]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107 1;
108 #else
109 2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114 randomize_va_space = 0;
115 return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127 static int __init init_zero_pfn(void)
128 {
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
145 }
146 }
147 current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
191 return true;
192 }
193
194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195 return false;
196
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
199 return false;
200
201 tlb->batch_count++;
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
209 return true;
210 }
211
212 /* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219 tlb->mm = mm;
220
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
223 tlb->need_flush_all = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233
234 __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 if (!tlb->end)
240 return;
241
242 tlb_flush(tlb);
243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
246 #endif
247 __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252 struct mmu_gather_batch *batch;
253
254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295 struct mmu_gather_batch *batch;
296
297 VM_BUG_ON(!tlb->end);
298
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
304 batch = tlb->active;
305 }
306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308 return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316 * See the comment near struct mmu_table_batch.
317 */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321 /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
394 {
395 pgtable_t token = pmd_pgtable(*pmd);
396 pmd_clear(pmd);
397 pte_free_tlb(tlb, token, addr);
398 atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
404 {
405 pmd_t *pmd;
406 unsigned long next;
407 unsigned long start;
408
409 start = addr;
410 pmd = pmd_offset(pud, addr);
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
415 free_pte_range(tlb, pmd, addr);
416 } while (pmd++, addr = next, addr != end);
417
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
425 }
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
431 pmd_free_tlb(tlb, pmd, start);
432 mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
438 {
439 pud_t *pud;
440 unsigned long next;
441 unsigned long start;
442
443 start = addr;
444 pud = pud_offset(pgd, addr);
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450 } while (pud++, addr = next, addr != end);
451
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
459 }
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
465 pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469 * This function frees user-level page tables of a process.
470 */
471 void free_pgd_range(struct mmu_gather *tlb,
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
474 {
475 pgd_t *pgd;
476 unsigned long next;
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
503
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
520 pgd = pgd_offset(tlb->mm, addr);
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526 } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530 unsigned long floor, unsigned long ceiling)
531 {
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
536 /*
537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
539 */
540 unlink_anon_vmas(vma);
541 unlink_file_vma(vma);
542
543 if (is_vm_hugetlb_page(vma)) {
544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551 && !is_vm_hugetlb_page(next)) {
552 vma = next;
553 next = vma->vm_next;
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
560 vma = next;
561 }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
566 {
567 spinlock_t *ptl;
568 pgtable_t new = pte_alloc_one(mm, address);
569 int wait_split_huge_page;
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 wait_split_huge_page = 0;
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
591 atomic_long_inc(&mm->nr_ptes);
592 pmd_populate(mm, pmd, new);
593 new = NULL;
594 } else if (unlikely(pmd_trans_splitting(*pmd)))
595 wait_split_huge_page = 1;
596 spin_unlock(ptl);
597 if (new)
598 pte_free(mm, new);
599 if (wait_split_huge_page)
600 wait_split_huge_page(vma->anon_vma, pmd);
601 return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607 if (!new)
608 return -ENOMEM;
609
610 smp_wmb(); /* See comment in __pte_alloc */
611
612 spin_lock(&init_mm.page_table_lock);
613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
614 pmd_populate_kernel(&init_mm, pmd, new);
615 new = NULL;
616 } else
617 VM_BUG_ON(pmd_trans_splitting(*pmd));
618 spin_unlock(&init_mm.page_table_lock);
619 if (new)
620 pte_free_kernel(&init_mm, new);
621 return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631 int i;
632
633 if (current->mm == mm)
634 sync_mm_rss(mm);
635 for (i = 0; i < NR_MM_COUNTERS; i++)
636 if (rss[i])
637 add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
644 *
645 * The calling function must still handle the error.
646 */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte, struct page *page)
649 {
650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651 pud_t *pud = pud_offset(pgd, addr);
652 pmd_t *pmd = pmd_offset(pud, addr);
653 struct address_space *mapping;
654 pgoff_t index;
655 static unsigned long resume;
656 static unsigned long nr_shown;
657 static unsigned long nr_unshown;
658
659 /*
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
662 */
663 if (nr_shown == 60) {
664 if (time_before(jiffies, resume)) {
665 nr_unshown++;
666 return;
667 }
668 if (nr_unshown) {
669 printk(KERN_ALERT
670 "BUG: Bad page map: %lu messages suppressed\n",
671 nr_unshown);
672 nr_unshown = 0;
673 }
674 nr_shown = 0;
675 }
676 if (nr_shown++ == 0)
677 resume = jiffies + 60 * HZ;
678
679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680 index = linear_page_index(vma, addr);
681
682 printk(KERN_ALERT
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
684 current->comm,
685 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686 if (page)
687 dump_page(page, "bad pte");
688 printk(KERN_ALERT
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 /*
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 */
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695 vma->vm_file,
696 vma->vm_ops ? vma->vm_ops->fault : NULL,
697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698 mapping ? mapping->a_ops->readpage : NULL);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
762 if (!is_zero_pfn(pfn))
763 print_bad_pte(vma, addr, pte, NULL);
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
782 }
783
784 if (is_zero_pfn(pfn))
785 return NULL;
786 check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /*
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
795 */
796 out:
797 return pfn_to_page(pfn);
798 }
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802 pmd_t pmd)
803 {
804 unsigned long pfn = pmd_pfn(pmd);
805
806 /*
807 * There is no pmd_special() but there may be special pmds, e.g.
808 * in a direct-access (dax) mapping, so let's just replicate the
809 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810 */
811 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812 if (vma->vm_flags & VM_MIXEDMAP) {
813 if (!pfn_valid(pfn))
814 return NULL;
815 goto out;
816 } else {
817 unsigned long off;
818 off = (addr - vma->vm_start) >> PAGE_SHIFT;
819 if (pfn == vma->vm_pgoff + off)
820 return NULL;
821 if (!is_cow_mapping(vma->vm_flags))
822 return NULL;
823 }
824 }
825
826 if (is_zero_pfn(pfn))
827 return NULL;
828 if (unlikely(pfn > highest_memmap_pfn))
829 return NULL;
830
831 /*
832 * NOTE! We still have PageReserved() pages in the page tables.
833 * eg. VDSO mappings can cause them to exist.
834 */
835 out:
836 return pfn_to_page(pfn);
837 }
838 #endif
839
840 /*
841 * copy one vm_area from one task to the other. Assumes the page tables
842 * already present in the new task to be cleared in the whole range
843 * covered by this vma.
844 */
845
846 static inline unsigned long
847 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
849 unsigned long addr, int *rss)
850 {
851 unsigned long vm_flags = vma->vm_flags;
852 pte_t pte = *src_pte;
853 struct page *page;
854
855 /* pte contains position in swap or file, so copy. */
856 if (unlikely(!pte_present(pte))) {
857 swp_entry_t entry = pte_to_swp_entry(pte);
858
859 if (likely(!non_swap_entry(entry))) {
860 if (swap_duplicate(entry) < 0)
861 return entry.val;
862
863 /* make sure dst_mm is on swapoff's mmlist. */
864 if (unlikely(list_empty(&dst_mm->mmlist))) {
865 spin_lock(&mmlist_lock);
866 if (list_empty(&dst_mm->mmlist))
867 list_add(&dst_mm->mmlist,
868 &src_mm->mmlist);
869 spin_unlock(&mmlist_lock);
870 }
871 rss[MM_SWAPENTS]++;
872 } else if (is_migration_entry(entry)) {
873 page = migration_entry_to_page(entry);
874
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
879
880 if (is_write_migration_entry(entry) &&
881 is_cow_mapping(vm_flags)) {
882 /*
883 * COW mappings require pages in both
884 * parent and child to be set to read.
885 */
886 make_migration_entry_read(&entry);
887 pte = swp_entry_to_pte(entry);
888 if (pte_swp_soft_dirty(*src_pte))
889 pte = pte_swp_mksoft_dirty(pte);
890 set_pte_at(src_mm, addr, src_pte, pte);
891 }
892 }
893 goto out_set_pte;
894 }
895
896 /*
897 * If it's a COW mapping, write protect it both
898 * in the parent and the child
899 */
900 if (is_cow_mapping(vm_flags)) {
901 ptep_set_wrprotect(src_mm, addr, src_pte);
902 pte = pte_wrprotect(pte);
903 }
904
905 /*
906 * If it's a shared mapping, mark it clean in
907 * the child
908 */
909 if (vm_flags & VM_SHARED)
910 pte = pte_mkclean(pte);
911 pte = pte_mkold(pte);
912
913 page = vm_normal_page(vma, addr, pte);
914 if (page) {
915 get_page(page);
916 page_dup_rmap(page);
917 if (PageAnon(page))
918 rss[MM_ANONPAGES]++;
919 else
920 rss[MM_FILEPAGES]++;
921 }
922
923 out_set_pte:
924 set_pte_at(dst_mm, addr, dst_pte, pte);
925 return 0;
926 }
927
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930 unsigned long addr, unsigned long end)
931 {
932 pte_t *orig_src_pte, *orig_dst_pte;
933 pte_t *src_pte, *dst_pte;
934 spinlock_t *src_ptl, *dst_ptl;
935 int progress = 0;
936 int rss[NR_MM_COUNTERS];
937 swp_entry_t entry = (swp_entry_t){0};
938
939 again:
940 init_rss_vec(rss);
941
942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 if (!dst_pte)
944 return -ENOMEM;
945 src_pte = pte_offset_map(src_pmd, addr);
946 src_ptl = pte_lockptr(src_mm, src_pmd);
947 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948 orig_src_pte = src_pte;
949 orig_dst_pte = dst_pte;
950 arch_enter_lazy_mmu_mode();
951
952 do {
953 /*
954 * We are holding two locks at this point - either of them
955 * could generate latencies in another task on another CPU.
956 */
957 if (progress >= 32) {
958 progress = 0;
959 if (need_resched() ||
960 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961 break;
962 }
963 if (pte_none(*src_pte)) {
964 progress++;
965 continue;
966 }
967 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968 vma, addr, rss);
969 if (entry.val)
970 break;
971 progress += 8;
972 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974 arch_leave_lazy_mmu_mode();
975 spin_unlock(src_ptl);
976 pte_unmap(orig_src_pte);
977 add_mm_rss_vec(dst_mm, rss);
978 pte_unmap_unlock(orig_dst_pte, dst_ptl);
979 cond_resched();
980
981 if (entry.val) {
982 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983 return -ENOMEM;
984 progress = 0;
985 }
986 if (addr != end)
987 goto again;
988 return 0;
989 }
990
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993 unsigned long addr, unsigned long end)
994 {
995 pmd_t *src_pmd, *dst_pmd;
996 unsigned long next;
997
998 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999 if (!dst_pmd)
1000 return -ENOMEM;
1001 src_pmd = pmd_offset(src_pud, addr);
1002 do {
1003 next = pmd_addr_end(addr, end);
1004 if (pmd_trans_huge(*src_pmd)) {
1005 int err;
1006 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1007 err = copy_huge_pmd(dst_mm, src_mm,
1008 dst_pmd, src_pmd, addr, vma);
1009 if (err == -ENOMEM)
1010 return -ENOMEM;
1011 if (!err)
1012 continue;
1013 /* fall through */
1014 }
1015 if (pmd_none_or_clear_bad(src_pmd))
1016 continue;
1017 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021 return 0;
1022 }
1023
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026 unsigned long addr, unsigned long end)
1027 {
1028 pud_t *src_pud, *dst_pud;
1029 unsigned long next;
1030
1031 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032 if (!dst_pud)
1033 return -ENOMEM;
1034 src_pud = pud_offset(src_pgd, addr);
1035 do {
1036 next = pud_addr_end(addr, end);
1037 if (pud_none_or_clear_bad(src_pud))
1038 continue;
1039 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040 vma, addr, next))
1041 return -ENOMEM;
1042 } while (dst_pud++, src_pud++, addr = next, addr != end);
1043 return 0;
1044 }
1045
1046 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 struct vm_area_struct *vma)
1048 {
1049 pgd_t *src_pgd, *dst_pgd;
1050 unsigned long next;
1051 unsigned long addr = vma->vm_start;
1052 unsigned long end = vma->vm_end;
1053 unsigned long mmun_start; /* For mmu_notifiers */
1054 unsigned long mmun_end; /* For mmu_notifiers */
1055 bool is_cow;
1056 int ret;
1057
1058 /*
1059 * Don't copy ptes where a page fault will fill them correctly.
