]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory.c
bpf: Add classid helper only based on skb->sk
[mirror_ubuntu-hirsute-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 1;
122 #else
123 2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140 randomize_va_space = 0;
141 return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153 static int __init init_zero_pfn(void)
154 {
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
175 }
176 }
177 current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
218 {
219 pgtable_t token = pmd_pgtable(*pmd);
220 pmd_clear(pmd);
221 pte_free_tlb(tlb, token, addr);
222 mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
228 {
229 pmd_t *pmd;
230 unsigned long next;
231 unsigned long start;
232
233 start = addr;
234 pmd = pmd_offset(pud, addr);
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
239 free_pte_range(tlb, pmd, addr);
240 } while (pmd++, addr = next, addr != end);
241
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
249 }
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
255 pmd_free_tlb(tlb, pmd, start);
256 mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
262 {
263 pud_t *pud;
264 unsigned long next;
265 unsigned long start;
266
267 start = addr;
268 pud = pud_offset(p4d, addr);
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 } while (pud++, addr = next, addr != end);
275
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
290 mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296 {
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
317 }
318 if (end - 1 > ceiling - 1)
319 return;
320
321 p4d = p4d_offset(pgd, start);
322 pgd_clear(pgd);
323 p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327 * This function frees user-level page tables of a process.
328 */
329 void free_pgd_range(struct mmu_gather *tlb,
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
332 {
333 pgd_t *pgd;
334 unsigned long next;
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
361
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
381 tlb_change_page_size(tlb, PAGE_SIZE);
382 pgd = pgd_offset(tlb->mm, addr);
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 unsigned long floor, unsigned long ceiling)
393 {
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
398 /*
399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
401 */
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
404
405 if (is_vm_hugetlb_page(vma)) {
406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 floor, next ? next->vm_start : ceiling);
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 && !is_vm_hugetlb_page(next)) {
414 vma = next;
415 next = vma->vm_next;
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
420 floor, next ? next->vm_start : ceiling);
421 }
422 vma = next;
423 }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 spinlock_t *ptl;
429 pgtable_t new = pte_alloc_one(mm);
430 if (!new)
431 return -ENOMEM;
432
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
444 * smp_rmb() barriers in page table walking code.
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448 ptl = pmd_lock(mm, pmd);
449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
450 mm_inc_nr_ptes(mm);
451 pmd_populate(mm, pmd, new);
452 new = NULL;
453 }
454 spin_unlock(ptl);
455 if (new)
456 pte_free(mm, new);
457 return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 pte_t *new = pte_alloc_one_kernel(&init_mm);
463 if (!new)
464 return -ENOMEM;
465
466 smp_wmb(); /* See comment in __pte_alloc */
467
468 spin_lock(&init_mm.page_table_lock);
469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
470 pmd_populate_kernel(&init_mm, pmd, new);
471 new = NULL;
472 }
473 spin_unlock(&init_mm.page_table_lock);
474 if (new)
475 pte_free_kernel(&init_mm, new);
476 return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 int i;
487
488 if (current->mm == mm)
489 sync_mm_rss(mm);
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
499 *
500 * The calling function must still handle the error.
501 */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
504 {
505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 if (page)
541 dump_page(page, "bad pte");
542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
549 dump_stack();
550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
555 *
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
559 *
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
568 *
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
582 *
583 *
584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
594 */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
597 {
598 unsigned long pfn = pte_pfn(pte);
599
600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 if (likely(!pte_special(pte)))
602 goto check_pfn;
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (is_zero_pfn(pfn))
608 return NULL;
609 if (pte_devmap(pte))
610 return NULL;
611
612 print_bad_pte(vma, addr, pte, NULL);
613 return NULL;
614 }
615
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
631 }
632
633 if (is_zero_pfn(pfn))
634 return NULL;
635
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
641
642 /*
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
645 */
646 out:
647 return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653 {
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
676 if (pmd_devmap(pmd))
677 return NULL;
678 if (is_huge_zero_pmd(pmd))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687 out:
688 return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
696 */
697
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 unsigned long addr, int *rss)
702 {
703 unsigned long vm_flags = vma->vm_flags;
704 pte_t pte = *src_pte;
705 struct page *page;
706
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
709 swp_entry_t entry = pte_to_swp_entry(pte);
710
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
714
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
722 }
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
726
727 rss[mm_counter(page)]++;
728
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
731 /*
732 * COW mappings require pages in both
733 * parent and child to be set to read.
734 */
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 if (pte_swp_uffd_wp(*src_pte))
740 pte = pte_swp_mkuffd_wp(pte);
741 set_pte_at(src_mm, addr, src_pte, pte);
742 }
743 } else if (is_device_private_entry(entry)) {
744 page = device_private_entry_to_page(entry);
745
746 /*
747 * Update rss count even for unaddressable pages, as
748 * they should treated just like normal pages in this
749 * respect.
750 *
751 * We will likely want to have some new rss counters
752 * for unaddressable pages, at some point. But for now
753 * keep things as they are.
754 */
755 get_page(page);
756 rss[mm_counter(page)]++;
757 page_dup_rmap(page, false);
758
759 /*
760 * We do not preserve soft-dirty information, because so
761 * far, checkpoint/restore is the only feature that
762 * requires that. And checkpoint/restore does not work
763 * when a device driver is involved (you cannot easily
764 * save and restore device driver state).
765 */
766 if (is_write_device_private_entry(entry) &&
767 is_cow_mapping(vm_flags)) {
768 make_device_private_entry_read(&entry);
769 pte = swp_entry_to_pte(entry);
770 if (pte_swp_uffd_wp(*src_pte))
771 pte = pte_swp_mkuffd_wp(pte);
772 set_pte_at(src_mm, addr, src_pte, pte);
773 }
774 }
775 goto out_set_pte;
776 }
777
778 /*
779 * If it's a COW mapping, write protect it both
780 * in the parent and the child
781 */
782 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
783 ptep_set_wrprotect(src_mm, addr, src_pte);
784 pte = pte_wrprotect(pte);
785 }
786
787 /*
788 * If it's a shared mapping, mark it clean in
789 * the child
790 */
791 if (vm_flags & VM_SHARED)
792 pte = pte_mkclean(pte);
793 pte = pte_mkold(pte);
794
795 /*
796 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
797 * does not have the VM_UFFD_WP, which means that the uffd
798 * fork event is not enabled.
799 */
800 if (!(vm_flags & VM_UFFD_WP))
801 pte = pte_clear_uffd_wp(pte);
802
803 page = vm_normal_page(vma, addr, pte);
804 if (page) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
808 }
809
810 out_set_pte:
811 set_pte_at(dst_mm, addr, dst_pte, pte);
812 return 0;
813 }
814
815 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
817 unsigned long addr, unsigned long end)
818 {
819 pte_t *orig_src_pte, *orig_dst_pte;
820 pte_t *src_pte, *dst_pte;
821 spinlock_t *src_ptl, *dst_ptl;
822 int progress = 0;
823 int rss[NR_MM_COUNTERS];
824 swp_entry_t entry = (swp_entry_t){0};
825
826 again:
827 init_rss_vec(rss);
828
829 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
830 if (!dst_pte)
831 return -ENOMEM;
832 src_pte = pte_offset_map(src_pmd, addr);
833 src_ptl = pte_lockptr(src_mm, src_pmd);
834 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
835 orig_src_pte = src_pte;
836 orig_dst_pte = dst_pte;
837 arch_enter_lazy_mmu_mode();
838
839 do {
840 /*
841 * We are holding two locks at this point - either of them
842 * could generate latencies in another task on another CPU.
843 */
844 if (progress >= 32) {
845 progress = 0;
846 if (need_resched() ||
847 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
848 break;
849 }
850 if (pte_none(*src_pte)) {
851 progress++;
852 continue;
853 }
854 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
855 vma, addr, rss);
856 if (entry.val)
857 break;
858 progress += 8;
859 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
860
861 arch_leave_lazy_mmu_mode();
862 spin_unlock(src_ptl);
863 pte_unmap(orig_src_pte);
864 add_mm_rss_vec(dst_mm, rss);
865 pte_unmap_unlock(orig_dst_pte, dst_ptl);
866 cond_resched();
867
868 if (entry.val) {
869 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
870 return -ENOMEM;
871 progress = 0;
872 }
873 if (addr != end)
874 goto again;
875 return 0;
876 }
877
878 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
879 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
880 unsigned long addr, unsigned long end)
881 {
882 pmd_t *src_pmd, *dst_pmd;
883 unsigned long next;
884
885 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
886 if (!dst_pmd)
887 return -ENOMEM;
888 src_pmd = pmd_offset(src_pud, addr);
889 do {
890 next = pmd_addr_end(addr, end);
891 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
892 || pmd_devmap(*src_pmd)) {
893 int err;
894 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
895 err = copy_huge_pmd(dst_mm, src_mm,
896 dst_pmd, src_pmd, addr, vma);
897 if (err == -ENOMEM)
898 return -ENOMEM;
899 if (!err)
900 continue;
901 /* fall through */
902 }
903 if (pmd_none_or_clear_bad(src_pmd))
904 continue;
905 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
906 vma, addr, next))
907 return -ENOMEM;
908 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
909 return 0;
910 }
911
912 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
914 unsigned long addr, unsigned long end)
915 {
916 pud_t *src_pud, *dst_pud;
917 unsigned long next;
918
919 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
920 if (!dst_pud)
921 return -ENOMEM;
922 src_pud = pud_offset(src_p4d, addr);
923 do {
924 next = pud_addr_end(addr, end);
925 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
926 int err;
927
928 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
929 err = copy_huge_pud(dst_mm, src_mm,
930 dst_pud, src_pud, addr, vma);
931 if (err == -ENOMEM)
932 return -ENOMEM;
933 if (!err)
934 continue;
935 /* fall through */
936 }
937 if (pud_none_or_clear_bad(src_pud))
938 continue;
939 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
940 vma, addr, next))
941 return -ENOMEM;
942 } while (dst_pud++, src_pud++, addr = next, addr != end);
943 return 0;
944 }
945
946 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
948 unsigned long addr, unsigned long end)
949 {
950 p4d_t *src_p4d, *dst_p4d;
951 unsigned long next;
952
953 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
954 if (!dst_p4d)
955 return -ENOMEM;
956 src_p4d = p4d_offset(src_pgd, addr);
957 do {
958 next = p4d_addr_end(addr, end);
959 if (p4d_none_or_clear_bad(src_p4d))
960 continue;
961 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
962 vma, addr, next))
963 return -ENOMEM;
964 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
965 return 0;
966 }
967
968 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 struct vm_area_struct *vma)
970 {
971 pgd_t *src_pgd, *dst_pgd;
972 unsigned long next;
973 unsigned long addr = vma->vm_start;
974 unsigned long end = vma->vm_end;
975 struct mmu_notifier_range range;
976 bool is_cow;
977 int ret;
978
979 /*
980 * Don't copy ptes where a page fault will fill them correctly.
981 * Fork becomes much lighter when there are big shared or private
982 * readonly mappings. The tradeoff is that copy_page_range is more
983 * efficient than faulting.
984 */
985 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
986 !vma->anon_vma)
987 return 0;
988
989 if (is_vm_hugetlb_page(vma))
990 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
991
992 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
993 /*
994 * We do not free on error cases below as remove_vma
995 * gets called on error from higher level routine
996 */
997 ret = track_pfn_copy(vma);
998 if (ret)
999 return ret;
1000 }
1001
1002 /*
1003 * We need to invalidate the secondary MMU mappings only when
1004 * there could be a permission downgrade on the ptes of the
1005 * parent mm. And a permission downgrade will only happen if
1006 * is_cow_mapping() returns true.
1007 */
1008 is_cow = is_cow_mapping(vma->vm_flags);
1009
1010 if (is_cow) {
1011 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1012 0, vma, src_mm, addr, end);
1013 mmu_notifier_invalidate_range_start(&range);
1014 }
1015
1016 ret = 0;
1017 dst_pgd = pgd_offset(dst_mm, addr);
1018 src_pgd = pgd_offset(src_mm, addr);
1019 do {
1020 next = pgd_addr_end(addr, end);
1021 if (pgd_none_or_clear_bad(src_pgd))
1022 continue;
1023 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024 vma, addr, next))) {
1025 ret = -ENOMEM;
1026 break;
1027 }
1028 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029
1030 if (is_cow)
1031 mmu_notifier_invalidate_range_end(&range);
1032 return ret;
1033 }
1034
1035 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma, pmd_t *pmd,
1037 unsigned long addr, unsigned long end,
1038 struct zap_details *details)
1039 {
1040 struct mm_struct *mm = tlb->mm;
1041 int force_flush = 0;
1042 int rss[NR_MM_COUNTERS];
1043 spinlock_t *ptl;
1044 pte_t *start_pte;
1045 pte_t *pte;
1046 swp_entry_t entry;
1047
1048 tlb_change_page_size(tlb, PAGE_SIZE);
1049 again:
1050 init_rss_vec(rss);
1051 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1052 pte = start_pte;
1053 flush_tlb_batched_pending(mm);
1054 arch_enter_lazy_mmu_mode();
1055 do {
1056 pte_t ptent = *pte;
1057 if (pte_none(ptent))
1058 continue;
1059
1060 if (need_resched())
1061 break;
1062
1063 if (pte_present(ptent)) {
1064 struct page *page;
1065
1066 page = vm_normal_page(vma, addr, ptent);
1067 if (unlikely(details) && page) {
1068 /*
1069 * unmap_shared_mapping_pages() wants to
1070 * invalidate cache without truncating:
1071 * unmap shared but keep private pages.
1072 */
1073 if (details->check_mapping &&
1074 details->check_mapping != page_rmapping(page))
1075 continue;
1076 }
1077 ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 tlb->fullmm);
1079 tlb_remove_tlb_entry(tlb, pte, addr);
1080 if (unlikely(!page))
1081 continue;
1082
1083 if (!PageAnon(page)) {
1084 if (pte_dirty(ptent)) {
1085 force_flush = 1;
1086 set_page_dirty(page);
1087 }
1088 if (pte_young(ptent) &&
1089 likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 mark_page_accessed(page);
1091 }
1092 rss[mm_counter(page)]--;
1093 page_remove_rmap(page, false);
1094 if (unlikely(page_mapcount(page) < 0))
1095 print_bad_pte(vma, addr, ptent, page);
1096 if (unlikely(__tlb_remove_page(tlb, page))) {
1097 force_flush = 1;
1098 addr += PAGE_SIZE;
1099 break;
1100 }
1101 continue;
1102 }
1103
1104 entry = pte_to_swp_entry(ptent);
1105 if (is_device_private_entry(entry)) {
1106 struct page *page = device_private_entry_to_page(entry);
1107
1108 if (unlikely(details && details->check_mapping)) {
1109 /*
1110 * unmap_shared_mapping_pages() wants to
1111 * invalidate cache without truncating:
1112 * unmap shared but keep private pages.
1113 */
1114 if (details->check_mapping !=
1115 page_rmapping(page))
1116 continue;
1117 }
1118
1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 rss[mm_counter(page)]--;
1121 page_remove_rmap(page, false);
1122 put_page(page);
1123 continue;
1124 }
1125
1126 /* If details->check_mapping, we leave swap entries. */
1127 if (unlikely(details))
1128 continue;
1129
1130 if (!non_swap_entry(entry))
1131 rss[MM_SWAPENTS]--;
1132 else if (is_migration_entry(entry)) {
1133 struct page *page;
1134
1135 page = migration_entry_to_page(entry);
1136 rss[mm_counter(page)]--;
1137 }
1138 if (unlikely(!free_swap_and_cache(entry)))
1139 print_bad_pte(vma, addr, ptent, NULL);
1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141 } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143 add_mm_rss_vec(mm, rss);
1144 arch_leave_lazy_mmu_mode();
1145
1146 /* Do the actual TLB flush before dropping ptl */
1147 if (force_flush)
1148 tlb_flush_mmu_tlbonly(tlb);
1149 pte_unmap_unlock(start_pte, ptl);
1150
1151 /*
1152 * If we forced a TLB flush (either due to running out of
1153 * batch buffers or because we needed to flush dirty TLB
1154 * entries before releasing the ptl), free the batched
1155 * memory too. Restart if we didn't do everything.
1156 */
1157 if (force_flush) {
1158 force_flush = 0;
1159 tlb_flush_mmu(tlb);
1160 }
1161
1162 if (addr != end) {
1163 cond_resched();
1164 goto again;
1165 }
1166
1167 return addr;
1168 }
1169
1170 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1171 struct vm_area_struct *vma, pud_t *pud,
1172 unsigned long addr, unsigned long end,
1173 struct zap_details *details)
1174 {
1175 pmd_t *pmd;
1176 unsigned long next;
1177
1178 pmd = pmd_offset(pud, addr);
1179 do {
1180 next = pmd_addr_end(addr, end);
1181 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1182 if (next - addr != HPAGE_PMD_SIZE)
1183 __split_huge_pmd(vma, pmd, addr, false, NULL);
1184 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1185 goto next;
1186 /* fall through */
1187 }
1188 /*
1189 * Here there can be other concurrent MADV_DONTNEED or
1190 * trans huge page faults running, and if the pmd is
1191 * none or trans huge it can change under us. This is
1192 * because MADV_DONTNEED holds the mmap_lock in read
1193 * mode.
