]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 BUG_ON(!mm);
135 add_mm_counter(mm, i, task->rss_stat.count[i]);
136 task->rss_stat.count[i] = 0;
137 }
138 }
139 task->rss_stat.events = 0;
140 }
141
142 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 {
144 struct task_struct *task = current;
145
146 if (likely(task->mm == mm))
147 task->rss_stat.count[member] += val;
148 else
149 add_mm_counter(mm, member, val);
150 }
151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153
154 /* sync counter once per 64 page faults */
155 #define TASK_RSS_EVENTS_THRESH (64)
156 static void check_sync_rss_stat(struct task_struct *task)
157 {
158 if (unlikely(task != current))
159 return;
160 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
161 __sync_task_rss_stat(task, task->mm);
162 }
163
164 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 {
166 long val = 0;
167
168 /*
169 * Don't use task->mm here...for avoiding to use task_get_mm()..
170 * The caller must guarantee task->mm is not invalid.
171 */
172 val = atomic_long_read(&mm->rss_stat.count[member]);
173 /*
174 * counter is updated in asynchronous manner and may go to minus.
175 * But it's never be expected number for users.
176 */
177 if (val < 0)
178 return 0;
179 return (unsigned long)val;
180 }
181
182 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 {
184 __sync_task_rss_stat(task, mm);
185 }
186 #else
187
188 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
189 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 }
194
195 #endif
196
197 /*
198 * If a p?d_bad entry is found while walking page tables, report
199 * the error, before resetting entry to p?d_none. Usually (but
200 * very seldom) called out from the p?d_none_or_clear_bad macros.
201 */
202
203 void pgd_clear_bad(pgd_t *pgd)
204 {
205 pgd_ERROR(*pgd);
206 pgd_clear(pgd);
207 }
208
209 void pud_clear_bad(pud_t *pud)
210 {
211 pud_ERROR(*pud);
212 pud_clear(pud);
213 }
214
215 void pmd_clear_bad(pmd_t *pmd)
216 {
217 pmd_ERROR(*pmd);
218 pmd_clear(pmd);
219 }
220
221 /*
222 * Note: this doesn't free the actual pages themselves. That
223 * has been handled earlier when unmapping all the memory regions.
224 */
225 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
226 unsigned long addr)
227 {
228 pgtable_t token = pmd_pgtable(*pmd);
229 pmd_clear(pmd);
230 pte_free_tlb(tlb, token, addr);
231 tlb->mm->nr_ptes--;
232 }
233
234 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
235 unsigned long addr, unsigned long end,
236 unsigned long floor, unsigned long ceiling)
237 {
238 pmd_t *pmd;
239 unsigned long next;
240 unsigned long start;
241
242 start = addr;
243 pmd = pmd_offset(pud, addr);
244 do {
245 next = pmd_addr_end(addr, end);
246 if (pmd_none_or_clear_bad(pmd))
247 continue;
248 free_pte_range(tlb, pmd, addr);
249 } while (pmd++, addr = next, addr != end);
250
251 start &= PUD_MASK;
252 if (start < floor)
253 return;
254 if (ceiling) {
255 ceiling &= PUD_MASK;
256 if (!ceiling)
257 return;
258 }
259 if (end - 1 > ceiling - 1)
260 return;
261
262 pmd = pmd_offset(pud, start);
263 pud_clear(pud);
264 pmd_free_tlb(tlb, pmd, start);
265 }
266
267 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
268 unsigned long addr, unsigned long end,
269 unsigned long floor, unsigned long ceiling)
270 {
271 pud_t *pud;
272 unsigned long next;
273 unsigned long start;
274
275 start = addr;
276 pud = pud_offset(pgd, addr);
277 do {
278 next = pud_addr_end(addr, end);
279 if (pud_none_or_clear_bad(pud))
280 continue;
281 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
282 } while (pud++, addr = next, addr != end);
283
284 start &= PGDIR_MASK;
285 if (start < floor)
286 return;
287 if (ceiling) {
288 ceiling &= PGDIR_MASK;
289 if (!ceiling)
290 return;
291 }
292 if (end - 1 > ceiling - 1)
293 return;
294
295 pud = pud_offset(pgd, start);
296 pgd_clear(pgd);
297 pud_free_tlb(tlb, pud, start);
298 }
299
300 /*
301 * This function frees user-level page tables of a process.
302 *
303 * Must be called with pagetable lock held.
304 */
305 void free_pgd_range(struct mmu_gather *tlb,
306 unsigned long addr, unsigned long end,
307 unsigned long floor, unsigned long ceiling)
308 {
309 pgd_t *pgd;
310 unsigned long next;
311 unsigned long start;
312
313 /*
314 * The next few lines have given us lots of grief...
315 *
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
319 *
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
327 *
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
332 *
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
337 */
338
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
344 }
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
349 }
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
354
355 start = addr;
356 pgd = pgd_offset(tlb->mm, addr);
357 do {
358 next = pgd_addr_end(addr, end);
359 if (pgd_none_or_clear_bad(pgd))
360 continue;
361 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
362 } while (pgd++, addr = next, addr != end);
363 }
364
365 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
366 unsigned long floor, unsigned long ceiling)
367 {
368 while (vma) {
369 struct vm_area_struct *next = vma->vm_next;
370 unsigned long addr = vma->vm_start;
371
372 /*
373 * Hide vma from rmap and truncate_pagecache before freeing
374 * pgtables
375 */
376 unlink_anon_vmas(vma);
377 unlink_file_vma(vma);
378
379 if (is_vm_hugetlb_page(vma)) {
380 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
381 floor, next? next->vm_start: ceiling);
382 } else {
383 /*
384 * Optimization: gather nearby vmas into one call down
385 */
386 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
387 && !is_vm_hugetlb_page(next)) {
388 vma = next;
389 next = vma->vm_next;
390 unlink_anon_vmas(vma);
391 unlink_file_vma(vma);
392 }
393 free_pgd_range(tlb, addr, vma->vm_end,
394 floor, next? next->vm_start: ceiling);
395 }
396 vma = next;
397 }
398 }
399
400 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 {
402 pgtable_t new = pte_alloc_one(mm, address);
403 if (!new)
404 return -ENOMEM;
405
406 /*
407 * Ensure all pte setup (eg. pte page lock and page clearing) are
408 * visible before the pte is made visible to other CPUs by being
409 * put into page tables.
410 *
411 * The other side of the story is the pointer chasing in the page
412 * table walking code (when walking the page table without locking;
413 * ie. most of the time). Fortunately, these data accesses consist
414 * of a chain of data-dependent loads, meaning most CPUs (alpha
415 * being the notable exception) will already guarantee loads are
416 * seen in-order. See the alpha page table accessors for the
417 * smp_read_barrier_depends() barriers in page table walking code.
418 */
419 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420
421 spin_lock(&mm->page_table_lock);
422 if (!pmd_present(*pmd)) { /* Has another populated it ? */
423 mm->nr_ptes++;
424 pmd_populate(mm, pmd, new);
425 new = NULL;
426 }
427 spin_unlock(&mm->page_table_lock);
428 if (new)
429 pte_free(mm, new);
430 return 0;
431 }
432
433 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 {
435 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
436 if (!new)
437 return -ENOMEM;
438
439 smp_wmb(); /* See comment in __pte_alloc */
440
441 spin_lock(&init_mm.page_table_lock);
442 if (!pmd_present(*pmd)) { /* Has another populated it ? */
443 pmd_populate_kernel(&init_mm, pmd, new);
444 new = NULL;
445 }
446 spin_unlock(&init_mm.page_table_lock);
447 if (new)
448 pte_free_kernel(&init_mm, new);
449 return 0;
450 }
451
452 static inline void init_rss_vec(int *rss)
453 {
454 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
455 }
456
457 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 {
459 int i;
460
461 if (current->mm == mm)
462 sync_mm_rss(current, mm);
463 for (i = 0; i < NR_MM_COUNTERS; i++)
464 if (rss[i])
465 add_mm_counter(mm, i, rss[i]);
466 }
467
468 /*
469 * This function is called to print an error when a bad pte
470 * is found. For example, we might have a PFN-mapped pte in
471 * a region that doesn't allow it.
472 *
473 * The calling function must still handle the error.
474 */
475 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
476 pte_t pte, struct page *page)
477 {
478 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
479 pud_t *pud = pud_offset(pgd, addr);
480 pmd_t *pmd = pmd_offset(pud, addr);
481 struct address_space *mapping;
482 pgoff_t index;
483 static unsigned long resume;
484 static unsigned long nr_shown;
485 static unsigned long nr_unshown;
486
487 /*
488 * Allow a burst of 60 reports, then keep quiet for that minute;
489 * or allow a steady drip of one report per second.
490 */
491 if (nr_shown == 60) {
492 if (time_before(jiffies, resume)) {
493 nr_unshown++;
494 return;
495 }
496 if (nr_unshown) {
497 printk(KERN_ALERT
498 "BUG: Bad page map: %lu messages suppressed\n",
499 nr_unshown);
500 nr_unshown = 0;
501 }
502 nr_shown = 0;
503 }
504 if (nr_shown++ == 0)
505 resume = jiffies + 60 * HZ;
506
507 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
508 index = linear_page_index(vma, addr);
509
510 printk(KERN_ALERT
511 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
512 current->comm,
513 (long long)pte_val(pte), (long long)pmd_val(*pmd));
514 if (page)
515 dump_page(page);
516 printk(KERN_ALERT
517 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
518 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 /*
520 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 */
522 if (vma->vm_ops)
523 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
524 (unsigned long)vma->vm_ops->fault);
525 if (vma->vm_file && vma->vm_file->f_op)
526 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
527 (unsigned long)vma->vm_file->f_op->mmap);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE);
530 }
531
532 static inline int is_cow_mapping(unsigned int flags)
533 {
534 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
535 }
536
537 #ifndef is_zero_pfn
538 static inline int is_zero_pfn(unsigned long pfn)
539 {
540 return pfn == zero_pfn;
541 }
542 #endif
543
544 #ifndef my_zero_pfn
545 static inline unsigned long my_zero_pfn(unsigned long addr)
546 {
547 return zero_pfn;
548 }
549 #endif
550
551 /*
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 *
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 *
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
561 * described below.
562 *
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
566 *
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
571 *
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 *
574 * And for normal mappings this is false.
575 *
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
580 *
581 *
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 *
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
591 *
592 */
593 #ifdef __HAVE_ARCH_PTE_SPECIAL
594 # define HAVE_PTE_SPECIAL 1
595 #else
596 # define HAVE_PTE_SPECIAL 0
597 #endif
598 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
599 pte_t pte)
600 {
601 unsigned long pfn = pte_pfn(pte);
602
603 if (HAVE_PTE_SPECIAL) {
604 if (likely(!pte_special(pte)))
605 goto check_pfn;
606 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
607 return NULL;
608 if (!is_zero_pfn(pfn))
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
611 }
612
613 /* !HAVE_PTE_SPECIAL case follows: */
614
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
628 }
629
630 if (is_zero_pfn(pfn))
631 return NULL;
632 check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642 out:
643 return pfn_to_page(pfn);
644 }
645
646 /*
647 * copy one vm_area from one task to the other. Assumes the page tables
648 * already present in the new task to be cleared in the whole range
649 * covered by this vma.
650 */
651
652 static inline unsigned long
653 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
655 unsigned long addr, int *rss)
656 {
657 unsigned long vm_flags = vma->vm_flags;
658 pte_t pte = *src_pte;
659 struct page *page;
660
661 /* pte contains position in swap or file, so copy. */
662 if (unlikely(!pte_present(pte))) {
663 if (!pte_file(pte)) {
664 swp_entry_t entry = pte_to_swp_entry(pte);
665
666 if (swap_duplicate(entry) < 0)
667 return entry.val;
668
669 /* make sure dst_mm is on swapoff's mmlist. */
670 if (unlikely(list_empty(&dst_mm->mmlist))) {
671 spin_lock(&mmlist_lock);
672 if (list_empty(&dst_mm->mmlist))
673 list_add(&dst_mm->mmlist,
674 &src_mm->mmlist);
675 spin_unlock(&mmlist_lock);
676 }
677 if (likely(!non_swap_entry(entry)))
678 rss[MM_SWAPENTS]++;
679 else if (is_write_migration_entry(entry) &&
680 is_cow_mapping(vm_flags)) {
681 /*
682 * COW mappings require pages in both parent
683 * and child to be set to read.