1060 * Fork becomes much lighter when there are big shared or private
1061 * readonly mappings. The tradeoff is that copy_page_range is more
1062 * efficient than faulting.
1063 */
1064 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065 !vma->anon_vma)
1066 return 0;
1067
1068 if (is_vm_hugetlb_page(vma))
1069 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
1071 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1072 /*
1073 * We do not free on error cases below as remove_vma
1074 * gets called on error from higher level routine
1075 */
1076 ret = track_pfn_copy(vma);
1077 if (ret)
1078 return ret;
1079 }
1080
1081 /*
1082 * We need to invalidate the secondary MMU mappings only when
1083 * there could be a permission downgrade on the ptes of the
1084 * parent mm. And a permission downgrade will only happen if
1085 * is_cow_mapping() returns true.
1086 */
1087 is_cow = is_cow_mapping(vma->vm_flags);
1088 mmun_start = addr;
1089 mmun_end = end;
1090 if (is_cow)
1091 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092 mmun_end);
1093
1094 ret = 0;
1095 dst_pgd = pgd_offset(dst_mm, addr);
1096 src_pgd = pgd_offset(src_mm, addr);
1097 do {
1098 next = pgd_addr_end(addr, end);
1099 if (pgd_none_or_clear_bad(src_pgd))
1100 continue;
1101 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102 vma, addr, next))) {
1103 ret = -ENOMEM;
1104 break;
1105 }
1106 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1107
1108 if (is_cow)
1109 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1110 return ret;
1111 }
1112
1113 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114 struct vm_area_struct *vma, pmd_t *pmd,
1115 unsigned long addr, unsigned long end,
1116 struct zap_details *details)
1117 {
1118 struct mm_struct *mm = tlb->mm;
1119 int force_flush = 0;
1120 int rss[NR_MM_COUNTERS];
1121 spinlock_t *ptl;
1122 pte_t *start_pte;
1123 pte_t *pte;
1124 swp_entry_t entry;
1125
1126 again:
1127 init_rss_vec(rss);
1128 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129 pte = start_pte;
1130 flush_tlb_batched_pending(mm);
1131 arch_enter_lazy_mmu_mode();
1132 do {
1133 pte_t ptent = *pte;
1134 if (pte_none(ptent)) {
1135 continue;
1136 }
1137
1138 if (pte_present(ptent)) {
1139 struct page *page;
1140
1141 page = vm_normal_page(vma, addr, ptent);
1142 if (unlikely(details) && page) {
1143 /*
1144 * unmap_shared_mapping_pages() wants to
1145 * invalidate cache without truncating:
1146 * unmap shared but keep private pages.
1147 */
1148 if (details->check_mapping &&
1149 details->check_mapping != page->mapping)
1150 continue;
1151 }
1152 ptent = ptep_get_and_clear_full(mm, addr, pte,
1153 tlb->fullmm);
1154 tlb_remove_tlb_entry(tlb, pte, addr);
1155 if (unlikely(!page))
1156 continue;
1157 if (PageAnon(page))
1158 rss[MM_ANONPAGES]--;
1159 else {
1160 if (pte_dirty(ptent)) {
1161 force_flush = 1;
1162 set_page_dirty(page);
1163 }
1164 if (pte_young(ptent) &&
1165 likely(!(vma->vm_flags & VM_SEQ_READ)))
1166 mark_page_accessed(page);
1167 rss[MM_FILEPAGES]--;
1168 }
1169 page_remove_rmap(page);
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
1172 if (unlikely(!__tlb_remove_page(tlb, page))) {
1173 force_flush = 1;
1174 addr += PAGE_SIZE;
1175 break;
1176 }
1177 continue;
1178 }
1179 /* If details->check_mapping, we leave swap entries. */
1180 if (unlikely(details))
1181 continue;
1182
1183 entry = pte_to_swp_entry(ptent);
1184 if (!non_swap_entry(entry))
1185 rss[MM_SWAPENTS]--;
1186 else if (is_migration_entry(entry)) {
1187 struct page *page;
1188
1189 page = migration_entry_to_page(entry);
1190
1191 if (PageAnon(page))
1192 rss[MM_ANONPAGES]--;
1193 else
1194 rss[MM_FILEPAGES]--;
1195 }
1196 if (unlikely(!free_swap_and_cache(entry)))
1197 print_bad_pte(vma, addr, ptent, NULL);
1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 } while (pte++, addr += PAGE_SIZE, addr != end);
1200
1201 add_mm_rss_vec(mm, rss);
1202 arch_leave_lazy_mmu_mode();
1203
1204 /* Do the actual TLB flush before dropping ptl */
1205 if (force_flush)
1206 tlb_flush_mmu_tlbonly(tlb);
1207 pte_unmap_unlock(start_pte, ptl);
1208
1209 /*
1210 * If we forced a TLB flush (either due to running out of
1211 * batch buffers or because we needed to flush dirty TLB
1212 * entries before releasing the ptl), free the batched
1213 * memory too. Restart if we didn't do everything.
1214 */
1215 if (force_flush) {
1216 force_flush = 0;
1217 tlb_flush_mmu_free(tlb);
1218
1219 if (addr != end)
1220 goto again;
1221 }
1222
1223 return addr;
1224 }
1225
1226 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1227 struct vm_area_struct *vma, pud_t *pud,
1228 unsigned long addr, unsigned long end,
1229 struct zap_details *details)
1230 {
1231 pmd_t *pmd;
1232 unsigned long next;
1233
1234 pmd = pmd_offset(pud, addr);
1235 do {
1236 next = pmd_addr_end(addr, end);
1237 if (pmd_trans_huge(*pmd)) {
1238 if (next - addr != HPAGE_PMD_SIZE) {
1239 #ifdef CONFIG_DEBUG_VM
1240 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1241 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1242 __func__, addr, end,
1243 vma->vm_start,
1244 vma->vm_end);
1245 BUG();
1246 }
1247 #endif
1248 split_huge_page_pmd(vma, addr, pmd);
1249 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1250 goto next;
1251 /* fall through */
1252 }
1253 /*
1254 * Here there can be other concurrent MADV_DONTNEED or
1255 * trans huge page faults running, and if the pmd is
1256 * none or trans huge it can change under us. This is
1257 * because MADV_DONTNEED holds the mmap_sem in read
1258 * mode.
1259 */
1260 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1261 goto next;
1262 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1263 next:
1264 cond_resched();
1265 } while (pmd++, addr = next, addr != end);
1266
1267 return addr;
1268 }
1269
1270 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, pgd_t *pgd,
1272 unsigned long addr, unsigned long end,
1273 struct zap_details *details)
1274 {
1275 pud_t *pud;
1276 unsigned long next;
1277
1278 pud = pud_offset(pgd, addr);
1279 do {
1280 next = pud_addr_end(addr, end);
1281 if (pud_none_or_clear_bad(pud))
1282 continue;
1283 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1284 } while (pud++, addr = next, addr != end);
1285
1286 return addr;
1287 }
1288
1289 static void unmap_page_range(struct mmu_gather *tlb,
1290 struct vm_area_struct *vma,
1291 unsigned long addr, unsigned long end,
1292 struct zap_details *details)
1293 {
1294 pgd_t *pgd;
1295 unsigned long next;
1296
1297 if (details && !details->check_mapping)
1298 details = NULL;
1299
1300 BUG_ON(addr >= end);
1301 tlb_start_vma(tlb, vma);
1302 pgd = pgd_offset(vma->vm_mm, addr);
1303 do {
1304 next = pgd_addr_end(addr, end);
1305 if (pgd_none_or_clear_bad(pgd))
1306 continue;
1307 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308 } while (pgd++, addr = next, addr != end);
1309 tlb_end_vma(tlb, vma);
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
1315 unsigned long end_addr,
1316 struct zap_details *details)
1317 {
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1320
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1326
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1329
1330 if (unlikely(vma->vm_flags & VM_PFNMAP))
1331 untrack_pfn(vma, 0, 0);
1332
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1335 /*
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of mmap_region. When
1340 * hugetlbfs ->mmap method fails,
1341 * mmap_region() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1345 */
1346 if (vma->vm_file) {
1347 i_mmap_lock_write(vma->vm_file->f_mapping);
1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349 i_mmap_unlock_write(vma->vm_file->f_mapping);
1350 }
1351 } else
1352 unmap_page_range(tlb, vma, start, end, details);
1353 }
1354 }
1355
1356 /**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1362 *
1363 * Unmap all pages in the vma list.
1364 *
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 struct vm_area_struct *vma, unsigned long start_addr,
1376 unsigned long end_addr)
1377 {
1378 struct mm_struct *mm = vma->vm_mm;
1379
1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385
1386 /**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of shared cache invalidation
1392 *
1393 * Caller must protect the VMA list
1394 */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 unsigned long size, struct zap_details *details)
1397 {
1398 struct mm_struct *mm = vma->vm_mm;
1399 struct mmu_gather tlb;
1400 unsigned long end = start + size;
1401
1402 lru_add_drain();
1403 tlb_gather_mmu(&tlb, mm, start, end);
1404 update_hiwater_rss(mm);
1405 mmu_notifier_invalidate_range_start(mm, start, end);
1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 unmap_single_vma(&tlb, vma, start, end, details);
1408 mmu_notifier_invalidate_range_end(mm, start, end);
1409 tlb_finish_mmu(&tlb, start, end);
1410 }
1411
1412 /**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1420 */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 unsigned long size, struct zap_details *details)
1423 {
1424 struct mm_struct *mm = vma->vm_mm;
1425 struct mmu_gather tlb;
1426 unsigned long end = address + size;
1427
1428 lru_add_drain();
1429 tlb_gather_mmu(&tlb, mm, address, end);
1430 update_hiwater_rss(mm);
1431 mmu_notifier_invalidate_range_start(mm, address, end);
1432 unmap_single_vma(&tlb, vma, address, end, details);
1433 mmu_notifier_invalidate_range_end(mm, address, end);
1434 tlb_finish_mmu(&tlb, address, end);
1435 }
1436
1437 /**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size)
1451 {
1452 if (address < vma->vm_start || address + size > vma->vm_end ||
1453 !(vma->vm_flags & VM_PFNMAP))
1454 return -1;
1455 zap_page_range_single(vma, address, size, NULL);
1456 return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1461 spinlock_t **ptl)
1462 {
1463 pgd_t * pgd = pgd_offset(mm, addr);
1464 pud_t * pud = pud_alloc(mm, pgd, addr);
1465 if (pud) {
1466 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1467 if (pmd) {
1468 VM_BUG_ON(pmd_trans_huge(*pmd));
1469 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1470 }
1471 }
1472 return NULL;
1473 }
1474
1475 /*
1476 * This is the old fallback for page remapping.
1477 *
1478 * For historical reasons, it only allows reserved pages. Only
1479 * old drivers should use this, and they needed to mark their
1480 * pages reserved for the old functions anyway.
1481 */
1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483 struct page *page, pgprot_t prot)
1484 {
1485 struct mm_struct *mm = vma->vm_mm;
1486 int retval;
1487 pte_t *pte;
1488 spinlock_t *ptl;
1489
1490 retval = -EINVAL;
1491 if (PageAnon(page))
1492 goto out;
1493 retval = -ENOMEM;
1494 flush_dcache_page(page);
1495 pte = get_locked_pte(mm, addr, &ptl);
1496 if (!pte)
1497 goto out;
1498 retval = -EBUSY;
1499 if (!pte_none(*pte))
1500 goto out_unlock;
1501
1502 /* Ok, finally just insert the thing.. */
1503 get_page(page);
1504 inc_mm_counter_fast(mm, MM_FILEPAGES);
1505 page_add_file_rmap(page);
1506 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1507
1508 retval = 0;
1509 pte_unmap_unlock(pte, ptl);
1510 return retval;
1511 out_unlock:
1512 pte_unmap_unlock(pte, ptl);
1513 out:
1514 return retval;
1515 }
1516
1517 /**
1518 * vm_insert_page - insert single page into user vma
1519 * @vma: user vma to map to
1520 * @addr: target user address of this page
1521 * @page: source kernel page
1522 *
1523 * This allows drivers to insert individual pages they've allocated
1524 * into a user vma.
1525 *
1526 * The page has to be a nice clean _individual_ kernel allocation.
1527 * If you allocate a compound page, you need to have marked it as
1528 * such (__GFP_COMP), or manually just split the page up yourself
1529 * (see split_page()).
