]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
mm: memcontrol: make swap tracking an integral part of memory control
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 1;
119 #else
120 2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137 randomize_va_space = 0;
138 return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150 static int __init init_zero_pfn(void)
151 {
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
172 }
173 }
174 current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
215 {
216 pgtable_t token = pmd_pgtable(*pmd);
217 pmd_clear(pmd);
218 pte_free_tlb(tlb, token, addr);
219 mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
225 {
226 pmd_t *pmd;
227 unsigned long next;
228 unsigned long start;
229
230 start = addr;
231 pmd = pmd_offset(pud, addr);
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
236 free_pte_range(tlb, pmd, addr);
237 } while (pmd++, addr = next, addr != end);
238
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
246 }
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
252 pmd_free_tlb(tlb, pmd, start);
253 mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
259 {
260 pud_t *pud;
261 unsigned long next;
262 unsigned long start;
263
264 start = addr;
265 pud = pud_offset(p4d, addr);
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 } while (pud++, addr = next, addr != end);
272
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
287 mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293 {
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
314 }
315 if (end - 1 > ceiling - 1)
316 return;
317
318 p4d = p4d_offset(pgd, start);
319 pgd_clear(pgd);
320 p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324 * This function frees user-level page tables of a process.
325 */
326 void free_pgd_range(struct mmu_gather *tlb,
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
329 {
330 pgd_t *pgd;
331 unsigned long next;
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
358
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
378 tlb_change_page_size(tlb, PAGE_SIZE);
379 pgd = pgd_offset(tlb->mm, addr);
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 unsigned long floor, unsigned long ceiling)
390 {
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
395 /*
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
398 */
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
401
402 if (is_vm_hugetlb_page(vma)) {
403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 && !is_vm_hugetlb_page(next)) {
411 vma = next;
412 next = vma->vm_next;
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 }
419 vma = next;
420 }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 spinlock_t *ptl;
426 pgtable_t new = pte_alloc_one(mm);
427 if (!new)
428 return -ENOMEM;
429
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445 ptl = pmd_lock(mm, pmd);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 mm_inc_nr_ptes(mm);
448 pmd_populate(mm, pmd, new);
449 new = NULL;
450 }
451 spin_unlock(ptl);
452 if (new)
453 pte_free(mm, new);
454 return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
462
463 smp_wmb(); /* See comment in __pte_alloc */
464
465 spin_lock(&init_mm.page_table_lock);
466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 int i;
484
485 if (current->mm == mm)
486 sync_mm_rss(mm);
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
496 *
497 * The calling function must still handle the error.
498 */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
501 {
502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 if (page)
538 dump_page(page, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
546 dump_stack();
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 *
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 *
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
565 *
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
579 *
580 *
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
591 */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
594 {
595 unsigned long pfn = pte_pfn(pte);
596
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
607 return NULL;
608
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
611 }
612
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
628 }
629
630 if (is_zero_pfn(pfn))
631 return NULL;
632
633 check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
638
639 /*
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
642 */
643 out:
644 return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650 {
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
673 if (pmd_devmap(pmd))
674 return NULL;
675 if (is_huge_zero_pmd(pmd))
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684 out:
685 return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
693 */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 unsigned long addr, int *rss)
699 {
700 unsigned long vm_flags = vma->vm_flags;
701 pte_t pte = *src_pte;
702 struct page *page;
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
724 rss[mm_counter(page)]++;
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
771 }
772 goto out_set_pte;
773 }
774
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 ptep_set_wrprotect(src_mm, addr, src_pte);
781 pte = pte_wrprotect(pte);
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
791
792 /*
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
796 */
797 if (!(vm_flags & VM_UFFD_WP))
798 pte = pte_clear_uffd_wp(pte);
799
800 page = vm_normal_page(vma, addr, pte);
801 if (page) {
802 get_page(page);
803 page_dup_rmap(page, false);
804 rss[mm_counter(page)]++;
805 }
806
807 out_set_pte:
808 set_pte_at(dst_mm, addr, dst_pte, pte);
809 return 0;
810 }
811
812 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
813 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
814 unsigned long addr, unsigned long end)
815 {
816 pte_t *orig_src_pte, *orig_dst_pte;
817 pte_t *src_pte, *dst_pte;
818 spinlock_t *src_ptl, *dst_ptl;
819 int progress = 0;
820 int rss[NR_MM_COUNTERS];
821 swp_entry_t entry = (swp_entry_t){0};
822
823 again:
824 init_rss_vec(rss);
825
826 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
827 if (!dst_pte)
828 return -ENOMEM;
829 src_pte = pte_offset_map(src_pmd, addr);
830 src_ptl = pte_lockptr(src_mm, src_pmd);
831 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
832 orig_src_pte = src_pte;
833 orig_dst_pte = dst_pte;
834 arch_enter_lazy_mmu_mode();
835
836 do {
837 /*
838 * We are holding two locks at this point - either of them
839 * could generate latencies in another task on another CPU.
840 */
841 if (progress >= 32) {
842 progress = 0;
843 if (need_resched() ||
844 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
845 break;
846 }
847 if (pte_none(*src_pte)) {
848 progress++;
849 continue;
850 }
851 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
852 vma, addr, rss);
853 if (entry.val)
854 break;
855 progress += 8;
856 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
857
858 arch_leave_lazy_mmu_mode();
859 spin_unlock(src_ptl);
860 pte_unmap(orig_src_pte);
861 add_mm_rss_vec(dst_mm, rss);
862 pte_unmap_unlock(orig_dst_pte, dst_ptl);
863 cond_resched();
864
865 if (entry.val) {
866 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
867 return -ENOMEM;
868 progress = 0;
869 }
870 if (addr != end)
871 goto again;
872 return 0;
873 }
874
875 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
876 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
877 unsigned long addr, unsigned long end)
878 {
879 pmd_t *src_pmd, *dst_pmd;
880 unsigned long next;
881
882 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
883 if (!dst_pmd)
884 return -ENOMEM;
885 src_pmd = pmd_offset(src_pud, addr);
886 do {
887 next = pmd_addr_end(addr, end);
888 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
889 || pmd_devmap(*src_pmd)) {
890 int err;
891 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
892 err = copy_huge_pmd(dst_mm, src_mm,
893 dst_pmd, src_pmd, addr, vma);
894 if (err == -ENOMEM)
895 return -ENOMEM;
896 if (!err)
897 continue;
898 /* fall through */
899 }
900 if (pmd_none_or_clear_bad(src_pmd))
901 continue;
902 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
903 vma, addr, next))
904 return -ENOMEM;
905 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
906 return 0;
907 }
908
909 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
910 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
911 unsigned long addr, unsigned long end)
912 {
913 pud_t *src_pud, *dst_pud;
914 unsigned long next;
915
916 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
917 if (!dst_pud)
918 return -ENOMEM;
919 src_pud = pud_offset(src_p4d, addr);
920 do {
921 next = pud_addr_end(addr, end);
922 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
923 int err;
924
925 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
926 err = copy_huge_pud(dst_mm, src_mm,
927 dst_pud, src_pud, addr, vma);
928 if (err == -ENOMEM)
929 return -ENOMEM;
930 if (!err)
931 continue;
932 /* fall through */
933 }
934 if (pud_none_or_clear_bad(src_pud))
935 continue;
936 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
937 vma, addr, next))
938 return -ENOMEM;
939 } while (dst_pud++, src_pud++, addr = next, addr != end);
940 return 0;
941 }
942
943 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
945 unsigned long addr, unsigned long end)
946 {
947 p4d_t *src_p4d, *dst_p4d;
948 unsigned long next;
949
950 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
951 if (!dst_p4d)
952 return -ENOMEM;
953 src_p4d = p4d_offset(src_pgd, addr);
954 do {
955 next = p4d_addr_end(addr, end);
956 if (p4d_none_or_clear_bad(src_p4d))
957 continue;
958 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
959 vma, addr, next))
960 return -ENOMEM;
961 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
962 return 0;
963 }
964
965 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
966 struct vm_area_struct *vma)
967 {
968 pgd_t *src_pgd, *dst_pgd;
969 unsigned long next;
970 unsigned long addr = vma->vm_start;
971 unsigned long end = vma->vm_end;
972 struct mmu_notifier_range range;
973 bool is_cow;
974 int ret;
975
976 /*
977 * Don't copy ptes where a page fault will fill them correctly.
978 * Fork becomes much lighter when there are big shared or private
979 * readonly mappings. The tradeoff is that copy_page_range is more
980 * efficient than faulting.
981 */
982 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
983 !vma->anon_vma)
984 return 0;
985
986 if (is_vm_hugetlb_page(vma))
987 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
988
989 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
990 /*
991 * We do not free on error cases below as remove_vma
992 * gets called on error from higher level routine
993 */
994 ret = track_pfn_copy(vma);
995 if (ret)
996 return ret;
997 }
998
999 /*
1000 * We need to invalidate the secondary MMU mappings only when
1001 * there could be a permission downgrade on the ptes of the
1002 * parent mm. And a permission downgrade will only happen if
1003 * is_cow_mapping() returns true.
1004 */
1005 is_cow = is_cow_mapping(vma->vm_flags);
1006
1007 if (is_cow) {
1008 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1009 0, vma, src_mm, addr, end);
1010 mmu_notifier_invalidate_range_start(&range);
1011 }
1012
1013 ret = 0;
1014 dst_pgd = pgd_offset(dst_mm, addr);
1015 src_pgd = pgd_offset(src_mm, addr);
1016 do {
1017 next = pgd_addr_end(addr, end);
1018 if (pgd_none_or_clear_bad(src_pgd))
1019 continue;
1020 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1021 vma, addr, next))) {
1022 ret = -ENOMEM;
1023 break;
1024 }
1025 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1026
1027 if (is_cow)
1028 mmu_notifier_invalidate_range_end(&range);
1029 return ret;
1030 }
1031
1032 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1033 struct vm_area_struct *vma, pmd_t *pmd,
1034 unsigned long addr, unsigned long end,
1035 struct zap_details *details)
1036 {
1037 struct mm_struct *mm = tlb->mm;
1038 int force_flush = 0;
1039 int rss[NR_MM_COUNTERS];
1040 spinlock_t *ptl;
1041 pte_t *start_pte;
1042 pte_t *pte;
1043 swp_entry_t entry;
1044
1045 tlb_change_page_size(tlb, PAGE_SIZE);
1046 again:
1047 init_rss_vec(rss);
1048 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1049 pte = start_pte;
1050 flush_tlb_batched_pending(mm);
1051 arch_enter_lazy_mmu_mode();
1052 do {
1053 pte_t ptent = *pte;
1054 if (pte_none(ptent))
1055 continue;
1056
1057 if (need_resched())
1058 break;
1059
1060 if (pte_present(ptent)) {
1061 struct page *page;
1062
1063 page = vm_normal_page(vma, addr, ptent);
1064 if (unlikely(details) && page) {
1065 /*
1066 * unmap_shared_mapping_pages() wants to
1067 * invalidate cache without truncating:
1068 * unmap shared but keep private pages.
1069 */
1070 if (details->check_mapping &&
1071 details->check_mapping != page_rmapping(page))
1072 continue;
1073 }
1074 ptent = ptep_get_and_clear_full(mm, addr, pte,
1075 tlb->fullmm);
1076 tlb_remove_tlb_entry(tlb, pte, addr);
1077 if (unlikely(!page))
1078 continue;
1079
1080 if (!PageAnon(page)) {
1081 if (pte_dirty(ptent)) {
1082 force_flush = 1;
1083 set_page_dirty(page);
1084 }
1085 if (pte_young(ptent) &&
1086 likely(!(vma->vm_flags & VM_SEQ_READ)))
1087 mark_page_accessed(page);
1088 }
1089 rss[mm_counter(page)]--;
1090 page_remove_rmap(page, false);
1091 if (unlikely(page_mapcount(page) < 0))
1092 print_bad_pte(vma, addr, ptent, page);
1093 if (unlikely(__tlb_remove_page(tlb, page))) {
1094 force_flush = 1;
1095 addr += PAGE_SIZE;
1096 break;
1097 }
1098 continue;
1099 }
1100
1101 entry = pte_to_swp_entry(ptent);
1102 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103 struct page *page = device_private_entry_to_page(entry);
1104
1105 if (unlikely(details && details->check_mapping)) {
1106 /*
1107 * unmap_shared_mapping_pages() wants to
1108 * invalidate cache without truncating:
1109 * unmap shared but keep private pages.
1110 */
1111 if (details->check_mapping !=
1112 page_rmapping(page))
1113 continue;
1114 }
1115
1116 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117 rss[mm_counter(page)]--;
1118 page_remove_rmap(page, false);
1119 put_page(page);
1120 continue;
1121 }
1122
1123 /* If details->check_mapping, we leave swap entries. */
1124 if (unlikely(details))
1125 continue;
1126
1127 if (!non_swap_entry(entry))
1128 rss[MM_SWAPENTS]--;
1129 else if (is_migration_entry(entry)) {
1130 struct page *page;
1131
1132 page = migration_entry_to_page(entry);
1133 rss[mm_counter(page)]--;
1134 }
1135 if (unlikely(!free_swap_and_cache(entry)))
1136 print_bad_pte(vma, addr, ptent, NULL);
1137 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138 } while (pte++, addr += PAGE_SIZE, addr != end);
1139
1140 add_mm_rss_vec(mm, rss);
1141 arch_leave_lazy_mmu_mode();
1142
1143 /* Do the actual TLB flush before dropping ptl */
1144 if (force_flush)
1145 tlb_flush_mmu_tlbonly(tlb);
1146 pte_unmap_unlock(start_pte, ptl);
1147
1148 /*
1149 * If we forced a TLB flush (either due to running out of
1150 * batch buffers or because we needed to flush dirty TLB
1151 * entries before releasing the ptl), free the batched
1152 * memory too. Restart if we didn't do everything.
1153 */
1154 if (force_flush) {
1155 force_flush = 0;
1156 tlb_flush_mmu(tlb);
1157 }
1158
1159 if (addr != end) {
1160 cond_resched();
1161 goto again;
1162 }
1163
1164 return addr;
1165 }
1166
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168 struct vm_area_struct *vma, pud_t *pud,
1169 unsigned long addr, unsigned long end,
1170 struct zap_details *details)
1171 {
1172 pmd_t *pmd;
1173 unsigned long next;
1174
1175 pmd = pmd_offset(pud, addr);
1176 do {
1177 next = pmd_addr_end(addr, end);
1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179 if (next - addr != HPAGE_PMD_SIZE)
1180 __split_huge_pmd(vma, pmd, addr, false, NULL);
1181 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182 goto next;
1183 /* fall through */
1184 }
1185 /*
1186 * Here there can be other concurrent MADV_DONTNEED or
1187 * trans huge page faults running, and if the pmd is
1188 * none or trans huge it can change under us. This is
1189 * because MADV_DONTNEED holds the mmap_sem in read
1190 * mode.