684 */
685 make_migration_entry_read(&entry);
686 pte = swp_entry_to_pte(entry);
687 set_pte_at(src_mm, addr, src_pte, pte);
688 }
689 }
690 goto out_set_pte;
691 }
692
693 /*
694 * If it's a COW mapping, write protect it both
695 * in the parent and the child
696 */
697 if (is_cow_mapping(vm_flags)) {
698 ptep_set_wrprotect(src_mm, addr, src_pte);
699 pte = pte_wrprotect(pte);
700 }
701
702 /*
703 * If it's a shared mapping, mark it clean in
704 * the child
705 */
706 if (vm_flags & VM_SHARED)
707 pte = pte_mkclean(pte);
708 pte = pte_mkold(pte);
709
710 page = vm_normal_page(vma, addr, pte);
711 if (page) {
712 get_page(page);
713 page_dup_rmap(page);
714 if (PageAnon(page))
715 rss[MM_ANONPAGES]++;
716 else
717 rss[MM_FILEPAGES]++;
718 }
719
720 out_set_pte:
721 set_pte_at(dst_mm, addr, dst_pte, pte);
722 return 0;
723 }
724
725 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
726 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
727 unsigned long addr, unsigned long end)
728 {
729 pte_t *orig_src_pte, *orig_dst_pte;
730 pte_t *src_pte, *dst_pte;
731 spinlock_t *src_ptl, *dst_ptl;
732 int progress = 0;
733 int rss[NR_MM_COUNTERS];
734 swp_entry_t entry = (swp_entry_t){0};
735
736 again:
737 init_rss_vec(rss);
738
739 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
740 if (!dst_pte)
741 return -ENOMEM;
742 src_pte = pte_offset_map_nested(src_pmd, addr);
743 src_ptl = pte_lockptr(src_mm, src_pmd);
744 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
745 orig_src_pte = src_pte;
746 orig_dst_pte = dst_pte;
747 arch_enter_lazy_mmu_mode();
748
749 do {
750 /*
751 * We are holding two locks at this point - either of them
752 * could generate latencies in another task on another CPU.
753 */
754 if (progress >= 32) {
755 progress = 0;
756 if (need_resched() ||
757 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
758 break;
759 }
760 if (pte_none(*src_pte)) {
761 progress++;
762 continue;
763 }
764 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
765 vma, addr, rss);
766 if (entry.val)
767 break;
768 progress += 8;
769 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770
771 arch_leave_lazy_mmu_mode();
772 spin_unlock(src_ptl);
773 pte_unmap_nested(orig_src_pte);
774 add_mm_rss_vec(dst_mm, rss);
775 pte_unmap_unlock(orig_dst_pte, dst_ptl);
776 cond_resched();
777
778 if (entry.val) {
779 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
780 return -ENOMEM;
781 progress = 0;
782 }
783 if (addr != end)
784 goto again;
785 return 0;
786 }
787
788 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
789 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
790 unsigned long addr, unsigned long end)
791 {
792 pmd_t *src_pmd, *dst_pmd;
793 unsigned long next;
794
795 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
796 if (!dst_pmd)
797 return -ENOMEM;
798 src_pmd = pmd_offset(src_pud, addr);
799 do {
800 next = pmd_addr_end(addr, end);
801 if (pmd_none_or_clear_bad(src_pmd))
802 continue;
803 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
804 vma, addr, next))
805 return -ENOMEM;
806 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
807 return 0;
808 }
809
810 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
811 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
812 unsigned long addr, unsigned long end)
813 {
814 pud_t *src_pud, *dst_pud;
815 unsigned long next;
816
817 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
818 if (!dst_pud)
819 return -ENOMEM;
820 src_pud = pud_offset(src_pgd, addr);
821 do {
822 next = pud_addr_end(addr, end);
823 if (pud_none_or_clear_bad(src_pud))
824 continue;
825 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
826 vma, addr, next))
827 return -ENOMEM;
828 } while (dst_pud++, src_pud++, addr = next, addr != end);
829 return 0;
830 }
831
832 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 struct vm_area_struct *vma)
834 {
835 pgd_t *src_pgd, *dst_pgd;
836 unsigned long next;
837 unsigned long addr = vma->vm_start;
838 unsigned long end = vma->vm_end;
839 int ret;
840
841 /*
842 * Don't copy ptes where a page fault will fill them correctly.
843 * Fork becomes much lighter when there are big shared or private
844 * readonly mappings. The tradeoff is that copy_page_range is more
845 * efficient than faulting.
846 */
847 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
848 if (!vma->anon_vma)
849 return 0;
850 }
851
852 if (is_vm_hugetlb_page(vma))
853 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854
855 if (unlikely(is_pfn_mapping(vma))) {
856 /*
857 * We do not free on error cases below as remove_vma
858 * gets called on error from higher level routine
859 */
860 ret = track_pfn_vma_copy(vma);
861 if (ret)
862 return ret;
863 }
864
865 /*
866 * We need to invalidate the secondary MMU mappings only when
867 * there could be a permission downgrade on the ptes of the
868 * parent mm. And a permission downgrade will only happen if
869 * is_cow_mapping() returns true.
870 */
871 if (is_cow_mapping(vma->vm_flags))
872 mmu_notifier_invalidate_range_start(src_mm, addr, end);
873
874 ret = 0;
875 dst_pgd = pgd_offset(dst_mm, addr);
876 src_pgd = pgd_offset(src_mm, addr);
877 do {
878 next = pgd_addr_end(addr, end);
879 if (pgd_none_or_clear_bad(src_pgd))
880 continue;
881 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
882 vma, addr, next))) {
883 ret = -ENOMEM;
884 break;
885 }
886 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
887
888 if (is_cow_mapping(vma->vm_flags))
889 mmu_notifier_invalidate_range_end(src_mm,
890 vma->vm_start, end);
891 return ret;
892 }
893
894 static unsigned long zap_pte_range(struct mmu_gather *tlb,
895 struct vm_area_struct *vma, pmd_t *pmd,
896 unsigned long addr, unsigned long end,
897 long *zap_work, struct zap_details *details)
898 {
899 struct mm_struct *mm = tlb->mm;
900 pte_t *pte;
901 spinlock_t *ptl;
902 int rss[NR_MM_COUNTERS];
903
904 init_rss_vec(rss);
905
906 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
907 arch_enter_lazy_mmu_mode();
908 do {
909 pte_t ptent = *pte;
910 if (pte_none(ptent)) {
911 (*zap_work)--;
912 continue;
913 }
914
915 (*zap_work) -= PAGE_SIZE;
916
917 if (pte_present(ptent)) {
918 struct page *page;
919
920 page = vm_normal_page(vma, addr, ptent);
921 if (unlikely(details) && page) {
922 /*
923 * unmap_shared_mapping_pages() wants to
924 * invalidate cache without truncating:
925 * unmap shared but keep private pages.
926 */
927 if (details->check_mapping &&
928 details->check_mapping != page->mapping)
929 continue;
930 /*
931 * Each page->index must be checked when
932 * invalidating or truncating nonlinear.
933 */
934 if (details->nonlinear_vma &&
935 (page->index < details->first_index ||
936 page->index > details->last_index))
937 continue;
938 }
939 ptent = ptep_get_and_clear_full(mm, addr, pte,
940 tlb->fullmm);
941 tlb_remove_tlb_entry(tlb, pte, addr);
942 if (unlikely(!page))
943 continue;
944 if (unlikely(details) && details->nonlinear_vma
945 && linear_page_index(details->nonlinear_vma,
946 addr) != page->index)
947 set_pte_at(mm, addr, pte,
948 pgoff_to_pte(page->index));
949 if (PageAnon(page))
950 rss[MM_ANONPAGES]--;
951 else {
952 if (pte_dirty(ptent))
953 set_page_dirty(page);
954 if (pte_young(ptent) &&
955 likely(!VM_SequentialReadHint(vma)))
956 mark_page_accessed(page);
957 rss[MM_FILEPAGES]--;
958 }
959 page_remove_rmap(page);
960 if (unlikely(page_mapcount(page) < 0))
961 print_bad_pte(vma, addr, ptent, page);
962 tlb_remove_page(tlb, page);
963 continue;
964 }
965 /*
966 * If details->check_mapping, we leave swap entries;
967 * if details->nonlinear_vma, we leave file entries.
968 */
969 if (unlikely(details))
970 continue;
971 if (pte_file(ptent)) {
972 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
973 print_bad_pte(vma, addr, ptent, NULL);
974 } else {
975 swp_entry_t entry = pte_to_swp_entry(ptent);
976
977 if (!non_swap_entry(entry))
978 rss[MM_SWAPENTS]--;
979 if (unlikely(!free_swap_and_cache(entry)))
980 print_bad_pte(vma, addr, ptent, NULL);
981 }
982 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
983 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984
985 add_mm_rss_vec(mm, rss);
986 arch_leave_lazy_mmu_mode();
987 pte_unmap_unlock(pte - 1, ptl);
988
989 return addr;
990 }
991
992 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
993 struct vm_area_struct *vma, pud_t *pud,
994 unsigned long addr, unsigned long end,
995 long *zap_work, struct zap_details *details)
996 {
997 pmd_t *pmd;
998 unsigned long next;
999
1000 pmd = pmd_offset(pud, addr);
1001 do {
1002 next = pmd_addr_end(addr, end);
1003 if (pmd_none_or_clear_bad(pmd)) {
1004 (*zap_work)--;
1005 continue;
1006 }
1007 next = zap_pte_range(tlb, vma, pmd, addr, next,
1008 zap_work, details);
1009 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010
1011 return addr;
1012 }
1013
1014 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1015 struct vm_area_struct *vma, pgd_t *pgd,
1016 unsigned long addr, unsigned long end,
1017 long *zap_work, struct zap_details *details)
1018 {
1019 pud_t *pud;
1020 unsigned long next;
1021
1022 pud = pud_offset(pgd, addr);
1023 do {
1024 next = pud_addr_end(addr, end);
1025 if (pud_none_or_clear_bad(pud)) {
1026 (*zap_work)--;
1027 continue;
1028 }
1029 next = zap_pmd_range(tlb, vma, pud, addr, next,
1030 zap_work, details);
1031 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1032
1033 return addr;
1034 }
1035
1036 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1037 struct vm_area_struct *vma,
1038 unsigned long addr, unsigned long end,
1039 long *zap_work, struct zap_details *details)
1040 {
1041 pgd_t *pgd;
1042 unsigned long next;
1043
1044 if (details && !details->check_mapping && !details->nonlinear_vma)
1045 details = NULL;
1046
1047 BUG_ON(addr >= end);
1048 mem_cgroup_uncharge_start();
1049 tlb_start_vma(tlb, vma);
1050 pgd = pgd_offset(vma->vm_mm, addr);
1051 do {
1052 next = pgd_addr_end(addr, end);
1053 if (pgd_none_or_clear_bad(pgd)) {
1054 (*zap_work)--;
1055 continue;
1056 }
1057 next = zap_pud_range(tlb, vma, pgd, addr, next,
1058 zap_work, details);
1059 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1060 tlb_end_vma(tlb, vma);
1061 mem_cgroup_uncharge_end();
1062
1063 return addr;
1064 }
1065
1066 #ifdef CONFIG_PREEMPT
1067 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1068 #else
1069 /* No preempt: go for improved straight-line efficiency */
1070 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1071 #endif
1072
1073 /**
1074 * unmap_vmas - unmap a range of memory covered by a list of vma's
1075 * @tlbp: address of the caller's struct mmu_gather
1076 * @vma: the starting vma
1077 * @start_addr: virtual address at which to start unmapping
1078 * @end_addr: virtual address at which to end unmapping
1079 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1080 * @details: details of nonlinear truncation or shared cache invalidation
1081 *
1082 * Returns the end address of the unmapping (restart addr if interrupted).
1083 *
1084 * Unmap all pages in the vma list.
1085 *
1086 * We aim to not hold locks for too long (for scheduling latency reasons).
1087 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1088 * return the ending mmu_gather to the caller.
1089 *
1090 * Only addresses between `start' and `end' will be unmapped.
1091 *
1092 * The VMA list must be sorted in ascending virtual address order.
1093 *
1094 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1095 * range after unmap_vmas() returns. So the only responsibility here is to
1096 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1097 * drops the lock and schedules.
1098 */
1099 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1100 struct vm_area_struct *vma, unsigned long start_addr,
1101 unsigned long end_addr, unsigned long *nr_accounted,
1102 struct zap_details *details)
1103 {
1104 long zap_work = ZAP_BLOCK_SIZE;
1105 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1106 int tlb_start_valid = 0;
1107 unsigned long start = start_addr;
1108 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1109 int fullmm = (*tlbp)->fullmm;
1110 struct mm_struct *mm = vma->vm_mm;
1111
1112 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1113 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1114 unsigned long end;
1115
1116 start = max(vma->vm_start, start_addr);
1117 if (start >= vma->vm_end)
1118 continue;
1119 end = min(vma->vm_end, end_addr);
1120 if (end <= vma->vm_start)
1121 continue;
1122
1123 if (vma->vm_flags & VM_ACCOUNT)
1124 *nr_accounted += (end - start) >> PAGE_SHIFT;
1125
1126 if (unlikely(is_pfn_mapping(vma)))
1127 untrack_pfn_vma(vma, 0, 0);
1128
1129 while (start != end) {
1130 if (!tlb_start_valid) {
1131 tlb_start = start;
1132 tlb_start_valid = 1;
1133 }
1134
1135 if (unlikely(is_vm_hugetlb_page(vma))) {
1136 /*
1137 * It is undesirable to test vma->vm_file as it
1138 * should be non-null for valid hugetlb area.