1530 *
1531 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1532 * took an arbitrary page protection parameter. This doesn't allow
1533 * that. Your vma protection will have to be set up correctly, which
1534 * means that if you want a shared writable mapping, you'd better
1535 * ask for a shared writable mapping!
1536 *
1537 * The page does not need to be reserved.
1538 *
1539 * Usually this function is called from f_op->mmap() handler
1540 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1541 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1542 * function from other places, for example from page-fault handler.
1543 */
1544 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545 struct page *page)
1546 {
1547 if (addr < vma->vm_start || addr >= vma->vm_end)
1548 return -EFAULT;
1549 if (!page_count(page))
1550 return -EINVAL;
1551 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1552 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1553 BUG_ON(vma->vm_flags & VM_PFNMAP);
1554 vma->vm_flags |= VM_MIXEDMAP;
1555 }
1556 return insert_page(vma, addr, page, vma->vm_page_prot);
1557 }
1558 EXPORT_SYMBOL(vm_insert_page);
1559
1560 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1561 unsigned long pfn, pgprot_t prot)
1562 {
1563 struct mm_struct *mm = vma->vm_mm;
1564 int retval;
1565 pte_t *pte, entry;
1566 spinlock_t *ptl;
1567
1568 retval = -ENOMEM;
1569 pte = get_locked_pte(mm, addr, &ptl);
1570 if (!pte)
1571 goto out;
1572 retval = -EBUSY;
1573 if (!pte_none(*pte))
1574 goto out_unlock;
1575
1576 /* Ok, finally just insert the thing.. */
1577 entry = pte_mkspecial(pfn_pte(pfn, prot));
1578 set_pte_at(mm, addr, pte, entry);
1579 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1580
1581 retval = 0;
1582 out_unlock:
1583 pte_unmap_unlock(pte, ptl);
1584 out:
1585 return retval;
1586 }
1587
1588 /**
1589 * vm_insert_pfn - insert single pfn into user vma
1590 * @vma: user vma to map to
1591 * @addr: target user address of this page
1592 * @pfn: source kernel pfn
1593 *
1594 * Similar to vm_insert_page, this allows drivers to insert individual pages
1595 * they've allocated into a user vma. Same comments apply.
1596 *
1597 * This function should only be called from a vm_ops->fault handler, and
1598 * in that case the handler should return NULL.
1599 *
1600 * vma cannot be a COW mapping.
1601 *
1602 * As this is called only for pages that do not currently exist, we
1603 * do not need to flush old virtual caches or the TLB.
1604 */
1605 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1606 unsigned long pfn)
1607 {
1608 int ret;
1609 pgprot_t pgprot = vma->vm_page_prot;
1610 /*
1611 * Technically, architectures with pte_special can avoid all these
1612 * restrictions (same for remap_pfn_range). However we would like
1613 * consistency in testing and feature parity among all, so we should
1614 * try to keep these invariants in place for everybody.
1615 */
1616 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618 (VM_PFNMAP|VM_MIXEDMAP));
1619 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622 if (addr < vma->vm_start || addr >= vma->vm_end)
1623 return -EFAULT;
1624 if (track_pfn_insert(vma, &pgprot, pfn))
1625 return -EINVAL;
1626
1627 ret = insert_pfn(vma, addr, pfn, pgprot);
1628
1629 return ret;
1630 }
1631 EXPORT_SYMBOL(vm_insert_pfn);
1632
1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn)
1635 {
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
1640
1641 /*
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
1647 */
1648 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649 struct page *page;
1650
1651 page = pfn_to_page(pfn);
1652 return insert_page(vma, addr, page, vma->vm_page_prot);
1653 }
1654 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1655 }
1656 EXPORT_SYMBOL(vm_insert_mixed);
1657
1658 /*
1659 * maps a range of physical memory into the requested pages. the old
1660 * mappings are removed. any references to nonexistent pages results
1661 * in null mappings (currently treated as "copy-on-access")
1662 */
1663 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664 unsigned long addr, unsigned long end,
1665 unsigned long pfn, pgprot_t prot)
1666 {
1667 pte_t *pte;
1668 spinlock_t *ptl;
1669
1670 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1671 if (!pte)
1672 return -ENOMEM;
1673 arch_enter_lazy_mmu_mode();
1674 do {
1675 BUG_ON(!pte_none(*pte));
1676 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1677 pfn++;
1678 } while (pte++, addr += PAGE_SIZE, addr != end);
1679 arch_leave_lazy_mmu_mode();
1680 pte_unmap_unlock(pte - 1, ptl);
1681 return 0;
1682 }
1683
1684 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687 {
1688 pmd_t *pmd;
1689 unsigned long next;
1690
1691 pfn -= addr >> PAGE_SHIFT;
1692 pmd = pmd_alloc(mm, pud, addr);
1693 if (!pmd)
1694 return -ENOMEM;
1695 VM_BUG_ON(pmd_trans_huge(*pmd));
1696 do {
1697 next = pmd_addr_end(addr, end);
1698 if (remap_pte_range(mm, pmd, addr, next,
1699 pfn + (addr >> PAGE_SHIFT), prot))
1700 return -ENOMEM;
1701 } while (pmd++, addr = next, addr != end);
1702 return 0;
1703 }
1704
1705 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1706 unsigned long addr, unsigned long end,
1707 unsigned long pfn, pgprot_t prot)
1708 {
1709 pud_t *pud;
1710 unsigned long next;
1711
1712 pfn -= addr >> PAGE_SHIFT;
1713 pud = pud_alloc(mm, pgd, addr);
1714 if (!pud)
1715 return -ENOMEM;
1716 do {
1717 next = pud_addr_end(addr, end);
1718 if (remap_pmd_range(mm, pud, addr, next,
1719 pfn + (addr >> PAGE_SHIFT), prot))
1720 return -ENOMEM;
1721 } while (pud++, addr = next, addr != end);
1722 return 0;
1723 }
1724
1725 /**
1726 * remap_pfn_range - remap kernel memory to userspace
1727 * @vma: user vma to map to
1728 * @addr: target user address to start at
1729 * @pfn: physical address of kernel memory
1730 * @size: size of map area
1731 * @prot: page protection flags for this mapping
1732 *
1733 * Note: this is only safe if the mm semaphore is held when called.
1734 */
1735 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1736 unsigned long pfn, unsigned long size, pgprot_t prot)
1737 {
1738 pgd_t *pgd;
1739 unsigned long next;
1740 unsigned long end = addr + PAGE_ALIGN(size);
1741 struct mm_struct *mm = vma->vm_mm;
1742 int err;
1743
1744 /*
1745 * Physically remapped pages are special. Tell the
1746 * rest of the world about it:
1747 * VM_IO tells people not to look at these pages
1748 * (accesses can have side effects).
1749 * VM_PFNMAP tells the core MM that the base pages are just
1750 * raw PFN mappings, and do not have a "struct page" associated
1751 * with them.
1752 * VM_DONTEXPAND
1753 * Disable vma merging and expanding with mremap().
1754 * VM_DONTDUMP
1755 * Omit vma from core dump, even when VM_IO turned off.
1756 *
1757 * There's a horrible special case to handle copy-on-write
1758 * behaviour that some programs depend on. We mark the "original"
1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1760 * See vm_normal_page() for details.
1761 */
1762 if (is_cow_mapping(vma->vm_flags)) {
1763 if (addr != vma->vm_start || end != vma->vm_end)
1764 return -EINVAL;
1765 vma->vm_pgoff = pfn;
1766 }
1767
1768 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1769 if (err)
1770 return -EINVAL;
1771
1772 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1773
1774 BUG_ON(addr >= end);
1775 pfn -= addr >> PAGE_SHIFT;
1776 pgd = pgd_offset(mm, addr);
1777 flush_cache_range(vma, addr, end);
1778 do {
1779 next = pgd_addr_end(addr, end);
1780 err = remap_pud_range(mm, pgd, addr, next,
1781 pfn + (addr >> PAGE_SHIFT), prot);
1782 if (err)
1783 break;
1784 } while (pgd++, addr = next, addr != end);
1785
1786 if (err)
1787 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1788
1789 return err;
1790 }
1791 EXPORT_SYMBOL(remap_pfn_range);
1792
1793 /**
1794 * vm_iomap_memory - remap memory to userspace
1795 * @vma: user vma to map to
1796 * @start: start of area
1797 * @len: size of area
1798 *
1799 * This is a simplified io_remap_pfn_range() for common driver use. The
1800 * driver just needs to give us the physical memory range to be mapped,
1801 * we'll figure out the rest from the vma information.
1802 *
1803 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1804 * whatever write-combining details or similar.
1805 */
1806 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1807 {
1808 unsigned long vm_len, pfn, pages;
1809
1810 /* Check that the physical memory area passed in looks valid */
1811 if (start + len < start)
1812 return -EINVAL;
1813 /*
1814 * You *really* shouldn't map things that aren't page-aligned,
1815 * but we've historically allowed it because IO memory might
1816 * just have smaller alignment.
1817 */
1818 len += start & ~PAGE_MASK;
1819 pfn = start >> PAGE_SHIFT;
1820 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1821 if (pfn + pages < pfn)
1822 return -EINVAL;
1823
1824 /* We start the mapping 'vm_pgoff' pages into the area */
1825 if (vma->vm_pgoff > pages)
1826 return -EINVAL;
1827 pfn += vma->vm_pgoff;
1828 pages -= vma->vm_pgoff;
1829
1830 /* Can we fit all of the mapping? */
1831 vm_len = vma->vm_end - vma->vm_start;
1832 if (vm_len >> PAGE_SHIFT > pages)
1833 return -EINVAL;
1834
1835 /* Ok, let it rip */
1836 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1837 }
1838 EXPORT_SYMBOL(vm_iomap_memory);
1839
1840 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1841 unsigned long addr, unsigned long end,
1842 pte_fn_t fn, void *data)
1843 {
1844 pte_t *pte;
1845 int err;
1846 pgtable_t token;
1847 spinlock_t *uninitialized_var(ptl);
1848
1849 pte = (mm == &init_mm) ?
1850 pte_alloc_kernel(pmd, addr) :
1851 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1852 if (!pte)
1853 return -ENOMEM;
1854
1855 BUG_ON(pmd_huge(*pmd));
1856
1857 arch_enter_lazy_mmu_mode();
1858
1859 token = pmd_pgtable(*pmd);
1860
1861 do {
1862 err = fn(pte++, token, addr, data);
1863 if (err)
1864 break;
1865 } while (addr += PAGE_SIZE, addr != end);
1866
1867 arch_leave_lazy_mmu_mode();
1868
1869 if (mm != &init_mm)
1870 pte_unmap_unlock(pte-1, ptl);
1871 return err;
1872 }
1873
1874 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1875 unsigned long addr, unsigned long end,
1876 pte_fn_t fn, void *data)
1877 {
1878 pmd_t *pmd;
1879 unsigned long next;
1880 int err;
1881
1882 BUG_ON(pud_huge(*pud));
1883
1884 pmd = pmd_alloc(mm, pud, addr);
1885 if (!pmd)
1886 return -ENOMEM;
1887 do {
1888 next = pmd_addr_end(addr, end);
1889 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1890 if (err)
1891 break;
1892 } while (pmd++, addr = next, addr != end);
1893 return err;
1894 }
1895
1896 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1897 unsigned long addr, unsigned long end,
1898 pte_fn_t fn, void *data)
1899 {
1900 pud_t *pud;
1901 unsigned long next;
1902 int err;
1903
1904 pud = pud_alloc(mm, pgd, addr);
1905 if (!pud)
1906 return -ENOMEM;
1907 do {
1908 next = pud_addr_end(addr, end);
1909 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1910 if (err)
1911 break;
1912 } while (pud++, addr = next, addr != end);
1913 return err;
1914 }
1915
1916 /*
1917 * Scan a region of virtual memory, filling in page tables as necessary
1918 * and calling a provided function on each leaf page table.
