]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memory.c
Merge tag 'wireless-2022-09-03' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 static vm_fault_t do_fault(struct vm_fault *vmf);
104
105 /*
106 * A number of key systems in x86 including ioremap() rely on the assumption
107 * that high_memory defines the upper bound on direct map memory, then end
108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 * and ZONE_HIGHMEM.
111 */
112 void *high_memory;
113 EXPORT_SYMBOL(high_memory);
114
115 /*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 1;
124 #else
125 2;
126 #endif
127
128 #ifndef arch_faults_on_old_pte
129 static inline bool arch_faults_on_old_pte(void)
130 {
131 /*
132 * Those arches which don't have hw access flag feature need to
133 * implement their own helper. By default, "true" means pagefault
134 * will be hit on old pte.
135 */
136 return true;
137 }
138 #endif
139
140 #ifndef arch_wants_old_prefaulted_pte
141 static inline bool arch_wants_old_prefaulted_pte(void)
142 {
143 /*
144 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 * some architectures, even if it's performed in hardware. By
146 * default, "false" means prefaulted entries will be 'young'.
147 */
148 return false;
149 }
150 #endif
151
152 static int __init disable_randmaps(char *s)
153 {
154 randomize_va_space = 0;
155 return 1;
156 }
157 __setup("norandmaps", disable_randmaps);
158
159 unsigned long zero_pfn __read_mostly;
160 EXPORT_SYMBOL(zero_pfn);
161
162 unsigned long highest_memmap_pfn __read_mostly;
163
164 /*
165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166 */
167 static int __init init_zero_pfn(void)
168 {
169 zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 return 0;
171 }
172 early_initcall(init_zero_pfn);
173
174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175 {
176 trace_rss_stat(mm, member, count);
177 }
178
179 #if defined(SPLIT_RSS_COUNTING)
180
181 void sync_mm_rss(struct mm_struct *mm)
182 {
183 int i;
184
185 for (i = 0; i < NR_MM_COUNTERS; i++) {
186 if (current->rss_stat.count[i]) {
187 add_mm_counter(mm, i, current->rss_stat.count[i]);
188 current->rss_stat.count[i] = 0;
189 }
190 }
191 current->rss_stat.events = 0;
192 }
193
194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195 {
196 struct task_struct *task = current;
197
198 if (likely(task->mm == mm))
199 task->rss_stat.count[member] += val;
200 else
201 add_mm_counter(mm, member, val);
202 }
203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206 /* sync counter once per 64 page faults */
207 #define TASK_RSS_EVENTS_THRESH (64)
208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210 if (unlikely(task != current))
211 return;
212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213 sync_mm_rss(task->mm);
214 }
215 #else /* SPLIT_RSS_COUNTING */
216
217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220 static void check_sync_rss_stat(struct task_struct *task)
221 {
222 }
223
224 #endif /* SPLIT_RSS_COUNTING */
225
226 /*
227 * Note: this doesn't free the actual pages themselves. That
228 * has been handled earlier when unmapping all the memory regions.
229 */
230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 unsigned long addr)
232 {
233 pgtable_t token = pmd_pgtable(*pmd);
234 pmd_clear(pmd);
235 pte_free_tlb(tlb, token, addr);
236 mm_dec_nr_ptes(tlb->mm);
237 }
238
239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 unsigned long addr, unsigned long end,
241 unsigned long floor, unsigned long ceiling)
242 {
243 pmd_t *pmd;
244 unsigned long next;
245 unsigned long start;
246
247 start = addr;
248 pmd = pmd_offset(pud, addr);
249 do {
250 next = pmd_addr_end(addr, end);
251 if (pmd_none_or_clear_bad(pmd))
252 continue;
253 free_pte_range(tlb, pmd, addr);
254 } while (pmd++, addr = next, addr != end);
255
256 start &= PUD_MASK;
257 if (start < floor)
258 return;
259 if (ceiling) {
260 ceiling &= PUD_MASK;
261 if (!ceiling)
262 return;
263 }
264 if (end - 1 > ceiling - 1)
265 return;
266
267 pmd = pmd_offset(pud, start);
268 pud_clear(pud);
269 pmd_free_tlb(tlb, pmd, start);
270 mm_dec_nr_pmds(tlb->mm);
271 }
272
273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274 unsigned long addr, unsigned long end,
275 unsigned long floor, unsigned long ceiling)
276 {
277 pud_t *pud;
278 unsigned long next;
279 unsigned long start;
280
281 start = addr;
282 pud = pud_offset(p4d, addr);
283 do {
284 next = pud_addr_end(addr, end);
285 if (pud_none_or_clear_bad(pud))
286 continue;
287 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288 } while (pud++, addr = next, addr != end);
289
290 start &= P4D_MASK;
291 if (start < floor)
292 return;
293 if (ceiling) {
294 ceiling &= P4D_MASK;
295 if (!ceiling)
296 return;
297 }
298 if (end - 1 > ceiling - 1)
299 return;
300
301 pud = pud_offset(p4d, start);
302 p4d_clear(p4d);
303 pud_free_tlb(tlb, pud, start);
304 mm_dec_nr_puds(tlb->mm);
305 }
306
307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
310 {
311 p4d_t *p4d;
312 unsigned long next;
313 unsigned long start;
314
315 start = addr;
316 p4d = p4d_offset(pgd, addr);
317 do {
318 next = p4d_addr_end(addr, end);
319 if (p4d_none_or_clear_bad(p4d))
320 continue;
321 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 } while (p4d++, addr = next, addr != end);
323
324 start &= PGDIR_MASK;
325 if (start < floor)
326 return;
327 if (ceiling) {
328 ceiling &= PGDIR_MASK;
329 if (!ceiling)
330 return;
331 }
332 if (end - 1 > ceiling - 1)
333 return;
334
335 p4d = p4d_offset(pgd, start);
336 pgd_clear(pgd);
337 p4d_free_tlb(tlb, p4d, start);
338 }
339
340 /*
341 * This function frees user-level page tables of a process.