1139 * However, vm_file will be NULL in the error
1140 * cleanup path of do_mmap_pgoff. When
1141 * hugetlbfs ->mmap method fails,
1142 * do_mmap_pgoff() nullifies vma->vm_file
1143 * before calling this function to clean up.
1144 * Since no pte has actually been setup, it is
1145 * safe to do nothing in this case.
1146 */
1147 if (vma->vm_file) {
1148 unmap_hugepage_range(vma, start, end, NULL);
1149 zap_work -= (end - start) /
1150 pages_per_huge_page(hstate_vma(vma));
1151 }
1152
1153 start = end;
1154 } else
1155 start = unmap_page_range(*tlbp, vma,
1156 start, end, &zap_work, details);
1157
1158 if (zap_work > 0) {
1159 BUG_ON(start != end);
1160 break;
1161 }
1162
1163 tlb_finish_mmu(*tlbp, tlb_start, start);
1164
1165 if (need_resched() ||
1166 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1167 if (i_mmap_lock) {
1168 *tlbp = NULL;
1169 goto out;
1170 }
1171 cond_resched();
1172 }
1173
1174 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1175 tlb_start_valid = 0;
1176 zap_work = ZAP_BLOCK_SIZE;
1177 }
1178 }
1179 out:
1180 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1181 return start; /* which is now the end (or restart) address */
1182 }
1183
1184 /**
1185 * zap_page_range - remove user pages in a given range
1186 * @vma: vm_area_struct holding the applicable pages
1187 * @address: starting address of pages to zap
1188 * @size: number of bytes to zap
1189 * @details: details of nonlinear truncation or shared cache invalidation
1190 */
1191 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1192 unsigned long size, struct zap_details *details)
1193 {
1194 struct mm_struct *mm = vma->vm_mm;
1195 struct mmu_gather *tlb;
1196 unsigned long end = address + size;
1197 unsigned long nr_accounted = 0;
1198
1199 lru_add_drain();
1200 tlb = tlb_gather_mmu(mm, 0);
1201 update_hiwater_rss(mm);
1202 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1203 if (tlb)
1204 tlb_finish_mmu(tlb, address, end);
1205 return end;
1206 }
1207
1208 /**
1209 * zap_vma_ptes - remove ptes mapping the vma
1210 * @vma: vm_area_struct holding ptes to be zapped
1211 * @address: starting address of pages to zap
1212 * @size: number of bytes to zap
1213 *
1214 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 *
1216 * The entire address range must be fully contained within the vma.
1217 *
1218 * Returns 0 if successful.
1219 */
1220 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1221 unsigned long size)
1222 {
1223 if (address < vma->vm_start || address + size > vma->vm_end ||
1224 !(vma->vm_flags & VM_PFNMAP))
1225 return -1;
1226 zap_page_range(vma, address, size, NULL);
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1230
1231 /*
1232 * Do a quick page-table lookup for a single page.
1233 */
1234 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1235 unsigned int flags)
1236 {
1237 pgd_t *pgd;
1238 pud_t *pud;
1239 pmd_t *pmd;
1240 pte_t *ptep, pte;
1241 spinlock_t *ptl;
1242 struct page *page;
1243 struct mm_struct *mm = vma->vm_mm;
1244
1245 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1246 if (!IS_ERR(page)) {
1247 BUG_ON(flags & FOLL_GET);
1248 goto out;
1249 }
1250
1251 page = NULL;
1252 pgd = pgd_offset(mm, address);
1253 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1254 goto no_page_table;
1255
1256 pud = pud_offset(pgd, address);
1257 if (pud_none(*pud))
1258 goto no_page_table;
1259 if (pud_huge(*pud)) {
1260 BUG_ON(flags & FOLL_GET);
1261 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1262 goto out;
1263 }
1264 if (unlikely(pud_bad(*pud)))
1265 goto no_page_table;
1266
1267 pmd = pmd_offset(pud, address);
1268 if (pmd_none(*pmd))
1269 goto no_page_table;
1270 if (pmd_huge(*pmd)) {
1271 BUG_ON(flags & FOLL_GET);
1272 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1273 goto out;
1274 }
1275 if (unlikely(pmd_bad(*pmd)))
1276 goto no_page_table;
1277
1278 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1279
1280 pte = *ptep;
1281 if (!pte_present(pte))
1282 goto no_page;
1283 if ((flags & FOLL_WRITE) && !pte_write(pte))
1284 goto unlock;
1285
1286 page = vm_normal_page(vma, address, pte);
1287 if (unlikely(!page)) {
1288 if ((flags & FOLL_DUMP) ||
1289 !is_zero_pfn(pte_pfn(pte)))
1290 goto bad_page;
1291 page = pte_page(pte);
1292 }
1293
1294 if (flags & FOLL_GET)
1295 get_page(page);
1296 if (flags & FOLL_TOUCH) {
1297 if ((flags & FOLL_WRITE) &&
1298 !pte_dirty(pte) && !PageDirty(page))
1299 set_page_dirty(page);
1300 /*
1301 * pte_mkyoung() would be more correct here, but atomic care
1302 * is needed to avoid losing the dirty bit: it is easier to use
1303 * mark_page_accessed().
1304 */
1305 mark_page_accessed(page);
1306 }
1307 unlock:
1308 pte_unmap_unlock(ptep, ptl);
1309 out:
1310 return page;
1311
1312 bad_page:
1313 pte_unmap_unlock(ptep, ptl);
1314 return ERR_PTR(-EFAULT);
1315
1316 no_page:
1317 pte_unmap_unlock(ptep, ptl);
1318 if (!pte_none(pte))
1319 return page;
1320
1321 no_page_table:
1322 /*
1323 * When core dumping an enormous anonymous area that nobody
1324 * has touched so far, we don't want to allocate unnecessary pages or
1325 * page tables. Return error instead of NULL to skip handle_mm_fault,
1326 * then get_dump_page() will return NULL to leave a hole in the dump.
1327 * But we can only make this optimization where a hole would surely
1328 * be zero-filled if handle_mm_fault() actually did handle it.
1329 */
1330 if ((flags & FOLL_DUMP) &&
1331 (!vma->vm_ops || !vma->vm_ops->fault))
1332 return ERR_PTR(-EFAULT);
1333 return page;
1334 }
1335
1336 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1337 unsigned long start, int nr_pages, unsigned int gup_flags,
1338 struct page **pages, struct vm_area_struct **vmas)
1339 {
1340 int i;
1341 unsigned long vm_flags;
1342
1343 if (nr_pages <= 0)
1344 return 0;
1345
1346 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1347
1348 /*
1349 * Require read or write permissions.
1350 * If FOLL_FORCE is set, we only require the "MAY" flags.
1351 */
1352 vm_flags = (gup_flags & FOLL_WRITE) ?
1353 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1354 vm_flags &= (gup_flags & FOLL_FORCE) ?
1355 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1356 i = 0;
1357
1358 do {
1359 struct vm_area_struct *vma;
1360
1361 vma = find_extend_vma(mm, start);
1362 if (!vma && in_gate_area(tsk, start)) {
1363 unsigned long pg = start & PAGE_MASK;
1364 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1365 pgd_t *pgd;
1366 pud_t *pud;
1367 pmd_t *pmd;
1368 pte_t *pte;
1369
1370 /* user gate pages are read-only */
1371 if (gup_flags & FOLL_WRITE)
1372 return i ? : -EFAULT;
1373 if (pg > TASK_SIZE)
1374 pgd = pgd_offset_k(pg);
1375 else
1376 pgd = pgd_offset_gate(mm, pg);
1377 BUG_ON(pgd_none(*pgd));
1378 pud = pud_offset(pgd, pg);
1379 BUG_ON(pud_none(*pud));
1380 pmd = pmd_offset(pud, pg);
1381 if (pmd_none(*pmd))
1382 return i ? : -EFAULT;
1383 pte = pte_offset_map(pmd, pg);
1384 if (pte_none(*pte)) {
1385 pte_unmap(pte);
1386 return i ? : -EFAULT;
1387 }
1388 if (pages) {
1389 struct page *page = vm_normal_page(gate_vma, start, *pte);
1390 pages[i] = page;
1391 if (page)
1392 get_page(page);
1393 }
1394 pte_unmap(pte);
1395 if (vmas)
1396 vmas[i] = gate_vma;
1397 i++;
1398 start += PAGE_SIZE;
1399 nr_pages--;
1400 continue;
1401 }
1402
1403 if (!vma ||
1404 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1405 !(vm_flags & vma->vm_flags))
1406 return i ? : -EFAULT;
1407
1408 if (is_vm_hugetlb_page(vma)) {
1409 i = follow_hugetlb_page(mm, vma, pages, vmas,
1410 &start, &nr_pages, i, gup_flags);
1411 continue;
1412 }
1413
1414 do {
1415 struct page *page;
1416 unsigned int foll_flags = gup_flags;
1417
1418 /*
1419 * If we have a pending SIGKILL, don't keep faulting
1420 * pages and potentially allocating memory.
1421 */
1422 if (unlikely(fatal_signal_pending(current)))
1423 return i ? i : -ERESTARTSYS;
1424
1425 cond_resched();
1426 while (!(page = follow_page(vma, start, foll_flags))) {
1427 int ret;
1428
1429 ret = handle_mm_fault(mm, vma, start,
1430 (foll_flags & FOLL_WRITE) ?
1431 FAULT_FLAG_WRITE : 0);
1432
1433 if (ret & VM_FAULT_ERROR) {
1434 if (ret & VM_FAULT_OOM)
1435 return i ? i : -ENOMEM;
1436 if (ret &
1437 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1438 return i ? i : -EFAULT;
1439 BUG();
1440 }
1441 if (ret & VM_FAULT_MAJOR)
1442 tsk->maj_flt++;
1443 else
1444 tsk->min_flt++;
1445
1446 /*
1447 * The VM_FAULT_WRITE bit tells us that
1448 * do_wp_page has broken COW when necessary,
1449 * even if maybe_mkwrite decided not to set
1450 * pte_write. We can thus safely do subsequent
1451 * page lookups as if they were reads. But only
1452 * do so when looping for pte_write is futile:
1453 * in some cases userspace may also be wanting
1454 * to write to the gotten user page, which a
1455 * read fault here might prevent (a readonly
1456 * page might get reCOWed by userspace write).
1457 */
1458 if ((ret & VM_FAULT_WRITE) &&
1459 !(vma->vm_flags & VM_WRITE))
1460 foll_flags &= ~FOLL_WRITE;
1461
1462 cond_resched();
1463 }
1464 if (IS_ERR(page))
1465 return i ? i : PTR_ERR(page);
1466 if (pages) {
1467 pages[i] = page;
1468
1469 flush_anon_page(vma, page, start);
1470 flush_dcache_page(page);
1471 }
1472 if (vmas)
1473 vmas[i] = vma;
1474 i++;
1475 start += PAGE_SIZE;
1476 nr_pages--;
1477 } while (nr_pages && start < vma->vm_end);
1478 } while (nr_pages);
1479 return i;
1480 }
1481
1482 /**
1483 * get_user_pages() - pin user pages in memory
1484 * @tsk: task_struct of target task
1485 * @mm: mm_struct of target mm
1486 * @start: starting user address
1487 * @nr_pages: number of pages from start to pin
1488 * @write: whether pages will be written to by the caller
1489 * @force: whether to force write access even if user mapping is
1490 * readonly. This will result in the page being COWed even
1491 * in MAP_SHARED mappings. You do not want this.
1492 * @pages: array that receives pointers to the pages pinned.
1493 * Should be at least nr_pages long. Or NULL, if caller
1494 * only intends to ensure the pages are faulted in.
1495 * @vmas: array of pointers to vmas corresponding to each page.
1496 * Or NULL if the caller does not require them.
1497 *
1498 * Returns number of pages pinned. This may be fewer than the number
1499 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1500 * were pinned, returns -errno. Each page returned must be released
1501 * with a put_page() call when it is finished with. vmas will only
1502 * remain valid while mmap_sem is held.
1503 *
1504 * Must be called with mmap_sem held for read or write.
1505 *
1506 * get_user_pages walks a process's page tables and takes a reference to
1507 * each struct page that each user address corresponds to at a given
1508 * instant. That is, it takes the page that would be accessed if a user
1509 * thread accesses the given user virtual address at that instant.
