_mkwrite) && mapping) {
2274 /*
2275 * Some device drivers do not set page.mapping
2276 * but still dirty their pages
2277 */
2278 balance_dirty_pages_ratelimited(mapping);
2279 }
2280
2281 if (!page_mkwrite)
2282 file_update_time(vma->vm_file);
2283 }
2284
2285 /*
2286 * Handle write page faults for pages that can be reused in the current vma
2287 *
2288 * This can happen either due to the mapping being with the VM_SHARED flag,
2289 * or due to us being the last reference standing to the page. In either
2290 * case, all we need to do here is to mark the page as writable and update
2291 * any related book-keeping.
2292 */
2293 static inline void wp_page_reuse(struct vm_fault *vmf)
2294 __releases(vmf->ptl)
2295 {
2296 struct vm_area_struct *vma = vmf->vma;
2297 struct page *page = vmf->page;
2298 pte_t entry;
2299 /*
2300 * Clear the pages cpupid information as the existing
2301 * information potentially belongs to a now completely
2302 * unrelated process.
2303 */
2304 if (page)
2305 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2306
2307 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2308 entry = pte_mkyoung(vmf->orig_pte);
2309 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2310 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2311 update_mmu_cache(vma, vmf->address, vmf->pte);
2312 pte_unmap_unlock(vmf->pte, vmf->ptl);
2313 }
2314
2315 /*
2316 * Handle the case of a page which we actually need to copy to a new page.
2317 *
2318 * Called with mmap_sem locked and the old page referenced, but
2319 * without the ptl held.
2320 *
2321 * High level logic flow:
2322 *
2323 * - Allocate a page, copy the content of the old page to the new one.
2324 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2325 * - Take the PTL. If the pte changed, bail out and release the allocated page
2326 * - If the pte is still the way we remember it, update the page table and all
2327 * relevant references. This includes dropping the reference the page-table
2328 * held to the old page, as well as updating the rmap.
2329 * - In any case, unlock the PTL and drop the reference we took to the old page.
2330 */
2331 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2332 {
2333 struct vm_area_struct *vma = vmf->vma;
2334 struct mm_struct *mm = vma->vm_mm;
2335 struct page *old_page = vmf->page;
2336 struct page *new_page = NULL;
2337 pte_t entry;
2338 int page_copied = 0;
2339 struct mem_cgroup *memcg;
2340 struct mmu_notifier_range range;
2341
2342 if (unlikely(anon_vma_prepare(vma)))
2343 goto oom;
2344
2345 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2346 new_page = alloc_zeroed_user_highpage_movable(vma,
2347 vmf->address);
2348 if (!new_page)
2349 goto oom;
2350 } else {
2351 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2352 vmf->address);
2353 if (!new_page)
2354 goto oom;
2355 cow_user_page(new_page, old_page, vmf->address, vma);
2356 }
2357
2358 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2359 goto oom_free_new;
2360
2361 __SetPageUptodate(new_page);
2362
2363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2364 vmf->address & PAGE_MASK,
2365 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2366 mmu_notifier_invalidate_range_start(&range);
2367
2368 /*
2369 * Re-check the pte - we dropped the lock
2370 */
2371 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2372 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2373 if (old_page) {
2374 if (!PageAnon(old_page)) {
2375 dec_mm_counter_fast(mm,
2376 mm_counter_file(old_page));
2377 inc_mm_counter_fast(mm, MM_ANONPAGES);
2378 }
2379 } else {
2380 inc_mm_counter_fast(mm, MM_ANONPAGES);
2381 }
2382 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2383 entry = mk_pte(new_page, vma->vm_page_prot);
2384 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2385 /*
2386 * Clear the pte entry and flush it first, before updating the
2387 * pte with the new entry. This will avoid a race condition
2388 * seen in the presence of one thread doing SMC and another
2389 * thread doing COW.
2390 */
2391 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2392 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2393 mem_cgroup_commit_charge(new_page, memcg, false, false);
2394 lru_cache_add_active_or_unevictable(new_page, vma);
2395 /*
2396 * We call the notify macro here because, when using secondary
2397 * mmu page tables (such as kvm shadow page tables), we want the
2398 * new page to be mapped directly into the secondary page table.
2399 */
2400 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2401 update_mmu_cache(vma, vmf->address, vmf->pte);
2402 if (old_page) {
2403 /*
2404 * Only after switching the pte to the new page may
2405 * we remove the mapcount here. Otherwise another
2406 * process may come and find the rmap count decremented
2407 * before the pte is switched to the new page, and
2408 * "reuse" the old page writing into it while our pte
2409 * here still points into it and can be read by other
2410 * threads.
2411 *
2412 * The critical issue is to order this
2413 * page_remove_rmap with the ptp_clear_flush above.
2414 * Those stores are ordered by (if nothing else,)
2415 * the barrier present in the atomic_add_negative
2416 * in page_remove_rmap.
2417 *
2418 * Then the TLB flush in ptep_clear_flush ensures that
2419 * no process can access the old page before the
2420 * decremented mapcount is visible. And the old page
2421 * cannot be reused until after the decremented
2422 * mapcount is visible. So transitively, TLBs to
2423 * old page will be flushed before it can be reused.
2424 */
2425 page_remove_rmap(old_page, false);
2426 }
2427
2428 /* Free the old page.. */
2429 new_page = old_page;
2430 page_copied = 1;
2431 } else {
2432 mem_cgroup_cancel_charge(new_page, memcg, false);
2433 }
2434
2435 if (new_page)
2436 put_page(new_page);
2437
2438 pte_unmap_unlock(vmf->pte, vmf->ptl);
2439 /*
2440 * No need to double call mmu_notifier->invalidate_range() callback as
2441 * the above ptep_clear_flush_notify() did already call it.
2442 */
2443 mmu_notifier_invalidate_range_only_end(&range);
2444 if (old_page) {
2445 /*
2446 * Don't let another task, with possibly unlocked vma,
2447 * keep the mlocked page.
2448 */
2449 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2450 lock_page(old_page); /* LRU manipulation */
2451 if (PageMlocked(old_page))
2452 munlock_vma_page(old_page);
2453 unlock_page(old_page);
2454 }
2455 put_page(old_page);
2456 }
2457 return page_copied ? VM_FAULT_WRITE : 0;
2458 oom_free_new:
2459 put_page(new_page);
2460 oom:
2461 if (old_page)
2462 put_page(old_page);
2463 return VM_FAULT_OOM;
2464 }
2465
2466 /**
2467 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2468 * writeable once the page is prepared
2469 *
2470 * @vmf: structure describing the fault
2471 *
2472 * This function handles all that is needed to finish a write page fault in a
2473 * shared mapping due to PTE being read-only once the mapped page is prepared.
2474 * It handles locking of PTE and modifying it.
2475 *
2476 * The function expects the page to be locked or other protection against
2477 * concurrent faults / writeback (such as DAX radix tree locks).
2478 *
2479 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2480 * we acquired PTE lock.
2481 */
2482 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2483 {
2484 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2485 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2486 &vmf->ptl);
2487 /*
2488 * We might have raced with another page fault while we released the
2489 * pte_offset_map_lock.
2490 */
2491 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2492 pte_unmap_unlock(vmf->pte, vmf->ptl);
2493 return VM_FAULT_NOPAGE;
2494 }
2495 wp_page_reuse(vmf);
2496 return 0;
2497 }
2498
2499 /*
2500 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2501 * mapping
2502 */
2503 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2504 {
2505 struct vm_area_struct *vma = vmf->vma;
2506
2507 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2508 vm_fault_t ret;
2509
2510 pte_unmap_unlock(vmf->pte, vmf->ptl);
2511 vmf->flags |= FAULT_FLAG_MKWRITE;
2512 ret = vma->vm_ops->pfn_mkwrite(vmf);
2513 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2514 return ret;
2515 return finish_mkwrite_fault(vmf);
2516 }
2517 wp_page_reuse(vmf);
2518 return VM_FAULT_WRITE;
2519 }
2520
2521 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2522 __releases(vmf->ptl)
2523 {
2524 struct vm_area_struct *vma = vmf->vma;
2525
2526 get_page(vmf->page);
2527
2528 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2529 vm_fault_t tmp;
2530
2531 pte_unmap_unlock(vmf->pte, vmf->ptl);
2532 tmp = do_page_mkwrite(vmf);
2533 if (unlikely(!tmp || (tmp &
2534 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2535 put_page(vmf->page);
2536 return tmp;
2537 }
2538 tmp = finish_mkwrite_fault(vmf);
2539 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2540 unlock_page(vmf->page);
2541 put_page(vmf->page);
2542 return tmp;
2543 }
2544 } else {
2545 wp_page_reuse(vmf);
2546 lock_page(vmf->page);
2547 }
2548 fault_dirty_shared_page(vma, vmf->page);
2549 put_page(vmf->page);
2550
2551 return VM_FAULT_WRITE;
2552 }
2553
2554 /*
2555 * This routine handles present pages, when users try to write
2556 * to a shared page. It is done by copying the page to a new address
2557 * and decrementing the shared-page counter for the old page.
2558 *
2559 * Note that this routine assumes that the protection checks have been
2560 * done by the caller (the low-level page fault routine in most cases).
2561 * Thus we can safely just mark it writable once we've done any necessary
2562 * COW.