1194 */
1195 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1196 goto next;
1197 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1198 next:
1199 cond_resched();
1200 } while (pmd++, addr = next, addr != end);
1201
1202 return addr;
1203 }
1204
1205 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1206 struct vm_area_struct *vma, p4d_t *p4d,
1207 unsigned long addr, unsigned long end,
1208 struct zap_details *details)
1209 {
1210 pud_t *pud;
1211 unsigned long next;
1212
1213 pud = pud_offset(p4d, addr);
1214 do {
1215 next = pud_addr_end(addr, end);
1216 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1217 if (next - addr != HPAGE_PUD_SIZE) {
1218 mmap_assert_locked(tlb->mm);
1219 split_huge_pud(vma, pud, addr);
1220 } else if (zap_huge_pud(tlb, vma, pud, addr))
1221 goto next;
1222 /* fall through */
1223 }
1224 if (pud_none_or_clear_bad(pud))
1225 continue;
1226 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 next:
1228 cond_resched();
1229 } while (pud++, addr = next, addr != end);
1230
1231 return addr;
1232 }
1233
1234 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1235 struct vm_area_struct *vma, pgd_t *pgd,
1236 unsigned long addr, unsigned long end,
1237 struct zap_details *details)
1238 {
1239 p4d_t *p4d;
1240 unsigned long next;
1241
1242 p4d = p4d_offset(pgd, addr);
1243 do {
1244 next = p4d_addr_end(addr, end);
1245 if (p4d_none_or_clear_bad(p4d))
1246 continue;
1247 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1248 } while (p4d++, addr = next, addr != end);
1249
1250 return addr;
1251 }
1252
1253 void unmap_page_range(struct mmu_gather *tlb,
1254 struct vm_area_struct *vma,
1255 unsigned long addr, unsigned long end,
1256 struct zap_details *details)
1257 {
1258 pgd_t *pgd;
1259 unsigned long next;
1260
1261 BUG_ON(addr >= end);
1262 tlb_start_vma(tlb, vma);
1263 pgd = pgd_offset(vma->vm_mm, addr);
1264 do {
1265 next = pgd_addr_end(addr, end);
1266 if (pgd_none_or_clear_bad(pgd))
1267 continue;
1268 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1269 } while (pgd++, addr = next, addr != end);
1270 tlb_end_vma(tlb, vma);
1271 }
1272
1273
1274 static void unmap_single_vma(struct mmu_gather *tlb,
1275 struct vm_area_struct *vma, unsigned long start_addr,
1276 unsigned long end_addr,
1277 struct zap_details *details)
1278 {
1279 unsigned long start = max(vma->vm_start, start_addr);
1280 unsigned long end;
1281
1282 if (start >= vma->vm_end)
1283 return;
1284 end = min(vma->vm_end, end_addr);
1285 if (end <= vma->vm_start)
1286 return;
1287
1288 if (vma->vm_file)
1289 uprobe_munmap(vma, start, end);
1290
1291 if (unlikely(vma->vm_flags & VM_PFNMAP))
1292 untrack_pfn(vma, 0, 0);
1293
1294 if (start != end) {
1295 if (unlikely(is_vm_hugetlb_page(vma))) {
1296 /*
1297 * It is undesirable to test vma->vm_file as it
1298 * should be non-null for valid hugetlb area.
1299 * However, vm_file will be NULL in the error
1300 * cleanup path of mmap_region. When
1301 * hugetlbfs ->mmap method fails,
1302 * mmap_region() nullifies vma->vm_file
1303 * before calling this function to clean up.
1304 * Since no pte has actually been setup, it is
1305 * safe to do nothing in this case.
1306 */
1307 if (vma->vm_file) {
1308 i_mmap_lock_write(vma->vm_file->f_mapping);
1309 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1310 i_mmap_unlock_write(vma->vm_file->f_mapping);
1311 }
1312 } else
1313 unmap_page_range(tlb, vma, start, end, details);
1314 }
1315 }
1316
1317 /**
1318 * unmap_vmas - unmap a range of memory covered by a list of vma's
1319 * @tlb: address of the caller's struct mmu_gather
1320 * @vma: the starting vma
1321 * @start_addr: virtual address at which to start unmapping
1322 * @end_addr: virtual address at which to end unmapping
1323 *
1324 * Unmap all pages in the vma list.
1325 *
1326 * Only addresses between `start' and `end' will be unmapped.
1327 *
1328 * The VMA list must be sorted in ascending virtual address order.
1329 *
1330 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1331 * range after unmap_vmas() returns. So the only responsibility here is to
1332 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1333 * drops the lock and schedules.
1334 */
1335 void unmap_vmas(struct mmu_gather *tlb,
1336 struct vm_area_struct *vma, unsigned long start_addr,
1337 unsigned long end_addr)
1338 {
1339 struct mmu_notifier_range range;
1340
1341 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1342 start_addr, end_addr);
1343 mmu_notifier_invalidate_range_start(&range);
1344 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1345 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1346 mmu_notifier_invalidate_range_end(&range);
1347 }
1348
1349 /**
1350 * zap_page_range - remove user pages in a given range
1351 * @vma: vm_area_struct holding the applicable pages
1352 * @start: starting address of pages to zap
1353 * @size: number of bytes to zap
1354 *
1355 * Caller must protect the VMA list
1356 */
1357 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1358 unsigned long size)
1359 {
1360 struct mmu_notifier_range range;
1361 struct mmu_gather tlb;
1362
1363 lru_add_drain();
1364 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1365 start, start + size);
1366 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1367 update_hiwater_rss(vma->vm_mm);
1368 mmu_notifier_invalidate_range_start(&range);
1369 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1370 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1371 mmu_notifier_invalidate_range_end(&range);
1372 tlb_finish_mmu(&tlb, start, range.end);
1373 }
1374
1375 /**
1376 * zap_page_range_single - remove user pages in a given range
1377 * @vma: vm_area_struct holding the applicable pages
1378 * @address: starting address of pages to zap
1379 * @size: number of bytes to zap
1380 * @details: details of shared cache invalidation
1381 *
1382 * The range must fit into one VMA.
1383 */
1384 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1385 unsigned long size, struct zap_details *details)
1386 {
1387 struct mmu_notifier_range range;
1388 struct mmu_gather tlb;
1389
1390 lru_add_drain();
1391 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1392 address, address + size);
1393 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1394 update_hiwater_rss(vma->vm_mm);
1395 mmu_notifier_invalidate_range_start(&range);
1396 unmap_single_vma(&tlb, vma, address, range.end, details);
1397 mmu_notifier_invalidate_range_end(&range);
1398 tlb_finish_mmu(&tlb, address, range.end);
1399 }
1400
1401 /**
1402 * zap_vma_ptes - remove ptes mapping the vma
1403 * @vma: vm_area_struct holding ptes to be zapped
1404 * @address: starting address of pages to zap
1405 * @size: number of bytes to zap
1406 *
1407 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1408 *
1409 * The entire address range must be fully contained within the vma.
1410 *
1411 */
1412 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413 unsigned long size)
1414 {
1415 if (address < vma->vm_start || address + size > vma->vm_end ||
1416 !(vma->vm_flags & VM_PFNMAP))
1417 return;
1418
1419 zap_page_range_single(vma, address, size, NULL);
1420 }
1421 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422
1423 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1424 {
1425 pgd_t *pgd;
1426 p4d_t *p4d;
1427 pud_t *pud;
1428 pmd_t *pmd;
1429
1430 pgd = pgd_offset(mm, addr);
1431 p4d = p4d_alloc(mm, pgd, addr);
1432 if (!p4d)
1433 return NULL;
1434 pud = pud_alloc(mm, p4d, addr);
1435 if (!pud)
1436 return NULL;
1437 pmd = pmd_alloc(mm, pud, addr);
1438 if (!pmd)
1439 return NULL;
1440
1441 VM_BUG_ON(pmd_trans_huge(*pmd));
1442 return pmd;
1443 }
1444
1445 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1446 spinlock_t **ptl)
1447 {
1448 pmd_t *pmd = walk_to_pmd(mm, addr);
1449
1450 if (!pmd)
1451 return NULL;
1452 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453 }
1454
1455 static int validate_page_before_insert(struct page *page)
1456 {
1457 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1458 return -EINVAL;
1459 flush_dcache_page(page);
1460 return 0;
1461 }
1462
1463 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1464 unsigned long addr, struct page *page, pgprot_t prot)
1465 {
1466 if (!pte_none(*pte))
1467 return -EBUSY;
1468 /* Ok, finally just insert the thing.. */
1469 get_page(page);
1470 inc_mm_counter_fast(mm, mm_counter_file(page));
1471 page_add_file_rmap(page, false);
1472 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1473 return 0;
1474 }
1475
1476 /*
1477 * This is the old fallback for page remapping.
1478 *
1479 * For historical reasons, it only allows reserved pages. Only
1480 * old drivers should use this, and they needed to mark their
1481 * pages reserved for the old functions anyway.
1482 */
1483 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1484 struct page *page, pgprot_t prot)
1485 {
1486 struct mm_struct *mm = vma->vm_mm;
1487 int retval;
1488 pte_t *pte;
1489 spinlock_t *ptl;
1490
1491 retval = validate_page_before_insert(page);
1492 if (retval)
1493 goto out;
1494 retval = -ENOMEM;
1495 pte = get_locked_pte(mm, addr, &ptl);
1496 if (!pte)
1497 goto out;
1498 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1499 pte_unmap_unlock(pte, ptl);
1500 out:
1501 return retval;
1502 }
1503
1504 #ifdef pte_index
1505 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1506 unsigned long addr, struct page *page, pgprot_t prot)
1507 {
1508 int err;
1509
1510 if (!page_count(page))
1511 return -EINVAL;
1512 err = validate_page_before_insert(page);
1513 if (err)
1514 return err;
1515 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1516 }
1517
1518 /* insert_pages() amortizes the cost of spinlock operations
1519 * when inserting pages in a loop. Arch *must* define pte_index.
1520 */
1521 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1522 struct page **pages, unsigned long *num, pgprot_t prot)
1523 {
1524 pmd_t *pmd = NULL;
1525 pte_t *start_pte, *pte;
1526 spinlock_t *pte_lock;
1527 struct mm_struct *const mm = vma->vm_mm;
1528 unsigned long curr_page_idx = 0;
1529 unsigned long remaining_pages_total = *num;
1530 unsigned long pages_to_write_in_pmd;
1531 int ret;
1532 more:
1533 ret = -EFAULT;
1534 pmd = walk_to_pmd(mm, addr);
1535 if (!pmd)
1536 goto out;
1537
1538 pages_to_write_in_pmd = min_t(unsigned long,
1539 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1540
1541 /* Allocate the PTE if necessary; takes PMD lock once only. */
1542 ret = -ENOMEM;
1543 if (pte_alloc(mm, pmd))
1544 goto out;
1545
1546 while (pages_to_write_in_pmd) {
1547 int pte_idx = 0;
1548 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1549
1550 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1551 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1552 int err = insert_page_in_batch_locked(mm, pte,
1553 addr, pages[curr_page_idx], prot);
1554 if (unlikely(err)) {
1555 pte_unmap_unlock(start_pte, pte_lock);
1556 ret = err;
1557 remaining_pages_total -= pte_idx;
1558 goto out;
1559 }
1560 addr += PAGE_SIZE;
1561 ++curr_page_idx;
1562 }
1563 pte_unmap_unlock(start_pte, pte_lock);
1564 pages_to_write_in_pmd -= batch_size;
1565 remaining_pages_total -= batch_size;
1566 }
1567 if (remaining_pages_total)
1568 goto more;
1569 ret = 0;
1570 out:
1571 *num = remaining_pages_total;
1572 return ret;
1573 }
1574 #endif /* ifdef pte_index */
1575
1576 /**
1577 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1578 * @vma: user vma to map to
1579 * @addr: target start user address of these pages
1580 * @pages: source kernel pages
1581 * @num: in: number of pages to map. out: number of pages that were *not*
1582 * mapped. (0 means all pages were successfully mapped).
1583 *
1584 * Preferred over vm_insert_page() when inserting multiple pages.
1585 *
1586 * In case of error, we may have mapped a subset of the provided
1587 * pages. It is the caller's responsibility to account for this case.
1588 *
1589 * The same restrictions apply as in vm_insert_page().
1590 */
1591 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1592 struct page **pages, unsigned long *num)
1593 {
1594 #ifdef pte_index
1595 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1596
1597 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1598 return -EFAULT;
1599 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1600 BUG_ON(mmap_read_trylock(vma->vm_mm));
1601 BUG_ON(vma->vm_flags & VM_PFNMAP);
1602 vma->vm_flags |= VM_MIXEDMAP;
1603 }
1604 /* Defer page refcount checking till we're about to map that page. */
1605 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1606 #else
1607 unsigned long idx = 0, pgcount = *num;
1608 int err = -EINVAL;
1609
1610 for (; idx < pgcount; ++idx) {
1611 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1612 if (err)
1613 break;
1614 }
1615 *num = pgcount - idx;
1616 return err;
1617 #endif /* ifdef pte_index */
1618 }
1619 EXPORT_SYMBOL(vm_insert_pages);
1620
1621 /**
1622 * vm_insert_page - insert single page into user vma
1623 * @vma: user vma to map to
1624 * @addr: target user address of this page
1625 * @page: source kernel page
1626 *
1627 * This allows drivers to insert individual pages they've allocated
1628 * into a user vma.
1629 *
1630 * The page has to be a nice clean _individual_ kernel allocation.
1631 * If you allocate a compound page, you need to have marked it as
1632 * such (__GFP_COMP), or manually just split the page up yourself
1633 * (see split_page()).
1634 *
1635 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1636 * took an arbitrary page protection parameter. This doesn't allow
1637 * that. Your vma protection will have to be set up correctly, which
1638 * means that if you want a shared writable mapping, you'd better
1639 * ask for a shared writable mapping!
1640 *
1641 * The page does not need to be reserved.
1642 *
1643 * Usually this function is called from f_op->mmap() handler
1644 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1645 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1646 * function from other places, for example from page-fault handler.
1647 *
1648 * Return: %0 on success, negative error code otherwise.
1649 */
1650 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1651 struct page *page)
1652 {
1653 if (addr < vma->vm_start || addr >= vma->vm_end)
1654 return -EFAULT;
1655 if (!page_count(page))
1656 return -EINVAL;
1657 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1658 BUG_ON(mmap_read_trylock(vma->vm_mm));
1659 BUG_ON(vma->vm_flags & VM_PFNMAP);
1660 vma->vm_flags |= VM_MIXEDMAP;
1661 }
1662 return insert_page(vma, addr, page, vma->vm_page_prot);
1663 }
1664 EXPORT_SYMBOL(vm_insert_page);
1665
1666 /*
1667 * __vm_map_pages - maps range of kernel pages into user vma
1668 * @vma: user vma to map to
1669 * @pages: pointer to array of source kernel pages
1670 * @num: number of pages in page array
1671 * @offset: user's requested vm_pgoff
1672 *
1673 * This allows drivers to map range of kernel pages into a user vma.
1674 *
1675 * Return: 0 on success and error code otherwise.
1676 */
1677 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1678 unsigned long num, unsigned long offset)
1679 {
1680 unsigned long count = vma_pages(vma);
1681 unsigned long uaddr = vma->vm_start;
1682 int ret, i;
1683
1684 /* Fail if the user requested offset is beyond the end of the object */
1685 if (offset >= num)
1686 return -ENXIO;
1687
1688 /* Fail if the user requested size exceeds available object size */
1689 if (count > num - offset)
1690 return -ENXIO;
1691
1692 for (i = 0; i < count; i++) {
1693 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1694 if (ret < 0)
1695 return ret;
1696 uaddr += PAGE_SIZE;
1697 }
1698
1699 return 0;
1700 }
1701
1702 /**
1703 * vm_map_pages - maps range of kernel pages starts with non zero offset
1704 * @vma: user vma to map to
1705 * @pages: pointer to array of source kernel pages
1706 * @num: number of pages in page array
1707 *
1708 * Maps an object consisting of @num pages, catering for the user's
1709 * requested vm_pgoff
1710 *
1711 * If we fail to insert any page into the vma, the function will return
1712 * immediately leaving any previously inserted pages present. Callers
1713 * from the mmap handler may immediately return the error as their caller
1714 * will destroy the vma, removing any successfully inserted pages. Other
1715 * callers should make their own arrangements for calling unmap_region().
1716 *
1717 * Context: Process context. Called by mmap handlers.
1718 * Return: 0 on success and error code otherwise.