1510 *
1511 * This does not guarantee that the page exists in the user mappings when
1512 * get_user_pages returns, and there may even be a completely different
1513 * page there in some cases (eg. if mmapped pagecache has been invalidated
1514 * and subsequently re faulted). However it does guarantee that the page
1515 * won't be freed completely. And mostly callers simply care that the page
1516 * contains data that was valid *at some point in time*. Typically, an IO
1517 * or similar operation cannot guarantee anything stronger anyway because
1518 * locks can't be held over the syscall boundary.
1519 *
1520 * If write=0, the page must not be written to. If the page is written to,
1521 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1522 * after the page is finished with, and before put_page is called.
1523 *
1524 * get_user_pages is typically used for fewer-copy IO operations, to get a
1525 * handle on the memory by some means other than accesses via the user virtual
1526 * addresses. The pages may be submitted for DMA to devices or accessed via
1527 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1528 * use the correct cache flushing APIs.
1529 *
1530 * See also get_user_pages_fast, for performance critical applications.
1531 */
1532 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1533 unsigned long start, int nr_pages, int write, int force,
1534 struct page **pages, struct vm_area_struct **vmas)
1535 {
1536 int flags = FOLL_TOUCH;
1537
1538 if (pages)
1539 flags |= FOLL_GET;
1540 if (write)
1541 flags |= FOLL_WRITE;
1542 if (force)
1543 flags |= FOLL_FORCE;
1544
1545 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1546 }
1547 EXPORT_SYMBOL(get_user_pages);
1548
1549 /**
1550 * get_dump_page() - pin user page in memory while writing it to core dump
1551 * @addr: user address
1552 *
1553 * Returns struct page pointer of user page pinned for dump,
1554 * to be freed afterwards by page_cache_release() or put_page().
1555 *
1556 * Returns NULL on any kind of failure - a hole must then be inserted into
1557 * the corefile, to preserve alignment with its headers; and also returns
1558 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1559 * allowing a hole to be left in the corefile to save diskspace.
1560 *
1561 * Called without mmap_sem, but after all other threads have been killed.
1562 */
1563 #ifdef CONFIG_ELF_CORE
1564 struct page *get_dump_page(unsigned long addr)
1565 {
1566 struct vm_area_struct *vma;
1567 struct page *page;
1568
1569 if (__get_user_pages(current, current->mm, addr, 1,
1570 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1571 return NULL;
1572 flush_cache_page(vma, addr, page_to_pfn(page));
1573 return page;
1574 }
1575 #endif /* CONFIG_ELF_CORE */
1576
1577 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1578 spinlock_t **ptl)
1579 {
1580 pgd_t * pgd = pgd_offset(mm, addr);
1581 pud_t * pud = pud_alloc(mm, pgd, addr);
1582 if (pud) {
1583 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1584 if (pmd)
1585 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1586 }
1587 return NULL;
1588 }
1589
1590 /*
1591 * This is the old fallback for page remapping.
1592 *
1593 * For historical reasons, it only allows reserved pages. Only
1594 * old drivers should use this, and they needed to mark their
1595 * pages reserved for the old functions anyway.
1596 */
1597 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1598 struct page *page, pgprot_t prot)
1599 {
1600 struct mm_struct *mm = vma->vm_mm;
1601 int retval;
1602 pte_t *pte;
1603 spinlock_t *ptl;
1604
1605 retval = -EINVAL;
1606 if (PageAnon(page))
1607 goto out;
1608 retval = -ENOMEM;
1609 flush_dcache_page(page);
1610 pte = get_locked_pte(mm, addr, &ptl);
1611 if (!pte)
1612 goto out;
1613 retval = -EBUSY;
1614 if (!pte_none(*pte))
1615 goto out_unlock;
1616
1617 /* Ok, finally just insert the thing.. */
1618 get_page(page);
1619 inc_mm_counter_fast(mm, MM_FILEPAGES);
1620 page_add_file_rmap(page);
1621 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1622
1623 retval = 0;
1624 pte_unmap_unlock(pte, ptl);
1625 return retval;
1626 out_unlock:
1627 pte_unmap_unlock(pte, ptl);
1628 out:
1629 return retval;
1630 }
1631
1632 /**
1633 * vm_insert_page - insert single page into user vma
1634 * @vma: user vma to map to
1635 * @addr: target user address of this page
1636 * @page: source kernel page
1637 *
1638 * This allows drivers to insert individual pages they've allocated
1639 * into a user vma.
1640 *
1641 * The page has to be a nice clean _individual_ kernel allocation.
1642 * If you allocate a compound page, you need to have marked it as
1643 * such (__GFP_COMP), or manually just split the page up yourself
1644 * (see split_page()).
1645 *
1646 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1647 * took an arbitrary page protection parameter. This doesn't allow
1648 * that. Your vma protection will have to be set up correctly, which
1649 * means that if you want a shared writable mapping, you'd better
1650 * ask for a shared writable mapping!
1651 *
1652 * The page does not need to be reserved.
1653 */
1654 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1655 struct page *page)
1656 {
1657 if (addr < vma->vm_start || addr >= vma->vm_end)
1658 return -EFAULT;
1659 if (!page_count(page))
1660 return -EINVAL;
1661 vma->vm_flags |= VM_INSERTPAGE;
1662 return insert_page(vma, addr, page, vma->vm_page_prot);
1663 }
1664 EXPORT_SYMBOL(vm_insert_page);
1665
1666 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1667 unsigned long pfn, pgprot_t prot)
1668 {
1669 struct mm_struct *mm = vma->vm_mm;
1670 int retval;
1671 pte_t *pte, entry;
1672 spinlock_t *ptl;
1673
1674 retval = -ENOMEM;
1675 pte = get_locked_pte(mm, addr, &ptl);
1676 if (!pte)
1677 goto out;
1678 retval = -EBUSY;
1679 if (!pte_none(*pte))
1680 goto out_unlock;
1681
1682 /* Ok, finally just insert the thing.. */
1683 entry = pte_mkspecial(pfn_pte(pfn, prot));
1684 set_pte_at(mm, addr, pte, entry);
1685 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1686
1687 retval = 0;
1688 out_unlock:
1689 pte_unmap_unlock(pte, ptl);
1690 out:
1691 return retval;
1692 }
1693
1694 /**
1695 * vm_insert_pfn - insert single pfn into user vma
1696 * @vma: user vma to map to
1697 * @addr: target user address of this page
1698 * @pfn: source kernel pfn
1699 *
1700 * Similar to vm_inert_page, this allows drivers to insert individual pages
1701 * they've allocated into a user vma. Same comments apply.
1702 *
1703 * This function should only be called from a vm_ops->fault handler, and
1704 * in that case the handler should return NULL.
1705 *
1706 * vma cannot be a COW mapping.
1707 *
1708 * As this is called only for pages that do not currently exist, we
1709 * do not need to flush old virtual caches or the TLB.
1710 */
1711 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1712 unsigned long pfn)
1713 {
1714 int ret;
1715 pgprot_t pgprot = vma->vm_page_prot;
1716 /*
1717 * Technically, architectures with pte_special can avoid all these
1718 * restrictions (same for remap_pfn_range). However we would like
1719 * consistency in testing and feature parity among all, so we should
1720 * try to keep these invariants in place for everybody.
1721 */
1722 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1723 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1724 (VM_PFNMAP|VM_MIXEDMAP));
1725 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1726 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1727
1728 if (addr < vma->vm_start || addr >= vma->vm_end)
1729 return -EFAULT;
1730 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1731 return -EINVAL;
1732
1733 ret = insert_pfn(vma, addr, pfn, pgprot);
1734
1735 if (ret)
1736 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1737
1738 return ret;
1739 }
1740 EXPORT_SYMBOL(vm_insert_pfn);
1741
1742 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1743 unsigned long pfn)
1744 {
1745 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1746
1747 if (addr < vma->vm_start || addr >= vma->vm_end)
1748 return -EFAULT;
1749
1750 /*
1751 * If we don't have pte special, then we have to use the pfn_valid()
1752 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1753 * refcount the page if pfn_valid is true (hence insert_page rather
1754 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1755 * without pte special, it would there be refcounted as a normal page.
1756 */
1757 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1758 struct page *page;
1759
1760 page = pfn_to_page(pfn);
1761 return insert_page(vma, addr, page, vma->vm_page_prot);
1762 }
1763 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1764 }
1765 EXPORT_SYMBOL(vm_insert_mixed);
1766
1767 /*
1768 * maps a range of physical memory into the requested pages. the old
1769 * mappings are removed. any references to nonexistent pages results
1770 * in null mappings (currently treated as "copy-on-access")
1771 */
1772 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1773 unsigned long addr, unsigned long end,
1774 unsigned long pfn, pgprot_t prot)
1775 {
1776 pte_t *pte;
1777 spinlock_t *ptl;
1778
1779 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1780 if (!pte)
1781 return -ENOMEM;
1782 arch_enter_lazy_mmu_mode();
1783 do {
1784 BUG_ON(!pte_none(*pte));
1785 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1786 pfn++;
1787 } while (pte++, addr += PAGE_SIZE, addr != end);
1788 arch_leave_lazy_mmu_mode();
1789 pte_unmap_unlock(pte - 1, ptl);
1790 return 0;
1791 }
1792
1793 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1794 unsigned long addr, unsigned long end,
1795 unsigned long pfn, pgprot_t prot)
1796 {
1797 pmd_t *pmd;
1798 unsigned long next;
1799
1800 pfn -= addr >> PAGE_SHIFT;
1801 pmd = pmd_alloc(mm, pud, addr);
1802 if (!pmd)
1803 return -ENOMEM;
1804 do {
1805 next = pmd_addr_end(addr, end);
1806 if (remap_pte_range(mm, pmd, addr, next,
1807 pfn + (addr >> PAGE_SHIFT), prot))
1808 return -ENOMEM;
1809 } while (pmd++, addr = next, addr != end);
1810 return 0;
1811 }
1812
1813 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1814 unsigned long addr, unsigned long end,
1815 unsigned long pfn, pgprot_t prot)
1816 {
1817 pud_t *pud;
1818 unsigned long next;
1819
1820 pfn -= addr >> PAGE_SHIFT;
1821 pud = pud_alloc(mm, pgd, addr);
1822 if (!pud)
1823 return -ENOMEM;
1824 do {
1825 next = pud_addr_end(addr, end);
1826 if (remap_pmd_range(mm, pud, addr, next,
1827 pfn + (addr >> PAGE_SHIFT), prot))
1828 return -ENOMEM;
1829 } while (pud++, addr = next, addr != end);
1830 return 0;
1831 }
1832
1833 /**
1834 * remap_pfn_range - remap kernel memory to userspace
1835 * @vma: user vma to map to
1836 * @addr: target user address to start at
1837 * @pfn: physical address of kernel memory
1838 * @size: size of map area
1839 * @prot: page protection flags for this mapping
1840 *
1841 * Note: this is only safe if the mm semaphore is held when called.
1842 */
1843 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1844 unsigned long pfn, unsigned long size, pgprot_t prot)
1845 {
1846 pgd_t *pgd;
1847 unsigned long next;
1848 unsigned long end = addr + PAGE_ALIGN(size);
1849 struct mm_struct *mm = vma->vm_mm;
1850 int err;
1851
1852 /*
1853 * Physically remapped pages are special. Tell the
1854 * rest of the world about it:
1855 * VM_IO tells people not to look at these pages
1856 * (accesses can have side effects).
1857 * VM_RESERVED is specified all over the place, because
1858 * in 2.4 it kept swapout's vma scan off this vma; but
1859 * in 2.6 the LRU scan won't even find its pages, so this
1860 * flag means no more than count its pages in reserved_vm,
1861 * and omit it from core dump, even when VM_IO turned off.
1862 * VM_PFNMAP tells the core MM that the base pages are just
1863 * raw PFN mappings, and do not have a "struct page" associated
1864 * with them.
1865 *
1866 * There's a horrible special case to handle copy-on-write
1867 * behaviour that some programs depend on. We mark the "original"
1868 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1869 */
1870 if (addr == vma->vm_start && end == vma->vm_end) {
1871 vma->vm_pgoff = pfn;
1872 vma->vm_flags |= VM_PFN_AT_MMAP;
1873 } else if (is_cow_mapping(vma->vm_flags))
1874 return -EINVAL;
1875
1876 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1877
1878 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1879 if (err) {
1880 /*
1881 * To indicate that track_pfn related cleanup is not
1882 * needed from higher level routine calling unmap_vmas
1883 */
1884 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1885 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1886 return -EINVAL;
1887 }
1888
1889 BUG_ON(addr >= end);
1890 pfn -= addr >> PAGE_SHIFT;
1891 pgd = pgd_offset(mm, addr);
1892 flush_cache_range(vma, addr, end);
1893 do {
1894 next = pgd_addr_end(addr, end);
1895 err = remap_pud_range(mm, pgd, addr, next,
1896 pfn + (addr >> PAGE_SHIFT), prot);
1897 if (err)
1898 break;
1899 } while (pgd++, addr = next, addr != end);
1900
1901 if (err)
1902 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1903
1904 return err;
1905 }
1906 EXPORT_SYMBOL(remap_pfn_range);
1907
1908 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1909 unsigned long addr, unsigned long end,
1910 pte_fn_t fn, void *data)
1911 {
1912 pte_t *pte;
1913 int err;
1914 pgtable_t token;
1915 spinlock_t *uninitialized_var(ptl);
1916
1917 pte = (mm == &init_mm) ?