1191 */
1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 goto next;
1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196 cond_resched();
1197 } while (pmd++, addr = next, addr != end);
1198
1199 return addr;
1200 }
1201
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203 struct vm_area_struct *vma, p4d_t *p4d,
1204 unsigned long addr, unsigned long end,
1205 struct zap_details *details)
1206 {
1207 pud_t *pud;
1208 unsigned long next;
1209
1210 pud = pud_offset(p4d, addr);
1211 do {
1212 next = pud_addr_end(addr, end);
1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 if (next - addr != HPAGE_PUD_SIZE) {
1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 split_huge_pud(vma, pud, addr);
1217 } else if (zap_huge_pud(tlb, vma, pud, addr))
1218 goto next;
1219 /* fall through */
1220 }
1221 if (pud_none_or_clear_bad(pud))
1222 continue;
1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225 cond_resched();
1226 } while (pud++, addr = next, addr != end);
1227
1228 return addr;
1229 }
1230
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pgd_t *pgd,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1235 {
1236 p4d_t *p4d;
1237 unsigned long next;
1238
1239 p4d = p4d_offset(pgd, addr);
1240 do {
1241 next = p4d_addr_end(addr, end);
1242 if (p4d_none_or_clear_bad(p4d))
1243 continue;
1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 } while (p4d++, addr = next, addr != end);
1246
1247 return addr;
1248 }
1249
1250 void unmap_page_range(struct mmu_gather *tlb,
1251 struct vm_area_struct *vma,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1254 {
1255 pgd_t *pgd;
1256 unsigned long next;
1257
1258 BUG_ON(addr >= end);
1259 tlb_start_vma(tlb, vma);
1260 pgd = pgd_offset(vma->vm_mm, addr);
1261 do {
1262 next = pgd_addr_end(addr, end);
1263 if (pgd_none_or_clear_bad(pgd))
1264 continue;
1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266 } while (pgd++, addr = next, addr != end);
1267 tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, unsigned long start_addr,
1273 unsigned long end_addr,
1274 struct zap_details *details)
1275 {
1276 unsigned long start = max(vma->vm_start, start_addr);
1277 unsigned long end;
1278
1279 if (start >= vma->vm_end)
1280 return;
1281 end = min(vma->vm_end, end_addr);
1282 if (end <= vma->vm_start)
1283 return;
1284
1285 if (vma->vm_file)
1286 uprobe_munmap(vma, start, end);
1287
1288 if (unlikely(vma->vm_flags & VM_PFNMAP))
1289 untrack_pfn(vma, 0, 0);
1290
1291 if (start != end) {
1292 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 /*
1294 * It is undesirable to test vma->vm_file as it
1295 * should be non-null for valid hugetlb area.
1296 * However, vm_file will be NULL in the error
1297 * cleanup path of mmap_region. When
1298 * hugetlbfs ->mmap method fails,
1299 * mmap_region() nullifies vma->vm_file
1300 * before calling this function to clean up.
1301 * Since no pte has actually been setup, it is
1302 * safe to do nothing in this case.
1303 */
1304 if (vma->vm_file) {
1305 i_mmap_lock_write(vma->vm_file->f_mapping);
1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 }
1309 } else
1310 unmap_page_range(tlb, vma, start, end, details);
1311 }
1312 }
1313
1314 /**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316 * @tlb: address of the caller's struct mmu_gather
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1320 *
1321 * Unmap all pages in the vma list.
1322 *
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333 struct vm_area_struct *vma, unsigned long start_addr,
1334 unsigned long end_addr)
1335 {
1336 struct mmu_notifier_range range;
1337
1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 start_addr, end_addr);
1340 mmu_notifier_invalidate_range_start(&range);
1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343 mmu_notifier_invalidate_range_end(&range);
1344 }
1345
1346 /**
1347 * zap_page_range - remove user pages in a given range
1348 * @vma: vm_area_struct holding the applicable pages
1349 * @start: starting address of pages to zap
1350 * @size: number of bytes to zap
1351 *
1352 * Caller must protect the VMA list
1353 */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 unsigned long size)
1356 {
1357 struct mmu_notifier_range range;
1358 struct mmu_gather tlb;
1359
1360 lru_add_drain();
1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362 start, start + size);
1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 update_hiwater_rss(vma->vm_mm);
1365 mmu_notifier_invalidate_range_start(&range);
1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 mmu_notifier_invalidate_range_end(&range);
1369 tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371
1372 /**
1373 * zap_page_range_single - remove user pages in a given range
1374 * @vma: vm_area_struct holding the applicable pages
1375 * @address: starting address of pages to zap
1376 * @size: number of bytes to zap
1377 * @details: details of shared cache invalidation
1378 *
1379 * The range must fit into one VMA.
1380 */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long size, struct zap_details *details)
1383 {
1384 struct mmu_notifier_range range;
1385 struct mmu_gather tlb;
1386
1387 lru_add_drain();
1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389 address, address + size);
1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 update_hiwater_rss(vma->vm_mm);
1392 mmu_notifier_invalidate_range_start(&range);
1393 unmap_single_vma(&tlb, vma, address, range.end, details);
1394 mmu_notifier_invalidate_range_end(&range);
1395 tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397
1398 /**
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1403 *
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 *
1406 * The entire address range must be fully contained within the vma.
1407 *
1408 */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 unsigned long size)
1411 {
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
1414 return;
1415
1416 zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1421 {
1422 pgd_t *pgd;
1423 p4d_t *p4d;
1424 pud_t *pud;
1425 pmd_t *pmd;
1426
1427 pgd = pgd_offset(mm, addr);
1428 p4d = p4d_alloc(mm, pgd, addr);
1429 if (!p4d)
1430 return NULL;
1431 pud = pud_alloc(mm, p4d, addr);
1432 if (!pud)
1433 return NULL;
1434 pmd = pmd_alloc(mm, pud, addr);
1435 if (!pmd)
1436 return NULL;
1437
1438 VM_BUG_ON(pmd_trans_huge(*pmd));
1439 return pmd;
1440 }
1441
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 spinlock_t **ptl)
1444 {
1445 pmd_t *pmd = walk_to_pmd(mm, addr);
1446
1447 if (!pmd)
1448 return NULL;
1449 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1450 }
1451
1452 static int validate_page_before_insert(struct page *page)
1453 {
1454 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1455 return -EINVAL;
1456 flush_dcache_page(page);
1457 return 0;
1458 }
1459
1460 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1461 unsigned long addr, struct page *page, pgprot_t prot)
1462 {
1463 if (!pte_none(*pte))
1464 return -EBUSY;
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
1467 inc_mm_counter_fast(mm, mm_counter_file(page));
1468 page_add_file_rmap(page, false);
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470 return 0;
1471 }
1472
1473 /*
1474 * This is the old fallback for page remapping.
1475 *
1476 * For historical reasons, it only allows reserved pages. Only
1477 * old drivers should use this, and they needed to mark their
1478 * pages reserved for the old functions anyway.
1479 */
1480 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1481 struct page *page, pgprot_t prot)
1482 {
1483 struct mm_struct *mm = vma->vm_mm;
1484 int retval;
1485 pte_t *pte;
1486 spinlock_t *ptl;
1487
1488 retval = validate_page_before_insert(page);
1489 if (retval)
1490 goto out;
1491 retval = -ENOMEM;
1492 pte = get_locked_pte(mm, addr, &ptl);
1493 if (!pte)
1494 goto out;
1495 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1496 pte_unmap_unlock(pte, ptl);
1497 out:
1498 return retval;
1499 }
1500
1501 #ifdef pte_index
1502 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1503 unsigned long addr, struct page *page, pgprot_t prot)
1504 {
1505 int err;
1506
1507 if (!page_count(page))
1508 return -EINVAL;
1509 err = validate_page_before_insert(page);
1510 return err ? err : insert_page_into_pte_locked(
1511 mm, pte_offset_map(pmd, addr), addr, page, prot);
1512 }
1513
1514 /* insert_pages() amortizes the cost of spinlock operations
1515 * when inserting pages in a loop. Arch *must* define pte_index.
1516 */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518 struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520 pmd_t *pmd = NULL;
1521 spinlock_t *pte_lock = NULL;
1522 struct mm_struct *const mm = vma->vm_mm;
1523 unsigned long curr_page_idx = 0;
1524 unsigned long remaining_pages_total = *num;
1525 unsigned long pages_to_write_in_pmd;
1526 int ret;
1527 more:
1528 ret = -EFAULT;
1529 pmd = walk_to_pmd(mm, addr);
1530 if (!pmd)
1531 goto out;
1532
1533 pages_to_write_in_pmd = min_t(unsigned long,
1534 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1535
1536 /* Allocate the PTE if necessary; takes PMD lock once only. */
1537 ret = -ENOMEM;
1538 if (pte_alloc(mm, pmd))
1539 goto out;
1540 pte_lock = pte_lockptr(mm, pmd);
1541
1542 while (pages_to_write_in_pmd) {
1543 int pte_idx = 0;
1544 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545
1546 spin_lock(pte_lock);
1547 for (; pte_idx < batch_size; ++pte_idx) {
1548 int err = insert_page_in_batch_locked(mm, pmd,
1549 addr, pages[curr_page_idx], prot);
1550 if (unlikely(err)) {
1551 spin_unlock(pte_lock);
1552 ret = err;
1553 remaining_pages_total -= pte_idx;
1554 goto out;
1555 }
1556 addr += PAGE_SIZE;
1557 ++curr_page_idx;
1558 }
1559 spin_unlock(pte_lock);
1560 pages_to_write_in_pmd -= batch_size;
1561 remaining_pages_total -= batch_size;
1562 }
1563 if (remaining_pages_total)
1564 goto more;
1565 ret = 0;
1566 out:
1567 *num = remaining_pages_total;
1568 return ret;
1569 }
1570 #endif /* ifdef pte_index */
1571
1572 /**
1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574 * @vma: user vma to map to
1575 * @addr: target start user address of these pages
1576 * @pages: source kernel pages
1577 * @num: in: number of pages to map. out: number of pages that were *not*
1578 * mapped. (0 means all pages were successfully mapped).
1579 *
1580 * Preferred over vm_insert_page() when inserting multiple pages.
1581 *
1582 * In case of error, we may have mapped a subset of the provided
1583 * pages. It is the caller's responsibility to account for this case.
1584 *
1585 * The same restrictions apply as in vm_insert_page().
1586 */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588 struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592
1593 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594 return -EFAULT;
1595 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1597 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598 vma->vm_flags |= VM_MIXEDMAP;
1599 }
1600 /* Defer page refcount checking till we're about to map that page. */
1601 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603 unsigned long idx = 0, pgcount = *num;
1604 int err;
1605
1606 for (; idx < pgcount; ++idx) {
1607 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608 if (err)
1609 break;
1610 }
1611 *num = pgcount - idx;
1612 return err;
1613 #endif /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616
1617 /**
1618 * vm_insert_page - insert single page into user vma
1619 * @vma: user vma to map to
1620 * @addr: target user address of this page
1621 * @page: source kernel page
1622 *
1623 * This allows drivers to insert individual pages they've allocated
1624 * into a user vma.
1625 *
1626 * The page has to be a nice clean _individual_ kernel allocation.
1627 * If you allocate a compound page, you need to have marked it as
1628 * such (__GFP_COMP), or manually just split the page up yourself
1629 * (see split_page()).
1630 *
1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632 * took an arbitrary page protection parameter. This doesn't allow
1633 * that. Your vma protection will have to be set up correctly, which
1634 * means that if you want a shared writable mapping, you'd better
1635 * ask for a shared writable mapping!
1636 *
1637 * The page does not need to be reserved.
1638 *
1639 * Usually this function is called from f_op->mmap() handler
1640 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642 * function from other places, for example from page-fault handler.
1643 *
1644 * Return: %0 on success, negative error code otherwise.
1645 */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647 struct page *page)
1648 {
1649 if (addr < vma->vm_start || addr >= vma->vm_end)
1650 return -EFAULT;
1651 if (!page_count(page))
1652 return -EINVAL;
1653 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1655 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656 vma->vm_flags |= VM_MIXEDMAP;
1657 }
1658 return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661
1662 /*
1663 * __vm_map_pages - maps range of kernel pages into user vma
1664 * @vma: user vma to map to
1665 * @pages: pointer to array of source kernel pages
1666 * @num: number of pages in page array
1667 * @offset: user's requested vm_pgoff
1668 *
1669 * This allows drivers to map range of kernel pages into a user vma.
1670 *
1671 * Return: 0 on success and error code otherwise.
1672 */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674 unsigned long num, unsigned long offset)
1675 {
1676 unsigned long count = vma_pages(vma);
1677 unsigned long uaddr = vma->vm_start;
1678 int ret, i;
1679
1680 /* Fail if the user requested offset is beyond the end of the object */
1681 if (offset >= num)
1682 return -ENXIO;
1683
1684 /* Fail if the user requested size exceeds available object size */
1685 if (count > num - offset)
1686 return -ENXIO;
1687
1688 for (i = 0; i < count; i++) {
1689 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690 if (ret < 0)
1691 return ret;
1692 uaddr += PAGE_SIZE;
1693 }
1694
1695 return 0;
1696 }
1697
1698 /**
1699 * vm_map_pages - maps range of kernel pages starts with non zero offset
1700 * @vma: user vma to map to
1701 * @pages: pointer to array of source kernel pages
1702 * @num: number of pages in page array
1703 *
1704 * Maps an object consisting of @num pages, catering for the user's
1705 * requested vm_pgoff
1706 *
1707 * If we fail to insert any page into the vma, the function will return
1708 * immediately leaving any previously inserted pages present. Callers
1709 * from the mmap handler may immediately return the error as their caller
1710 * will destroy the vma, removing any successfully inserted pages. Other
1711 * callers should make their own arrangements for calling unmap_region().
1712 *
1713 * Context: Process context. Called by mmap handlers.
1714 * Return: 0 on success and error code otherwise.
1715 */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717 unsigned long num)
1718 {
1719 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722
1723 /**
1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725 * @vma: user vma to map to
1726 * @pages: pointer to array of source kernel pages
1727 * @num: number of pages in page array
1728 *
1729 * Similar to vm_map_pages(), except that it explicitly sets the offset
1730 * to 0. This function is intended for the drivers that did not consider
1731 * vm_pgoff.
1732 *
1733 * Context: Process context. Called by mmap handlers.
1734 * Return: 0 on success and error code otherwise.
1735 */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737 unsigned long num)
1738 {
1739 return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744 pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746 struct mm_struct *mm = vma->vm_mm;
1747 pte_t *pte, entry;
1748 spinlock_t *ptl;
1749
1750 pte = get_locked_pte(mm, addr, &ptl);
1751 if (!pte)
1752 return VM_FAULT_OOM;
1753 if (!pte_none(*pte)) {
1754 if (mkwrite) {
1755 /*
1756 * For read faults on private mappings the PFN passed
1757 * in may not match the PFN we have mapped if the
1758 * mapped PFN is a writeable COW page. In the mkwrite
1759 * case we are creating a writable PTE for a shared
1760 * mapping and we expect the PFNs to match. If they
1761 * don't match, we are likely racing with block
1762 * allocation and mapping invalidation so just skip the
1763 * update.
1764 */
1765 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767 goto out_unlock;
1768 }
1769 entry = pte_mkyoung(*pte);
1770 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772 update_mmu_cache(vma, addr, pte);
1773 }
1774 goto out_unlock;
1775 }
1776
1777 /* Ok, finally just insert the thing.. */
1778 if (pfn_t_devmap(pfn))
1779 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780 else
1781 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782
1783 if (mkwrite) {
1784 entry = pte_mkyoung(entry);
1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786 }
1787
1788 set_pte_at(mm, addr, pte, entry);
1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791 out_unlock:
1792 pte_unmap_unlock(pte, ptl);
1793 return VM_FAULT_NOPAGE;
1794 }
1795
1796 /**
1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @pfn: source kernel pfn
1801 * @pgprot: pgprot flags for the inserted page
1802 *
1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804 * to override pgprot on a per-page basis.
1805 *
1806 * This only makes sense for IO mappings, and it makes no sense for
1807 * COW mappings. In general, using multiple vmas is preferable;
1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809 * impractical.
1810 *
1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812 * a value of @pgprot different from that of @vma->vm_page_prot.
1813 *
1814 * Context: Process context. May allocate using %GFP_KERNEL.
1815 * Return: vm_fault_t value.
1816 */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818 unsigned long pfn, pgprot_t pgprot)
1819 {
1820 /*
1821 * Technically, architectures with pte_special can avoid all these
1822 * restrictions (same for remap_pfn_range). However we would like
1823 * consistency in testing and feature parity among all, so we should
1824 * try to keep these invariants in place for everybody.