1719 */
1720 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1721 unsigned long num)
1722 {
1723 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1724 }
1725 EXPORT_SYMBOL(vm_map_pages);
1726
1727 /**
1728 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1729 * @vma: user vma to map to
1730 * @pages: pointer to array of source kernel pages
1731 * @num: number of pages in page array
1732 *
1733 * Similar to vm_map_pages(), except that it explicitly sets the offset
1734 * to 0. This function is intended for the drivers that did not consider
1735 * vm_pgoff.
1736 *
1737 * Context: Process context. Called by mmap handlers.
1738 * Return: 0 on success and error code otherwise.
1739 */
1740 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1741 unsigned long num)
1742 {
1743 return __vm_map_pages(vma, pages, num, 0);
1744 }
1745 EXPORT_SYMBOL(vm_map_pages_zero);
1746
1747 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1748 pfn_t pfn, pgprot_t prot, bool mkwrite)
1749 {
1750 struct mm_struct *mm = vma->vm_mm;
1751 pte_t *pte, entry;
1752 spinlock_t *ptl;
1753
1754 pte = get_locked_pte(mm, addr, &ptl);
1755 if (!pte)
1756 return VM_FAULT_OOM;
1757 if (!pte_none(*pte)) {
1758 if (mkwrite) {
1759 /*
1760 * For read faults on private mappings the PFN passed
1761 * in may not match the PFN we have mapped if the
1762 * mapped PFN is a writeable COW page. In the mkwrite
1763 * case we are creating a writable PTE for a shared
1764 * mapping and we expect the PFNs to match. If they
1765 * don't match, we are likely racing with block
1766 * allocation and mapping invalidation so just skip the
1767 * update.
1768 */
1769 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1770 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1771 goto out_unlock;
1772 }
1773 entry = pte_mkyoung(*pte);
1774 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1775 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1776 update_mmu_cache(vma, addr, pte);
1777 }
1778 goto out_unlock;
1779 }
1780
1781 /* Ok, finally just insert the thing.. */
1782 if (pfn_t_devmap(pfn))
1783 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1784 else
1785 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1786
1787 if (mkwrite) {
1788 entry = pte_mkyoung(entry);
1789 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1790 }
1791
1792 set_pte_at(mm, addr, pte, entry);
1793 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1794
1795 out_unlock:
1796 pte_unmap_unlock(pte, ptl);
1797 return VM_FAULT_NOPAGE;
1798 }
1799
1800 /**
1801 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1802 * @vma: user vma to map to
1803 * @addr: target user address of this page
1804 * @pfn: source kernel pfn
1805 * @pgprot: pgprot flags for the inserted page
1806 *
1807 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1808 * to override pgprot on a per-page basis.
1809 *
1810 * This only makes sense for IO mappings, and it makes no sense for
1811 * COW mappings. In general, using multiple vmas is preferable;
1812 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1813 * impractical.
1814 *
1815 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1816 * a value of @pgprot different from that of @vma->vm_page_prot.
1817 *
1818 * Context: Process context. May allocate using %GFP_KERNEL.
1819 * Return: vm_fault_t value.
1820 */
1821 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1822 unsigned long pfn, pgprot_t pgprot)
1823 {
1824 /*
1825 * Technically, architectures with pte_special can avoid all these
1826 * restrictions (same for remap_pfn_range). However we would like
1827 * consistency in testing and feature parity among all, so we should
1828 * try to keep these invariants in place for everybody.
1829 */
1830 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1832 (VM_PFNMAP|VM_MIXEDMAP));
1833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1834 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1835
1836 if (addr < vma->vm_start || addr >= vma->vm_end)
1837 return VM_FAULT_SIGBUS;
1838
1839 if (!pfn_modify_allowed(pfn, pgprot))
1840 return VM_FAULT_SIGBUS;
1841
1842 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1843
1844 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1845 false);
1846 }
1847 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1848
1849 /**
1850 * vmf_insert_pfn - insert single pfn into user vma
1851 * @vma: user vma to map to
1852 * @addr: target user address of this page
1853 * @pfn: source kernel pfn
1854 *
1855 * Similar to vm_insert_page, this allows drivers to insert individual pages
1856 * they've allocated into a user vma. Same comments apply.
1857 *
1858 * This function should only be called from a vm_ops->fault handler, and
1859 * in that case the handler should return the result of this function.
1860 *
1861 * vma cannot be a COW mapping.
1862 *
1863 * As this is called only for pages that do not currently exist, we
1864 * do not need to flush old virtual caches or the TLB.
1865 *
1866 * Context: Process context. May allocate using %GFP_KERNEL.
1867 * Return: vm_fault_t value.
1868 */
1869 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1870 unsigned long pfn)
1871 {
1872 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1873 }
1874 EXPORT_SYMBOL(vmf_insert_pfn);
1875
1876 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1877 {
1878 /* these checks mirror the abort conditions in vm_normal_page */
1879 if (vma->vm_flags & VM_MIXEDMAP)
1880 return true;
1881 if (pfn_t_devmap(pfn))
1882 return true;
1883 if (pfn_t_special(pfn))
1884 return true;
1885 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1886 return true;
1887 return false;
1888 }
1889
1890 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1891 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1892 bool mkwrite)
1893 {
1894 int err;
1895
1896 BUG_ON(!vm_mixed_ok(vma, pfn));
1897
1898 if (addr < vma->vm_start || addr >= vma->vm_end)
1899 return VM_FAULT_SIGBUS;
1900
1901 track_pfn_insert(vma, &pgprot, pfn);
1902
1903 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1904 return VM_FAULT_SIGBUS;
1905
1906 /*
1907 * If we don't have pte special, then we have to use the pfn_valid()
1908 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1909 * refcount the page if pfn_valid is true (hence insert_page rather
1910 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1911 * without pte special, it would there be refcounted as a normal page.
1912 */
1913 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1914 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1915 struct page *page;
1916
1917 /*
1918 * At this point we are committed to insert_page()
1919 * regardless of whether the caller specified flags that
1920 * result in pfn_t_has_page() == false.
1921 */
1922 page = pfn_to_page(pfn_t_to_pfn(pfn));
1923 err = insert_page(vma, addr, page, pgprot);
1924 } else {
1925 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1926 }
1927
1928 if (err == -ENOMEM)
1929 return VM_FAULT_OOM;
1930 if (err < 0 && err != -EBUSY)
1931 return VM_FAULT_SIGBUS;
1932
1933 return VM_FAULT_NOPAGE;
1934 }
1935
1936 /**
1937 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1938 * @vma: user vma to map to
1939 * @addr: target user address of this page
1940 * @pfn: source kernel pfn
1941 * @pgprot: pgprot flags for the inserted page
1942 *
1943 * This is exactly like vmf_insert_mixed(), except that it allows drivers
1944 * to override pgprot on a per-page basis.
1945 *
1946 * Typically this function should be used by drivers to set caching- and
1947 * encryption bits different than those of @vma->vm_page_prot, because
1948 * the caching- or encryption mode may not be known at mmap() time.
1949 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1950 * to set caching and encryption bits for those vmas (except for COW pages).
1951 * This is ensured by core vm only modifying these page table entries using
1952 * functions that don't touch caching- or encryption bits, using pte_modify()
1953 * if needed. (See for example mprotect()).
1954 * Also when new page-table entries are created, this is only done using the
1955 * fault() callback, and never using the value of vma->vm_page_prot,
1956 * except for page-table entries that point to anonymous pages as the result
1957 * of COW.
1958 *
1959 * Context: Process context. May allocate using %GFP_KERNEL.
1960 * Return: vm_fault_t value.
1961 */
1962 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1963 pfn_t pfn, pgprot_t pgprot)
1964 {
1965 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1966 }
1967 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1968
1969 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1970 pfn_t pfn)
1971 {
1972 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1973 }
1974 EXPORT_SYMBOL(vmf_insert_mixed);
1975
1976 /*
1977 * If the insertion of PTE failed because someone else already added a
1978 * different entry in the mean time, we treat that as success as we assume
1979 * the same entry was actually inserted.
1980 */
1981 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1982 unsigned long addr, pfn_t pfn)
1983 {
1984 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1985 }
1986 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1987
1988 /*
1989 * maps a range of physical memory into the requested pages. the old
1990 * mappings are removed. any references to nonexistent pages results
1991 * in null mappings (currently treated as "copy-on-access")
1992 */
1993 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1994 unsigned long addr, unsigned long end,
1995 unsigned long pfn, pgprot_t prot)
1996 {
1997 pte_t *pte;
1998 spinlock_t *ptl;
1999 int err = 0;
2000
2001 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2002 if (!pte)
2003 return -ENOMEM;
2004 arch_enter_lazy_mmu_mode();
2005 do {
2006 BUG_ON(!pte_none(*pte));
2007 if (!pfn_modify_allowed(pfn, prot)) {
2008 err = -EACCES;
2009 break;
2010 }
2011 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2012 pfn++;
2013 } while (pte++, addr += PAGE_SIZE, addr != end);
2014 arch_leave_lazy_mmu_mode();
2015 pte_unmap_unlock(pte - 1, ptl);
2016 return err;
2017 }
2018
2019 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2020 unsigned long addr, unsigned long end,
2021 unsigned long pfn, pgprot_t prot)
2022 {
2023 pmd_t *pmd;
2024 unsigned long next;
2025 int err;
2026
2027 pfn -= addr >> PAGE_SHIFT;
2028 pmd = pmd_alloc(mm, pud, addr);
2029 if (!pmd)
2030 return -ENOMEM;
2031 VM_BUG_ON(pmd_trans_huge(*pmd));
2032 do {
2033 next = pmd_addr_end(addr, end);
2034 err = remap_pte_range(mm, pmd, addr, next,
2035 pfn + (addr >> PAGE_SHIFT), prot);
2036 if (err)
2037 return err;
2038 } while (pmd++, addr = next, addr != end);
2039 return 0;
2040 }
2041
2042 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2043 unsigned long addr, unsigned long end,
2044 unsigned long pfn, pgprot_t prot)
2045 {
2046 pud_t *pud;
2047 unsigned long next;
2048 int err;
2049
2050 pfn -= addr >> PAGE_SHIFT;
2051 pud = pud_alloc(mm, p4d, addr);
2052 if (!pud)
2053 return -ENOMEM;
2054 do {
2055 next = pud_addr_end(addr, end);
2056 err = remap_pmd_range(mm, pud, addr, next,
2057 pfn + (addr >> PAGE_SHIFT), prot);
2058 if (err)
2059 return err;
2060 } while (pud++, addr = next, addr != end);
2061 return 0;
2062 }
2063
2064 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2065 unsigned long addr, unsigned long end,
2066 unsigned long pfn, pgprot_t prot)
2067 {
2068 p4d_t *p4d;
2069 unsigned long next;
2070 int err;
2071
2072 pfn -= addr >> PAGE_SHIFT;
2073 p4d = p4d_alloc(mm, pgd, addr);
2074 if (!p4d)
2075 return -ENOMEM;
2076 do {
2077 next = p4d_addr_end(addr, end);
2078 err = remap_pud_range(mm, p4d, addr, next,
2079 pfn + (addr >> PAGE_SHIFT), prot);
2080 if (err)
2081 return err;
2082 } while (p4d++, addr = next, addr != end);
2083 return 0;
2084 }
2085
2086 /**
2087 * remap_pfn_range - remap kernel memory to userspace
2088 * @vma: user vma to map to
2089 * @addr: target page aligned user address to start at
2090 * @pfn: page frame number of kernel physical memory address
2091 * @size: size of mapping area
2092 * @prot: page protection flags for this mapping
2093 *
2094 * Note: this is only safe if the mm semaphore is held when called.
2095 *
2096 * Return: %0 on success, negative error code otherwise.
2097 */
2098 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2099 unsigned long pfn, unsigned long size, pgprot_t prot)
2100 {
2101 pgd_t *pgd;
2102 unsigned long next;
2103 unsigned long end = addr + PAGE_ALIGN(size);
2104 struct mm_struct *mm = vma->vm_mm;
2105 unsigned long remap_pfn = pfn;
2106 int err;
2107
2108 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2109 return -EINVAL;
2110
2111 /*
2112 * Physically remapped pages are special. Tell the
2113 * rest of the world about it:
2114 * VM_IO tells people not to look at these pages
2115 * (accesses can have side effects).
2116 * VM_PFNMAP tells the core MM that the base pages are just
2117 * raw PFN mappings, and do not have a "struct page" associated
2118 * with them.
2119 * VM_DONTEXPAND
2120 * Disable vma merging and expanding with mremap().
2121 * VM_DONTDUMP
2122 * Omit vma from core dump, even when VM_IO turned off.
2123 *
2124 * There's a horrible special case to handle copy-on-write
2125 * behaviour that some programs depend on. We mark the "original"
2126 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2127 * See vm_normal_page() for details.
2128 */
2129 if (is_cow_mapping(vma->vm_flags)) {
2130 if (addr != vma->vm_start || end != vma->vm_end)
2131 return -EINVAL;
2132 vma->vm_pgoff = pfn;
2133 }
2134
2135 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2136 if (err)
2137 return -EINVAL;
2138
2139 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2140
2141 BUG_ON(addr >= end);
2142 pfn -= addr >> PAGE_SHIFT;
2143 pgd = pgd_offset(mm, addr);
2144 flush_cache_range(vma, addr, end);
2145 do {
2146 next = pgd_addr_end(addr, end);
2147 err = remap_p4d_range(mm, pgd, addr, next,
2148 pfn + (addr >> PAGE_SHIFT), prot);
2149 if (err)
2150 break;
2151 } while (pgd++, addr = next, addr != end);
2152
2153 if (err)
2154 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2155
2156 return err;
2157 }
2158 EXPORT_SYMBOL(remap_pfn_range);
2159
2160 /**
2161 * vm_iomap_memory - remap memory to userspace
2162 * @vma: user vma to map to
2163 * @start: start of the physical memory to be mapped
2164 * @len: size of area
2165 *
2166 * This is a simplified io_remap_pfn_range() for common driver use. The
2167 * driver just needs to give us the physical memory range to be mapped,
2168 * we'll figure out the rest from the vma information.
2169 *
2170 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2171 * whatever write-combining details or similar.
2172 *
2173 * Return: %0 on success, negative error code otherwise.
2174 */
2175 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2176 {
2177 unsigned long vm_len, pfn, pages;
2178
2179 /* Check that the physical memory area passed in looks valid */
2180 if (start + len < start)
2181 return -EINVAL;
2182 /*
2183 * You *really* shouldn't map things that aren't page-aligned,
2184 * but we've historically allowed it because IO memory might
2185 * just have smaller alignment.
2186 */
2187 len += start & ~PAGE_MASK;
2188 pfn = start >> PAGE_SHIFT;
2189 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2190 if (pfn + pages < pfn)
2191 return -EINVAL;
2192
2193 /* We start the mapping 'vm_pgoff' pages into the area */
2194 if (vma->vm_pgoff > pages)
2195 return -EINVAL;
2196 pfn += vma->vm_pgoff;
2197 pages -= vma->vm_pgoff;
2198
2199 /* Can we fit all of the mapping? */
2200 vm_len = vma->vm_end - vma->vm_start;
2201 if (vm_len >> PAGE_SHIFT > pages)
2202 return -EINVAL;
2203
2204 /* Ok, let it rip */
2205 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2206 }
2207 EXPORT_SYMBOL(vm_iomap_memory);
2208
2209 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2210 unsigned long addr, unsigned long end,
2211 pte_fn_t fn, void *data, bool create,
2212 pgtbl_mod_mask *mask)
2213 {
2214 pte_t *pte;
2215 int err = 0;
2216 spinlock_t *ptl;
2217
2218 if (create) {
2219 pte = (mm == &init_mm) ?
2220 pte_alloc_kernel_track(pmd, addr, mask) :
2221 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2222 if (!pte)
2223 return -ENOMEM;
2224 } else {
2225 pte = (mm == &init_mm) ?
