]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory.c
Merge tag 'mmc-v4.2' of git://git.linaro.org/people/ulf.hansson/mmc
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232
233 __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 if (!tlb->end)
239 return;
240
241 tlb_flush(tlb);
242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246 __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 struct mmu_gather_batch *batch;
252
253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 free_pages_and_swap_cache(batch->pages, batch->nr);
255 batch->nr = 0;
256 }
257 tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 struct mmu_gather_batch *batch;
295
296 VM_BUG_ON(!tlb->end);
297
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
303 batch = tlb->active;
304 }
305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307 return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315 * See the comment near struct mmu_table_batch.
316 */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325 /*
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
328 *
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
331 */
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 struct mmu_table_batch *batch;
339 int i;
340
341 batch = container_of(head, struct mmu_table_batch, rcu);
342
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
345
346 free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 struct mmu_table_batch **batch = &tlb->batch;
352
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
356 }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 struct mmu_table_batch **batch = &tlb->batch;
362
363 /*
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
366 */
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
370 }
371
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
377 }
378 (*batch)->nr = 0;
379 }
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
390 */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
393 {
394 pgtable_t token = pmd_pgtable(*pmd);
395 pmd_clear(pmd);
396 pte_free_tlb(tlb, token, addr);
397 atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
403 {
404 pmd_t *pmd;
405 unsigned long next;
406 unsigned long start;
407
408 start = addr;
409 pmd = pmd_offset(pud, addr);
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
414 free_pte_range(tlb, pmd, addr);
415 } while (pmd++, addr = next, addr != end);
416
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
424 }
425 if (end - 1 > ceiling - 1)
426 return;
427
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
430 pmd_free_tlb(tlb, pmd, start);
431 mm_dec_nr_pmds(tlb->mm);
432 }
433
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
437 {
438 pud_t *pud;
439 unsigned long next;
440 unsigned long start;
441
442 start = addr;
443 pud = pud_offset(pgd, addr);
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 } while (pud++, addr = next, addr != end);
450
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
458 }
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
464 pud_free_tlb(tlb, pud, start);
465 }
466
467 /*
468 * This function frees user-level page tables of a process.
469 */
470 void free_pgd_range(struct mmu_gather *tlb,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
473 {
474 pgd_t *pgd;
475 unsigned long next;
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
502
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
519 pgd = pgd_offset(tlb->mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 } while (pgd++, addr = next, addr != end);
526 }
527
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 unsigned long floor, unsigned long ceiling)
530 {
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
535 /*
536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
538 */
539 unlink_anon_vmas(vma);
540 unlink_file_vma(vma);
541
542 if (is_vm_hugetlb_page(vma)) {
543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 && !is_vm_hugetlb_page(next)) {
551 vma = next;
552 next = vma->vm_next;
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
559 vma = next;
560 }
561 }
562
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
565 {
566 spinlock_t *ptl;
567 pgtable_t new = pte_alloc_one(mm, address);
568 int wait_split_huge_page;
569 if (!new)
570 return -ENOMEM;
571
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587 ptl = pmd_lock(mm, pmd);
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
600 return 0;
601 }
602
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
609 smp_wmb(); /* See comment in __pte_alloc */
610
611 spin_lock(&init_mm.page_table_lock);
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm, pmd, new);
614 new = NULL;
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
617 spin_unlock(&init_mm.page_table_lock);
618 if (new)
619 pte_free_kernel(&init_mm, new);
620 return 0;
621 }
622
623 static inline void init_rss_vec(int *rss)
624 {
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 int i;
631
632 if (current->mm == mm)
633 sync_mm_rss(mm);
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
637 }
638
639 /*
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
643 *
644 * The calling function must still handle the error.
645 */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
648 {
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685 if (page)
686 dump_page(page, "bad pte");
687 printk(KERN_ALERT
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
694 vma->vm_file,
695 vma->vm_ops ? vma->vm_ops->fault : NULL,
696 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
697 mapping ? mapping->a_ops->readpage : NULL);
698 dump_stack();
699 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 *
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 *
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
712 * described below.
713 *
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
717 *
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
722 *
723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 *
725 * And for normal mappings this is false.
726 *
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
731 *
732 *
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 *
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
742 *
743 */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750 pte_t pte)
751 {
752 unsigned long pfn = pte_pfn(pte);
753
754 if (HAVE_PTE_SPECIAL) {
755 if (likely(!pte_special(pte)))
756 goto check_pfn;
757 if (vma->vm_ops && vma->vm_ops->find_special_page)
758 return vma->vm_ops->find_special_page(vma, addr);
759 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760 return NULL;
761 if (!is_zero_pfn(pfn))
762 print_bad_pte(vma, addr, pte, NULL);
763 return NULL;
764 }
765
766 /* !HAVE_PTE_SPECIAL case follows: */
767
768 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769 if (vma->vm_flags & VM_MIXEDMAP) {
770 if (!pfn_valid(pfn))
771 return NULL;
772 goto out;
773 } else {
774 unsigned long off;
775 off = (addr - vma->vm_start) >> PAGE_SHIFT;
776 if (pfn == vma->vm_pgoff + off)
777 return NULL;
778 if (!is_cow_mapping(vma->vm_flags))
779 return NULL;
780 }
781 }
782
783 if (is_zero_pfn(pfn))
784 return NULL;
785 check_pfn:
786 if (unlikely(pfn > highest_memmap_pfn)) {
787 print_bad_pte(vma, addr, pte, NULL);
788 return NULL;
789 }
790
791 /*
792 * NOTE! We still have PageReserved() pages in the page tables.
793 * eg. VDSO mappings can cause them to exist.
794 */
795 out:
796 return pfn_to_page(pfn);
797 }
798
799 /*
800 * copy one vm_area from one task to the other. Assumes the page tables
801 * already present in the new task to be cleared in the whole range
802 * covered by this vma.
803 */
804
805 static inline unsigned long
806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808 unsigned long addr, int *rss)
809 {
810 unsigned long vm_flags = vma->vm_flags;
811 pte_t pte = *src_pte;
812 struct page *page;
813
814 /* pte contains position in swap or file, so copy. */
815 if (unlikely(!pte_present(pte))) {
816 swp_entry_t entry = pte_to_swp_entry(pte);
817
818 if (likely(!non_swap_entry(entry))) {
819 if (swap_duplicate(entry) < 0)
820 return entry.val;
821
822 /* make sure dst_mm is on swapoff's mmlist. */
823 if (unlikely(list_empty(&dst_mm->mmlist))) {
824 spin_lock(&mmlist_lock);
825 if (list_empty(&dst_mm->mmlist))
826 list_add(&dst_mm->mmlist,
827 &src_mm->mmlist);
828 spin_unlock(&mmlist_lock);
829 }
830 rss[MM_SWAPENTS]++;
831 } else if (is_migration_entry(entry)) {
832 page = migration_entry_to_page(entry);
833
834 if (PageAnon(page))
835 rss[MM_ANONPAGES]++;
836 else
837 rss[MM_FILEPAGES]++;
838
839 if (is_write_migration_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 /*
842 * COW mappings require pages in both
843 * parent and child to be set to read.
844 */
845 make_migration_entry_read(&entry);
846 pte = swp_entry_to_pte(entry);
847 if (pte_swp_soft_dirty(*src_pte))
848 pte = pte_swp_mksoft_dirty(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
850 }
851 }
852 goto out_set_pte;
853 }
854
855 /*
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
858 */
859 if (is_cow_mapping(vm_flags)) {
860 ptep_set_wrprotect(src_mm, addr, src_pte);
861 pte = pte_wrprotect(pte);
862 }
863
864 /*
865 * If it's a shared mapping, mark it clean in
866 * the child
867 */
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
871
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
875 page_dup_rmap(page);
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
880 }
881
882 out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
885 }
886
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
890 {
891 pte_t *orig_src_pte, *orig_dst_pte;
892 pte_t *src_pte, *dst_pte;
893 spinlock_t *src_ptl, *dst_ptl;
894 int progress = 0;
895 int rss[NR_MM_COUNTERS];
896 swp_entry_t entry = (swp_entry_t){0};
897
898 again:
899 init_rss_vec(rss);
900
901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 if (!dst_pte)
903 return -ENOMEM;
904 src_pte = pte_offset_map(src_pmd, addr);
905 src_ptl = pte_lockptr(src_mm, src_pmd);
906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
909 arch_enter_lazy_mmu_mode();
910
911 do {
912 /*
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
915 */
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 break;
921 }
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
925 }
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl);
935 pte_unmap(orig_src_pte);
936 add_mm_rss_vec(dst_mm, rss);
937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 cond_resched();
939
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
944 }
945 if (addr != end)
946 goto again;
947 return 0;
948 }
949
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
953 {
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
956
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
973 }
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
981 }
982
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
986 {
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
989
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1003 }
1004
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1007 {
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
1015 int ret;
1016
1017 /*
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1022 */
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1024 !vma->anon_vma)
1025 return 0;
1026
1027 if (is_vm_hugetlb_page(vma))
1028 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1029
1030 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031 /*
1032 * We do not free on error cases below as remove_vma
1033 * gets called on error from higher level routine
1034 */
1035 ret = track_pfn_copy(vma);
1036 if (ret)
1037 return ret;
1038 }
1039
1040 /*
1041 * We need to invalidate the secondary MMU mappings only when
1042 * there could be a permission downgrade on the ptes of the
1043 * parent mm. And a permission downgrade will only happen if
1044 * is_cow_mapping() returns true.
1045 */
1046 is_cow = is_cow_mapping(vma->vm_flags);
1047 mmun_start = addr;
1048 mmun_end = end;
1049 if (is_cow)
1050 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1051 mmun_end);
1052
1053 ret = 0;
1054 dst_pgd = pgd_offset(dst_mm, addr);
1055 src_pgd = pgd_offset(src_mm, addr);
1056 do {
1057 next = pgd_addr_end(addr, end);
1058 if (pgd_none_or_clear_bad(src_pgd))
1059 continue;
1060 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1061 vma, addr, next))) {
1062 ret = -ENOMEM;
1063 break;
1064 }
1065 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1066
1067 if (is_cow)
1068 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1069 return ret;
1070 }
1071
1072 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1073 struct vm_area_struct *vma, pmd_t *pmd,
1074 unsigned long addr, unsigned long end,
1075 struct zap_details *details)
1076 {
1077 struct mm_struct *mm = tlb->mm;
1078 int force_flush = 0;
1079 int rss[NR_MM_COUNTERS];
1080 spinlock_t *ptl;
1081 pte_t *start_pte;
1082 pte_t *pte;
1083 swp_entry_t entry;
1084
1085 again:
1086 init_rss_vec(rss);
1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 pte = start_pte;
1089 arch_enter_lazy_mmu_mode();
1090 do {
1091 pte_t ptent = *pte;
1092 if (pte_none(ptent)) {
1093 continue;
1094 }
1095
1096 if (pte_present(ptent)) {
1097 struct page *page;
1098
1099 page = vm_normal_page(vma, addr, ptent);
1100 if (unlikely(details) && page) {
1101 /*
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1105 */
1106 if (details->check_mapping &&
1107 details->check_mapping != page->mapping)
1108 continue;
1109 }
1110 ptent = ptep_get_and_clear_full(mm, addr, pte,
1111 tlb->fullmm);
1112 tlb_remove_tlb_entry(tlb, pte, addr);
1113 if (unlikely(!page))
1114 continue;
1115 if (PageAnon(page))
1116 rss[MM_ANONPAGES]--;
1117 else {
1118 if (pte_dirty(ptent)) {
1119 force_flush = 1;
1120 set_page_dirty(page);
1121 }
1122 if (pte_young(ptent) &&
1123 likely(!(vma->vm_flags & VM_SEQ_READ)))
1124 mark_page_accessed(page);
1125 rss[MM_FILEPAGES]--;
1126 }
1127 page_remove_rmap(page);
1128 if (unlikely(page_mapcount(page) < 0))
1129 print_bad_pte(vma, addr, ptent, page);
1130 if (unlikely(!__tlb_remove_page(tlb, page))) {
1131 force_flush = 1;
1132 addr += PAGE_SIZE;
1133 break;
1134 }
1135 continue;
1136 }
1137 /* If details->check_mapping, we leave swap entries. */
1138 if (unlikely(details))
1139 continue;
1140
1141 entry = pte_to_swp_entry(ptent);
1142 if (!non_swap_entry(entry))
1143 rss[MM_SWAPENTS]--;
1144 else if (is_migration_entry(entry)) {
1145 struct page *page;
1146
1147 page = migration_entry_to_page(entry);
1148
1149 if (PageAnon(page))
1150 rss[MM_ANONPAGES]--;
1151 else
1152 rss[MM_FILEPAGES]--;
1153 }
1154 if (unlikely(!free_swap_and_cache(entry)))
1155 print_bad_pte(vma, addr, ptent, NULL);
1156 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157 } while (pte++, addr += PAGE_SIZE, addr != end);
1158
1159 add_mm_rss_vec(mm, rss);
1160 arch_leave_lazy_mmu_mode();
1161
1162 /* Do the actual TLB flush before dropping ptl */
1163 if (force_flush)
1164 tlb_flush_mmu_tlbonly(tlb);
1165 pte_unmap_unlock(start_pte, ptl);
1166
1167 /*
1168 * If we forced a TLB flush (either due to running out of
1169 * batch buffers or because we needed to flush dirty TLB
1170 * entries before releasing the ptl), free the batched
1171 * memory too. Restart if we didn't do everything.