2563 *
2564 * We also mark the page dirty at this point even though the page will
2565 * change only once the write actually happens. This avoids a few races,
2566 * and potentially makes it more efficient.
2567 *
2568 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2569 * but allow concurrent faults), with pte both mapped and locked.
2570 * We return with mmap_sem still held, but pte unmapped and unlocked.
2571 */
2572 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2573 __releases(vmf->ptl)
2574 {
2575 struct vm_area_struct *vma = vmf->vma;
2576
2577 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2578 if (!vmf->page) {
2579 /*
2580 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2581 * VM_PFNMAP VMA.
2582 *
2583 * We should not cow pages in a shared writeable mapping.
2584 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2585 */
2586 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587 (VM_WRITE|VM_SHARED))
2588 return wp_pfn_shared(vmf);
2589
2590 pte_unmap_unlock(vmf->pte, vmf->ptl);
2591 return wp_page_copy(vmf);
2592 }
2593
2594 /*
2595 * Take out anonymous pages first, anonymous shared vmas are
2596 * not dirty accountable.
2597 */
2598 if (PageAnon(vmf->page)) {
2599 int total_map_swapcount;
2600 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2601 page_count(vmf->page) != 1))
2602 goto copy;
2603 if (!trylock_page(vmf->page)) {
2604 get_page(vmf->page);
2605 pte_unmap_unlock(vmf->pte, vmf->ptl);
2606 lock_page(vmf->page);
2607 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2608 vmf->address, &vmf->ptl);
2609 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610 unlock_page(vmf->page);
2611 pte_unmap_unlock(vmf->pte, vmf->ptl);
2612 put_page(vmf->page);
2613 return 0;
2614 }
2615 put_page(vmf->page);
2616 }
2617 if (PageKsm(vmf->page)) {
2618 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2619 vmf->address);
2620 unlock_page(vmf->page);
2621 if (!reused)
2622 goto copy;
2623 wp_page_reuse(vmf);
2624 return VM_FAULT_WRITE;
2625 }
2626 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2627 if (total_map_swapcount == 1) {
2628 /*
2629 * The page is all ours. Move it to
2630 * our anon_vma so the rmap code will
2631 * not search our parent or siblings.
2632 * Protected against the rmap code by
2633 * the page lock.
2634 */
2635 page_move_anon_rmap(vmf->page, vma);
2636 }
2637 unlock_page(vmf->page);
2638 wp_page_reuse(vmf);
2639 return VM_FAULT_WRITE;
2640 }
2641 unlock_page(vmf->page);
2642 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2643 (VM_WRITE|VM_SHARED))) {
2644 return wp_page_shared(vmf);
2645 }
2646 copy:
2647 /*
2648 * Ok, we need to copy. Oh, well..
2649 */
2650 get_page(vmf->page);
2651
2652 pte_unmap_unlock(vmf->pte, vmf->ptl);
2653 return wp_page_copy(vmf);
2654 }
2655
2656 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2657 unsigned long start_addr, unsigned long end_addr,
2658 struct zap_details *details)
2659 {
2660 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2661 }
2662
2663 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2664 struct zap_details *details)
2665 {
2666 struct vm_area_struct *vma;
2667 pgoff_t vba, vea, zba, zea;
2668
2669 vma_interval_tree_foreach(vma, root,
2670 details->first_index, details->last_index) {
2671
2672 vba = vma->vm_pgoff;
2673 vea = vba + vma_pages(vma) - 1;
2674 zba = details->first_index;
2675 if (zba < vba)
2676 zba = vba;
2677 zea = details->last_index;
2678 if (zea > vea)
2679 zea = vea;
2680
2681 unmap_mapping_range_vma(vma,
2682 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2683 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2684 details);
2685 }
2686 }
2687
2688 /**
2689 * unmap_mapping_pages() - Unmap pages from processes.
2690 * @mapping: The address space containing pages to be unmapped.
2691 * @start: Index of first page to be unmapped.
2692 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2693 * @even_cows: Whether to unmap even private COWed pages.
2694 *
2695 * Unmap the pages in this address space from any userspace process which
2696 * has them mmaped. Generally, you want to remove COWed pages as well when
2697 * a file is being truncated, but not when invalidating pages from the page
2698 * cache.
2699 */
2700 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2701 pgoff_t nr, bool even_cows)
2702 {
2703 struct zap_details details = { };
2704
2705 details.check_mapping = even_cows ? NULL : mapping;
2706 details.first_index = start;
2707 details.last_index = start + nr - 1;
2708 if (details.last_index < details.first_index)
2709 details.last_index = ULONG_MAX;
2710
2711 i_mmap_lock_write(mapping);
2712 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2713 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2714 i_mmap_unlock_write(mapping);
2715 }
2716
2717 /**
2718 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2719 * address_space corresponding to the specified byte range in the underlying
2720 * file.
2721 *
2722 * @mapping: the address space containing mmaps to be unmapped.
2723 * @holebegin: byte in first page to unmap, relative to the start of
2724 * the underlying file. This will be rounded down to a PAGE_SIZE
2725 * boundary. Note that this is different from truncate_pagecache(), which
2726 * must keep the partial page. In contrast, we must get rid of
2727 * partial pages.
2728 * @holelen: size of prospective hole in bytes. This will be rounded
2729 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2730 * end of the file.
2731 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2732 * but 0 when invalidating pagecache, don't throw away private data.
2733 */
2734 void unmap_mapping_range(struct address_space *mapping,
2735 loff_t const holebegin, loff_t const holelen, int even_cows)
2736 {
2737 pgoff_t hba = holebegin >> PAGE_SHIFT;
2738 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2739
2740 /* Check for overflow. */
2741 if (sizeof(holelen) > sizeof(hlen)) {
2742 long long holeend =
2743 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2744 if (holeend & ~(long long)ULONG_MAX)
2745 hlen = ULONG_MAX - hba + 1;
2746 }
2747
2748 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2749 }
2750 EXPORT_SYMBOL(unmap_mapping_range);
2751
2752 /*
2753 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754 * but allow concurrent faults), and pte mapped but not yet locked.
2755 * We return with pte unmapped and unlocked.
2756 *
2757 * We return with the mmap_sem locked or unlocked in the same cases
2758 * as does filemap_fault().
2759 */
2760 vm_fault_t do_swap_page(struct vm_fault *vmf)
2761 {
2762 struct vm_area_struct *vma = vmf->vma;
2763 struct page *page = NULL, *swapcache;
2764 struct mem_cgroup *memcg;
2765 swp_entry_t entry;
2766 pte_t pte;
2767 int locked;
2768 int exclusive = 0;
2769 vm_fault_t ret = 0;
2770
2771 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2772 goto out;
2773
2774 entry = pte_to_swp_entry(vmf->orig_pte);
2775 if (unlikely(non_swap_entry(entry))) {
2776 if (is_migration_entry(entry)) {
2777 migration_entry_wait(vma->vm_mm, vmf->pmd,
2778 vmf->address);
2779 } else if (is_device_private_entry(entry)) {
2780 /*
2781 * For un-addressable device memory we call the pgmap
2782 * fault handler callback. The callback must migrate
2783 * the page back to some CPU accessible page.
2784 */
2785 ret = device_private_entry_fault(vma, vmf->address, entry,
2786 vmf->flags, vmf->pmd);
2787 } else if (is_hwpoison_entry(entry)) {
2788 ret = VM_FAULT_HWPOISON;
2789 } else {
2790 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2791 ret = VM_FAULT_SIGBUS;
2792 }
2793 goto out;
2794 }
2795
2796
2797 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2798 page = lookup_swap_cache(entry, vma, vmf->address);
2799 swapcache = page;
2800
2801 if (!page) {
2802 struct swap_info_struct *si = swp_swap_info(entry);
2803
2804 if (si->flags & SWP_SYNCHRONOUS_IO &&
2805 __swap_count(entry) == 1) {
2806 /* skip swapcache */
2807 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2808 vmf->address);
2809 if (page) {
2810 __SetPageLocked(page);
2811 __SetPageSwapBacked(page);
2812 set_page_private(page, entry.val);
2813 lru_cache_add_anon(page);
2814 swap_readpage(page, true);
2815 }
2816 } else {
2817 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2818 vmf);
2819 swapcache = page;
2820 }
2821
2822 if (!page) {
2823 /*
2824 * Back out if somebody else faulted in this pte
2825 * while we released the pte lock.
2826 */
2827 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2828 vmf->address, &vmf->ptl);
2829 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2830 ret = VM_FAULT_OOM;
2831 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2832 goto unlock;
2833 }
2834
2835 /* Had to read the page from swap area: Major fault */
2836 ret = VM_FAULT_MAJOR;
2837 count_vm_event(PGMAJFAULT);
2838 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2839 } else if (PageHWPoison(page)) {
2840 /*
2841 * hwpoisoned dirty swapcache pages are kept for killing
2842 * owner processes (which may be unknown at hwpoison time)
2843 */
2844 ret = VM_FAULT_HWPOISON;
2845 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2846 goto out_release;
2847 }
2848
2849 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2850
2851 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2852 if (!locked) {
2853 ret |= VM_FAULT_RETRY;
2854 goto out_release;
2855 }
2856
2857 /*
2858 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2859 * release the swapcache from under us. The page pin, and pte_same
2860 * test below, are not enough to exclude that. Even if it is still
2861 * swapcache, we need to check that the page's swap has not changed.