2226 pte_offset_kernel(pmd, addr) :
2227 pte_offset_map_lock(mm, pmd, addr, &ptl);
2228 }
2229
2230 BUG_ON(pmd_huge(*pmd));
2231
2232 arch_enter_lazy_mmu_mode();
2233
2234 do {
2235 if (create || !pte_none(*pte)) {
2236 err = fn(pte++, addr, data);
2237 if (err)
2238 break;
2239 }
2240 } while (addr += PAGE_SIZE, addr != end);
2241 *mask |= PGTBL_PTE_MODIFIED;
2242
2243 arch_leave_lazy_mmu_mode();
2244
2245 if (mm != &init_mm)
2246 pte_unmap_unlock(pte-1, ptl);
2247 return err;
2248 }
2249
2250 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2251 unsigned long addr, unsigned long end,
2252 pte_fn_t fn, void *data, bool create,
2253 pgtbl_mod_mask *mask)
2254 {
2255 pmd_t *pmd;
2256 unsigned long next;
2257 int err = 0;
2258
2259 BUG_ON(pud_huge(*pud));
2260
2261 if (create) {
2262 pmd = pmd_alloc_track(mm, pud, addr, mask);
2263 if (!pmd)
2264 return -ENOMEM;
2265 } else {
2266 pmd = pmd_offset(pud, addr);
2267 }
2268 do {
2269 next = pmd_addr_end(addr, end);
2270 if (create || !pmd_none_or_clear_bad(pmd)) {
2271 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2272 create, mask);
2273 if (err)
2274 break;
2275 }
2276 } while (pmd++, addr = next, addr != end);
2277 return err;
2278 }
2279
2280 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2281 unsigned long addr, unsigned long end,
2282 pte_fn_t fn, void *data, bool create,
2283 pgtbl_mod_mask *mask)
2284 {
2285 pud_t *pud;
2286 unsigned long next;
2287 int err = 0;
2288
2289 if (create) {
2290 pud = pud_alloc_track(mm, p4d, addr, mask);
2291 if (!pud)
2292 return -ENOMEM;
2293 } else {
2294 pud = pud_offset(p4d, addr);
2295 }
2296 do {
2297 next = pud_addr_end(addr, end);
2298 if (create || !pud_none_or_clear_bad(pud)) {
2299 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2300 create, mask);
2301 if (err)
2302 break;
2303 }
2304 } while (pud++, addr = next, addr != end);
2305 return err;
2306 }
2307
2308 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2309 unsigned long addr, unsigned long end,
2310 pte_fn_t fn, void *data, bool create,
2311 pgtbl_mod_mask *mask)
2312 {
2313 p4d_t *p4d;
2314 unsigned long next;
2315 int err = 0;
2316
2317 if (create) {
2318 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2319 if (!p4d)
2320 return -ENOMEM;
2321 } else {
2322 p4d = p4d_offset(pgd, addr);
2323 }
2324 do {
2325 next = p4d_addr_end(addr, end);
2326 if (create || !p4d_none_or_clear_bad(p4d)) {
2327 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2328 create, mask);
2329 if (err)
2330 break;
2331 }
2332 } while (p4d++, addr = next, addr != end);
2333 return err;
2334 }
2335
2336 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2337 unsigned long size, pte_fn_t fn,
2338 void *data, bool create)
2339 {
2340 pgd_t *pgd;
2341 unsigned long start = addr, next;
2342 unsigned long end = addr + size;
2343 pgtbl_mod_mask mask = 0;
2344 int err = 0;
2345
2346 if (WARN_ON(addr >= end))
2347 return -EINVAL;
2348
2349 pgd = pgd_offset(mm, addr);
2350 do {
2351 next = pgd_addr_end(addr, end);
2352 if (!create && pgd_none_or_clear_bad(pgd))
2353 continue;
2354 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2355 if (err)
2356 break;
2357 } while (pgd++, addr = next, addr != end);
2358
2359 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2360 arch_sync_kernel_mappings(start, start + size);
2361
2362 return err;
2363 }
2364
2365 /*
2366 * Scan a region of virtual memory, filling in page tables as necessary
2367 * and calling a provided function on each leaf page table.
2368 */
2369 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2370 unsigned long size, pte_fn_t fn, void *data)
2371 {
2372 return __apply_to_page_range(mm, addr, size, fn, data, true);
2373 }
2374 EXPORT_SYMBOL_GPL(apply_to_page_range);
2375
2376 /*
2377 * Scan a region of virtual memory, calling a provided function on
2378 * each leaf page table where it exists.
2379 *
2380 * Unlike apply_to_page_range, this does _not_ fill in page tables
2381 * where they are absent.
2382 */
2383 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2384 unsigned long size, pte_fn_t fn, void *data)
2385 {
2386 return __apply_to_page_range(mm, addr, size, fn, data, false);
2387 }
2388 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2389
2390 /*
2391 * handle_pte_fault chooses page fault handler according to an entry which was
2392 * read non-atomically. Before making any commitment, on those architectures
2393 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2394 * parts, do_swap_page must check under lock before unmapping the pte and
2395 * proceeding (but do_wp_page is only called after already making such a check;
2396 * and do_anonymous_page can safely check later on).
2397 */
2398 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2399 pte_t *page_table, pte_t orig_pte)
2400 {
2401 int same = 1;
2402 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2403 if (sizeof(pte_t) > sizeof(unsigned long)) {
2404 spinlock_t *ptl = pte_lockptr(mm, pmd);
2405 spin_lock(ptl);
2406 same = pte_same(*page_table, orig_pte);
2407 spin_unlock(ptl);
2408 }
2409 #endif
2410 pte_unmap(page_table);
2411 return same;
2412 }
2413
2414 static inline bool cow_user_page(struct page *dst, struct page *src,
2415 struct vm_fault *vmf)
2416 {
2417 bool ret;
2418 void *kaddr;
2419 void __user *uaddr;
2420 bool locked = false;
2421 struct vm_area_struct *vma = vmf->vma;
2422 struct mm_struct *mm = vma->vm_mm;
2423 unsigned long addr = vmf->address;
2424
2425 if (likely(src)) {
2426 copy_user_highpage(dst, src, addr, vma);
2427 return true;
2428 }
2429
2430 /*
2431 * If the source page was a PFN mapping, we don't have
2432 * a "struct page" for it. We do a best-effort copy by
2433 * just copying from the original user address. If that
2434 * fails, we just zero-fill it. Live with it.
2435 */
2436 kaddr = kmap_atomic(dst);
2437 uaddr = (void __user *)(addr & PAGE_MASK);
2438
2439 /*
2440 * On architectures with software "accessed" bits, we would
2441 * take a double page fault, so mark it accessed here.
2442 */
2443 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2444 pte_t entry;
2445
2446 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2447 locked = true;
2448 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2449 /*
2450 * Other thread has already handled the fault
2451 * and update local tlb only
2452 */
2453 update_mmu_tlb(vma, addr, vmf->pte);
2454 ret = false;
2455 goto pte_unlock;
2456 }
2457
2458 entry = pte_mkyoung(vmf->orig_pte);
2459 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2460 update_mmu_cache(vma, addr, vmf->pte);
2461 }
2462
2463 /*
2464 * This really shouldn't fail, because the page is there
2465 * in the page tables. But it might just be unreadable,
2466 * in which case we just give up and fill the result with
2467 * zeroes.
2468 */
2469 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2470 if (locked)
2471 goto warn;
2472
2473 /* Re-validate under PTL if the page is still mapped */
2474 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2475 locked = true;
2476 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2477 /* The PTE changed under us, update local tlb */
2478 update_mmu_tlb(vma, addr, vmf->pte);
2479 ret = false;
2480 goto pte_unlock;
2481 }
2482
2483 /*
2484 * The same page can be mapped back since last copy attempt.
2485 * Try to copy again under PTL.
2486 */
2487 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2488 /*
2489 * Give a warn in case there can be some obscure
2490 * use-case
2491 */
2492 warn:
2493 WARN_ON_ONCE(1);
2494 clear_page(kaddr);
2495 }
2496 }
2497
2498 ret = true;
2499
2500 pte_unlock:
2501 if (locked)
2502 pte_unmap_unlock(vmf->pte, vmf->ptl);
2503 kunmap_atomic(kaddr);
2504 flush_dcache_page(dst);
2505
2506 return ret;
2507 }
2508
2509 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2510 {
2511 struct file *vm_file = vma->vm_file;
2512
2513 if (vm_file)
2514 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2515
2516 /*
2517 * Special mappings (e.g. VDSO) do not have any file so fake
2518 * a default GFP_KERNEL for them.
2519 */
2520 return GFP_KERNEL;
2521 }
2522
2523 /*
2524 * Notify the address space that the page is about to become writable so that
2525 * it can prohibit this or wait for the page to get into an appropriate state.
2526 *
2527 * We do this without the lock held, so that it can sleep if it needs to.
2528 */
2529 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2530 {
2531 vm_fault_t ret;
2532 struct page *page = vmf->page;
2533 unsigned int old_flags = vmf->flags;
2534
2535 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2536
2537 if (vmf->vma->vm_file &&
2538 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2539 return VM_FAULT_SIGBUS;
2540
2541 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2542 /* Restore original flags so that caller is not surprised */
2543 vmf->flags = old_flags;
2544 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2545 return ret;
2546 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2547 lock_page(page);
2548 if (!page->mapping) {
2549 unlock_page(page);
2550 return 0; /* retry */
2551 }
2552 ret |= VM_FAULT_LOCKED;
2553 } else
2554 VM_BUG_ON_PAGE(!PageLocked(page), page);
2555 return ret;
2556 }
2557
2558 /*
2559 * Handle dirtying of a page in shared file mapping on a write fault.
2560 *
2561 * The function expects the page to be locked and unlocks it.
2562 */
2563 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2564 {
2565 struct vm_area_struct *vma = vmf->vma;
2566 struct address_space *mapping;
2567 struct page *page = vmf->page;
2568 bool dirtied;
2569 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2570
2571 dirtied = set_page_dirty(page);
2572 VM_BUG_ON_PAGE(PageAnon(page), page);
2573 /*
2574 * Take a local copy of the address_space - page.mapping may be zeroed
2575 * by truncate after unlock_page(). The address_space itself remains
2576 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2577 * release semantics to prevent the compiler from undoing this copying.
2578 */
2579 mapping = page_rmapping(page);
2580 unlock_page(page);
2581
2582 if (!page_mkwrite)
2583 file_update_time(vma->vm_file);
2584
2585 /*
2586 * Throttle page dirtying rate down to writeback speed.
2587 *
2588 * mapping may be NULL here because some device drivers do not
2589 * set page.mapping but still dirty their pages
2590 *
2591 * Drop the mmap_lock before waiting on IO, if we can. The file
2592 * is pinning the mapping, as per above.
2593 */
2594 if ((dirtied || page_mkwrite) && mapping) {
2595 struct file *fpin;
2596
2597 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2598 balance_dirty_pages_ratelimited(mapping);
2599 if (fpin) {
2600 fput(fpin);
2601 return VM_FAULT_RETRY;
2602 }
2603 }
2604
2605 return 0;
2606 }
2607
2608 /*
2609 * Handle write page faults for pages that can be reused in the current vma
2610 *
2611 * This can happen either due to the mapping being with the VM_SHARED flag,
2612 * or due to us being the last reference standing to the page. In either
2613 * case, all we need to do here is to mark the page as writable and update
2614 * any related book-keeping.
2615 */
2616 static inline void wp_page_reuse(struct vm_fault *vmf)
2617 __releases(vmf->ptl)
2618 {
2619 struct vm_area_struct *vma = vmf->vma;
2620 struct page *page = vmf->page;
2621 pte_t entry;
2622 /*
2623 * Clear the pages cpupid information as the existing
2624 * information potentially belongs to a now completely
2625 * unrelated process.
2626 */
2627 if (page)
2628 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2629
2630 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2631 entry = pte_mkyoung(vmf->orig_pte);
2632 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2633 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2634 update_mmu_cache(vma, vmf->address, vmf->pte);
2635 pte_unmap_unlock(vmf->pte, vmf->ptl);
2636 count_vm_event(PGREUSE);
2637 }
2638
2639 /*
2640 * Handle the case of a page which we actually need to copy to a new page.
2641 *
2642 * Called with mmap_lock locked and the old page referenced, but
2643 * without the ptl held.
2644 *
2645 * High level logic flow:
2646 *
2647 * - Allocate a page, copy the content of the old page to the new one.
2648 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2649 * - Take the PTL. If the pte changed, bail out and release the allocated page
2650 * - If the pte is still the way we remember it, update the page table and all
2651 * relevant references. This includes dropping the reference the page-table
2652 * held to the old page, as well as updating the rmap.
2653 * - In any case, unlock the PTL and drop the reference we took to the old page.
2654 */
2655 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2656 {
2657 struct vm_area_struct *vma = vmf->vma;
2658 struct mm_struct *mm = vma->vm_mm;
2659 struct page *old_page = vmf->page;
2660 struct page *new_page = NULL;
2661 pte_t entry;
2662 int page_copied = 0;
2663 struct mmu_notifier_range range;
2664
2665 if (unlikely(anon_vma_prepare(vma)))
2666 goto oom;
2667
2668 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2669 new_page = alloc_zeroed_user_highpage_movable(vma,
2670 vmf->address);
2671 if (!new_page)
2672 goto oom;
2673 } else {
2674 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2675 vmf->address);
2676 if (!new_page)
2677 goto oom;
2678
2679 if (!cow_user_page(new_page, old_page, vmf)) {
2680 /*
2681 * COW failed, if the fault was solved by other,
2682 * it's fine. If not, userspace would re-fault on
2683 * the same address and we will handle the fault
2684 * from the second attempt.
2685 */
2686 put_page(new_page);
2687 if (old_page)
2688 put_page(old_page);
2689 return 0;
2690 }
2691 }
2692
2693 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2694 goto oom_free_new;
2695 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2696
2697 __SetPageUptodate(new_page);
2698
2699 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2700 vmf->address & PAGE_MASK,
2701 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2702 mmu_notifier_invalidate_range_start(&range);
2703
2704 /*
2705 * Re-check the pte - we dropped the lock
2706 */
2707 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2708 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2709 if (old_page) {
2710 if (!PageAnon(old_page)) {
2711 dec_mm_counter_fast(mm,
2712 mm_counter_file(old_page));
2713 inc_mm_counter_fast(mm, MM_ANONPAGES);
2714 }
2715 } else {
2716 inc_mm_counter_fast(mm, MM_ANONPAGES);
2717 }
2718 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2719 entry = mk_pte(new_page, vma->vm_page_prot);
2720 entry = pte_sw_mkyoung(entry);
2721 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2722 /*
2723 * Clear the pte entry and flush it first, before updating the
2724 * pte with the new entry. This will avoid a race condition
2725 * seen in the presence of one thread doing SMC and another
2726 * thread doing COW.
2727 */
2728 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2729 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2730 lru_cache_add_inactive_or_unevictable(new_page, vma);
2731 /*
2732 * We call the notify macro here because, when using secondary
2733 * mmu page tables (such as kvm shadow page tables), we want the
2734 * new page to be mapped directly into the secondary page table.
2735 */
2736 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2737 update_mmu_cache(vma, vmf->address, vmf->pte);
2738 if (old_page) {
2739 /*
2740 * Only after switching the pte to the new page may
2741 * we remove the mapcount here. Otherwise another
2742 * process may come and find the rmap count decremented
2743 * before the pte is switched to the new page, and
2744 * "reuse" the old page writing into it while our pte
2745 * here still points into it and can be read by other
2746 * threads.
2747 *
2748 * The critical issue is to order this
2749 * page_remove_rmap with the ptp_clear_flush above.
2750 * Those stores are ordered by (if nothing else,)
2751 * the barrier present in the atomic_add_negative
2752 * in page_remove_rmap.
2753 *
2754 * Then the TLB flush in ptep_clear_flush ensures that
2755 * no process can access the old page before the
2756 * decremented mapcount is visible. And the old page
2757 * cannot be reused until after the decremented
2758 * mapcount is visible. So transitively, TLBs to
2759 * old page will be flushed before it can be reused.
2760 */
2761 page_remove_rmap(old_page, false);
2762 }
2763
2764 /* Free the old page.. */
2765 new_page = old_page;
2766 page_copied = 1;
2767 } else {
2768 update_mmu_tlb(vma, vmf->address, vmf->pte);
2769 }
2770
2771 if (new_page)
2772 put_page(new_page);
2773
2774 pte_unmap_unlock(vmf->pte, vmf->ptl);
2775 /*
2776 * No need to double call mmu_notifier->invalidate_range() callback as
2777 * the above ptep_clear_flush_notify() did already call it.
2778 */
2779 mmu_notifier_invalidate_range_only_end(&range);
2780 if (old_page) {
2781 /*
2782 * Don't let another task, with possibly unlocked vma,
2783 * keep the mlocked page.
2784 */
2785 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2786 lock_page(old_page); /* LRU manipulation */
2787 if (PageMlocked(old_page))
2788 munlock_vma_page(old_page);
2789 unlock_page(old_page);
2790 }
2791 put_page(old_page);
2792 }
2793 return page_copied ? VM_FAULT_WRITE : 0;
2794 oom_free_new:
2795 put_page(new_page);
2796 oom:
2797 if (old_page)
2798 put_page(old_page);
2799 return VM_FAULT_OOM;
2800 }
2801
2802 /**
2803 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2804 * writeable once the page is prepared
2805 *
2806 * @vmf: structure describing the fault
2807 *
2808 * This function handles all that is needed to finish a write page fault in a
2809 * shared mapping due to PTE being read-only once the mapped page is prepared.
2810 * It handles locking of PTE and modifying it.
2811 *
2812 * The function expects the page to be locked or other protection against
2813 * concurrent faults / writeback (such as DAX radix tree locks).
2814 *
2815 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2816 * we acquired PTE lock.