1172 */
1173 if (force_flush) {
1174 force_flush = 0;
1175 tlb_flush_mmu_free(tlb);
1176
1177 if (addr != end)
1178 goto again;
1179 }
1180
1181 return addr;
1182 }
1183
1184 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1185 struct vm_area_struct *vma, pud_t *pud,
1186 unsigned long addr, unsigned long end,
1187 struct zap_details *details)
1188 {
1189 pmd_t *pmd;
1190 unsigned long next;
1191
1192 pmd = pmd_offset(pud, addr);
1193 do {
1194 next = pmd_addr_end(addr, end);
1195 if (pmd_trans_huge(*pmd)) {
1196 if (next - addr != HPAGE_PMD_SIZE) {
1197 #ifdef CONFIG_DEBUG_VM
1198 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1199 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1200 __func__, addr, end,
1201 vma->vm_start,
1202 vma->vm_end);
1203 BUG();
1204 }
1205 #endif
1206 split_huge_page_pmd(vma, addr, pmd);
1207 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208 goto next;
1209 /* fall through */
1210 }
1211 /*
1212 * Here there can be other concurrent MADV_DONTNEED or
1213 * trans huge page faults running, and if the pmd is
1214 * none or trans huge it can change under us. This is
1215 * because MADV_DONTNEED holds the mmap_sem in read
1216 * mode.
1217 */
1218 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219 goto next;
1220 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221 next:
1222 cond_resched();
1223 } while (pmd++, addr = next, addr != end);
1224
1225 return addr;
1226 }
1227
1228 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1229 struct vm_area_struct *vma, pgd_t *pgd,
1230 unsigned long addr, unsigned long end,
1231 struct zap_details *details)
1232 {
1233 pud_t *pud;
1234 unsigned long next;
1235
1236 pud = pud_offset(pgd, addr);
1237 do {
1238 next = pud_addr_end(addr, end);
1239 if (pud_none_or_clear_bad(pud))
1240 continue;
1241 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1242 } while (pud++, addr = next, addr != end);
1243
1244 return addr;
1245 }
1246
1247 static void unmap_page_range(struct mmu_gather *tlb,
1248 struct vm_area_struct *vma,
1249 unsigned long addr, unsigned long end,
1250 struct zap_details *details)
1251 {
1252 pgd_t *pgd;
1253 unsigned long next;
1254
1255 if (details && !details->check_mapping)
1256 details = NULL;
1257
1258 BUG_ON(addr >= end);
1259 tlb_start_vma(tlb, vma);
1260 pgd = pgd_offset(vma->vm_mm, addr);
1261 do {
1262 next = pgd_addr_end(addr, end);
1263 if (pgd_none_or_clear_bad(pgd))
1264 continue;
1265 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1266 } while (pgd++, addr = next, addr != end);
1267 tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, unsigned long start_addr,
1273 unsigned long end_addr,
1274 struct zap_details *details)
1275 {
1276 unsigned long start = max(vma->vm_start, start_addr);
1277 unsigned long end;
1278
1279 if (start >= vma->vm_end)
1280 return;
1281 end = min(vma->vm_end, end_addr);
1282 if (end <= vma->vm_start)
1283 return;
1284
1285 if (vma->vm_file)
1286 uprobe_munmap(vma, start, end);
1287
1288 if (unlikely(vma->vm_flags & VM_PFNMAP))
1289 untrack_pfn(vma, 0, 0);
1290
1291 if (start != end) {
1292 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 /*
1294 * It is undesirable to test vma->vm_file as it
1295 * should be non-null for valid hugetlb area.
1296 * However, vm_file will be NULL in the error
1297 * cleanup path of mmap_region. When
1298 * hugetlbfs ->mmap method fails,
1299 * mmap_region() nullifies vma->vm_file
1300 * before calling this function to clean up.
1301 * Since no pte has actually been setup, it is
1302 * safe to do nothing in this case.
1303 */
1304 if (vma->vm_file) {
1305 i_mmap_lock_write(vma->vm_file->f_mapping);
1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 }
1309 } else
1310 unmap_page_range(tlb, vma, start, end, details);
1311 }
1312 }
1313
1314 /**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316 * @tlb: address of the caller's struct mmu_gather
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1320 *
1321 * Unmap all pages in the vma list.
1322 *
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333 struct vm_area_struct *vma, unsigned long start_addr,
1334 unsigned long end_addr)
1335 {
1336 struct mm_struct *mm = vma->vm_mm;
1337
1338 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1342 }
1343
1344 /**
1345 * zap_page_range - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @start: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * Caller must protect the VMA list
1352 */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 unsigned long size, struct zap_details *details)
1355 {
1356 struct mm_struct *mm = vma->vm_mm;
1357 struct mmu_gather tlb;
1358 unsigned long end = start + size;
1359
1360 lru_add_drain();
1361 tlb_gather_mmu(&tlb, mm, start, end);
1362 update_hiwater_rss(mm);
1363 mmu_notifier_invalidate_range_start(mm, start, end);
1364 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365 unmap_single_vma(&tlb, vma, start, end, details);
1366 mmu_notifier_invalidate_range_end(mm, start, end);
1367 tlb_finish_mmu(&tlb, start, end);
1368 }
1369
1370 /**
1371 * zap_page_range_single - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of shared cache invalidation
1376 *
1377 * The range must fit into one VMA.
1378 */
1379 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1380 unsigned long size, struct zap_details *details)
1381 {
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb;
1384 unsigned long end = address + size;
1385
1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, address, end);
1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, address, end);
1390 unmap_single_vma(&tlb, vma, address, end, details);
1391 mmu_notifier_invalidate_range_end(mm, address, end);
1392 tlb_finish_mmu(&tlb, address, end);
1393 }
1394
1395 /**
1396 * zap_vma_ptes - remove ptes mapping the vma
1397 * @vma: vm_area_struct holding ptes to be zapped
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 *
1401 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1402 *
1403 * The entire address range must be fully contained within the vma.
1404 *
1405 * Returns 0 if successful.
1406 */
1407 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1408 unsigned long size)
1409 {
1410 if (address < vma->vm_start || address + size > vma->vm_end ||
1411 !(vma->vm_flags & VM_PFNMAP))
1412 return -1;
1413 zap_page_range_single(vma, address, size, NULL);
1414 return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1417
1418 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419 spinlock_t **ptl)
1420 {
1421 pgd_t * pgd = pgd_offset(mm, addr);
1422 pud_t * pud = pud_alloc(mm, pgd, addr);
1423 if (pud) {
1424 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425 if (pmd) {
1426 VM_BUG_ON(pmd_trans_huge(*pmd));
1427 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428 }
1429 }
1430 return NULL;
1431 }
1432
1433 /*
1434 * This is the old fallback for page remapping.
1435 *
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1439 */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 struct page *page, pgprot_t prot)
1442 {
1443 struct mm_struct *mm = vma->vm_mm;
1444 int retval;
1445 pte_t *pte;
1446 spinlock_t *ptl;
1447
1448 retval = -EINVAL;
1449 if (PageAnon(page))
1450 goto out;
1451 retval = -ENOMEM;
1452 flush_dcache_page(page);
1453 pte = get_locked_pte(mm, addr, &ptl);
1454 if (!pte)
1455 goto out;
1456 retval = -EBUSY;
1457 if (!pte_none(*pte))
1458 goto out_unlock;
1459
1460 /* Ok, finally just insert the thing.. */
1461 get_page(page);
1462 inc_mm_counter_fast(mm, MM_FILEPAGES);
1463 page_add_file_rmap(page);
1464 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466 retval = 0;
1467 pte_unmap_unlock(pte, ptl);
1468 return retval;
1469 out_unlock:
1470 pte_unmap_unlock(pte, ptl);
1471 out:
1472 return retval;
1473 }
1474
1475 /**
1476 * vm_insert_page - insert single page into user vma
1477 * @vma: user vma to map to
1478 * @addr: target user address of this page
1479 * @page: source kernel page
1480 *
1481 * This allows drivers to insert individual pages they've allocated
1482 * into a user vma.
1483 *
1484 * The page has to be a nice clean _individual_ kernel allocation.
1485 * If you allocate a compound page, you need to have marked it as
1486 * such (__GFP_COMP), or manually just split the page up yourself
1487 * (see split_page()).
1488 *
1489 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1490 * took an arbitrary page protection parameter. This doesn't allow
1491 * that. Your vma protection will have to be set up correctly, which
1492 * means that if you want a shared writable mapping, you'd better
1493 * ask for a shared writable mapping!
1494 *
1495 * The page does not need to be reserved.
1496 *
1497 * Usually this function is called from f_op->mmap() handler
1498 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1499 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1500 * function from other places, for example from page-fault handler.
1501 */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 struct page *page)
1504 {
1505 if (addr < vma->vm_start || addr >= vma->vm_end)
1506 return -EFAULT;
1507 if (!page_count(page))
1508 return -EINVAL;
1509 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 vma->vm_flags |= VM_MIXEDMAP;
1513 }
1514 return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519 unsigned long pfn, pgprot_t prot)
1520 {
1521 struct mm_struct *mm = vma->vm_mm;
1522 int retval;
1523 pte_t *pte, entry;
1524 spinlock_t *ptl;
1525
1526 retval = -ENOMEM;
1527 pte = get_locked_pte(mm, addr, &ptl);
1528 if (!pte)
1529 goto out;
1530 retval = -EBUSY;
1531 if (!pte_none(*pte))
1532 goto out_unlock;
1533
1534 /* Ok, finally just insert the thing.. */
1535 entry = pte_mkspecial(pfn_pte(pfn, prot));
1536 set_pte_at(mm, addr, pte, entry);
1537 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1538
1539 retval = 0;
1540 out_unlock:
1541 pte_unmap_unlock(pte, ptl);
1542 out:
1543 return retval;
1544 }
1545
1546 /**
1547 * vm_insert_pfn - insert single pfn into user vma
1548 * @vma: user vma to map to
1549 * @addr: target user address of this page
1550 * @pfn: source kernel pfn
1551 *
1552 * Similar to vm_insert_page, this allows drivers to insert individual pages
1553 * they've allocated into a user vma. Same comments apply.
1554 *
1555 * This function should only be called from a vm_ops->fault handler, and
1556 * in that case the handler should return NULL.
1557 *
1558 * vma cannot be a COW mapping.
1559 *
1560 * As this is called only for pages that do not currently exist, we
1561 * do not need to flush old virtual caches or the TLB.
