4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
121 EXPORT_SYMBOL(zero_pfn
);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init
init_zero_pfn(void)
128 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
131 core_initcall(init_zero_pfn
);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct
*mm
)
140 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
141 if (current
->rss_stat
.count
[i
]) {
142 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
143 current
->rss_stat
.count
[i
] = 0;
146 current
->rss_stat
.events
= 0;
149 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
151 struct task_struct
*task
= current
;
153 if (likely(task
->mm
== mm
))
154 task
->rss_stat
.count
[member
] += val
;
156 add_mm_counter(mm
, member
, val
);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct
*task
)
165 if (unlikely(task
!= current
))
167 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
168 sync_mm_rss(task
->mm
);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct
*task
)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather
*tlb
)
185 struct mmu_gather_batch
*batch
;
189 tlb
->active
= batch
->next
;
193 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
196 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
203 batch
->max
= MAX_GATHER_BATCH
;
205 tlb
->active
->next
= batch
;
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
220 /* Is it from 0 to ~0? */
221 tlb
->fullmm
= !(start
| (end
+1));
222 tlb
->need_flush_all
= 0;
223 tlb
->local
.next
= NULL
;
225 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
226 tlb
->active
= &tlb
->local
;
227 tlb
->batch_count
= 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 __tlb_reset_range(tlb
);
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
242 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb
);
246 __tlb_reset_range(tlb
);
249 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
251 struct mmu_gather_batch
*batch
;
253 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
254 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
257 tlb
->active
= &tlb
->local
;
260 void tlb_flush_mmu(struct mmu_gather
*tlb
)
262 tlb_flush_mmu_tlbonly(tlb
);
263 tlb_flush_mmu_free(tlb
);
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
272 struct mmu_gather_batch
*batch
, *next
;
276 /* keep the page table cache within bounds */
279 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
281 free_pages((unsigned long)batch
, 0);
283 tlb
->local
.next
= NULL
;
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
294 struct mmu_gather_batch
*batch
;
296 VM_BUG_ON(!tlb
->end
);
299 batch
->pages
[batch
->nr
++] = page
;
300 if (batch
->nr
== batch
->max
) {
301 if (!tlb_next_batch(tlb
))
305 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
307 return batch
->max
- batch
->nr
;
310 #endif /* HAVE_GENERIC_MMU_GATHER */
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 * See the comment near struct mmu_table_batch.
318 static void tlb_remove_table_smp_sync(void *arg
)
320 /* Simply deliver the interrupt */
323 static void tlb_remove_table_one(void *table
)
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
332 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
333 __tlb_remove_table(table
);
336 static void tlb_remove_table_rcu(struct rcu_head
*head
)
338 struct mmu_table_batch
*batch
;
341 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
343 for (i
= 0; i
< batch
->nr
; i
++)
344 __tlb_remove_table(batch
->tables
[i
]);
346 free_page((unsigned long)batch
);
349 void tlb_table_flush(struct mmu_gather
*tlb
)
351 struct mmu_table_batch
**batch
= &tlb
->batch
;
354 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
359 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
361 struct mmu_table_batch
**batch
= &tlb
->batch
;
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
367 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
368 __tlb_remove_table(table
);
372 if (*batch
== NULL
) {
373 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
374 if (*batch
== NULL
) {
375 tlb_remove_table_one(table
);
380 (*batch
)->tables
[(*batch
)->nr
++] = table
;
381 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
382 tlb_table_flush(tlb
);
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
391 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
394 pgtable_t token
= pmd_pgtable(*pmd
);
396 pte_free_tlb(tlb
, token
, addr
);
397 atomic_long_dec(&tlb
->mm
->nr_ptes
);
400 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
401 unsigned long addr
, unsigned long end
,
402 unsigned long floor
, unsigned long ceiling
)
409 pmd
= pmd_offset(pud
, addr
);
411 next
= pmd_addr_end(addr
, end
);
412 if (pmd_none_or_clear_bad(pmd
))
414 free_pte_range(tlb
, pmd
, addr
);
415 } while (pmd
++, addr
= next
, addr
!= end
);
425 if (end
- 1 > ceiling
- 1)
428 pmd
= pmd_offset(pud
, start
);
430 pmd_free_tlb(tlb
, pmd
, start
);
433 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
434 unsigned long addr
, unsigned long end
,
435 unsigned long floor
, unsigned long ceiling
)
442 pud
= pud_offset(pgd
, addr
);
444 next
= pud_addr_end(addr
, end
);
445 if (pud_none_or_clear_bad(pud
))
447 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
448 } while (pud
++, addr
= next
, addr
!= end
);
454 ceiling
&= PGDIR_MASK
;
458 if (end
- 1 > ceiling
- 1)
461 pud
= pud_offset(pgd
, start
);
463 pud_free_tlb(tlb
, pud
, start
);
467 * This function frees user-level page tables of a process.
469 void free_pgd_range(struct mmu_gather
*tlb
,
470 unsigned long addr
, unsigned long end
,
471 unsigned long floor
, unsigned long ceiling
)
477 * The next few lines have given us lots of grief...
479 * Why are we testing PMD* at this top level? Because often
480 * there will be no work to do at all, and we'd prefer not to
481 * go all the way down to the bottom just to discover that.
483 * Why all these "- 1"s? Because 0 represents both the bottom
484 * of the address space and the top of it (using -1 for the
485 * top wouldn't help much: the masks would do the wrong thing).
486 * The rule is that addr 0 and floor 0 refer to the bottom of
487 * the address space, but end 0 and ceiling 0 refer to the top
488 * Comparisons need to use "end - 1" and "ceiling - 1" (though
489 * that end 0 case should be mythical).
491 * Wherever addr is brought up or ceiling brought down, we must
492 * be careful to reject "the opposite 0" before it confuses the
493 * subsequent tests. But what about where end is brought down
494 * by PMD_SIZE below? no, end can't go down to 0 there.
496 * Whereas we round start (addr) and ceiling down, by different
497 * masks at different levels, in order to test whether a table
498 * now has no other vmas using it, so can be freed, we don't
499 * bother to round floor or end up - the tests don't need that.
513 if (end
- 1 > ceiling
- 1)
518 pgd
= pgd_offset(tlb
->mm
, addr
);
520 next
= pgd_addr_end(addr
, end
);
521 if (pgd_none_or_clear_bad(pgd
))
523 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
524 } while (pgd
++, addr
= next
, addr
!= end
);
527 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
528 unsigned long floor
, unsigned long ceiling
)
531 struct vm_area_struct
*next
= vma
->vm_next
;
532 unsigned long addr
= vma
->vm_start
;
535 * Hide vma from rmap and truncate_pagecache before freeing
538 unlink_anon_vmas(vma
);
539 unlink_file_vma(vma
);
541 if (is_vm_hugetlb_page(vma
)) {
542 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
543 floor
, next
? next
->vm_start
: ceiling
);
546 * Optimization: gather nearby vmas into one call down
548 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
549 && !is_vm_hugetlb_page(next
)) {
552 unlink_anon_vmas(vma
);
553 unlink_file_vma(vma
);
555 free_pgd_range(tlb
, addr
, vma
->vm_end
,
556 floor
, next
? next
->vm_start
: ceiling
);
562 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
563 pmd_t
*pmd
, unsigned long address
)
566 pgtable_t
new = pte_alloc_one(mm
, address
);
567 int wait_split_huge_page
;
572 * Ensure all pte setup (eg. pte page lock and page clearing) are
573 * visible before the pte is made visible to other CPUs by being
574 * put into page tables.
576 * The other side of the story is the pointer chasing in the page
577 * table walking code (when walking the page table without locking;
578 * ie. most of the time). Fortunately, these data accesses consist
579 * of a chain of data-dependent loads, meaning most CPUs (alpha
580 * being the notable exception) will already guarantee loads are
581 * seen in-order. See the alpha page table accessors for the
582 * smp_read_barrier_depends() barriers in page table walking code.
584 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 ptl
= pmd_lock(mm
, pmd
);
587 wait_split_huge_page
= 0;
588 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
589 atomic_long_inc(&mm
->nr_ptes
);
590 pmd_populate(mm
, pmd
, new);
592 } else if (unlikely(pmd_trans_splitting(*pmd
)))
593 wait_split_huge_page
= 1;
597 if (wait_split_huge_page
)
598 wait_split_huge_page(vma
->anon_vma
, pmd
);
602 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
604 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
608 smp_wmb(); /* See comment in __pte_alloc */
610 spin_lock(&init_mm
.page_table_lock
);
611 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
612 pmd_populate_kernel(&init_mm
, pmd
, new);
615 VM_BUG_ON(pmd_trans_splitting(*pmd
));
616 spin_unlock(&init_mm
.page_table_lock
);
618 pte_free_kernel(&init_mm
, new);
622 static inline void init_rss_vec(int *rss
)
624 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
627 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
631 if (current
->mm
== mm
)
633 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
635 add_mm_counter(mm
, i
, rss
[i
]);
639 * This function is called to print an error when a bad pte
640 * is found. For example, we might have a PFN-mapped pte in
641 * a region that doesn't allow it.
643 * The calling function must still handle the error.