2817 */
2818 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2819 {
2820 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2821 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2822 &vmf->ptl);
2823 /*
2824 * We might have raced with another page fault while we released the
2825 * pte_offset_map_lock.
2826 */
2827 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2828 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2829 pte_unmap_unlock(vmf->pte, vmf->ptl);
2830 return VM_FAULT_NOPAGE;
2831 }
2832 wp_page_reuse(vmf);
2833 return 0;
2834 }
2835
2836 /*
2837 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2838 * mapping
2839 */
2840 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2841 {
2842 struct vm_area_struct *vma = vmf->vma;
2843
2844 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2845 vm_fault_t ret;
2846
2847 pte_unmap_unlock(vmf->pte, vmf->ptl);
2848 vmf->flags |= FAULT_FLAG_MKWRITE;
2849 ret = vma->vm_ops->pfn_mkwrite(vmf);
2850 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2851 return ret;
2852 return finish_mkwrite_fault(vmf);
2853 }
2854 wp_page_reuse(vmf);
2855 return VM_FAULT_WRITE;
2856 }
2857
2858 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2859 __releases(vmf->ptl)
2860 {
2861 struct vm_area_struct *vma = vmf->vma;
2862 vm_fault_t ret = VM_FAULT_WRITE;
2863
2864 get_page(vmf->page);
2865
2866 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2867 vm_fault_t tmp;
2868
2869 pte_unmap_unlock(vmf->pte, vmf->ptl);
2870 tmp = do_page_mkwrite(vmf);
2871 if (unlikely(!tmp || (tmp &
2872 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2873 put_page(vmf->page);
2874 return tmp;
2875 }
2876 tmp = finish_mkwrite_fault(vmf);
2877 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2878 unlock_page(vmf->page);
2879 put_page(vmf->page);
2880 return tmp;
2881 }
2882 } else {
2883 wp_page_reuse(vmf);
2884 lock_page(vmf->page);
2885 }
2886 ret |= fault_dirty_shared_page(vmf);
2887 put_page(vmf->page);
2888
2889 return ret;
2890 }
2891
2892 /*
2893 * This routine handles present pages, when users try to write
2894 * to a shared page. It is done by copying the page to a new address
2895 * and decrementing the shared-page counter for the old page.
2896 *
2897 * Note that this routine assumes that the protection checks have been
2898 * done by the caller (the low-level page fault routine in most cases).
2899 * Thus we can safely just mark it writable once we've done any necessary
2900 * COW.
2901 *
2902 * We also mark the page dirty at this point even though the page will
2903 * change only once the write actually happens. This avoids a few races,
2904 * and potentially makes it more efficient.
2905 *
2906 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2907 * but allow concurrent faults), with pte both mapped and locked.
2908 * We return with mmap_lock still held, but pte unmapped and unlocked.
2909 */
2910 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2911 __releases(vmf->ptl)
2912 {
2913 struct vm_area_struct *vma = vmf->vma;
2914
2915 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2916 pte_unmap_unlock(vmf->pte, vmf->ptl);
2917 return handle_userfault(vmf, VM_UFFD_WP);
2918 }
2919
2920 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2921 if (!vmf->page) {
2922 /*
2923 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2924 * VM_PFNMAP VMA.
2925 *
2926 * We should not cow pages in a shared writeable mapping.
2927 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2928 */
2929 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2930 (VM_WRITE|VM_SHARED))
2931 return wp_pfn_shared(vmf);
2932
2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 return wp_page_copy(vmf);
2935 }
2936
2937 /*
2938 * Take out anonymous pages first, anonymous shared vmas are
2939 * not dirty accountable.
2940 */
2941 if (PageAnon(vmf->page)) {
2942 struct page *page = vmf->page;
2943
2944 /* PageKsm() doesn't necessarily raise the page refcount */
2945 if (PageKsm(page) || page_count(page) != 1)
2946 goto copy;
2947 if (!trylock_page(page))
2948 goto copy;
2949 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2950 unlock_page(page);
2951 goto copy;
2952 }
2953 /*
2954 * Ok, we've got the only map reference, and the only
2955 * page count reference, and the page is locked,
2956 * it's dark out, and we're wearing sunglasses. Hit it.
2957 */
2958 wp_page_reuse(vmf);
2959 unlock_page(page);
2960 return VM_FAULT_WRITE;
2961 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2962 (VM_WRITE|VM_SHARED))) {
2963 return wp_page_shared(vmf);
2964 }
2965 copy:
2966 /*
2967 * Ok, we need to copy. Oh, well..
2968 */
2969 get_page(vmf->page);
2970
2971 pte_unmap_unlock(vmf->pte, vmf->ptl);
2972 return wp_page_copy(vmf);
2973 }
2974
2975 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2976 unsigned long start_addr, unsigned long end_addr,
2977 struct zap_details *details)
2978 {
2979 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2980 }
2981
2982 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2983 struct zap_details *details)
2984 {
2985 struct vm_area_struct *vma;
2986 pgoff_t vba, vea, zba, zea;
2987
2988 vma_interval_tree_foreach(vma, root,
2989 details->first_index, details->last_index) {
2990
2991 vba = vma->vm_pgoff;
2992 vea = vba + vma_pages(vma) - 1;
2993 zba = details->first_index;
2994 if (zba < vba)
2995 zba = vba;
2996 zea = details->last_index;
2997 if (zea > vea)
2998 zea = vea;
2999
3000 unmap_mapping_range_vma(vma,
3001 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3002 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3003 details);
3004 }
3005 }
3006
3007 /**
3008 * unmap_mapping_pages() - Unmap pages from processes.
3009 * @mapping: The address space containing pages to be unmapped.
3010 * @start: Index of first page to be unmapped.
3011 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3012 * @even_cows: Whether to unmap even private COWed pages.
3013 *
3014 * Unmap the pages in this address space from any userspace process which
3015 * has them mmaped. Generally, you want to remove COWed pages as well when
3016 * a file is being truncated, but not when invalidating pages from the page
3017 * cache.
3018 */
3019 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3020 pgoff_t nr, bool even_cows)
3021 {
3022 struct zap_details details = { };
3023
3024 details.check_mapping = even_cows ? NULL : mapping;
3025 details.first_index = start;
3026 details.last_index = start + nr - 1;
3027 if (details.last_index < details.first_index)
3028 details.last_index = ULONG_MAX;
3029
3030 i_mmap_lock_write(mapping);
3031 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3032 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3033 i_mmap_unlock_write(mapping);
3034 }
3035
3036 /**
3037 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3038 * address_space corresponding to the specified byte range in the underlying
3039 * file.
3040 *
3041 * @mapping: the address space containing mmaps to be unmapped.
3042 * @holebegin: byte in first page to unmap, relative to the start of
3043 * the underlying file. This will be rounded down to a PAGE_SIZE
3044 * boundary. Note that this is different from truncate_pagecache(), which
3045 * must keep the partial page. In contrast, we must get rid of
3046 * partial pages.
3047 * @holelen: size of prospective hole in bytes. This will be rounded
3048 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3049 * end of the file.
3050 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3051 * but 0 when invalidating pagecache, don't throw away private data.
3052 */
3053 void unmap_mapping_range(struct address_space *mapping,
3054 loff_t const holebegin, loff_t const holelen, int even_cows)
3055 {
3056 pgoff_t hba = holebegin >> PAGE_SHIFT;
3057 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3058
3059 /* Check for overflow. */
3060 if (sizeof(holelen) > sizeof(hlen)) {
3061 long long holeend =
3062 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3063 if (holeend & ~(long long)ULONG_MAX)
3064 hlen = ULONG_MAX - hba + 1;
3065 }
3066
3067 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3068 }
3069 EXPORT_SYMBOL(unmap_mapping_range);
3070
3071 /*
3072 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3073 * but allow concurrent faults), and pte mapped but not yet locked.
3074 * We return with pte unmapped and unlocked.
3075 *
3076 * We return with the mmap_lock locked or unlocked in the same cases
3077 * as does filemap_fault().
3078 */
3079 vm_fault_t do_swap_page(struct vm_fault *vmf)
3080 {
3081 struct vm_area_struct *vma = vmf->vma;
3082 struct page *page = NULL, *swapcache;
3083 swp_entry_t entry;
3084 pte_t pte;
3085 int locked;
3086 int exclusive = 0;
3087 vm_fault_t ret = 0;
3088 void *shadow = NULL;
3089
3090 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3091 goto out;
3092
3093 entry = pte_to_swp_entry(vmf->orig_pte);
3094 if (unlikely(non_swap_entry(entry))) {
3095 if (is_migration_entry(entry)) {
3096 migration_entry_wait(vma->vm_mm, vmf->pmd,
3097 vmf->address);
3098 } else if (is_device_private_entry(entry)) {
3099 vmf->page = device_private_entry_to_page(entry);
3100 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3101 } else if (is_hwpoison_entry(entry)) {
3102 ret = VM_FAULT_HWPOISON;
3103 } else {
3104 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3105 ret = VM_FAULT_SIGBUS;
3106 }
3107 goto out;
3108 }
3109
3110
3111 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3112 page = lookup_swap_cache(entry, vma, vmf->address);
3113 swapcache = page;
3114
3115 if (!page) {
3116 struct swap_info_struct *si = swp_swap_info(entry);
3117
3118 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3119 __swap_count(entry) == 1) {
3120 /* skip swapcache */
3121 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3122 vmf->address);
3123 if (page) {
3124 int err;
3125
3126 __SetPageLocked(page);
3127 __SetPageSwapBacked(page);
3128 set_page_private(page, entry.val);
3129
3130 /* Tell memcg to use swap ownership records */
3131 SetPageSwapCache(page);
3132 err = mem_cgroup_charge(page, vma->vm_mm,
3133 GFP_KERNEL);
3134 ClearPageSwapCache(page);
3135 if (err) {
3136 ret = VM_FAULT_OOM;
3137 goto out_page;
3138 }
3139
3140 shadow = get_shadow_from_swap_cache(entry);
3141 if (shadow)
3142 workingset_refault(page, shadow);
3143
3144 lru_cache_add(page);
3145 swap_readpage(page, true);
3146 }
3147 } else {
3148 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3149 vmf);
3150 swapcache = page;
3151 }
3152
3153 if (!page) {
3154 /*
3155 * Back out if somebody else faulted in this pte
3156 * while we released the pte lock.
3157 */
3158 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3159 vmf->address, &vmf->ptl);
3160 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3161 ret = VM_FAULT_OOM;
3162 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3163 goto unlock;
3164 }
3165
3166 /* Had to read the page from swap area: Major fault */
3167 ret = VM_FAULT_MAJOR;
3168 count_vm_event(PGMAJFAULT);
3169 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3170 } else if (PageHWPoison(page)) {
3171 /*
3172 * hwpoisoned dirty swapcache pages are kept for killing
3173 * owner processes (which may be unknown at hwpoison time)
3174 */
3175 ret = VM_FAULT_HWPOISON;
3176 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3177 goto out_release;
3178 }
3179
3180 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3181
3182 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3183 if (!locked) {
3184 ret |= VM_FAULT_RETRY;
3185 goto out_release;
3186 }
3187
3188 /*
3189 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3190 * release the swapcache from under us. The page pin, and pte_same
3191 * test below, are not enough to exclude that. Even if it is still
3192 * swapcache, we need to check that the page's swap has not changed.
3193 */
3194 if (unlikely((!PageSwapCache(page) ||
3195 page_private(page) != entry.val)) && swapcache)
3196 goto out_page;
3197
3198 page = ksm_might_need_to_copy(page, vma, vmf->address);
3199 if (unlikely(!page)) {
3200 ret = VM_FAULT_OOM;
3201 page = swapcache;
3202 goto out_page;
3203 }
3204
3205 cgroup_throttle_swaprate(page, GFP_KERNEL);
3206
3207 /*
3208 * Back out if somebody else already faulted in this pte.
3209 */
3210 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3211 &vmf->ptl);
3212 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3213 goto out_nomap;
3214
3215 if (unlikely(!PageUptodate(page))) {
3216 ret = VM_FAULT_SIGBUS;
3217 goto out_nomap;
3218 }
3219
3220 /*
3221 * The page isn't present yet, go ahead with the fault.
3222 *
3223 * Be careful about the sequence of operations here.
3224 * To get its accounting right, reuse_swap_page() must be called
3225 * while the page is counted on swap but not yet in mapcount i.e.
3226 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3227 * must be called after the swap_free(), or it will never succeed.
3228 */
3229
3230 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3231 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3232 pte = mk_pte(page, vma->vm_page_prot);
3233 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3234 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3235 vmf->flags &= ~FAULT_FLAG_WRITE;
3236 ret |= VM_FAULT_WRITE;
3237 exclusive = RMAP_EXCLUSIVE;
3238 }
3239 flush_icache_page(vma, page);
3240 if (pte_swp_soft_dirty(vmf->orig_pte))
3241 pte = pte_mksoft_dirty(pte);
3242 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3243 pte = pte_mkuffd_wp(pte);
3244 pte = pte_wrprotect(pte);
3245 }
3246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3247 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3248 vmf->orig_pte = pte;
3249
3250 /* ksm created a completely new copy */
3251 if (unlikely(page != swapcache && swapcache)) {
3252 page_add_new_anon_rmap(page, vma, vmf->address, false);
3253 lru_cache_add_inactive_or_unevictable(page, vma);
3254 } else {
3255 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3256 }
3257
3258 swap_free(entry);
3259 if (mem_cgroup_swap_full(page) ||
3260 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3261 try_to_free_swap(page);
3262 unlock_page(page);
3263 if (page != swapcache && swapcache) {
3264 /*
3265 * Hold the lock to avoid the swap entry to be reused
3266 * until we take the PT lock for the pte_same() check
3267 * (to avoid false positives from pte_same). For
3268 * further safety release the lock after the swap_free
3269 * so that the swap count won't change under a
3270 * parallel locked swapcache.
3271 */
3272 unlock_page(swapcache);
3273 put_page(swapcache);
3274 }
3275
3276 if (vmf->flags & FAULT_FLAG_WRITE) {
3277 ret |= do_wp_page(vmf);
3278 if (ret & VM_FAULT_ERROR)
3279 ret &= VM_FAULT_ERROR;
3280 goto out;
3281 }
3282
3283 /* No need to invalidate - it was non-present before */
3284 update_mmu_cache(vma, vmf->address, vmf->pte);
3285 unlock:
3286 pte_unmap_unlock(vmf->pte, vmf->ptl);
3287 out:
3288 return ret;
3289 out_nomap:
3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 out_page:
3292 unlock_page(page);
3293 out_release:
3294 put_page(page);
3295 if (page != swapcache && swapcache) {
3296 unlock_page(swapcache);
3297 put_page(swapcache);
3298 }
3299 return ret;
3300 }
3301
3302 /*
3303 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3304 * but allow concurrent faults), and pte mapped but not yet locked.
3305 * We return with mmap_lock still held, but pte unmapped and unlocked.
3306 */
3307 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3308 {
3309 struct vm_area_struct *vma = vmf->vma;
3310 struct page *page;
3311 vm_fault_t ret = 0;
3312 pte_t entry;
3313
3314 /* File mapping without ->vm_ops ? */
3315 if (vma->vm_flags & VM_SHARED)
3316 return VM_FAULT_SIGBUS;
3317
3318 /*
3319 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3320 * pte_offset_map() on pmds where a huge pmd might be created
3321 * from a different thread.
3322 *
3323 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3324 * parallel threads are excluded by other means.
3325 *
3326 * Here we only have mmap_read_lock(mm).
3327 */
3328 if (pte_alloc(vma->vm_mm, vmf->pmd))
3329 return VM_FAULT_OOM;
3330
3331 /* See the comment in pte_alloc_one_map() */
3332 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3333 return 0;
3334
3335 /* Use the zero-page for reads */
3336 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3337 !mm_forbids_zeropage(vma->vm_mm)) {
3338 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3339 vma->vm_page_prot));
3340 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3341 vmf->address, &vmf->ptl);
3342 if (!pte_none(*vmf->pte)) {
3343 update_mmu_tlb(vma, vmf->address, vmf->pte);
3344 goto unlock;
3345 }
3346 ret = check_stable_address_space(vma->vm_mm);
3347 if (ret)
3348 goto unlock;
3349 /* Deliver the page fault to userland, check inside PT lock */
3350 if (userfaultfd_missing(vma)) {
3351 pte_unmap_unlock(vmf->pte, vmf->ptl);
3352 return handle_userfault(vmf, VM_UFFD_MISSING);
3353 }
3354 goto setpte;
3355 }
3356
3357 /* Allocate our own private page. */
3358 if (unlikely(anon_vma_prepare(vma)))
3359 goto oom;
3360 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3361 if (!page)
3362 goto oom;
3363
3364 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3365 goto oom_free_page;
3366 cgroup_throttle_swaprate(page, GFP_KERNEL);
3367
3368 /*
3369 * The memory barrier inside __SetPageUptodate makes sure that
3370 * preceding stores to the page contents become visible before
3371 * the set_pte_at() write.