1918 pte_alloc_kernel(pmd, addr) :
1919 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1920 if (!pte)
1921 return -ENOMEM;
1922
1923 BUG_ON(pmd_huge(*pmd));
1924
1925 arch_enter_lazy_mmu_mode();
1926
1927 token = pmd_pgtable(*pmd);
1928
1929 do {
1930 err = fn(pte++, token, addr, data);
1931 if (err)
1932 break;
1933 } while (addr += PAGE_SIZE, addr != end);
1934
1935 arch_leave_lazy_mmu_mode();
1936
1937 if (mm != &init_mm)
1938 pte_unmap_unlock(pte-1, ptl);
1939 return err;
1940 }
1941
1942 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1943 unsigned long addr, unsigned long end,
1944 pte_fn_t fn, void *data)
1945 {
1946 pmd_t *pmd;
1947 unsigned long next;
1948 int err;
1949
1950 BUG_ON(pud_huge(*pud));
1951
1952 pmd = pmd_alloc(mm, pud, addr);
1953 if (!pmd)
1954 return -ENOMEM;
1955 do {
1956 next = pmd_addr_end(addr, end);
1957 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1958 if (err)
1959 break;
1960 } while (pmd++, addr = next, addr != end);
1961 return err;
1962 }
1963
1964 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1965 unsigned long addr, unsigned long end,
1966 pte_fn_t fn, void *data)
1967 {
1968 pud_t *pud;
1969 unsigned long next;
1970 int err;
1971
1972 pud = pud_alloc(mm, pgd, addr);
1973 if (!pud)
1974 return -ENOMEM;
1975 do {
1976 next = pud_addr_end(addr, end);
1977 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1978 if (err)
1979 break;
1980 } while (pud++, addr = next, addr != end);
1981 return err;
1982 }
1983
1984 /*
1985 * Scan a region of virtual memory, filling in page tables as necessary
1986 * and calling a provided function on each leaf page table.
1987 */
1988 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1989 unsigned long size, pte_fn_t fn, void *data)
1990 {
1991 pgd_t *pgd;
1992 unsigned long next;
1993 unsigned long start = addr, end = addr + size;
1994 int err;
1995
1996 BUG_ON(addr >= end);
1997 mmu_notifier_invalidate_range_start(mm, start, end);
1998 pgd = pgd_offset(mm, addr);
1999 do {
2000 next = pgd_addr_end(addr, end);
2001 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2002 if (err)
2003 break;
2004 } while (pgd++, addr = next, addr != end);
2005 mmu_notifier_invalidate_range_end(mm, start, end);
2006 return err;
2007 }
2008 EXPORT_SYMBOL_GPL(apply_to_page_range);
2009
2010 /*
2011 * handle_pte_fault chooses page fault handler according to an entry
2012 * which was read non-atomically. Before making any commitment, on
2013 * those architectures or configurations (e.g. i386 with PAE) which
2014 * might give a mix of unmatched parts, do_swap_page and do_file_page
2015 * must check under lock before unmapping the pte and proceeding
2016 * (but do_wp_page is only called after already making such a check;
2017 * and do_anonymous_page and do_no_page can safely check later on).
2018 */
2019 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2020 pte_t *page_table, pte_t orig_pte)
2021 {
2022 int same = 1;
2023 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2024 if (sizeof(pte_t) > sizeof(unsigned long)) {
2025 spinlock_t *ptl = pte_lockptr(mm, pmd);
2026 spin_lock(ptl);
2027 same = pte_same(*page_table, orig_pte);
2028 spin_unlock(ptl);
2029 }
2030 #endif
2031 pte_unmap(page_table);
2032 return same;
2033 }
2034
2035 /*
2036 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2037 * servicing faults for write access. In the normal case, do always want
2038 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2039 * that do not have writing enabled, when used by access_process_vm.
2040 */
2041 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2042 {
2043 if (likely(vma->vm_flags & VM_WRITE))
2044 pte = pte_mkwrite(pte);
2045 return pte;
2046 }
2047
2048 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2049 {
2050 /*
2051 * If the source page was a PFN mapping, we don't have
2052 * a "struct page" for it. We do a best-effort copy by
2053 * just copying from the original user address. If that
2054 * fails, we just zero-fill it. Live with it.
2055 */
2056 if (unlikely(!src)) {
2057 void *kaddr = kmap_atomic(dst, KM_USER0);
2058 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2059
2060 /*
2061 * This really shouldn't fail, because the page is there
2062 * in the page tables. But it might just be unreadable,
2063 * in which case we just give up and fill the result with
2064 * zeroes.
2065 */
2066 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2067 memset(kaddr, 0, PAGE_SIZE);
2068 kunmap_atomic(kaddr, KM_USER0);
2069 flush_dcache_page(dst);
2070 } else
2071 copy_user_highpage(dst, src, va, vma);
2072 }
2073
2074 /*
2075 * This routine handles present pages, when users try to write
2076 * to a shared page. It is done by copying the page to a new address
2077 * and decrementing the shared-page counter for the old page.
2078 *
2079 * Note that this routine assumes that the protection checks have been
2080 * done by the caller (the low-level page fault routine in most cases).
2081 * Thus we can safely just mark it writable once we've done any necessary
2082 * COW.
2083 *
2084 * We also mark the page dirty at this point even though the page will
2085 * change only once the write actually happens. This avoids a few races,
2086 * and potentially makes it more efficient.
2087 *
2088 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2089 * but allow concurrent faults), with pte both mapped and locked.
2090 * We return with mmap_sem still held, but pte unmapped and unlocked.
2091 */
2092 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2093 unsigned long address, pte_t *page_table, pmd_t *pmd,
2094 spinlock_t *ptl, pte_t orig_pte)
2095 {
2096 struct page *old_page, *new_page;
2097 pte_t entry;
2098 int reuse = 0, ret = 0;
2099 int page_mkwrite = 0;
2100 struct page *dirty_page = NULL;
2101
2102 old_page = vm_normal_page(vma, address, orig_pte);
2103 if (!old_page) {
2104 /*
2105 * VM_MIXEDMAP !pfn_valid() case
2106 *
2107 * We should not cow pages in a shared writeable mapping.
2108 * Just mark the pages writable as we can't do any dirty
2109 * accounting on raw pfn maps.
2110 */
2111 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2112 (VM_WRITE|VM_SHARED))
2113 goto reuse;
2114 goto gotten;
2115 }
2116
2117 /*
2118 * Take out anonymous pages first, anonymous shared vmas are
2119 * not dirty accountable.
2120 */
2121 if (PageAnon(old_page) && !PageKsm(old_page)) {
2122 if (!trylock_page(old_page)) {
2123 page_cache_get(old_page);
2124 pte_unmap_unlock(page_table, ptl);
2125 lock_page(old_page);
2126 page_table = pte_offset_map_lock(mm, pmd, address,
2127 &ptl);
2128 if (!pte_same(*page_table, orig_pte)) {
2129 unlock_page(old_page);
2130 page_cache_release(old_page);
2131 goto unlock;
2132 }
2133 page_cache_release(old_page);
2134 }
2135 reuse = reuse_swap_page(old_page);
2136 if (reuse)
2137 /*
2138 * The page is all ours. Move it to our anon_vma so
2139 * the rmap code will not search our parent or siblings.
2140 * Protected against the rmap code by the page lock.
2141 */
2142 page_move_anon_rmap(old_page, vma, address);
2143 unlock_page(old_page);
2144 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2145 (VM_WRITE|VM_SHARED))) {
2146 /*
2147 * Only catch write-faults on shared writable pages,
2148 * read-only shared pages can get COWed by
2149 * get_user_pages(.write=1, .force=1).
2150 */
2151 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2152 struct vm_fault vmf;
2153 int tmp;
2154
2155 vmf.virtual_address = (void __user *)(address &
2156 PAGE_MASK);
2157 vmf.pgoff = old_page->index;
2158 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2159 vmf.page = old_page;
2160
2161 /*
2162 * Notify the address space that the page is about to
2163 * become writable so that it can prohibit this or wait
2164 * for the page to get into an appropriate state.
2165 *
2166 * We do this without the lock held, so that it can
2167 * sleep if it needs to.
2168 */
2169 page_cache_get(old_page);
2170 pte_unmap_unlock(page_table, ptl);
2171
2172 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2173 if (unlikely(tmp &
2174 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2175 ret = tmp;
2176 goto unwritable_page;
2177 }
2178 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2179 lock_page(old_page);
2180 if (!old_page->mapping) {
2181 ret = 0; /* retry the fault */
2182 unlock_page(old_page);
2183 goto unwritable_page;
2184 }
2185 } else
2186 VM_BUG_ON(!PageLocked(old_page));
2187
2188 /*
2189 * Since we dropped the lock we need to revalidate
2190 * the PTE as someone else may have changed it. If
2191 * they did, we just return, as we can count on the
2192 * MMU to tell us if they didn't also make it writable.
2193 */
2194 page_table = pte_offset_map_lock(mm, pmd, address,
2195 &ptl);
2196 if (!pte_same(*page_table, orig_pte)) {
2197 unlock_page(old_page);
2198 page_cache_release(old_page);
2199 goto unlock;
2200 }
2201
2202 page_mkwrite = 1;
2203 }
2204 dirty_page = old_page;
2205 get_page(dirty_page);
2206 reuse = 1;
2207 }
2208
2209 if (reuse) {
2210 reuse:
2211 flush_cache_page(vma, address, pte_pfn(orig_pte));
2212 entry = pte_mkyoung(orig_pte);
2213 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2214 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2215 update_mmu_cache(vma, address, page_table);
2216 ret |= VM_FAULT_WRITE;
2217 goto unlock;
2218 }
2219
2220 /*
2221 * Ok, we need to copy. Oh, well..
2222 */
2223 page_cache_get(old_page);
2224 gotten:
2225 pte_unmap_unlock(page_table, ptl);
2226
2227 if (unlikely(anon_vma_prepare(vma)))
2228 goto oom;
2229
2230 if (is_zero_pfn(pte_pfn(orig_pte))) {
2231 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2232 if (!new_page)
2233 goto oom;
2234 } else {
2235 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2236 if (!new_page)
2237 goto oom;
2238 cow_user_page(new_page, old_page, address, vma);
2239 }
2240 __SetPageUptodate(new_page);
2241
2242 /*
2243 * Don't let another task, with possibly unlocked vma,
2244 * keep the mlocked page.
2245 */
2246 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2247 lock_page(old_page); /* for LRU manipulation */
2248 clear_page_mlock(old_page);
2249 unlock_page(old_page);
2250 }
2251
2252 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2253 goto oom_free_new;
2254
2255 /*
2256 * Re-check the pte - we dropped the lock
2257 */
2258 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2259 if (likely(pte_same(*page_table, orig_pte))) {
2260 if (old_page) {
2261 if (!PageAnon(old_page)) {
2262 dec_mm_counter_fast(mm, MM_FILEPAGES);
2263 inc_mm_counter_fast(mm, MM_ANONPAGES);
2264 }
2265 } else
2266 inc_mm_counter_fast(mm, MM_ANONPAGES);
2267 flush_cache_page(vma, address, pte_pfn(orig_pte));
2268 entry = mk_pte(new_page, vma->vm_page_prot);
2269 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2270 /*
2271 * Clear the pte entry and flush it first, before updating the
2272 * pte with the new entry. This will avoid a race condition
2273 * seen in the presence of one thread doing SMC and another
2274 * thread doing COW.
2275 */
2276 ptep_clear_flush(vma, address, page_table);
2277 page_add_new_anon_rmap(new_page, vma, address);
2278 /*
2279 * We call the notify macro here because, when using secondary
2280 * mmu page tables (such as kvm shadow page tables), we want the
2281 * new page to be mapped directly into the secondary page table.
2282 */
2283 set_pte_at_notify(mm, address, page_table, entry);
2284 update_mmu_cache(vma, address, page_table);
2285 if (old_page) {
2286 /*
2287 * Only after switching the pte to the new page may
2288 * we remove the mapcount here. Otherwise another
2289 * process may come and find the rmap count decremented
2290 * before the pte is switched to the new page, and
2291 * "reuse" the old page writing into it while our pte
2292 * here still points into it and can be read by other
2293 * threads.
2294 *
2295 * The critical issue is to order this
2296 * page_remove_rmap with the ptp_clear_flush above.
2297 * Those stores are ordered by (if nothing else,)
2298 * the barrier present in the atomic_add_negative
2299 * in page_remove_rmap.