645 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
646 pte_t pte
, struct page
*page
)
648 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
649 pud_t
*pud
= pud_offset(pgd
, addr
);
650 pmd_t
*pmd
= pmd_offset(pud
, addr
);
651 struct address_space
*mapping
;
653 static unsigned long resume
;
654 static unsigned long nr_shown
;
655 static unsigned long nr_unshown
;
658 * Allow a burst of 60 reports, then keep quiet for that minute;
659 * or allow a steady drip of one report per second.
661 if (nr_shown
== 60) {
662 if (time_before(jiffies
, resume
)) {
668 "BUG: Bad page map: %lu messages suppressed\n",
675 resume
= jiffies
+ 60 * HZ
;
677 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
678 index
= linear_page_index(vma
, addr
);
681 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
685 dump_page(page
, "bad pte");
687 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
690 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
696 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
697 vma
->vm_file
->f_op
->mmap
);
699 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 * And for normal mappings this is false.
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
747 # define HAVE_PTE_SPECIAL 0
749 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
752 unsigned long pfn
= pte_pfn(pte
);
754 if (HAVE_PTE_SPECIAL
) {
755 if (likely(!pte_special(pte
)))
757 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
759 if (!is_zero_pfn(pfn
))
760 print_bad_pte(vma
, addr
, pte
, NULL
);
764 /* !HAVE_PTE_SPECIAL case follows: */
766 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
767 if (vma
->vm_flags
& VM_MIXEDMAP
) {
773 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
774 if (pfn
== vma
->vm_pgoff
+ off
)
776 if (!is_cow_mapping(vma
->vm_flags
))
781 if (is_zero_pfn(pfn
))
784 if (unlikely(pfn
> highest_memmap_pfn
)) {
785 print_bad_pte(vma
, addr
, pte
, NULL
);
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
794 return pfn_to_page(pfn
);
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
803 static inline unsigned long
804 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
805 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
806 unsigned long addr
, int *rss
)
808 unsigned long vm_flags
= vma
->vm_flags
;
809 pte_t pte
= *src_pte
;
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte
))) {
814 swp_entry_t entry
= pte_to_swp_entry(pte
);
816 if (likely(!non_swap_entry(entry
))) {
817 if (swap_duplicate(entry
) < 0)
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
822 spin_lock(&mmlist_lock
);
823 if (list_empty(&dst_mm
->mmlist
))
824 list_add(&dst_mm
->mmlist
,
826 spin_unlock(&mmlist_lock
);
829 } else if (is_migration_entry(entry
)) {
830 page
= migration_entry_to_page(entry
);
837 if (is_write_migration_entry(entry
) &&
838 is_cow_mapping(vm_flags
)) {
840 * COW mappings require pages in both
841 * parent and child to be set to read.
843 make_migration_entry_read(&entry
);
844 pte
= swp_entry_to_pte(entry
);
845 if (pte_swp_soft_dirty(*src_pte
))
846 pte
= pte_swp_mksoft_dirty(pte
);
847 set_pte_at(src_mm
, addr
, src_pte
, pte
);
854 * If it's a COW mapping, write protect it both
855 * in the parent and the child
857 if (is_cow_mapping(vm_flags
)) {
858 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
859 pte
= pte_wrprotect(pte
);
863 * If it's a shared mapping, mark it clean in
866 if (vm_flags
& VM_SHARED
)
867 pte
= pte_mkclean(pte
);
868 pte
= pte_mkold(pte
);
870 page
= vm_normal_page(vma
, addr
, pte
);
881 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
885 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
886 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
887 unsigned long addr
, unsigned long end
)
889 pte_t
*orig_src_pte
, *orig_dst_pte
;
890 pte_t
*src_pte
, *dst_pte
;
891 spinlock_t
*src_ptl
, *dst_ptl
;
893 int rss
[NR_MM_COUNTERS
];
894 swp_entry_t entry
= (swp_entry_t
){0};
899 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
902 src_pte
= pte_offset_map(src_pmd
, addr
);
903 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
904 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
905 orig_src_pte
= src_pte
;
906 orig_dst_pte
= dst_pte
;
907 arch_enter_lazy_mmu_mode();
911 * We are holding two locks at this point - either of them
912 * could generate latencies in another task on another CPU.
914 if (progress
>= 32) {
916 if (need_resched() ||
917 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
920 if (pte_none(*src_pte
)) {
924 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
929 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
931 arch_leave_lazy_mmu_mode();
932 spin_unlock(src_ptl
);
933 pte_unmap(orig_src_pte
);
934 add_mm_rss_vec(dst_mm
, rss
);
935 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
939 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
948 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
949 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
950 unsigned long addr
, unsigned long end
)
952 pmd_t
*src_pmd
, *dst_pmd
;
955 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
958 src_pmd
= pmd_offset(src_pud
, addr
);
960 next
= pmd_addr_end(addr
, end
);
961 if (pmd_trans_huge(*src_pmd
)) {
963 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
964 err
= copy_huge_pmd(dst_mm
, src_mm
,
965 dst_pmd
, src_pmd
, addr
, vma
);
972 if (pmd_none_or_clear_bad(src_pmd
))
974 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
977 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
981 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
982 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
983 unsigned long addr
, unsigned long end
)
985 pud_t
*src_pud
, *dst_pud
;
988 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
991 src_pud
= pud_offset(src_pgd
, addr
);
993 next
= pud_addr_end(addr
, end
);
994 if (pud_none_or_clear_bad(src_pud
))
996 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
999 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1003 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1004 struct vm_area_struct
*vma
)
1006 pgd_t
*src_pgd
, *dst_pgd
;
1008 unsigned long addr
= vma
->vm_start
;
1009 unsigned long end
= vma
->vm_end
;
1010 unsigned long mmun_start
; /* For mmu_notifiers */
1011 unsigned long mmun_end
; /* For mmu_notifiers */
1016 * Don't copy ptes where a page fault will fill them correctly.
1017 * Fork becomes much lighter when there are big shared or private
1018 * readonly mappings. The tradeoff is that copy_page_range is more
1019 * efficient than faulting.
1021 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1025 if (is_vm_hugetlb_page(vma
))
1026 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1028 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1030 * We do not free on error cases below as remove_vma
1031 * gets called on error from higher level routine
1033 ret
= track_pfn_copy(vma
);
1039 * We need to invalidate the secondary MMU mappings only when
1040 * there could be a permission downgrade on the ptes of the
1041 * parent mm. And a permission downgrade will only happen if
1042 * is_cow_mapping() returns true.
1044 is_cow
= is_cow_mapping(vma
->vm_flags
);
1048 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1052 dst_pgd
= pgd_offset(dst_mm
, addr
);
1053 src_pgd
= pgd_offset(src_mm
, addr
);
1055 next
= pgd_addr_end(addr
, end
);
1056 if (pgd_none_or_clear_bad(src_pgd
))
1058 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1059 vma
, addr
, next
))) {
1063 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1066 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1070 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1071 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1072 unsigned long addr
, unsigned long end
,
1073 struct zap_details
*details
)
1075 struct mm_struct
*mm
= tlb
->mm
;
1076 int force_flush
= 0;
1077 int rss
[NR_MM_COUNTERS
];
1085 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1087 arch_enter_lazy_mmu_mode();
1090 if (pte_none(ptent
)) {
1094 if (pte_present(ptent
)) {
1097 page
= vm_normal_page(vma
, addr
, ptent
);
1098 if (unlikely(details
) && page
) {
1100 * unmap_shared_mapping_pages() wants to
1101 * invalidate cache without truncating:
1102 * unmap shared but keep private pages.
1104 if (details
->check_mapping
&&
1105 details
->check_mapping
!= page
->mapping
)
1108 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1110 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1111 if (unlikely(!page
))
1114 rss
[MM_ANONPAGES
]--;
1116 if (pte_dirty(ptent
)) {
1118 set_page_dirty(page
);
1120 if (pte_young(ptent
) &&
1121 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1122 mark_page_accessed(page
);
1123 rss
[MM_FILEPAGES
]--;
1125 page_remove_rmap(page
);
1126 if (unlikely(page_mapcount(page
) < 0))
1127 print_bad_pte(vma
, addr
, ptent
, page
);
1128 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1135 /* If details->check_mapping, we leave swap entries. */
1136 if (unlikely(details
))
1139 entry
= pte_to_swp_entry(ptent
);
1140 if (!non_swap_entry(entry
))
1142 else if (is_migration_entry(entry
)) {
1145 page
= migration_entry_to_page(entry
);
1148 rss
[MM_ANONPAGES
]--;
1150 rss
[MM_FILEPAGES
]--;
1152 if (unlikely(!free_swap_and_cache(entry
)))
1153 print_bad_pte(vma
, addr
, ptent
, NULL
);
1154 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1155 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1157 add_mm_rss_vec(mm
, rss
);
1158 arch_leave_lazy_mmu_mode();
1160 /* Do the actual TLB flush before dropping ptl */
1162 tlb_flush_mmu_tlbonly(tlb
);
1163 pte_unmap_unlock(start_pte
, ptl
);
1166 * If we forced a TLB flush (either due to running out of
1167 * batch buffers or because we needed to flush dirty TLB
1168 * entries before releasing the ptl), free the batched
1169 * memory too. Restart if we didn't do everything.