1919 */
1920 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1921 unsigned long size, pte_fn_t fn, void *data)
1922 {
1923 pgd_t *pgd;
1924 unsigned long next;
1925 unsigned long end = addr + size;
1926 int err;
1927
1928 BUG_ON(addr >= end);
1929 pgd = pgd_offset(mm, addr);
1930 do {
1931 next = pgd_addr_end(addr, end);
1932 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1933 if (err)
1934 break;
1935 } while (pgd++, addr = next, addr != end);
1936
1937 return err;
1938 }
1939 EXPORT_SYMBOL_GPL(apply_to_page_range);
1940
1941 /*
1942 * handle_pte_fault chooses page fault handler according to an entry which was
1943 * read non-atomically. Before making any commitment, on those architectures
1944 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1945 * parts, do_swap_page must check under lock before unmapping the pte and
1946 * proceeding (but do_wp_page is only called after already making such a check;
1947 * and do_anonymous_page can safely check later on).
1948 */
1949 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1950 pte_t *page_table, pte_t orig_pte)
1951 {
1952 int same = 1;
1953 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1954 if (sizeof(pte_t) > sizeof(unsigned long)) {
1955 spinlock_t *ptl = pte_lockptr(mm, pmd);
1956 spin_lock(ptl);
1957 same = pte_same(*page_table, orig_pte);
1958 spin_unlock(ptl);
1959 }
1960 #endif
1961 pte_unmap(page_table);
1962 return same;
1963 }
1964
1965 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1966 {
1967 debug_dma_assert_idle(src);
1968
1969 /*
1970 * If the source page was a PFN mapping, we don't have
1971 * a "struct page" for it. We do a best-effort copy by
1972 * just copying from the original user address. If that
1973 * fails, we just zero-fill it. Live with it.
1974 */
1975 if (unlikely(!src)) {
1976 void *kaddr = kmap_atomic(dst);
1977 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1978
1979 /*
1980 * This really shouldn't fail, because the page is there
1981 * in the page tables. But it might just be unreadable,
1982 * in which case we just give up and fill the result with
1983 * zeroes.
1984 */
1985 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1986 clear_page(kaddr);
1987 kunmap_atomic(kaddr);
1988 flush_dcache_page(dst);
1989 } else
1990 copy_user_highpage(dst, src, va, vma);
1991 }
1992
1993 /*
1994 * Notify the address space that the page is about to become writable so that
1995 * it can prohibit this or wait for the page to get into an appropriate state.
1996 *
1997 * We do this without the lock held, so that it can sleep if it needs to.
1998 */
1999 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2000 unsigned long address)
2001 {
2002 struct vm_fault vmf;
2003 int ret;
2004
2005 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2006 vmf.pgoff = page->index;
2007 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2008 vmf.page = page;
2009 vmf.cow_page = NULL;
2010
2011 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2013 return ret;
2014 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2015 lock_page(page);
2016 if (!page->mapping) {
2017 unlock_page(page);
2018 return 0; /* retry */
2019 }
2020 ret |= VM_FAULT_LOCKED;
2021 } else
2022 VM_BUG_ON_PAGE(!PageLocked(page), page);
2023 return ret;
2024 }
2025
2026 /*
2027 * Handle write page faults for pages that can be reused in the current vma
2028 *
2029 * This can happen either due to the mapping being with the VM_SHARED flag,
2030 * or due to us being the last reference standing to the page. In either
2031 * case, all we need to do here is to mark the page as writable and update
2032 * any related book-keeping.
2033 */
2034 static inline int wp_page_reuse(struct mm_struct *mm,
2035 struct vm_area_struct *vma, unsigned long address,
2036 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2037 struct page *page, int page_mkwrite,
2038 int dirty_shared)
2039 __releases(ptl)
2040 {
2041 pte_t entry;
2042 /*
2043 * Clear the pages cpupid information as the existing
2044 * information potentially belongs to a now completely
2045 * unrelated process.
2046 */
2047 if (page)
2048 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2049
2050 flush_cache_page(vma, address, pte_pfn(orig_pte));
2051 entry = pte_mkyoung(orig_pte);
2052 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2053 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2054 update_mmu_cache(vma, address, page_table);
2055 pte_unmap_unlock(page_table, ptl);
2056
2057 if (dirty_shared) {
2058 struct address_space *mapping;
2059 int dirtied;
2060
2061 if (!page_mkwrite)
2062 lock_page(page);
2063
2064 dirtied = set_page_dirty(page);
2065 VM_BUG_ON_PAGE(PageAnon(page), page);
2066 mapping = page->mapping;
2067 unlock_page(page);
2068 page_cache_release(page);
2069
2070 if ((dirtied || page_mkwrite) && mapping) {
2071 /*
2072 * Some device drivers do not set page.mapping
2073 * but still dirty their pages
2074 */
2075 balance_dirty_pages_ratelimited(mapping);
2076 }
2077
2078 if (!page_mkwrite)
2079 vma_file_update_time(vma);
2080 }
2081
2082 return VM_FAULT_WRITE;
2083 }
2084
2085 /*
2086 * Handle the case of a page which we actually need to copy to a new page.
2087 *
2088 * Called with mmap_sem locked and the old page referenced, but
2089 * without the ptl held.
2090 *
2091 * High level logic flow:
2092 *
2093 * - Allocate a page, copy the content of the old page to the new one.
2094 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2095 * - Take the PTL. If the pte changed, bail out and release the allocated page
2096 * - If the pte is still the way we remember it, update the page table and all
2097 * relevant references. This includes dropping the reference the page-table
2098 * held to the old page, as well as updating the rmap.
2099 * - In any case, unlock the PTL and drop the reference we took to the old page.
2100 */
2101 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2102 unsigned long address, pte_t *page_table, pmd_t *pmd,
2103 pte_t orig_pte, struct page *old_page)
2104 {
2105 struct page *new_page = NULL;
2106 spinlock_t *ptl = NULL;
2107 pte_t entry;
2108 int page_copied = 0;
2109 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2110 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2111 struct mem_cgroup *memcg;
2112
2113 if (unlikely(anon_vma_prepare(vma)))
2114 goto oom;
2115
2116 if (is_zero_pfn(pte_pfn(orig_pte))) {
2117 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2118 if (!new_page)
2119 goto oom;
2120 } else {
2121 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2122 if (!new_page)
2123 goto oom;
2124 cow_user_page(new_page, old_page, address, vma);
2125 }
2126
2127 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2128 goto oom_free_new;
2129
2130 __SetPageUptodate(new_page);
2131
2132 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2133
2134 /*
2135 * Re-check the pte - we dropped the lock
2136 */
2137 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2138 if (likely(pte_same(*page_table, orig_pte))) {
2139 if (old_page) {
2140 if (!PageAnon(old_page)) {
2141 dec_mm_counter_fast(mm, MM_FILEPAGES);
2142 inc_mm_counter_fast(mm, MM_ANONPAGES);
2143 }
2144 } else {
2145 inc_mm_counter_fast(mm, MM_ANONPAGES);
2146 }
2147 flush_cache_page(vma, address, pte_pfn(orig_pte));
2148 entry = mk_pte(new_page, vma->vm_page_prot);
2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 /*
2151 * Clear the pte entry and flush it first, before updating the
2152 * pte with the new entry. This will avoid a race condition
2153 * seen in the presence of one thread doing SMC and another
2154 * thread doing COW.
2155 */
2156 ptep_clear_flush_notify(vma, address, page_table);
2157 page_add_new_anon_rmap(new_page, vma, address);
2158 mem_cgroup_commit_charge(new_page, memcg, false);
2159 lru_cache_add_active_or_unevictable(new_page, vma);
2160 /*
2161 * We call the notify macro here because, when using secondary
2162 * mmu page tables (such as kvm shadow page tables), we want the
2163 * new page to be mapped directly into the secondary page table.
2164 */
2165 set_pte_at_notify(mm, address, page_table, entry);
2166 update_mmu_cache(vma, address, page_table);
2167 if (old_page) {
2168 /*
2169 * Only after switching the pte to the new page may
2170 * we remove the mapcount here. Otherwise another
2171 * process may come and find the rmap count decremented
2172 * before the pte is switched to the new page, and
2173 * "reuse" the old page writing into it while our pte
2174 * here still points into it and can be read by other
2175 * threads.
2176 *
2177 * The critical issue is to order this
2178 * page_remove_rmap with the ptp_clear_flush above.
2179 * Those stores are ordered by (if nothing else,)
2180 * the barrier present in the atomic_add_negative
2181 * in page_remove_rmap.
2182 *
2183 * Then the TLB flush in ptep_clear_flush ensures that
2184 * no process can access the old page before the
2185 * decremented mapcount is visible. And the old page
2186 * cannot be reused until after the decremented
2187 * mapcount is visible. So transitively, TLBs to
2188 * old page will be flushed before it can be reused.
2189 */
2190 page_remove_rmap(old_page);
2191 }
2192
2193 /* Free the old page.. */
2194 new_page = old_page;
2195 page_copied = 1;
2196 } else {
2197 mem_cgroup_cancel_charge(new_page, memcg);
2198 }
2199
2200 if (new_page)
2201 page_cache_release(new_page);
2202
2203 pte_unmap_unlock(page_table, ptl);
2204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2205 if (old_page) {
2206 /*
2207 * Don't let another task, with possibly unlocked vma,
2208 * keep the mlocked page.
2209 */
2210 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2211 lock_page(old_page); /* LRU manipulation */
2212 munlock_vma_page(old_page);
2213 unlock_page(old_page);
2214 }
2215 page_cache_release(old_page);
2216 }
2217 return page_copied ? VM_FAULT_WRITE : 0;
2218 oom_free_new:
2219 page_cache_release(new_page);
2220 oom:
2221 if (old_page)
2222 page_cache_release(old_page);
2223 return VM_FAULT_OOM;
2224 }
2225
2226 /*
2227 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2228 * mapping
2229 */
2230 static int wp_pfn_shared(struct mm_struct *mm,
2231 struct vm_area_struct *vma, unsigned long address,
2232 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2233 pmd_t *pmd)
2234 {
2235 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2236 struct vm_fault vmf = {
2237 .page = NULL,
2238 .pgoff = linear_page_index(vma, address),
2239 .virtual_address = (void __user *)(address & PAGE_MASK),
2240 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2241 };
2242 int ret;
2243
2244 pte_unmap_unlock(page_table, ptl);
2245 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2246 if (ret & VM_FAULT_ERROR)
2247 return ret;
2248 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2249 /*
2250 * We might have raced with another page fault while we
2251 * released the pte_offset_map_lock.
2252 */
2253 if (!pte_same(*page_table, orig_pte)) {
2254 pte_unmap_unlock(page_table, ptl);
2255 return 0;
2256 }
2257 }
2258 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2259 NULL, 0, 0);
2260 }
2261
2262 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2263 unsigned long address, pte_t *page_table,
2264 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2265 struct page *old_page)
2266 __releases(ptl)
2267 {
2268 int page_mkwrite = 0;
2269
2270 page_cache_get(old_page);
2271
2272 /*
2273 * Only catch write-faults on shared writable pages,
2274 * read-only shared pages can get COWed by
2275 * get_user_pages(.write=1, .force=1).
2276 */
2277 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2278 int tmp;
2279
2280 pte_unmap_unlock(page_table, ptl);
2281 tmp = do_page_mkwrite(vma, old_page, address);
2282 if (unlikely(!tmp || (tmp &
2283 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2284 page_cache_release(old_page);
2285 return tmp;
2286 }
2287 /*
2288 * Since we dropped the lock we need to revalidate
2289 * the PTE as someone else may have changed it. If
2290 * they did, we just return, as we can count on the
2291 * MMU to tell us if they didn't also make it writable.
2292 */
2293 page_table = pte_offset_map_lock(mm, pmd, address,
2294 &ptl);
2295 if (!pte_same(*page_table, orig_pte)) {
2296 unlock_page(old_page);
2297 pte_unmap_unlock(page_table, ptl);
2298 page_cache_release(old_page);
2299 return 0;
2300 }
2301 page_mkwrite = 1;
2302 }
2303
2304 return wp_page_reuse(mm, vma, address, page_table, ptl,
2305 orig_pte, old_page, page_mkwrite, 1);
2306 }
2307
2308 /*
2309 * This routine handles present pages, when users try to write
2310 * to a shared page. It is done by copying the page to a new address
2311 * and decrementing the shared-page counter for the old page.
2312 *
2313 * Note that this routine assumes that the protection checks have been
2314 * done by the caller (the low-level page fault routine in most cases).
2315 * Thus we can safely just mark it writable once we've done any necessary
2316 * COW.
2317 *
2318 * We also mark the page dirty at this point even though the page will
2319 * change only once the write actually happens. This avoids a few races,
2320 * and potentially makes it more efficient.