2300 *
2301 * Then the TLB flush in ptep_clear_flush ensures that
2302 * no process can access the old page before the
2303 * decremented mapcount is visible. And the old page
2304 * cannot be reused until after the decremented
2305 * mapcount is visible. So transitively, TLBs to
2306 * old page will be flushed before it can be reused.
2307 */
2308 page_remove_rmap(old_page);
2309 }
2310
2311 /* Free the old page.. */
2312 new_page = old_page;
2313 ret |= VM_FAULT_WRITE;
2314 } else
2315 mem_cgroup_uncharge_page(new_page);
2316
2317 if (new_page)
2318 page_cache_release(new_page);
2319 if (old_page)
2320 page_cache_release(old_page);
2321 unlock:
2322 pte_unmap_unlock(page_table, ptl);
2323 if (dirty_page) {
2324 /*
2325 * Yes, Virginia, this is actually required to prevent a race
2326 * with clear_page_dirty_for_io() from clearing the page dirty
2327 * bit after it clear all dirty ptes, but before a racing
2328 * do_wp_page installs a dirty pte.
2329 *
2330 * do_no_page is protected similarly.
2331 */
2332 if (!page_mkwrite) {
2333 wait_on_page_locked(dirty_page);
2334 set_page_dirty_balance(dirty_page, page_mkwrite);
2335 }
2336 put_page(dirty_page);
2337 if (page_mkwrite) {
2338 struct address_space *mapping = dirty_page->mapping;
2339
2340 set_page_dirty(dirty_page);
2341 unlock_page(dirty_page);
2342 page_cache_release(dirty_page);
2343 if (mapping) {
2344 /*
2345 * Some device drivers do not set page.mapping
2346 * but still dirty their pages
2347 */
2348 balance_dirty_pages_ratelimited(mapping);
2349 }
2350 }
2351
2352 /* file_update_time outside page_lock */
2353 if (vma->vm_file)
2354 file_update_time(vma->vm_file);
2355 }
2356 return ret;
2357 oom_free_new:
2358 page_cache_release(new_page);
2359 oom:
2360 if (old_page) {
2361 if (page_mkwrite) {
2362 unlock_page(old_page);
2363 page_cache_release(old_page);
2364 }
2365 page_cache_release(old_page);
2366 }
2367 return VM_FAULT_OOM;
2368
2369 unwritable_page:
2370 page_cache_release(old_page);
2371 return ret;
2372 }
2373
2374 /*
2375 * Helper functions for unmap_mapping_range().
2376 *
2377 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2378 *
2379 * We have to restart searching the prio_tree whenever we drop the lock,
2380 * since the iterator is only valid while the lock is held, and anyway
2381 * a later vma might be split and reinserted earlier while lock dropped.
2382 *
2383 * The list of nonlinear vmas could be handled more efficiently, using
2384 * a placeholder, but handle it in the same way until a need is shown.
2385 * It is important to search the prio_tree before nonlinear list: a vma
2386 * may become nonlinear and be shifted from prio_tree to nonlinear list
2387 * while the lock is dropped; but never shifted from list to prio_tree.
2388 *
2389 * In order to make forward progress despite restarting the search,
2390 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2391 * quickly skip it next time around. Since the prio_tree search only
2392 * shows us those vmas affected by unmapping the range in question, we
2393 * can't efficiently keep all vmas in step with mapping->truncate_count:
2394 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2395 * mapping->truncate_count and vma->vm_truncate_count are protected by
2396 * i_mmap_lock.
2397 *
2398 * In order to make forward progress despite repeatedly restarting some
2399 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2400 * and restart from that address when we reach that vma again. It might
2401 * have been split or merged, shrunk or extended, but never shifted: so
2402 * restart_addr remains valid so long as it remains in the vma's range.
2403 * unmap_mapping_range forces truncate_count to leap over page-aligned
2404 * values so we can save vma's restart_addr in its truncate_count field.
2405 */
2406 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2407
2408 static void reset_vma_truncate_counts(struct address_space *mapping)
2409 {
2410 struct vm_area_struct *vma;
2411 struct prio_tree_iter iter;
2412
2413 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2414 vma->vm_truncate_count = 0;
2415 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2416 vma->vm_truncate_count = 0;
2417 }
2418
2419 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2420 unsigned long start_addr, unsigned long end_addr,
2421 struct zap_details *details)
2422 {
2423 unsigned long restart_addr;
2424 int need_break;
2425
2426 /*
2427 * files that support invalidating or truncating portions of the
2428 * file from under mmaped areas must have their ->fault function
2429 * return a locked page (and set VM_FAULT_LOCKED in the return).
2430 * This provides synchronisation against concurrent unmapping here.
2431 */
2432
2433 again:
2434 restart_addr = vma->vm_truncate_count;
2435 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2436 start_addr = restart_addr;
2437 if (start_addr >= end_addr) {
2438 /* Top of vma has been split off since last time */
2439 vma->vm_truncate_count = details->truncate_count;
2440 return 0;
2441 }
2442 }
2443
2444 restart_addr = zap_page_range(vma, start_addr,
2445 end_addr - start_addr, details);
2446 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2447
2448 if (restart_addr >= end_addr) {
2449 /* We have now completed this vma: mark it so */
2450 vma->vm_truncate_count = details->truncate_count;
2451 if (!need_break)
2452 return 0;
2453 } else {
2454 /* Note restart_addr in vma's truncate_count field */
2455 vma->vm_truncate_count = restart_addr;
2456 if (!need_break)
2457 goto again;
2458 }
2459
2460 spin_unlock(details->i_mmap_lock);
2461 cond_resched();
2462 spin_lock(details->i_mmap_lock);
2463 return -EINTR;
2464 }
2465
2466 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2467 struct zap_details *details)
2468 {
2469 struct vm_area_struct *vma;
2470 struct prio_tree_iter iter;
2471 pgoff_t vba, vea, zba, zea;
2472
2473 restart:
2474 vma_prio_tree_foreach(vma, &iter, root,
2475 details->first_index, details->last_index) {
2476 /* Skip quickly over those we have already dealt with */
2477 if (vma->vm_truncate_count == details->truncate_count)
2478 continue;
2479
2480 vba = vma->vm_pgoff;
2481 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2482 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2483 zba = details->first_index;
2484 if (zba < vba)
2485 zba = vba;
2486 zea = details->last_index;
2487 if (zea > vea)
2488 zea = vea;
2489
2490 if (unmap_mapping_range_vma(vma,
2491 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2492 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2493 details) < 0)
2494 goto restart;
2495 }
2496 }
2497
2498 static inline void unmap_mapping_range_list(struct list_head *head,
2499 struct zap_details *details)
2500 {
2501 struct vm_area_struct *vma;
2502
2503 /*
2504 * In nonlinear VMAs there is no correspondence between virtual address
2505 * offset and file offset. So we must perform an exhaustive search
2506 * across *all* the pages in each nonlinear VMA, not just the pages
2507 * whose virtual address lies outside the file truncation point.
2508 */
2509 restart:
2510 list_for_each_entry(vma, head, shared.vm_set.list) {
2511 /* Skip quickly over those we have already dealt with */
2512 if (vma->vm_truncate_count == details->truncate_count)
2513 continue;
2514 details->nonlinear_vma = vma;
2515 if (unmap_mapping_range_vma(vma, vma->vm_start,
2516 vma->vm_end, details) < 0)
2517 goto restart;
2518 }
2519 }
2520
2521 /**
2522 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2523 * @mapping: the address space containing mmaps to be unmapped.
2524 * @holebegin: byte in first page to unmap, relative to the start of
2525 * the underlying file. This will be rounded down to a PAGE_SIZE
2526 * boundary. Note that this is different from truncate_pagecache(), which
2527 * must keep the partial page. In contrast, we must get rid of
2528 * partial pages.
2529 * @holelen: size of prospective hole in bytes. This will be rounded
2530 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2531 * end of the file.
2532 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2533 * but 0 when invalidating pagecache, don't throw away private data.
2534 */
2535 void unmap_mapping_range(struct address_space *mapping,
2536 loff_t const holebegin, loff_t const holelen, int even_cows)
2537 {
2538 struct zap_details details;
2539 pgoff_t hba = holebegin >> PAGE_SHIFT;
2540 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2541
2542 /* Check for overflow. */
2543 if (sizeof(holelen) > sizeof(hlen)) {
2544 long long holeend =
2545 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2546 if (holeend & ~(long long)ULONG_MAX)
2547 hlen = ULONG_MAX - hba + 1;
2548 }
2549
2550 details.check_mapping = even_cows? NULL: mapping;
2551 details.nonlinear_vma = NULL;
2552 details.first_index = hba;
2553 details.last_index = hba + hlen - 1;
2554 if (details.last_index < details.first_index)
2555 details.last_index = ULONG_MAX;
2556 details.i_mmap_lock = &mapping->i_mmap_lock;
2557
2558 spin_lock(&mapping->i_mmap_lock);
2559
2560 /* Protect against endless unmapping loops */
2561 mapping->truncate_count++;
2562 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2563 if (mapping->truncate_count == 0)
2564 reset_vma_truncate_counts(mapping);
2565 mapping->truncate_count++;
2566 }
2567 details.truncate_count = mapping->truncate_count;
2568
2569 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2570 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2571 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2572 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2573 spin_unlock(&mapping->i_mmap_lock);
2574 }
2575 EXPORT_SYMBOL(unmap_mapping_range);
2576
2577 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2578 {
2579 struct address_space *mapping = inode->i_mapping;
2580
2581 /*
2582 * If the underlying filesystem is not going to provide
2583 * a way to truncate a range of blocks (punch a hole) -
2584 * we should return failure right now.
2585 */
2586 if (!inode->i_op->truncate_range)
2587 return -ENOSYS;
2588
2589 mutex_lock(&inode->i_mutex);
2590 down_write(&inode->i_alloc_sem);
2591 unmap_mapping_range(mapping, offset, (end - offset), 1);
2592 truncate_inode_pages_range(mapping, offset, end);
2593 unmap_mapping_range(mapping, offset, (end - offset), 1);
2594 inode->i_op->truncate_range(inode, offset, end);
2595 up_write(&inode->i_alloc_sem);
2596 mutex_unlock(&inode->i_mutex);
2597
2598 return 0;
2599 }
2600
2601 /*
2602 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2603 * but allow concurrent faults), and pte mapped but not yet locked.
2604 * We return with mmap_sem still held, but pte unmapped and unlocked.
2605 */
2606 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2607 unsigned long address, pte_t *page_table, pmd_t *pmd,
2608 unsigned int flags, pte_t orig_pte)
2609 {
2610 spinlock_t *ptl;
2611 struct page *page;
2612 swp_entry_t entry;
2613 pte_t pte;
2614 struct mem_cgroup *ptr = NULL;
2615 int ret = 0;
2616
2617 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2618 goto out;
2619
2620 entry = pte_to_swp_entry(orig_pte);
2621 if (unlikely(non_swap_entry(entry))) {
2622 if (is_migration_entry(entry)) {
2623 migration_entry_wait(mm, pmd, address);
2624 } else if (is_hwpoison_entry(entry)) {
2625 ret = VM_FAULT_HWPOISON;
2626 } else {
2627 print_bad_pte(vma, address, orig_pte, NULL);
2628 ret = VM_FAULT_SIGBUS;
2629 }
2630 goto out;
2631 }
2632 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2633 page = lookup_swap_cache(entry);
2634 if (!page) {
2635 grab_swap_token(mm); /* Contend for token _before_ read-in */
2636 page = swapin_readahead(entry,
2637 GFP_HIGHUSER_MOVABLE, vma, address);
2638 if (!page) {
2639 /*
2640 * Back out if somebody else faulted in this pte
2641 * while we released the pte lock.
2642 */
2643 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644 if (likely(pte_same(*page_table, orig_pte)))
2645 ret = VM_FAULT_OOM;
2646 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2647 goto unlock;
2648 }
2649
2650 /* Had to read the page from swap area: Major fault */
2651 ret = VM_FAULT_MAJOR;
2652 count_vm_event(PGMAJFAULT);
2653 } else if (PageHWPoison(page)) {
2654 /*
2655 * hwpoisoned dirty swapcache pages are kept for killing
2656 * owner processes (which may be unknown at hwpoison time)
2657 */
2658 ret = VM_FAULT_HWPOISON;
2659 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2660 goto out_release;
2661 }
2662
2663 lock_page(page);
2664 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2665
2666 page = ksm_might_need_to_copy(page, vma, address);
2667 if (!page) {
2668 ret = VM_FAULT_OOM;
2669 goto out;
2670 }
2671
2672 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2673 ret = VM_FAULT_OOM;
2674 goto out_page;
2675 }
2676
2677 /*
2678 * Back out if somebody else already faulted in this pte.