1173 tlb_flush_mmu_free(tlb
);
1182 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1183 struct vm_area_struct
*vma
, pud_t
*pud
,
1184 unsigned long addr
, unsigned long end
,
1185 struct zap_details
*details
)
1190 pmd
= pmd_offset(pud
, addr
);
1192 next
= pmd_addr_end(addr
, end
);
1193 if (pmd_trans_huge(*pmd
)) {
1194 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1195 #ifdef CONFIG_DEBUG_VM
1196 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1197 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1198 __func__
, addr
, end
,
1204 split_huge_page_pmd(vma
, addr
, pmd
);
1205 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1210 * Here there can be other concurrent MADV_DONTNEED or
1211 * trans huge page faults running, and if the pmd is
1212 * none or trans huge it can change under us. This is
1213 * because MADV_DONTNEED holds the mmap_sem in read
1216 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1218 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1221 } while (pmd
++, addr
= next
, addr
!= end
);
1226 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1227 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1228 unsigned long addr
, unsigned long end
,
1229 struct zap_details
*details
)
1234 pud
= pud_offset(pgd
, addr
);
1236 next
= pud_addr_end(addr
, end
);
1237 if (pud_none_or_clear_bad(pud
))
1239 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1240 } while (pud
++, addr
= next
, addr
!= end
);
1245 static void unmap_page_range(struct mmu_gather
*tlb
,
1246 struct vm_area_struct
*vma
,
1247 unsigned long addr
, unsigned long end
,
1248 struct zap_details
*details
)
1253 if (details
&& !details
->check_mapping
)
1256 BUG_ON(addr
>= end
);
1257 tlb_start_vma(tlb
, vma
);
1258 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1260 next
= pgd_addr_end(addr
, end
);
1261 if (pgd_none_or_clear_bad(pgd
))
1263 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1264 } while (pgd
++, addr
= next
, addr
!= end
);
1265 tlb_end_vma(tlb
, vma
);
1269 static void unmap_single_vma(struct mmu_gather
*tlb
,
1270 struct vm_area_struct
*vma
, unsigned long start_addr
,
1271 unsigned long end_addr
,
1272 struct zap_details
*details
)
1274 unsigned long start
= max(vma
->vm_start
, start_addr
);
1277 if (start
>= vma
->vm_end
)
1279 end
= min(vma
->vm_end
, end_addr
);
1280 if (end
<= vma
->vm_start
)
1284 uprobe_munmap(vma
, start
, end
);
1286 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1287 untrack_pfn(vma
, 0, 0);
1290 if (unlikely(is_vm_hugetlb_page(vma
))) {
1292 * It is undesirable to test vma->vm_file as it
1293 * should be non-null for valid hugetlb area.
1294 * However, vm_file will be NULL in the error
1295 * cleanup path of mmap_region. When
1296 * hugetlbfs ->mmap method fails,
1297 * mmap_region() nullifies vma->vm_file
1298 * before calling this function to clean up.
1299 * Since no pte has actually been setup, it is
1300 * safe to do nothing in this case.
1303 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1304 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1305 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1308 unmap_page_range(tlb
, vma
, start
, end
, details
);
1313 * unmap_vmas - unmap a range of memory covered by a list of vma's
1314 * @tlb: address of the caller's struct mmu_gather
1315 * @vma: the starting vma
1316 * @start_addr: virtual address at which to start unmapping
1317 * @end_addr: virtual address at which to end unmapping
1319 * Unmap all pages in the vma list.
1321 * Only addresses between `start' and `end' will be unmapped.
1323 * The VMA list must be sorted in ascending virtual address order.
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns. So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1330 void unmap_vmas(struct mmu_gather
*tlb
,
1331 struct vm_area_struct
*vma
, unsigned long start_addr
,
1332 unsigned long end_addr
)
1334 struct mm_struct
*mm
= vma
->vm_mm
;
1336 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1337 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1338 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1339 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1343 * zap_page_range - remove user pages in a given range
1344 * @vma: vm_area_struct holding the applicable pages
1345 * @start: starting address of pages to zap
1346 * @size: number of bytes to zap
1347 * @details: details of shared cache invalidation
1349 * Caller must protect the VMA list
1351 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1352 unsigned long size
, struct zap_details
*details
)
1354 struct mm_struct
*mm
= vma
->vm_mm
;
1355 struct mmu_gather tlb
;
1356 unsigned long end
= start
+ size
;
1359 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1360 update_hiwater_rss(mm
);
1361 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1362 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1363 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1364 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1365 tlb_finish_mmu(&tlb
, start
, end
);
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1375 * The range must fit into one VMA.
1377 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1378 unsigned long size
, struct zap_details
*details
)
1380 struct mm_struct
*mm
= vma
->vm_mm
;
1381 struct mmu_gather tlb
;
1382 unsigned long end
= address
+ size
;
1385 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1386 update_hiwater_rss(mm
);
1387 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1388 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1389 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1390 tlb_finish_mmu(&tlb
, address
, end
);
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 * The entire address range must be fully contained within the vma.
1403 * Returns 0 if successful.
1405 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1408 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1409 !(vma
->vm_flags
& VM_PFNMAP
))
1411 zap_page_range_single(vma
, address
, size
, NULL
);
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1416 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1419 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1420 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1422 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1424 VM_BUG_ON(pmd_trans_huge(*pmd
));
1425 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1432 * This is the old fallback for page remapping.
1434 * For historical reasons, it only allows reserved pages. Only
1435 * old drivers should use this, and they needed to mark their
1436 * pages reserved for the old functions anyway.
1438 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1439 struct page
*page
, pgprot_t prot
)
1441 struct mm_struct
*mm
= vma
->vm_mm
;
1450 flush_dcache_page(page
);
1451 pte
= get_locked_pte(mm
, addr
, &ptl
);
1455 if (!pte_none(*pte
))
1458 /* Ok, finally just insert the thing.. */
1460 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1461 page_add_file_rmap(page
);
1462 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1465 pte_unmap_unlock(pte
, ptl
);
1468 pte_unmap_unlock(pte
, ptl
);
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1479 * This allows drivers to insert individual pages they've allocated
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1493 * The page does not need to be reserved.
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1500 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1503 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1505 if (!page_count(page
))
1507 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1508 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1509 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1510 vma
->vm_flags
|= VM_MIXEDMAP
;
1512 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1514 EXPORT_SYMBOL(vm_insert_page
);
1516 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1517 unsigned long pfn
, pgprot_t prot
)
1519 struct mm_struct
*mm
= vma
->vm_mm
;
1525 pte
= get_locked_pte(mm
, addr
, &ptl
);
1529 if (!pte_none(*pte
))
1532 /* Ok, finally just insert the thing.. */
1533 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1534 set_pte_at(mm
, addr
, pte
, entry
);
1535 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1539 pte_unmap_unlock(pte
, ptl
);
1545 * vm_insert_pfn - insert single pfn into user vma
1546 * @vma: user vma to map to
1547 * @addr: target user address of this page
1548 * @pfn: source kernel pfn
1550 * Similar to vm_insert_page, this allows drivers to insert individual pages
1551 * they've allocated into a user vma. Same comments apply.
1553 * This function should only be called from a vm_ops->fault handler, and
1554 * in that case the handler should return NULL.
1556 * vma cannot be a COW mapping.
1558 * As this is called only for pages that do not currently exist, we
1559 * do not need to flush old virtual caches or the TLB.
1561 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1565 pgprot_t pgprot
= vma
->vm_page_prot
;
1567 * Technically, architectures with pte_special can avoid all these
1568 * restrictions (same for remap_pfn_range). However we would like
1569 * consistency in testing and feature parity among all, so we should
1570 * try to keep these invariants in place for everybody.
1572 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1573 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1574 (VM_PFNMAP
|VM_MIXEDMAP
));
1575 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1576 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1578 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1580 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1583 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1587 EXPORT_SYMBOL(vm_insert_pfn
);
1589 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1592 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1594 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1598 * If we don't have pte special, then we have to use the pfn_valid()
1599 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1600 * refcount the page if pfn_valid is true (hence insert_page rather
1601 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1602 * without pte special, it would there be refcounted as a normal page.
1604 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1607 page
= pfn_to_page(pfn
);
1608 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1610 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1612 EXPORT_SYMBOL(vm_insert_mixed
);
1615 * maps a range of physical memory into the requested pages. the old
1616 * mappings are removed. any references to nonexistent pages results
1617 * in null mappings (currently treated as "copy-on-access")
1619 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1620 unsigned long addr
, unsigned long end
,
1621 unsigned long pfn
, pgprot_t prot
)
1626 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1629 arch_enter_lazy_mmu_mode();
1631 BUG_ON(!pte_none(*pte
));
1632 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1634 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1635 arch_leave_lazy_mmu_mode();
1636 pte_unmap_unlock(pte
- 1, ptl
);
1640 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1641 unsigned long addr
, unsigned long end
,
1642 unsigned long pfn
, pgprot_t prot
)
1647 pfn
-= addr
>> PAGE_SHIFT
;
1648 pmd
= pmd_alloc(mm
, pud
, addr
);
1651 VM_BUG_ON(pmd_trans_huge(*pmd
));
1653 next
= pmd_addr_end(addr
, end
);
1654 if (remap_pte_range(mm
, pmd
, addr
, next
,
1655 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1657 } while (pmd
++, addr
= next
, addr
!= end
);
1661 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1662 unsigned long addr
, unsigned long end
,
1663 unsigned long pfn
, pgprot_t prot
)
1668 pfn
-= addr
>> PAGE_SHIFT
;
1669 pud
= pud_alloc(mm
, pgd
, addr
);
1673 next
= pud_addr_end(addr
, end
);
1674 if (remap_pmd_range(mm
, pud
, addr
, next
,
1675 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1677 } while (pud
++, addr
= next
, addr
!= end
);
1682 * remap_pfn_range - remap kernel memory to userspace
1683 * @vma: user vma to map to
1684 * @addr: target user address to start at
1685 * @pfn: physical address of kernel memory
1686 * @size: size of map area
1687 * @prot: page protection flags for this mapping
1689 * Note: this is only safe if the mm semaphore is held when called.