2862 */
2863 if (unlikely((!PageSwapCache(page) ||
2864 page_private(page) != entry.val)) && swapcache)
2865 goto out_page;
2866
2867 page = ksm_might_need_to_copy(page, vma, vmf->address);
2868 if (unlikely(!page)) {
2869 ret = VM_FAULT_OOM;
2870 page = swapcache;
2871 goto out_page;
2872 }
2873
2874 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2875 &memcg, false)) {
2876 ret = VM_FAULT_OOM;
2877 goto out_page;
2878 }
2879
2880 /*
2881 * Back out if somebody else already faulted in this pte.
2882 */
2883 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2884 &vmf->ptl);
2885 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2886 goto out_nomap;
2887
2888 if (unlikely(!PageUptodate(page))) {
2889 ret = VM_FAULT_SIGBUS;
2890 goto out_nomap;
2891 }
2892
2893 /*
2894 * The page isn't present yet, go ahead with the fault.
2895 *
2896 * Be careful about the sequence of operations here.
2897 * To get its accounting right, reuse_swap_page() must be called
2898 * while the page is counted on swap but not yet in mapcount i.e.
2899 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2900 * must be called after the swap_free(), or it will never succeed.
2901 */
2902
2903 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2904 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2905 pte = mk_pte(page, vma->vm_page_prot);
2906 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2907 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2908 vmf->flags &= ~FAULT_FLAG_WRITE;
2909 ret |= VM_FAULT_WRITE;
2910 exclusive = RMAP_EXCLUSIVE;
2911 }
2912 flush_icache_page(vma, page);
2913 if (pte_swp_soft_dirty(vmf->orig_pte))
2914 pte = pte_mksoft_dirty(pte);
2915 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2916 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2917 vmf->orig_pte = pte;
2918
2919 /* ksm created a completely new copy */
2920 if (unlikely(page != swapcache && swapcache)) {
2921 page_add_new_anon_rmap(page, vma, vmf->address, false);
2922 mem_cgroup_commit_charge(page, memcg, false, false);
2923 lru_cache_add_active_or_unevictable(page, vma);
2924 } else {
2925 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2926 mem_cgroup_commit_charge(page, memcg, true, false);
2927 activate_page(page);
2928 }
2929
2930 swap_free(entry);
2931 if (mem_cgroup_swap_full(page) ||
2932 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2933 try_to_free_swap(page);
2934 unlock_page(page);
2935 if (page != swapcache && swapcache) {
2936 /*
2937 * Hold the lock to avoid the swap entry to be reused
2938 * until we take the PT lock for the pte_same() check
2939 * (to avoid false positives from pte_same). For
2940 * further safety release the lock after the swap_free
2941 * so that the swap count won't change under a
2942 * parallel locked swapcache.
2943 */
2944 unlock_page(swapcache);
2945 put_page(swapcache);
2946 }
2947
2948 if (vmf->flags & FAULT_FLAG_WRITE) {
2949 ret |= do_wp_page(vmf);
2950 if (ret & VM_FAULT_ERROR)
2951 ret &= VM_FAULT_ERROR;
2952 goto out;
2953 }
2954
2955 /* No need to invalidate - it was non-present before */
2956 update_mmu_cache(vma, vmf->address, vmf->pte);
2957 unlock:
2958 pte_unmap_unlock(vmf->pte, vmf->ptl);
2959 out:
2960 return ret;
2961 out_nomap:
2962 mem_cgroup_cancel_charge(page, memcg, false);
2963 pte_unmap_unlock(vmf->pte, vmf->ptl);
2964 out_page:
2965 unlock_page(page);
2966 out_release:
2967 put_page(page);
2968 if (page != swapcache && swapcache) {
2969 unlock_page(swapcache);
2970 put_page(swapcache);
2971 }
2972 return ret;
2973 }
2974
2975 /*
2976 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2977 * but allow concurrent faults), and pte mapped but not yet locked.
2978 * We return with mmap_sem still held, but pte unmapped and unlocked.
2979 */
2980 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2981 {
2982 struct vm_area_struct *vma = vmf->vma;
2983 struct mem_cgroup *memcg;
2984 struct page *page;
2985 vm_fault_t ret = 0;
2986 pte_t entry;
2987
2988 /* File mapping without ->vm_ops ? */
2989 if (vma->vm_flags & VM_SHARED)
2990 return VM_FAULT_SIGBUS;
2991
2992 /*
2993 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2994 * pte_offset_map() on pmds where a huge pmd might be created
2995 * from a different thread.
2996 *
2997 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2998 * parallel threads are excluded by other means.
2999 *
3000 * Here we only have down_read(mmap_sem).
3001 */
3002 if (pte_alloc(vma->vm_mm, vmf->pmd))
3003 return VM_FAULT_OOM;
3004
3005 /* See the comment in pte_alloc_one_map() */
3006 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3007 return 0;
3008
3009 /* Use the zero-page for reads */
3010 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3011 !mm_forbids_zeropage(vma->vm_mm)) {
3012 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3013 vma->vm_page_prot));
3014 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3015 vmf->address, &vmf->ptl);
3016 if (!pte_none(*vmf->pte))
3017 goto unlock;
3018 ret = check_stable_address_space(vma->vm_mm);
3019 if (ret)
3020 goto unlock;
3021 /* Deliver the page fault to userland, check inside PT lock */
3022 if (userfaultfd_missing(vma)) {
3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 return handle_userfault(vmf, VM_UFFD_MISSING);
3025 }
3026 goto setpte;
3027 }
3028
3029 /* Allocate our own private page. */
3030 if (unlikely(anon_vma_prepare(vma)))
3031 goto oom;
3032 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3033 if (!page)
3034 goto oom;
3035
3036 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3037 false))
3038 goto oom_free_page;
3039
3040 /*
3041 * The memory barrier inside __SetPageUptodate makes sure that
3042 * preceeding stores to the page contents become visible before
3043 * the set_pte_at() write.
3044 */
3045 __SetPageUptodate(page);
3046
3047 entry = mk_pte(page, vma->vm_page_prot);
3048 if (vma->vm_flags & VM_WRITE)
3049 entry = pte_mkwrite(pte_mkdirty(entry));
3050
3051 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3052 &vmf->ptl);
3053 if (!pte_none(*vmf->pte))
3054 goto release;
3055
3056 ret = check_stable_address_space(vma->vm_mm);
3057 if (ret)
3058 goto release;
3059
3060 /* Deliver the page fault to userland, check inside PT lock */
3061 if (userfaultfd_missing(vma)) {
3062 pte_unmap_unlock(vmf->pte, vmf->ptl);
3063 mem_cgroup_cancel_charge(page, memcg, false);
3064 put_page(page);
3065 return handle_userfault(vmf, VM_UFFD_MISSING);
3066 }
3067
3068 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3069 page_add_new_anon_rmap(page, vma, vmf->address, false);
3070 mem_cgroup_commit_charge(page, memcg, false, false);
3071 lru_cache_add_active_or_unevictable(page, vma);
3072 setpte:
3073 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3074
3075 /* No need to invalidate - it was non-present before */
3076 update_mmu_cache(vma, vmf->address, vmf->pte);
3077 unlock:
3078 pte_unmap_unlock(vmf->pte, vmf->ptl);
3079 return ret;
3080 release:
3081 mem_cgroup_cancel_charge(page, memcg, false);
3082 put_page(page);
3083 goto unlock;
3084 oom_free_page:
3085 put_page(page);
3086 oom:
3087 return VM_FAULT_OOM;
3088 }
3089
3090 /*
3091 * The mmap_sem must have been held on entry, and may have been
3092 * released depending on flags and vma->vm_ops->fault() return value.
3093 * See filemap_fault() and __lock_page_retry().
3094 */
3095 static vm_fault_t __do_fault(struct vm_fault *vmf)
3096 {
3097 struct vm_area_struct *vma = vmf->vma;
3098 vm_fault_t ret;
3099
3100 /*
3101 * Preallocate pte before we take page_lock because this might lead to
3102 * deadlocks for memcg reclaim which waits for pages under writeback:
3103 * lock_page(A)
3104 * SetPageWriteback(A)
3105 * unlock_page(A)
3106 * lock_page(B)
3107 * lock_page(B)
3108 * pte_alloc_pne
3109 * shrink_page_list
3110 * wait_on_page_writeback(A)
3111 * SetPageWriteback(B)
3112 * unlock_page(B)
3113 * # flush A, B to clear the writeback
3114 */
3115 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3116 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3117 if (!vmf->prealloc_pte)
3118 return VM_FAULT_OOM;
3119 smp_wmb(); /* See comment in __pte_alloc() */
3120 }
3121
3122 ret = vma->vm_ops->fault(vmf);
3123 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3124 VM_FAULT_DONE_COW)))
3125 return ret;
3126
3127 if (unlikely(PageHWPoison(vmf->page))) {
3128 if (ret & VM_FAULT_LOCKED)
3129 unlock_page(vmf->page);
3130 put_page(vmf->page);
3131 vmf->page = NULL;
3132 return VM_FAULT_HWPOISON;
3133 }
3134
3135 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3136 lock_page(vmf->page);
3137 else
3138 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3139
3140 return ret;
3141 }
3142
3143 /*
3144 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3145 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3146 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3147 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3148 */
3149 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3150 {
3151 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3152 }
3153
3154 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3155 {
3156 struct vm_area_struct *vma = vmf->vma;
3157
3158 if (!pmd_none(*vmf->pmd))
3159 goto map_pte;
3160 if (vmf->prealloc_pte) {
3161 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3162 if (unlikely(!pmd_none(*vmf->pmd))) {
3163 spin_unlock(vmf->ptl);
3164 goto map_pte;
3165 }
3166
3167 mm_inc_nr_ptes(vma->vm_mm);
3168 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3169 spin_unlock(vmf->ptl);
3170 vmf->prealloc_pte = NULL;
3171 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3172 return VM_FAULT_OOM;
3173 }
3174 map_pte:
3175 /*
3176 * If a huge pmd materialized under us just retry later. Use
3177 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3178 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3179 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3180 * running immediately after a huge pmd fault in a different thread of
3181 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3182 * All we have to ensure is that it is a regular pmd that we can walk
3183 * with pte_offset_map() and we can do that through an atomic read in
3184 * C, which is what pmd_trans_unstable() provides.