2679 */
2680 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2681 if (unlikely(!pte_same(*page_table, orig_pte)))
2682 goto out_nomap;
2683
2684 if (unlikely(!PageUptodate(page))) {
2685 ret = VM_FAULT_SIGBUS;
2686 goto out_nomap;
2687 }
2688
2689 /*
2690 * The page isn't present yet, go ahead with the fault.
2691 *
2692 * Be careful about the sequence of operations here.
2693 * To get its accounting right, reuse_swap_page() must be called
2694 * while the page is counted on swap but not yet in mapcount i.e.
2695 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2696 * must be called after the swap_free(), or it will never succeed.
2697 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2698 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2699 * in page->private. In this case, a record in swap_cgroup is silently
2700 * discarded at swap_free().
2701 */
2702
2703 inc_mm_counter_fast(mm, MM_ANONPAGES);
2704 dec_mm_counter_fast(mm, MM_SWAPENTS);
2705 pte = mk_pte(page, vma->vm_page_prot);
2706 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2707 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2708 flags &= ~FAULT_FLAG_WRITE;
2709 }
2710 flush_icache_page(vma, page);
2711 set_pte_at(mm, address, page_table, pte);
2712 page_add_anon_rmap(page, vma, address);
2713 /* It's better to call commit-charge after rmap is established */
2714 mem_cgroup_commit_charge_swapin(page, ptr);
2715
2716 swap_free(entry);
2717 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2718 try_to_free_swap(page);
2719 unlock_page(page);
2720
2721 if (flags & FAULT_FLAG_WRITE) {
2722 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2723 if (ret & VM_FAULT_ERROR)
2724 ret &= VM_FAULT_ERROR;
2725 goto out;
2726 }
2727
2728 /* No need to invalidate - it was non-present before */
2729 update_mmu_cache(vma, address, page_table);
2730 unlock:
2731 pte_unmap_unlock(page_table, ptl);
2732 out:
2733 return ret;
2734 out_nomap:
2735 mem_cgroup_cancel_charge_swapin(ptr);
2736 pte_unmap_unlock(page_table, ptl);
2737 out_page:
2738 unlock_page(page);
2739 out_release:
2740 page_cache_release(page);
2741 return ret;
2742 }
2743
2744 /*
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte mapped but not yet locked.
2747 * We return with mmap_sem still held, but pte unmapped and unlocked.
2748 */
2749 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2750 unsigned long address, pte_t *page_table, pmd_t *pmd,
2751 unsigned int flags)
2752 {
2753 struct page *page;
2754 spinlock_t *ptl;
2755 pte_t entry;
2756
2757 if (!(flags & FAULT_FLAG_WRITE)) {
2758 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2759 vma->vm_page_prot));
2760 ptl = pte_lockptr(mm, pmd);
2761 spin_lock(ptl);
2762 if (!pte_none(*page_table))
2763 goto unlock;
2764 goto setpte;
2765 }
2766
2767 /* Allocate our own private page. */
2768 pte_unmap(page_table);
2769
2770 if (unlikely(anon_vma_prepare(vma)))
2771 goto oom;
2772 page = alloc_zeroed_user_highpage_movable(vma, address);
2773 if (!page)
2774 goto oom;
2775 __SetPageUptodate(page);
2776
2777 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2778 goto oom_free_page;
2779
2780 entry = mk_pte(page, vma->vm_page_prot);
2781 if (vma->vm_flags & VM_WRITE)
2782 entry = pte_mkwrite(pte_mkdirty(entry));
2783
2784 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2785 if (!pte_none(*page_table))
2786 goto release;
2787
2788 inc_mm_counter_fast(mm, MM_ANONPAGES);
2789 page_add_new_anon_rmap(page, vma, address);
2790 setpte:
2791 set_pte_at(mm, address, page_table, entry);
2792
2793 /* No need to invalidate - it was non-present before */
2794 update_mmu_cache(vma, address, page_table);
2795 unlock:
2796 pte_unmap_unlock(page_table, ptl);
2797 return 0;
2798 release:
2799 mem_cgroup_uncharge_page(page);
2800 page_cache_release(page);
2801 goto unlock;
2802 oom_free_page:
2803 page_cache_release(page);
2804 oom:
2805 return VM_FAULT_OOM;
2806 }
2807
2808 /*
2809 * __do_fault() tries to create a new page mapping. It aggressively
2810 * tries to share with existing pages, but makes a separate copy if
2811 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2812 * the next page fault.
2813 *
2814 * As this is called only for pages that do not currently exist, we
2815 * do not need to flush old virtual caches or the TLB.
2816 *
2817 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2818 * but allow concurrent faults), and pte neither mapped nor locked.
2819 * We return with mmap_sem still held, but pte unmapped and unlocked.
2820 */
2821 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2822 unsigned long address, pmd_t *pmd,
2823 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2824 {
2825 pte_t *page_table;
2826 spinlock_t *ptl;
2827 struct page *page;
2828 pte_t entry;
2829 int anon = 0;
2830 int charged = 0;
2831 struct page *dirty_page = NULL;
2832 struct vm_fault vmf;
2833 int ret;
2834 int page_mkwrite = 0;
2835
2836 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2837 vmf.pgoff = pgoff;
2838 vmf.flags = flags;
2839 vmf.page = NULL;
2840
2841 ret = vma->vm_ops->fault(vma, &vmf);
2842 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2843 return ret;
2844
2845 if (unlikely(PageHWPoison(vmf.page))) {
2846 if (ret & VM_FAULT_LOCKED)
2847 unlock_page(vmf.page);
2848 return VM_FAULT_HWPOISON;
2849 }
2850
2851 /*
2852 * For consistency in subsequent calls, make the faulted page always
2853 * locked.
2854 */
2855 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2856 lock_page(vmf.page);
2857 else
2858 VM_BUG_ON(!PageLocked(vmf.page));
2859
2860 /*
2861 * Should we do an early C-O-W break?
2862 */
2863 page = vmf.page;
2864 if (flags & FAULT_FLAG_WRITE) {
2865 if (!(vma->vm_flags & VM_SHARED)) {
2866 anon = 1;
2867 if (unlikely(anon_vma_prepare(vma))) {
2868 ret = VM_FAULT_OOM;
2869 goto out;
2870 }
2871 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2872 vma, address);
2873 if (!page) {
2874 ret = VM_FAULT_OOM;
2875 goto out;
2876 }
2877 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2878 ret = VM_FAULT_OOM;
2879 page_cache_release(page);
2880 goto out;
2881 }
2882 charged = 1;
2883 /*
2884 * Don't let another task, with possibly unlocked vma,
2885 * keep the mlocked page.
2886 */
2887 if (vma->vm_flags & VM_LOCKED)
2888 clear_page_mlock(vmf.page);
2889 copy_user_highpage(page, vmf.page, address, vma);
2890 __SetPageUptodate(page);
2891 } else {
2892 /*
2893 * If the page will be shareable, see if the backing
2894 * address space wants to know that the page is about
2895 * to become writable
2896 */
2897 if (vma->vm_ops->page_mkwrite) {
2898 int tmp;
2899
2900 unlock_page(page);
2901 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2902 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2903 if (unlikely(tmp &
2904 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2905 ret = tmp;
2906 goto unwritable_page;
2907 }
2908 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2909 lock_page(page);
2910 if (!page->mapping) {
2911 ret = 0; /* retry the fault */
2912 unlock_page(page);
2913 goto unwritable_page;
2914 }
2915 } else
2916 VM_BUG_ON(!PageLocked(page));
2917 page_mkwrite = 1;
2918 }
2919 }
2920
2921 }
2922
2923 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2924
2925 /*
2926 * This silly early PAGE_DIRTY setting removes a race
2927 * due to the bad i386 page protection. But it's valid
2928 * for other architectures too.
2929 *
2930 * Note that if FAULT_FLAG_WRITE is set, we either now have
2931 * an exclusive copy of the page, or this is a shared mapping,
2932 * so we can make it writable and dirty to avoid having to
2933 * handle that later.
2934 */
2935 /* Only go through if we didn't race with anybody else... */
2936 if (likely(pte_same(*page_table, orig_pte))) {
2937 flush_icache_page(vma, page);
2938 entry = mk_pte(page, vma->vm_page_prot);
2939 if (flags & FAULT_FLAG_WRITE)
2940 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2941 if (anon) {
2942 inc_mm_counter_fast(mm, MM_ANONPAGES);
2943 page_add_new_anon_rmap(page, vma, address);
2944 } else {
2945 inc_mm_counter_fast(mm, MM_FILEPAGES);
2946 page_add_file_rmap(page);
2947 if (flags & FAULT_FLAG_WRITE) {
2948 dirty_page = page;
2949 get_page(dirty_page);
2950 }
2951 }
2952 set_pte_at(mm, address, page_table, entry);
2953
2954 /* no need to invalidate: a not-present page won't be cached */
2955 update_mmu_cache(vma, address, page_table);
2956 } else {
2957 if (charged)
2958 mem_cgroup_uncharge_page(page);
2959 if (anon)
2960 page_cache_release(page);
2961 else
2962 anon = 1; /* no anon but release faulted_page */
2963 }
2964
2965 pte_unmap_unlock(page_table, ptl);
2966
2967 out:
2968 if (dirty_page) {
2969 struct address_space *mapping = page->mapping;
2970
2971 if (set_page_dirty(dirty_page))
2972 page_mkwrite = 1;
2973 unlock_page(dirty_page);
2974 put_page(dirty_page);
2975 if (page_mkwrite && mapping) {
2976 /*
2977 * Some device drivers do not set page.mapping but still
2978 * dirty their pages
2979 */
2980 balance_dirty_pages_ratelimited(mapping);
2981 }
2982
2983 /* file_update_time outside page_lock */
2984 if (vma->vm_file)
2985 file_update_time(vma->vm_file);
2986 } else {
2987 unlock_page(vmf.page);
2988 if (anon)
2989 page_cache_release(vmf.page);
2990 }
2991
2992 return ret;
2993
2994 unwritable_page:
2995 page_cache_release(page);
2996 return ret;
2997 }
2998
2999 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3000 unsigned long address, pte_t *page_table, pmd_t *pmd,
3001 unsigned int flags, pte_t orig_pte)
3002 {
3003 pgoff_t pgoff = (((address & PAGE_MASK)
3004 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3005
3006 pte_unmap(page_table);
3007 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3008 }
3009
3010 /*
3011 * Fault of a previously existing named mapping. Repopulate the pte
3012 * from the encoded file_pte if possible. This enables swappable
3013 * nonlinear vmas.
3014 *
3015 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3016 * but allow concurrent faults), and pte mapped but not yet locked.
3017 * We return with mmap_sem still held, but pte unmapped and unlocked.
3018 */
3019 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020 unsigned long address, pte_t *page_table, pmd_t *pmd,
3021 unsigned int flags, pte_t orig_pte)
3022 {
3023 pgoff_t pgoff;
3024
3025 flags |= FAULT_FLAG_NONLINEAR;
3026
3027 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3028 return 0;
3029
3030 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3031 /*
3032 * Page table corrupted: show pte and kill process.
3033 */
3034 print_bad_pte(vma, address, orig_pte, NULL);
3035 return VM_FAULT_SIGBUS;
3036 }
3037
3038 pgoff = pte_to_pgoff(orig_pte);
3039 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3040 }
3041
3042 /*
3043 * These routines also need to handle stuff like marking pages dirty
3044 * and/or accessed for architectures that don't do it in hardware (most
3045 * RISC architectures). The early dirtying is also good on the i386.
3046 *
3047 * There is also a hook called "update_mmu_cache()" that architectures
3048 * with external mmu caches can use to update those (ie the Sparc or
3049 * PowerPC hashed page tables that act as extended TLBs).
3050 *
3051 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3052 * but allow concurrent faults), and pte mapped but not yet locked.
3053 * We return with mmap_sem still held, but pte unmapped and unlocked.
3054 */
3055 static inline int handle_pte_fault(struct mm_struct *mm,
3056 struct vm_area_struct *vma, unsigned long address,
3057 pte_t *pte, pmd_t *pmd, unsigned int flags)
3058 {
3059 pte_t entry;
3060 spinlock_t *ptl;
3061
3062 entry = *pte;
3063 if (!pte_present(entry)) {
3064 if (pte_none(entry)) {
3065 if (vma->vm_ops) {
3066 if (likely(vma->vm_ops->fault))
3067 return do_linear_fault(mm, vma, address,
3068 pte, pmd, flags, entry);
3069 }
3070 return do_anonymous_page(mm, vma, address,
3071 pte, pmd, flags);
3072 }
3073 if (pte_file(entry))
3074 return do_nonlinear_fault(mm, vma, address,
3075 pte, pmd, flags, entry);
3076 return do_swap_page(mm, vma, address,
3077 pte, pmd, flags, entry);
3078 }
3079
3080 ptl = pte_lockptr(mm, pmd);
3081 spin_lock(ptl);
3082 if (unlikely(!pte_same(*pte, entry)))
3083 goto unlock;
3084 if (flags & FAULT_FLAG_WRITE) {
3085 if (!pte_write(entry))
3086 return do_wp_page(mm, vma, address,
3087 pte, pmd, ptl, entry);
3088 entry = pte_mkdirty(entry);
3089 }
3090 entry = pte_mkyoung(entry);
3091 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3092 update_mmu_cache(vma, address, pte);
3093 } else {
3094 /*
3095 * This is needed only for protection faults but the arch code
3096 * is not yet telling us if this is a protection fault or not.