3372 */
3373 __SetPageUptodate(page);
3374
3375 entry = mk_pte(page, vma->vm_page_prot);
3376 entry = pte_sw_mkyoung(entry);
3377 if (vma->vm_flags & VM_WRITE)
3378 entry = pte_mkwrite(pte_mkdirty(entry));
3379
3380 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3381 &vmf->ptl);
3382 if (!pte_none(*vmf->pte)) {
3383 update_mmu_cache(vma, vmf->address, vmf->pte);
3384 goto release;
3385 }
3386
3387 ret = check_stable_address_space(vma->vm_mm);
3388 if (ret)
3389 goto release;
3390
3391 /* Deliver the page fault to userland, check inside PT lock */
3392 if (userfaultfd_missing(vma)) {
3393 pte_unmap_unlock(vmf->pte, vmf->ptl);
3394 put_page(page);
3395 return handle_userfault(vmf, VM_UFFD_MISSING);
3396 }
3397
3398 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3399 page_add_new_anon_rmap(page, vma, vmf->address, false);
3400 lru_cache_add_inactive_or_unevictable(page, vma);
3401 setpte:
3402 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3403
3404 /* No need to invalidate - it was non-present before */
3405 update_mmu_cache(vma, vmf->address, vmf->pte);
3406 unlock:
3407 pte_unmap_unlock(vmf->pte, vmf->ptl);
3408 return ret;
3409 release:
3410 put_page(page);
3411 goto unlock;
3412 oom_free_page:
3413 put_page(page);
3414 oom:
3415 return VM_FAULT_OOM;
3416 }
3417
3418 /*
3419 * The mmap_lock must have been held on entry, and may have been
3420 * released depending on flags and vma->vm_ops->fault() return value.
3421 * See filemap_fault() and __lock_page_retry().
3422 */
3423 static vm_fault_t __do_fault(struct vm_fault *vmf)
3424 {
3425 struct vm_area_struct *vma = vmf->vma;
3426 vm_fault_t ret;
3427
3428 /*
3429 * Preallocate pte before we take page_lock because this might lead to
3430 * deadlocks for memcg reclaim which waits for pages under writeback:
3431 * lock_page(A)
3432 * SetPageWriteback(A)
3433 * unlock_page(A)
3434 * lock_page(B)
3435 * lock_page(B)
3436 * pte_alloc_pne
3437 * shrink_page_list
3438 * wait_on_page_writeback(A)
3439 * SetPageWriteback(B)
3440 * unlock_page(B)
3441 * # flush A, B to clear the writeback
3442 */
3443 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445 if (!vmf->prealloc_pte)
3446 return VM_FAULT_OOM;
3447 smp_wmb(); /* See comment in __pte_alloc() */
3448 }
3449
3450 ret = vma->vm_ops->fault(vmf);
3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3452 VM_FAULT_DONE_COW)))
3453 return ret;
3454
3455 if (unlikely(PageHWPoison(vmf->page))) {
3456 if (ret & VM_FAULT_LOCKED)
3457 unlock_page(vmf->page);
3458 put_page(vmf->page);
3459 vmf->page = NULL;
3460 return VM_FAULT_HWPOISON;
3461 }
3462
3463 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3464 lock_page(vmf->page);
3465 else
3466 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3467
3468 return ret;
3469 }
3470
3471 /*
3472 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3473 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3474 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3475 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3476 */
3477 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3478 {
3479 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3480 }
3481
3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3483 {
3484 struct vm_area_struct *vma = vmf->vma;
3485
3486 if (!pmd_none(*vmf->pmd))
3487 goto map_pte;
3488 if (vmf->prealloc_pte) {
3489 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3490 if (unlikely(!pmd_none(*vmf->pmd))) {
3491 spin_unlock(vmf->ptl);
3492 goto map_pte;
3493 }
3494
3495 mm_inc_nr_ptes(vma->vm_mm);
3496 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3497 spin_unlock(vmf->ptl);
3498 vmf->prealloc_pte = NULL;
3499 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3500 return VM_FAULT_OOM;
3501 }
3502 map_pte:
3503 /*
3504 * If a huge pmd materialized under us just retry later. Use
3505 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3506 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3507 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3508 * running immediately after a huge pmd fault in a different thread of
3509 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3510 * All we have to ensure is that it is a regular pmd that we can walk
3511 * with pte_offset_map() and we can do that through an atomic read in
3512 * C, which is what pmd_trans_unstable() provides.
3513 */
3514 if (pmd_devmap_trans_unstable(vmf->pmd))
3515 return VM_FAULT_NOPAGE;
3516
3517 /*
3518 * At this point we know that our vmf->pmd points to a page of ptes
3519 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3520 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3521 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3522 * be valid and we will re-check to make sure the vmf->pte isn't
3523 * pte_none() under vmf->ptl protection when we return to
3524 * alloc_set_pte().
3525 */
3526 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3527 &vmf->ptl);
3528 return 0;
3529 }
3530
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 static void deposit_prealloc_pte(struct vm_fault *vmf)
3533 {
3534 struct vm_area_struct *vma = vmf->vma;
3535
3536 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3537 /*
3538 * We are going to consume the prealloc table,
3539 * count that as nr_ptes.
3540 */
3541 mm_inc_nr_ptes(vma->vm_mm);
3542 vmf->prealloc_pte = NULL;
3543 }
3544
3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3546 {
3547 struct vm_area_struct *vma = vmf->vma;
3548 bool write = vmf->flags & FAULT_FLAG_WRITE;
3549 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3550 pmd_t entry;
3551 int i;
3552 vm_fault_t ret;
3553
3554 if (!transhuge_vma_suitable(vma, haddr))
3555 return VM_FAULT_FALLBACK;
3556
3557 ret = VM_FAULT_FALLBACK;
3558 page = compound_head(page);
3559
3560 /*
3561 * Archs like ppc64 need additonal space to store information
3562 * related to pte entry. Use the preallocated table for that.
3563 */
3564 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3565 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3566 if (!vmf->prealloc_pte)
3567 return VM_FAULT_OOM;
3568 smp_wmb(); /* See comment in __pte_alloc() */
3569 }
3570
3571 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3572 if (unlikely(!pmd_none(*vmf->pmd)))
3573 goto out;
3574
3575 for (i = 0; i < HPAGE_PMD_NR; i++)
3576 flush_icache_page(vma, page + i);
3577
3578 entry = mk_huge_pmd(page, vma->vm_page_prot);
3579 if (write)
3580 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3581
3582 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3583 page_add_file_rmap(page, true);
3584 /*
3585 * deposit and withdraw with pmd lock held
3586 */
3587 if (arch_needs_pgtable_deposit())
3588 deposit_prealloc_pte(vmf);
3589
3590 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3591
3592 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3593
3594 /* fault is handled */
3595 ret = 0;
3596 count_vm_event(THP_FILE_MAPPED);
3597 out:
3598 spin_unlock(vmf->ptl);
3599 return ret;
3600 }
3601 #else
3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3603 {
3604 BUILD_BUG();
3605 return 0;
3606 }
3607 #endif
3608
3609 /**
3610 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3611 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3612 *
3613 * @vmf: fault environment
3614 * @page: page to map
3615 *
3616 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3617 * return.
3618 *
3619 * Target users are page handler itself and implementations of
3620 * vm_ops->map_pages.
3621 *
3622 * Return: %0 on success, %VM_FAULT_ code in case of error.
3623 */
3624 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3625 {
3626 struct vm_area_struct *vma = vmf->vma;
3627 bool write = vmf->flags & FAULT_FLAG_WRITE;
3628 pte_t entry;
3629 vm_fault_t ret;
3630
3631 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3632 ret = do_set_pmd(vmf, page);
3633 if (ret != VM_FAULT_FALLBACK)
3634 return ret;
3635 }
3636
3637 if (!vmf->pte) {
3638 ret = pte_alloc_one_map(vmf);
3639 if (ret)
3640 return ret;
3641 }
3642
3643 /* Re-check under ptl */
3644 if (unlikely(!pte_none(*vmf->pte))) {
3645 update_mmu_tlb(vma, vmf->address, vmf->pte);
3646 return VM_FAULT_NOPAGE;
3647 }
3648
3649 flush_icache_page(vma, page);
3650 entry = mk_pte(page, vma->vm_page_prot);
3651 entry = pte_sw_mkyoung(entry);
3652 if (write)
3653 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3654 /* copy-on-write page */
3655 if (write && !(vma->vm_flags & VM_SHARED)) {
3656 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3657 page_add_new_anon_rmap(page, vma, vmf->address, false);
3658 lru_cache_add_inactive_or_unevictable(page, vma);
3659 } else {
3660 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3661 page_add_file_rmap(page, false);
3662 }
3663 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3664
3665 /* no need to invalidate: a not-present page won't be cached */
3666 update_mmu_cache(vma, vmf->address, vmf->pte);
3667
3668 return 0;
3669 }
3670
3671
3672 /**
3673 * finish_fault - finish page fault once we have prepared the page to fault
3674 *
3675 * @vmf: structure describing the fault
3676 *
3677 * This function handles all that is needed to finish a page fault once the
3678 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3679 * given page, adds reverse page mapping, handles memcg charges and LRU
3680 * addition.
3681 *
3682 * The function expects the page to be locked and on success it consumes a
3683 * reference of a page being mapped (for the PTE which maps it).
3684 *
3685 * Return: %0 on success, %VM_FAULT_ code in case of error.
3686 */
3687 vm_fault_t finish_fault(struct vm_fault *vmf)
3688 {
3689 struct page *page;
3690 vm_fault_t ret = 0;
3691
3692 /* Did we COW the page? */
3693 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3694 !(vmf->vma->vm_flags & VM_SHARED))
3695 page = vmf->cow_page;
3696 else
3697 page = vmf->page;
3698
3699 /*
3700 * check even for read faults because we might have lost our CoWed
3701 * page
3702 */
3703 if (!(vmf->vma->vm_flags & VM_SHARED))
3704 ret = check_stable_address_space(vmf->vma->vm_mm);
3705 if (!ret)
3706 ret = alloc_set_pte(vmf, page);
3707 if (vmf->pte)
3708 pte_unmap_unlock(vmf->pte, vmf->ptl);
3709 return ret;
3710 }
3711
3712 static unsigned long fault_around_bytes __read_mostly =
3713 rounddown_pow_of_two(65536);
3714
3715 #ifdef CONFIG_DEBUG_FS
3716 static int fault_around_bytes_get(void *data, u64 *val)
3717 {
3718 *val = fault_around_bytes;
3719 return 0;
3720 }
3721
3722 /*
3723 * fault_around_bytes must be rounded down to the nearest page order as it's
3724 * what do_fault_around() expects to see.
3725 */
3726 static int fault_around_bytes_set(void *data, u64 val)
3727 {
3728 if (val / PAGE_SIZE > PTRS_PER_PTE)
3729 return -EINVAL;
3730 if (val > PAGE_SIZE)
3731 fault_around_bytes = rounddown_pow_of_two(val);
3732 else
3733 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3734 return 0;
3735 }
3736 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3737 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3738
3739 static int __init fault_around_debugfs(void)
3740 {
3741 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3742 &fault_around_bytes_fops);
3743 return 0;
3744 }
3745 late_initcall(fault_around_debugfs);
3746 #endif
3747
3748 /*
3749 * do_fault_around() tries to map few pages around the fault address. The hope
3750 * is that the pages will be needed soon and this will lower the number of
3751 * faults to handle.
3752 *
3753 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3754 * not ready to be mapped: not up-to-date, locked, etc.
3755 *
3756 * This function is called with the page table lock taken. In the split ptlock
3757 * case the page table lock only protects only those entries which belong to
3758 * the page table corresponding to the fault address.
3759 *
3760 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3761 * only once.
3762 *
3763 * fault_around_bytes defines how many bytes we'll try to map.
3764 * do_fault_around() expects it to be set to a power of two less than or equal
3765 * to PTRS_PER_PTE.
3766 *
3767 * The virtual address of the area that we map is naturally aligned to
3768 * fault_around_bytes rounded down to the machine page size
3769 * (and therefore to page order). This way it's easier to guarantee
3770 * that we don't cross page table boundaries.
3771 */
3772 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3773 {
3774 unsigned long address = vmf->address, nr_pages, mask;
3775 pgoff_t start_pgoff = vmf->pgoff;
3776 pgoff_t end_pgoff;
3777 int off;
3778 vm_fault_t ret = 0;
3779
3780 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3781 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3782
3783 vmf->address = max(address & mask, vmf->vma->vm_start);
3784 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3785 start_pgoff -= off;
3786
3787 /*
3788 * end_pgoff is either the end of the page table, the end of
3789 * the vma or nr_pages from start_pgoff, depending what is nearest.
3790 */
3791 end_pgoff = start_pgoff -
3792 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3793 PTRS_PER_PTE - 1;
3794 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3795 start_pgoff + nr_pages - 1);
3796
3797 if (pmd_none(*vmf->pmd)) {
3798 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3799 if (!vmf->prealloc_pte)
3800 goto out;
3801 smp_wmb(); /* See comment in __pte_alloc() */
3802 }
3803
3804 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3805
3806 /* Huge page is mapped? Page fault is solved */
3807 if (pmd_trans_huge(*vmf->pmd)) {
3808 ret = VM_FAULT_NOPAGE;
3809 goto out;
3810 }
3811
3812 /* ->map_pages() haven't done anything useful. Cold page cache? */
3813 if (!vmf->pte)
3814 goto out;
3815
3816 /* check if the page fault is solved */
3817 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3818 if (!pte_none(*vmf->pte))
3819 ret = VM_FAULT_NOPAGE;
3820 pte_unmap_unlock(vmf->pte, vmf->ptl);
3821 out:
3822 vmf->address = address;
3823 vmf->pte = NULL;
3824 return ret;
3825 }
3826
3827 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3828 {
3829 struct vm_area_struct *vma = vmf->vma;
3830 vm_fault_t ret = 0;
3831
3832 /*
3833 * Let's call ->map_pages() first and use ->fault() as fallback
3834 * if page by the offset is not ready to be mapped (cold cache or
3835 * something).
3836 */
3837 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3838 ret = do_fault_around(vmf);
3839 if (ret)
3840 return ret;
3841 }
3842
3843 ret = __do_fault(vmf);
3844 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3845 return ret;
3846
3847 ret |= finish_fault(vmf);
3848 unlock_page(vmf->page);
3849 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3850 put_page(vmf->page);
3851 return ret;
3852 }
3853
3854 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3855 {
3856 struct vm_area_struct *vma = vmf->vma;
3857 vm_fault_t ret;
3858
3859 if (unlikely(anon_vma_prepare(vma)))
3860 return VM_FAULT_OOM;
3861
3862 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3863 if (!vmf->cow_page)
3864 return VM_FAULT_OOM;
3865
3866 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3867 put_page(vmf->cow_page);
3868 return VM_FAULT_OOM;
3869 }
3870 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3871
3872 ret = __do_fault(vmf);
3873 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3874 goto uncharge_out;
3875 if (ret & VM_FAULT_DONE_COW)
3876 return ret;
3877
3878 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3879 __SetPageUptodate(vmf->cow_page);
3880
3881 ret |= finish_fault(vmf);
3882 unlock_page(vmf->page);
3883 put_page(vmf->page);
3884 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3885 goto uncharge_out;
3886 return ret;
3887 uncharge_out:
3888 put_page(vmf->cow_page);
3889 return ret;
3890 }
3891
3892 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3893 {
3894 struct vm_area_struct *vma = vmf->vma;
3895 vm_fault_t ret, tmp;
3896
3897 ret = __do_fault(vmf);
3898 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3899 return ret;
3900
3901 /*
3902 * Check if the backing address space wants to know that the page is
3903 * about to become writable
3904 */
3905 if (vma->vm_ops->page_mkwrite) {
3906 unlock_page(vmf->page);
3907 tmp = do_page_mkwrite(vmf);
3908 if (unlikely(!tmp ||
3909 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3910 put_page(vmf->page);
3911 return tmp;
3912 }
3913 }
3914
3915 ret |= finish_fault(vmf);
3916 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3917 VM_FAULT_RETRY))) {
3918 unlock_page(vmf->page);
3919 put_page(vmf->page);
3920 return ret;
3921 }
3922
3923 ret |= fault_dirty_shared_page(vmf);
3924 return ret;
3925 }
3926
3927 /*
3928 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3929 * but allow concurrent faults).
3930 * The mmap_lock may have been released depending on flags and our
3931 * return value. See filemap_fault() and __lock_page_or_retry().
3932 * If mmap_lock is released, vma may become invalid (for example
3933 * by other thread calling munmap()).