3185 */
3186 if (pmd_devmap_trans_unstable(vmf->pmd))
3187 return VM_FAULT_NOPAGE;
3188
3189 /*
3190 * At this point we know that our vmf->pmd points to a page of ptes
3191 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3192 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3193 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3194 * be valid and we will re-check to make sure the vmf->pte isn't
3195 * pte_none() under vmf->ptl protection when we return to
3196 * alloc_set_pte().
3197 */
3198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199 &vmf->ptl);
3200 return 0;
3201 }
3202
3203 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3204
3205 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3206 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3207 unsigned long haddr)
3208 {
3209 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3210 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3211 return false;
3212 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3213 return false;
3214 return true;
3215 }
3216
3217 static void deposit_prealloc_pte(struct vm_fault *vmf)
3218 {
3219 struct vm_area_struct *vma = vmf->vma;
3220
3221 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3222 /*
3223 * We are going to consume the prealloc table,
3224 * count that as nr_ptes.
3225 */
3226 mm_inc_nr_ptes(vma->vm_mm);
3227 vmf->prealloc_pte = NULL;
3228 }
3229
3230 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3231 {
3232 struct vm_area_struct *vma = vmf->vma;
3233 bool write = vmf->flags & FAULT_FLAG_WRITE;
3234 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3235 pmd_t entry;
3236 int i;
3237 vm_fault_t ret;
3238
3239 if (!transhuge_vma_suitable(vma, haddr))
3240 return VM_FAULT_FALLBACK;
3241
3242 ret = VM_FAULT_FALLBACK;
3243 page = compound_head(page);
3244
3245 /*
3246 * Archs like ppc64 need additonal space to store information
3247 * related to pte entry. Use the preallocated table for that.
3248 */
3249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3251 if (!vmf->prealloc_pte)
3252 return VM_FAULT_OOM;
3253 smp_wmb(); /* See comment in __pte_alloc() */
3254 }
3255
3256 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3257 if (unlikely(!pmd_none(*vmf->pmd)))
3258 goto out;
3259
3260 for (i = 0; i < HPAGE_PMD_NR; i++)
3261 flush_icache_page(vma, page + i);
3262
3263 entry = mk_huge_pmd(page, vma->vm_page_prot);
3264 if (write)
3265 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3266
3267 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3268 page_add_file_rmap(page, true);
3269 /*
3270 * deposit and withdraw with pmd lock held
3271 */
3272 if (arch_needs_pgtable_deposit())
3273 deposit_prealloc_pte(vmf);
3274
3275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3276
3277 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3278
3279 /* fault is handled */
3280 ret = 0;
3281 count_vm_event(THP_FILE_MAPPED);
3282 out:
3283 spin_unlock(vmf->ptl);
3284 return ret;
3285 }
3286 #else
3287 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3288 {
3289 BUILD_BUG();
3290 return 0;
3291 }
3292 #endif
3293
3294 /**
3295 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3296 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3297 *
3298 * @vmf: fault environment
3299 * @memcg: memcg to charge page (only for private mappings)
3300 * @page: page to map
3301 *
3302 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3303 * return.
3304 *
3305 * Target users are page handler itself and implementations of
3306 * vm_ops->map_pages.
3307 *
3308 * Return: %0 on success, %VM_FAULT_ code in case of error.
3309 */
3310 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3311 struct page *page)
3312 {
3313 struct vm_area_struct *vma = vmf->vma;
3314 bool write = vmf->flags & FAULT_FLAG_WRITE;
3315 pte_t entry;
3316 vm_fault_t ret;
3317
3318 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3319 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3320 /* THP on COW? */
3321 VM_BUG_ON_PAGE(memcg, page);
3322
3323 ret = do_set_pmd(vmf, page);
3324 if (ret != VM_FAULT_FALLBACK)
3325 return ret;
3326 }
3327
3328 if (!vmf->pte) {
3329 ret = pte_alloc_one_map(vmf);
3330 if (ret)
3331 return ret;
3332 }
3333
3334 /* Re-check under ptl */
3335 if (unlikely(!pte_none(*vmf->pte)))
3336 return VM_FAULT_NOPAGE;
3337
3338 flush_icache_page(vma, page);
3339 entry = mk_pte(page, vma->vm_page_prot);
3340 if (write)
3341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3342 /* copy-on-write page */
3343 if (write && !(vma->vm_flags & VM_SHARED)) {
3344 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3345 page_add_new_anon_rmap(page, vma, vmf->address, false);
3346 mem_cgroup_commit_charge(page, memcg, false, false);
3347 lru_cache_add_active_or_unevictable(page, vma);
3348 } else {
3349 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3350 page_add_file_rmap(page, false);
3351 }
3352 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3353
3354 /* no need to invalidate: a not-present page won't be cached */
3355 update_mmu_cache(vma, vmf->address, vmf->pte);
3356
3357 return 0;
3358 }
3359
3360
3361 /**
3362 * finish_fault - finish page fault once we have prepared the page to fault
3363 *
3364 * @vmf: structure describing the fault
3365 *
3366 * This function handles all that is needed to finish a page fault once the
3367 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3368 * given page, adds reverse page mapping, handles memcg charges and LRU
3369 * addition.
3370 *
3371 * The function expects the page to be locked and on success it consumes a
3372 * reference of a page being mapped (for the PTE which maps it).
3373 *
3374 * Return: %0 on success, %VM_FAULT_ code in case of error.
3375 */
3376 vm_fault_t finish_fault(struct vm_fault *vmf)
3377 {
3378 struct page *page;
3379 vm_fault_t ret = 0;
3380
3381 /* Did we COW the page? */
3382 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3383 !(vmf->vma->vm_flags & VM_SHARED))
3384 page = vmf->cow_page;
3385 else
3386 page = vmf->page;
3387
3388 /*
3389 * check even for read faults because we might have lost our CoWed
3390 * page
3391 */
3392 if (!(vmf->vma->vm_flags & VM_SHARED))
3393 ret = check_stable_address_space(vmf->vma->vm_mm);
3394 if (!ret)
3395 ret = alloc_set_pte(vmf, vmf->memcg, page);
3396 if (vmf->pte)
3397 pte_unmap_unlock(vmf->pte, vmf->ptl);
3398 return ret;
3399 }
3400
3401 static unsigned long fault_around_bytes __read_mostly =
3402 rounddown_pow_of_two(65536);
3403
3404 #ifdef CONFIG_DEBUG_FS
3405 static int fault_around_bytes_get(void *data, u64 *val)
3406 {
3407 *val = fault_around_bytes;
3408 return 0;
3409 }
3410
3411 /*
3412 * fault_around_bytes must be rounded down to the nearest page order as it's
3413 * what do_fault_around() expects to see.
3414 */
3415 static int fault_around_bytes_set(void *data, u64 val)
3416 {
3417 if (val / PAGE_SIZE > PTRS_PER_PTE)
3418 return -EINVAL;
3419 if (val > PAGE_SIZE)
3420 fault_around_bytes = rounddown_pow_of_two(val);
3421 else
3422 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3423 return 0;
3424 }
3425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3426 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3427
3428 static int __init fault_around_debugfs(void)
3429 {
3430 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3431 &fault_around_bytes_fops);
3432 return 0;
3433 }
3434 late_initcall(fault_around_debugfs);
3435 #endif
3436
3437 /*
3438 * do_fault_around() tries to map few pages around the fault address. The hope
3439 * is that the pages will be needed soon and this will lower the number of
3440 * faults to handle.
3441 *
3442 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3443 * not ready to be mapped: not up-to-date, locked, etc.
3444 *
3445 * This function is called with the page table lock taken. In the split ptlock
3446 * case the page table lock only protects only those entries which belong to
3447 * the page table corresponding to the fault address.
3448 *
3449 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3450 * only once.
3451 *
3452 * fault_around_bytes defines how many bytes we'll try to map.
3453 * do_fault_around() expects it to be set to a power of two less than or equal
3454 * to PTRS_PER_PTE.
3455 *
3456 * The virtual address of the area that we map is naturally aligned to
3457 * fault_around_bytes rounded down to the machine page size
3458 * (and therefore to page order). This way it's easier to guarantee
3459 * that we don't cross page table boundaries.