1825 */
1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828 (VM_PFNMAP|VM_MIXEDMAP));
1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832 if (addr < vma->vm_start || addr >= vma->vm_end)
1833 return VM_FAULT_SIGBUS;
1834
1835 if (!pfn_modify_allowed(pfn, pgprot))
1836 return VM_FAULT_SIGBUS;
1837
1838 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839
1840 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841 false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844
1845 /**
1846 * vmf_insert_pfn - insert single pfn into user vma
1847 * @vma: user vma to map to
1848 * @addr: target user address of this page
1849 * @pfn: source kernel pfn
1850 *
1851 * Similar to vm_insert_page, this allows drivers to insert individual pages
1852 * they've allocated into a user vma. Same comments apply.
1853 *
1854 * This function should only be called from a vm_ops->fault handler, and
1855 * in that case the handler should return the result of this function.
1856 *
1857 * vma cannot be a COW mapping.
1858 *
1859 * As this is called only for pages that do not currently exist, we
1860 * do not need to flush old virtual caches or the TLB.
1861 *
1862 * Context: Process context. May allocate using %GFP_KERNEL.
1863 * Return: vm_fault_t value.
1864 */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866 unsigned long pfn)
1867 {
1868 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874 /* these checks mirror the abort conditions in vm_normal_page */
1875 if (vma->vm_flags & VM_MIXEDMAP)
1876 return true;
1877 if (pfn_t_devmap(pfn))
1878 return true;
1879 if (pfn_t_special(pfn))
1880 return true;
1881 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882 return true;
1883 return false;
1884 }
1885
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888 bool mkwrite)
1889 {
1890 int err;
1891
1892 BUG_ON(!vm_mixed_ok(vma, pfn));
1893
1894 if (addr < vma->vm_start || addr >= vma->vm_end)
1895 return VM_FAULT_SIGBUS;
1896
1897 track_pfn_insert(vma, &pgprot, pfn);
1898
1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900 return VM_FAULT_SIGBUS;
1901
1902 /*
1903 * If we don't have pte special, then we have to use the pfn_valid()
1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 * refcount the page if pfn_valid is true (hence insert_page rather
1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1907 * without pte special, it would there be refcounted as a normal page.
1908 */
1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911 struct page *page;
1912
1913 /*
1914 * At this point we are committed to insert_page()
1915 * regardless of whether the caller specified flags that
1916 * result in pfn_t_has_page() == false.
1917 */
1918 page = pfn_to_page(pfn_t_to_pfn(pfn));
1919 err = insert_page(vma, addr, page, pgprot);
1920 } else {
1921 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922 }
1923
1924 if (err == -ENOMEM)
1925 return VM_FAULT_OOM;
1926 if (err < 0 && err != -EBUSY)
1927 return VM_FAULT_SIGBUS;
1928
1929 return VM_FAULT_NOPAGE;
1930 }
1931
1932 /**
1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934 * @vma: user vma to map to
1935 * @addr: target user address of this page
1936 * @pfn: source kernel pfn
1937 * @pgprot: pgprot flags for the inserted page
1938 *
1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940 * to override pgprot on a per-page basis.
1941 *
1942 * Typically this function should be used by drivers to set caching- and
1943 * encryption bits different than those of @vma->vm_page_prot, because
1944 * the caching- or encryption mode may not be known at mmap() time.
1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946 * to set caching and encryption bits for those vmas (except for COW pages).
1947 * This is ensured by core vm only modifying these page table entries using
1948 * functions that don't touch caching- or encryption bits, using pte_modify()
1949 * if needed. (See for example mprotect()).
1950 * Also when new page-table entries are created, this is only done using the
1951 * fault() callback, and never using the value of vma->vm_page_prot,
1952 * except for page-table entries that point to anonymous pages as the result
1953 * of COW.
1954 *
1955 * Context: Process context. May allocate using %GFP_KERNEL.
1956 * Return: vm_fault_t value.
1957 */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959 pfn_t pfn, pgprot_t pgprot)
1960 {
1961 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966 pfn_t pfn)
1967 {
1968 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971
1972 /*
1973 * If the insertion of PTE failed because someone else already added a
1974 * different entry in the mean time, we treat that as success as we assume
1975 * the same entry was actually inserted.
1976 */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978 unsigned long addr, pfn_t pfn)
1979 {
1980 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983
1984 /*
1985 * maps a range of physical memory into the requested pages. the old
1986 * mappings are removed. any references to nonexistent pages results
1987 * in null mappings (currently treated as "copy-on-access")
1988 */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990 unsigned long addr, unsigned long end,
1991 unsigned long pfn, pgprot_t prot)
1992 {
1993 pte_t *pte;
1994 spinlock_t *ptl;
1995 int err = 0;
1996
1997 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998 if (!pte)
1999 return -ENOMEM;
2000 arch_enter_lazy_mmu_mode();
2001 do {
2002 BUG_ON(!pte_none(*pte));
2003 if (!pfn_modify_allowed(pfn, prot)) {
2004 err = -EACCES;
2005 break;
2006 }
2007 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008 pfn++;
2009 } while (pte++, addr += PAGE_SIZE, addr != end);
2010 arch_leave_lazy_mmu_mode();
2011 pte_unmap_unlock(pte - 1, ptl);
2012 return err;
2013 }
2014
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016 unsigned long addr, unsigned long end,
2017 unsigned long pfn, pgprot_t prot)
2018 {
2019 pmd_t *pmd;
2020 unsigned long next;
2021 int err;
2022
2023 pfn -= addr >> PAGE_SHIFT;
2024 pmd = pmd_alloc(mm, pud, addr);
2025 if (!pmd)
2026 return -ENOMEM;
2027 VM_BUG_ON(pmd_trans_huge(*pmd));
2028 do {
2029 next = pmd_addr_end(addr, end);
2030 err = remap_pte_range(mm, pmd, addr, next,
2031 pfn + (addr >> PAGE_SHIFT), prot);
2032 if (err)
2033 return err;
2034 } while (pmd++, addr = next, addr != end);
2035 return 0;
2036 }
2037
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 unsigned long addr, unsigned long end,
2040 unsigned long pfn, pgprot_t prot)
2041 {
2042 pud_t *pud;
2043 unsigned long next;
2044 int err;
2045
2046 pfn -= addr >> PAGE_SHIFT;
2047 pud = pud_alloc(mm, p4d, addr);
2048 if (!pud)
2049 return -ENOMEM;
2050 do {
2051 next = pud_addr_end(addr, end);
2052 err = remap_pmd_range(mm, pud, addr, next,
2053 pfn + (addr >> PAGE_SHIFT), prot);
2054 if (err)
2055 return err;
2056 } while (pud++, addr = next, addr != end);
2057 return 0;
2058 }
2059
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061 unsigned long addr, unsigned long end,
2062 unsigned long pfn, pgprot_t prot)
2063 {
2064 p4d_t *p4d;
2065 unsigned long next;
2066 int err;
2067
2068 pfn -= addr >> PAGE_SHIFT;
2069 p4d = p4d_alloc(mm, pgd, addr);
2070 if (!p4d)
2071 return -ENOMEM;
2072 do {
2073 next = p4d_addr_end(addr, end);
2074 err = remap_pud_range(mm, p4d, addr, next,
2075 pfn + (addr >> PAGE_SHIFT), prot);
2076 if (err)
2077 return err;
2078 } while (p4d++, addr = next, addr != end);
2079 return 0;
2080 }
2081
2082 /**
2083 * remap_pfn_range - remap kernel memory to userspace
2084 * @vma: user vma to map to
2085 * @addr: target user address to start at
2086 * @pfn: page frame number of kernel physical memory address
2087 * @size: size of mapping area
2088 * @prot: page protection flags for this mapping
2089 *
2090 * Note: this is only safe if the mm semaphore is held when called.
2091 *
2092 * Return: %0 on success, negative error code otherwise.
2093 */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095 unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097 pgd_t *pgd;
2098 unsigned long next;
2099 unsigned long end = addr + PAGE_ALIGN(size);
2100 struct mm_struct *mm = vma->vm_mm;
2101 unsigned long remap_pfn = pfn;
2102 int err;
2103
2104 /*
2105 * Physically remapped pages are special. Tell the
2106 * rest of the world about it:
2107 * VM_IO tells people not to look at these pages
2108 * (accesses can have side effects).
2109 * VM_PFNMAP tells the core MM that the base pages are just
2110 * raw PFN mappings, and do not have a "struct page" associated
2111 * with them.
2112 * VM_DONTEXPAND
2113 * Disable vma merging and expanding with mremap().
2114 * VM_DONTDUMP
2115 * Omit vma from core dump, even when VM_IO turned off.
2116 *
2117 * There's a horrible special case to handle copy-on-write
2118 * behaviour that some programs depend on. We mark the "original"
2119 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120 * See vm_normal_page() for details.
2121 */
2122 if (is_cow_mapping(vma->vm_flags)) {
2123 if (addr != vma->vm_start || end != vma->vm_end)
2124 return -EINVAL;
2125 vma->vm_pgoff = pfn;
2126 }
2127
2128 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129 if (err)
2130 return -EINVAL;
2131
2132 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2133
2134 BUG_ON(addr >= end);
2135 pfn -= addr >> PAGE_SHIFT;
2136 pgd = pgd_offset(mm, addr);
2137 flush_cache_range(vma, addr, end);
2138 do {
2139 next = pgd_addr_end(addr, end);
2140 err = remap_p4d_range(mm, pgd, addr, next,
2141 pfn + (addr >> PAGE_SHIFT), prot);
2142 if (err)
2143 break;
2144 } while (pgd++, addr = next, addr != end);
2145
2146 if (err)
2147 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2148
2149 return err;
2150 }
2151 EXPORT_SYMBOL(remap_pfn_range);
2152
2153 /**
2154 * vm_iomap_memory - remap memory to userspace
2155 * @vma: user vma to map to
2156 * @start: start of the physical memory to be mapped
2157 * @len: size of area
2158 *
2159 * This is a simplified io_remap_pfn_range() for common driver use. The
2160 * driver just needs to give us the physical memory range to be mapped,
2161 * we'll figure out the rest from the vma information.
2162 *
2163 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164 * whatever write-combining details or similar.
2165 *
2166 * Return: %0 on success, negative error code otherwise.
2167 */
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169 {
2170 unsigned long vm_len, pfn, pages;
2171
2172 /* Check that the physical memory area passed in looks valid */
2173 if (start + len < start)
2174 return -EINVAL;
2175 /*
2176 * You *really* shouldn't map things that aren't page-aligned,
2177 * but we've historically allowed it because IO memory might
2178 * just have smaller alignment.
2179 */
2180 len += start & ~PAGE_MASK;
2181 pfn = start >> PAGE_SHIFT;
2182 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183 if (pfn + pages < pfn)
2184 return -EINVAL;
2185
2186 /* We start the mapping 'vm_pgoff' pages into the area */
2187 if (vma->vm_pgoff > pages)
2188 return -EINVAL;
2189 pfn += vma->vm_pgoff;
2190 pages -= vma->vm_pgoff;
2191
2192 /* Can we fit all of the mapping? */
2193 vm_len = vma->vm_end - vma->vm_start;
2194 if (vm_len >> PAGE_SHIFT > pages)
2195 return -EINVAL;
2196
2197 /* Ok, let it rip */
2198 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_iomap_memory);
2201
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 unsigned long addr, unsigned long end,
2204 pte_fn_t fn, void *data, bool create)
2205 {
2206 pte_t *pte;
2207 int err = 0;
2208 spinlock_t *uninitialized_var(ptl);
2209
2210 if (create) {
2211 pte = (mm == &init_mm) ?
2212 pte_alloc_kernel(pmd, addr) :
2213 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 if (!pte)
2215 return -ENOMEM;
2216 } else {
2217 pte = (mm == &init_mm) ?
2218 pte_offset_kernel(pmd, addr) :
2219 pte_offset_map_lock(mm, pmd, addr, &ptl);
2220 }
2221
2222 BUG_ON(pmd_huge(*pmd));
2223
2224 arch_enter_lazy_mmu_mode();
2225
2226 do {
2227 if (create || !pte_none(*pte)) {
2228 err = fn(pte++, addr, data);
2229 if (err)
2230 break;
2231 }
2232 } while (addr += PAGE_SIZE, addr != end);
2233
2234 arch_leave_lazy_mmu_mode();
2235
2236 if (mm != &init_mm)
2237 pte_unmap_unlock(pte-1, ptl);
2238 return err;
2239 }
2240
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 unsigned long addr, unsigned long end,
2243 pte_fn_t fn, void *data, bool create)
2244 {
2245 pmd_t *pmd;
2246 unsigned long next;
2247 int err = 0;
2248
2249 BUG_ON(pud_huge(*pud));
2250
2251 if (create) {
2252 pmd = pmd_alloc(mm, pud, addr);
2253 if (!pmd)
2254 return -ENOMEM;
2255 } else {
2256 pmd = pmd_offset(pud, addr);
2257 }
2258 do {
2259 next = pmd_addr_end(addr, end);
2260 if (create || !pmd_none_or_clear_bad(pmd)) {
2261 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262 create);
2263 if (err)
2264 break;
2265 }
2266 } while (pmd++, addr = next, addr != end);
2267 return err;
2268 }
2269
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271 unsigned long addr, unsigned long end,
2272 pte_fn_t fn, void *data, bool create)
2273 {
2274 pud_t *pud;
2275 unsigned long next;
2276 int err = 0;
2277
2278 if (create) {
2279 pud = pud_alloc(mm, p4d, addr);
2280 if (!pud)
2281 return -ENOMEM;
2282 } else {
2283 pud = pud_offset(p4d, addr);
2284 }
2285 do {
2286 next = pud_addr_end(addr, end);
2287 if (create || !pud_none_or_clear_bad(pud)) {
2288 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289 create);
2290 if (err)
2291 break;
2292 }
2293 } while (pud++, addr = next, addr != end);
2294 return err;
2295 }
2296
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298 unsigned long addr, unsigned long end,
2299 pte_fn_t fn, void *data, bool create)
2300 {
2301 p4d_t *p4d;
2302 unsigned long next;
2303 int err = 0;
2304
2305 if (create) {
2306 p4d = p4d_alloc(mm, pgd, addr);
2307 if (!p4d)
2308 return -ENOMEM;
2309 } else {
2310 p4d = p4d_offset(pgd, addr);
2311 }
2312 do {
2313 next = p4d_addr_end(addr, end);
2314 if (create || !p4d_none_or_clear_bad(p4d)) {
2315 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316 create);
2317 if (err)
2318 break;
2319 }
2320 } while (p4d++, addr = next, addr != end);
2321 return err;
2322 }
2323
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325 unsigned long size, pte_fn_t fn,
2326 void *data, bool create)
2327 {
2328 pgd_t *pgd;
2329 unsigned long next;
2330 unsigned long end = addr + size;
2331 int err = 0;
2332
2333 if (WARN_ON(addr >= end))
2334 return -EINVAL;
2335
2336 pgd = pgd_offset(mm, addr);
2337 do {
2338 next = pgd_addr_end(addr, end);
2339 if (!create && pgd_none_or_clear_bad(pgd))
2340 continue;
2341 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342 if (err)
2343 break;
2344 } while (pgd++, addr = next, addr != end);
2345
2346 return err;
2347 }
2348
2349 /*
2350 * Scan a region of virtual memory, filling in page tables as necessary
2351 * and calling a provided function on each leaf page table.
2352 */
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354 unsigned long size, pte_fn_t fn, void *data)
2355 {
2356 return __apply_to_page_range(mm, addr, size, fn, data, true);
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359
2360 /*
2361 * Scan a region of virtual memory, calling a provided function on
2362 * each leaf page table where it exists.
2363 *
2364 * Unlike apply_to_page_range, this does _not_ fill in page tables
2365 * where they are absent.