1562 */
1563 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564 unsigned long pfn)
1565 {
1566 int ret;
1567 pgprot_t pgprot = vma->vm_page_prot;
1568 /*
1569 * Technically, architectures with pte_special can avoid all these
1570 * restrictions (same for remap_pfn_range). However we would like
1571 * consistency in testing and feature parity among all, so we should
1572 * try to keep these invariants in place for everybody.
1573 */
1574 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576 (VM_PFNMAP|VM_MIXEDMAP));
1577 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579
1580 if (addr < vma->vm_start || addr >= vma->vm_end)
1581 return -EFAULT;
1582 if (track_pfn_insert(vma, &pgprot, pfn))
1583 return -EINVAL;
1584
1585 ret = insert_pfn(vma, addr, pfn, pgprot);
1586
1587 return ret;
1588 }
1589 EXPORT_SYMBOL(vm_insert_pfn);
1590
1591 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1592 unsigned long pfn)
1593 {
1594 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1595
1596 if (addr < vma->vm_start || addr >= vma->vm_end)
1597 return -EFAULT;
1598
1599 /*
1600 * If we don't have pte special, then we have to use the pfn_valid()
1601 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1602 * refcount the page if pfn_valid is true (hence insert_page rather
1603 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1604 * without pte special, it would there be refcounted as a normal page.
1605 */
1606 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1607 struct page *page;
1608
1609 page = pfn_to_page(pfn);
1610 return insert_page(vma, addr, page, vma->vm_page_prot);
1611 }
1612 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1613 }
1614 EXPORT_SYMBOL(vm_insert_mixed);
1615
1616 /*
1617 * maps a range of physical memory into the requested pages. the old
1618 * mappings are removed. any references to nonexistent pages results
1619 * in null mappings (currently treated as "copy-on-access")
1620 */
1621 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1622 unsigned long addr, unsigned long end,
1623 unsigned long pfn, pgprot_t prot)
1624 {
1625 pte_t *pte;
1626 spinlock_t *ptl;
1627
1628 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1629 if (!pte)
1630 return -ENOMEM;
1631 arch_enter_lazy_mmu_mode();
1632 do {
1633 BUG_ON(!pte_none(*pte));
1634 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1635 pfn++;
1636 } while (pte++, addr += PAGE_SIZE, addr != end);
1637 arch_leave_lazy_mmu_mode();
1638 pte_unmap_unlock(pte - 1, ptl);
1639 return 0;
1640 }
1641
1642 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1643 unsigned long addr, unsigned long end,
1644 unsigned long pfn, pgprot_t prot)
1645 {
1646 pmd_t *pmd;
1647 unsigned long next;
1648
1649 pfn -= addr >> PAGE_SHIFT;
1650 pmd = pmd_alloc(mm, pud, addr);
1651 if (!pmd)
1652 return -ENOMEM;
1653 VM_BUG_ON(pmd_trans_huge(*pmd));
1654 do {
1655 next = pmd_addr_end(addr, end);
1656 if (remap_pte_range(mm, pmd, addr, next,
1657 pfn + (addr >> PAGE_SHIFT), prot))
1658 return -ENOMEM;
1659 } while (pmd++, addr = next, addr != end);
1660 return 0;
1661 }
1662
1663 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1664 unsigned long addr, unsigned long end,
1665 unsigned long pfn, pgprot_t prot)
1666 {
1667 pud_t *pud;
1668 unsigned long next;
1669
1670 pfn -= addr >> PAGE_SHIFT;
1671 pud = pud_alloc(mm, pgd, addr);
1672 if (!pud)
1673 return -ENOMEM;
1674 do {
1675 next = pud_addr_end(addr, end);
1676 if (remap_pmd_range(mm, pud, addr, next,
1677 pfn + (addr >> PAGE_SHIFT), prot))
1678 return -ENOMEM;
1679 } while (pud++, addr = next, addr != end);
1680 return 0;
1681 }
1682
1683 /**
1684 * remap_pfn_range - remap kernel memory to userspace
1685 * @vma: user vma to map to
1686 * @addr: target user address to start at
1687 * @pfn: physical address of kernel memory
1688 * @size: size of map area
1689 * @prot: page protection flags for this mapping
1690 *
1691 * Note: this is only safe if the mm semaphore is held when called.
1692 */
1693 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1694 unsigned long pfn, unsigned long size, pgprot_t prot)
1695 {
1696 pgd_t *pgd;
1697 unsigned long next;
1698 unsigned long end = addr + PAGE_ALIGN(size);
1699 struct mm_struct *mm = vma->vm_mm;
1700 int err;
1701
1702 /*
1703 * Physically remapped pages are special. Tell the
1704 * rest of the world about it:
1705 * VM_IO tells people not to look at these pages
1706 * (accesses can have side effects).
1707 * VM_PFNMAP tells the core MM that the base pages are just
1708 * raw PFN mappings, and do not have a "struct page" associated
1709 * with them.
1710 * VM_DONTEXPAND
1711 * Disable vma merging and expanding with mremap().
1712 * VM_DONTDUMP
1713 * Omit vma from core dump, even when VM_IO turned off.
1714 *
1715 * There's a horrible special case to handle copy-on-write
1716 * behaviour that some programs depend on. We mark the "original"
1717 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718 * See vm_normal_page() for details.
1719 */
1720 if (is_cow_mapping(vma->vm_flags)) {
1721 if (addr != vma->vm_start || end != vma->vm_end)
1722 return -EINVAL;
1723 vma->vm_pgoff = pfn;
1724 }
1725
1726 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1727 if (err)
1728 return -EINVAL;
1729
1730 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731
1732 BUG_ON(addr >= end);
1733 pfn -= addr >> PAGE_SHIFT;
1734 pgd = pgd_offset(mm, addr);
1735 flush_cache_range(vma, addr, end);
1736 do {
1737 next = pgd_addr_end(addr, end);
1738 err = remap_pud_range(mm, pgd, addr, next,
1739 pfn + (addr >> PAGE_SHIFT), prot);
1740 if (err)
1741 break;
1742 } while (pgd++, addr = next, addr != end);
1743
1744 if (err)
1745 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746
1747 return err;
1748 }
1749 EXPORT_SYMBOL(remap_pfn_range);
1750
1751 /**
1752 * vm_iomap_memory - remap memory to userspace
1753 * @vma: user vma to map to
1754 * @start: start of area
1755 * @len: size of area
1756 *
1757 * This is a simplified io_remap_pfn_range() for common driver use. The
1758 * driver just needs to give us the physical memory range to be mapped,
1759 * we'll figure out the rest from the vma information.
1760 *
1761 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1762 * whatever write-combining details or similar.
1763 */
1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765 {
1766 unsigned long vm_len, pfn, pages;
1767
1768 /* Check that the physical memory area passed in looks valid */
1769 if (start + len < start)
1770 return -EINVAL;
1771 /*
1772 * You *really* shouldn't map things that aren't page-aligned,
1773 * but we've historically allowed it because IO memory might
1774 * just have smaller alignment.
1775 */
1776 len += start & ~PAGE_MASK;
1777 pfn = start >> PAGE_SHIFT;
1778 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1779 if (pfn + pages < pfn)
1780 return -EINVAL;
1781
1782 /* We start the mapping 'vm_pgoff' pages into the area */
1783 if (vma->vm_pgoff > pages)
1784 return -EINVAL;
1785 pfn += vma->vm_pgoff;
1786 pages -= vma->vm_pgoff;
1787
1788 /* Can we fit all of the mapping? */
1789 vm_len = vma->vm_end - vma->vm_start;
1790 if (vm_len >> PAGE_SHIFT > pages)
1791 return -EINVAL;
1792
1793 /* Ok, let it rip */
1794 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1795 }
1796 EXPORT_SYMBOL(vm_iomap_memory);
1797
1798 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799 unsigned long addr, unsigned long end,
1800 pte_fn_t fn, void *data)
1801 {
1802 pte_t *pte;
1803 int err;
1804 pgtable_t token;
1805 spinlock_t *uninitialized_var(ptl);
1806
1807 pte = (mm == &init_mm) ?
1808 pte_alloc_kernel(pmd, addr) :
1809 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810 if (!pte)
1811 return -ENOMEM;
1812
1813 BUG_ON(pmd_huge(*pmd));
1814
1815 arch_enter_lazy_mmu_mode();
1816
1817 token = pmd_pgtable(*pmd);
1818
1819 do {
1820 err = fn(pte++, token, addr, data);
1821 if (err)
1822 break;
1823 } while (addr += PAGE_SIZE, addr != end);
1824
1825 arch_leave_lazy_mmu_mode();
1826
1827 if (mm != &init_mm)
1828 pte_unmap_unlock(pte-1, ptl);
1829 return err;
1830 }
1831
1832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833 unsigned long addr, unsigned long end,
1834 pte_fn_t fn, void *data)
1835 {
1836 pmd_t *pmd;
1837 unsigned long next;
1838 int err;
1839
1840 BUG_ON(pud_huge(*pud));
1841
1842 pmd = pmd_alloc(mm, pud, addr);
1843 if (!pmd)
1844 return -ENOMEM;
1845 do {
1846 next = pmd_addr_end(addr, end);
1847 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848 if (err)
1849 break;
1850 } while (pmd++, addr = next, addr != end);
1851 return err;
1852 }
1853
1854 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855 unsigned long addr, unsigned long end,
1856 pte_fn_t fn, void *data)
1857 {
1858 pud_t *pud;
1859 unsigned long next;
1860 int err;
1861
1862 pud = pud_alloc(mm, pgd, addr);
1863 if (!pud)
1864 return -ENOMEM;
1865 do {
1866 next = pud_addr_end(addr, end);
1867 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868 if (err)
1869 break;
1870 } while (pud++, addr = next, addr != end);
1871 return err;
1872 }
1873
1874 /*
1875 * Scan a region of virtual memory, filling in page tables as necessary
1876 * and calling a provided function on each leaf page table.
1877 */
1878 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879 unsigned long size, pte_fn_t fn, void *data)
1880 {
1881 pgd_t *pgd;
1882 unsigned long next;
1883 unsigned long end = addr + size;
1884 int err;
1885
1886 BUG_ON(addr >= end);
1887 pgd = pgd_offset(mm, addr);
1888 do {
1889 next = pgd_addr_end(addr, end);
1890 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1891 if (err)
1892 break;
1893 } while (pgd++, addr = next, addr != end);
1894
1895 return err;
1896 }
1897 EXPORT_SYMBOL_GPL(apply_to_page_range);
1898
1899 /*
1900 * handle_pte_fault chooses page fault handler according to an entry which was
1901 * read non-atomically. Before making any commitment, on those architectures
1902 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1903 * parts, do_swap_page must check under lock before unmapping the pte and
1904 * proceeding (but do_wp_page is only called after already making such a check;
1905 * and do_anonymous_page can safely check later on).
1906 */
1907 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908 pte_t *page_table, pte_t orig_pte)
1909 {
1910 int same = 1;
1911 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1912 if (sizeof(pte_t) > sizeof(unsigned long)) {
1913 spinlock_t *ptl = pte_lockptr(mm, pmd);
1914 spin_lock(ptl);
1915 same = pte_same(*page_table, orig_pte);
1916 spin_unlock(ptl);
1917 }
1918 #endif
1919 pte_unmap(page_table);
1920 return same;
1921 }
1922
1923 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924 {
1925 debug_dma_assert_idle(src);
1926
1927 /*
1928 * If the source page was a PFN mapping, we don't have
1929 * a "struct page" for it. We do a best-effort copy by
1930 * just copying from the original user address. If that
1931 * fails, we just zero-fill it. Live with it.
1932 */
1933 if (unlikely(!src)) {
1934 void *kaddr = kmap_atomic(dst);
1935 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936
1937 /*
1938 * This really shouldn't fail, because the page is there
1939 * in the page tables. But it might just be unreadable,
1940 * in which case we just give up and fill the result with
1941 * zeroes.