342 */
343 void free_pgd_range(struct mmu_gather *tlb,
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
346 {
347 pgd_t *pgd;
348 unsigned long next;
349
350 /*
351 * The next few lines have given us lots of grief...
352 *
353 * Why are we testing PMD* at this top level? Because often
354 * there will be no work to do at all, and we'd prefer not to
355 * go all the way down to the bottom just to discover that.
356 *
357 * Why all these "- 1"s? Because 0 represents both the bottom
358 * of the address space and the top of it (using -1 for the
359 * top wouldn't help much: the masks would do the wrong thing).
360 * The rule is that addr 0 and floor 0 refer to the bottom of
361 * the address space, but end 0 and ceiling 0 refer to the top
362 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 * that end 0 case should be mythical).
364 *
365 * Wherever addr is brought up or ceiling brought down, we must
366 * be careful to reject "the opposite 0" before it confuses the
367 * subsequent tests. But what about where end is brought down
368 * by PMD_SIZE below? no, end can't go down to 0 there.
369 *
370 * Whereas we round start (addr) and ceiling down, by different
371 * masks at different levels, in order to test whether a table
372 * now has no other vmas using it, so can be freed, we don't
373 * bother to round floor or end up - the tests don't need that.
374 */
375
376 addr &= PMD_MASK;
377 if (addr < floor) {
378 addr += PMD_SIZE;
379 if (!addr)
380 return;
381 }
382 if (ceiling) {
383 ceiling &= PMD_MASK;
384 if (!ceiling)
385 return;
386 }
387 if (end - 1 > ceiling - 1)
388 end -= PMD_SIZE;
389 if (addr > end - 1)
390 return;
391 /*
392 * We add page table cache pages with PAGE_SIZE,
393 * (see pte_free_tlb()), flush the tlb if we need
394 */
395 tlb_change_page_size(tlb, PAGE_SIZE);
396 pgd = pgd_offset(tlb->mm, addr);
397 do {
398 next = pgd_addr_end(addr, end);
399 if (pgd_none_or_clear_bad(pgd))
400 continue;
401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402 } while (pgd++, addr = next, addr != end);
403 }
404
405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406 unsigned long floor, unsigned long ceiling)
407 {
408 while (vma) {
409 struct vm_area_struct *next = vma->vm_next;
410 unsigned long addr = vma->vm_start;
411
412 /*
413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
415 */
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
418
419 if (is_vm_hugetlb_page(vma)) {
420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 floor, next ? next->vm_start : ceiling);
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 && !is_vm_hugetlb_page(next)) {
428 vma = next;
429 next = vma->vm_next;
430 unlink_anon_vmas(vma);
431 unlink_file_vma(vma);
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
434 floor, next ? next->vm_start : ceiling);
435 }
436 vma = next;
437 }
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 spinlock_t *ptl = pmd_lock(mm, pmd);
443
444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
445 mm_inc_nr_ptes(mm);
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
462 }
463 spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 pgtable_t new = pte_alloc_one(mm);
469 if (!new)
470 return -ENOMEM;
471
472 pmd_install(mm, pmd, &new);
473 if (new)
474 pte_free(mm, new);
475 return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
486 smp_wmb(); /* See comment in pmd_install() */
487 pmd_populate_kernel(&init_mm, pmd, new);
488 new = NULL;
489 }
490 spin_unlock(&init_mm.page_table_lock);
491 if (new)
492 pte_free_kernel(&init_mm, new);
493 return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 int i;
504
505 if (current->mm == mm)
506 sync_mm_rss(mm);
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
516 *
517 * The calling function must still handle the error.