2366 */
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368 unsigned long size, pte_fn_t fn, void *data)
2369 {
2370 return __apply_to_page_range(mm, addr, size, fn, data, false);
2371 }
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373
2374 /*
2375 * handle_pte_fault chooses page fault handler according to an entry which was
2376 * read non-atomically. Before making any commitment, on those architectures
2377 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378 * parts, do_swap_page must check under lock before unmapping the pte and
2379 * proceeding (but do_wp_page is only called after already making such a check;
2380 * and do_anonymous_page can safely check later on).
2381 */
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383 pte_t *page_table, pte_t orig_pte)
2384 {
2385 int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387 if (sizeof(pte_t) > sizeof(unsigned long)) {
2388 spinlock_t *ptl = pte_lockptr(mm, pmd);
2389 spin_lock(ptl);
2390 same = pte_same(*page_table, orig_pte);
2391 spin_unlock(ptl);
2392 }
2393 #endif
2394 pte_unmap(page_table);
2395 return same;
2396 }
2397
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399 struct vm_fault *vmf)
2400 {
2401 bool ret;
2402 void *kaddr;
2403 void __user *uaddr;
2404 bool locked = false;
2405 struct vm_area_struct *vma = vmf->vma;
2406 struct mm_struct *mm = vma->vm_mm;
2407 unsigned long addr = vmf->address;
2408
2409 debug_dma_assert_idle(src);
2410
2411 if (likely(src)) {
2412 copy_user_highpage(dst, src, addr, vma);
2413 return true;
2414 }
2415
2416 /*
2417 * If the source page was a PFN mapping, we don't have
2418 * a "struct page" for it. We do a best-effort copy by
2419 * just copying from the original user address. If that
2420 * fails, we just zero-fill it. Live with it.
2421 */
2422 kaddr = kmap_atomic(dst);
2423 uaddr = (void __user *)(addr & PAGE_MASK);
2424
2425 /*
2426 * On architectures with software "accessed" bits, we would
2427 * take a double page fault, so mark it accessed here.
2428 */
2429 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430 pte_t entry;
2431
2432 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433 locked = true;
2434 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435 /*
2436 * Other thread has already handled the fault
2437 * and we don't need to do anything. If it's
2438 * not the case, the fault will be triggered
2439 * again on the same address.
2440 */
2441 ret = false;
2442 goto pte_unlock;
2443 }
2444
2445 entry = pte_mkyoung(vmf->orig_pte);
2446 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2447 update_mmu_cache(vma, addr, vmf->pte);
2448 }
2449
2450 /*
2451 * This really shouldn't fail, because the page is there
2452 * in the page tables. But it might just be unreadable,
2453 * in which case we just give up and fill the result with
2454 * zeroes.
2455 */
2456 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2457 if (locked)
2458 goto warn;
2459
2460 /* Re-validate under PTL if the page is still mapped */
2461 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2462 locked = true;
2463 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2464 /* The PTE changed under us. Retry page fault. */
2465 ret = false;
2466 goto pte_unlock;
2467 }
2468
2469 /*
2470 * The same page can be mapped back since last copy attampt.
2471 * Try to copy again under PTL.
2472 */
2473 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474 /*
2475 * Give a warn in case there can be some obscure
2476 * use-case
2477 */
2478 warn:
2479 WARN_ON_ONCE(1);
2480 clear_page(kaddr);
2481 }
2482 }
2483
2484 ret = true;
2485
2486 pte_unlock:
2487 if (locked)
2488 pte_unmap_unlock(vmf->pte, vmf->ptl);
2489 kunmap_atomic(kaddr);
2490 flush_dcache_page(dst);
2491
2492 return ret;
2493 }
2494
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496 {
2497 struct file *vm_file = vma->vm_file;
2498
2499 if (vm_file)
2500 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501
2502 /*
2503 * Special mappings (e.g. VDSO) do not have any file so fake
2504 * a default GFP_KERNEL for them.
2505 */
2506 return GFP_KERNEL;
2507 }
2508
2509 /*
2510 * Notify the address space that the page is about to become writable so that
2511 * it can prohibit this or wait for the page to get into an appropriate state.
2512 *
2513 * We do this without the lock held, so that it can sleep if it needs to.
2514 */
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2516 {
2517 vm_fault_t ret;
2518 struct page *page = vmf->page;
2519 unsigned int old_flags = vmf->flags;
2520
2521 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2522
2523 if (vmf->vma->vm_file &&
2524 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525 return VM_FAULT_SIGBUS;
2526
2527 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528 /* Restore original flags so that caller is not surprised */
2529 vmf->flags = old_flags;
2530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531 return ret;
2532 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533 lock_page(page);
2534 if (!page->mapping) {
2535 unlock_page(page);
2536 return 0; /* retry */
2537 }
2538 ret |= VM_FAULT_LOCKED;
2539 } else
2540 VM_BUG_ON_PAGE(!PageLocked(page), page);
2541 return ret;
2542 }
2543
2544 /*
2545 * Handle dirtying of a page in shared file mapping on a write fault.
2546 *
2547 * The function expects the page to be locked and unlocks it.
2548 */
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2550 {
2551 struct vm_area_struct *vma = vmf->vma;
2552 struct address_space *mapping;
2553 struct page *page = vmf->page;
2554 bool dirtied;
2555 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556
2557 dirtied = set_page_dirty(page);
2558 VM_BUG_ON_PAGE(PageAnon(page), page);
2559 /*
2560 * Take a local copy of the address_space - page.mapping may be zeroed
2561 * by truncate after unlock_page(). The address_space itself remains
2562 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2563 * release semantics to prevent the compiler from undoing this copying.
2564 */
2565 mapping = page_rmapping(page);
2566 unlock_page(page);
2567
2568 if (!page_mkwrite)
2569 file_update_time(vma->vm_file);
2570
2571 /*
2572 * Throttle page dirtying rate down to writeback speed.
2573 *
2574 * mapping may be NULL here because some device drivers do not
2575 * set page.mapping but still dirty their pages
2576 *
2577 * Drop the mmap_sem before waiting on IO, if we can. The file
2578 * is pinning the mapping, as per above.
2579 */
2580 if ((dirtied || page_mkwrite) && mapping) {
2581 struct file *fpin;
2582
2583 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584 balance_dirty_pages_ratelimited(mapping);
2585 if (fpin) {
2586 fput(fpin);
2587 return VM_FAULT_RETRY;
2588 }
2589 }
2590
2591 return 0;
2592 }
2593
2594 /*
2595 * Handle write page faults for pages that can be reused in the current vma
2596 *
2597 * This can happen either due to the mapping being with the VM_SHARED flag,
2598 * or due to us being the last reference standing to the page. In either
2599 * case, all we need to do here is to mark the page as writable and update
2600 * any related book-keeping.
2601 */
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603 __releases(vmf->ptl)
2604 {
2605 struct vm_area_struct *vma = vmf->vma;
2606 struct page *page = vmf->page;
2607 pte_t entry;
2608 /*
2609 * Clear the pages cpupid information as the existing
2610 * information potentially belongs to a now completely
2611 * unrelated process.
2612 */
2613 if (page)
2614 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615
2616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617 entry = pte_mkyoung(vmf->orig_pte);
2618 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620 update_mmu_cache(vma, vmf->address, vmf->pte);
2621 pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 }
2623
2624 /*
2625 * Handle the case of a page which we actually need to copy to a new page.
2626 *
2627 * Called with mmap_sem locked and the old page referenced, but
2628 * without the ptl held.
2629 *
2630 * High level logic flow:
2631 *
2632 * - Allocate a page, copy the content of the old page to the new one.
2633 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634 * - Take the PTL. If the pte changed, bail out and release the allocated page
2635 * - If the pte is still the way we remember it, update the page table and all
2636 * relevant references. This includes dropping the reference the page-table
2637 * held to the old page, as well as updating the rmap.
2638 * - In any case, unlock the PTL and drop the reference we took to the old page.
2639 */
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2641 {
2642 struct vm_area_struct *vma = vmf->vma;
2643 struct mm_struct *mm = vma->vm_mm;
2644 struct page *old_page = vmf->page;
2645 struct page *new_page = NULL;
2646 pte_t entry;
2647 int page_copied = 0;
2648 struct mmu_notifier_range range;
2649
2650 if (unlikely(anon_vma_prepare(vma)))
2651 goto oom;
2652
2653 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2654 new_page = alloc_zeroed_user_highpage_movable(vma,
2655 vmf->address);
2656 if (!new_page)
2657 goto oom;
2658 } else {
2659 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2660 vmf->address);
2661 if (!new_page)
2662 goto oom;
2663
2664 if (!cow_user_page(new_page, old_page, vmf)) {
2665 /*
2666 * COW failed, if the fault was solved by other,
2667 * it's fine. If not, userspace would re-fault on
2668 * the same address and we will handle the fault
2669 * from the second attempt.
2670 */
2671 put_page(new_page);
2672 if (old_page)
2673 put_page(old_page);
2674 return 0;
2675 }
2676 }
2677
2678 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL, false))
2679 goto oom_free_new;
2680 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2681
2682 __SetPageUptodate(new_page);
2683
2684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685 vmf->address & PAGE_MASK,
2686 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2687 mmu_notifier_invalidate_range_start(&range);
2688
2689 /*
2690 * Re-check the pte - we dropped the lock
2691 */
2692 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694 if (old_page) {
2695 if (!PageAnon(old_page)) {
2696 dec_mm_counter_fast(mm,
2697 mm_counter_file(old_page));
2698 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699 }
2700 } else {
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 }
2703 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704 entry = mk_pte(new_page, vma->vm_page_prot);
2705 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706 /*
2707 * Clear the pte entry and flush it first, before updating the
2708 * pte with the new entry. This will avoid a race condition
2709 * seen in the presence of one thread doing SMC and another
2710 * thread doing COW.
2711 */
2712 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714 lru_cache_add_active_or_unevictable(new_page, vma);
2715 /*
2716 * We call the notify macro here because, when using secondary
2717 * mmu page tables (such as kvm shadow page tables), we want the
2718 * new page to be mapped directly into the secondary page table.
2719 */
2720 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2721 update_mmu_cache(vma, vmf->address, vmf->pte);
2722 if (old_page) {
2723 /*
2724 * Only after switching the pte to the new page may
2725 * we remove the mapcount here. Otherwise another
2726 * process may come and find the rmap count decremented
2727 * before the pte is switched to the new page, and
2728 * "reuse" the old page writing into it while our pte
2729 * here still points into it and can be read by other
2730 * threads.
2731 *
2732 * The critical issue is to order this
2733 * page_remove_rmap with the ptp_clear_flush above.
2734 * Those stores are ordered by (if nothing else,)
2735 * the barrier present in the atomic_add_negative
2736 * in page_remove_rmap.
2737 *
2738 * Then the TLB flush in ptep_clear_flush ensures that
2739 * no process can access the old page before the
2740 * decremented mapcount is visible. And the old page
2741 * cannot be reused until after the decremented
2742 * mapcount is visible. So transitively, TLBs to
2743 * old page will be flushed before it can be reused.
2744 */
2745 page_remove_rmap(old_page, false);
2746 }
2747
2748 /* Free the old page.. */
2749 new_page = old_page;
2750 page_copied = 1;
2751 }
2752
2753 if (new_page)
2754 put_page(new_page);
2755
2756 pte_unmap_unlock(vmf->pte, vmf->ptl);
2757 /*
2758 * No need to double call mmu_notifier->invalidate_range() callback as
2759 * the above ptep_clear_flush_notify() did already call it.
2760 */
2761 mmu_notifier_invalidate_range_only_end(&range);
2762 if (old_page) {
2763 /*
2764 * Don't let another task, with possibly unlocked vma,
2765 * keep the mlocked page.
2766 */
2767 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2768 lock_page(old_page); /* LRU manipulation */
2769 if (PageMlocked(old_page))
2770 munlock_vma_page(old_page);
2771 unlock_page(old_page);
2772 }
2773 put_page(old_page);
2774 }
2775 return page_copied ? VM_FAULT_WRITE : 0;
2776 oom_free_new:
2777 put_page(new_page);
2778 oom:
2779 if (old_page)
2780 put_page(old_page);
2781 return VM_FAULT_OOM;
2782 }
2783
2784 /**
2785 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2786 * writeable once the page is prepared
2787 *
2788 * @vmf: structure describing the fault
2789 *
2790 * This function handles all that is needed to finish a write page fault in a
2791 * shared mapping due to PTE being read-only once the mapped page is prepared.
2792 * It handles locking of PTE and modifying it.
2793 *
2794 * The function expects the page to be locked or other protection against
2795 * concurrent faults / writeback (such as DAX radix tree locks).
2796 *
2797 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2798 * we acquired PTE lock.
2799 */
2800 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2801 {
2802 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2803 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2804 &vmf->ptl);
2805 /*
2806 * We might have raced with another page fault while we released the
2807 * pte_offset_map_lock.
2808 */
2809 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2810 pte_unmap_unlock(vmf->pte, vmf->ptl);
2811 return VM_FAULT_NOPAGE;
2812 }
2813 wp_page_reuse(vmf);
2814 return 0;
2815 }
2816
2817 /*
2818 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2819 * mapping
2820 */
2821 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2822 {
2823 struct vm_area_struct *vma = vmf->vma;
2824
2825 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2826 vm_fault_t ret;
2827
2828 pte_unmap_unlock(vmf->pte, vmf->ptl);
2829 vmf->flags |= FAULT_FLAG_MKWRITE;
2830 ret = vma->vm_ops->pfn_mkwrite(vmf);
2831 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2832 return ret;
2833 return finish_mkwrite_fault(vmf);
2834 }
2835 wp_page_reuse(vmf);
2836 return VM_FAULT_WRITE;
2837 }
2838
2839 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2840 __releases(vmf->ptl)
2841 {
2842 struct vm_area_struct *vma = vmf->vma;
2843 vm_fault_t ret = VM_FAULT_WRITE;
2844
2845 get_page(vmf->page);
2846
2847 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2848 vm_fault_t tmp;
2849
2850 pte_unmap_unlock(vmf->pte, vmf->ptl);
2851 tmp = do_page_mkwrite(vmf);
2852 if (unlikely(!tmp || (tmp &
2853 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2854 put_page(vmf->page);
2855 return tmp;
2856 }
2857 tmp = finish_mkwrite_fault(vmf);
2858 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2859 unlock_page(vmf->page);
2860 put_page(vmf->page);
2861 return tmp;
2862 }
2863 } else {
2864 wp_page_reuse(vmf);
2865 lock_page(vmf->page);
2866 }
2867 ret |= fault_dirty_shared_page(vmf);
2868 put_page(vmf->page);
2869
2870 return ret;
2871 }
2872
2873 /*
2874 * This routine handles present pages, when users try to write
2875 * to a shared page. It is done by copying the page to a new address
2876 * and decrementing the shared-page counter for the old page.
2877 *
2878 * Note that this routine assumes that the protection checks have been
2879 * done by the caller (the low-level page fault routine in most cases).
2880 * Thus we can safely just mark it writable once we've done any necessary
2881 * COW.
2882 *
2883 * We also mark the page dirty at this point even though the page will
2884 * change only once the write actually happens. This avoids a few races,
2885 * and potentially makes it more efficient.
2886 *
2887 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2888 * but allow concurrent faults), with pte both mapped and locked.
2889 * We return with mmap_sem still held, but pte unmapped and unlocked.
2890 */
2891 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2892 __releases(vmf->ptl)
2893 {
2894 struct vm_area_struct *vma = vmf->vma;
2895
2896 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2897 pte_unmap_unlock(vmf->pte, vmf->ptl);
2898 return handle_userfault(vmf, VM_UFFD_WP);
2899 }
2900
2901 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2902 if (!vmf->page) {
2903 /*
2904 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2905 * VM_PFNMAP VMA.
2906 *
2907 * We should not cow pages in a shared writeable mapping.