3934 */
3935 static vm_fault_t do_fault(struct vm_fault *vmf)
3936 {
3937 struct vm_area_struct *vma = vmf->vma;
3938 struct mm_struct *vm_mm = vma->vm_mm;
3939 vm_fault_t ret;
3940
3941 /*
3942 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3943 */
3944 if (!vma->vm_ops->fault) {
3945 /*
3946 * If we find a migration pmd entry or a none pmd entry, which
3947 * should never happen, return SIGBUS
3948 */
3949 if (unlikely(!pmd_present(*vmf->pmd)))
3950 ret = VM_FAULT_SIGBUS;
3951 else {
3952 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3953 vmf->pmd,
3954 vmf->address,
3955 &vmf->ptl);
3956 /*
3957 * Make sure this is not a temporary clearing of pte
3958 * by holding ptl and checking again. A R/M/W update
3959 * of pte involves: take ptl, clearing the pte so that
3960 * we don't have concurrent modification by hardware
3961 * followed by an update.
3962 */
3963 if (unlikely(pte_none(*vmf->pte)))
3964 ret = VM_FAULT_SIGBUS;
3965 else
3966 ret = VM_FAULT_NOPAGE;
3967
3968 pte_unmap_unlock(vmf->pte, vmf->ptl);
3969 }
3970 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3971 ret = do_read_fault(vmf);
3972 else if (!(vma->vm_flags & VM_SHARED))
3973 ret = do_cow_fault(vmf);
3974 else
3975 ret = do_shared_fault(vmf);
3976
3977 /* preallocated pagetable is unused: free it */
3978 if (vmf->prealloc_pte) {
3979 pte_free(vm_mm, vmf->prealloc_pte);
3980 vmf->prealloc_pte = NULL;
3981 }
3982 return ret;
3983 }
3984
3985 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3986 unsigned long addr, int page_nid,
3987 int *flags)
3988 {
3989 get_page(page);
3990
3991 count_vm_numa_event(NUMA_HINT_FAULTS);
3992 if (page_nid == numa_node_id()) {
3993 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3994 *flags |= TNF_FAULT_LOCAL;
3995 }
3996
3997 return mpol_misplaced(page, vma, addr);
3998 }
3999
4000 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4001 {
4002 struct vm_area_struct *vma = vmf->vma;
4003 struct page *page = NULL;
4004 int page_nid = NUMA_NO_NODE;
4005 int last_cpupid;
4006 int target_nid;
4007 bool migrated = false;
4008 pte_t pte, old_pte;
4009 bool was_writable = pte_savedwrite(vmf->orig_pte);
4010 int flags = 0;
4011
4012 /*
4013 * The "pte" at this point cannot be used safely without
4014 * validation through pte_unmap_same(). It's of NUMA type but
4015 * the pfn may be screwed if the read is non atomic.
4016 */
4017 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4018 spin_lock(vmf->ptl);
4019 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4020 pte_unmap_unlock(vmf->pte, vmf->ptl);
4021 goto out;
4022 }
4023
4024 /*
4025 * Make it present again, Depending on how arch implementes non
4026 * accessible ptes, some can allow access by kernel mode.
4027 */
4028 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4029 pte = pte_modify(old_pte, vma->vm_page_prot);
4030 pte = pte_mkyoung(pte);
4031 if (was_writable)
4032 pte = pte_mkwrite(pte);
4033 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4034 update_mmu_cache(vma, vmf->address, vmf->pte);
4035
4036 page = vm_normal_page(vma, vmf->address, pte);
4037 if (!page) {
4038 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039 return 0;
4040 }
4041
4042 /* TODO: handle PTE-mapped THP */
4043 if (PageCompound(page)) {
4044 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 return 0;
4046 }
4047
4048 /*
4049 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4050 * much anyway since they can be in shared cache state. This misses
4051 * the case where a mapping is writable but the process never writes
4052 * to it but pte_write gets cleared during protection updates and
4053 * pte_dirty has unpredictable behaviour between PTE scan updates,
4054 * background writeback, dirty balancing and application behaviour.
4055 */
4056 if (!pte_write(pte))
4057 flags |= TNF_NO_GROUP;
4058
4059 /*
4060 * Flag if the page is shared between multiple address spaces. This
4061 * is later used when determining whether to group tasks together
4062 */
4063 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4064 flags |= TNF_SHARED;
4065
4066 last_cpupid = page_cpupid_last(page);
4067 page_nid = page_to_nid(page);
4068 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4069 &flags);
4070 pte_unmap_unlock(vmf->pte, vmf->ptl);
4071 if (target_nid == NUMA_NO_NODE) {
4072 put_page(page);
4073 goto out;
4074 }
4075
4076 /* Migrate to the requested node */
4077 migrated = migrate_misplaced_page(page, vma, target_nid);
4078 if (migrated) {
4079 page_nid = target_nid;
4080 flags |= TNF_MIGRATED;
4081 } else
4082 flags |= TNF_MIGRATE_FAIL;
4083
4084 out:
4085 if (page_nid != NUMA_NO_NODE)
4086 task_numa_fault(last_cpupid, page_nid, 1, flags);
4087 return 0;
4088 }
4089
4090 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4091 {
4092 if (vma_is_anonymous(vmf->vma))
4093 return do_huge_pmd_anonymous_page(vmf);
4094 if (vmf->vma->vm_ops->huge_fault)
4095 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4096 return VM_FAULT_FALLBACK;
4097 }
4098
4099 /* `inline' is required to avoid gcc 4.1.2 build error */
4100 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4101 {
4102 if (vma_is_anonymous(vmf->vma)) {
4103 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4104 return handle_userfault(vmf, VM_UFFD_WP);
4105 return do_huge_pmd_wp_page(vmf, orig_pmd);
4106 }
4107 if (vmf->vma->vm_ops->huge_fault) {
4108 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109
4110 if (!(ret & VM_FAULT_FALLBACK))
4111 return ret;
4112 }
4113
4114 /* COW or write-notify handled on pte level: split pmd. */
4115 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4116
4117 return VM_FAULT_FALLBACK;
4118 }
4119
4120 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4121 {
4122 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4123 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4124 /* No support for anonymous transparent PUD pages yet */
4125 if (vma_is_anonymous(vmf->vma))
4126 goto split;
4127 if (vmf->vma->vm_ops->huge_fault) {
4128 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4129
4130 if (!(ret & VM_FAULT_FALLBACK))
4131 return ret;
4132 }
4133 split:
4134 /* COW or write-notify not handled on PUD level: split pud.*/
4135 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4137 return VM_FAULT_FALLBACK;
4138 }
4139
4140 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4141 {
4142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4143 /* No support for anonymous transparent PUD pages yet */
4144 if (vma_is_anonymous(vmf->vma))
4145 return VM_FAULT_FALLBACK;
4146 if (vmf->vma->vm_ops->huge_fault)
4147 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149 return VM_FAULT_FALLBACK;
4150 }
4151
4152 /*
4153 * These routines also need to handle stuff like marking pages dirty
4154 * and/or accessed for architectures that don't do it in hardware (most
4155 * RISC architectures). The early dirtying is also good on the i386.
4156 *
4157 * There is also a hook called "update_mmu_cache()" that architectures
4158 * with external mmu caches can use to update those (ie the Sparc or
4159 * PowerPC hashed page tables that act as extended TLBs).
4160 *
4161 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4162 * concurrent faults).
4163 *
4164 * The mmap_lock may have been released depending on flags and our return value.
4165 * See filemap_fault() and __lock_page_or_retry().
4166 */
4167 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4168 {
4169 pte_t entry;
4170
4171 if (unlikely(pmd_none(*vmf->pmd))) {
4172 /*
4173 * Leave __pte_alloc() until later: because vm_ops->fault may
4174 * want to allocate huge page, and if we expose page table
4175 * for an instant, it will be difficult to retract from
4176 * concurrent faults and from rmap lookups.
4177 */
4178 vmf->pte = NULL;
4179 } else {
4180 /* See comment in pte_alloc_one_map() */
4181 if (pmd_devmap_trans_unstable(vmf->pmd))
4182 return 0;
4183 /*
4184 * A regular pmd is established and it can't morph into a huge
4185 * pmd from under us anymore at this point because we hold the
4186 * mmap_lock read mode and khugepaged takes it in write mode.
4187 * So now it's safe to run pte_offset_map().
4188 */
4189 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4190 vmf->orig_pte = *vmf->pte;
4191
4192 /*
4193 * some architectures can have larger ptes than wordsize,
4194 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4195 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4196 * accesses. The code below just needs a consistent view
4197 * for the ifs and we later double check anyway with the
4198 * ptl lock held. So here a barrier will do.
4199 */
4200 barrier();
4201 if (pte_none(vmf->orig_pte)) {
4202 pte_unmap(vmf->pte);
4203 vmf->pte = NULL;
4204 }
4205 }
4206
4207 if (!vmf->pte) {
4208 if (vma_is_anonymous(vmf->vma))
4209 return do_anonymous_page(vmf);
4210 else
4211 return do_fault(vmf);
4212 }
4213
4214 if (!pte_present(vmf->orig_pte))
4215 return do_swap_page(vmf);
4216
4217 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4218 return do_numa_page(vmf);
4219
4220 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4221 spin_lock(vmf->ptl);
4222 entry = vmf->orig_pte;
4223 if (unlikely(!pte_same(*vmf->pte, entry))) {
4224 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4225 goto unlock;
4226 }
4227 if (vmf->flags & FAULT_FLAG_WRITE) {
4228 if (!pte_write(entry))
4229 return do_wp_page(vmf);
4230 entry = pte_mkdirty(entry);
4231 }
4232 entry = pte_mkyoung(entry);
4233 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4234 vmf->flags & FAULT_FLAG_WRITE)) {
4235 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4236 } else {
4237 /* Skip spurious TLB flush for retried page fault */
4238 if (vmf->flags & FAULT_FLAG_TRIED)
4239 goto unlock;
4240 /*
4241 * This is needed only for protection faults but the arch code
4242 * is not yet telling us if this is a protection fault or not.
4243 * This still avoids useless tlb flushes for .text page faults
4244 * with threads.
4245 */
4246 if (vmf->flags & FAULT_FLAG_WRITE)
4247 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4248 }
4249 unlock:
4250 pte_unmap_unlock(vmf->pte, vmf->ptl);
4251 return 0;
4252 }
4253
4254 /*
4255 * By the time we get here, we already hold the mm semaphore
4256 *
4257 * The mmap_lock may have been released depending on flags and our
4258 * return value. See filemap_fault() and __lock_page_or_retry().
4259 */
4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261 unsigned long address, unsigned int flags)
4262 {
4263 struct vm_fault vmf = {
4264 .vma = vma,
4265 .address = address & PAGE_MASK,
4266 .flags = flags,
4267 .pgoff = linear_page_index(vma, address),
4268 .gfp_mask = __get_fault_gfp_mask(vma),
4269 };
4270 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4271 struct mm_struct *mm = vma->vm_mm;
4272 pgd_t *pgd;
4273 p4d_t *p4d;
4274 vm_fault_t ret;
4275
4276 pgd = pgd_offset(mm, address);
4277 p4d = p4d_alloc(mm, pgd, address);
4278 if (!p4d)
4279 return VM_FAULT_OOM;
4280
4281 vmf.pud = pud_alloc(mm, p4d, address);
4282 if (!vmf.pud)
4283 return VM_FAULT_OOM;
4284 retry_pud:
4285 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4286 ret = create_huge_pud(&vmf);
4287 if (!(ret & VM_FAULT_FALLBACK))
4288 return ret;
4289 } else {
4290 pud_t orig_pud = *vmf.pud;
4291
4292 barrier();
4293 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4294
4295 /* NUMA case for anonymous PUDs would go here */
4296
4297 if (dirty && !pud_write(orig_pud)) {
4298 ret = wp_huge_pud(&vmf, orig_pud);
4299 if (!(ret & VM_FAULT_FALLBACK))
4300 return ret;
4301 } else {
4302 huge_pud_set_accessed(&vmf, orig_pud);
4303 return 0;
4304 }
4305 }
4306 }
4307
4308 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4309 if (!vmf.pmd)
4310 return VM_FAULT_OOM;
4311
4312 /* Huge pud page fault raced with pmd_alloc? */
4313 if (pud_trans_unstable(vmf.pud))
4314 goto retry_pud;
4315
4316 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4317 ret = create_huge_pmd(&vmf);
4318 if (!(ret & VM_FAULT_FALLBACK))
4319 return ret;
4320 } else {
4321 pmd_t orig_pmd = *vmf.pmd;
4322
4323 barrier();
4324 if (unlikely(is_swap_pmd(orig_pmd))) {
4325 VM_BUG_ON(thp_migration_supported() &&
4326 !is_pmd_migration_entry(orig_pmd));
4327 if (is_pmd_migration_entry(orig_pmd))
4328 pmd_migration_entry_wait(mm, vmf.pmd);
4329 return 0;
4330 }
4331 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4332 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4333 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4334
4335 if (dirty && !pmd_write(orig_pmd)) {
4336 ret = wp_huge_pmd(&vmf, orig_pmd);
4337 if (!(ret & VM_FAULT_FALLBACK))
4338 return ret;
4339 } else {
4340 huge_pmd_set_accessed(&vmf, orig_pmd);
4341 return 0;
4342 }
4343 }
4344 }
4345
4346 return handle_pte_fault(&vmf);
4347 }
4348
4349 /**
4350 * mm_account_fault - Do page fault accountings
4351 *
4352 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4353 * of perf event counters, but we'll still do the per-task accounting to
4354 * the task who triggered this page fault.
4355 * @address: the faulted address.
4356 * @flags: the fault flags.
4357 * @ret: the fault retcode.
4358 *
4359 * This will take care of most of the page fault accountings. Meanwhile, it
4360 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4361 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4362 * still be in per-arch page fault handlers at the entry of page fault.
4363 */
4364 static inline void mm_account_fault(struct pt_regs *regs,
4365 unsigned long address, unsigned int flags,
4366 vm_fault_t ret)
4367 {
4368 bool major;
4369
4370 /*
4371 * We don't do accounting for some specific faults:
4372 *
4373 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4374 * includes arch_vma_access_permitted() failing before reaching here.
4375 * So this is not a "this many hardware page faults" counter. We
4376 * should use the hw profiling for that.
4377 *
4378 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4379 * once they're completed.
4380 */
4381 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4382 return;
4383
4384 /*
4385 * We define the fault as a major fault when the final successful fault
4386 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4387 * handle it immediately previously).
4388 */
4389 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4390
4391 if (major)
4392 current->maj_flt++;
4393 else
4394 current->min_flt++;
4395
4396 /*
4397 * If the fault is done for GUP, regs will be NULL. We only do the
4398 * accounting for the per thread fault counters who triggered the
4399 * fault, and we skip the perf event updates.
4400 */
4401 if (!regs)
4402 return;
4403
4404 if (major)
4405 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4406 else
4407 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4408 }
4409
4410 /*
4411 * By the time we get here, we already hold the mm semaphore
4412 *
4413 * The mmap_lock may have been released depending on flags and our
4414 * return value. See filemap_fault() and __lock_page_or_retry().
4415 */
4416 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4417 unsigned int flags, struct pt_regs *regs)
4418 {
4419 vm_fault_t ret;
4420
4421 __set_current_state(TASK_RUNNING);
4422
4423 count_vm_event(PGFAULT);
4424 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4425
4426 /* do counter updates before entering really critical section. */
4427 check_sync_rss_stat(current);
4428
4429 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4430 flags & FAULT_FLAG_INSTRUCTION,
4431 flags & FAULT_FLAG_REMOTE))
4432 return VM_FAULT_SIGSEGV;
4433
4434 /*
4435 * Enable the memcg OOM handling for faults triggered in user
4436 * space. Kernel faults are handled more gracefully.
4437 */
4438 if (flags & FAULT_FLAG_USER)
4439 mem_cgroup_enter_user_fault();
4440
4441 if (unlikely(is_vm_hugetlb_page(vma)))
4442 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4443 else
4444 ret = __handle_mm_fault(vma, address, flags);
4445
4446 if (flags & FAULT_FLAG_USER) {
4447 mem_cgroup_exit_user_fault();
4448 /*
4449 * The task may have entered a memcg OOM situation but
4450 * if the allocation error was handled gracefully (no
4451 * VM_FAULT_OOM), there is no need to kill anything.
4452 * Just clean up the OOM state peacefully.
4453 */
4454 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4455 mem_cgroup_oom_synchronize(false);
4456 }
4457
4458 mm_account_fault(regs, address, flags, ret);
4459
4460 return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(handle_mm_fault);
4463
4464 #ifndef __PAGETABLE_P4D_FOLDED
4465 /*
4466 * Allocate p4d page table.
4467 * We've already handled the fast-path in-line.
4468 */
4469 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4470 {
4471 p4d_t *new = p4d_alloc_one(mm, address);
4472 if (!new)
4473 return -ENOMEM;
4474
4475 smp_wmb(); /* See comment in __pte_alloc */
4476
4477 spin_lock(&mm->page_table_lock);
4478 if (pgd_present(*pgd)) /* Another has populated it */
4479 p4d_free(mm, new);
4480 else
4481 pgd_populate(mm, pgd, new);
4482 spin_unlock(&mm->page_table_lock);
4483 return 0;
4484 }
4485 #endif /* __PAGETABLE_P4D_FOLDED */
4486
4487 #ifndef __PAGETABLE_PUD_FOLDED
4488 /*
4489 * Allocate page upper directory.