1691 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1692 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1696 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1697 struct mm_struct
*mm
= vma
->vm_mm
;
1701 * Physically remapped pages are special. Tell the
1702 * rest of the world about it:
1703 * VM_IO tells people not to look at these pages
1704 * (accesses can have side effects).
1705 * VM_PFNMAP tells the core MM that the base pages are just
1706 * raw PFN mappings, and do not have a "struct page" associated
1709 * Disable vma merging and expanding with mremap().
1711 * Omit vma from core dump, even when VM_IO turned off.
1713 * There's a horrible special case to handle copy-on-write
1714 * behaviour that some programs depend on. We mark the "original"
1715 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1716 * See vm_normal_page() for details.
1718 if (is_cow_mapping(vma
->vm_flags
)) {
1719 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1721 vma
->vm_pgoff
= pfn
;
1724 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1728 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1730 BUG_ON(addr
>= end
);
1731 pfn
-= addr
>> PAGE_SHIFT
;
1732 pgd
= pgd_offset(mm
, addr
);
1733 flush_cache_range(vma
, addr
, end
);
1735 next
= pgd_addr_end(addr
, end
);
1736 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1737 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1740 } while (pgd
++, addr
= next
, addr
!= end
);
1743 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1747 EXPORT_SYMBOL(remap_pfn_range
);
1750 * vm_iomap_memory - remap memory to userspace
1751 * @vma: user vma to map to
1752 * @start: start of area
1753 * @len: size of area
1755 * This is a simplified io_remap_pfn_range() for common driver use. The
1756 * driver just needs to give us the physical memory range to be mapped,
1757 * we'll figure out the rest from the vma information.
1759 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1760 * whatever write-combining details or similar.
1762 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1764 unsigned long vm_len
, pfn
, pages
;
1766 /* Check that the physical memory area passed in looks valid */
1767 if (start
+ len
< start
)
1770 * You *really* shouldn't map things that aren't page-aligned,
1771 * but we've historically allowed it because IO memory might
1772 * just have smaller alignment.
1774 len
+= start
& ~PAGE_MASK
;
1775 pfn
= start
>> PAGE_SHIFT
;
1776 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1777 if (pfn
+ pages
< pfn
)
1780 /* We start the mapping 'vm_pgoff' pages into the area */
1781 if (vma
->vm_pgoff
> pages
)
1783 pfn
+= vma
->vm_pgoff
;
1784 pages
-= vma
->vm_pgoff
;
1786 /* Can we fit all of the mapping? */
1787 vm_len
= vma
->vm_end
- vma
->vm_start
;
1788 if (vm_len
>> PAGE_SHIFT
> pages
)
1791 /* Ok, let it rip */
1792 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1794 EXPORT_SYMBOL(vm_iomap_memory
);
1796 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1797 unsigned long addr
, unsigned long end
,
1798 pte_fn_t fn
, void *data
)
1803 spinlock_t
*uninitialized_var(ptl
);
1805 pte
= (mm
== &init_mm
) ?
1806 pte_alloc_kernel(pmd
, addr
) :
1807 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1811 BUG_ON(pmd_huge(*pmd
));
1813 arch_enter_lazy_mmu_mode();
1815 token
= pmd_pgtable(*pmd
);
1818 err
= fn(pte
++, token
, addr
, data
);
1821 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1823 arch_leave_lazy_mmu_mode();
1826 pte_unmap_unlock(pte
-1, ptl
);
1830 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1831 unsigned long addr
, unsigned long end
,
1832 pte_fn_t fn
, void *data
)
1838 BUG_ON(pud_huge(*pud
));
1840 pmd
= pmd_alloc(mm
, pud
, addr
);
1844 next
= pmd_addr_end(addr
, end
);
1845 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1848 } while (pmd
++, addr
= next
, addr
!= end
);
1852 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1853 unsigned long addr
, unsigned long end
,
1854 pte_fn_t fn
, void *data
)
1860 pud
= pud_alloc(mm
, pgd
, addr
);
1864 next
= pud_addr_end(addr
, end
);
1865 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1868 } while (pud
++, addr
= next
, addr
!= end
);
1873 * Scan a region of virtual memory, filling in page tables as necessary
1874 * and calling a provided function on each leaf page table.
1876 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1877 unsigned long size
, pte_fn_t fn
, void *data
)
1881 unsigned long end
= addr
+ size
;
1884 BUG_ON(addr
>= end
);
1885 pgd
= pgd_offset(mm
, addr
);
1887 next
= pgd_addr_end(addr
, end
);
1888 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1891 } while (pgd
++, addr
= next
, addr
!= end
);
1895 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1898 * handle_pte_fault chooses page fault handler according to an entry which was
1899 * read non-atomically. Before making any commitment, on those architectures
1900 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1901 * parts, do_swap_page must check under lock before unmapping the pte and
1902 * proceeding (but do_wp_page is only called after already making such a check;
1903 * and do_anonymous_page can safely check later on).
1905 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1906 pte_t
*page_table
, pte_t orig_pte
)
1909 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1910 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1911 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1913 same
= pte_same(*page_table
, orig_pte
);
1917 pte_unmap(page_table
);
1921 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1923 debug_dma_assert_idle(src
);
1926 * If the source page was a PFN mapping, we don't have
1927 * a "struct page" for it. We do a best-effort copy by
1928 * just copying from the original user address. If that
1929 * fails, we just zero-fill it. Live with it.
1931 if (unlikely(!src
)) {
1932 void *kaddr
= kmap_atomic(dst
);
1933 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1936 * This really shouldn't fail, because the page is there
1937 * in the page tables. But it might just be unreadable,
1938 * in which case we just give up and fill the result with
1941 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1943 kunmap_atomic(kaddr
);
1944 flush_dcache_page(dst
);
1946 copy_user_highpage(dst
, src
, va
, vma
);
1950 * Notify the address space that the page is about to become writable so that
1951 * it can prohibit this or wait for the page to get into an appropriate state.
1953 * We do this without the lock held, so that it can sleep if it needs to.
1955 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1956 unsigned long address
)
1958 struct vm_fault vmf
;
1961 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
1962 vmf
.pgoff
= page
->index
;
1963 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
1966 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
1967 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
1969 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
1971 if (!page
->mapping
) {
1973 return 0; /* retry */
1975 ret
|= VM_FAULT_LOCKED
;
1977 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1982 * This routine handles present pages, when users try to write
1983 * to a shared page. It is done by copying the page to a new address
1984 * and decrementing the shared-page counter for the old page.
1986 * Note that this routine assumes that the protection checks have been
1987 * done by the caller (the low-level page fault routine in most cases).
1988 * Thus we can safely just mark it writable once we've done any necessary
1991 * We also mark the page dirty at this point even though the page will
1992 * change only once the write actually happens. This avoids a few races,
1993 * and potentially makes it more efficient.
1995 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1996 * but allow concurrent faults), with pte both mapped and locked.
1997 * We return with mmap_sem still held, but pte unmapped and unlocked.
1999 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2000 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2001 spinlock_t
*ptl
, pte_t orig_pte
)
2004 struct page
*old_page
, *new_page
= NULL
;
2007 int page_mkwrite
= 0;
2008 struct page
*dirty_page
= NULL
;
2009 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2010 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2011 struct mem_cgroup
*memcg
;
2013 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2016 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2019 * We should not cow pages in a shared writeable mapping.
2020 * Just mark the pages writable as we can't do any dirty
2021 * accounting on raw pfn maps.
2023 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2024 (VM_WRITE
|VM_SHARED
))
2030 * Take out anonymous pages first, anonymous shared vmas are
2031 * not dirty accountable.
2033 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2034 if (!trylock_page(old_page
)) {
2035 page_cache_get(old_page
);
2036 pte_unmap_unlock(page_table
, ptl
);
2037 lock_page(old_page
);
2038 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2040 if (!pte_same(*page_table
, orig_pte
)) {
2041 unlock_page(old_page
);
2044 page_cache_release(old_page
);
2046 if (reuse_swap_page(old_page
)) {
2048 * The page is all ours. Move it to our anon_vma so
2049 * the rmap code will not search our parent or siblings.
2050 * Protected against the rmap code by the page lock.
2052 page_move_anon_rmap(old_page
, vma
, address
);
2053 unlock_page(old_page
);
2056 unlock_page(old_page
);
2057 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2058 (VM_WRITE
|VM_SHARED
))) {
2060 * Only catch write-faults on shared writable pages,
2061 * read-only shared pages can get COWed by
2062 * get_user_pages(.write=1, .force=1).
2064 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2066 page_cache_get(old_page
);
2067 pte_unmap_unlock(page_table
, ptl
);
2068 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2069 if (unlikely(!tmp
|| (tmp
&
2070 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2071 page_cache_release(old_page
);
2075 * Since we dropped the lock we need to revalidate
2076 * the PTE as someone else may have changed it. If
2077 * they did, we just return, as we can count on the
2078 * MMU to tell us if they didn't also make it writable.