3460 */
3461 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3462 {
3463 unsigned long address = vmf->address, nr_pages, mask;
3464 pgoff_t start_pgoff = vmf->pgoff;
3465 pgoff_t end_pgoff;
3466 int off;
3467 vm_fault_t ret = 0;
3468
3469 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3470 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3471
3472 vmf->address = max(address & mask, vmf->vma->vm_start);
3473 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474 start_pgoff -= off;
3475
3476 /*
3477 * end_pgoff is either the end of the page table, the end of
3478 * the vma or nr_pages from start_pgoff, depending what is nearest.
3479 */
3480 end_pgoff = start_pgoff -
3481 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482 PTRS_PER_PTE - 1;
3483 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3484 start_pgoff + nr_pages - 1);
3485
3486 if (pmd_none(*vmf->pmd)) {
3487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3488 if (!vmf->prealloc_pte)
3489 goto out;
3490 smp_wmb(); /* See comment in __pte_alloc() */
3491 }
3492
3493 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3494
3495 /* Huge page is mapped? Page fault is solved */
3496 if (pmd_trans_huge(*vmf->pmd)) {
3497 ret = VM_FAULT_NOPAGE;
3498 goto out;
3499 }
3500
3501 /* ->map_pages() haven't done anything useful. Cold page cache? */
3502 if (!vmf->pte)
3503 goto out;
3504
3505 /* check if the page fault is solved */
3506 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3507 if (!pte_none(*vmf->pte))
3508 ret = VM_FAULT_NOPAGE;
3509 pte_unmap_unlock(vmf->pte, vmf->ptl);
3510 out:
3511 vmf->address = address;
3512 vmf->pte = NULL;
3513 return ret;
3514 }
3515
3516 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3517 {
3518 struct vm_area_struct *vma = vmf->vma;
3519 vm_fault_t ret = 0;
3520
3521 /*
3522 * Let's call ->map_pages() first and use ->fault() as fallback
3523 * if page by the offset is not ready to be mapped (cold cache or
3524 * something).
3525 */
3526 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3527 ret = do_fault_around(vmf);
3528 if (ret)
3529 return ret;
3530 }
3531
3532 ret = __do_fault(vmf);
3533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3534 return ret;
3535
3536 ret |= finish_fault(vmf);
3537 unlock_page(vmf->page);
3538 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539 put_page(vmf->page);
3540 return ret;
3541 }
3542
3543 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3544 {
3545 struct vm_area_struct *vma = vmf->vma;
3546 vm_fault_t ret;
3547
3548 if (unlikely(anon_vma_prepare(vma)))
3549 return VM_FAULT_OOM;
3550
3551 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3552 if (!vmf->cow_page)
3553 return VM_FAULT_OOM;
3554
3555 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3556 &vmf->memcg, false)) {
3557 put_page(vmf->cow_page);
3558 return VM_FAULT_OOM;
3559 }
3560
3561 ret = __do_fault(vmf);
3562 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3563 goto uncharge_out;
3564 if (ret & VM_FAULT_DONE_COW)
3565 return ret;
3566
3567 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3568 __SetPageUptodate(vmf->cow_page);
3569
3570 ret |= finish_fault(vmf);
3571 unlock_page(vmf->page);
3572 put_page(vmf->page);
3573 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3574 goto uncharge_out;
3575 return ret;
3576 uncharge_out:
3577 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3578 put_page(vmf->cow_page);
3579 return ret;
3580 }
3581
3582 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3583 {
3584 struct vm_area_struct *vma = vmf->vma;
3585 vm_fault_t ret, tmp;
3586
3587 ret = __do_fault(vmf);
3588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3589 return ret;
3590
3591 /*
3592 * Check if the backing address space wants to know that the page is
3593 * about to become writable
3594 */
3595 if (vma->vm_ops->page_mkwrite) {
3596 unlock_page(vmf->page);
3597 tmp = do_page_mkwrite(vmf);
3598 if (unlikely(!tmp ||
3599 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3600 put_page(vmf->page);
3601 return tmp;
3602 }
3603 }
3604
3605 ret |= finish_fault(vmf);
3606 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3607 VM_FAULT_RETRY))) {
3608 unlock_page(vmf->page);
3609 put_page(vmf->page);
3610 return ret;
3611 }
3612
3613 fault_dirty_shared_page(vma, vmf->page);
3614 return ret;
3615 }
3616
3617 /*
3618 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3619 * but allow concurrent faults).
3620 * The mmap_sem may have been released depending on flags and our
3621 * return value. See filemap_fault() and __lock_page_or_retry().
3622 * If mmap_sem is released, vma may become invalid (for example
3623 * by other thread calling munmap()).
3624 */
3625 static vm_fault_t do_fault(struct vm_fault *vmf)
3626 {
3627 struct vm_area_struct *vma = vmf->vma;
3628 struct mm_struct *vm_mm = vma->vm_mm;
3629 vm_fault_t ret;
3630
3631 /*
3632 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3633 */
3634 if (!vma->vm_ops->fault) {
3635 /*
3636 * If we find a migration pmd entry or a none pmd entry, which
3637 * should never happen, return SIGBUS
3638 */
3639 if (unlikely(!pmd_present(*vmf->pmd)))
3640 ret = VM_FAULT_SIGBUS;
3641 else {
3642 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3643 vmf->pmd,
3644 vmf->address,
3645 &vmf->ptl);
3646 /*
3647 * Make sure this is not a temporary clearing of pte
3648 * by holding ptl and checking again. A R/M/W update
3649 * of pte involves: take ptl, clearing the pte so that
3650 * we don't have concurrent modification by hardware
3651 * followed by an update.
3652 */
3653 if (unlikely(pte_none(*vmf->pte)))
3654 ret = VM_FAULT_SIGBUS;
3655 else
3656 ret = VM_FAULT_NOPAGE;
3657
3658 pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 }
3660 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3661 ret = do_read_fault(vmf);
3662 else if (!(vma->vm_flags & VM_SHARED))
3663 ret = do_cow_fault(vmf);
3664 else
3665 ret = do_shared_fault(vmf);
3666
3667 /* preallocated pagetable is unused: free it */
3668 if (vmf->prealloc_pte) {
3669 pte_free(vm_mm, vmf->prealloc_pte);
3670 vmf->prealloc_pte = NULL;
3671 }
3672 return ret;
3673 }
3674
3675 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3676 unsigned long addr, int page_nid,
3677 int *flags)
3678 {
3679 get_page(page);
3680
3681 count_vm_numa_event(NUMA_HINT_FAULTS);
3682 if (page_nid == numa_node_id()) {
3683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3684 *flags |= TNF_FAULT_LOCAL;
3685 }
3686
3687 return mpol_misplaced(page, vma, addr);
3688 }
3689
3690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3691 {
3692 struct vm_area_struct *vma = vmf->vma;
3693 struct page *page = NULL;
3694 int page_nid = NUMA_NO_NODE;
3695 int last_cpupid;
3696 int target_nid;
3697 bool migrated = false;
3698 pte_t pte, old_pte;
3699 bool was_writable = pte_savedwrite(vmf->orig_pte);
3700 int flags = 0;
3701
3702 /*
3703 * The "pte" at this point cannot be used safely without
3704 * validation through pte_unmap_same(). It's of NUMA type but
3705 * the pfn may be screwed if the read is non atomic.
3706 */
3707 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3708 spin_lock(vmf->ptl);
3709 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3710 pte_unmap_unlock(vmf->pte, vmf->ptl);
3711 goto out;
3712 }
3713
3714 /*
3715 * Make it present again, Depending on how arch implementes non
3716 * accessible ptes, some can allow access by kernel mode.
3717 */
3718 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3719 pte = pte_modify(old_pte, vma->vm_page_prot);
3720 pte = pte_mkyoung(pte);
3721 if (was_writable)
3722 pte = pte_mkwrite(pte);
3723 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3724 update_mmu_cache(vma, vmf->address, vmf->pte);
3725
3726 page = vm_normal_page(vma, vmf->address, pte);
3727 if (!page) {
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 return 0;
3730 }
3731
3732 /* TODO: handle PTE-mapped THP */
3733 if (PageCompound(page)) {
3734 pte_unmap_unlock(vmf->pte, vmf->ptl);
3735 return 0;
3736 }
3737
3738 /*
3739 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3740 * much anyway since they can be in shared cache state. This misses
3741 * the case where a mapping is writable but the process never writes
3742 * to it but pte_write gets cleared during protection updates and
3743 * pte_dirty has unpredictable behaviour between PTE scan updates,
3744 * background writeback, dirty balancing and application behaviour.