1942 */
1943 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944 clear_page(kaddr);
1945 kunmap_atomic(kaddr);
1946 flush_dcache_page(dst);
1947 } else
1948 copy_user_highpage(dst, src, va, vma);
1949 }
1950
1951 /*
1952 * Notify the address space that the page is about to become writable so that
1953 * it can prohibit this or wait for the page to get into an appropriate state.
1954 *
1955 * We do this without the lock held, so that it can sleep if it needs to.
1956 */
1957 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1958 unsigned long address)
1959 {
1960 struct vm_fault vmf;
1961 int ret;
1962
1963 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1964 vmf.pgoff = page->index;
1965 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1966 vmf.page = page;
1967 vmf.cow_page = NULL;
1968
1969 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971 return ret;
1972 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973 lock_page(page);
1974 if (!page->mapping) {
1975 unlock_page(page);
1976 return 0; /* retry */
1977 }
1978 ret |= VM_FAULT_LOCKED;
1979 } else
1980 VM_BUG_ON_PAGE(!PageLocked(page), page);
1981 return ret;
1982 }
1983
1984 /*
1985 * Handle write page faults for pages that can be reused in the current vma
1986 *
1987 * This can happen either due to the mapping being with the VM_SHARED flag,
1988 * or due to us being the last reference standing to the page. In either
1989 * case, all we need to do here is to mark the page as writable and update
1990 * any related book-keeping.
1991 */
1992 static inline int wp_page_reuse(struct mm_struct *mm,
1993 struct vm_area_struct *vma, unsigned long address,
1994 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1995 struct page *page, int page_mkwrite,
1996 int dirty_shared)
1997 __releases(ptl)
1998 {
1999 pte_t entry;
2000 /*
2001 * Clear the pages cpupid information as the existing
2002 * information potentially belongs to a now completely
2003 * unrelated process.
2004 */
2005 if (page)
2006 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2007
2008 flush_cache_page(vma, address, pte_pfn(orig_pte));
2009 entry = pte_mkyoung(orig_pte);
2010 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2011 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2012 update_mmu_cache(vma, address, page_table);
2013 pte_unmap_unlock(page_table, ptl);
2014
2015 if (dirty_shared) {
2016 struct address_space *mapping;
2017 int dirtied;
2018
2019 if (!page_mkwrite)
2020 lock_page(page);
2021
2022 dirtied = set_page_dirty(page);
2023 VM_BUG_ON_PAGE(PageAnon(page), page);
2024 mapping = page->mapping;
2025 unlock_page(page);
2026 page_cache_release(page);
2027
2028 if ((dirtied || page_mkwrite) && mapping) {
2029 /*
2030 * Some device drivers do not set page.mapping
2031 * but still dirty their pages
2032 */
2033 balance_dirty_pages_ratelimited(mapping);
2034 }
2035
2036 if (!page_mkwrite)
2037 file_update_time(vma->vm_file);
2038 }
2039
2040 return VM_FAULT_WRITE;
2041 }
2042
2043 /*
2044 * Handle the case of a page which we actually need to copy to a new page.
2045 *
2046 * Called with mmap_sem locked and the old page referenced, but
2047 * without the ptl held.
2048 *
2049 * High level logic flow:
2050 *
2051 * - Allocate a page, copy the content of the old page to the new one.
2052 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2053 * - Take the PTL. If the pte changed, bail out and release the allocated page
2054 * - If the pte is still the way we remember it, update the page table and all
2055 * relevant references. This includes dropping the reference the page-table
2056 * held to the old page, as well as updating the rmap.
2057 * - In any case, unlock the PTL and drop the reference we took to the old page.
2058 */
2059 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2060 unsigned long address, pte_t *page_table, pmd_t *pmd,
2061 pte_t orig_pte, struct page *old_page)
2062 {
2063 struct page *new_page = NULL;
2064 spinlock_t *ptl = NULL;
2065 pte_t entry;
2066 int page_copied = 0;
2067 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2068 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2069 struct mem_cgroup *memcg;
2070
2071 if (unlikely(anon_vma_prepare(vma)))
2072 goto oom;
2073
2074 if (is_zero_pfn(pte_pfn(orig_pte))) {
2075 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2076 if (!new_page)
2077 goto oom;
2078 } else {
2079 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080 if (!new_page)
2081 goto oom;
2082 cow_user_page(new_page, old_page, address, vma);
2083 }
2084 __SetPageUptodate(new_page);
2085
2086 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2087 goto oom_free_new;
2088
2089 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2090
2091 /*
2092 * Re-check the pte - we dropped the lock
2093 */
2094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 if (likely(pte_same(*page_table, orig_pte))) {
2096 if (old_page) {
2097 if (!PageAnon(old_page)) {
2098 dec_mm_counter_fast(mm, MM_FILEPAGES);
2099 inc_mm_counter_fast(mm, MM_ANONPAGES);
2100 }
2101 } else {
2102 inc_mm_counter_fast(mm, MM_ANONPAGES);
2103 }
2104 flush_cache_page(vma, address, pte_pfn(orig_pte));
2105 entry = mk_pte(new_page, vma->vm_page_prot);
2106 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107 /*
2108 * Clear the pte entry and flush it first, before updating the
2109 * pte with the new entry. This will avoid a race condition
2110 * seen in the presence of one thread doing SMC and another
2111 * thread doing COW.
2112 */
2113 ptep_clear_flush_notify(vma, address, page_table);
2114 page_add_new_anon_rmap(new_page, vma, address);
2115 mem_cgroup_commit_charge(new_page, memcg, false);
2116 lru_cache_add_active_or_unevictable(new_page, vma);
2117 /*
2118 * We call the notify macro here because, when using secondary
2119 * mmu page tables (such as kvm shadow page tables), we want the
2120 * new page to be mapped directly into the secondary page table.
2121 */
2122 set_pte_at_notify(mm, address, page_table, entry);
2123 update_mmu_cache(vma, address, page_table);
2124 if (old_page) {
2125 /*
2126 * Only after switching the pte to the new page may
2127 * we remove the mapcount here. Otherwise another
2128 * process may come and find the rmap count decremented
2129 * before the pte is switched to the new page, and
2130 * "reuse" the old page writing into it while our pte
2131 * here still points into it and can be read by other
2132 * threads.
2133 *
2134 * The critical issue is to order this
2135 * page_remove_rmap with the ptp_clear_flush above.
2136 * Those stores are ordered by (if nothing else,)
2137 * the barrier present in the atomic_add_negative
2138 * in page_remove_rmap.
2139 *
2140 * Then the TLB flush in ptep_clear_flush ensures that
2141 * no process can access the old page before the
2142 * decremented mapcount is visible. And the old page
2143 * cannot be reused until after the decremented
2144 * mapcount is visible. So transitively, TLBs to
2145 * old page will be flushed before it can be reused.
2146 */
2147 page_remove_rmap(old_page);
2148 }
2149
2150 /* Free the old page.. */
2151 new_page = old_page;
2152 page_copied = 1;
2153 } else {
2154 mem_cgroup_cancel_charge(new_page, memcg);
2155 }
2156
2157 if (new_page)
2158 page_cache_release(new_page);
2159
2160 pte_unmap_unlock(page_table, ptl);
2161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2162 if (old_page) {
2163 /*
2164 * Don't let another task, with possibly unlocked vma,
2165 * keep the mlocked page.
2166 */
2167 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2168 lock_page(old_page); /* LRU manipulation */
2169 munlock_vma_page(old_page);
2170 unlock_page(old_page);
2171 }
2172 page_cache_release(old_page);
2173 }
2174 return page_copied ? VM_FAULT_WRITE : 0;
2175 oom_free_new:
2176 page_cache_release(new_page);
2177 oom:
2178 if (old_page)
2179 page_cache_release(old_page);
2180 return VM_FAULT_OOM;
2181 }
2182
2183 /*
2184 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2185 * mapping
2186 */
2187 static int wp_pfn_shared(struct mm_struct *mm,
2188 struct vm_area_struct *vma, unsigned long address,
2189 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2190 pmd_t *pmd)
2191 {
2192 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2193 struct vm_fault vmf = {
2194 .page = NULL,
2195 .pgoff = linear_page_index(vma, address),
2196 .virtual_address = (void __user *)(address & PAGE_MASK),
2197 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2198 };
2199 int ret;
2200
2201 pte_unmap_unlock(page_table, ptl);
2202 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2203 if (ret & VM_FAULT_ERROR)
2204 return ret;
2205 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2206 /*
2207 * We might have raced with another page fault while we
2208 * released the pte_offset_map_lock.
2209 */
2210 if (!pte_same(*page_table, orig_pte)) {
2211 pte_unmap_unlock(page_table, ptl);
2212 return 0;
2213 }
2214 }
2215 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2216 NULL, 0, 0);
2217 }
2218
2219 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2220 unsigned long address, pte_t *page_table,
2221 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2222 struct page *old_page)
2223 __releases(ptl)
2224 {
2225 int page_mkwrite = 0;
2226
2227 page_cache_get(old_page);
2228
2229 /*
2230 * Only catch write-faults on shared writable pages,
2231 * read-only shared pages can get COWed by
2232 * get_user_pages(.write=1, .force=1).
2233 */
2234 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2235 int tmp;
2236
2237 pte_unmap_unlock(page_table, ptl);
2238 tmp = do_page_mkwrite(vma, old_page, address);
2239 if (unlikely(!tmp || (tmp &
2240 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2241 page_cache_release(old_page);
2242 return tmp;
2243 }
2244 /*
2245 * Since we dropped the lock we need to revalidate
2246 * the PTE as someone else may have changed it. If
2247 * they did, we just return, as we can count on the
2248 * MMU to tell us if they didn't also make it writable.
2249 */
2250 page_table = pte_offset_map_lock(mm, pmd, address,
2251 &ptl);
2252 if (!pte_same(*page_table, orig_pte)) {
2253 unlock_page(old_page);
2254 pte_unmap_unlock(page_table, ptl);
2255 page_cache_release(old_page);
2256 return 0;
2257 }
2258 page_mkwrite = 1;
2259 }
2260
2261 return wp_page_reuse(mm, vma, address, page_table, ptl,
2262 orig_pte, old_page, page_mkwrite, 1);
2263 }
2264
2265 /*
2266 * This routine handles present pages, when users try to write
2267 * to a shared page. It is done by copying the page to a new address
2268 * and decrementing the shared-page counter for the old page.
2269 *
2270 * Note that this routine assumes that the protection checks have been
2271 * done by the caller (the low-level page fault routine in most cases).
2272 * Thus we can safely just mark it writable once we've done any necessary
2273 * COW.
2274 *
2275 * We also mark the page dirty at this point even though the page will
2276 * change only once the write actually happens. This avoids a few races,
2277 * and potentially makes it more efficient.
2278 *
2279 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2280 * but allow concurrent faults), with pte both mapped and locked.
2281 * We return with mmap_sem still held, but pte unmapped and unlocked.
2282 */
2283 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2284 unsigned long address, pte_t *page_table, pmd_t *pmd,
2285 spinlock_t *ptl, pte_t orig_pte)
2286 __releases(ptl)
2287 {
2288 struct page *old_page;
2289
2290 old_page = vm_normal_page(vma, address, orig_pte);
2291 if (!old_page) {
2292 /*
2293 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2294 * VM_PFNMAP VMA.
2295 *
2296 * We should not cow pages in a shared writeable mapping.
2297 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2298 */
2299 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2300 (VM_WRITE|VM_SHARED))
2301 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2302 orig_pte, pmd);
2303
2304 pte_unmap_unlock(page_table, ptl);
2305 return wp_page_copy(mm, vma, address, page_table, pmd,
2306 orig_pte, old_page);
2307 }
2308
2309 /*
2310 * Take out anonymous pages first, anonymous shared vmas are
2311 * not dirty accountable.