2080 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2082 if (!pte_same(*page_table
, orig_pte
)) {
2083 unlock_page(old_page
);
2089 dirty_page
= old_page
;
2090 get_page(dirty_page
);
2094 * Clear the pages cpupid information as the existing
2095 * information potentially belongs to a now completely
2096 * unrelated process.
2099 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2101 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2102 entry
= pte_mkyoung(orig_pte
);
2103 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2104 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2105 update_mmu_cache(vma
, address
, page_table
);
2106 pte_unmap_unlock(page_table
, ptl
);
2107 ret
|= VM_FAULT_WRITE
;
2112 if (!page_mkwrite
) {
2113 struct address_space
*mapping
;
2116 lock_page(dirty_page
);
2117 dirtied
= set_page_dirty(dirty_page
);
2118 VM_BUG_ON_PAGE(PageAnon(dirty_page
), dirty_page
);
2119 mapping
= dirty_page
->mapping
;
2120 unlock_page(dirty_page
);
2122 if (dirtied
&& mapping
) {
2124 * Some device drivers do not set page.mapping
2125 * but still dirty their pages
2127 balance_dirty_pages_ratelimited(mapping
);
2130 file_update_time(vma
->vm_file
);
2132 put_page(dirty_page
);
2134 struct address_space
*mapping
= dirty_page
->mapping
;
2136 set_page_dirty(dirty_page
);
2137 unlock_page(dirty_page
);
2138 page_cache_release(dirty_page
);
2141 * Some device drivers do not set page.mapping
2142 * but still dirty their pages
2144 balance_dirty_pages_ratelimited(mapping
);
2152 * Ok, we need to copy. Oh, well..
2154 page_cache_get(old_page
);
2156 pte_unmap_unlock(page_table
, ptl
);
2158 if (unlikely(anon_vma_prepare(vma
)))
2161 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2162 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2166 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2169 cow_user_page(new_page
, old_page
, address
, vma
);
2171 __SetPageUptodate(new_page
);
2173 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2176 mmun_start
= address
& PAGE_MASK
;
2177 mmun_end
= mmun_start
+ PAGE_SIZE
;
2178 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2181 * Re-check the pte - we dropped the lock
2183 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2184 if (likely(pte_same(*page_table
, orig_pte
))) {
2186 if (!PageAnon(old_page
)) {
2187 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2188 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2191 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2192 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2193 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2194 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2196 * Clear the pte entry and flush it first, before updating the
2197 * pte with the new entry. This will avoid a race condition
2198 * seen in the presence of one thread doing SMC and another
2201 ptep_clear_flush_notify(vma
, address
, page_table
);
2202 page_add_new_anon_rmap(new_page
, vma
, address
);
2203 mem_cgroup_commit_charge(new_page
, memcg
, false);
2204 lru_cache_add_active_or_unevictable(new_page
, vma
);
2206 * We call the notify macro here because, when using secondary
2207 * mmu page tables (such as kvm shadow page tables), we want the
2208 * new page to be mapped directly into the secondary page table.
2210 set_pte_at_notify(mm
, address
, page_table
, entry
);
2211 update_mmu_cache(vma
, address
, page_table
);
2214 * Only after switching the pte to the new page may
2215 * we remove the mapcount here. Otherwise another
2216 * process may come and find the rmap count decremented
2217 * before the pte is switched to the new page, and
2218 * "reuse" the old page writing into it while our pte
2219 * here still points into it and can be read by other
2222 * The critical issue is to order this
2223 * page_remove_rmap with the ptp_clear_flush above.
2224 * Those stores are ordered by (if nothing else,)
2225 * the barrier present in the atomic_add_negative
2226 * in page_remove_rmap.
2228 * Then the TLB flush in ptep_clear_flush ensures that
2229 * no process can access the old page before the
2230 * decremented mapcount is visible. And the old page
2231 * cannot be reused until after the decremented
2232 * mapcount is visible. So transitively, TLBs to
2233 * old page will be flushed before it can be reused.
2235 page_remove_rmap(old_page
);
2238 /* Free the old page.. */
2239 new_page
= old_page
;
2240 ret
|= VM_FAULT_WRITE
;
2242 mem_cgroup_cancel_charge(new_page
, memcg
);
2245 page_cache_release(new_page
);
2247 pte_unmap_unlock(page_table
, ptl
);
2248 if (mmun_end
> mmun_start
)
2249 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2252 * Don't let another task, with possibly unlocked vma,
2253 * keep the mlocked page.
2255 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2256 lock_page(old_page
); /* LRU manipulation */
2257 munlock_vma_page(old_page
);
2258 unlock_page(old_page
);
2260 page_cache_release(old_page
);
2264 page_cache_release(new_page
);
2267 page_cache_release(old_page
);
2268 return VM_FAULT_OOM
;
2271 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2272 unsigned long start_addr
, unsigned long end_addr
,
2273 struct zap_details
*details
)
2275 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2278 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2279 struct zap_details
*details
)
2281 struct vm_area_struct
*vma
;
2282 pgoff_t vba
, vea
, zba
, zea
;
2284 vma_interval_tree_foreach(vma
, root
,
2285 details
->first_index
, details
->last_index
) {
2287 vba
= vma
->vm_pgoff
;
2288 vea
= vba
+ vma_pages(vma
) - 1;
2289 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2290 zba
= details
->first_index
;
2293 zea
= details
->last_index
;
2297 unmap_mapping_range_vma(vma
,
2298 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2299 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2305 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2306 * address_space corresponding to the specified page range in the underlying
2309 * @mapping: the address space containing mmaps to be unmapped.
2310 * @holebegin: byte in first page to unmap, relative to the start of
2311 * the underlying file. This will be rounded down to a PAGE_SIZE
2312 * boundary. Note that this is different from truncate_pagecache(), which
2313 * must keep the partial page. In contrast, we must get rid of
2315 * @holelen: size of prospective hole in bytes. This will be rounded
2316 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2318 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2319 * but 0 when invalidating pagecache, don't throw away private data.
2321 void unmap_mapping_range(struct address_space
*mapping
,
2322 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2324 struct zap_details details
;
2325 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2326 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2328 /* Check for overflow. */
2329 if (sizeof(holelen
) > sizeof(hlen
)) {
2331 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2332 if (holeend
& ~(long long)ULONG_MAX
)
2333 hlen
= ULONG_MAX
- hba
+ 1;
2336 details
.check_mapping
= even_cows
? NULL
: mapping
;
2337 details
.first_index
= hba
;
2338 details
.last_index
= hba
+ hlen
- 1;
2339 if (details
.last_index
< details
.first_index
)
2340 details
.last_index
= ULONG_MAX
;
2343 i_mmap_lock_write(mapping
);
2344 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2345 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2346 i_mmap_unlock_write(mapping
);
2348 EXPORT_SYMBOL(unmap_mapping_range
);
2351 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2352 * but allow concurrent faults), and pte mapped but not yet locked.
2353 * We return with pte unmapped and unlocked.
2355 * We return with the mmap_sem locked or unlocked in the same cases
2356 * as does filemap_fault().
2358 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2359 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2360 unsigned int flags
, pte_t orig_pte
)
2363 struct page
*page
, *swapcache
;
2364 struct mem_cgroup
*memcg
;
2371 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2374 entry
= pte_to_swp_entry(orig_pte
);
2375 if (unlikely(non_swap_entry(entry
))) {
2376 if (is_migration_entry(entry
)) {
2377 migration_entry_wait(mm
, pmd
, address
);
2378 } else if (is_hwpoison_entry(entry
)) {
2379 ret
= VM_FAULT_HWPOISON
;
2381 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2382 ret
= VM_FAULT_SIGBUS
;
2386 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2387 page
= lookup_swap_cache(entry
);
2389 page
= swapin_readahead(entry
,
2390 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2393 * Back out if somebody else faulted in this pte
2394 * while we released the pte lock.
2396 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2397 if (likely(pte_same(*page_table
, orig_pte
)))
2399 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2403 /* Had to read the page from swap area: Major fault */
2404 ret
= VM_FAULT_MAJOR
;
2405 count_vm_event(PGMAJFAULT
);
2406 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2407 } else if (PageHWPoison(page
)) {
2409 * hwpoisoned dirty swapcache pages are kept for killing
2410 * owner processes (which may be unknown at hwpoison time)
2412 ret
= VM_FAULT_HWPOISON
;
2413 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2419 locked
= lock_page_or_retry(page
, mm
, flags
);
2421 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2423 ret
|= VM_FAULT_RETRY
;
2428 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2429 * release the swapcache from under us. The page pin, and pte_same
2430 * test below, are not enough to exclude that. Even if it is still
2431 * swapcache, we need to check that the page's swap has not changed.
2433 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2436 page
= ksm_might_need_to_copy(page
, vma
, address
);
2437 if (unlikely(!page
)) {
2443 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2449 * Back out if somebody else already faulted in this pte.
2451 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2452 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2455 if (unlikely(!PageUptodate(page
))) {
2456 ret
= VM_FAULT_SIGBUS
;
2461 * The page isn't present yet, go ahead with the fault.
2463 * Be careful about the sequence of operations here.