3745 */
3746 if (!pte_write(pte))
3747 flags |= TNF_NO_GROUP;
3748
3749 /*
3750 * Flag if the page is shared between multiple address spaces. This
3751 * is later used when determining whether to group tasks together
3752 */
3753 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3754 flags |= TNF_SHARED;
3755
3756 last_cpupid = page_cpupid_last(page);
3757 page_nid = page_to_nid(page);
3758 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3759 &flags);
3760 pte_unmap_unlock(vmf->pte, vmf->ptl);
3761 if (target_nid == NUMA_NO_NODE) {
3762 put_page(page);
3763 goto out;
3764 }
3765
3766 /* Migrate to the requested node */
3767 migrated = migrate_misplaced_page(page, vma, target_nid);
3768 if (migrated) {
3769 page_nid = target_nid;
3770 flags |= TNF_MIGRATED;
3771 } else
3772 flags |= TNF_MIGRATE_FAIL;
3773
3774 out:
3775 if (page_nid != NUMA_NO_NODE)
3776 task_numa_fault(last_cpupid, page_nid, 1, flags);
3777 return 0;
3778 }
3779
3780 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3781 {
3782 if (vma_is_anonymous(vmf->vma))
3783 return do_huge_pmd_anonymous_page(vmf);
3784 if (vmf->vma->vm_ops->huge_fault)
3785 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3786 return VM_FAULT_FALLBACK;
3787 }
3788
3789 /* `inline' is required to avoid gcc 4.1.2 build error */
3790 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3791 {
3792 if (vma_is_anonymous(vmf->vma))
3793 return do_huge_pmd_wp_page(vmf, orig_pmd);
3794 if (vmf->vma->vm_ops->huge_fault)
3795 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3796
3797 /* COW handled on pte level: split pmd */
3798 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3799 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3800
3801 return VM_FAULT_FALLBACK;
3802 }
3803
3804 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3805 {
3806 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3807 }
3808
3809 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3810 {
3811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3812 /* No support for anonymous transparent PUD pages yet */
3813 if (vma_is_anonymous(vmf->vma))
3814 return VM_FAULT_FALLBACK;
3815 if (vmf->vma->vm_ops->huge_fault)
3816 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3818 return VM_FAULT_FALLBACK;
3819 }
3820
3821 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3822 {
3823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3824 /* No support for anonymous transparent PUD pages yet */
3825 if (vma_is_anonymous(vmf->vma))
3826 return VM_FAULT_FALLBACK;
3827 if (vmf->vma->vm_ops->huge_fault)
3828 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3830 return VM_FAULT_FALLBACK;
3831 }
3832
3833 /*
3834 * These routines also need to handle stuff like marking pages dirty
3835 * and/or accessed for architectures that don't do it in hardware (most
3836 * RISC architectures). The early dirtying is also good on the i386.
3837 *
3838 * There is also a hook called "update_mmu_cache()" that architectures
3839 * with external mmu caches can use to update those (ie the Sparc or
3840 * PowerPC hashed page tables that act as extended TLBs).
3841 *
3842 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3843 * concurrent faults).
3844 *
3845 * The mmap_sem may have been released depending on flags and our return value.
3846 * See filemap_fault() and __lock_page_or_retry().
3847 */
3848 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3849 {
3850 pte_t entry;
3851
3852 if (unlikely(pmd_none(*vmf->pmd))) {
3853 /*
3854 * Leave __pte_alloc() until later: because vm_ops->fault may
3855 * want to allocate huge page, and if we expose page table
3856 * for an instant, it will be difficult to retract from
3857 * concurrent faults and from rmap lookups.
3858 */
3859 vmf->pte = NULL;
3860 } else {
3861 /* See comment in pte_alloc_one_map() */
3862 if (pmd_devmap_trans_unstable(vmf->pmd))
3863 return 0;
3864 /*
3865 * A regular pmd is established and it can't morph into a huge
3866 * pmd from under us anymore at this point because we hold the
3867 * mmap_sem read mode and khugepaged takes it in write mode.
3868 * So now it's safe to run pte_offset_map().
3869 */
3870 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3871 vmf->orig_pte = *vmf->pte;
3872
3873 /*
3874 * some architectures can have larger ptes than wordsize,
3875 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3876 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3877 * accesses. The code below just needs a consistent view
3878 * for the ifs and we later double check anyway with the
3879 * ptl lock held. So here a barrier will do.
3880 */
3881 barrier();
3882 if (pte_none(vmf->orig_pte)) {
3883 pte_unmap(vmf->pte);
3884 vmf->pte = NULL;
3885 }
3886 }
3887
3888 if (!vmf->pte) {
3889 if (vma_is_anonymous(vmf->vma))
3890 return do_anonymous_page(vmf);
3891 else
3892 return do_fault(vmf);
3893 }
3894
3895 if (!pte_present(vmf->orig_pte))
3896 return do_swap_page(vmf);
3897
3898 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3899 return do_numa_page(vmf);
3900
3901 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3902 spin_lock(vmf->ptl);
3903 entry = vmf->orig_pte;
3904 if (unlikely(!pte_same(*vmf->pte, entry)))
3905 goto unlock;
3906 if (vmf->flags & FAULT_FLAG_WRITE) {
3907 if (!pte_write(entry))
3908 return do_wp_page(vmf);
3909 entry = pte_mkdirty(entry);
3910 }
3911 entry = pte_mkyoung(entry);
3912 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3913 vmf->flags & FAULT_FLAG_WRITE)) {
3914 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3915 } else {
3916 /*
3917 * This is needed only for protection faults but the arch code
3918 * is not yet telling us if this is a protection fault or not.
3919 * This still avoids useless tlb flushes for .text page faults
3920 * with threads.
3921 */
3922 if (vmf->flags & FAULT_FLAG_WRITE)
3923 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3924 }
3925 unlock:
3926 pte_unmap_unlock(vmf->pte, vmf->ptl);
3927 return 0;
3928 }
3929
3930 /*
3931 * By the time we get here, we already hold the mm semaphore
3932 *
3933 * The mmap_sem may have been released depending on flags and our
3934 * return value. See filemap_fault() and __lock_page_or_retry().
3935 */
3936 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3937 unsigned long address, unsigned int flags)
3938 {
3939 struct vm_fault vmf = {
3940 .vma = vma,
3941 .address = address & PAGE_MASK,
3942 .flags = flags,
3943 .pgoff = linear_page_index(vma, address),
3944 .gfp_mask = __get_fault_gfp_mask(vma),
3945 };
3946 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3947 struct mm_struct *mm = vma->vm_mm;
3948 pgd_t *pgd;
3949 p4d_t *p4d;
3950 vm_fault_t ret;
3951
3952 pgd = pgd_offset(mm, address);
3953 p4d = p4d_alloc(mm, pgd, address);
3954 if (!p4d)
3955 return VM_FAULT_OOM;
3956
3957 vmf.pud = pud_alloc(mm, p4d, address);
3958 if (!vmf.pud)
3959 return VM_FAULT_OOM;
3960 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3961 ret = create_huge_pud(&vmf);
3962 if (!(ret & VM_FAULT_FALLBACK))
3963 return ret;
3964 } else {
3965 pud_t orig_pud = *vmf.pud;
3966
3967 barrier();
3968 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3969
3970 /* NUMA case for anonymous PUDs would go here */
3971
3972 if (dirty && !pud_write(orig_pud)) {
3973 ret = wp_huge_pud(&vmf, orig_pud);
3974 if (!(ret & VM_FAULT_FALLBACK))
3975 return ret;
3976 } else {
3977 huge_pud_set_accessed(&vmf, orig_pud);
3978 return 0;
3979 }
3980 }
3981 }
3982
3983 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3984 if (!vmf.pmd)
3985 return VM_FAULT_OOM;
3986 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3987 ret = create_huge_pmd(&vmf);
3988 if (!(ret & VM_FAULT_FALLBACK))
3989 return ret;
3990 } else {
3991 pmd_t orig_pmd = *vmf.pmd;
3992
3993 barrier();
3994 if (unlikely(is_swap_pmd(orig_pmd))) {
3995 VM_BUG_ON(thp_migration_supported() &&
3996 !is_pmd_migration_entry(orig_pmd));
3997 if (is_pmd_migration_entry(orig_pmd))
3998 pmd_migration_entry_wait(mm, vmf.pmd);
3999 return 0;
4000 }
4001 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4002 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4003 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4004
4005 if (dirty && !pmd_write(orig_pmd)) {
4006 ret = wp_huge_pmd(&vmf, orig_pmd);
4007 if (!(ret & VM_FAULT_FALLBACK))
4008 return ret;
4009 } else {
4010 huge_pmd_set_accessed(&vmf, orig_pmd);
4011 return 0;
4012 }
4013 }
4014 }
4015
4016 return handle_pte_fault(&vmf);
4017 }
4018
4019 /*
4020 * By the time we get here, we already hold the mm semaphore
4021 *
4022 * The mmap_sem may have been released depending on flags and our
4023 * return value. See filemap_fault() and __lock_page_or_retry().
4024 */
4025 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4026 unsigned int flags)
4027 {
4028 vm_fault_t ret;
4029
4030 __set_current_state(TASK_RUNNING);
4031
4032 count_vm_event(PGFAULT);
4033 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4034
4035 /* do counter updates before entering really critical section. */
4036 check_sync_rss_stat(current);
4037
4038 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4039 flags & FAULT_FLAG_INSTRUCTION,
4040 flags & FAULT_FLAG_REMOTE))
4041 return VM_FAULT_SIGSEGV;
4042
4043 /*
4044 * Enable the memcg OOM handling for faults triggered in user
4045 * space. Kernel faults are handled more gracefully.
4046 */
4047 if (flags & FAULT_FLAG_USER)
4048 mem_cgroup_enter_user_fault();
4049
4050 if (unlikely(is_vm_hugetlb_page(vma)))
4051 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4052 else
4053 ret = __handle_mm_fault(vma, address, flags);
4054
4055 if (flags & FAULT_FLAG_USER) {
4056 mem_cgroup_exit_user_fault();
4057 /*
4058 * The task may have entered a memcg OOM situation but
4059 * if the allocation error was handled gracefully (no
4060 * VM_FAULT_OOM), there is no need to kill anything.