2321 *
2322 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2323 * but allow concurrent faults), with pte both mapped and locked.
2324 * We return with mmap_sem still held, but pte unmapped and unlocked.
2325 */
2326 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2327 unsigned long address, pte_t *page_table, pmd_t *pmd,
2328 spinlock_t *ptl, pte_t orig_pte)
2329 __releases(ptl)
2330 {
2331 struct page *old_page;
2332
2333 old_page = vm_normal_page(vma, address, orig_pte);
2334 if (!old_page) {
2335 /*
2336 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2337 * VM_PFNMAP VMA.
2338 *
2339 * We should not cow pages in a shared writeable mapping.
2340 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2341 */
2342 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2343 (VM_WRITE|VM_SHARED))
2344 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2345 orig_pte, pmd);
2346
2347 pte_unmap_unlock(page_table, ptl);
2348 return wp_page_copy(mm, vma, address, page_table, pmd,
2349 orig_pte, old_page);
2350 }
2351
2352 /*
2353 * Take out anonymous pages first, anonymous shared vmas are
2354 * not dirty accountable.
2355 */
2356 if (PageAnon(old_page) && !PageKsm(old_page)) {
2357 if (!trylock_page(old_page)) {
2358 page_cache_get(old_page);
2359 pte_unmap_unlock(page_table, ptl);
2360 lock_page(old_page);
2361 page_table = pte_offset_map_lock(mm, pmd, address,
2362 &ptl);
2363 if (!pte_same(*page_table, orig_pte)) {
2364 unlock_page(old_page);
2365 pte_unmap_unlock(page_table, ptl);
2366 page_cache_release(old_page);
2367 return 0;
2368 }
2369 page_cache_release(old_page);
2370 }
2371 if (reuse_swap_page(old_page)) {
2372 /*
2373 * The page is all ours. Move it to our anon_vma so
2374 * the rmap code will not search our parent or siblings.
2375 * Protected against the rmap code by the page lock.
2376 */
2377 page_move_anon_rmap(old_page, vma, address);
2378 unlock_page(old_page);
2379 return wp_page_reuse(mm, vma, address, page_table, ptl,
2380 orig_pte, old_page, 0, 0);
2381 }
2382 unlock_page(old_page);
2383 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2384 (VM_WRITE|VM_SHARED))) {
2385 return wp_page_shared(mm, vma, address, page_table, pmd,
2386 ptl, orig_pte, old_page);
2387 }
2388
2389 /*
2390 * Ok, we need to copy. Oh, well..
2391 */
2392 page_cache_get(old_page);
2393
2394 pte_unmap_unlock(page_table, ptl);
2395 return wp_page_copy(mm, vma, address, page_table, pmd,
2396 orig_pte, old_page);
2397 }
2398
2399 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2400 unsigned long start_addr, unsigned long end_addr,
2401 struct zap_details *details)
2402 {
2403 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2404 }
2405
2406 static inline void unmap_mapping_range_tree(struct rb_root *root,
2407 struct zap_details *details)
2408 {
2409 struct vm_area_struct *vma;
2410 pgoff_t vba, vea, zba, zea;
2411
2412 vma_interval_tree_foreach(vma, root,
2413 details->first_index, details->last_index) {
2414
2415 vba = vma->vm_pgoff;
2416 vea = vba + vma_pages(vma) - 1;
2417 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2418 zba = details->first_index;
2419 if (zba < vba)
2420 zba = vba;
2421 zea = details->last_index;
2422 if (zea > vea)
2423 zea = vea;
2424
2425 unmap_mapping_range_vma(vma,
2426 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2427 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2428 details);
2429 }
2430 }
2431
2432 /**
2433 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2434 * address_space corresponding to the specified page range in the underlying
2435 * file.
2436 *
2437 * @mapping: the address space containing mmaps to be unmapped.
2438 * @holebegin: byte in first page to unmap, relative to the start of
2439 * the underlying file. This will be rounded down to a PAGE_SIZE
2440 * boundary. Note that this is different from truncate_pagecache(), which
2441 * must keep the partial page. In contrast, we must get rid of
2442 * partial pages.
2443 * @holelen: size of prospective hole in bytes. This will be rounded
2444 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2445 * end of the file.
2446 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2447 * but 0 when invalidating pagecache, don't throw away private data.
2448 */
2449 void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows)
2451 {
2452 struct zap_details details;
2453 pgoff_t hba = holebegin >> PAGE_SHIFT;
2454 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2455
2456 /* Check for overflow. */
2457 if (sizeof(holelen) > sizeof(hlen)) {
2458 long long holeend =
2459 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2460 if (holeend & ~(long long)ULONG_MAX)
2461 hlen = ULONG_MAX - hba + 1;
2462 }
2463
2464 details.check_mapping = even_cows? NULL: mapping;
2465 details.first_index = hba;
2466 details.last_index = hba + hlen - 1;
2467 if (details.last_index < details.first_index)
2468 details.last_index = ULONG_MAX;
2469
2470
2471 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2472 i_mmap_lock_write(mapping);
2473 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2474 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2475 i_mmap_unlock_write(mapping);
2476 }
2477 EXPORT_SYMBOL(unmap_mapping_range);
2478
2479 /*
2480 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2481 * but allow concurrent faults), and pte mapped but not yet locked.
2482 * We return with pte unmapped and unlocked.
2483 *
2484 * We return with the mmap_sem locked or unlocked in the same cases
2485 * as does filemap_fault().
2486 */
2487 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2488 unsigned long address, pte_t *page_table, pmd_t *pmd,
2489 unsigned int flags, pte_t orig_pte)
2490 {
2491 spinlock_t *ptl;
2492 struct page *page, *swapcache;
2493 struct mem_cgroup *memcg;
2494 swp_entry_t entry;
2495 pte_t pte;
2496 int locked;
2497 int exclusive = 0;
2498 int ret = 0;
2499
2500 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2501 goto out;
2502
2503 entry = pte_to_swp_entry(orig_pte);
2504 if (unlikely(non_swap_entry(entry))) {
2505 if (is_migration_entry(entry)) {
2506 migration_entry_wait(mm, pmd, address);
2507 } else if (is_hwpoison_entry(entry)) {
2508 ret = VM_FAULT_HWPOISON;
2509 } else {
2510 print_bad_pte(vma, address, orig_pte, NULL);
2511 ret = VM_FAULT_SIGBUS;
2512 }
2513 goto out;
2514 }
2515 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2516 page = lookup_swap_cache(entry);
2517 if (!page) {
2518 page = swapin_readahead(entry,
2519 GFP_HIGHUSER_MOVABLE, vma, address);
2520 if (!page) {
2521 /*
2522 * Back out if somebody else faulted in this pte
2523 * while we released the pte lock.
2524 */
2525 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2526 if (likely(pte_same(*page_table, orig_pte)))
2527 ret = VM_FAULT_OOM;
2528 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2529 goto unlock;
2530 }
2531
2532 /* Had to read the page from swap area: Major fault */
2533 ret = VM_FAULT_MAJOR;
2534 count_vm_event(PGMAJFAULT);
2535 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2536 } else if (PageHWPoison(page)) {
2537 /*
2538 * hwpoisoned dirty swapcache pages are kept for killing
2539 * owner processes (which may be unknown at hwpoison time)
2540 */
2541 ret = VM_FAULT_HWPOISON;
2542 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2543 swapcache = page;
2544 goto out_release;
2545 }
2546
2547 swapcache = page;
2548 locked = lock_page_or_retry(page, mm, flags);
2549
2550 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2551 if (!locked) {
2552 ret |= VM_FAULT_RETRY;
2553 goto out_release;
2554 }
2555
2556 /*
2557 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2558 * release the swapcache from under us. The page pin, and pte_same
2559 * test below, are not enough to exclude that. Even if it is still
2560 * swapcache, we need to check that the page's swap has not changed.
2561 */
2562 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2563 goto out_page;
2564
2565 page = ksm_might_need_to_copy(page, vma, address);
2566 if (unlikely(!page)) {
2567 ret = VM_FAULT_OOM;
2568 page = swapcache;
2569 goto out_page;
2570 }
2571
2572 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2573 ret = VM_FAULT_OOM;
2574 goto out_page;
2575 }
2576
2577 /*
2578 * Back out if somebody else already faulted in this pte.
2579 */
2580 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2581 if (unlikely(!pte_same(*page_table, orig_pte)))
2582 goto out_nomap;
2583
2584 if (unlikely(!PageUptodate(page))) {
2585 ret = VM_FAULT_SIGBUS;
2586 goto out_nomap;
2587 }
2588
2589 /*
2590 * The page isn't present yet, go ahead with the fault.
2591 *
2592 * Be careful about the sequence of operations here.
2593 * To get its accounting right, reuse_swap_page() must be called
2594 * while the page is counted on swap but not yet in mapcount i.e.
2595 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2596 * must be called after the swap_free(), or it will never succeed.
2597 */
2598
2599 inc_mm_counter_fast(mm, MM_ANONPAGES);
2600 dec_mm_counter_fast(mm, MM_SWAPENTS);
2601 pte = mk_pte(page, vma->vm_page_prot);
2602 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2603 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2604 flags &= ~FAULT_FLAG_WRITE;
2605 ret |= VM_FAULT_WRITE;
2606 exclusive = 1;
2607 }
2608 flush_icache_page(vma, page);
2609 if (pte_swp_soft_dirty(orig_pte))
2610 pte = pte_mksoft_dirty(pte);
2611 set_pte_at(mm, address, page_table, pte);
2612 if (page == swapcache) {
2613 do_page_add_anon_rmap(page, vma, address, exclusive);
2614 mem_cgroup_commit_charge(page, memcg, true);
2615 } else { /* ksm created a completely new copy */
2616 page_add_new_anon_rmap(page, vma, address);
2617 mem_cgroup_commit_charge(page, memcg, false);
2618 lru_cache_add_active_or_unevictable(page, vma);
2619 }
2620
2621 swap_free(entry);
2622 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2623 try_to_free_swap(page);
2624 unlock_page(page);
2625 if (page != swapcache) {
2626 /*
2627 * Hold the lock to avoid the swap entry to be reused
2628 * until we take the PT lock for the pte_same() check
2629 * (to avoid false positives from pte_same). For
2630 * further safety release the lock after the swap_free
2631 * so that the swap count won't change under a
2632 * parallel locked swapcache.
2633 */
2634 unlock_page(swapcache);
2635 page_cache_release(swapcache);
2636 }
2637
2638 if (flags & FAULT_FLAG_WRITE) {
2639 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2640 if (ret & VM_FAULT_ERROR)
2641 ret &= VM_FAULT_ERROR;
2642 goto out;
2643 }
2644
2645 /* No need to invalidate - it was non-present before */
2646 update_mmu_cache(vma, address, page_table);
2647 unlock:
2648 pte_unmap_unlock(page_table, ptl);
2649 out:
2650 return ret;
2651 out_nomap:
2652 mem_cgroup_cancel_charge(page, memcg);
2653 pte_unmap_unlock(page_table, ptl);
2654 out_page:
2655 unlock_page(page);
2656 out_release:
2657 page_cache_release(page);
2658 if (page != swapcache) {
2659 unlock_page(swapcache);
2660 page_cache_release(swapcache);
2661 }
2662 return ret;
2663 }
2664
2665 /*
2666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2667 * but allow concurrent faults), and pte mapped but not yet locked.
2668 * We return with mmap_sem still held, but pte unmapped and unlocked.
2669 */
2670 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2671 unsigned long address, pte_t *page_table, pmd_t *pmd,
2672 unsigned int flags)
2673 {
2674 struct mem_cgroup *memcg;
2675 struct page *page;
2676 spinlock_t *ptl;
2677 pte_t entry;
2678
2679 pte_unmap(page_table);
2680
2681 /* File mapping without ->vm_ops ? */
2682 if (vma->vm_flags & VM_SHARED)
2683 return VM_FAULT_SIGBUS;
2684
2685 /* Use the zero-page for reads */
2686 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2687 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2688 vma->vm_page_prot));
2689 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2690 if (!pte_none(*page_table))
2691 goto unlock;
2692 /* Deliver the page fault to userland, check inside PT lock */
2693 if (userfaultfd_missing(vma)) {
2694 pte_unmap_unlock(page_table, ptl);
2695 return handle_userfault(vma, address, flags,
2696 VM_UFFD_MISSING);
2697 }
2698 goto setpte;
2699 }
2700
2701 /* Allocate our own private page. */
2702 if (unlikely(anon_vma_prepare(vma)))
2703 goto oom;
2704 page = alloc_zeroed_user_highpage_movable(vma, address);
2705 if (!page)
2706 goto oom;
2707
2708 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2709 goto oom_free_page;
2710
2711 /*
2712 * The memory barrier inside __SetPageUptodate makes sure that
2713 * preceeding stores to the page contents become visible before
2714 * the set_pte_at() write.