4490 * We've already handled the fast-path in-line.
4491 */
4492 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4493 {
4494 pud_t *new = pud_alloc_one(mm, address);
4495 if (!new)
4496 return -ENOMEM;
4497
4498 smp_wmb(); /* See comment in __pte_alloc */
4499
4500 spin_lock(&mm->page_table_lock);
4501 if (!p4d_present(*p4d)) {
4502 mm_inc_nr_puds(mm);
4503 p4d_populate(mm, p4d, new);
4504 } else /* Another has populated it */
4505 pud_free(mm, new);
4506 spin_unlock(&mm->page_table_lock);
4507 return 0;
4508 }
4509 #endif /* __PAGETABLE_PUD_FOLDED */
4510
4511 #ifndef __PAGETABLE_PMD_FOLDED
4512 /*
4513 * Allocate page middle directory.
4514 * We've already handled the fast-path in-line.
4515 */
4516 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4517 {
4518 spinlock_t *ptl;
4519 pmd_t *new = pmd_alloc_one(mm, address);
4520 if (!new)
4521 return -ENOMEM;
4522
4523 smp_wmb(); /* See comment in __pte_alloc */
4524
4525 ptl = pud_lock(mm, pud);
4526 if (!pud_present(*pud)) {
4527 mm_inc_nr_pmds(mm);
4528 pud_populate(mm, pud, new);
4529 } else /* Another has populated it */
4530 pmd_free(mm, new);
4531 spin_unlock(ptl);
4532 return 0;
4533 }
4534 #endif /* __PAGETABLE_PMD_FOLDED */
4535
4536 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4537 struct mmu_notifier_range *range,
4538 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4539 {
4540 pgd_t *pgd;
4541 p4d_t *p4d;
4542 pud_t *pud;
4543 pmd_t *pmd;
4544 pte_t *ptep;
4545
4546 pgd = pgd_offset(mm, address);
4547 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4548 goto out;
4549
4550 p4d = p4d_offset(pgd, address);
4551 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4552 goto out;
4553
4554 pud = pud_offset(p4d, address);
4555 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4556 goto out;
4557
4558 pmd = pmd_offset(pud, address);
4559 VM_BUG_ON(pmd_trans_huge(*pmd));
4560
4561 if (pmd_huge(*pmd)) {
4562 if (!pmdpp)
4563 goto out;
4564
4565 if (range) {
4566 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4567 NULL, mm, address & PMD_MASK,
4568 (address & PMD_MASK) + PMD_SIZE);
4569 mmu_notifier_invalidate_range_start(range);
4570 }
4571 *ptlp = pmd_lock(mm, pmd);
4572 if (pmd_huge(*pmd)) {
4573 *pmdpp = pmd;
4574 return 0;
4575 }
4576 spin_unlock(*ptlp);
4577 if (range)
4578 mmu_notifier_invalidate_range_end(range);
4579 }
4580
4581 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4582 goto out;
4583
4584 if (range) {
4585 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4586 address & PAGE_MASK,
4587 (address & PAGE_MASK) + PAGE_SIZE);
4588 mmu_notifier_invalidate_range_start(range);
4589 }
4590 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4591 if (!pte_present(*ptep))
4592 goto unlock;
4593 *ptepp = ptep;
4594 return 0;
4595 unlock:
4596 pte_unmap_unlock(ptep, *ptlp);
4597 if (range)
4598 mmu_notifier_invalidate_range_end(range);
4599 out:
4600 return -EINVAL;
4601 }
4602
4603 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4604 pte_t **ptepp, spinlock_t **ptlp)
4605 {
4606 int res;
4607
4608 /* (void) is needed to make gcc happy */
4609 (void) __cond_lock(*ptlp,
4610 !(res = __follow_pte_pmd(mm, address, NULL,
4611 ptepp, NULL, ptlp)));
4612 return res;
4613 }
4614
4615 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4616 struct mmu_notifier_range *range,
4617 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4618 {
4619 int res;
4620
4621 /* (void) is needed to make gcc happy */
4622 (void) __cond_lock(*ptlp,
4623 !(res = __follow_pte_pmd(mm, address, range,
4624 ptepp, pmdpp, ptlp)));
4625 return res;
4626 }
4627 EXPORT_SYMBOL(follow_pte_pmd);
4628
4629 /**
4630 * follow_pfn - look up PFN at a user virtual address
4631 * @vma: memory mapping
4632 * @address: user virtual address
4633 * @pfn: location to store found PFN
4634 *
4635 * Only IO mappings and raw PFN mappings are allowed.
4636 *
4637 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4638 */
4639 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4640 unsigned long *pfn)
4641 {
4642 int ret = -EINVAL;
4643 spinlock_t *ptl;
4644 pte_t *ptep;
4645
4646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4647 return ret;
4648
4649 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4650 if (ret)
4651 return ret;
4652 *pfn = pte_pfn(*ptep);
4653 pte_unmap_unlock(ptep, ptl);
4654 return 0;
4655 }
4656 EXPORT_SYMBOL(follow_pfn);
4657
4658 #ifdef CONFIG_HAVE_IOREMAP_PROT
4659 int follow_phys(struct vm_area_struct *vma,
4660 unsigned long address, unsigned int flags,
4661 unsigned long *prot, resource_size_t *phys)
4662 {
4663 int ret = -EINVAL;
4664 pte_t *ptep, pte;
4665 spinlock_t *ptl;
4666
4667 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4668 goto out;
4669
4670 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4671 goto out;
4672 pte = *ptep;
4673
4674 if ((flags & FOLL_WRITE) && !pte_write(pte))
4675 goto unlock;
4676
4677 *prot = pgprot_val(pte_pgprot(pte));
4678 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4679
4680 ret = 0;
4681 unlock:
4682 pte_unmap_unlock(ptep, ptl);
4683 out:
4684 return ret;
4685 }
4686
4687 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4688 void *buf, int len, int write)
4689 {
4690 resource_size_t phys_addr;
4691 unsigned long prot = 0;
4692 void __iomem *maddr;
4693 int offset = addr & (PAGE_SIZE-1);
4694
4695 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4696 return -EINVAL;
4697
4698 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4699 if (!maddr)
4700 return -ENOMEM;
4701
4702 if (write)
4703 memcpy_toio(maddr + offset, buf, len);
4704 else
4705 memcpy_fromio(buf, maddr + offset, len);
4706 iounmap(maddr);
4707
4708 return len;
4709 }
4710 EXPORT_SYMBOL_GPL(generic_access_phys);
4711 #endif
4712
4713 /*
4714 * Access another process' address space as given in mm. If non-NULL, use the
4715 * given task for page fault accounting.
4716 */
4717 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4718 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4719 {
4720 struct vm_area_struct *vma;
4721 void *old_buf = buf;
4722 int write = gup_flags & FOLL_WRITE;
4723
4724 if (mmap_read_lock_killable(mm))
4725 return 0;
4726
4727 /* ignore errors, just check how much was successfully transferred */
4728 while (len) {
4729 int bytes, ret, offset;
4730 void *maddr;
4731 struct page *page = NULL;
4732
4733 ret = get_user_pages_remote(mm, addr, 1,
4734 gup_flags, &page, &vma, NULL);
4735 if (ret <= 0) {
4736 #ifndef CONFIG_HAVE_IOREMAP_PROT
4737 break;
4738 #else
4739 /*
4740 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4741 * we can access using slightly different code.
4742 */
4743 vma = find_vma(mm, addr);
4744 if (!vma || vma->vm_start > addr)
4745 break;
4746 if (vma->vm_ops && vma->vm_ops->access)
4747 ret = vma->vm_ops->access(vma, addr, buf,
4748 len, write);
4749 if (ret <= 0)
4750 break;
4751 bytes = ret;
4752 #endif
4753 } else {
4754 bytes = len;
4755 offset = addr & (PAGE_SIZE-1);
4756 if (bytes > PAGE_SIZE-offset)
4757 bytes = PAGE_SIZE-offset;
4758
4759 maddr = kmap(page);
4760 if (write) {
4761 copy_to_user_page(vma, page, addr,
4762 maddr + offset, buf, bytes);
4763 set_page_dirty_lock(page);
4764 } else {
4765 copy_from_user_page(vma, page, addr,
4766 buf, maddr + offset, bytes);
4767 }
4768 kunmap(page);
4769 put_page(page);
4770 }
4771 len -= bytes;
4772 buf += bytes;
4773 addr += bytes;
4774 }
4775 mmap_read_unlock(mm);
4776
4777 return buf - old_buf;
4778 }
4779
4780 /**
4781 * access_remote_vm - access another process' address space
4782 * @mm: the mm_struct of the target address space
4783 * @addr: start address to access
4784 * @buf: source or destination buffer
4785 * @len: number of bytes to transfer
4786 * @gup_flags: flags modifying lookup behaviour
4787 *
4788 * The caller must hold a reference on @mm.
4789 *
4790 * Return: number of bytes copied from source to destination.
4791 */
4792 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4793 void *buf, int len, unsigned int gup_flags)
4794 {
4795 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4796 }
4797
4798 /*
4799 * Access another process' address space.
4800 * Source/target buffer must be kernel space,
4801 * Do not walk the page table directly, use get_user_pages
4802 */
4803 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4804 void *buf, int len, unsigned int gup_flags)
4805 {
4806 struct mm_struct *mm;
4807 int ret;
4808
4809 mm = get_task_mm(tsk);
4810 if (!mm)
4811 return 0;
4812
4813 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4814
4815 mmput(mm);
4816
4817 return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(access_process_vm);
4820
4821 /*
4822 * Print the name of a VMA.
4823 */
4824 void print_vma_addr(char *prefix, unsigned long ip)
4825 {
4826 struct mm_struct *mm = current->mm;
4827 struct vm_area_struct *vma;
4828
4829 /*
4830 * we might be running from an atomic context so we cannot sleep
4831 */
4832 if (!mmap_read_trylock(mm))
4833 return;
4834
4835 vma = find_vma(mm, ip);
4836 if (vma && vma->vm_file) {
4837 struct file *f = vma->vm_file;
4838 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4839 if (buf) {
4840 char *p;
4841
4842 p = file_path(f, buf, PAGE_SIZE);
4843 if (IS_ERR(p))
4844 p = "?";
4845 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4846 vma->vm_start,
4847 vma->vm_end - vma->vm_start);
4848 free_page((unsigned long)buf);
4849 }
4850 }
4851 mmap_read_unlock(mm);
4852 }
4853
4854 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4855 void __might_fault(const char *file, int line)
4856 {
4857 /*
4858 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4859 * holding the mmap_lock, this is safe because kernel memory doesn't
4860 * get paged out, therefore we'll never actually fault, and the
4861 * below annotations will generate false positives.
4862 */
4863 if (uaccess_kernel())
4864 return;
4865 if (pagefault_disabled())
4866 return;
4867 __might_sleep(file, line, 0);
4868 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4869 if (current->mm)
4870 might_lock_read(&current->mm->mmap_lock);
4871 #endif
4872 }
4873 EXPORT_SYMBOL(__might_fault);
4874 #endif
4875
4876 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4877 /*
4878 * Process all subpages of the specified huge page with the specified
4879 * operation. The target subpage will be processed last to keep its
4880 * cache lines hot.
4881 */
4882 static inline void process_huge_page(
4883 unsigned long addr_hint, unsigned int pages_per_huge_page,
4884 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4885 void *arg)
4886 {
4887 int i, n, base, l;
4888 unsigned long addr = addr_hint &
4889 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4890
4891 /* Process target subpage last to keep its cache lines hot */
4892 might_sleep();
4893 n = (addr_hint - addr) / PAGE_SIZE;
4894 if (2 * n <= pages_per_huge_page) {
4895 /* If target subpage in first half of huge page */
4896 base = 0;
4897 l = n;
4898 /* Process subpages at the end of huge page */
4899 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4900 cond_resched();
4901 process_subpage(addr + i * PAGE_SIZE, i, arg);
4902 }
4903 } else {
4904 /* If target subpage in second half of huge page */
4905 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4906 l = pages_per_huge_page - n;
4907 /* Process subpages at the begin of huge page */
4908 for (i = 0; i < base; i++) {
4909 cond_resched();
4910 process_subpage(addr + i * PAGE_SIZE, i, arg);
4911 }
4912 }
4913 /*
4914 * Process remaining subpages in left-right-left-right pattern
4915 * towards the target subpage
4916 */
4917 for (i = 0; i < l; i++) {
4918 int left_idx = base + i;
4919 int right_idx = base + 2 * l - 1 - i;
4920
4921 cond_resched();
4922 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4923 cond_resched();
4924 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4925 }
4926 }
4927
4928 static void clear_gigantic_page(struct page *page,
4929 unsigned long addr,
4930 unsigned int pages_per_huge_page)
4931 {
4932 int i;
4933 struct page *p = page;
4934
4935 might_sleep();
4936 for (i = 0; i < pages_per_huge_page;
4937 i++, p = mem_map_next(p, page, i)) {
4938 cond_resched();
4939 clear_user_highpage(p, addr + i * PAGE_SIZE);
4940 }
4941 }
4942
4943 static void clear_subpage(unsigned long addr, int idx, void *arg)
4944 {
4945 struct page *page = arg;
4946
4947 clear_user_highpage(page + idx, addr);
4948 }
4949
4950 void clear_huge_page(struct page *page,
4951 unsigned long addr_hint, unsigned int pages_per_huge_page)
4952 {
4953 unsigned long addr = addr_hint &
4954 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4955
4956 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4957 clear_gigantic_page(page, addr, pages_per_huge_page);
4958 return;
4959 }
4960
4961 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4962 }
4963
4964 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4965 unsigned long addr,
4966 struct vm_area_struct *vma,
4967 unsigned int pages_per_huge_page)
4968 {
4969 int i;
4970 struct page *dst_base = dst;
4971 struct page *src_base = src;
4972
4973 for (i = 0; i < pages_per_huge_page; ) {
4974 cond_resched();
4975 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4976
4977 i++;
4978 dst = mem_map_next(dst, dst_base, i);
4979 src = mem_map_next(src, src_base, i);
4980 }
4981 }
4982
4983 struct copy_subpage_arg {
4984 struct page *dst;
4985 struct page *src;
4986 struct vm_area_struct *vma;
4987 };
4988
4989 static void copy_subpage(unsigned long addr, int idx, void *arg)
4990 {
4991 struct copy_subpage_arg *copy_arg = arg;
4992
4993 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4994 addr, copy_arg->vma);
4995 }
4996
4997 void copy_user_huge_page(struct page *dst, struct page *src,
4998 unsigned long addr_hint, struct vm_area_struct *vma,
4999 unsigned int pages_per_huge_page)
5000 {
5001 unsigned long addr = addr_hint &
5002 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5003 struct copy_subpage_arg arg = {
5004 .dst = dst,
5005 .src = src,
5006 .vma = vma,
5007 };
5008
5009 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5010 copy_user_gigantic_page(dst, src, addr, vma,
5011 pages_per_huge_page);
5012 return;
5013 }
5014
5015 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5016 }
5017
5018 long copy_huge_page_from_user(struct page *dst_page,
5019 const void __user *usr_src,
5020 unsigned int pages_per_huge_page,
5021 bool allow_pagefault)
5022 {
5023 void *src = (void *)usr_src;
5024 void *page_kaddr;
5025 unsigned long i, rc = 0;
5026 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5027
5028 for (i = 0; i < pages_per_huge_page; i++) {
5029 if (allow_pagefault)
5030 page_kaddr = kmap(dst_page + i);
5031 else
5032 page_kaddr = kmap_atomic(dst_page + i);
5033 rc = copy_from_user(page_kaddr,
5034 (const void __user *)(src + i * PAGE_SIZE),
5035 PAGE_SIZE);
5036 if (allow_pagefault)
5037 kunmap(dst_page + i);
5038 else
5039 kunmap_atomic(page_kaddr);
5040
5041 ret_val -= (PAGE_SIZE - rc);
5042 if (rc)
5043 break;
5044
5045 cond_resched();
5046 }
5047 return ret_val;
5048 }
5049 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5050
5051 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5052
5053 static struct kmem_cache *page_ptl_cachep;
5054
5055 void __init ptlock_cache_init(void)
5056 {
5057 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5058 SLAB_PANIC, NULL);
5059 }
5060
5061 bool ptlock_alloc(struct page *page)
5062 {
5063 spinlock_t *ptl;
5064
5065 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5066 if (!ptl)
5067 return false;
5068 page->ptl = ptl;
5069 return true;
5070 }
5071
5072 void ptlock_free(struct page *page)
5073 {
5074 kmem_cache_free(page_ptl_cachep, page->ptl);
5075 }
5076 #endif