4061 * Just clean up the OOM state peacefully.
4062 */
4063 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4064 mem_cgroup_oom_synchronize(false);
4065 }
4066
4067 return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(handle_mm_fault);
4070
4071 #ifndef __PAGETABLE_P4D_FOLDED
4072 /*
4073 * Allocate p4d page table.
4074 * We've already handled the fast-path in-line.
4075 */
4076 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4077 {
4078 p4d_t *new = p4d_alloc_one(mm, address);
4079 if (!new)
4080 return -ENOMEM;
4081
4082 smp_wmb(); /* See comment in __pte_alloc */
4083
4084 spin_lock(&mm->page_table_lock);
4085 if (pgd_present(*pgd)) /* Another has populated it */
4086 p4d_free(mm, new);
4087 else
4088 pgd_populate(mm, pgd, new);
4089 spin_unlock(&mm->page_table_lock);
4090 return 0;
4091 }
4092 #endif /* __PAGETABLE_P4D_FOLDED */
4093
4094 #ifndef __PAGETABLE_PUD_FOLDED
4095 /*
4096 * Allocate page upper directory.
4097 * We've already handled the fast-path in-line.
4098 */
4099 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4100 {
4101 pud_t *new = pud_alloc_one(mm, address);
4102 if (!new)
4103 return -ENOMEM;
4104
4105 smp_wmb(); /* See comment in __pte_alloc */
4106
4107 spin_lock(&mm->page_table_lock);
4108 #ifndef __ARCH_HAS_5LEVEL_HACK
4109 if (!p4d_present(*p4d)) {
4110 mm_inc_nr_puds(mm);
4111 p4d_populate(mm, p4d, new);
4112 } else /* Another has populated it */
4113 pud_free(mm, new);
4114 #else
4115 if (!pgd_present(*p4d)) {
4116 mm_inc_nr_puds(mm);
4117 pgd_populate(mm, p4d, new);
4118 } else /* Another has populated it */
4119 pud_free(mm, new);
4120 #endif /* __ARCH_HAS_5LEVEL_HACK */
4121 spin_unlock(&mm->page_table_lock);
4122 return 0;
4123 }
4124 #endif /* __PAGETABLE_PUD_FOLDED */
4125
4126 #ifndef __PAGETABLE_PMD_FOLDED
4127 /*
4128 * Allocate page middle directory.
4129 * We've already handled the fast-path in-line.
4130 */
4131 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4132 {
4133 spinlock_t *ptl;
4134 pmd_t *new = pmd_alloc_one(mm, address);
4135 if (!new)
4136 return -ENOMEM;
4137
4138 smp_wmb(); /* See comment in __pte_alloc */
4139
4140 ptl = pud_lock(mm, pud);
4141 #ifndef __ARCH_HAS_4LEVEL_HACK
4142 if (!pud_present(*pud)) {
4143 mm_inc_nr_pmds(mm);
4144 pud_populate(mm, pud, new);
4145 } else /* Another has populated it */
4146 pmd_free(mm, new);
4147 #else
4148 if (!pgd_present(*pud)) {
4149 mm_inc_nr_pmds(mm);
4150 pgd_populate(mm, pud, new);
4151 } else /* Another has populated it */
4152 pmd_free(mm, new);
4153 #endif /* __ARCH_HAS_4LEVEL_HACK */
4154 spin_unlock(ptl);
4155 return 0;
4156 }
4157 #endif /* __PAGETABLE_PMD_FOLDED */
4158
4159 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4160 struct mmu_notifier_range *range,
4161 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4162 {
4163 pgd_t *pgd;
4164 p4d_t *p4d;
4165 pud_t *pud;
4166 pmd_t *pmd;
4167 pte_t *ptep;
4168
4169 pgd = pgd_offset(mm, address);
4170 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4171 goto out;
4172
4173 p4d = p4d_offset(pgd, address);
4174 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4175 goto out;
4176
4177 pud = pud_offset(p4d, address);
4178 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4179 goto out;
4180
4181 pmd = pmd_offset(pud, address);
4182 VM_BUG_ON(pmd_trans_huge(*pmd));
4183
4184 if (pmd_huge(*pmd)) {
4185 if (!pmdpp)
4186 goto out;
4187
4188 if (range) {
4189 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4190 NULL, mm, address & PMD_MASK,
4191 (address & PMD_MASK) + PMD_SIZE);
4192 mmu_notifier_invalidate_range_start(range);
4193 }
4194 *ptlp = pmd_lock(mm, pmd);
4195 if (pmd_huge(*pmd)) {
4196 *pmdpp = pmd;
4197 return 0;
4198 }
4199 spin_unlock(*ptlp);
4200 if (range)
4201 mmu_notifier_invalidate_range_end(range);
4202 }
4203
4204 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4205 goto out;
4206
4207 if (range) {
4208 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4209 address & PAGE_MASK,
4210 (address & PAGE_MASK) + PAGE_SIZE);
4211 mmu_notifier_invalidate_range_start(range);
4212 }
4213 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4214 if (!pte_present(*ptep))
4215 goto unlock;
4216 *ptepp = ptep;
4217 return 0;
4218 unlock:
4219 pte_unmap_unlock(ptep, *ptlp);
4220 if (range)
4221 mmu_notifier_invalidate_range_end(range);
4222 out:
4223 return -EINVAL;
4224 }
4225
4226 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4227 pte_t **ptepp, spinlock_t **ptlp)
4228 {
4229 int res;
4230
4231 /* (void) is needed to make gcc happy */
4232 (void) __cond_lock(*ptlp,
4233 !(res = __follow_pte_pmd(mm, address, NULL,
4234 ptepp, NULL, ptlp)));
4235 return res;
4236 }
4237
4238 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4239 struct mmu_notifier_range *range,
4240 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4241 {
4242 int res;
4243
4244 /* (void) is needed to make gcc happy */
4245 (void) __cond_lock(*ptlp,
4246 !(res = __follow_pte_pmd(mm, address, range,
4247 ptepp, pmdpp, ptlp)));
4248 return res;
4249 }
4250 EXPORT_SYMBOL(follow_pte_pmd);
4251
4252 /**
4253 * follow_pfn - look up PFN at a user virtual address
4254 * @vma: memory mapping
4255 * @address: user virtual address
4256 * @pfn: location to store found PFN
4257 *
4258 * Only IO mappings and raw PFN mappings are allowed.
4259 *
4260 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4261 */
4262 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4263 unsigned long *pfn)
4264 {
4265 int ret = -EINVAL;
4266 spinlock_t *ptl;
4267 pte_t *ptep;
4268
4269 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4270 return ret;
4271
4272 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4273 if (ret)
4274 return ret;
4275 *pfn = pte_pfn(*ptep);
4276 pte_unmap_unlock(ptep, ptl);
4277 return 0;
4278 }
4279 EXPORT_SYMBOL(follow_pfn);
4280
4281 #ifdef CONFIG_HAVE_IOREMAP_PROT
4282 int follow_phys(struct vm_area_struct *vma,
4283 unsigned long address, unsigned int flags,
4284 unsigned long *prot, resource_size_t *phys)
4285 {
4286 int ret = -EINVAL;
4287 pte_t *ptep, pte;
4288 spinlock_t *ptl;
4289
4290 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4291 goto out;
4292
4293 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4294 goto out;
4295 pte = *ptep;
4296
4297 if ((flags & FOLL_WRITE) && !pte_write(pte))
4298 goto unlock;
4299
4300 *prot = pgprot_val(pte_pgprot(pte));
4301 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4302
4303 ret = 0;
4304 unlock:
4305 pte_unmap_unlock(ptep, ptl);
4306 out:
4307 return ret;
4308 }
4309
4310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4311 void *buf, int len, int write)
4312 {
4313 resource_size_t phys_addr;
4314 unsigned long prot = 0;
4315 void __iomem *maddr;
4316 int offset = addr & (PAGE_SIZE-1);
4317
4318 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4319 return -EINVAL;
4320
4321 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4322 if (!maddr)
4323 return -ENOMEM;
4324
4325 if (write)
4326 memcpy_toio(maddr + offset, buf, len);
4327 else
4328 memcpy_fromio(buf, maddr + offset, len);
4329 iounmap(maddr);
4330
4331 return len;
4332 }
4333 EXPORT_SYMBOL_GPL(generic_access_phys);
4334 #endif
4335
4336 /*
4337 * Access another process' address space as given in mm. If non-NULL, use the
4338 * given task for page fault accounting.
4339 */
4340 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4341 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4342 {
4343 struct vm_area_struct *vma;
4344 void *old_buf = buf;
4345 int write = gup_flags & FOLL_WRITE;
4346
4347 down_read(&mm->mmap_sem);
4348 /* ignore errors, just check how much was successfully transferred */
4349 while (len) {
4350 int bytes, ret, offset;
4351 void *maddr;
4352 struct page *page = NULL;
4353
4354 ret = get_user_pages_remote(tsk, mm, addr, 1,
4355 gup_flags, &page, &vma, NULL);
4356 if (ret <= 0) {
4357 #ifndef CONFIG_HAVE_IOREMAP_PROT
4358 break;
4359 #else
4360 /*
4361 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4362 * we can access using slightly different code.