2464 * To get its accounting right, reuse_swap_page() must be called
2465 * while the page is counted on swap but not yet in mapcount i.e.
2466 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2467 * must be called after the swap_free(), or it will never succeed.
2470 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2471 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2472 pte
= mk_pte(page
, vma
->vm_page_prot
);
2473 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2474 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2475 flags
&= ~FAULT_FLAG_WRITE
;
2476 ret
|= VM_FAULT_WRITE
;
2479 flush_icache_page(vma
, page
);
2480 if (pte_swp_soft_dirty(orig_pte
))
2481 pte
= pte_mksoft_dirty(pte
);
2482 set_pte_at(mm
, address
, page_table
, pte
);
2483 if (page
== swapcache
) {
2484 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2485 mem_cgroup_commit_charge(page
, memcg
, true);
2486 } else { /* ksm created a completely new copy */
2487 page_add_new_anon_rmap(page
, vma
, address
);
2488 mem_cgroup_commit_charge(page
, memcg
, false);
2489 lru_cache_add_active_or_unevictable(page
, vma
);
2493 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2494 try_to_free_swap(page
);
2496 if (page
!= swapcache
) {
2498 * Hold the lock to avoid the swap entry to be reused
2499 * until we take the PT lock for the pte_same() check
2500 * (to avoid false positives from pte_same). For
2501 * further safety release the lock after the swap_free
2502 * so that the swap count won't change under a
2503 * parallel locked swapcache.
2505 unlock_page(swapcache
);
2506 page_cache_release(swapcache
);
2509 if (flags
& FAULT_FLAG_WRITE
) {
2510 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2511 if (ret
& VM_FAULT_ERROR
)
2512 ret
&= VM_FAULT_ERROR
;
2516 /* No need to invalidate - it was non-present before */
2517 update_mmu_cache(vma
, address
, page_table
);
2519 pte_unmap_unlock(page_table
, ptl
);
2523 mem_cgroup_cancel_charge(page
, memcg
);
2524 pte_unmap_unlock(page_table
, ptl
);
2528 page_cache_release(page
);
2529 if (page
!= swapcache
) {
2530 unlock_page(swapcache
);
2531 page_cache_release(swapcache
);
2537 * This is like a special single-page "expand_{down|up}wards()",
2538 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2539 * doesn't hit another vma.
2541 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2543 address
&= PAGE_MASK
;
2544 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2545 struct vm_area_struct
*prev
= vma
->vm_prev
;
2548 * Is there a mapping abutting this one below?
2550 * That's only ok if it's the same stack mapping
2551 * that has gotten split..
2553 if (prev
&& prev
->vm_end
== address
)
2554 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2556 return expand_downwards(vma
, address
- PAGE_SIZE
);
2558 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2559 struct vm_area_struct
*next
= vma
->vm_next
;
2561 /* As VM_GROWSDOWN but s/below/above/ */
2562 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2563 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2565 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2571 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2572 * but allow concurrent faults), and pte mapped but not yet locked.
2573 * We return with mmap_sem still held, but pte unmapped and unlocked.
2575 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2576 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2579 struct mem_cgroup
*memcg
;
2584 pte_unmap(page_table
);
2586 /* Check if we need to add a guard page to the stack */
2587 if (check_stack_guard_page(vma
, address
) < 0)
2588 return VM_FAULT_SIGSEGV
;
2590 /* Use the zero-page for reads */
2591 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
)) {
2592 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2593 vma
->vm_page_prot
));
2594 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2595 if (!pte_none(*page_table
))
2600 /* Allocate our own private page. */
2601 if (unlikely(anon_vma_prepare(vma
)))
2603 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2607 * The memory barrier inside __SetPageUptodate makes sure that
2608 * preceeding stores to the page contents become visible before
2609 * the set_pte_at() write.
2611 __SetPageUptodate(page
);
2613 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2616 entry
= mk_pte(page
, vma
->vm_page_prot
);
2617 if (vma
->vm_flags
& VM_WRITE
)
2618 entry
= pte_mkwrite(pte_mkdirty(entry
));
2620 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2621 if (!pte_none(*page_table
))
2624 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2625 page_add_new_anon_rmap(page
, vma
, address
);
2626 mem_cgroup_commit_charge(page
, memcg
, false);
2627 lru_cache_add_active_or_unevictable(page
, vma
);
2629 set_pte_at(mm
, address
, page_table
, entry
);
2631 /* No need to invalidate - it was non-present before */
2632 update_mmu_cache(vma
, address
, page_table
);
2634 pte_unmap_unlock(page_table
, ptl
);
2637 mem_cgroup_cancel_charge(page
, memcg
);
2638 page_cache_release(page
);
2641 page_cache_release(page
);
2643 return VM_FAULT_OOM
;
2647 * The mmap_sem must have been held on entry, and may have been
2648 * released depending on flags and vma->vm_ops->fault() return value.
2649 * See filemap_fault() and __lock_page_retry().
2651 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2652 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2654 struct vm_fault vmf
;
2657 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2662 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2663 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2666 if (unlikely(PageHWPoison(vmf
.page
))) {
2667 if (ret
& VM_FAULT_LOCKED
)
2668 unlock_page(vmf
.page
);
2669 page_cache_release(vmf
.page
);
2670 return VM_FAULT_HWPOISON
;
2673 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2674 lock_page(vmf
.page
);
2676 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2683 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2685 * @vma: virtual memory area
2686 * @address: user virtual address
2687 * @page: page to map
2688 * @pte: pointer to target page table entry
2689 * @write: true, if new entry is writable
2690 * @anon: true, if it's anonymous page
2692 * Caller must hold page table lock relevant for @pte.
2694 * Target users are page handler itself and implementations of
2695 * vm_ops->map_pages.
2697 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2698 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2702 flush_icache_page(vma
, page
);
2703 entry
= mk_pte(page
, vma
->vm_page_prot
);
2705 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2707 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2708 page_add_new_anon_rmap(page
, vma
, address
);
2710 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2711 page_add_file_rmap(page
);
2713 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2715 /* no need to invalidate: a not-present page won't be cached */
2716 update_mmu_cache(vma
, address
, pte
);
2719 static unsigned long fault_around_bytes __read_mostly
=
2720 rounddown_pow_of_two(65536);
2722 #ifdef CONFIG_DEBUG_FS
2723 static int fault_around_bytes_get(void *data
, u64
*val
)
2725 *val
= fault_around_bytes
;
2730 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2731 * rounded down to nearest page order. It's what do_fault_around() expects to
2734 static int fault_around_bytes_set(void *data
, u64 val
)
2736 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2738 if (val
> PAGE_SIZE
)
2739 fault_around_bytes
= rounddown_pow_of_two(val
);
2741 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2744 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2745 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2747 static int __init
fault_around_debugfs(void)
2751 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2752 &fault_around_bytes_fops
);
2754 pr_warn("Failed to create fault_around_bytes in debugfs");
2757 late_initcall(fault_around_debugfs
);
2761 * do_fault_around() tries to map few pages around the fault address. The hope
2762 * is that the pages will be needed soon and this will lower the number of
2765 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2766 * not ready to be mapped: not up-to-date, locked, etc.
2768 * This function is called with the page table lock taken. In the split ptlock
2769 * case the page table lock only protects only those entries which belong to
2770 * the page table corresponding to the fault address.
2772 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2775 * fault_around_pages() defines how many pages we'll try to map.
2776 * do_fault_around() expects it to return a power of two less than or equal to
2779 * The virtual address of the area that we map is naturally aligned to the
2780 * fault_around_pages() value (and therefore to page order). This way it's
2781 * easier to guarantee that we don't cross page table boundaries.
2783 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2784 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2786 unsigned long start_addr
, nr_pages
, mask
;
2788 struct vm_fault vmf
;
2791 nr_pages
= ACCESS_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2792 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2794 start_addr
= max(address
& mask
, vma
->vm_start
);
2795 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2800 * max_pgoff is either end of page table or end of vma
2801 * or fault_around_pages() from pgoff, depending what is nearest.