2908 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2909 */
2910 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2911 (VM_WRITE|VM_SHARED))
2912 return wp_pfn_shared(vmf);
2913
2914 pte_unmap_unlock(vmf->pte, vmf->ptl);
2915 return wp_page_copy(vmf);
2916 }
2917
2918 /*
2919 * Take out anonymous pages first, anonymous shared vmas are
2920 * not dirty accountable.
2921 */
2922 if (PageAnon(vmf->page)) {
2923 int total_map_swapcount;
2924 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2925 page_count(vmf->page) != 1))
2926 goto copy;
2927 if (!trylock_page(vmf->page)) {
2928 get_page(vmf->page);
2929 pte_unmap_unlock(vmf->pte, vmf->ptl);
2930 lock_page(vmf->page);
2931 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2932 vmf->address, &vmf->ptl);
2933 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2934 unlock_page(vmf->page);
2935 pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 put_page(vmf->page);
2937 return 0;
2938 }
2939 put_page(vmf->page);
2940 }
2941 if (PageKsm(vmf->page)) {
2942 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2943 vmf->address);
2944 unlock_page(vmf->page);
2945 if (!reused)
2946 goto copy;
2947 wp_page_reuse(vmf);
2948 return VM_FAULT_WRITE;
2949 }
2950 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2951 if (total_map_swapcount == 1) {
2952 /*
2953 * The page is all ours. Move it to
2954 * our anon_vma so the rmap code will
2955 * not search our parent or siblings.
2956 * Protected against the rmap code by
2957 * the page lock.
2958 */
2959 page_move_anon_rmap(vmf->page, vma);
2960 }
2961 unlock_page(vmf->page);
2962 wp_page_reuse(vmf);
2963 return VM_FAULT_WRITE;
2964 }
2965 unlock_page(vmf->page);
2966 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2967 (VM_WRITE|VM_SHARED))) {
2968 return wp_page_shared(vmf);
2969 }
2970 copy:
2971 /*
2972 * Ok, we need to copy. Oh, well..
2973 */
2974 get_page(vmf->page);
2975
2976 pte_unmap_unlock(vmf->pte, vmf->ptl);
2977 return wp_page_copy(vmf);
2978 }
2979
2980 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2981 unsigned long start_addr, unsigned long end_addr,
2982 struct zap_details *details)
2983 {
2984 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2985 }
2986
2987 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2988 struct zap_details *details)
2989 {
2990 struct vm_area_struct *vma;
2991 pgoff_t vba, vea, zba, zea;
2992
2993 vma_interval_tree_foreach(vma, root,
2994 details->first_index, details->last_index) {
2995
2996 vba = vma->vm_pgoff;
2997 vea = vba + vma_pages(vma) - 1;
2998 zba = details->first_index;
2999 if (zba < vba)
3000 zba = vba;
3001 zea = details->last_index;
3002 if (zea > vea)
3003 zea = vea;
3004
3005 unmap_mapping_range_vma(vma,
3006 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3007 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3008 details);
3009 }
3010 }
3011
3012 /**
3013 * unmap_mapping_pages() - Unmap pages from processes.
3014 * @mapping: The address space containing pages to be unmapped.
3015 * @start: Index of first page to be unmapped.
3016 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3017 * @even_cows: Whether to unmap even private COWed pages.
3018 *
3019 * Unmap the pages in this address space from any userspace process which
3020 * has them mmaped. Generally, you want to remove COWed pages as well when
3021 * a file is being truncated, but not when invalidating pages from the page
3022 * cache.
3023 */
3024 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3025 pgoff_t nr, bool even_cows)
3026 {
3027 struct zap_details details = { };
3028
3029 details.check_mapping = even_cows ? NULL : mapping;
3030 details.first_index = start;
3031 details.last_index = start + nr - 1;
3032 if (details.last_index < details.first_index)
3033 details.last_index = ULONG_MAX;
3034
3035 i_mmap_lock_write(mapping);
3036 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3037 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3038 i_mmap_unlock_write(mapping);
3039 }
3040
3041 /**
3042 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3043 * address_space corresponding to the specified byte range in the underlying
3044 * file.
3045 *
3046 * @mapping: the address space containing mmaps to be unmapped.
3047 * @holebegin: byte in first page to unmap, relative to the start of
3048 * the underlying file. This will be rounded down to a PAGE_SIZE
3049 * boundary. Note that this is different from truncate_pagecache(), which
3050 * must keep the partial page. In contrast, we must get rid of
3051 * partial pages.
3052 * @holelen: size of prospective hole in bytes. This will be rounded
3053 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3054 * end of the file.
3055 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3056 * but 0 when invalidating pagecache, don't throw away private data.
3057 */
3058 void unmap_mapping_range(struct address_space *mapping,
3059 loff_t const holebegin, loff_t const holelen, int even_cows)
3060 {
3061 pgoff_t hba = holebegin >> PAGE_SHIFT;
3062 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3063
3064 /* Check for overflow. */
3065 if (sizeof(holelen) > sizeof(hlen)) {
3066 long long holeend =
3067 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068 if (holeend & ~(long long)ULONG_MAX)
3069 hlen = ULONG_MAX - hba + 1;
3070 }
3071
3072 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3073 }
3074 EXPORT_SYMBOL(unmap_mapping_range);
3075
3076 /*
3077 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3078 * but allow concurrent faults), and pte mapped but not yet locked.
3079 * We return with pte unmapped and unlocked.
3080 *
3081 * We return with the mmap_sem locked or unlocked in the same cases
3082 * as does filemap_fault().
3083 */
3084 vm_fault_t do_swap_page(struct vm_fault *vmf)
3085 {
3086 struct vm_area_struct *vma = vmf->vma;
3087 struct page *page = NULL, *swapcache;
3088 swp_entry_t entry;
3089 pte_t pte;
3090 int locked;
3091 int exclusive = 0;
3092 vm_fault_t ret = 0;
3093
3094 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3095 goto out;
3096
3097 entry = pte_to_swp_entry(vmf->orig_pte);
3098 if (unlikely(non_swap_entry(entry))) {
3099 if (is_migration_entry(entry)) {
3100 migration_entry_wait(vma->vm_mm, vmf->pmd,
3101 vmf->address);
3102 } else if (is_device_private_entry(entry)) {
3103 vmf->page = device_private_entry_to_page(entry);
3104 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3105 } else if (is_hwpoison_entry(entry)) {
3106 ret = VM_FAULT_HWPOISON;
3107 } else {
3108 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3109 ret = VM_FAULT_SIGBUS;
3110 }
3111 goto out;
3112 }
3113
3114
3115 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3116 page = lookup_swap_cache(entry, vma, vmf->address);
3117 swapcache = page;
3118
3119 if (!page) {
3120 struct swap_info_struct *si = swp_swap_info(entry);
3121
3122 if (si->flags & SWP_SYNCHRONOUS_IO &&
3123 __swap_count(entry) == 1) {
3124 /* skip swapcache */
3125 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3126 vmf->address);
3127 if (page) {
3128 __SetPageLocked(page);
3129 __SetPageSwapBacked(page);
3130 set_page_private(page, entry.val);
3131 lru_cache_add_anon(page);
3132 swap_readpage(page, true);
3133 }
3134 } else {
3135 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3136 vmf);
3137 swapcache = page;
3138 }
3139
3140 if (!page) {
3141 /*
3142 * Back out if somebody else faulted in this pte
3143 * while we released the pte lock.
3144 */
3145 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3146 vmf->address, &vmf->ptl);
3147 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3148 ret = VM_FAULT_OOM;
3149 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3150 goto unlock;
3151 }
3152
3153 /* Had to read the page from swap area: Major fault */
3154 ret = VM_FAULT_MAJOR;
3155 count_vm_event(PGMAJFAULT);
3156 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3157 } else if (PageHWPoison(page)) {
3158 /*
3159 * hwpoisoned dirty swapcache pages are kept for killing
3160 * owner processes (which may be unknown at hwpoison time)
3161 */
3162 ret = VM_FAULT_HWPOISON;
3163 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3164 goto out_release;
3165 }
3166
3167 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3168
3169 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3170 if (!locked) {
3171 ret |= VM_FAULT_RETRY;
3172 goto out_release;
3173 }
3174
3175 /*
3176 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3177 * release the swapcache from under us. The page pin, and pte_same
3178 * test below, are not enough to exclude that. Even if it is still
3179 * swapcache, we need to check that the page's swap has not changed.
3180 */
3181 if (unlikely((!PageSwapCache(page) ||
3182 page_private(page) != entry.val)) && swapcache)
3183 goto out_page;
3184
3185 page = ksm_might_need_to_copy(page, vma, vmf->address);
3186 if (unlikely(!page)) {
3187 ret = VM_FAULT_OOM;
3188 page = swapcache;
3189 goto out_page;
3190 }
3191
3192 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL, true)) {
3193 ret = VM_FAULT_OOM;
3194 goto out_page;
3195 }
3196 cgroup_throttle_swaprate(page, GFP_KERNEL);
3197
3198 /*
3199 * Back out if somebody else already faulted in this pte.
3200 */
3201 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3202 &vmf->ptl);
3203 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3204 goto out_nomap;
3205
3206 if (unlikely(!PageUptodate(page))) {
3207 ret = VM_FAULT_SIGBUS;
3208 goto out_nomap;
3209 }
3210
3211 /*
3212 * The page isn't present yet, go ahead with the fault.
3213 *
3214 * Be careful about the sequence of operations here.
3215 * To get its accounting right, reuse_swap_page() must be called
3216 * while the page is counted on swap but not yet in mapcount i.e.
3217 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3218 * must be called after the swap_free(), or it will never succeed.
3219 */
3220
3221 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3222 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3223 pte = mk_pte(page, vma->vm_page_prot);
3224 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3225 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3226 vmf->flags &= ~FAULT_FLAG_WRITE;
3227 ret |= VM_FAULT_WRITE;
3228 exclusive = RMAP_EXCLUSIVE;
3229 }
3230 flush_icache_page(vma, page);
3231 if (pte_swp_soft_dirty(vmf->orig_pte))
3232 pte = pte_mksoft_dirty(pte);
3233 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3234 pte = pte_mkuffd_wp(pte);
3235 pte = pte_wrprotect(pte);
3236 }
3237 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3238 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3239 vmf->orig_pte = pte;
3240
3241 /* ksm created a completely new copy */
3242 if (unlikely(page != swapcache && swapcache)) {
3243 page_add_new_anon_rmap(page, vma, vmf->address, false);
3244 lru_cache_add_active_or_unevictable(page, vma);
3245 } else {
3246 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3247 activate_page(page);
3248 }
3249
3250 swap_free(entry);
3251 if (mem_cgroup_swap_full(page) ||
3252 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3253 try_to_free_swap(page);
3254 unlock_page(page);
3255 if (page != swapcache && swapcache) {
3256 /*
3257 * Hold the lock to avoid the swap entry to be reused
3258 * until we take the PT lock for the pte_same() check
3259 * (to avoid false positives from pte_same). For
3260 * further safety release the lock after the swap_free
3261 * so that the swap count won't change under a
3262 * parallel locked swapcache.
3263 */
3264 unlock_page(swapcache);
3265 put_page(swapcache);
3266 }
3267
3268 if (vmf->flags & FAULT_FLAG_WRITE) {
3269 ret |= do_wp_page(vmf);
3270 if (ret & VM_FAULT_ERROR)
3271 ret &= VM_FAULT_ERROR;
3272 goto out;
3273 }
3274
3275 /* No need to invalidate - it was non-present before */
3276 update_mmu_cache(vma, vmf->address, vmf->pte);
3277 unlock:
3278 pte_unmap_unlock(vmf->pte, vmf->ptl);
3279 out:
3280 return ret;
3281 out_nomap:
3282 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 out_page:
3284 unlock_page(page);
3285 out_release:
3286 put_page(page);
3287 if (page != swapcache && swapcache) {
3288 unlock_page(swapcache);
3289 put_page(swapcache);
3290 }
3291 return ret;
3292 }
3293
3294 /*
3295 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3296 * but allow concurrent faults), and pte mapped but not yet locked.
3297 * We return with mmap_sem still held, but pte unmapped and unlocked.
3298 */
3299 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3300 {
3301 struct vm_area_struct *vma = vmf->vma;
3302 struct page *page;
3303 vm_fault_t ret = 0;
3304 pte_t entry;
3305
3306 /* File mapping without ->vm_ops ? */
3307 if (vma->vm_flags & VM_SHARED)
3308 return VM_FAULT_SIGBUS;
3309
3310 /*
3311 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3312 * pte_offset_map() on pmds where a huge pmd might be created
3313 * from a different thread.
3314 *
3315 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3316 * parallel threads are excluded by other means.
3317 *
3318 * Here we only have down_read(mmap_sem).
3319 */
3320 if (pte_alloc(vma->vm_mm, vmf->pmd))
3321 return VM_FAULT_OOM;
3322
3323 /* See the comment in pte_alloc_one_map() */
3324 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3325 return 0;
3326
3327 /* Use the zero-page for reads */
3328 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3329 !mm_forbids_zeropage(vma->vm_mm)) {
3330 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3331 vma->vm_page_prot));
3332 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3333 vmf->address, &vmf->ptl);
3334 if (!pte_none(*vmf->pte))
3335 goto unlock;
3336 ret = check_stable_address_space(vma->vm_mm);
3337 if (ret)
3338 goto unlock;
3339 /* Deliver the page fault to userland, check inside PT lock */
3340 if (userfaultfd_missing(vma)) {
3341 pte_unmap_unlock(vmf->pte, vmf->ptl);
3342 return handle_userfault(vmf, VM_UFFD_MISSING);
3343 }
3344 goto setpte;
3345 }
3346
3347 /* Allocate our own private page. */
3348 if (unlikely(anon_vma_prepare(vma)))
3349 goto oom;
3350 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3351 if (!page)
3352 goto oom;
3353
3354 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL, false))
3355 goto oom_free_page;
3356 cgroup_throttle_swaprate(page, GFP_KERNEL);
3357
3358 /*
3359 * The memory barrier inside __SetPageUptodate makes sure that
3360 * preceding stores to the page contents become visible before
3361 * the set_pte_at() write.
3362 */
3363 __SetPageUptodate(page);
3364
3365 entry = mk_pte(page, vma->vm_page_prot);
3366 if (vma->vm_flags & VM_WRITE)
3367 entry = pte_mkwrite(pte_mkdirty(entry));
3368
3369 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3370 &vmf->ptl);
3371 if (!pte_none(*vmf->pte))
3372 goto release;
3373
3374 ret = check_stable_address_space(vma->vm_mm);
3375 if (ret)
3376 goto release;
3377
3378 /* Deliver the page fault to userland, check inside PT lock */
3379 if (userfaultfd_missing(vma)) {
3380 pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 put_page(page);
3382 return handle_userfault(vmf, VM_UFFD_MISSING);
3383 }
3384
3385 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3386 page_add_new_anon_rmap(page, vma, vmf->address, false);
3387 lru_cache_add_active_or_unevictable(page, vma);
3388 setpte:
3389 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3390
3391 /* No need to invalidate - it was non-present before */
3392 update_mmu_cache(vma, vmf->address, vmf->pte);
3393 unlock:
3394 pte_unmap_unlock(vmf->pte, vmf->ptl);
3395 return ret;
3396 release:
3397 put_page(page);
3398 goto unlock;
3399 oom_free_page:
3400 put_page(page);
3401 oom:
3402 return VM_FAULT_OOM;
3403 }
3404
3405 /*
3406 * The mmap_sem must have been held on entry, and may have been
3407 * released depending on flags and vma->vm_ops->fault() return value.
3408 * See filemap_fault() and __lock_page_retry().