4363 */
4364 vma = find_vma(mm, addr);
4365 if (!vma || vma->vm_start > addr)
4366 break;
4367 if (vma->vm_ops && vma->vm_ops->access)
4368 ret = vma->vm_ops->access(vma, addr, buf,
4369 len, write);
4370 if (ret <= 0)
4371 break;
4372 bytes = ret;
4373 #endif
4374 } else {
4375 bytes = len;
4376 offset = addr & (PAGE_SIZE-1);
4377 if (bytes > PAGE_SIZE-offset)
4378 bytes = PAGE_SIZE-offset;
4379
4380 maddr = kmap(page);
4381 if (write) {
4382 copy_to_user_page(vma, page, addr,
4383 maddr + offset, buf, bytes);
4384 set_page_dirty_lock(page);
4385 } else {
4386 copy_from_user_page(vma, page, addr,
4387 buf, maddr + offset, bytes);
4388 }
4389 kunmap(page);
4390 put_page(page);
4391 }
4392 len -= bytes;
4393 buf += bytes;
4394 addr += bytes;
4395 }
4396 up_read(&mm->mmap_sem);
4397
4398 return buf - old_buf;
4399 }
4400
4401 /**
4402 * access_remote_vm - access another process' address space
4403 * @mm: the mm_struct of the target address space
4404 * @addr: start address to access
4405 * @buf: source or destination buffer
4406 * @len: number of bytes to transfer
4407 * @gup_flags: flags modifying lookup behaviour
4408 *
4409 * The caller must hold a reference on @mm.
4410 *
4411 * Return: number of bytes copied from source to destination.
4412 */
4413 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4414 void *buf, int len, unsigned int gup_flags)
4415 {
4416 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4417 }
4418
4419 /*
4420 * Access another process' address space.
4421 * Source/target buffer must be kernel space,
4422 * Do not walk the page table directly, use get_user_pages
4423 */
4424 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4425 void *buf, int len, unsigned int gup_flags)
4426 {
4427 struct mm_struct *mm;
4428 int ret;
4429
4430 mm = get_task_mm(tsk);
4431 if (!mm)
4432 return 0;
4433
4434 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4435
4436 mmput(mm);
4437
4438 return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(access_process_vm);
4441
4442 /*
4443 * Print the name of a VMA.
4444 */
4445 void print_vma_addr(char *prefix, unsigned long ip)
4446 {
4447 struct mm_struct *mm = current->mm;
4448 struct vm_area_struct *vma;
4449
4450 /*
4451 * we might be running from an atomic context so we cannot sleep
4452 */
4453 if (!down_read_trylock(&mm->mmap_sem))
4454 return;
4455
4456 vma = find_vma(mm, ip);
4457 if (vma && vma->vm_file) {
4458 struct file *f = vma->vm_file;
4459 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4460 if (buf) {
4461 char *p;
4462
4463 p = file_path(f, buf, PAGE_SIZE);
4464 if (IS_ERR(p))
4465 p = "?";
4466 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4467 vma->vm_start,
4468 vma->vm_end - vma->vm_start);
4469 free_page((unsigned long)buf);
4470 }
4471 }
4472 up_read(&mm->mmap_sem);
4473 }
4474
4475 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4476 void __might_fault(const char *file, int line)
4477 {
4478 /*
4479 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4480 * holding the mmap_sem, this is safe because kernel memory doesn't
4481 * get paged out, therefore we'll never actually fault, and the
4482 * below annotations will generate false positives.
4483 */
4484 if (uaccess_kernel())
4485 return;
4486 if (pagefault_disabled())
4487 return;
4488 __might_sleep(file, line, 0);
4489 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4490 if (current->mm)
4491 might_lock_read(&current->mm->mmap_sem);
4492 #endif
4493 }
4494 EXPORT_SYMBOL(__might_fault);
4495 #endif
4496
4497 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4498 /*
4499 * Process all subpages of the specified huge page with the specified
4500 * operation. The target subpage will be processed last to keep its
4501 * cache lines hot.
4502 */
4503 static inline void process_huge_page(
4504 unsigned long addr_hint, unsigned int pages_per_huge_page,
4505 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4506 void *arg)
4507 {
4508 int i, n, base, l;
4509 unsigned long addr = addr_hint &
4510 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4511
4512 /* Process target subpage last to keep its cache lines hot */
4513 might_sleep();
4514 n = (addr_hint - addr) / PAGE_SIZE;
4515 if (2 * n <= pages_per_huge_page) {
4516 /* If target subpage in first half of huge page */
4517 base = 0;
4518 l = n;
4519 /* Process subpages at the end of huge page */
4520 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4521 cond_resched();
4522 process_subpage(addr + i * PAGE_SIZE, i, arg);
4523 }
4524 } else {
4525 /* If target subpage in second half of huge page */
4526 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4527 l = pages_per_huge_page - n;
4528 /* Process subpages at the begin of huge page */
4529 for (i = 0; i < base; i++) {
4530 cond_resched();
4531 process_subpage(addr + i * PAGE_SIZE, i, arg);
4532 }
4533 }
4534 /*
4535 * Process remaining subpages in left-right-left-right pattern
4536 * towards the target subpage
4537 */
4538 for (i = 0; i < l; i++) {
4539 int left_idx = base + i;
4540 int right_idx = base + 2 * l - 1 - i;
4541
4542 cond_resched();
4543 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4544 cond_resched();
4545 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4546 }
4547 }
4548
4549 static void clear_gigantic_page(struct page *page,
4550 unsigned long addr,
4551 unsigned int pages_per_huge_page)
4552 {
4553 int i;
4554 struct page *p = page;
4555
4556 might_sleep();
4557 for (i = 0; i < pages_per_huge_page;
4558 i++, p = mem_map_next(p, page, i)) {
4559 cond_resched();
4560 clear_user_highpage(p, addr + i * PAGE_SIZE);
4561 }
4562 }
4563
4564 static void clear_subpage(unsigned long addr, int idx, void *arg)
4565 {
4566 struct page *page = arg;
4567
4568 clear_user_highpage(page + idx, addr);
4569 }
4570
4571 void clear_huge_page(struct page *page,
4572 unsigned long addr_hint, unsigned int pages_per_huge_page)
4573 {
4574 unsigned long addr = addr_hint &
4575 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4576
4577 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4578 clear_gigantic_page(page, addr, pages_per_huge_page);
4579 return;
4580 }
4581
4582 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4583 }
4584
4585 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4586 unsigned long addr,
4587 struct vm_area_struct *vma,
4588 unsigned int pages_per_huge_page)
4589 {
4590 int i;
4591 struct page *dst_base = dst;
4592 struct page *src_base = src;
4593
4594 for (i = 0; i < pages_per_huge_page; ) {
4595 cond_resched();
4596 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4597
4598 i++;
4599 dst = mem_map_next(dst, dst_base, i);
4600 src = mem_map_next(src, src_base, i);
4601 }
4602 }
4603
4604 struct copy_subpage_arg {
4605 struct page *dst;
4606 struct page *src;
4607 struct vm_area_struct *vma;
4608 };
4609
4610 static void copy_subpage(unsigned long addr, int idx, void *arg)
4611 {
4612 struct copy_subpage_arg *copy_arg = arg;
4613
4614 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4615 addr, copy_arg->vma);
4616 }
4617
4618 void copy_user_huge_page(struct page *dst, struct page *src,
4619 unsigned long addr_hint, struct vm_area_struct *vma,
4620 unsigned int pages_per_huge_page)
4621 {
4622 unsigned long addr = addr_hint &
4623 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4624 struct copy_subpage_arg arg = {
4625 .dst = dst,
4626 .src = src,
4627 .vma = vma,
4628 };
4629
4630 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4631 copy_user_gigantic_page(dst, src, addr, vma,
4632 pages_per_huge_page);
4633 return;
4634 }
4635
4636 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4637 }
4638
4639 long copy_huge_page_from_user(struct page *dst_page,
4640 const void __user *usr_src,
4641 unsigned int pages_per_huge_page,
4642 bool allow_pagefault)
4643 {
4644 void *src = (void *)usr_src;
4645 void *page_kaddr;
4646 unsigned long i, rc = 0;
4647 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4648
4649 for (i = 0; i < pages_per_huge_page; i++) {
4650 if (allow_pagefault)
4651 page_kaddr = kmap(dst_page + i);
4652 else
4653 page_kaddr = kmap_atomic(dst_page + i);
4654 rc = copy_from_user(page_kaddr,
4655 (const void __user *)(src + i * PAGE_SIZE),
4656 PAGE_SIZE);
4657 if (allow_pagefault)
4658 kunmap(dst_page + i);
4659 else
4660 kunmap_atomic(page_kaddr);
4661
4662 ret_val -= (PAGE_SIZE - rc);
4663 if (rc)
4664 break;
4665
4666 cond_resched();
4667 }
4668 return ret_val;
4669 }
4670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4671
4672 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4673
4674 static struct kmem_cache *page_ptl_cachep;
4675
4676 void __init ptlock_cache_init(void)
4677 {
4678 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4679 SLAB_PANIC, NULL);
4680 }
4681
4682 bool ptlock_alloc(struct page *page)
4683 {
4684 spinlock_t *ptl;
4685
4686 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4687 if (!ptl)
4688 return false;
4689 page->ptl = ptl;
4690 return true;
4691 }
4692
4693 void ptlock_free(struct page *page)
4694 {
4695 kmem_cache_free(page_ptl_cachep, page->ptl);
4696 }
4697 #endif