518 */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
521 {
522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 if (page)
558 dump_page(page, "bad pte");
559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 mapping ? mapping->a_ops->read_folio : NULL);
566 dump_stack();
567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
572 *
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
576 *
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
585 *
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
599 *
600 *
601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
611 */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
614 {
615 unsigned long pfn = pte_pfn(pte);
616
617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 if (likely(!pte_special(pte)))
619 goto check_pfn;
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
624 if (is_zero_pfn(pfn))
625 return NULL;
626 if (pte_devmap(pte))
627 /*
628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 * and will have refcounts incremented on their struct pages
630 * when they are inserted into PTEs, thus they are safe to
631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 */
635 return NULL;
636
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 if (vma->vm_flags & VM_MIXEDMAP) {
645 if (!pfn_valid(pfn))
646 return NULL;
647 goto out;
648 } else {
649 unsigned long off;
650 off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 if (pfn == vma->vm_pgoff + off)
652 return NULL;
653 if (!is_cow_mapping(vma->vm_flags))
654 return NULL;
655 }
656 }
657
658 if (is_zero_pfn(pfn))
659 return NULL;
660
661 check_pfn:
662 if (unlikely(pfn > highest_memmap_pfn)) {
663 print_bad_pte(vma, addr, pte, NULL);
664 return NULL;
665 }
666
667 /*
668 * NOTE! We still have PageReserved() pages in the page tables.
669 * eg. VDSO mappings can cause them to exist.
670 */
671 out:
672 return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 pmd_t pmd)
678 {
679 unsigned long pfn = pmd_pfn(pmd);
680
681 /*
682 * There is no pmd_special() but there may be special pmds, e.g.
683 * in a direct-access (dax) mapping, so let's just replicate the
684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 */
686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 if (vma->vm_flags & VM_MIXEDMAP) {
688 if (!pfn_valid(pfn))
689 return NULL;
690 goto out;
691 } else {
692 unsigned long off;
693 off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 if (pfn == vma->vm_pgoff + off)
695 return NULL;
696 if (!is_cow_mapping(vma->vm_flags))
697 return NULL;
698 }
699 }
700
701 if (pmd_devmap(pmd))
702 return NULL;
703 if (is_huge_zero_pmd(pmd))
704 return NULL;
705 if (unlikely(pfn > highest_memmap_pfn))
706 return NULL;
707
708 /*
709 * NOTE! We still have PageReserved() pages in the page tables.
710 * eg. VDSO mappings can cause them to exist.
711 */
712 out:
713 return pfn_to_page(pfn);
714 }
715 #endif
716
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 struct page *page, unsigned long address,
719 pte_t *ptep)
720 {
721 pte_t pte;
722 swp_entry_t entry;
723
724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 if (pte_swp_soft_dirty(*ptep))
726 pte = pte_mksoft_dirty(pte);
727
728 entry = pte_to_swp_entry(*ptep);
729 if (pte_swp_uffd_wp(*ptep))
730 pte = pte_mkuffd_wp(pte);
731 else if (is_writable_device_exclusive_entry(entry))
732 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736 /*
737 * No need to take a page reference as one was already
738 * created when the swap entry was made.
739 */
740 if (PageAnon(page))
741 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 else
743 /*
744 * Currently device exclusive access only supports anonymous
745 * memory so the entry shouldn't point to a filebacked page.
746 */
747 WARN_ON_ONCE(1);
748
749 set_pte_at(vma->vm_mm, address, ptep, pte);
750
751 /*
752 * No need to invalidate - it was non-present before. However
753 * secondary CPUs may have mappings that need invalidating.
754 */
755 update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759 * Tries to restore an exclusive pte if the page lock can be acquired without
760 * sleeping.
761 */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 unsigned long addr)
765 {
766 swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 struct page *page = pfn_swap_entry_to_page(entry);
768
769 if (trylock_page(page)) {
770 restore_exclusive_pte(vma, page, addr, src_pte);
771 unlock_page(page);
772 return 0;
773 }
774
775 return -EBUSY;
776 }
777
778 /*
779 * copy one vm_area from one task to the other. Assumes the page tables
780 * already present in the new task to be cleared in the whole range
781 * covered by this vma.