2803 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2805 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2806 pgoff
+ nr_pages
- 1);
2808 /* Check if it makes any sense to call ->map_pages */
2809 while (!pte_none(*pte
)) {
2810 if (++pgoff
> max_pgoff
)
2812 start_addr
+= PAGE_SIZE
;
2813 if (start_addr
>= vma
->vm_end
)
2818 vmf
.virtual_address
= (void __user
*) start_addr
;
2821 vmf
.max_pgoff
= max_pgoff
;
2823 vma
->vm_ops
->map_pages(vma
, &vmf
);
2826 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2827 unsigned long address
, pmd_t
*pmd
,
2828 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2830 struct page
*fault_page
;
2836 * Let's call ->map_pages() first and use ->fault() as fallback
2837 * if page by the offset is not ready to be mapped (cold cache or
2840 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
2841 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2842 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2843 if (!pte_same(*pte
, orig_pte
))
2845 pte_unmap_unlock(pte
, ptl
);
2848 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2849 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2852 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2853 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2854 pte_unmap_unlock(pte
, ptl
);
2855 unlock_page(fault_page
);
2856 page_cache_release(fault_page
);
2859 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2860 unlock_page(fault_page
);
2862 pte_unmap_unlock(pte
, ptl
);
2866 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2867 unsigned long address
, pmd_t
*pmd
,
2868 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2870 struct page
*fault_page
, *new_page
;
2871 struct mem_cgroup
*memcg
;
2876 if (unlikely(anon_vma_prepare(vma
)))
2877 return VM_FAULT_OOM
;
2879 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2881 return VM_FAULT_OOM
;
2883 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2884 page_cache_release(new_page
);
2885 return VM_FAULT_OOM
;
2888 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2889 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2892 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2893 __SetPageUptodate(new_page
);
2895 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2896 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2897 pte_unmap_unlock(pte
, ptl
);
2898 unlock_page(fault_page
);
2899 page_cache_release(fault_page
);
2902 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2903 mem_cgroup_commit_charge(new_page
, memcg
, false);
2904 lru_cache_add_active_or_unevictable(new_page
, vma
);
2905 pte_unmap_unlock(pte
, ptl
);
2906 unlock_page(fault_page
);
2907 page_cache_release(fault_page
);
2910 mem_cgroup_cancel_charge(new_page
, memcg
);
2911 page_cache_release(new_page
);
2915 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2916 unsigned long address
, pmd_t
*pmd
,
2917 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2919 struct page
*fault_page
;
2920 struct address_space
*mapping
;
2926 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2927 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2931 * Check if the backing address space wants to know that the page is
2932 * about to become writable
2934 if (vma
->vm_ops
->page_mkwrite
) {
2935 unlock_page(fault_page
);
2936 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2937 if (unlikely(!tmp
||
2938 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2939 page_cache_release(fault_page
);
2944 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2945 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2946 pte_unmap_unlock(pte
, ptl
);
2947 unlock_page(fault_page
);
2948 page_cache_release(fault_page
);
2951 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
2952 pte_unmap_unlock(pte
, ptl
);
2954 if (set_page_dirty(fault_page
))
2957 * Take a local copy of the address_space - page.mapping may be zeroed
2958 * by truncate after unlock_page(). The address_space itself remains
2959 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2960 * release semantics to prevent the compiler from undoing this copying.
2962 mapping
= fault_page
->mapping
;
2963 unlock_page(fault_page
);
2964 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
2966 * Some device drivers do not set page.mapping but still
2969 balance_dirty_pages_ratelimited(mapping
);
2972 if (!vma
->vm_ops
->page_mkwrite
)
2973 file_update_time(vma
->vm_file
);
2979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2980 * but allow concurrent faults).
2981 * The mmap_sem may have been released depending on flags and our
2982 * return value. See filemap_fault() and __lock_page_or_retry().
2984 static int do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2985 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2986 unsigned int flags
, pte_t orig_pte
)
2988 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2989 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2991 pte_unmap(page_table
);
2992 if (!(flags
& FAULT_FLAG_WRITE
))
2993 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
2995 if (!(vma
->vm_flags
& VM_SHARED
))
2996 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
2998 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3001 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3002 unsigned long addr
, int page_nid
,
3007 count_vm_numa_event(NUMA_HINT_FAULTS
);
3008 if (page_nid
== numa_node_id()) {
3009 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3010 *flags
|= TNF_FAULT_LOCAL
;
3013 return mpol_misplaced(page
, vma
, addr
);
3016 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3017 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3019 struct page
*page
= NULL
;
3024 bool migrated
= false;
3028 * The "pte" at this point cannot be used safely without
3029 * validation through pte_unmap_same(). It's of NUMA type but
3030 * the pfn may be screwed if the read is non atomic.
3032 * ptep_modify_prot_start is not called as this is clearing
3033 * the _PAGE_NUMA bit and it is not really expected that there
3034 * would be concurrent hardware modifications to the PTE.
3036 ptl
= pte_lockptr(mm
, pmd
);
3038 if (unlikely(!pte_same(*ptep
, pte
))) {
3039 pte_unmap_unlock(ptep
, ptl
);
3043 pte
= pte_mknonnuma(pte
);
3044 set_pte_at(mm
, addr
, ptep
, pte
);
3045 update_mmu_cache(vma
, addr
, ptep
);
3047 page
= vm_normal_page(vma
, addr
, pte
);
3049 pte_unmap_unlock(ptep
, ptl
);
3052 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3055 * Avoid grouping on DSO/COW pages in specific and RO pages
3056 * in general, RO pages shouldn't hurt as much anyway since
3057 * they can be in shared cache state.
3059 if (!pte_write(pte
))
3060 flags
|= TNF_NO_GROUP
;
3063 * Flag if the page is shared between multiple address spaces. This
3064 * is later used when determining whether to group tasks together
3066 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3067 flags
|= TNF_SHARED
;
3069 last_cpupid
= page_cpupid_last(page
);
3070 page_nid
= page_to_nid(page
);
3071 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3072 pte_unmap_unlock(ptep
, ptl
);
3073 if (target_nid
== -1) {
3078 /* Migrate to the requested node */
3079 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3081 page_nid
= target_nid
;
3082 flags
|= TNF_MIGRATED
;
3087 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3092 * These routines also need to handle stuff like marking pages dirty
3093 * and/or accessed for architectures that don't do it in hardware (most
3094 * RISC architectures). The early dirtying is also good on the i386.
3096 * There is also a hook called "update_mmu_cache()" that architectures
3097 * with external mmu caches can use to update those (ie the Sparc or
3098 * PowerPC hashed page tables that act as extended TLBs).
3100 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3101 * but allow concurrent faults), and pte mapped but not yet locked.
3102 * We return with pte unmapped and unlocked.
3104 * The mmap_sem may have been released depending on flags and our
3105 * return value. See filemap_fault() and __lock_page_or_retry().
3107 static int handle_pte_fault(struct mm_struct
*mm
,
3108 struct vm_area_struct
*vma
, unsigned long address
,
3109 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3115 * some architectures can have larger ptes than wordsize,
3116 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3117 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3118 * The code below just needs a consistent view for the ifs and
3119 * we later double check anyway with the ptl lock held. So here
3120 * a barrier will do.
3124 if (!pte_present(entry
)) {
3125 if (pte_none(entry
)) {
3127 if (likely(vma
->vm_ops
->fault
))
3128 return do_fault(mm
, vma
, address
, pte
,
3131 return do_anonymous_page(mm
, vma
, address
,
3134 return do_swap_page(mm
, vma
, address
,
3135 pte
, pmd
, flags
, entry
);
3138 if (pte_numa(entry
))
3139 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3141 ptl
= pte_lockptr(mm
, pmd
);
3143 if (unlikely(!pte_same(*pte
, entry
)))
3145 if (flags
& FAULT_FLAG_WRITE
) {
3146 if (!pte_write(entry
))
3147 return do_wp_page(mm
, vma
, address
,
3148 pte
, pmd
, ptl
, entry
);
3149 entry
= pte_mkdirty(entry
);
3151 entry
= pte_mkyoung(entry
);
3152 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3153 update_mmu_cache(vma
, address
, pte
);
3156 * This is needed only for protection faults but the arch code
3157 * is not yet telling us if this is a protection fault or not.
3158 * This still avoids useless tlb flushes for .text page faults
3161 if (flags
& FAULT_FLAG_WRITE
)
3162 flush_tlb_fix_spurious_fault(vma
, address
);
3165 pte_unmap_unlock(pte
, ptl
);
3170 * By the time we get here, we already hold the mm semaphore
3172 * The mmap_sem may have been released depending on flags and our
3173 * return value. See filemap_fault() and __lock_page_or_retry().
3175 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3176 unsigned long address
, unsigned int flags
)
3183 if (unlikely(is_vm_hugetlb_page(vma
)))
3184 return hugetlb_fault(mm
, vma
, address
, flags
);
3186 pgd
= pgd_offset(mm
, address
);
3187 pud
= pud_alloc(mm
, pgd
, address
);
3189 return VM_FAULT_OOM
;
3190 pmd
= pmd_alloc(mm
, pud
, address
);
3192 return VM_FAULT_OOM
;
3193 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3194 int ret
= VM_FAULT_FALLBACK
;
3196 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3198 if (!(ret
& VM_FAULT_FALLBACK
))
3201 pmd_t orig_pmd
= *pmd
;
3205 if (pmd_trans_huge(orig_pmd
)) {
3206 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3209 * If the pmd is splitting, return and retry the
3210 * the fault. Alternative: wait until the split
3211 * is done, and goto retry.
3213 if (pmd_trans_splitting(orig_pmd
))
3216 if (pmd_numa(orig_pmd
))
3217 return do_huge_pmd_numa_page(mm
, vma
, address
,
3220 if (dirty
&& !pmd_write(orig_pmd
)) {
3221 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3223 if (!(ret
& VM_FAULT_FALLBACK
))
3226 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3234 * Use __pte_alloc instead of pte_alloc_map, because we can't
3235 * run pte_offset_map on the pmd, if an huge pmd could
3236 * materialize from under us from a different thread.
3238 if (unlikely(pmd_none(*pmd
)) &&
3239 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3240 return VM_FAULT_OOM
;
3241 /* if an huge pmd materialized from under us just retry later */
3242 if (unlikely(pmd_trans_huge(*pmd
)))
3245 * A regular pmd is established and it can't morph into a huge pmd
3246 * from under us anymore at this point because we hold the mmap_sem
3247 * read mode and khugepaged takes it in write mode. So now it's
3248 * safe to run pte_offset_map().
3250 pte
= pte_offset_map(pmd
, address
);
3252 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3256 * By the time we get here, we already hold the mm semaphore
3258 * The mmap_sem may have been released depending on flags and our
3259 * return value. See filemap_fault() and __lock_page_or_retry().