2715 */
2716 __SetPageUptodate(page);
2717
2718 entry = mk_pte(page, vma->vm_page_prot);
2719 if (vma->vm_flags & VM_WRITE)
2720 entry = pte_mkwrite(pte_mkdirty(entry));
2721
2722 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2723 if (!pte_none(*page_table))
2724 goto release;
2725
2726 /* Deliver the page fault to userland, check inside PT lock */
2727 if (userfaultfd_missing(vma)) {
2728 pte_unmap_unlock(page_table, ptl);
2729 mem_cgroup_cancel_charge(page, memcg);
2730 page_cache_release(page);
2731 return handle_userfault(vma, address, flags,
2732 VM_UFFD_MISSING);
2733 }
2734
2735 inc_mm_counter_fast(mm, MM_ANONPAGES);
2736 page_add_new_anon_rmap(page, vma, address);
2737 mem_cgroup_commit_charge(page, memcg, false);
2738 lru_cache_add_active_or_unevictable(page, vma);
2739 setpte:
2740 set_pte_at(mm, address, page_table, entry);
2741
2742 /* No need to invalidate - it was non-present before */
2743 update_mmu_cache(vma, address, page_table);
2744 unlock:
2745 pte_unmap_unlock(page_table, ptl);
2746 return 0;
2747 release:
2748 mem_cgroup_cancel_charge(page, memcg);
2749 page_cache_release(page);
2750 goto unlock;
2751 oom_free_page:
2752 page_cache_release(page);
2753 oom:
2754 return VM_FAULT_OOM;
2755 }
2756
2757 /*
2758 * The mmap_sem must have been held on entry, and may have been
2759 * released depending on flags and vma->vm_ops->fault() return value.
2760 * See filemap_fault() and __lock_page_retry().
2761 */
2762 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2763 pgoff_t pgoff, unsigned int flags,
2764 struct page *cow_page, struct page **page)
2765 {
2766 struct vm_fault vmf;
2767 int ret;
2768
2769 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2770 vmf.pgoff = pgoff;
2771 vmf.flags = flags;
2772 vmf.page = NULL;
2773 vmf.cow_page = cow_page;
2774
2775 ret = vma->vm_ops->fault(vma, &vmf);
2776 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2777 return ret;
2778 if (!vmf.page)
2779 goto out;
2780
2781 if (unlikely(PageHWPoison(vmf.page))) {
2782 if (ret & VM_FAULT_LOCKED)
2783 unlock_page(vmf.page);
2784 page_cache_release(vmf.page);
2785 return VM_FAULT_HWPOISON;
2786 }
2787
2788 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2789 lock_page(vmf.page);
2790 else
2791 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2792
2793 out:
2794 *page = vmf.page;
2795 return ret;
2796 }
2797
2798 /**
2799 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2800 *
2801 * @vma: virtual memory area
2802 * @address: user virtual address
2803 * @page: page to map
2804 * @pte: pointer to target page table entry
2805 * @write: true, if new entry is writable
2806 * @anon: true, if it's anonymous page
2807 *
2808 * Caller must hold page table lock relevant for @pte.
2809 *
2810 * Target users are page handler itself and implementations of
2811 * vm_ops->map_pages.
2812 */
2813 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2814 struct page *page, pte_t *pte, bool write, bool anon)
2815 {
2816 pte_t entry;
2817
2818 flush_icache_page(vma, page);
2819 entry = mk_pte(page, vma->vm_page_prot);
2820 if (write)
2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822 if (anon) {
2823 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2824 page_add_new_anon_rmap(page, vma, address);
2825 } else {
2826 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2827 page_add_file_rmap(page);
2828 }
2829 set_pte_at(vma->vm_mm, address, pte, entry);
2830
2831 /* no need to invalidate: a not-present page won't be cached */
2832 update_mmu_cache(vma, address, pte);
2833 }
2834
2835 static unsigned long fault_around_bytes __read_mostly =
2836 rounddown_pow_of_two(65536);
2837
2838 #ifdef CONFIG_DEBUG_FS
2839 static int fault_around_bytes_get(void *data, u64 *val)
2840 {
2841 *val = fault_around_bytes;
2842 return 0;
2843 }
2844
2845 /*
2846 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2847 * rounded down to nearest page order. It's what do_fault_around() expects to
2848 * see.
2849 */
2850 static int fault_around_bytes_set(void *data, u64 val)
2851 {
2852 if (val / PAGE_SIZE > PTRS_PER_PTE)
2853 return -EINVAL;
2854 if (val > PAGE_SIZE)
2855 fault_around_bytes = rounddown_pow_of_two(val);
2856 else
2857 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2858 return 0;
2859 }
2860 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2861 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2862
2863 static int __init fault_around_debugfs(void)
2864 {
2865 void *ret;
2866
2867 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2868 &fault_around_bytes_fops);
2869 if (!ret)
2870 pr_warn("Failed to create fault_around_bytes in debugfs");
2871 return 0;
2872 }
2873 late_initcall(fault_around_debugfs);
2874 #endif
2875
2876 /*
2877 * do_fault_around() tries to map few pages around the fault address. The hope
2878 * is that the pages will be needed soon and this will lower the number of
2879 * faults to handle.
2880 *
2881 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2882 * not ready to be mapped: not up-to-date, locked, etc.
2883 *
2884 * This function is called with the page table lock taken. In the split ptlock
2885 * case the page table lock only protects only those entries which belong to
2886 * the page table corresponding to the fault address.
2887 *
2888 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2889 * only once.
2890 *
2891 * fault_around_pages() defines how many pages we'll try to map.
2892 * do_fault_around() expects it to return a power of two less than or equal to
2893 * PTRS_PER_PTE.
2894 *
2895 * The virtual address of the area that we map is naturally aligned to the
2896 * fault_around_pages() value (and therefore to page order). This way it's
2897 * easier to guarantee that we don't cross page table boundaries.
2898 */
2899 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2900 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2901 {
2902 unsigned long start_addr, nr_pages, mask;
2903 pgoff_t max_pgoff;
2904 struct vm_fault vmf;
2905 int off;
2906
2907 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2908 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2909
2910 start_addr = max(address & mask, vma->vm_start);
2911 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2912 pte -= off;
2913 pgoff -= off;
2914
2915 /*
2916 * max_pgoff is either end of page table or end of vma
2917 * or fault_around_pages() from pgoff, depending what is nearest.
2918 */
2919 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2920 PTRS_PER_PTE - 1;
2921 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2922 pgoff + nr_pages - 1);
2923
2924 /* Check if it makes any sense to call ->map_pages */
2925 while (!pte_none(*pte)) {
2926 if (++pgoff > max_pgoff)
2927 return;
2928 start_addr += PAGE_SIZE;
2929 if (start_addr >= vma->vm_end)
2930 return;
2931 pte++;
2932 }
2933
2934 vmf.virtual_address = (void __user *) start_addr;
2935 vmf.pte = pte;
2936 vmf.pgoff = pgoff;
2937 vmf.max_pgoff = max_pgoff;
2938 vmf.flags = flags;
2939 vma->vm_ops->map_pages(vma, &vmf);
2940 }
2941
2942 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2943 unsigned long address, pmd_t *pmd,
2944 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2945 {
2946 struct page *fault_page;
2947 spinlock_t *ptl;
2948 pte_t *pte;
2949 int ret = 0;
2950
2951 /*
2952 * Let's call ->map_pages() first and use ->fault() as fallback
2953 * if page by the offset is not ready to be mapped (cold cache or
2954 * something).
2955 */
2956 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2957 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2958 do_fault_around(vma, address, pte, pgoff, flags);
2959 if (!pte_same(*pte, orig_pte))
2960 goto unlock_out;
2961 pte_unmap_unlock(pte, ptl);
2962 }
2963
2964 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2965 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2966 return ret;
2967
2968 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2969 if (unlikely(!pte_same(*pte, orig_pte))) {
2970 pte_unmap_unlock(pte, ptl);
2971 unlock_page(fault_page);
2972 page_cache_release(fault_page);
2973 return ret;
2974 }
2975 do_set_pte(vma, address, fault_page, pte, false, false);
2976 unlock_page(fault_page);
2977 unlock_out:
2978 pte_unmap_unlock(pte, ptl);
2979 return ret;
2980 }
2981
2982 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2983 unsigned long address, pmd_t *pmd,
2984 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2985 {
2986 struct page *fault_page, *new_page;
2987 struct mem_cgroup *memcg;
2988 spinlock_t *ptl;
2989 pte_t *pte;
2990 int ret;
2991
2992 if (unlikely(anon_vma_prepare(vma)))
2993 return VM_FAULT_OOM;
2994
2995 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2996 if (!new_page)
2997 return VM_FAULT_OOM;
2998
2999 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3000 page_cache_release(new_page);
3001 return VM_FAULT_OOM;
3002 }
3003
3004 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3006 goto uncharge_out;
3007
3008 if (fault_page)
3009 copy_user_highpage(new_page, fault_page, address, vma);
3010 __SetPageUptodate(new_page);
3011
3012 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3013 if (unlikely(!pte_same(*pte, orig_pte))) {
3014 pte_unmap_unlock(pte, ptl);
3015 if (fault_page) {
3016 unlock_page(fault_page);
3017 page_cache_release(fault_page);
3018 } else {
3019 /*
3020 * The fault handler has no page to lock, so it holds
3021 * i_mmap_lock for read to protect against truncate.
3022 */
3023 i_mmap_unlock_read(vma->vm_file->f_mapping);
3024 }
3025 goto uncharge_out;
3026 }
3027 do_set_pte(vma, address, new_page, pte, true, true);
3028 mem_cgroup_commit_charge(new_page, memcg, false);
3029 lru_cache_add_active_or_unevictable(new_page, vma);
3030 pte_unmap_unlock(pte, ptl);
3031 if (fault_page) {
3032 unlock_page(fault_page);
3033 page_cache_release(fault_page);
3034 } else {
3035 /*
3036 * The fault handler has no page to lock, so it holds
3037 * i_mmap_lock for read to protect against truncate.
3038 */
3039 i_mmap_unlock_read(vma->vm_file->f_mapping);
3040 }
3041 return ret;
3042 uncharge_out:
3043 mem_cgroup_cancel_charge(new_page, memcg);
3044 page_cache_release(new_page);
3045 return ret;
3046 }
3047
3048 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3049 unsigned long address, pmd_t *pmd,
3050 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3051 {
3052 struct page *fault_page;
3053 struct address_space *mapping;
3054 spinlock_t *ptl;
3055 pte_t *pte;
3056 int dirtied = 0;
3057 int ret, tmp;
3058
3059 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3061 return ret;
3062
3063 /*
3064 * Check if the backing address space wants to know that the page is
3065 * about to become writable
3066 */
3067 if (vma->vm_ops->page_mkwrite) {
3068 unlock_page(fault_page);
3069 tmp = do_page_mkwrite(vma, fault_page, address);
3070 if (unlikely(!tmp ||
3071 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3072 page_cache_release(fault_page);
3073 return tmp;
3074 }
3075 }
3076
3077 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078 if (unlikely(!pte_same(*pte, orig_pte))) {
3079 pte_unmap_unlock(pte, ptl);
3080 unlock_page(fault_page);
3081 page_cache_release(fault_page);
3082 return ret;
3083 }
3084 do_set_pte(vma, address, fault_page, pte, true, false);
3085 pte_unmap_unlock(pte, ptl);
3086
3087 if (set_page_dirty(fault_page))
3088 dirtied = 1;
3089 /*
3090 * Take a local copy of the address_space - page.mapping may be zeroed
3091 * by truncate after unlock_page(). The address_space itself remains
3092 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3093 * release semantics to prevent the compiler from undoing this copying.