2312 */
2313 if (PageAnon(old_page) && !PageKsm(old_page)) {
2314 if (!trylock_page(old_page)) {
2315 page_cache_get(old_page);
2316 pte_unmap_unlock(page_table, ptl);
2317 lock_page(old_page);
2318 page_table = pte_offset_map_lock(mm, pmd, address,
2319 &ptl);
2320 if (!pte_same(*page_table, orig_pte)) {
2321 unlock_page(old_page);
2322 pte_unmap_unlock(page_table, ptl);
2323 page_cache_release(old_page);
2324 return 0;
2325 }
2326 page_cache_release(old_page);
2327 }
2328 if (reuse_swap_page(old_page)) {
2329 /*
2330 * The page is all ours. Move it to our anon_vma so
2331 * the rmap code will not search our parent or siblings.
2332 * Protected against the rmap code by the page lock.
2333 */
2334 page_move_anon_rmap(old_page, vma, address);
2335 unlock_page(old_page);
2336 return wp_page_reuse(mm, vma, address, page_table, ptl,
2337 orig_pte, old_page, 0, 0);
2338 }
2339 unlock_page(old_page);
2340 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2341 (VM_WRITE|VM_SHARED))) {
2342 return wp_page_shared(mm, vma, address, page_table, pmd,
2343 ptl, orig_pte, old_page);
2344 }
2345
2346 /*
2347 * Ok, we need to copy. Oh, well..
2348 */
2349 page_cache_get(old_page);
2350
2351 pte_unmap_unlock(page_table, ptl);
2352 return wp_page_copy(mm, vma, address, page_table, pmd,
2353 orig_pte, old_page);
2354 }
2355
2356 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2357 unsigned long start_addr, unsigned long end_addr,
2358 struct zap_details *details)
2359 {
2360 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2361 }
2362
2363 static inline void unmap_mapping_range_tree(struct rb_root *root,
2364 struct zap_details *details)
2365 {
2366 struct vm_area_struct *vma;
2367 pgoff_t vba, vea, zba, zea;
2368
2369 vma_interval_tree_foreach(vma, root,
2370 details->first_index, details->last_index) {
2371
2372 vba = vma->vm_pgoff;
2373 vea = vba + vma_pages(vma) - 1;
2374 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2375 zba = details->first_index;
2376 if (zba < vba)
2377 zba = vba;
2378 zea = details->last_index;
2379 if (zea > vea)
2380 zea = vea;
2381
2382 unmap_mapping_range_vma(vma,
2383 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2384 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2385 details);
2386 }
2387 }
2388
2389 /**
2390 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2391 * address_space corresponding to the specified page range in the underlying
2392 * file.
2393 *
2394 * @mapping: the address space containing mmaps to be unmapped.
2395 * @holebegin: byte in first page to unmap, relative to the start of
2396 * the underlying file. This will be rounded down to a PAGE_SIZE
2397 * boundary. Note that this is different from truncate_pagecache(), which
2398 * must keep the partial page. In contrast, we must get rid of
2399 * partial pages.
2400 * @holelen: size of prospective hole in bytes. This will be rounded
2401 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2402 * end of the file.
2403 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2404 * but 0 when invalidating pagecache, don't throw away private data.
2405 */
2406 void unmap_mapping_range(struct address_space *mapping,
2407 loff_t const holebegin, loff_t const holelen, int even_cows)
2408 {
2409 struct zap_details details;
2410 pgoff_t hba = holebegin >> PAGE_SHIFT;
2411 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2412
2413 /* Check for overflow. */
2414 if (sizeof(holelen) > sizeof(hlen)) {
2415 long long holeend =
2416 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2417 if (holeend & ~(long long)ULONG_MAX)
2418 hlen = ULONG_MAX - hba + 1;
2419 }
2420
2421 details.check_mapping = even_cows? NULL: mapping;
2422 details.first_index = hba;
2423 details.last_index = hba + hlen - 1;
2424 if (details.last_index < details.first_index)
2425 details.last_index = ULONG_MAX;
2426
2427
2428 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2429 i_mmap_lock_write(mapping);
2430 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2431 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2432 i_mmap_unlock_write(mapping);
2433 }
2434 EXPORT_SYMBOL(unmap_mapping_range);
2435
2436 /*
2437 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2438 * but allow concurrent faults), and pte mapped but not yet locked.
2439 * We return with pte unmapped and unlocked.
2440 *
2441 * We return with the mmap_sem locked or unlocked in the same cases
2442 * as does filemap_fault().
2443 */
2444 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2445 unsigned long address, pte_t *page_table, pmd_t *pmd,
2446 unsigned int flags, pte_t orig_pte)
2447 {
2448 spinlock_t *ptl;
2449 struct page *page, *swapcache;
2450 struct mem_cgroup *memcg;
2451 swp_entry_t entry;
2452 pte_t pte;
2453 int locked;
2454 int exclusive = 0;
2455 int ret = 0;
2456
2457 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2458 goto out;
2459
2460 entry = pte_to_swp_entry(orig_pte);
2461 if (unlikely(non_swap_entry(entry))) {
2462 if (is_migration_entry(entry)) {
2463 migration_entry_wait(mm, pmd, address);
2464 } else if (is_hwpoison_entry(entry)) {
2465 ret = VM_FAULT_HWPOISON;
2466 } else {
2467 print_bad_pte(vma, address, orig_pte, NULL);
2468 ret = VM_FAULT_SIGBUS;
2469 }
2470 goto out;
2471 }
2472 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2473 page = lookup_swap_cache(entry);
2474 if (!page) {
2475 page = swapin_readahead(entry,
2476 GFP_HIGHUSER_MOVABLE, vma, address);
2477 if (!page) {
2478 /*
2479 * Back out if somebody else faulted in this pte
2480 * while we released the pte lock.
2481 */
2482 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2483 if (likely(pte_same(*page_table, orig_pte)))
2484 ret = VM_FAULT_OOM;
2485 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2486 goto unlock;
2487 }
2488
2489 /* Had to read the page from swap area: Major fault */
2490 ret = VM_FAULT_MAJOR;
2491 count_vm_event(PGMAJFAULT);
2492 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2493 } else if (PageHWPoison(page)) {
2494 /*
2495 * hwpoisoned dirty swapcache pages are kept for killing
2496 * owner processes (which may be unknown at hwpoison time)
2497 */
2498 ret = VM_FAULT_HWPOISON;
2499 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2500 swapcache = page;
2501 goto out_release;
2502 }
2503
2504 swapcache = page;
2505 locked = lock_page_or_retry(page, mm, flags);
2506
2507 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2508 if (!locked) {
2509 ret |= VM_FAULT_RETRY;
2510 goto out_release;
2511 }
2512
2513 /*
2514 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2515 * release the swapcache from under us. The page pin, and pte_same
2516 * test below, are not enough to exclude that. Even if it is still
2517 * swapcache, we need to check that the page's swap has not changed.
2518 */
2519 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2520 goto out_page;
2521
2522 page = ksm_might_need_to_copy(page, vma, address);
2523 if (unlikely(!page)) {
2524 ret = VM_FAULT_OOM;
2525 page = swapcache;
2526 goto out_page;
2527 }
2528
2529 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2530 ret = VM_FAULT_OOM;
2531 goto out_page;
2532 }
2533
2534 /*
2535 * Back out if somebody else already faulted in this pte.
2536 */
2537 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2538 if (unlikely(!pte_same(*page_table, orig_pte)))
2539 goto out_nomap;
2540
2541 if (unlikely(!PageUptodate(page))) {
2542 ret = VM_FAULT_SIGBUS;
2543 goto out_nomap;
2544 }
2545
2546 /*
2547 * The page isn't present yet, go ahead with the fault.
2548 *
2549 * Be careful about the sequence of operations here.
2550 * To get its accounting right, reuse_swap_page() must be called
2551 * while the page is counted on swap but not yet in mapcount i.e.
2552 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2553 * must be called after the swap_free(), or it will never succeed.
2554 */
2555
2556 inc_mm_counter_fast(mm, MM_ANONPAGES);
2557 dec_mm_counter_fast(mm, MM_SWAPENTS);
2558 pte = mk_pte(page, vma->vm_page_prot);
2559 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2560 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2561 flags &= ~FAULT_FLAG_WRITE;
2562 ret |= VM_FAULT_WRITE;
2563 exclusive = 1;
2564 }
2565 flush_icache_page(vma, page);
2566 if (pte_swp_soft_dirty(orig_pte))
2567 pte = pte_mksoft_dirty(pte);
2568 set_pte_at(mm, address, page_table, pte);
2569 if (page == swapcache) {
2570 do_page_add_anon_rmap(page, vma, address, exclusive);
2571 mem_cgroup_commit_charge(page, memcg, true);
2572 } else { /* ksm created a completely new copy */
2573 page_add_new_anon_rmap(page, vma, address);
2574 mem_cgroup_commit_charge(page, memcg, false);
2575 lru_cache_add_active_or_unevictable(page, vma);
2576 }
2577
2578 swap_free(entry);
2579 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2580 try_to_free_swap(page);
2581 unlock_page(page);
2582 if (page != swapcache) {
2583 /*
2584 * Hold the lock to avoid the swap entry to be reused
2585 * until we take the PT lock for the pte_same() check
2586 * (to avoid false positives from pte_same). For
2587 * further safety release the lock after the swap_free
2588 * so that the swap count won't change under a
2589 * parallel locked swapcache.
2590 */
2591 unlock_page(swapcache);
2592 page_cache_release(swapcache);
2593 }
2594
2595 if (flags & FAULT_FLAG_WRITE) {
2596 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2597 if (ret & VM_FAULT_ERROR)
2598 ret &= VM_FAULT_ERROR;
2599 goto out;
2600 }
2601
2602 /* No need to invalidate - it was non-present before */
2603 update_mmu_cache(vma, address, page_table);
2604 unlock:
2605 pte_unmap_unlock(page_table, ptl);
2606 out:
2607 return ret;
2608 out_nomap:
2609 mem_cgroup_cancel_charge(page, memcg);
2610 pte_unmap_unlock(page_table, ptl);
2611 out_page:
2612 unlock_page(page);
2613 out_release:
2614 page_cache_release(page);
2615 if (page != swapcache) {
2616 unlock_page(swapcache);
2617 page_cache_release(swapcache);
2618 }
2619 return ret;
2620 }
2621
2622 /*
2623 * This is like a special single-page "expand_{down|up}wards()",
2624 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2625 * doesn't hit another vma.
2626 */
2627 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2628 {
2629 address &= PAGE_MASK;
2630 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2631 struct vm_area_struct *prev = vma->vm_prev;
2632
2633 /*
2634 * Is there a mapping abutting this one below?
2635 *
2636 * That's only ok if it's the same stack mapping
2637 * that has gotten split..
2638 */
2639 if (prev && prev->vm_end == address)
2640 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2641
2642 return expand_downwards(vma, address - PAGE_SIZE);
2643 }
2644 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2645 struct vm_area_struct *next = vma->vm_next;
2646
2647 /* As VM_GROWSDOWN but s/below/above/ */
2648 if (next && next->vm_start == address + PAGE_SIZE)
2649 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2650
2651 return expand_upwards(vma, address + PAGE_SIZE);
2652 }
2653 return 0;
2654 }
2655
2656 /*
2657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2658 * but allow concurrent faults), and pte mapped but not yet locked.
2659 * We return with mmap_sem still held, but pte unmapped and unlocked.
2660 */
2661 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2662 unsigned long address, pte_t *page_table, pmd_t *pmd,
2663 unsigned int flags)
2664 {
2665 struct mem_cgroup *memcg;
2666 struct page *page;
2667 spinlock_t *ptl;
2668 pte_t entry;
2669
2670 pte_unmap(page_table);
2671
2672 /* Check if we need to add a guard page to the stack */
2673 if (check_stack_guard_page(vma, address) < 0)
2674 return VM_FAULT_SIGSEGV;
2675
2676 /* Use the zero-page for reads */
2677 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2678 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2679 vma->vm_page_prot));
2680 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2681 if (!pte_none(*page_table))
2682 goto unlock;
2683 goto setpte;
2684 }
2685
2686 /* Allocate our own private page. */
2687 if (unlikely(anon_vma_prepare(vma)))
2688 goto oom;
2689 page = alloc_zeroed_user_highpage_movable(vma, address);
2690 if (!page)
2691 goto oom;
2692 /*
2693 * The memory barrier inside __SetPageUptodate makes sure that
2694 * preceeding stores to the page contents become visible before
2695 * the set_pte_at() write.