3409 */
3410 static vm_fault_t __do_fault(struct vm_fault *vmf)
3411 {
3412 struct vm_area_struct *vma = vmf->vma;
3413 vm_fault_t ret;
3414
3415 /*
3416 * Preallocate pte before we take page_lock because this might lead to
3417 * deadlocks for memcg reclaim which waits for pages under writeback:
3418 * lock_page(A)
3419 * SetPageWriteback(A)
3420 * unlock_page(A)
3421 * lock_page(B)
3422 * lock_page(B)
3423 * pte_alloc_pne
3424 * shrink_page_list
3425 * wait_on_page_writeback(A)
3426 * SetPageWriteback(B)
3427 * unlock_page(B)
3428 * # flush A, B to clear the writeback
3429 */
3430 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3431 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3432 if (!vmf->prealloc_pte)
3433 return VM_FAULT_OOM;
3434 smp_wmb(); /* See comment in __pte_alloc() */
3435 }
3436
3437 ret = vma->vm_ops->fault(vmf);
3438 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3439 VM_FAULT_DONE_COW)))
3440 return ret;
3441
3442 if (unlikely(PageHWPoison(vmf->page))) {
3443 if (ret & VM_FAULT_LOCKED)
3444 unlock_page(vmf->page);
3445 put_page(vmf->page);
3446 vmf->page = NULL;
3447 return VM_FAULT_HWPOISON;
3448 }
3449
3450 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3451 lock_page(vmf->page);
3452 else
3453 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3454
3455 return ret;
3456 }
3457
3458 /*
3459 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3460 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3461 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3462 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3463 */
3464 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3465 {
3466 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3467 }
3468
3469 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3470 {
3471 struct vm_area_struct *vma = vmf->vma;
3472
3473 if (!pmd_none(*vmf->pmd))
3474 goto map_pte;
3475 if (vmf->prealloc_pte) {
3476 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3477 if (unlikely(!pmd_none(*vmf->pmd))) {
3478 spin_unlock(vmf->ptl);
3479 goto map_pte;
3480 }
3481
3482 mm_inc_nr_ptes(vma->vm_mm);
3483 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3484 spin_unlock(vmf->ptl);
3485 vmf->prealloc_pte = NULL;
3486 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3487 return VM_FAULT_OOM;
3488 }
3489 map_pte:
3490 /*
3491 * If a huge pmd materialized under us just retry later. Use
3492 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3493 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3494 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3495 * running immediately after a huge pmd fault in a different thread of
3496 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3497 * All we have to ensure is that it is a regular pmd that we can walk
3498 * with pte_offset_map() and we can do that through an atomic read in
3499 * C, which is what pmd_trans_unstable() provides.
3500 */
3501 if (pmd_devmap_trans_unstable(vmf->pmd))
3502 return VM_FAULT_NOPAGE;
3503
3504 /*
3505 * At this point we know that our vmf->pmd points to a page of ptes
3506 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3507 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3508 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3509 * be valid and we will re-check to make sure the vmf->pte isn't
3510 * pte_none() under vmf->ptl protection when we return to
3511 * alloc_set_pte().
3512 */
3513 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3514 &vmf->ptl);
3515 return 0;
3516 }
3517
3518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3519 static void deposit_prealloc_pte(struct vm_fault *vmf)
3520 {
3521 struct vm_area_struct *vma = vmf->vma;
3522
3523 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3524 /*
3525 * We are going to consume the prealloc table,
3526 * count that as nr_ptes.
3527 */
3528 mm_inc_nr_ptes(vma->vm_mm);
3529 vmf->prealloc_pte = NULL;
3530 }
3531
3532 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3533 {
3534 struct vm_area_struct *vma = vmf->vma;
3535 bool write = vmf->flags & FAULT_FLAG_WRITE;
3536 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3537 pmd_t entry;
3538 int i;
3539 vm_fault_t ret;
3540
3541 if (!transhuge_vma_suitable(vma, haddr))
3542 return VM_FAULT_FALLBACK;
3543
3544 ret = VM_FAULT_FALLBACK;
3545 page = compound_head(page);
3546
3547 /*
3548 * Archs like ppc64 need additonal space to store information
3549 * related to pte entry. Use the preallocated table for that.
3550 */
3551 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3552 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3553 if (!vmf->prealloc_pte)
3554 return VM_FAULT_OOM;
3555 smp_wmb(); /* See comment in __pte_alloc() */
3556 }
3557
3558 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3559 if (unlikely(!pmd_none(*vmf->pmd)))
3560 goto out;
3561
3562 for (i = 0; i < HPAGE_PMD_NR; i++)
3563 flush_icache_page(vma, page + i);
3564
3565 entry = mk_huge_pmd(page, vma->vm_page_prot);
3566 if (write)
3567 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3568
3569 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3570 page_add_file_rmap(page, true);
3571 /*
3572 * deposit and withdraw with pmd lock held
3573 */
3574 if (arch_needs_pgtable_deposit())
3575 deposit_prealloc_pte(vmf);
3576
3577 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3578
3579 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3580
3581 /* fault is handled */
3582 ret = 0;
3583 count_vm_event(THP_FILE_MAPPED);
3584 out:
3585 spin_unlock(vmf->ptl);
3586 return ret;
3587 }
3588 #else
3589 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3590 {
3591 BUILD_BUG();
3592 return 0;
3593 }
3594 #endif
3595
3596 /**
3597 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3598 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3599 *
3600 * @vmf: fault environment
3601 * @page: page to map
3602 *
3603 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3604 * return.
3605 *
3606 * Target users are page handler itself and implementations of
3607 * vm_ops->map_pages.
3608 *
3609 * Return: %0 on success, %VM_FAULT_ code in case of error.
3610 */
3611 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3612 {
3613 struct vm_area_struct *vma = vmf->vma;
3614 bool write = vmf->flags & FAULT_FLAG_WRITE;
3615 pte_t entry;
3616 vm_fault_t ret;
3617
3618 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3619 ret = do_set_pmd(vmf, page);
3620 if (ret != VM_FAULT_FALLBACK)
3621 return ret;
3622 }
3623
3624 if (!vmf->pte) {
3625 ret = pte_alloc_one_map(vmf);
3626 if (ret)
3627 return ret;
3628 }
3629
3630 /* Re-check under ptl */
3631 if (unlikely(!pte_none(*vmf->pte)))
3632 return VM_FAULT_NOPAGE;
3633
3634 flush_icache_page(vma, page);
3635 entry = mk_pte(page, vma->vm_page_prot);
3636 if (write)
3637 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3638 /* copy-on-write page */
3639 if (write && !(vma->vm_flags & VM_SHARED)) {
3640 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3641 page_add_new_anon_rmap(page, vma, vmf->address, false);
3642 lru_cache_add_active_or_unevictable(page, vma);
3643 } else {
3644 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3645 page_add_file_rmap(page, false);
3646 }
3647 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3648
3649 /* no need to invalidate: a not-present page won't be cached */
3650 update_mmu_cache(vma, vmf->address, vmf->pte);
3651
3652 return 0;
3653 }
3654
3655
3656 /**
3657 * finish_fault - finish page fault once we have prepared the page to fault
3658 *
3659 * @vmf: structure describing the fault
3660 *
3661 * This function handles all that is needed to finish a page fault once the
3662 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3663 * given page, adds reverse page mapping, handles memcg charges and LRU
3664 * addition.
3665 *
3666 * The function expects the page to be locked and on success it consumes a
3667 * reference of a page being mapped (for the PTE which maps it).
3668 *
3669 * Return: %0 on success, %VM_FAULT_ code in case of error.
3670 */
3671 vm_fault_t finish_fault(struct vm_fault *vmf)
3672 {
3673 struct page *page;
3674 vm_fault_t ret = 0;
3675
3676 /* Did we COW the page? */
3677 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3678 !(vmf->vma->vm_flags & VM_SHARED))
3679 page = vmf->cow_page;
3680 else
3681 page = vmf->page;
3682
3683 /*
3684 * check even for read faults because we might have lost our CoWed
3685 * page
3686 */
3687 if (!(vmf->vma->vm_flags & VM_SHARED))
3688 ret = check_stable_address_space(vmf->vma->vm_mm);
3689 if (!ret)
3690 ret = alloc_set_pte(vmf, page);
3691 if (vmf->pte)
3692 pte_unmap_unlock(vmf->pte, vmf->ptl);
3693 return ret;
3694 }
3695
3696 static unsigned long fault_around_bytes __read_mostly =
3697 rounddown_pow_of_two(65536);
3698
3699 #ifdef CONFIG_DEBUG_FS
3700 static int fault_around_bytes_get(void *data, u64 *val)
3701 {
3702 *val = fault_around_bytes;
3703 return 0;
3704 }
3705
3706 /*
3707 * fault_around_bytes must be rounded down to the nearest page order as it's
3708 * what do_fault_around() expects to see.
3709 */
3710 static int fault_around_bytes_set(void *data, u64 val)
3711 {
3712 if (val / PAGE_SIZE > PTRS_PER_PTE)
3713 return -EINVAL;
3714 if (val > PAGE_SIZE)
3715 fault_around_bytes = rounddown_pow_of_two(val);
3716 else
3717 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3718 return 0;
3719 }
3720 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3721 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3722
3723 static int __init fault_around_debugfs(void)
3724 {
3725 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3726 &fault_around_bytes_fops);
3727 return 0;
3728 }
3729 late_initcall(fault_around_debugfs);
3730 #endif
3731
3732 /*
3733 * do_fault_around() tries to map few pages around the fault address. The hope
3734 * is that the pages will be needed soon and this will lower the number of
3735 * faults to handle.
3736 *
3737 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3738 * not ready to be mapped: not up-to-date, locked, etc.
3739 *
3740 * This function is called with the page table lock taken. In the split ptlock
3741 * case the page table lock only protects only those entries which belong to
3742 * the page table corresponding to the fault address.
3743 *
3744 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3745 * only once.
3746 *
3747 * fault_around_bytes defines how many bytes we'll try to map.
3748 * do_fault_around() expects it to be set to a power of two less than or equal
3749 * to PTRS_PER_PTE.
3750 *
3751 * The virtual address of the area that we map is naturally aligned to
3752 * fault_around_bytes rounded down to the machine page size
3753 * (and therefore to page order). This way it's easier to guarantee
3754 * that we don't cross page table boundaries.
3755 */
3756 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3757 {
3758 unsigned long address = vmf->address, nr_pages, mask;
3759 pgoff_t start_pgoff = vmf->pgoff;
3760 pgoff_t end_pgoff;
3761 int off;
3762 vm_fault_t ret = 0;
3763
3764 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3765 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3766
3767 vmf->address = max(address & mask, vmf->vma->vm_start);
3768 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3769 start_pgoff -= off;
3770
3771 /*
3772 * end_pgoff is either the end of the page table, the end of
3773 * the vma or nr_pages from start_pgoff, depending what is nearest.
3774 */
3775 end_pgoff = start_pgoff -
3776 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3777 PTRS_PER_PTE - 1;
3778 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3779 start_pgoff + nr_pages - 1);
3780
3781 if (pmd_none(*vmf->pmd)) {
3782 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3783 if (!vmf->prealloc_pte)
3784 goto out;
3785 smp_wmb(); /* See comment in __pte_alloc() */
3786 }
3787
3788 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3789
3790 /* Huge page is mapped? Page fault is solved */
3791 if (pmd_trans_huge(*vmf->pmd)) {
3792 ret = VM_FAULT_NOPAGE;
3793 goto out;
3794 }
3795
3796 /* ->map_pages() haven't done anything useful. Cold page cache? */
3797 if (!vmf->pte)
3798 goto out;
3799
3800 /* check if the page fault is solved */
3801 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3802 if (!pte_none(*vmf->pte))
3803 ret = VM_FAULT_NOPAGE;
3804 pte_unmap_unlock(vmf->pte, vmf->ptl);
3805 out:
3806 vmf->address = address;
3807 vmf->pte = NULL;
3808 return ret;
3809 }
3810
3811 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3812 {
3813 struct vm_area_struct *vma = vmf->vma;
3814 vm_fault_t ret = 0;
3815
3816 /*
3817 * Let's call ->map_pages() first and use ->fault() as fallback
3818 * if page by the offset is not ready to be mapped (cold cache or
3819 * something).
3820 */
3821 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3822 ret = do_fault_around(vmf);
3823 if (ret)
3824 return ret;
3825 }
3826
3827 ret = __do_fault(vmf);
3828 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3829 return ret;
3830
3831 ret |= finish_fault(vmf);
3832 unlock_page(vmf->page);
3833 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3834 put_page(vmf->page);
3835 return ret;
3836 }
3837
3838 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3839 {
3840 struct vm_area_struct *vma = vmf->vma;
3841 vm_fault_t ret;
3842
3843 if (unlikely(anon_vma_prepare(vma)))
3844 return VM_FAULT_OOM;
3845
3846 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3847 if (!vmf->cow_page)
3848 return VM_FAULT_OOM;
3849
3850 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, false)) {
3851 put_page(vmf->cow_page);
3852 return VM_FAULT_OOM;
3853 }
3854 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3855
3856 ret = __do_fault(vmf);
3857 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3858 goto uncharge_out;
3859 if (ret & VM_FAULT_DONE_COW)
3860 return ret;
3861
3862 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3863 __SetPageUptodate(vmf->cow_page);
3864
3865 ret |= finish_fault(vmf);
3866 unlock_page(vmf->page);
3867 put_page(vmf->page);
3868 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3869 goto uncharge_out;
3870 return ret;
3871 uncharge_out:
3872 put_page(vmf->cow_page);
3873 return ret;
3874 }
3875
3876 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3877 {
3878 struct vm_area_struct *vma = vmf->vma;
3879 vm_fault_t ret, tmp;
3880
3881 ret = __do_fault(vmf);
3882 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3883 return ret;
3884
3885 /*
3886 * Check if the backing address space wants to know that the page is
3887 * about to become writable
3888 */
3889 if (vma->vm_ops->page_mkwrite) {
3890 unlock_page(vmf->page);
3891 tmp = do_page_mkwrite(vmf);
3892 if (unlikely(!tmp ||
3893 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3894 put_page(vmf->page);
3895 return tmp;
3896 }
3897 }
3898
3899 ret |= finish_fault(vmf);
3900 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3901 VM_FAULT_RETRY))) {
3902 unlock_page(vmf->page);
3903 put_page(vmf->page);
3904 return ret;
3905 }
3906
3907 ret |= fault_dirty_shared_page(vmf);
3908 return ret;
3909 }
3910
3911 /*
3912 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3913 * but allow concurrent faults).
3914 * The mmap_sem may have been released depending on flags and our
3915 * return value. See filemap_fault() and __lock_page_or_retry().
3916 * If mmap_sem is released, vma may become invalid (for example
3917 * by other thread calling munmap()).
3918 */
3919 static vm_fault_t do_fault(struct vm_fault *vmf)
3920 {
3921 struct vm_area_struct *vma = vmf->vma;
3922 struct mm_struct *vm_mm = vma->vm_mm;
3923 vm_fault_t ret;
3924
3925 /*
3926 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3927 */
3928 if (!vma->vm_ops->fault) {
3929 /*
3930 * If we find a migration pmd entry or a none pmd entry, which
3931 * should never happen, return SIGBUS
3932 */
3933 if (unlikely(!pmd_present(*vmf->pmd)))
3934 ret = VM_FAULT_SIGBUS;
3935 else {
3936 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3937 vmf->pmd,
3938 vmf->address,
3939 &vmf->ptl);
3940 /*
3941 * Make sure this is not a temporary clearing of pte
3942 * by holding ptl and checking again. A R/M/W update
3943 * of pte involves: take ptl, clearing the pte so that
3944 * we don't have concurrent modification by hardware
3945 * followed by an update.