3261 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3262 unsigned long address
, unsigned int flags
)
3266 __set_current_state(TASK_RUNNING
);
3268 count_vm_event(PGFAULT
);
3269 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3271 /* do counter updates before entering really critical section. */
3272 check_sync_rss_stat(current
);
3275 * Enable the memcg OOM handling for faults triggered in user
3276 * space. Kernel faults are handled more gracefully.
3278 if (flags
& FAULT_FLAG_USER
)
3279 mem_cgroup_oom_enable();
3281 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3283 if (flags
& FAULT_FLAG_USER
) {
3284 mem_cgroup_oom_disable();
3286 * The task may have entered a memcg OOM situation but
3287 * if the allocation error was handled gracefully (no
3288 * VM_FAULT_OOM), there is no need to kill anything.
3289 * Just clean up the OOM state peacefully.
3291 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3292 mem_cgroup_oom_synchronize(false);
3297 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3299 #ifndef __PAGETABLE_PUD_FOLDED
3301 * Allocate page upper directory.
3302 * We've already handled the fast-path in-line.
3304 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3306 pud_t
*new = pud_alloc_one(mm
, address
);
3310 smp_wmb(); /* See comment in __pte_alloc */
3312 spin_lock(&mm
->page_table_lock
);
3313 if (pgd_present(*pgd
)) /* Another has populated it */
3316 pgd_populate(mm
, pgd
, new);
3317 spin_unlock(&mm
->page_table_lock
);
3320 #endif /* __PAGETABLE_PUD_FOLDED */
3322 #ifndef __PAGETABLE_PMD_FOLDED
3324 * Allocate page middle directory.
3325 * We've already handled the fast-path in-line.
3327 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3329 pmd_t
*new = pmd_alloc_one(mm
, address
);
3333 smp_wmb(); /* See comment in __pte_alloc */
3335 spin_lock(&mm
->page_table_lock
);
3336 #ifndef __ARCH_HAS_4LEVEL_HACK
3337 if (pud_present(*pud
)) /* Another has populated it */
3340 pud_populate(mm
, pud
, new);
3342 if (pgd_present(*pud
)) /* Another has populated it */
3345 pgd_populate(mm
, pud
, new);
3346 #endif /* __ARCH_HAS_4LEVEL_HACK */
3347 spin_unlock(&mm
->page_table_lock
);
3350 #endif /* __PAGETABLE_PMD_FOLDED */
3352 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3353 pte_t
**ptepp
, spinlock_t
**ptlp
)
3360 pgd
= pgd_offset(mm
, address
);
3361 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3364 pud
= pud_offset(pgd
, address
);
3365 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3368 pmd
= pmd_offset(pud
, address
);
3369 VM_BUG_ON(pmd_trans_huge(*pmd
));
3370 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3373 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3377 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3380 if (!pte_present(*ptep
))
3385 pte_unmap_unlock(ptep
, *ptlp
);
3390 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3391 pte_t
**ptepp
, spinlock_t
**ptlp
)
3395 /* (void) is needed to make gcc happy */
3396 (void) __cond_lock(*ptlp
,
3397 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3402 * follow_pfn - look up PFN at a user virtual address
3403 * @vma: memory mapping
3404 * @address: user virtual address
3405 * @pfn: location to store found PFN
3407 * Only IO mappings and raw PFN mappings are allowed.
3409 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3411 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3418 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3421 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3424 *pfn
= pte_pfn(*ptep
);
3425 pte_unmap_unlock(ptep
, ptl
);
3428 EXPORT_SYMBOL(follow_pfn
);
3430 #ifdef CONFIG_HAVE_IOREMAP_PROT
3431 int follow_phys(struct vm_area_struct
*vma
,
3432 unsigned long address
, unsigned int flags
,
3433 unsigned long *prot
, resource_size_t
*phys
)
3439 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3442 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3446 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3449 *prot
= pgprot_val(pte_pgprot(pte
));
3450 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3454 pte_unmap_unlock(ptep
, ptl
);
3459 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3460 void *buf
, int len
, int write
)
3462 resource_size_t phys_addr
;
3463 unsigned long prot
= 0;
3464 void __iomem
*maddr
;
3465 int offset
= addr
& (PAGE_SIZE
-1);
3467 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3470 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3472 memcpy_toio(maddr
+ offset
, buf
, len
);
3474 memcpy_fromio(buf
, maddr
+ offset
, len
);
3479 EXPORT_SYMBOL_GPL(generic_access_phys
);
3483 * Access another process' address space as given in mm. If non-NULL, use the
3484 * given task for page fault accounting.
3486 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3487 unsigned long addr
, void *buf
, int len
, int write
)
3489 struct vm_area_struct
*vma
;
3490 void *old_buf
= buf
;
3492 down_read(&mm
->mmap_sem
);
3493 /* ignore errors, just check how much was successfully transferred */
3495 int bytes
, ret
, offset
;
3497 struct page
*page
= NULL
;
3499 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3500 write
, 1, &page
, &vma
);
3502 #ifndef CONFIG_HAVE_IOREMAP_PROT
3506 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3507 * we can access using slightly different code.
3509 vma
= find_vma(mm
, addr
);
3510 if (!vma
|| vma
->vm_start
> addr
)
3512 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3513 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3521 offset
= addr
& (PAGE_SIZE
-1);
3522 if (bytes
> PAGE_SIZE
-offset
)
3523 bytes
= PAGE_SIZE
-offset
;
3527 copy_to_user_page(vma
, page
, addr
,
3528 maddr
+ offset
, buf
, bytes
);
3529 set_page_dirty_lock(page
);
3531 copy_from_user_page(vma
, page
, addr
,
3532 buf
, maddr
+ offset
, bytes
);
3535 page_cache_release(page
);
3541 up_read(&mm
->mmap_sem
);
3543 return buf
- old_buf
;
3547 * access_remote_vm - access another process' address space
3548 * @mm: the mm_struct of the target address space
3549 * @addr: start address to access
3550 * @buf: source or destination buffer
3551 * @len: number of bytes to transfer
3552 * @write: whether the access is a write
3554 * The caller must hold a reference on @mm.
3556 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3557 void *buf
, int len
, int write
)
3559 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3563 * Access another process' address space.
3564 * Source/target buffer must be kernel space,
3565 * Do not walk the page table directly, use get_user_pages
3567 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3568 void *buf
, int len
, int write
)
3570 struct mm_struct
*mm
;
3573 mm
= get_task_mm(tsk
);
3577 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3584 * Print the name of a VMA.
3586 void print_vma_addr(char *prefix
, unsigned long ip
)
3588 struct mm_struct
*mm
= current
->mm
;
3589 struct vm_area_struct
*vma
;
3592 * Do not print if we are in atomic
3593 * contexts (in exception stacks, etc.):
3595 if (preempt_count())
3598 down_read(&mm
->mmap_sem
);
3599 vma
= find_vma(mm
, ip
);
3600 if (vma
&& vma
->vm_file
) {
3601 struct file
*f
= vma
->vm_file
;
3602 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3606 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3609 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3611 vma
->vm_end
- vma
->vm_start
);
3612 free_page((unsigned long)buf
);
3615 up_read(&mm
->mmap_sem
);
3618 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3619 void might_fault(void)
3622 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3623 * holding the mmap_sem, this is safe because kernel memory doesn't
3624 * get paged out, therefore we'll never actually fault, and the
3625 * below annotations will generate false positives.
3627 if (segment_eq(get_fs(), KERNEL_DS
))
3631 * it would be nicer only to annotate paths which are not under
3632 * pagefault_disable, however that requires a larger audit and
3633 * providing helpers like get_user_atomic.
3638 __might_sleep(__FILE__
, __LINE__
, 0);
3641 might_lock_read(¤t
->mm
->mmap_sem
);
3643 EXPORT_SYMBOL(might_fault
);
3646 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3647 static void clear_gigantic_page(struct page
*page
,
3649 unsigned int pages_per_huge_page
)
3652 struct page
*p
= page
;
3655 for (i
= 0; i
< pages_per_huge_page
;
3656 i
++, p
= mem_map_next(p
, page
, i
)) {
3658 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3661 void clear_huge_page(struct page
*page
,
3662 unsigned long addr
, unsigned int pages_per_huge_page
)
3666 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3667 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3672 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3674 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3678 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3680 struct vm_area_struct
*vma
,
3681 unsigned int pages_per_huge_page
)
3684 struct page
*dst_base
= dst
;
3685 struct page
*src_base
= src
;
3687 for (i
= 0; i
< pages_per_huge_page
; ) {
3689 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3692 dst
= mem_map_next(dst
, dst_base
, i
);
3693 src
= mem_map_next(src
, src_base
, i
);
3697 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3698 unsigned long addr
, struct vm_area_struct
*vma
,
3699 unsigned int pages_per_huge_page
)
3703 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3704 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3705 pages_per_huge_page
);
3710 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3712 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3715 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3717 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3719 static struct kmem_cache
*page_ptl_cachep
;
3721 void __init
ptlock_cache_init(void)
3723 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3727 bool ptlock_alloc(struct page
*page
)
3731 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3738 void ptlock_free(struct page
*page
)
3740 kmem_cache_free(page_ptl_cachep
, page
->ptl
);