2696 */
2697 __SetPageUptodate(page);
2698
2699 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2700 goto oom_free_page;
2701
2702 entry = mk_pte(page, vma->vm_page_prot);
2703 if (vma->vm_flags & VM_WRITE)
2704 entry = pte_mkwrite(pte_mkdirty(entry));
2705
2706 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2707 if (!pte_none(*page_table))
2708 goto release;
2709
2710 inc_mm_counter_fast(mm, MM_ANONPAGES);
2711 page_add_new_anon_rmap(page, vma, address);
2712 mem_cgroup_commit_charge(page, memcg, false);
2713 lru_cache_add_active_or_unevictable(page, vma);
2714 setpte:
2715 set_pte_at(mm, address, page_table, entry);
2716
2717 /* No need to invalidate - it was non-present before */
2718 update_mmu_cache(vma, address, page_table);
2719 unlock:
2720 pte_unmap_unlock(page_table, ptl);
2721 return 0;
2722 release:
2723 mem_cgroup_cancel_charge(page, memcg);
2724 page_cache_release(page);
2725 goto unlock;
2726 oom_free_page:
2727 page_cache_release(page);
2728 oom:
2729 return VM_FAULT_OOM;
2730 }
2731
2732 /*
2733 * The mmap_sem must have been held on entry, and may have been
2734 * released depending on flags and vma->vm_ops->fault() return value.
2735 * See filemap_fault() and __lock_page_retry().
2736 */
2737 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2738 pgoff_t pgoff, unsigned int flags,
2739 struct page *cow_page, struct page **page)
2740 {
2741 struct vm_fault vmf;
2742 int ret;
2743
2744 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2745 vmf.pgoff = pgoff;
2746 vmf.flags = flags;
2747 vmf.page = NULL;
2748 vmf.cow_page = cow_page;
2749
2750 ret = vma->vm_ops->fault(vma, &vmf);
2751 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2752 return ret;
2753 if (!vmf.page)
2754 goto out;
2755
2756 if (unlikely(PageHWPoison(vmf.page))) {
2757 if (ret & VM_FAULT_LOCKED)
2758 unlock_page(vmf.page);
2759 page_cache_release(vmf.page);
2760 return VM_FAULT_HWPOISON;
2761 }
2762
2763 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2764 lock_page(vmf.page);
2765 else
2766 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2767
2768 out:
2769 *page = vmf.page;
2770 return ret;
2771 }
2772
2773 /**
2774 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2775 *
2776 * @vma: virtual memory area
2777 * @address: user virtual address
2778 * @page: page to map
2779 * @pte: pointer to target page table entry
2780 * @write: true, if new entry is writable
2781 * @anon: true, if it's anonymous page
2782 *
2783 * Caller must hold page table lock relevant for @pte.
2784 *
2785 * Target users are page handler itself and implementations of
2786 * vm_ops->map_pages.
2787 */
2788 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2789 struct page *page, pte_t *pte, bool write, bool anon)
2790 {
2791 pte_t entry;
2792
2793 flush_icache_page(vma, page);
2794 entry = mk_pte(page, vma->vm_page_prot);
2795 if (write)
2796 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2797 if (anon) {
2798 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2799 page_add_new_anon_rmap(page, vma, address);
2800 } else {
2801 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2802 page_add_file_rmap(page);
2803 }
2804 set_pte_at(vma->vm_mm, address, pte, entry);
2805
2806 /* no need to invalidate: a not-present page won't be cached */
2807 update_mmu_cache(vma, address, pte);
2808 }
2809
2810 static unsigned long fault_around_bytes __read_mostly =
2811 rounddown_pow_of_two(65536);
2812
2813 #ifdef CONFIG_DEBUG_FS
2814 static int fault_around_bytes_get(void *data, u64 *val)
2815 {
2816 *val = fault_around_bytes;
2817 return 0;
2818 }
2819
2820 /*
2821 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2822 * rounded down to nearest page order. It's what do_fault_around() expects to
2823 * see.
2824 */
2825 static int fault_around_bytes_set(void *data, u64 val)
2826 {
2827 if (val / PAGE_SIZE > PTRS_PER_PTE)
2828 return -EINVAL;
2829 if (val > PAGE_SIZE)
2830 fault_around_bytes = rounddown_pow_of_two(val);
2831 else
2832 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2833 return 0;
2834 }
2835 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2836 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2837
2838 static int __init fault_around_debugfs(void)
2839 {
2840 void *ret;
2841
2842 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2843 &fault_around_bytes_fops);
2844 if (!ret)
2845 pr_warn("Failed to create fault_around_bytes in debugfs");
2846 return 0;
2847 }
2848 late_initcall(fault_around_debugfs);
2849 #endif
2850
2851 /*
2852 * do_fault_around() tries to map few pages around the fault address. The hope
2853 * is that the pages will be needed soon and this will lower the number of
2854 * faults to handle.
2855 *
2856 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2857 * not ready to be mapped: not up-to-date, locked, etc.
2858 *
2859 * This function is called with the page table lock taken. In the split ptlock
2860 * case the page table lock only protects only those entries which belong to
2861 * the page table corresponding to the fault address.
2862 *
2863 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2864 * only once.
2865 *
2866 * fault_around_pages() defines how many pages we'll try to map.
2867 * do_fault_around() expects it to return a power of two less than or equal to
2868 * PTRS_PER_PTE.
2869 *
2870 * The virtual address of the area that we map is naturally aligned to the
2871 * fault_around_pages() value (and therefore to page order). This way it's
2872 * easier to guarantee that we don't cross page table boundaries.
2873 */
2874 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2875 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2876 {
2877 unsigned long start_addr, nr_pages, mask;
2878 pgoff_t max_pgoff;
2879 struct vm_fault vmf;
2880 int off;
2881
2882 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2883 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2884
2885 start_addr = max(address & mask, vma->vm_start);
2886 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2887 pte -= off;
2888 pgoff -= off;
2889
2890 /*
2891 * max_pgoff is either end of page table or end of vma
2892 * or fault_around_pages() from pgoff, depending what is nearest.
2893 */
2894 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2895 PTRS_PER_PTE - 1;
2896 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2897 pgoff + nr_pages - 1);
2898
2899 /* Check if it makes any sense to call ->map_pages */
2900 while (!pte_none(*pte)) {
2901 if (++pgoff > max_pgoff)
2902 return;
2903 start_addr += PAGE_SIZE;
2904 if (start_addr >= vma->vm_end)
2905 return;
2906 pte++;
2907 }
2908
2909 vmf.virtual_address = (void __user *) start_addr;
2910 vmf.pte = pte;
2911 vmf.pgoff = pgoff;
2912 vmf.max_pgoff = max_pgoff;
2913 vmf.flags = flags;
2914 vma->vm_ops->map_pages(vma, &vmf);
2915 }
2916
2917 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2918 unsigned long address, pmd_t *pmd,
2919 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2920 {
2921 struct page *fault_page;
2922 spinlock_t *ptl;
2923 pte_t *pte;
2924 int ret = 0;
2925
2926 /*
2927 * Let's call ->map_pages() first and use ->fault() as fallback
2928 * if page by the offset is not ready to be mapped (cold cache or
2929 * something).
2930 */
2931 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2932 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2933 do_fault_around(vma, address, pte, pgoff, flags);
2934 if (!pte_same(*pte, orig_pte))
2935 goto unlock_out;
2936 pte_unmap_unlock(pte, ptl);
2937 }
2938
2939 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2941 return ret;
2942
2943 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2944 if (unlikely(!pte_same(*pte, orig_pte))) {
2945 pte_unmap_unlock(pte, ptl);
2946 unlock_page(fault_page);
2947 page_cache_release(fault_page);
2948 return ret;
2949 }
2950 do_set_pte(vma, address, fault_page, pte, false, false);
2951 unlock_page(fault_page);
2952 unlock_out:
2953 pte_unmap_unlock(pte, ptl);
2954 return ret;
2955 }
2956
2957 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2958 unsigned long address, pmd_t *pmd,
2959 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2960 {
2961 struct page *fault_page, *new_page;
2962 struct mem_cgroup *memcg;
2963 spinlock_t *ptl;
2964 pte_t *pte;
2965 int ret;
2966
2967 if (unlikely(anon_vma_prepare(vma)))
2968 return VM_FAULT_OOM;
2969
2970 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2971 if (!new_page)
2972 return VM_FAULT_OOM;
2973
2974 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2975 page_cache_release(new_page);
2976 return VM_FAULT_OOM;
2977 }
2978
2979 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2981 goto uncharge_out;
2982
2983 if (fault_page)
2984 copy_user_highpage(new_page, fault_page, address, vma);
2985 __SetPageUptodate(new_page);
2986
2987 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2988 if (unlikely(!pte_same(*pte, orig_pte))) {
2989 pte_unmap_unlock(pte, ptl);
2990 if (fault_page) {
2991 unlock_page(fault_page);
2992 page_cache_release(fault_page);
2993 } else {
2994 /*
2995 * The fault handler has no page to lock, so it holds
2996 * i_mmap_lock for read to protect against truncate.
2997 */
2998 i_mmap_unlock_read(vma->vm_file->f_mapping);
2999 }
3000 goto uncharge_out;
3001 }
3002 do_set_pte(vma, address, new_page, pte, true, true);
3003 mem_cgroup_commit_charge(new_page, memcg, false);
3004 lru_cache_add_active_or_unevictable(new_page, vma);
3005 pte_unmap_unlock(pte, ptl);
3006 if (fault_page) {
3007 unlock_page(fault_page);
3008 page_cache_release(fault_page);
3009 } else {
3010 /*
3011 * The fault handler has no page to lock, so it holds
3012 * i_mmap_lock for read to protect against truncate.
3013 */
3014 i_mmap_unlock_read(vma->vm_file->f_mapping);
3015 }
3016 return ret;
3017 uncharge_out:
3018 mem_cgroup_cancel_charge(new_page, memcg);
3019 page_cache_release(new_page);
3020 return ret;
3021 }
3022
3023 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3024 unsigned long address, pmd_t *pmd,
3025 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3026 {
3027 struct page *fault_page;
3028 struct address_space *mapping;
3029 spinlock_t *ptl;
3030 pte_t *pte;
3031 int dirtied = 0;
3032 int ret, tmp;
3033
3034 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3035 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3036 return ret;
3037
3038 /*
3039 * Check if the backing address space wants to know that the page is
3040 * about to become writable
3041 */
3042 if (vma->vm_ops->page_mkwrite) {
3043 unlock_page(fault_page);
3044 tmp = do_page_mkwrite(vma, fault_page, address);
3045 if (unlikely(!tmp ||
3046 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3047 page_cache_release(fault_page);
3048 return tmp;
3049 }
3050 }
3051
3052 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3053 if (unlikely(!pte_same(*pte, orig_pte))) {
3054 pte_unmap_unlock(pte, ptl);
3055 unlock_page(fault_page);
3056 page_cache_release(fault_page);
3057 return ret;
3058 }
3059 do_set_pte(vma, address, fault_page, pte, true, false);
3060 pte_unmap_unlock(pte, ptl);
3061
3062 if (set_page_dirty(fault_page))
3063 dirtied = 1;
3064 /*
3065 * Take a local copy of the address_space - page.mapping may be zeroed
3066 * by truncate after unlock_page(). The address_space itself remains
3067 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3068 * release semantics to prevent the compiler from undoing this copying.