3946 */
3947 if (unlikely(pte_none(*vmf->pte)))
3948 ret = VM_FAULT_SIGBUS;
3949 else
3950 ret = VM_FAULT_NOPAGE;
3951
3952 pte_unmap_unlock(vmf->pte, vmf->ptl);
3953 }
3954 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3955 ret = do_read_fault(vmf);
3956 else if (!(vma->vm_flags & VM_SHARED))
3957 ret = do_cow_fault(vmf);
3958 else
3959 ret = do_shared_fault(vmf);
3960
3961 /* preallocated pagetable is unused: free it */
3962 if (vmf->prealloc_pte) {
3963 pte_free(vm_mm, vmf->prealloc_pte);
3964 vmf->prealloc_pte = NULL;
3965 }
3966 return ret;
3967 }
3968
3969 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3970 unsigned long addr, int page_nid,
3971 int *flags)
3972 {
3973 get_page(page);
3974
3975 count_vm_numa_event(NUMA_HINT_FAULTS);
3976 if (page_nid == numa_node_id()) {
3977 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3978 *flags |= TNF_FAULT_LOCAL;
3979 }
3980
3981 return mpol_misplaced(page, vma, addr);
3982 }
3983
3984 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3985 {
3986 struct vm_area_struct *vma = vmf->vma;
3987 struct page *page = NULL;
3988 int page_nid = NUMA_NO_NODE;
3989 int last_cpupid;
3990 int target_nid;
3991 bool migrated = false;
3992 pte_t pte, old_pte;
3993 bool was_writable = pte_savedwrite(vmf->orig_pte);
3994 int flags = 0;
3995
3996 /*
3997 * The "pte" at this point cannot be used safely without
3998 * validation through pte_unmap_same(). It's of NUMA type but
3999 * the pfn may be screwed if the read is non atomic.
4000 */
4001 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4002 spin_lock(vmf->ptl);
4003 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4004 pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 goto out;
4006 }
4007
4008 /*
4009 * Make it present again, Depending on how arch implementes non
4010 * accessible ptes, some can allow access by kernel mode.
4011 */
4012 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4013 pte = pte_modify(old_pte, vma->vm_page_prot);
4014 pte = pte_mkyoung(pte);
4015 if (was_writable)
4016 pte = pte_mkwrite(pte);
4017 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4018 update_mmu_cache(vma, vmf->address, vmf->pte);
4019
4020 page = vm_normal_page(vma, vmf->address, pte);
4021 if (!page) {
4022 pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 return 0;
4024 }
4025
4026 /* TODO: handle PTE-mapped THP */
4027 if (PageCompound(page)) {
4028 pte_unmap_unlock(vmf->pte, vmf->ptl);
4029 return 0;
4030 }
4031
4032 /*
4033 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4034 * much anyway since they can be in shared cache state. This misses
4035 * the case where a mapping is writable but the process never writes
4036 * to it but pte_write gets cleared during protection updates and
4037 * pte_dirty has unpredictable behaviour between PTE scan updates,
4038 * background writeback, dirty balancing and application behaviour.
4039 */
4040 if (!pte_write(pte))
4041 flags |= TNF_NO_GROUP;
4042
4043 /*
4044 * Flag if the page is shared between multiple address spaces. This
4045 * is later used when determining whether to group tasks together
4046 */
4047 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4048 flags |= TNF_SHARED;
4049
4050 last_cpupid = page_cpupid_last(page);
4051 page_nid = page_to_nid(page);
4052 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4053 &flags);
4054 pte_unmap_unlock(vmf->pte, vmf->ptl);
4055 if (target_nid == NUMA_NO_NODE) {
4056 put_page(page);
4057 goto out;
4058 }
4059
4060 /* Migrate to the requested node */
4061 migrated = migrate_misplaced_page(page, vma, target_nid);
4062 if (migrated) {
4063 page_nid = target_nid;
4064 flags |= TNF_MIGRATED;
4065 } else
4066 flags |= TNF_MIGRATE_FAIL;
4067
4068 out:
4069 if (page_nid != NUMA_NO_NODE)
4070 task_numa_fault(last_cpupid, page_nid, 1, flags);
4071 return 0;
4072 }
4073
4074 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4075 {
4076 if (vma_is_anonymous(vmf->vma))
4077 return do_huge_pmd_anonymous_page(vmf);
4078 if (vmf->vma->vm_ops->huge_fault)
4079 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4080 return VM_FAULT_FALLBACK;
4081 }
4082
4083 /* `inline' is required to avoid gcc 4.1.2 build error */
4084 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4085 {
4086 if (vma_is_anonymous(vmf->vma)) {
4087 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4088 return handle_userfault(vmf, VM_UFFD_WP);
4089 return do_huge_pmd_wp_page(vmf, orig_pmd);
4090 }
4091 if (vmf->vma->vm_ops->huge_fault) {
4092 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4093
4094 if (!(ret & VM_FAULT_FALLBACK))
4095 return ret;
4096 }
4097
4098 /* COW or write-notify handled on pte level: split pmd. */
4099 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4100
4101 return VM_FAULT_FALLBACK;
4102 }
4103
4104 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4105 {
4106 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4107 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4108 /* No support for anonymous transparent PUD pages yet */
4109 if (vma_is_anonymous(vmf->vma))
4110 goto split;
4111 if (vmf->vma->vm_ops->huge_fault) {
4112 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4113
4114 if (!(ret & VM_FAULT_FALLBACK))
4115 return ret;
4116 }
4117 split:
4118 /* COW or write-notify not handled on PUD level: split pud.*/
4119 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4121 return VM_FAULT_FALLBACK;
4122 }
4123
4124 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4125 {
4126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4127 /* No support for anonymous transparent PUD pages yet */
4128 if (vma_is_anonymous(vmf->vma))
4129 return VM_FAULT_FALLBACK;
4130 if (vmf->vma->vm_ops->huge_fault)
4131 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4133 return VM_FAULT_FALLBACK;
4134 }
4135
4136 /*
4137 * These routines also need to handle stuff like marking pages dirty
4138 * and/or accessed for architectures that don't do it in hardware (most
4139 * RISC architectures). The early dirtying is also good on the i386.
4140 *
4141 * There is also a hook called "update_mmu_cache()" that architectures
4142 * with external mmu caches can use to update those (ie the Sparc or
4143 * PowerPC hashed page tables that act as extended TLBs).
4144 *
4145 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4146 * concurrent faults).
4147 *
4148 * The mmap_sem may have been released depending on flags and our return value.
4149 * See filemap_fault() and __lock_page_or_retry().
4150 */
4151 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4152 {
4153 pte_t entry;
4154
4155 if (unlikely(pmd_none(*vmf->pmd))) {
4156 /*
4157 * Leave __pte_alloc() until later: because vm_ops->fault may
4158 * want to allocate huge page, and if we expose page table
4159 * for an instant, it will be difficult to retract from
4160 * concurrent faults and from rmap lookups.
4161 */
4162 vmf->pte = NULL;
4163 } else {
4164 /* See comment in pte_alloc_one_map() */
4165 if (pmd_devmap_trans_unstable(vmf->pmd))
4166 return 0;
4167 /*
4168 * A regular pmd is established and it can't morph into a huge
4169 * pmd from under us anymore at this point because we hold the
4170 * mmap_sem read mode and khugepaged takes it in write mode.
4171 * So now it's safe to run pte_offset_map().
4172 */
4173 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4174 vmf->orig_pte = *vmf->pte;
4175
4176 /*
4177 * some architectures can have larger ptes than wordsize,
4178 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4179 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4180 * accesses. The code below just needs a consistent view
4181 * for the ifs and we later double check anyway with the
4182 * ptl lock held. So here a barrier will do.
4183 */
4184 barrier();
4185 if (pte_none(vmf->orig_pte)) {
4186 pte_unmap(vmf->pte);
4187 vmf->pte = NULL;
4188 }
4189 }
4190
4191 if (!vmf->pte) {
4192 if (vma_is_anonymous(vmf->vma))
4193 return do_anonymous_page(vmf);
4194 else
4195 return do_fault(vmf);
4196 }
4197
4198 if (!pte_present(vmf->orig_pte))
4199 return do_swap_page(vmf);
4200
4201 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4202 return do_numa_page(vmf);
4203
4204 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4205 spin_lock(vmf->ptl);
4206 entry = vmf->orig_pte;
4207 if (unlikely(!pte_same(*vmf->pte, entry)))
4208 goto unlock;
4209 if (vmf->flags & FAULT_FLAG_WRITE) {
4210 if (!pte_write(entry))
4211 return do_wp_page(vmf);
4212 entry = pte_mkdirty(entry);
4213 }
4214 entry = pte_mkyoung(entry);
4215 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4216 vmf->flags & FAULT_FLAG_WRITE)) {
4217 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4218 } else {
4219 /*
4220 * This is needed only for protection faults but the arch code
4221 * is not yet telling us if this is a protection fault or not.
4222 * This still avoids useless tlb flushes for .text page faults
4223 * with threads.
4224 */
4225 if (vmf->flags & FAULT_FLAG_WRITE)
4226 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4227 }
4228 unlock:
4229 pte_unmap_unlock(vmf->pte, vmf->ptl);
4230 return 0;
4231 }
4232
4233 /*
4234 * By the time we get here, we already hold the mm semaphore
4235 *
4236 * The mmap_sem may have been released depending on flags and our
4237 * return value. See filemap_fault() and __lock_page_or_retry().
4238 */
4239 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4240 unsigned long address, unsigned int flags)
4241 {
4242 struct vm_fault vmf = {
4243 .vma = vma,
4244 .address = address & PAGE_MASK,
4245 .flags = flags,
4246 .pgoff = linear_page_index(vma, address),
4247 .gfp_mask = __get_fault_gfp_mask(vma),
4248 };
4249 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4250 struct mm_struct *mm = vma->vm_mm;
4251 pgd_t *pgd;
4252 p4d_t *p4d;
4253 vm_fault_t ret;
4254
4255 pgd = pgd_offset(mm, address);
4256 p4d = p4d_alloc(mm, pgd, address);
4257 if (!p4d)
4258 return VM_FAULT_OOM;
4259
4260 vmf.pud = pud_alloc(mm, p4d, address);
4261 if (!vmf.pud)
4262 return VM_FAULT_OOM;
4263 retry_pud:
4264 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4265 ret = create_huge_pud(&vmf);
4266 if (!(ret & VM_FAULT_FALLBACK))
4267 return ret;
4268 } else {
4269 pud_t orig_pud = *vmf.pud;
4270
4271 barrier();
4272 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4273
4274 /* NUMA case for anonymous PUDs would go here */
4275
4276 if (dirty && !pud_write(orig_pud)) {
4277 ret = wp_huge_pud(&vmf, orig_pud);
4278 if (!(ret & VM_FAULT_FALLBACK))
4279 return ret;
4280 } else {
4281 huge_pud_set_accessed(&vmf, orig_pud);
4282 return 0;
4283 }
4284 }
4285 }
4286
4287 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4288 if (!vmf.pmd)
4289 return VM_FAULT_OOM;
4290
4291 /* Huge pud page fault raced with pmd_alloc? */
4292 if (pud_trans_unstable(vmf.pud))
4293 goto retry_pud;
4294
4295 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4296 ret = create_huge_pmd(&vmf);
4297 if (!(ret & VM_FAULT_FALLBACK))
4298 return ret;
4299 } else {
4300 pmd_t orig_pmd = *vmf.pmd;
4301
4302 barrier();
4303 if (unlikely(is_swap_pmd(orig_pmd))) {
4304 VM_BUG_ON(thp_migration_supported() &&
4305 !is_pmd_migration_entry(orig_pmd));
4306 if (is_pmd_migration_entry(orig_pmd))
4307 pmd_migration_entry_wait(mm, vmf.pmd);
4308 return 0;
4309 }
4310 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4311 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4312 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4313
4314 if (dirty && !pmd_write(orig_pmd)) {
4315 ret = wp_huge_pmd(&vmf, orig_pmd);
4316 if (!(ret & VM_FAULT_FALLBACK))
4317 return ret;
4318 } else {
4319 huge_pmd_set_accessed(&vmf, orig_pmd);
4320 return 0;
4321 }
4322 }
4323 }
4324
4325 return handle_pte_fault(&vmf);
4326 }
4327
4328 /*
4329 * By the time we get here, we already hold the mm semaphore
4330 *
4331 * The mmap_sem may have been released depending on flags and our
4332 * return value. See filemap_fault() and __lock_page_or_retry().
4333 */
4334 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4335 unsigned int flags)
4336 {
4337 vm_fault_t ret;
4338
4339 __set_current_state(TASK_RUNNING);
4340
4341 count_vm_event(PGFAULT);
4342 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4343
4344 /* do counter updates before entering really critical section. */
4345 check_sync_rss_stat(current);
4346
4347 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4348 flags & FAULT_FLAG_INSTRUCTION,
4349 flags & FAULT_FLAG_REMOTE))
4350 return VM_FAULT_SIGSEGV;
4351
4352 /*
4353 * Enable the memcg OOM handling for faults triggered in user
4354 * space. Kernel faults are handled more gracefully.
4355 */
4356 if (flags & FAULT_FLAG_USER)
4357 mem_cgroup_enter_user_fault();
4358
4359 if (unlikely(is_vm_hugetlb_page(vma)))
4360 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4361 else
4362 ret = __handle_mm_fault(vma, address, flags);
4363
4364 if (flags & FAULT_FLAG_USER) {
4365 mem_cgroup_exit_user_fault();
4366 /*
4367 * The task may have entered a memcg OOM situation but
4368 * if the allocation error was handled gracefully (no
4369 * VM_FAULT_OOM), there is no need to kill anything.
4370 * Just clean up the OOM state peacefully.
4371 */
4372 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4373 mem_cgroup_oom_synchronize(false);
4374 }
4375
4376 return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(handle_mm_fault);
4379
4380 #ifndef __PAGETABLE_P4D_FOLDED
4381 /*
4382 * Allocate p4d page table.
4383 * We've already handled the fast-path in-line.
4384 */
4385 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4386 {
4387 p4d_t *new = p4d_alloc_one(mm, address);
4388 if (!new)
4389 return -ENOMEM;
4390
4391 smp_wmb(); /* See comment in __pte_alloc */
4392
4393 spin_lock(&mm->page_table_lock);
4394 if (pgd_present(*pgd)) /* Another has populated it */
4395 p4d_free(mm, new);
4396 else
4397 pgd_populate(mm, pgd, new);
4398 spin_unlock(&mm->page_table_lock);
4399 return 0;
4400 }
4401 #endif /* __PAGETABLE_P4D_FOLDED */
4402
4403 #ifndef __PAGETABLE_PUD_FOLDED
4404 /*
4405 * Allocate page upper directory.
4406 * We've already handled the fast-path in-line.
4407 */
4408 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4409 {
4410 pud_t *new = pud_alloc_one(mm, address);
4411 if (!new)
4412 return -ENOMEM;
4413
4414 smp_wmb(); /* See comment in __pte_alloc */
4415
4416 spin_lock(&mm->page_table_lock);
4417 #ifndef __ARCH_HAS_5LEVEL_HACK
4418 if (!p4d_present(*p4d)) {
4419 mm_inc_nr_puds(mm);
4420 p4d_populate(mm, p4d, new);
4421 } else /* Another has populated it */
4422 pud_free(mm, new);
4423 #else
4424 if (!pgd_present(*p4d)) {
4425 mm_inc_nr_puds(mm);
4426 pgd_populate(mm, p4d, new);
4427 } else /* Another has populated it */
4428 pud_free(mm, new);
4429 #endif /* __ARCH_HAS_5LEVEL_HACK */
4430 spin_unlock(&mm->page_table_lock);
4431 return 0;
4432 }
4433 #endif /* __PAGETABLE_PUD_FOLDED */
4434
4435 #ifndef __PAGETABLE_PMD_FOLDED
4436 /*
4437 * Allocate page middle directory.
4438 * We've already handled the fast-path in-line.