3094 */
3095 mapping = fault_page->mapping;
3096 unlock_page(fault_page);
3097 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3098 /*
3099 * Some device drivers do not set page.mapping but still
3100 * dirty their pages
3101 */
3102 balance_dirty_pages_ratelimited(mapping);
3103 }
3104
3105 if (!vma->vm_ops->page_mkwrite)
3106 file_update_time(vma->vm_file);
3107
3108 return ret;
3109 }
3110
3111 /*
3112 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113 * but allow concurrent faults).
3114 * The mmap_sem may have been released depending on flags and our
3115 * return value. See filemap_fault() and __lock_page_or_retry().
3116 */
3117 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3118 unsigned long address, pte_t *page_table, pmd_t *pmd,
3119 unsigned int flags, pte_t orig_pte)
3120 {
3121 pgoff_t pgoff = (((address & PAGE_MASK)
3122 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3123
3124 pte_unmap(page_table);
3125 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3126 if (!vma->vm_ops->fault)
3127 return VM_FAULT_SIGBUS;
3128 if (!(flags & FAULT_FLAG_WRITE))
3129 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3130 orig_pte);
3131 if (!(vma->vm_flags & VM_SHARED))
3132 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3133 orig_pte);
3134 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3135 }
3136
3137 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3138 unsigned long addr, int page_nid,
3139 int *flags)
3140 {
3141 get_page(page);
3142
3143 count_vm_numa_event(NUMA_HINT_FAULTS);
3144 if (page_nid == numa_node_id()) {
3145 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3146 *flags |= TNF_FAULT_LOCAL;
3147 }
3148
3149 return mpol_misplaced(page, vma, addr);
3150 }
3151
3152 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3153 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3154 {
3155 struct page *page = NULL;
3156 spinlock_t *ptl;
3157 int page_nid = -1;
3158 int last_cpupid;
3159 int target_nid;
3160 bool migrated = false;
3161 bool was_writable = pte_write(pte);
3162 int flags = 0;
3163
3164 /* A PROT_NONE fault should not end up here */
3165 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3166
3167 /*
3168 * The "pte" at this point cannot be used safely without
3169 * validation through pte_unmap_same(). It's of NUMA type but
3170 * the pfn may be screwed if the read is non atomic.
3171 *
3172 * We can safely just do a "set_pte_at()", because the old
3173 * page table entry is not accessible, so there would be no
3174 * concurrent hardware modifications to the PTE.
3175 */
3176 ptl = pte_lockptr(mm, pmd);
3177 spin_lock(ptl);
3178 if (unlikely(!pte_same(*ptep, pte))) {
3179 pte_unmap_unlock(ptep, ptl);
3180 goto out;
3181 }
3182
3183 /* Make it present again */
3184 pte = pte_modify(pte, vma->vm_page_prot);
3185 pte = pte_mkyoung(pte);
3186 if (was_writable)
3187 pte = pte_mkwrite(pte);
3188 set_pte_at(mm, addr, ptep, pte);
3189 update_mmu_cache(vma, addr, ptep);
3190
3191 page = vm_normal_page(vma, addr, pte);
3192 if (!page) {
3193 pte_unmap_unlock(ptep, ptl);
3194 return 0;
3195 }
3196
3197 /*
3198 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3199 * much anyway since they can be in shared cache state. This misses
3200 * the case where a mapping is writable but the process never writes
3201 * to it but pte_write gets cleared during protection updates and
3202 * pte_dirty has unpredictable behaviour between PTE scan updates,
3203 * background writeback, dirty balancing and application behaviour.
3204 */
3205 if (!(vma->vm_flags & VM_WRITE))
3206 flags |= TNF_NO_GROUP;
3207
3208 /*
3209 * Flag if the page is shared between multiple address spaces. This
3210 * is later used when determining whether to group tasks together
3211 */
3212 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3213 flags |= TNF_SHARED;
3214
3215 last_cpupid = page_cpupid_last(page);
3216 page_nid = page_to_nid(page);
3217 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3218 pte_unmap_unlock(ptep, ptl);
3219 if (target_nid == -1) {
3220 put_page(page);
3221 goto out;
3222 }
3223
3224 /* Migrate to the requested node */
3225 migrated = migrate_misplaced_page(page, vma, target_nid);
3226 if (migrated) {
3227 page_nid = target_nid;
3228 flags |= TNF_MIGRATED;
3229 } else
3230 flags |= TNF_MIGRATE_FAIL;
3231
3232 out:
3233 if (page_nid != -1)
3234 task_numa_fault(last_cpupid, page_nid, 1, flags);
3235 return 0;
3236 }
3237
3238 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3239 unsigned long address, pmd_t *pmd, unsigned int flags)
3240 {
3241 if (vma_is_anonymous(vma))
3242 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3243 if (vma->vm_ops->pmd_fault)
3244 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3245 return VM_FAULT_FALLBACK;
3246 }
3247
3248 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3249 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3250 unsigned int flags)
3251 {
3252 if (vma_is_anonymous(vma))
3253 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3254 if (vma->vm_ops->pmd_fault)
3255 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3256 return VM_FAULT_FALLBACK;
3257 }
3258
3259 /*
3260 * These routines also need to handle stuff like marking pages dirty
3261 * and/or accessed for architectures that don't do it in hardware (most
3262 * RISC architectures). The early dirtying is also good on the i386.
3263 *
3264 * There is also a hook called "update_mmu_cache()" that architectures
3265 * with external mmu caches can use to update those (ie the Sparc or
3266 * PowerPC hashed page tables that act as extended TLBs).
3267 *
3268 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3269 * but allow concurrent faults), and pte mapped but not yet locked.
3270 * We return with pte unmapped and unlocked.
3271 *
3272 * The mmap_sem may have been released depending on flags and our
3273 * return value. See filemap_fault() and __lock_page_or_retry().
3274 */
3275 static int handle_pte_fault(struct mm_struct *mm,
3276 struct vm_area_struct *vma, unsigned long address,
3277 pte_t *pte, pmd_t *pmd, unsigned int flags)
3278 {
3279 pte_t entry;
3280 spinlock_t *ptl;
3281
3282 /*
3283 * some architectures can have larger ptes than wordsize,
3284 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3285 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3286 * The code below just needs a consistent view for the ifs and
3287 * we later double check anyway with the ptl lock held. So here
3288 * a barrier will do.
3289 */
3290 entry = *pte;
3291 barrier();
3292 if (!pte_present(entry)) {
3293 if (pte_none(entry)) {
3294 if (vma_is_anonymous(vma))
3295 return do_anonymous_page(mm, vma, address,
3296 pte, pmd, flags);
3297 else
3298 return do_fault(mm, vma, address, pte, pmd,
3299 flags, entry);
3300 }
3301 return do_swap_page(mm, vma, address,
3302 pte, pmd, flags, entry);
3303 }
3304
3305 if (pte_protnone(entry))
3306 return do_numa_page(mm, vma, address, entry, pte, pmd);
3307
3308 ptl = pte_lockptr(mm, pmd);
3309 spin_lock(ptl);
3310 if (unlikely(!pte_same(*pte, entry)))
3311 goto unlock;
3312 if (flags & FAULT_FLAG_WRITE) {
3313 if (!pte_write(entry))
3314 return do_wp_page(mm, vma, address,
3315 pte, pmd, ptl, entry);
3316 entry = pte_mkdirty(entry);
3317 }
3318 entry = pte_mkyoung(entry);
3319 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3320 update_mmu_cache(vma, address, pte);
3321 } else {
3322 /*
3323 * This is needed only for protection faults but the arch code
3324 * is not yet telling us if this is a protection fault or not.
3325 * This still avoids useless tlb flushes for .text page faults
3326 * with threads.
3327 */
3328 if (flags & FAULT_FLAG_WRITE)
3329 flush_tlb_fix_spurious_fault(vma, address);
3330 }
3331 unlock:
3332 pte_unmap_unlock(pte, ptl);
3333 return 0;
3334 }
3335
3336 /*
3337 * By the time we get here, we already hold the mm semaphore
3338 *
3339 * The mmap_sem may have been released depending on flags and our
3340 * return value. See filemap_fault() and __lock_page_or_retry().
3341 */
3342 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343 unsigned long address, unsigned int flags)
3344 {
3345 pgd_t *pgd;
3346 pud_t *pud;
3347 pmd_t *pmd;
3348 pte_t *pte;
3349
3350 if (unlikely(is_vm_hugetlb_page(vma)))
3351 return hugetlb_fault(mm, vma, address, flags);
3352
3353 pgd = pgd_offset(mm, address);
3354 pud = pud_alloc(mm, pgd, address);
3355 if (!pud)
3356 return VM_FAULT_OOM;
3357 pmd = pmd_alloc(mm, pud, address);
3358 if (!pmd)
3359 return VM_FAULT_OOM;
3360 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3361 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3362 if (!(ret & VM_FAULT_FALLBACK))
3363 return ret;
3364 } else {
3365 pmd_t orig_pmd = *pmd;
3366 int ret;
3367
3368 barrier();
3369 if (pmd_trans_huge(orig_pmd)) {
3370 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3371
3372 /*
3373 * If the pmd is splitting, return and retry the
3374 * the fault. Alternative: wait until the split
3375 * is done, and goto retry.
3376 */
3377 if (pmd_trans_splitting(orig_pmd))
3378 return 0;
3379
3380 if (pmd_protnone(orig_pmd))
3381 return do_huge_pmd_numa_page(mm, vma, address,
3382 orig_pmd, pmd);
3383
3384 if (dirty && !pmd_write(orig_pmd)) {
3385 ret = wp_huge_pmd(mm, vma, address, pmd,
3386 orig_pmd, flags);
3387 if (!(ret & VM_FAULT_FALLBACK))
3388 return ret;
3389 } else {
3390 huge_pmd_set_accessed(mm, vma, address, pmd,
3391 orig_pmd, dirty);
3392 return 0;
3393 }
3394 }
3395 }
3396
3397 /*
3398 * Use __pte_alloc instead of pte_alloc_map, because we can't
3399 * run pte_offset_map on the pmd, if an huge pmd could
3400 * materialize from under us from a different thread.
3401 */
3402 if (unlikely(pmd_none(*pmd)) &&
3403 unlikely(__pte_alloc(mm, vma, pmd, address)))
3404 return VM_FAULT_OOM;
3405 /*
3406 * If a huge pmd materialized under us just retry later. Use
3407 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3408 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3409 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3410 * in a different thread of this mm, in turn leading to a misleading
3411 * pmd_trans_huge() retval. All we have to ensure is that it is a
3412 * regular pmd that we can walk with pte_offset_map() and we can do that
3413 * through an atomic read in C, which is what pmd_trans_unstable()
3414 * provides.
3415 */
3416 if (unlikely(pmd_trans_unstable(pmd)))
3417 return 0;
3418 /*
3419 * A regular pmd is established and it can't morph into a huge pmd
3420 * from under us anymore at this point because we hold the mmap_sem
3421 * read mode and khugepaged takes it in write mode. So now it's
3422 * safe to run pte_offset_map().
3423 */
3424 pte = pte_offset_map(pmd, address);
3425
3426 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3427 }
3428
3429 /*
3430 * By the time we get here, we already hold the mm semaphore
3431 *
3432 * The mmap_sem may have been released depending on flags and our
3433 * return value. See filemap_fault() and __lock_page_or_retry().
3434 */
3435 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3436 unsigned long address, unsigned int flags)
3437 {
3438 int ret;
3439
3440 __set_current_state(TASK_RUNNING);
3441
3442 count_vm_event(PGFAULT);
3443 mem_cgroup_count_vm_event(mm, PGFAULT);
3444
3445 /* do counter updates before entering really critical section. */
3446 check_sync_rss_stat(current);
3447
3448 /*
3449 * Enable the memcg OOM handling for faults triggered in user
3450 * space. Kernel faults are handled more gracefully.
3451 */
3452 if (flags & FAULT_FLAG_USER)
3453 mem_cgroup_oom_enable();
3454
3455 ret = __handle_mm_fault(mm, vma, address, flags);
3456
3457 if (flags & FAULT_FLAG_USER) {
3458 mem_cgroup_oom_disable();
3459 /*
3460 * The task may have entered a memcg OOM situation but
3461 * if the allocation error was handled gracefully (no
3462 * VM_FAULT_OOM), there is no need to kill anything.
3463 * Just clean up the OOM state peacefully.
3464 */
3465 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3466 mem_cgroup_oom_synchronize(false);
3467 }
3468
3469 return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(handle_mm_fault);
3472
3473 #ifndef __PAGETABLE_PUD_FOLDED
3474 /*
3475 * Allocate page upper directory.