3069 */
3070 mapping = fault_page->mapping;
3071 unlock_page(fault_page);
3072 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3073 /*
3074 * Some device drivers do not set page.mapping but still
3075 * dirty their pages
3076 */
3077 balance_dirty_pages_ratelimited(mapping);
3078 }
3079
3080 if (!vma->vm_ops->page_mkwrite)
3081 file_update_time(vma->vm_file);
3082
3083 return ret;
3084 }
3085
3086 /*
3087 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3088 * but allow concurrent faults).
3089 * The mmap_sem may have been released depending on flags and our
3090 * return value. See filemap_fault() and __lock_page_or_retry().
3091 */
3092 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3093 unsigned long address, pte_t *page_table, pmd_t *pmd,
3094 unsigned int flags, pte_t orig_pte)
3095 {
3096 pgoff_t pgoff = (((address & PAGE_MASK)
3097 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3098
3099 pte_unmap(page_table);
3100 if (!(flags & FAULT_FLAG_WRITE))
3101 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3102 orig_pte);
3103 if (!(vma->vm_flags & VM_SHARED))
3104 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3105 orig_pte);
3106 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3107 }
3108
3109 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3110 unsigned long addr, int page_nid,
3111 int *flags)
3112 {
3113 get_page(page);
3114
3115 count_vm_numa_event(NUMA_HINT_FAULTS);
3116 if (page_nid == numa_node_id()) {
3117 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3118 *flags |= TNF_FAULT_LOCAL;
3119 }
3120
3121 return mpol_misplaced(page, vma, addr);
3122 }
3123
3124 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3125 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3126 {
3127 struct page *page = NULL;
3128 spinlock_t *ptl;
3129 int page_nid = -1;
3130 int last_cpupid;
3131 int target_nid;
3132 bool migrated = false;
3133 bool was_writable = pte_write(pte);
3134 int flags = 0;
3135
3136 /* A PROT_NONE fault should not end up here */
3137 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3138
3139 /*
3140 * The "pte" at this point cannot be used safely without
3141 * validation through pte_unmap_same(). It's of NUMA type but
3142 * the pfn may be screwed if the read is non atomic.
3143 *
3144 * We can safely just do a "set_pte_at()", because the old
3145 * page table entry is not accessible, so there would be no
3146 * concurrent hardware modifications to the PTE.
3147 */
3148 ptl = pte_lockptr(mm, pmd);
3149 spin_lock(ptl);
3150 if (unlikely(!pte_same(*ptep, pte))) {
3151 pte_unmap_unlock(ptep, ptl);
3152 goto out;
3153 }
3154
3155 /* Make it present again */
3156 pte = pte_modify(pte, vma->vm_page_prot);
3157 pte = pte_mkyoung(pte);
3158 if (was_writable)
3159 pte = pte_mkwrite(pte);
3160 set_pte_at(mm, addr, ptep, pte);
3161 update_mmu_cache(vma, addr, ptep);
3162
3163 page = vm_normal_page(vma, addr, pte);
3164 if (!page) {
3165 pte_unmap_unlock(ptep, ptl);
3166 return 0;
3167 }
3168
3169 /*
3170 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3171 * much anyway since they can be in shared cache state. This misses
3172 * the case where a mapping is writable but the process never writes
3173 * to it but pte_write gets cleared during protection updates and
3174 * pte_dirty has unpredictable behaviour between PTE scan updates,
3175 * background writeback, dirty balancing and application behaviour.
3176 */
3177 if (!(vma->vm_flags & VM_WRITE))
3178 flags |= TNF_NO_GROUP;
3179
3180 /*
3181 * Flag if the page is shared between multiple address spaces. This
3182 * is later used when determining whether to group tasks together
3183 */
3184 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3185 flags |= TNF_SHARED;
3186
3187 last_cpupid = page_cpupid_last(page);
3188 page_nid = page_to_nid(page);
3189 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3190 pte_unmap_unlock(ptep, ptl);
3191 if (target_nid == -1) {
3192 put_page(page);
3193 goto out;
3194 }
3195
3196 /* Migrate to the requested node */
3197 migrated = migrate_misplaced_page(page, vma, target_nid);
3198 if (migrated) {
3199 page_nid = target_nid;
3200 flags |= TNF_MIGRATED;
3201 } else
3202 flags |= TNF_MIGRATE_FAIL;
3203
3204 out:
3205 if (page_nid != -1)
3206 task_numa_fault(last_cpupid, page_nid, 1, flags);
3207 return 0;
3208 }
3209
3210 /*
3211 * These routines also need to handle stuff like marking pages dirty
3212 * and/or accessed for architectures that don't do it in hardware (most
3213 * RISC architectures). The early dirtying is also good on the i386.
3214 *
3215 * There is also a hook called "update_mmu_cache()" that architectures
3216 * with external mmu caches can use to update those (ie the Sparc or
3217 * PowerPC hashed page tables that act as extended TLBs).
3218 *
3219 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3220 * but allow concurrent faults), and pte mapped but not yet locked.
3221 * We return with pte unmapped and unlocked.
3222 *
3223 * The mmap_sem may have been released depending on flags and our
3224 * return value. See filemap_fault() and __lock_page_or_retry().
3225 */
3226 static int handle_pte_fault(struct mm_struct *mm,
3227 struct vm_area_struct *vma, unsigned long address,
3228 pte_t *pte, pmd_t *pmd, unsigned int flags)
3229 {
3230 pte_t entry;
3231 spinlock_t *ptl;
3232
3233 /*
3234 * some architectures can have larger ptes than wordsize,
3235 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3236 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3237 * The code below just needs a consistent view for the ifs and
3238 * we later double check anyway with the ptl lock held. So here
3239 * a barrier will do.
3240 */
3241 entry = *pte;
3242 barrier();
3243 if (!pte_present(entry)) {
3244 if (pte_none(entry)) {
3245 if (vma->vm_ops) {
3246 if (likely(vma->vm_ops->fault))
3247 return do_fault(mm, vma, address, pte,
3248 pmd, flags, entry);
3249 }
3250 return do_anonymous_page(mm, vma, address,
3251 pte, pmd, flags);
3252 }
3253 return do_swap_page(mm, vma, address,
3254 pte, pmd, flags, entry);
3255 }
3256
3257 if (pte_protnone(entry))
3258 return do_numa_page(mm, vma, address, entry, pte, pmd);
3259
3260 ptl = pte_lockptr(mm, pmd);
3261 spin_lock(ptl);
3262 if (unlikely(!pte_same(*pte, entry)))
3263 goto unlock;
3264 if (flags & FAULT_FLAG_WRITE) {
3265 if (!pte_write(entry))
3266 return do_wp_page(mm, vma, address,
3267 pte, pmd, ptl, entry);
3268 entry = pte_mkdirty(entry);
3269 }
3270 entry = pte_mkyoung(entry);
3271 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3272 update_mmu_cache(vma, address, pte);
3273 } else {
3274 /*
3275 * This is needed only for protection faults but the arch code
3276 * is not yet telling us if this is a protection fault or not.
3277 * This still avoids useless tlb flushes for .text page faults
3278 * with threads.
3279 */
3280 if (flags & FAULT_FLAG_WRITE)
3281 flush_tlb_fix_spurious_fault(vma, address);
3282 }
3283 unlock:
3284 pte_unmap_unlock(pte, ptl);
3285 return 0;
3286 }
3287
3288 /*
3289 * By the time we get here, we already hold the mm semaphore
3290 *
3291 * The mmap_sem may have been released depending on flags and our
3292 * return value. See filemap_fault() and __lock_page_or_retry().
3293 */
3294 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3295 unsigned long address, unsigned int flags)
3296 {
3297 pgd_t *pgd;
3298 pud_t *pud;
3299 pmd_t *pmd;
3300 pte_t *pte;
3301
3302 if (unlikely(is_vm_hugetlb_page(vma)))
3303 return hugetlb_fault(mm, vma, address, flags);
3304
3305 pgd = pgd_offset(mm, address);
3306 pud = pud_alloc(mm, pgd, address);
3307 if (!pud)
3308 return VM_FAULT_OOM;
3309 pmd = pmd_alloc(mm, pud, address);
3310 if (!pmd)
3311 return VM_FAULT_OOM;
3312 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3313 int ret = VM_FAULT_FALLBACK;
3314 if (!vma->vm_ops)
3315 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3316 pmd, flags);
3317 if (!(ret & VM_FAULT_FALLBACK))
3318 return ret;
3319 } else {
3320 pmd_t orig_pmd = *pmd;
3321 int ret;
3322
3323 barrier();
3324 if (pmd_trans_huge(orig_pmd)) {
3325 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3326
3327 /*
3328 * If the pmd is splitting, return and retry the
3329 * the fault. Alternative: wait until the split
3330 * is done, and goto retry.
3331 */
3332 if (pmd_trans_splitting(orig_pmd))
3333 return 0;
3334
3335 if (pmd_protnone(orig_pmd))
3336 return do_huge_pmd_numa_page(mm, vma, address,
3337 orig_pmd, pmd);
3338
3339 if (dirty && !pmd_write(orig_pmd)) {
3340 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3341 orig_pmd);
3342 if (!(ret & VM_FAULT_FALLBACK))
3343 return ret;
3344 } else {
3345 huge_pmd_set_accessed(mm, vma, address, pmd,
3346 orig_pmd, dirty);
3347 return 0;
3348 }
3349 }
3350 }
3351
3352 /*
3353 * Use __pte_alloc instead of pte_alloc_map, because we can't
3354 * run pte_offset_map on the pmd, if an huge pmd could
3355 * materialize from under us from a different thread.
3356 */
3357 if (unlikely(pmd_none(*pmd)) &&
3358 unlikely(__pte_alloc(mm, vma, pmd, address)))
3359 return VM_FAULT_OOM;
3360 /* if an huge pmd materialized from under us just retry later */
3361 if (unlikely(pmd_trans_huge(*pmd)))
3362 return 0;
3363 /*
3364 * A regular pmd is established and it can't morph into a huge pmd
3365 * from under us anymore at this point because we hold the mmap_sem
3366 * read mode and khugepaged takes it in write mode. So now it's
3367 * safe to run pte_offset_map().
3368 */
3369 pte = pte_offset_map(pmd, address);
3370
3371 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3372 }
3373
3374 /*
3375 * By the time we get here, we already hold the mm semaphore
3376 *
3377 * The mmap_sem may have been released depending on flags and our
3378 * return value. See filemap_fault() and __lock_page_or_retry().
3379 */
3380 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3381 unsigned long address, unsigned int flags)
3382 {
3383 int ret;
3384
3385 __set_current_state(TASK_RUNNING);
3386
3387 count_vm_event(PGFAULT);
3388 mem_cgroup_count_vm_event(mm, PGFAULT);
3389
3390 /* do counter updates before entering really critical section. */
3391 check_sync_rss_stat(current);
3392
3393 /*
3394 * Enable the memcg OOM handling for faults triggered in user
3395 * space. Kernel faults are handled more gracefully.
3396 */
3397 if (flags & FAULT_FLAG_USER)
3398 mem_cgroup_oom_enable();
3399
3400 ret = __handle_mm_fault(mm, vma, address, flags);
3401
3402 if (flags & FAULT_FLAG_USER) {
3403 mem_cgroup_oom_disable();
3404 /*
3405 * The task may have entered a memcg OOM situation but
3406 * if the allocation error was handled gracefully (no
3407 * VM_FAULT_OOM), there is no need to kill anything.
3408 * Just clean up the OOM state peacefully.
3409 */
3410 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3411 mem_cgroup_oom_synchronize(false);
3412 }
3413
3414 return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(handle_mm_fault);
3417
3418 #ifndef __PAGETABLE_PUD_FOLDED
3419 /*
3420 * Allocate page upper directory.
3421 * We've already handled the fast-path in-line.
3422 */
3423 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3424 {
3425 pud_t *new = pud_alloc_one(mm, address);
3426 if (!new)
3427 return -ENOMEM;
3428
3429 smp_wmb(); /* See comment in __pte_alloc */
3430
3431 spin_lock(&mm->page_table_lock);
3432 if (pgd_present(*pgd)) /* Another has populated it */
3433 pud_free(mm, new);
3434 else
3435 pgd_populate(mm, pgd, new);
3436 spin_unlock(&mm->page_table_lock);
3437 return 0;
3438 }
3439 #endif /* __PAGETABLE_PUD_FOLDED */
3440
3441 #ifndef __PAGETABLE_PMD_FOLDED
3442 /*
3443 * Allocate page middle directory.