4439 */
4440 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4441 {
4442 spinlock_t *ptl;
4443 pmd_t *new = pmd_alloc_one(mm, address);
4444 if (!new)
4445 return -ENOMEM;
4446
4447 smp_wmb(); /* See comment in __pte_alloc */
4448
4449 ptl = pud_lock(mm, pud);
4450 if (!pud_present(*pud)) {
4451 mm_inc_nr_pmds(mm);
4452 pud_populate(mm, pud, new);
4453 } else /* Another has populated it */
4454 pmd_free(mm, new);
4455 spin_unlock(ptl);
4456 return 0;
4457 }
4458 #endif /* __PAGETABLE_PMD_FOLDED */
4459
4460 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4461 struct mmu_notifier_range *range,
4462 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4463 {
4464 pgd_t *pgd;
4465 p4d_t *p4d;
4466 pud_t *pud;
4467 pmd_t *pmd;
4468 pte_t *ptep;
4469
4470 pgd = pgd_offset(mm, address);
4471 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4472 goto out;
4473
4474 p4d = p4d_offset(pgd, address);
4475 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4476 goto out;
4477
4478 pud = pud_offset(p4d, address);
4479 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4480 goto out;
4481
4482 pmd = pmd_offset(pud, address);
4483 VM_BUG_ON(pmd_trans_huge(*pmd));
4484
4485 if (pmd_huge(*pmd)) {
4486 if (!pmdpp)
4487 goto out;
4488
4489 if (range) {
4490 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4491 NULL, mm, address & PMD_MASK,
4492 (address & PMD_MASK) + PMD_SIZE);
4493 mmu_notifier_invalidate_range_start(range);
4494 }
4495 *ptlp = pmd_lock(mm, pmd);
4496 if (pmd_huge(*pmd)) {
4497 *pmdpp = pmd;
4498 return 0;
4499 }
4500 spin_unlock(*ptlp);
4501 if (range)
4502 mmu_notifier_invalidate_range_end(range);
4503 }
4504
4505 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4506 goto out;
4507
4508 if (range) {
4509 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4510 address & PAGE_MASK,
4511 (address & PAGE_MASK) + PAGE_SIZE);
4512 mmu_notifier_invalidate_range_start(range);
4513 }
4514 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4515 if (!pte_present(*ptep))
4516 goto unlock;
4517 *ptepp = ptep;
4518 return 0;
4519 unlock:
4520 pte_unmap_unlock(ptep, *ptlp);
4521 if (range)
4522 mmu_notifier_invalidate_range_end(range);
4523 out:
4524 return -EINVAL;
4525 }
4526
4527 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4528 pte_t **ptepp, spinlock_t **ptlp)
4529 {
4530 int res;
4531
4532 /* (void) is needed to make gcc happy */
4533 (void) __cond_lock(*ptlp,
4534 !(res = __follow_pte_pmd(mm, address, NULL,
4535 ptepp, NULL, ptlp)));
4536 return res;
4537 }
4538
4539 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4540 struct mmu_notifier_range *range,
4541 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4542 {
4543 int res;
4544
4545 /* (void) is needed to make gcc happy */
4546 (void) __cond_lock(*ptlp,
4547 !(res = __follow_pte_pmd(mm, address, range,
4548 ptepp, pmdpp, ptlp)));
4549 return res;
4550 }
4551 EXPORT_SYMBOL(follow_pte_pmd);
4552
4553 /**
4554 * follow_pfn - look up PFN at a user virtual address
4555 * @vma: memory mapping
4556 * @address: user virtual address
4557 * @pfn: location to store found PFN
4558 *
4559 * Only IO mappings and raw PFN mappings are allowed.
4560 *
4561 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4562 */
4563 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4564 unsigned long *pfn)
4565 {
4566 int ret = -EINVAL;
4567 spinlock_t *ptl;
4568 pte_t *ptep;
4569
4570 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4571 return ret;
4572
4573 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4574 if (ret)
4575 return ret;
4576 *pfn = pte_pfn(*ptep);
4577 pte_unmap_unlock(ptep, ptl);
4578 return 0;
4579 }
4580 EXPORT_SYMBOL(follow_pfn);
4581
4582 #ifdef CONFIG_HAVE_IOREMAP_PROT
4583 int follow_phys(struct vm_area_struct *vma,
4584 unsigned long address, unsigned int flags,
4585 unsigned long *prot, resource_size_t *phys)
4586 {
4587 int ret = -EINVAL;
4588 pte_t *ptep, pte;
4589 spinlock_t *ptl;
4590
4591 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4592 goto out;
4593
4594 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4595 goto out;
4596 pte = *ptep;
4597
4598 if ((flags & FOLL_WRITE) && !pte_write(pte))
4599 goto unlock;
4600
4601 *prot = pgprot_val(pte_pgprot(pte));
4602 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4603
4604 ret = 0;
4605 unlock:
4606 pte_unmap_unlock(ptep, ptl);
4607 out:
4608 return ret;
4609 }
4610
4611 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4612 void *buf, int len, int write)
4613 {
4614 resource_size_t phys_addr;
4615 unsigned long prot = 0;
4616 void __iomem *maddr;
4617 int offset = addr & (PAGE_SIZE-1);
4618
4619 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4620 return -EINVAL;
4621
4622 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4623 if (!maddr)
4624 return -ENOMEM;
4625
4626 if (write)
4627 memcpy_toio(maddr + offset, buf, len);
4628 else
4629 memcpy_fromio(buf, maddr + offset, len);
4630 iounmap(maddr);
4631
4632 return len;
4633 }
4634 EXPORT_SYMBOL_GPL(generic_access_phys);
4635 #endif
4636
4637 /*
4638 * Access another process' address space as given in mm. If non-NULL, use the
4639 * given task for page fault accounting.
4640 */
4641 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4642 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4643 {
4644 struct vm_area_struct *vma;
4645 void *old_buf = buf;
4646 int write = gup_flags & FOLL_WRITE;
4647
4648 if (down_read_killable(&mm->mmap_sem))
4649 return 0;
4650
4651 /* ignore errors, just check how much was successfully transferred */
4652 while (len) {
4653 int bytes, ret, offset;
4654 void *maddr;
4655 struct page *page = NULL;
4656
4657 ret = get_user_pages_remote(tsk, mm, addr, 1,
4658 gup_flags, &page, &vma, NULL);
4659 if (ret <= 0) {
4660 #ifndef CONFIG_HAVE_IOREMAP_PROT
4661 break;
4662 #else
4663 /*
4664 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4665 * we can access using slightly different code.
4666 */
4667 vma = find_vma(mm, addr);
4668 if (!vma || vma->vm_start > addr)
4669 break;
4670 if (vma->vm_ops && vma->vm_ops->access)
4671 ret = vma->vm_ops->access(vma, addr, buf,
4672 len, write);
4673 if (ret <= 0)
4674 break;
4675 bytes = ret;
4676 #endif
4677 } else {
4678 bytes = len;
4679 offset = addr & (PAGE_SIZE-1);
4680 if (bytes > PAGE_SIZE-offset)
4681 bytes = PAGE_SIZE-offset;
4682
4683 maddr = kmap(page);
4684 if (write) {
4685 copy_to_user_page(vma, page, addr,
4686 maddr + offset, buf, bytes);
4687 set_page_dirty_lock(page);
4688 } else {
4689 copy_from_user_page(vma, page, addr,
4690 buf, maddr + offset, bytes);
4691 }
4692 kunmap(page);
4693 put_page(page);
4694 }
4695 len -= bytes;
4696 buf += bytes;
4697 addr += bytes;
4698 }
4699 up_read(&mm->mmap_sem);
4700
4701 return buf - old_buf;
4702 }
4703
4704 /**
4705 * access_remote_vm - access another process' address space
4706 * @mm: the mm_struct of the target address space
4707 * @addr: start address to access
4708 * @buf: source or destination buffer
4709 * @len: number of bytes to transfer
4710 * @gup_flags: flags modifying lookup behaviour
4711 *
4712 * The caller must hold a reference on @mm.
4713 *
4714 * Return: number of bytes copied from source to destination.
4715 */
4716 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4717 void *buf, int len, unsigned int gup_flags)
4718 {
4719 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4720 }
4721
4722 /*
4723 * Access another process' address space.
4724 * Source/target buffer must be kernel space,
4725 * Do not walk the page table directly, use get_user_pages
4726 */
4727 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4728 void *buf, int len, unsigned int gup_flags)
4729 {
4730 struct mm_struct *mm;
4731 int ret;
4732
4733 mm = get_task_mm(tsk);
4734 if (!mm)
4735 return 0;
4736
4737 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4738
4739 mmput(mm);
4740
4741 return ret;
4742 }
4743 EXPORT_SYMBOL_GPL(access_process_vm);
4744
4745 /*
4746 * Print the name of a VMA.
4747 */
4748 void print_vma_addr(char *prefix, unsigned long ip)
4749 {
4750 struct mm_struct *mm = current->mm;
4751 struct vm_area_struct *vma;
4752
4753 /*
4754 * we might be running from an atomic context so we cannot sleep
4755 */
4756 if (!down_read_trylock(&mm->mmap_sem))
4757 return;
4758
4759 vma = find_vma(mm, ip);
4760 if (vma && vma->vm_file) {
4761 struct file *f = vma->vm_file;
4762 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4763 if (buf) {
4764 char *p;
4765
4766 p = file_path(f, buf, PAGE_SIZE);
4767 if (IS_ERR(p))
4768 p = "?";
4769 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4770 vma->vm_start,
4771 vma->vm_end - vma->vm_start);
4772 free_page((unsigned long)buf);
4773 }
4774 }
4775 up_read(&mm->mmap_sem);
4776 }
4777
4778 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4779 void __might_fault(const char *file, int line)
4780 {
4781 /*
4782 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4783 * holding the mmap_sem, this is safe because kernel memory doesn't
4784 * get paged out, therefore we'll never actually fault, and the
4785 * below annotations will generate false positives.
4786 */
4787 if (uaccess_kernel())
4788 return;
4789 if (pagefault_disabled())
4790 return;
4791 __might_sleep(file, line, 0);
4792 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4793 if (current->mm)
4794 might_lock_read(&current->mm->mmap_sem);
4795 #endif
4796 }
4797 EXPORT_SYMBOL(__might_fault);
4798 #endif
4799
4800 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4801 /*
4802 * Process all subpages of the specified huge page with the specified
4803 * operation. The target subpage will be processed last to keep its
4804 * cache lines hot.
4805 */
4806 static inline void process_huge_page(
4807 unsigned long addr_hint, unsigned int pages_per_huge_page,
4808 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4809 void *arg)
4810 {
4811 int i, n, base, l;
4812 unsigned long addr = addr_hint &
4813 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4814
4815 /* Process target subpage last to keep its cache lines hot */
4816 might_sleep();
4817 n = (addr_hint - addr) / PAGE_SIZE;
4818 if (2 * n <= pages_per_huge_page) {
4819 /* If target subpage in first half of huge page */
4820 base = 0;
4821 l = n;
4822 /* Process subpages at the end of huge page */
4823 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4824 cond_resched();
4825 process_subpage(addr + i * PAGE_SIZE, i, arg);
4826 }
4827 } else {
4828 /* If target subpage in second half of huge page */
4829 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4830 l = pages_per_huge_page - n;
4831 /* Process subpages at the begin of huge page */
4832 for (i = 0; i < base; i++) {
4833 cond_resched();
4834 process_subpage(addr + i * PAGE_SIZE, i, arg);
4835 }
4836 }
4837 /*
4838 * Process remaining subpages in left-right-left-right pattern
4839 * towards the target subpage
4840 */
4841 for (i = 0; i < l; i++) {
4842 int left_idx = base + i;
4843 int right_idx = base + 2 * l - 1 - i;
4844
4845 cond_resched();
4846 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4847 cond_resched();
4848 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4849 }
4850 }
4851
4852 static void clear_gigantic_page(struct page *page,
4853 unsigned long addr,
4854 unsigned int pages_per_huge_page)
4855 {
4856 int i;
4857 struct page *p = page;
4858
4859 might_sleep();
4860 for (i = 0; i < pages_per_huge_page;
4861 i++, p = mem_map_next(p, page, i)) {
4862 cond_resched();
4863 clear_user_highpage(p, addr + i * PAGE_SIZE);
4864 }
4865 }
4866
4867 static void clear_subpage(unsigned long addr, int idx, void *arg)
4868 {
4869 struct page *page = arg;
4870
4871 clear_user_highpage(page + idx, addr);
4872 }
4873
4874 void clear_huge_page(struct page *page,
4875 unsigned long addr_hint, unsigned int pages_per_huge_page)
4876 {
4877 unsigned long addr = addr_hint &
4878 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4879
4880 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4881 clear_gigantic_page(page, addr, pages_per_huge_page);
4882 return;
4883 }
4884
4885 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4886 }
4887
4888 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4889 unsigned long addr,
4890 struct vm_area_struct *vma,
4891 unsigned int pages_per_huge_page)
4892 {
4893 int i;
4894 struct page *dst_base = dst;
4895 struct page *src_base = src;
4896
4897 for (i = 0; i < pages_per_huge_page; ) {
4898 cond_resched();
4899 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4900
4901 i++;
4902 dst = mem_map_next(dst, dst_base, i);
4903 src = mem_map_next(src, src_base, i);
4904 }
4905 }
4906
4907 struct copy_subpage_arg {
4908 struct page *dst;
4909 struct page *src;
4910 struct vm_area_struct *vma;
4911 };
4912
4913 static void copy_subpage(unsigned long addr, int idx, void *arg)
4914 {
4915 struct copy_subpage_arg *copy_arg = arg;
4916
4917 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4918 addr, copy_arg->vma);
4919 }
4920
4921 void copy_user_huge_page(struct page *dst, struct page *src,
4922 unsigned long addr_hint, struct vm_area_struct *vma,
4923 unsigned int pages_per_huge_page)
4924 {
4925 unsigned long addr = addr_hint &
4926 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4927 struct copy_subpage_arg arg = {
4928 .dst = dst,
4929 .src = src,
4930 .vma = vma,
4931 };
4932
4933 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4934 copy_user_gigantic_page(dst, src, addr, vma,
4935 pages_per_huge_page);
4936 return;
4937 }
4938
4939 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4940 }
4941
4942 long copy_huge_page_from_user(struct page *dst_page,
4943 const void __user *usr_src,
4944 unsigned int pages_per_huge_page,
4945 bool allow_pagefault)
4946 {
4947 void *src = (void *)usr_src;
4948 void *page_kaddr;
4949 unsigned long i, rc = 0;
4950 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4951
4952 for (i = 0; i < pages_per_huge_page; i++) {
4953 if (allow_pagefault)
4954 page_kaddr = kmap(dst_page + i);
4955 else
4956 page_kaddr = kmap_atomic(dst_page + i);
4957 rc = copy_from_user(page_kaddr,
4958 (const void __user *)(src + i * PAGE_SIZE),
4959 PAGE_SIZE);
4960 if (allow_pagefault)
4961 kunmap(dst_page + i);
4962 else
4963 kunmap_atomic(page_kaddr);
4964
4965 ret_val -= (PAGE_SIZE - rc);
4966 if (rc)
4967 break;
4968
4969 cond_resched();
4970 }
4971 return ret_val;
4972 }
4973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4974
4975 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4976
4977 static struct kmem_cache *page_ptl_cachep;
4978
4979 void __init ptlock_cache_init(void)
4980 {
4981 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4982 SLAB_PANIC, NULL);
4983 }
4984
4985 bool ptlock_alloc(struct page *page)
4986 {
4987 spinlock_t *ptl;
4988
4989 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4990 if (!ptl)
4991 return false;
4992 page->ptl = ptl;
4993 return true;
4994 }
4995
4996 void ptlock_free(struct page *page)
4997 {
4998 kmem_cache_free(page_ptl_cachep, page->ptl);
4999 }
5000 #endif