3476 * We've already handled the fast-path in-line.
3477 */
3478 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3479 {
3480 pud_t *new = pud_alloc_one(mm, address);
3481 if (!new)
3482 return -ENOMEM;
3483
3484 smp_wmb(); /* See comment in __pte_alloc */
3485
3486 spin_lock(&mm->page_table_lock);
3487 if (pgd_present(*pgd)) /* Another has populated it */
3488 pud_free(mm, new);
3489 else
3490 pgd_populate(mm, pgd, new);
3491 spin_unlock(&mm->page_table_lock);
3492 return 0;
3493 }
3494 #endif /* __PAGETABLE_PUD_FOLDED */
3495
3496 #ifndef __PAGETABLE_PMD_FOLDED
3497 /*
3498 * Allocate page middle directory.
3499 * We've already handled the fast-path in-line.
3500 */
3501 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3502 {
3503 pmd_t *new = pmd_alloc_one(mm, address);
3504 if (!new)
3505 return -ENOMEM;
3506
3507 smp_wmb(); /* See comment in __pte_alloc */
3508
3509 spin_lock(&mm->page_table_lock);
3510 #ifndef __ARCH_HAS_4LEVEL_HACK
3511 if (!pud_present(*pud)) {
3512 mm_inc_nr_pmds(mm);
3513 pud_populate(mm, pud, new);
3514 } else /* Another has populated it */
3515 pmd_free(mm, new);
3516 #else
3517 if (!pgd_present(*pud)) {
3518 mm_inc_nr_pmds(mm);
3519 pgd_populate(mm, pud, new);
3520 } else /* Another has populated it */
3521 pmd_free(mm, new);
3522 #endif /* __ARCH_HAS_4LEVEL_HACK */
3523 spin_unlock(&mm->page_table_lock);
3524 return 0;
3525 }
3526 #endif /* __PAGETABLE_PMD_FOLDED */
3527
3528 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3529 pte_t **ptepp, spinlock_t **ptlp)
3530 {
3531 pgd_t *pgd;
3532 pud_t *pud;
3533 pmd_t *pmd;
3534 pte_t *ptep;
3535
3536 pgd = pgd_offset(mm, address);
3537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3538 goto out;
3539
3540 pud = pud_offset(pgd, address);
3541 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3542 goto out;
3543
3544 pmd = pmd_offset(pud, address);
3545 VM_BUG_ON(pmd_trans_huge(*pmd));
3546 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3547 goto out;
3548
3549 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3550 if (pmd_huge(*pmd))
3551 goto out;
3552
3553 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3554 if (!ptep)
3555 goto out;
3556 if (!pte_present(*ptep))
3557 goto unlock;
3558 *ptepp = ptep;
3559 return 0;
3560 unlock:
3561 pte_unmap_unlock(ptep, *ptlp);
3562 out:
3563 return -EINVAL;
3564 }
3565
3566 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3567 pte_t **ptepp, spinlock_t **ptlp)
3568 {
3569 int res;
3570
3571 /* (void) is needed to make gcc happy */
3572 (void) __cond_lock(*ptlp,
3573 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3574 return res;
3575 }
3576
3577 /**
3578 * follow_pfn - look up PFN at a user virtual address
3579 * @vma: memory mapping
3580 * @address: user virtual address
3581 * @pfn: location to store found PFN
3582 *
3583 * Only IO mappings and raw PFN mappings are allowed.
3584 *
3585 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3586 */
3587 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3588 unsigned long *pfn)
3589 {
3590 int ret = -EINVAL;
3591 spinlock_t *ptl;
3592 pte_t *ptep;
3593
3594 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3595 return ret;
3596
3597 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3598 if (ret)
3599 return ret;
3600 *pfn = pte_pfn(*ptep);
3601 pte_unmap_unlock(ptep, ptl);
3602 return 0;
3603 }
3604 EXPORT_SYMBOL(follow_pfn);
3605
3606 #ifdef CONFIG_HAVE_IOREMAP_PROT
3607 int follow_phys(struct vm_area_struct *vma,
3608 unsigned long address, unsigned int flags,
3609 unsigned long *prot, resource_size_t *phys)
3610 {
3611 int ret = -EINVAL;
3612 pte_t *ptep, pte;
3613 spinlock_t *ptl;
3614
3615 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3616 goto out;
3617
3618 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3619 goto out;
3620 pte = *ptep;
3621
3622 if ((flags & FOLL_WRITE) && !pte_write(pte))
3623 goto unlock;
3624
3625 *prot = pgprot_val(pte_pgprot(pte));
3626 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3627
3628 ret = 0;
3629 unlock:
3630 pte_unmap_unlock(ptep, ptl);
3631 out:
3632 return ret;
3633 }
3634
3635 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3636 void *buf, int len, int write)
3637 {
3638 resource_size_t phys_addr;
3639 unsigned long prot = 0;
3640 void __iomem *maddr;
3641 int offset = addr & (PAGE_SIZE-1);
3642
3643 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3644 return -EINVAL;
3645
3646 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3647 if (write)
3648 memcpy_toio(maddr + offset, buf, len);
3649 else
3650 memcpy_fromio(buf, maddr + offset, len);
3651 iounmap(maddr);
3652
3653 return len;
3654 }
3655 EXPORT_SYMBOL_GPL(generic_access_phys);
3656 #endif
3657
3658 /*
3659 * Access another process' address space as given in mm. If non-NULL, use the
3660 * given task for page fault accounting.
3661 */
3662 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3663 unsigned long addr, void *buf, int len, int write)
3664 {
3665 struct vm_area_struct *vma;
3666 void *old_buf = buf;
3667
3668 down_read(&mm->mmap_sem);
3669 /* ignore errors, just check how much was successfully transferred */
3670 while (len) {
3671 int bytes, ret, offset;
3672 void *maddr;
3673 struct page *page = NULL;
3674
3675 ret = get_user_pages(tsk, mm, addr, 1,
3676 write, 1, &page, &vma);
3677 if (ret <= 0) {
3678 #ifndef CONFIG_HAVE_IOREMAP_PROT
3679 break;
3680 #else
3681 /*
3682 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3683 * we can access using slightly different code.
3684 */
3685 vma = find_vma(mm, addr);
3686 if (!vma || vma->vm_start > addr)
3687 break;
3688 if (vma->vm_ops && vma->vm_ops->access)
3689 ret = vma->vm_ops->access(vma, addr, buf,
3690 len, write);
3691 if (ret <= 0)
3692 break;
3693 bytes = ret;
3694 #endif
3695 } else {
3696 bytes = len;
3697 offset = addr & (PAGE_SIZE-1);
3698 if (bytes > PAGE_SIZE-offset)
3699 bytes = PAGE_SIZE-offset;
3700
3701 maddr = kmap(page);
3702 if (write) {
3703 copy_to_user_page(vma, page, addr,
3704 maddr + offset, buf, bytes);
3705 set_page_dirty_lock(page);
3706 } else {
3707 copy_from_user_page(vma, page, addr,
3708 buf, maddr + offset, bytes);
3709 }
3710 kunmap(page);
3711 page_cache_release(page);
3712 }
3713 len -= bytes;
3714 buf += bytes;
3715 addr += bytes;
3716 }
3717 up_read(&mm->mmap_sem);
3718
3719 return buf - old_buf;
3720 }
3721
3722 /**
3723 * access_remote_vm - access another process' address space
3724 * @mm: the mm_struct of the target address space
3725 * @addr: start address to access
3726 * @buf: source or destination buffer
3727 * @len: number of bytes to transfer
3728 * @write: whether the access is a write
3729 *
3730 * The caller must hold a reference on @mm.
3731 */
3732 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3733 void *buf, int len, int write)
3734 {
3735 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3736 }
3737
3738 /*
3739 * Access another process' address space.
3740 * Source/target buffer must be kernel space,
3741 * Do not walk the page table directly, use get_user_pages
3742 */
3743 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3744 void *buf, int len, int write)
3745 {
3746 struct mm_struct *mm;
3747 int ret;
3748
3749 mm = get_task_mm(tsk);
3750 if (!mm)
3751 return 0;
3752
3753 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3754 mmput(mm);
3755
3756 return ret;
3757 }
3758
3759 /*
3760 * Print the name of a VMA.
3761 */
3762 void print_vma_addr(char *prefix, unsigned long ip)
3763 {
3764 struct mm_struct *mm = current->mm;
3765 struct vm_area_struct *vma;
3766
3767 /*
3768 * Do not print if we are in atomic
3769 * contexts (in exception stacks, etc.):
3770 */
3771 if (preempt_count())
3772 return;
3773
3774 down_read(&mm->mmap_sem);
3775 vma = find_vma(mm, ip);
3776 if (vma && vma->vm_file) {
3777 struct file *f = vma->vm_file;
3778 char *buf = (char *)__get_free_page(GFP_KERNEL);
3779 if (buf) {
3780 char *p;
3781
3782 p = file_path(f, buf, PAGE_SIZE);
3783 if (IS_ERR(p))
3784 p = "?";
3785 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3786 vma->vm_start,
3787 vma->vm_end - vma->vm_start);
3788 free_page((unsigned long)buf);
3789 }
3790 }
3791 up_read(&mm->mmap_sem);
3792 }
3793
3794 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3795 void __might_fault(const char *file, int line)
3796 {
3797 /*
3798 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3799 * holding the mmap_sem, this is safe because kernel memory doesn't
3800 * get paged out, therefore we'll never actually fault, and the
3801 * below annotations will generate false positives.
3802 */
3803 if (segment_eq(get_fs(), KERNEL_DS))
3804 return;
3805 if (pagefault_disabled())
3806 return;
3807 __might_sleep(file, line, 0);
3808 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3809 if (current->mm)
3810 might_lock_read(&current->mm->mmap_sem);
3811 #endif
3812 }
3813 EXPORT_SYMBOL(__might_fault);
3814 #endif
3815
3816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3817 static void clear_gigantic_page(struct page *page,
3818 unsigned long addr,
3819 unsigned int pages_per_huge_page)
3820 {
3821 int i;
3822 struct page *p = page;
3823
3824 might_sleep();
3825 for (i = 0; i < pages_per_huge_page;
3826 i++, p = mem_map_next(p, page, i)) {
3827 cond_resched();
3828 clear_user_highpage(p, addr + i * PAGE_SIZE);
3829 }
3830 }
3831 void clear_huge_page(struct page *page,
3832 unsigned long addr, unsigned int pages_per_huge_page)
3833 {
3834 int i;
3835
3836 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3837 clear_gigantic_page(page, addr, pages_per_huge_page);
3838 return;
3839 }
3840
3841 might_sleep();
3842 for (i = 0; i < pages_per_huge_page; i++) {
3843 cond_resched();
3844 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3845 }
3846 }
3847
3848 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3849 unsigned long addr,
3850 struct vm_area_struct *vma,
3851 unsigned int pages_per_huge_page)
3852 {
3853 int i;
3854 struct page *dst_base = dst;
3855 struct page *src_base = src;
3856
3857 for (i = 0; i < pages_per_huge_page; ) {
3858 cond_resched();
3859 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3860
3861 i++;
3862 dst = mem_map_next(dst, dst_base, i);
3863 src = mem_map_next(src, src_base, i);
3864 }
3865 }
3866
3867 void copy_user_huge_page(struct page *dst, struct page *src,
3868 unsigned long addr, struct vm_area_struct *vma,
3869 unsigned int pages_per_huge_page)
3870 {
3871 int i;
3872
3873 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3874 copy_user_gigantic_page(dst, src, addr, vma,
3875 pages_per_huge_page);
3876 return;
3877 }
3878
3879 might_sleep();
3880 for (i = 0; i < pages_per_huge_page; i++) {
3881 cond_resched();
3882 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3883 }
3884 }
3885 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3886
3887 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3888
3889 static struct kmem_cache *page_ptl_cachep;
3890
3891 void __init ptlock_cache_init(void)
3892 {
3893 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3894 SLAB_PANIC, NULL);
3895 }
3896
3897 bool ptlock_alloc(struct page *page)
3898 {
3899 spinlock_t *ptl;
3900
3901 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3902 if (!ptl)
3903 return false;
3904 page->ptl = ptl;
3905 return true;
3906 }
3907
3908 void ptlock_free(struct page *page)
3909 {
3910 kmem_cache_free(page_ptl_cachep, page->ptl);
3911 }
3912 #endif