3444 * We've already handled the fast-path in-line.
3445 */
3446 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3447 {
3448 pmd_t *new = pmd_alloc_one(mm, address);
3449 if (!new)
3450 return -ENOMEM;
3451
3452 smp_wmb(); /* See comment in __pte_alloc */
3453
3454 spin_lock(&mm->page_table_lock);
3455 #ifndef __ARCH_HAS_4LEVEL_HACK
3456 if (!pud_present(*pud)) {
3457 mm_inc_nr_pmds(mm);
3458 pud_populate(mm, pud, new);
3459 } else /* Another has populated it */
3460 pmd_free(mm, new);
3461 #else
3462 if (!pgd_present(*pud)) {
3463 mm_inc_nr_pmds(mm);
3464 pgd_populate(mm, pud, new);
3465 } else /* Another has populated it */
3466 pmd_free(mm, new);
3467 #endif /* __ARCH_HAS_4LEVEL_HACK */
3468 spin_unlock(&mm->page_table_lock);
3469 return 0;
3470 }
3471 #endif /* __PAGETABLE_PMD_FOLDED */
3472
3473 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3474 pte_t **ptepp, spinlock_t **ptlp)
3475 {
3476 pgd_t *pgd;
3477 pud_t *pud;
3478 pmd_t *pmd;
3479 pte_t *ptep;
3480
3481 pgd = pgd_offset(mm, address);
3482 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3483 goto out;
3484
3485 pud = pud_offset(pgd, address);
3486 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3487 goto out;
3488
3489 pmd = pmd_offset(pud, address);
3490 VM_BUG_ON(pmd_trans_huge(*pmd));
3491 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3492 goto out;
3493
3494 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3495 if (pmd_huge(*pmd))
3496 goto out;
3497
3498 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3499 if (!ptep)
3500 goto out;
3501 if (!pte_present(*ptep))
3502 goto unlock;
3503 *ptepp = ptep;
3504 return 0;
3505 unlock:
3506 pte_unmap_unlock(ptep, *ptlp);
3507 out:
3508 return -EINVAL;
3509 }
3510
3511 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3512 pte_t **ptepp, spinlock_t **ptlp)
3513 {
3514 int res;
3515
3516 /* (void) is needed to make gcc happy */
3517 (void) __cond_lock(*ptlp,
3518 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3519 return res;
3520 }
3521
3522 /**
3523 * follow_pfn - look up PFN at a user virtual address
3524 * @vma: memory mapping
3525 * @address: user virtual address
3526 * @pfn: location to store found PFN
3527 *
3528 * Only IO mappings and raw PFN mappings are allowed.
3529 *
3530 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3531 */
3532 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3533 unsigned long *pfn)
3534 {
3535 int ret = -EINVAL;
3536 spinlock_t *ptl;
3537 pte_t *ptep;
3538
3539 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3540 return ret;
3541
3542 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3543 if (ret)
3544 return ret;
3545 *pfn = pte_pfn(*ptep);
3546 pte_unmap_unlock(ptep, ptl);
3547 return 0;
3548 }
3549 EXPORT_SYMBOL(follow_pfn);
3550
3551 #ifdef CONFIG_HAVE_IOREMAP_PROT
3552 int follow_phys(struct vm_area_struct *vma,
3553 unsigned long address, unsigned int flags,
3554 unsigned long *prot, resource_size_t *phys)
3555 {
3556 int ret = -EINVAL;
3557 pte_t *ptep, pte;
3558 spinlock_t *ptl;
3559
3560 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3561 goto out;
3562
3563 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3564 goto out;
3565 pte = *ptep;
3566
3567 if ((flags & FOLL_WRITE) && !pte_write(pte))
3568 goto unlock;
3569
3570 *prot = pgprot_val(pte_pgprot(pte));
3571 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3572
3573 ret = 0;
3574 unlock:
3575 pte_unmap_unlock(ptep, ptl);
3576 out:
3577 return ret;
3578 }
3579
3580 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3581 void *buf, int len, int write)
3582 {
3583 resource_size_t phys_addr;
3584 unsigned long prot = 0;
3585 void __iomem *maddr;
3586 int offset = addr & (PAGE_SIZE-1);
3587
3588 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3589 return -EINVAL;
3590
3591 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3592 if (write)
3593 memcpy_toio(maddr + offset, buf, len);
3594 else
3595 memcpy_fromio(buf, maddr + offset, len);
3596 iounmap(maddr);
3597
3598 return len;
3599 }
3600 EXPORT_SYMBOL_GPL(generic_access_phys);
3601 #endif
3602
3603 /*
3604 * Access another process' address space as given in mm. If non-NULL, use the
3605 * given task for page fault accounting.
3606 */
3607 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3608 unsigned long addr, void *buf, int len, int write)
3609 {
3610 struct vm_area_struct *vma;
3611 void *old_buf = buf;
3612
3613 down_read(&mm->mmap_sem);
3614 /* ignore errors, just check how much was successfully transferred */
3615 while (len) {
3616 int bytes, ret, offset;
3617 void *maddr;
3618 struct page *page = NULL;
3619
3620 ret = get_user_pages(tsk, mm, addr, 1,
3621 write, 1, &page, &vma);
3622 if (ret <= 0) {
3623 #ifndef CONFIG_HAVE_IOREMAP_PROT
3624 break;
3625 #else
3626 /*
3627 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3628 * we can access using slightly different code.
3629 */
3630 vma = find_vma(mm, addr);
3631 if (!vma || vma->vm_start > addr)
3632 break;
3633 if (vma->vm_ops && vma->vm_ops->access)
3634 ret = vma->vm_ops->access(vma, addr, buf,
3635 len, write);
3636 if (ret <= 0)
3637 break;
3638 bytes = ret;
3639 #endif
3640 } else {
3641 bytes = len;
3642 offset = addr & (PAGE_SIZE-1);
3643 if (bytes > PAGE_SIZE-offset)
3644 bytes = PAGE_SIZE-offset;
3645
3646 maddr = kmap(page);
3647 if (write) {
3648 copy_to_user_page(vma, page, addr,
3649 maddr + offset, buf, bytes);
3650 set_page_dirty_lock(page);
3651 } else {
3652 copy_from_user_page(vma, page, addr,
3653 buf, maddr + offset, bytes);
3654 }
3655 kunmap(page);
3656 page_cache_release(page);
3657 }
3658 len -= bytes;
3659 buf += bytes;
3660 addr += bytes;
3661 }
3662 up_read(&mm->mmap_sem);
3663
3664 return buf - old_buf;
3665 }
3666
3667 /**
3668 * access_remote_vm - access another process' address space
3669 * @mm: the mm_struct of the target address space
3670 * @addr: start address to access
3671 * @buf: source or destination buffer
3672 * @len: number of bytes to transfer
3673 * @write: whether the access is a write
3674 *
3675 * The caller must hold a reference on @mm.
3676 */
3677 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3678 void *buf, int len, int write)
3679 {
3680 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3681 }
3682
3683 /*
3684 * Access another process' address space.
3685 * Source/target buffer must be kernel space,
3686 * Do not walk the page table directly, use get_user_pages
3687 */
3688 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3689 void *buf, int len, int write)
3690 {
3691 struct mm_struct *mm;
3692 int ret;
3693
3694 mm = get_task_mm(tsk);
3695 if (!mm)
3696 return 0;
3697
3698 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3699 mmput(mm);
3700
3701 return ret;
3702 }
3703
3704 /*
3705 * Print the name of a VMA.
3706 */
3707 void print_vma_addr(char *prefix, unsigned long ip)
3708 {
3709 struct mm_struct *mm = current->mm;
3710 struct vm_area_struct *vma;
3711
3712 /*
3713 * Do not print if we are in atomic
3714 * contexts (in exception stacks, etc.):
3715 */
3716 if (preempt_count())
3717 return;
3718
3719 down_read(&mm->mmap_sem);
3720 vma = find_vma(mm, ip);
3721 if (vma && vma->vm_file) {
3722 struct file *f = vma->vm_file;
3723 char *buf = (char *)__get_free_page(GFP_KERNEL);
3724 if (buf) {
3725 char *p;
3726
3727 p = d_path(&f->f_path, buf, PAGE_SIZE);
3728 if (IS_ERR(p))
3729 p = "?";
3730 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3731 vma->vm_start,
3732 vma->vm_end - vma->vm_start);
3733 free_page((unsigned long)buf);
3734 }
3735 }
3736 up_read(&mm->mmap_sem);
3737 }
3738
3739 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3740 void __might_fault(const char *file, int line)
3741 {
3742 /*
3743 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3744 * holding the mmap_sem, this is safe because kernel memory doesn't
3745 * get paged out, therefore we'll never actually fault, and the
3746 * below annotations will generate false positives.
3747 */
3748 if (segment_eq(get_fs(), KERNEL_DS))
3749 return;
3750 if (pagefault_disabled())
3751 return;
3752 __might_sleep(file, line, 0);
3753 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3754 if (current->mm)
3755 might_lock_read(&current->mm->mmap_sem);
3756 #endif
3757 }
3758 EXPORT_SYMBOL(__might_fault);
3759 #endif
3760
3761 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3762 static void clear_gigantic_page(struct page *page,
3763 unsigned long addr,
3764 unsigned int pages_per_huge_page)
3765 {
3766 int i;
3767 struct page *p = page;
3768
3769 might_sleep();
3770 for (i = 0; i < pages_per_huge_page;
3771 i++, p = mem_map_next(p, page, i)) {
3772 cond_resched();
3773 clear_user_highpage(p, addr + i * PAGE_SIZE);
3774 }
3775 }
3776 void clear_huge_page(struct page *page,
3777 unsigned long addr, unsigned int pages_per_huge_page)
3778 {
3779 int i;
3780
3781 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3782 clear_gigantic_page(page, addr, pages_per_huge_page);
3783 return;
3784 }
3785
3786 might_sleep();
3787 for (i = 0; i < pages_per_huge_page; i++) {
3788 cond_resched();
3789 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3790 }
3791 }
3792
3793 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3794 unsigned long addr,
3795 struct vm_area_struct *vma,
3796 unsigned int pages_per_huge_page)
3797 {
3798 int i;
3799 struct page *dst_base = dst;
3800 struct page *src_base = src;
3801
3802 for (i = 0; i < pages_per_huge_page; ) {
3803 cond_resched();
3804 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3805
3806 i++;
3807 dst = mem_map_next(dst, dst_base, i);
3808 src = mem_map_next(src, src_base, i);
3809 }
3810 }
3811
3812 void copy_user_huge_page(struct page *dst, struct page *src,
3813 unsigned long addr, struct vm_area_struct *vma,
3814 unsigned int pages_per_huge_page)
3815 {
3816 int i;
3817
3818 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3819 copy_user_gigantic_page(dst, src, addr, vma,
3820 pages_per_huge_page);
3821 return;
3822 }
3823
3824 might_sleep();
3825 for (i = 0; i < pages_per_huge_page; i++) {
3826 cond_resched();
3827 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3828 }
3829 }
3830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3831
3832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3833
3834 static struct kmem_cache *page_ptl_cachep;
3835
3836 void __init ptlock_cache_init(void)
3837 {
3838 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3839 SLAB_PANIC, NULL);
3840 }
3841
3842 bool ptlock_alloc(struct page *page)
3843 {
3844 spinlock_t *ptl;
3845
3846 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3847 if (!ptl)
3848 return false;
3849 page->ptl = ptl;
3850 return true;
3851 }
3852
3853 void ptlock_free(struct page *page)
3854 {
3855 kmem_cache_free(page_ptl_cachep, page->ptl);
3856 }
3857 #endif