3097 * This still avoids useless tlb flushes for .text page faults
3098 * with threads.
3099 */
3100 if (flags & FAULT_FLAG_WRITE)
3101 flush_tlb_page(vma, address);
3102 }
3103 unlock:
3104 pte_unmap_unlock(pte, ptl);
3105 return 0;
3106 }
3107
3108 /*
3109 * By the time we get here, we already hold the mm semaphore
3110 */
3111 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3112 unsigned long address, unsigned int flags)
3113 {
3114 pgd_t *pgd;
3115 pud_t *pud;
3116 pmd_t *pmd;
3117 pte_t *pte;
3118
3119 __set_current_state(TASK_RUNNING);
3120
3121 count_vm_event(PGFAULT);
3122
3123 /* do counter updates before entering really critical section. */
3124 check_sync_rss_stat(current);
3125
3126 if (unlikely(is_vm_hugetlb_page(vma)))
3127 return hugetlb_fault(mm, vma, address, flags);
3128
3129 pgd = pgd_offset(mm, address);
3130 pud = pud_alloc(mm, pgd, address);
3131 if (!pud)
3132 return VM_FAULT_OOM;
3133 pmd = pmd_alloc(mm, pud, address);
3134 if (!pmd)
3135 return VM_FAULT_OOM;
3136 pte = pte_alloc_map(mm, pmd, address);
3137 if (!pte)
3138 return VM_FAULT_OOM;
3139
3140 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3141 }
3142
3143 #ifndef __PAGETABLE_PUD_FOLDED
3144 /*
3145 * Allocate page upper directory.
3146 * We've already handled the fast-path in-line.
3147 */
3148 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3149 {
3150 pud_t *new = pud_alloc_one(mm, address);
3151 if (!new)
3152 return -ENOMEM;
3153
3154 smp_wmb(); /* See comment in __pte_alloc */
3155
3156 spin_lock(&mm->page_table_lock);
3157 if (pgd_present(*pgd)) /* Another has populated it */
3158 pud_free(mm, new);
3159 else
3160 pgd_populate(mm, pgd, new);
3161 spin_unlock(&mm->page_table_lock);
3162 return 0;
3163 }
3164 #endif /* __PAGETABLE_PUD_FOLDED */
3165
3166 #ifndef __PAGETABLE_PMD_FOLDED
3167 /*
3168 * Allocate page middle directory.
3169 * We've already handled the fast-path in-line.
3170 */
3171 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3172 {
3173 pmd_t *new = pmd_alloc_one(mm, address);
3174 if (!new)
3175 return -ENOMEM;
3176
3177 smp_wmb(); /* See comment in __pte_alloc */
3178
3179 spin_lock(&mm->page_table_lock);
3180 #ifndef __ARCH_HAS_4LEVEL_HACK
3181 if (pud_present(*pud)) /* Another has populated it */
3182 pmd_free(mm, new);
3183 else
3184 pud_populate(mm, pud, new);
3185 #else
3186 if (pgd_present(*pud)) /* Another has populated it */
3187 pmd_free(mm, new);
3188 else
3189 pgd_populate(mm, pud, new);
3190 #endif /* __ARCH_HAS_4LEVEL_HACK */
3191 spin_unlock(&mm->page_table_lock);
3192 return 0;
3193 }
3194 #endif /* __PAGETABLE_PMD_FOLDED */
3195
3196 int make_pages_present(unsigned long addr, unsigned long end)
3197 {
3198 int ret, len, write;
3199 struct vm_area_struct * vma;
3200
3201 vma = find_vma(current->mm, addr);
3202 if (!vma)
3203 return -ENOMEM;
3204 write = (vma->vm_flags & VM_WRITE) != 0;
3205 BUG_ON(addr >= end);
3206 BUG_ON(end > vma->vm_end);
3207 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3208 ret = get_user_pages(current, current->mm, addr,
3209 len, write, 0, NULL, NULL);
3210 if (ret < 0)
3211 return ret;
3212 return ret == len ? 0 : -EFAULT;
3213 }
3214
3215 #if !defined(__HAVE_ARCH_GATE_AREA)
3216
3217 #if defined(AT_SYSINFO_EHDR)
3218 static struct vm_area_struct gate_vma;
3219
3220 static int __init gate_vma_init(void)
3221 {
3222 gate_vma.vm_mm = NULL;
3223 gate_vma.vm_start = FIXADDR_USER_START;
3224 gate_vma.vm_end = FIXADDR_USER_END;
3225 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3226 gate_vma.vm_page_prot = __P101;
3227 /*
3228 * Make sure the vDSO gets into every core dump.
3229 * Dumping its contents makes post-mortem fully interpretable later
3230 * without matching up the same kernel and hardware config to see
3231 * what PC values meant.
3232 */
3233 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3234 return 0;
3235 }
3236 __initcall(gate_vma_init);
3237 #endif
3238
3239 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3240 {
3241 #ifdef AT_SYSINFO_EHDR
3242 return &gate_vma;
3243 #else
3244 return NULL;
3245 #endif
3246 }
3247
3248 int in_gate_area_no_task(unsigned long addr)
3249 {
3250 #ifdef AT_SYSINFO_EHDR
3251 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3252 return 1;
3253 #endif
3254 return 0;
3255 }
3256
3257 #endif /* __HAVE_ARCH_GATE_AREA */
3258
3259 static int follow_pte(struct mm_struct *mm, unsigned long address,
3260 pte_t **ptepp, spinlock_t **ptlp)
3261 {
3262 pgd_t *pgd;
3263 pud_t *pud;
3264 pmd_t *pmd;
3265 pte_t *ptep;
3266
3267 pgd = pgd_offset(mm, address);
3268 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3269 goto out;
3270
3271 pud = pud_offset(pgd, address);
3272 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3273 goto out;
3274
3275 pmd = pmd_offset(pud, address);
3276 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3277 goto out;
3278
3279 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3280 if (pmd_huge(*pmd))
3281 goto out;
3282
3283 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3284 if (!ptep)
3285 goto out;
3286 if (!pte_present(*ptep))
3287 goto unlock;
3288 *ptepp = ptep;
3289 return 0;
3290 unlock:
3291 pte_unmap_unlock(ptep, *ptlp);
3292 out:
3293 return -EINVAL;
3294 }
3295
3296 /**
3297 * follow_pfn - look up PFN at a user virtual address
3298 * @vma: memory mapping
3299 * @address: user virtual address
3300 * @pfn: location to store found PFN
3301 *
3302 * Only IO mappings and raw PFN mappings are allowed.
3303 *
3304 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3305 */
3306 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3307 unsigned long *pfn)
3308 {
3309 int ret = -EINVAL;
3310 spinlock_t *ptl;
3311 pte_t *ptep;
3312
3313 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3314 return ret;
3315
3316 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3317 if (ret)
3318 return ret;
3319 *pfn = pte_pfn(*ptep);
3320 pte_unmap_unlock(ptep, ptl);
3321 return 0;
3322 }
3323 EXPORT_SYMBOL(follow_pfn);
3324
3325 #ifdef CONFIG_HAVE_IOREMAP_PROT
3326 int follow_phys(struct vm_area_struct *vma,
3327 unsigned long address, unsigned int flags,
3328 unsigned long *prot, resource_size_t *phys)
3329 {
3330 int ret = -EINVAL;
3331 pte_t *ptep, pte;
3332 spinlock_t *ptl;
3333
3334 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3335 goto out;
3336
3337 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3338 goto out;
3339 pte = *ptep;
3340
3341 if ((flags & FOLL_WRITE) && !pte_write(pte))
3342 goto unlock;
3343
3344 *prot = pgprot_val(pte_pgprot(pte));
3345 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3346
3347 ret = 0;
3348 unlock:
3349 pte_unmap_unlock(ptep, ptl);
3350 out:
3351 return ret;
3352 }
3353
3354 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3355 void *buf, int len, int write)
3356 {
3357 resource_size_t phys_addr;
3358 unsigned long prot = 0;
3359 void __iomem *maddr;
3360 int offset = addr & (PAGE_SIZE-1);
3361
3362 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3363 return -EINVAL;
3364
3365 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3366 if (write)
3367 memcpy_toio(maddr + offset, buf, len);
3368 else
3369 memcpy_fromio(buf, maddr + offset, len);
3370 iounmap(maddr);
3371
3372 return len;
3373 }
3374 #endif
3375
3376 /*
3377 * Access another process' address space.
3378 * Source/target buffer must be kernel space,
3379 * Do not walk the page table directly, use get_user_pages
3380 */
3381 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3382 {
3383 struct mm_struct *mm;
3384 struct vm_area_struct *vma;
3385 void *old_buf = buf;
3386
3387 mm = get_task_mm(tsk);
3388 if (!mm)
3389 return 0;
3390
3391 down_read(&mm->mmap_sem);
3392 /* ignore errors, just check how much was successfully transferred */
3393 while (len) {
3394 int bytes, ret, offset;
3395 void *maddr;
3396 struct page *page = NULL;
3397
3398 ret = get_user_pages(tsk, mm, addr, 1,
3399 write, 1, &page, &vma);
3400 if (ret <= 0) {
3401 /*
3402 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3403 * we can access using slightly different code.
3404 */
3405 #ifdef CONFIG_HAVE_IOREMAP_PROT
3406 vma = find_vma(mm, addr);
3407 if (!vma)
3408 break;
3409 if (vma->vm_ops && vma->vm_ops->access)
3410 ret = vma->vm_ops->access(vma, addr, buf,
3411 len, write);
3412 if (ret <= 0)
3413 #endif
3414 break;
3415 bytes = ret;
3416 } else {
3417 bytes = len;
3418 offset = addr & (PAGE_SIZE-1);
3419 if (bytes > PAGE_SIZE-offset)
3420 bytes = PAGE_SIZE-offset;
3421
3422 maddr = kmap(page);
3423 if (write) {
3424 copy_to_user_page(vma, page, addr,
3425 maddr + offset, buf, bytes);
3426 set_page_dirty_lock(page);
3427 } else {
3428 copy_from_user_page(vma, page, addr,
3429 buf, maddr + offset, bytes);
3430 }
3431 kunmap(page);
3432 page_cache_release(page);
3433 }
3434 len -= bytes;
3435 buf += bytes;
3436 addr += bytes;
3437 }
3438 up_read(&mm->mmap_sem);
3439 mmput(mm);
3440
3441 return buf - old_buf;
3442 }
3443
3444 /*
3445 * Print the name of a VMA.
3446 */
3447 void print_vma_addr(char *prefix, unsigned long ip)
3448 {
3449 struct mm_struct *mm = current->mm;
3450 struct vm_area_struct *vma;
3451
3452 /*
3453 * Do not print if we are in atomic
3454 * contexts (in exception stacks, etc.):
3455 */
3456 if (preempt_count())
3457 return;
3458
3459 down_read(&mm->mmap_sem);
3460 vma = find_vma(mm, ip);
3461 if (vma && vma->vm_file) {
3462 struct file *f = vma->vm_file;
3463 char *buf = (char *)__get_free_page(GFP_KERNEL);
3464 if (buf) {
3465 char *p, *s;
3466
3467 p = d_path(&f->f_path, buf, PAGE_SIZE);
3468 if (IS_ERR(p))
3469 p = "?";
3470 s = strrchr(p, '/');
3471 if (s)
3472 p = s+1;
3473 printk("%s%s[%lx+%lx]", prefix, p,
3474 vma->vm_start,
3475 vma->vm_end - vma->vm_start);
3476 free_page((unsigned long)buf);
3477 }
3478 }
3479 up_read(&current->mm->mmap_sem);
3480 }
3481
3482 #ifdef CONFIG_PROVE_LOCKING
3483 void might_fault(void)
3484 {
3485 /*
3486 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3487 * holding the mmap_sem, this is safe because kernel memory doesn't
3488 * get paged out, therefore we'll never actually fault, and the
3489 * below annotations will generate false positives.
3490 */
3491 if (segment_eq(get_fs(), KERNEL_DS))
3492 return;
3493
3494 might_sleep();
3495 /*
3496 * it would be nicer only to annotate paths which are not under
3497 * pagefault_disable, however that requires a larger audit and
3498 * providing helpers like get_user_atomic.
3499 */
3500 if (!in_atomic() && current->mm)
3501 might_lock_read(&current->mm->mmap_sem);
3502 }
3503 EXPORT_SYMBOL(might_fault);
3504 #endif