782 */
783
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 unsigned long vm_flags = dst_vma->vm_flags;
790 pte_t pte = *src_pte;
791 struct page *page;
792 swp_entry_t entry = pte_to_swp_entry(pte);
793
794 if (likely(!non_swap_entry(entry))) {
795 if (swap_duplicate(entry) < 0)
796 return -EIO;
797
798 /* make sure dst_mm is on swapoff's mmlist. */
799 if (unlikely(list_empty(&dst_mm->mmlist))) {
800 spin_lock(&mmlist_lock);
801 if (list_empty(&dst_mm->mmlist))
802 list_add(&dst_mm->mmlist,
803 &src_mm->mmlist);
804 spin_unlock(&mmlist_lock);
805 }
806 /* Mark the swap entry as shared. */
807 if (pte_swp_exclusive(*src_pte)) {
808 pte = pte_swp_clear_exclusive(*src_pte);
809 set_pte_at(src_mm, addr, src_pte, pte);
810 }
811 rss[MM_SWAPENTS]++;
812 } else if (is_migration_entry(entry)) {
813 page = pfn_swap_entry_to_page(entry);
814
815 rss[mm_counter(page)]++;
816
817 if (!is_readable_migration_entry(entry) &&
818 is_cow_mapping(vm_flags)) {
819 /*
820 * COW mappings require pages in both parent and child
821 * to be set to read. A previously exclusive entry is
822 * now shared.
823 */
824 entry = make_readable_migration_entry(
825 swp_offset(entry));
826 pte = swp_entry_to_pte(entry);
827 if (pte_swp_soft_dirty(*src_pte))
828 pte = pte_swp_mksoft_dirty(pte);
829 if (pte_swp_uffd_wp(*src_pte))
830 pte = pte_swp_mkuffd_wp(pte);
831 set_pte_at(src_mm, addr, src_pte, pte);
832 }
833 } else if (is_device_private_entry(entry)) {
834 page = pfn_swap_entry_to_page(entry);
835
836 /*
837 * Update rss count even for unaddressable pages, as
838 * they should treated just like normal pages in this
839 * respect.
840 *
841 * We will likely want to have some new rss counters
842 * for unaddressable pages, at some point. But for now
843 * keep things as they are.
844 */
845 get_page(page);
846 rss[mm_counter(page)]++;
847 /* Cannot fail as these pages cannot get pinned. */
848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850 /*
851 * We do not preserve soft-dirty information, because so
852 * far, checkpoint/restore is the only feature that
853 * requires that. And checkpoint/restore does not work
854 * when a device driver is involved (you cannot easily
855 * save and restore device driver state).
856 */
857 if (is_writable_device_private_entry(entry) &&
858 is_cow_mapping(vm_flags)) {
859 entry = make_readable_device_private_entry(
860 swp_offset(entry));
861 pte = swp_entry_to_pte(entry);
862 if (pte_swp_uffd_wp(*src_pte))
863 pte = pte_swp_mkuffd_wp(pte);
864 set_pte_at(src_mm, addr, src_pte, pte);
865 }
866 } else if (is_device_exclusive_entry(entry)) {
867 /*
868 * Make device exclusive entries present by restoring the
869 * original entry then copying as for a present pte. Device
870 * exclusive entries currently only support private writable
871 * (ie. COW) mappings.
872 */
873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 return -EBUSY;
876 return -ENOENT;
877 } else if (is_pte_marker_entry(entry)) {
878 /*
879 * We're copying the pgtable should only because dst_vma has
880 * uffd-wp enabled, do sanity check.
881 */
882 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
885 }
886 if (!userfaultfd_wp(dst_vma))
887 pte = pte_swp_clear_uffd_wp(pte);
888 set_pte_at(dst_mm, addr, dst_pte, pte);
889 return 0;
890 }
891
892 /*
893 * Copy a present and normal page.
894 *
895 * NOTE! The usual case is that this isn't required;
896 * instead, the caller can just increase the page refcount
897 * and re-use the pte the traditional way.
898 *
899 * And if we need a pre-allocated page but don't yet have
900 * one, return a negative error to let the preallocation
901 * code know so that it can do so outside the page table
902 * lock.
903 */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 struct page **prealloc, struct page *page)
908 {
909 struct page *new_page;
910 pte_t pte;
911
912 new_page = *prealloc;
913 if (!new_page)
914 return -EAGAIN;
915
916 /*
917 * We have a prealloc page, all good! Take it
918 * over and copy the page & arm it.
919 */
920 *prealloc = NULL;
921 copy_user_highpage(new_page, page, addr, src_vma);
922 __SetPageUptodate(new_page);
923 page_add_new_anon_rmap(new_page, dst_vma, addr);
924 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 rss[mm_counter(new_page)]++;
926
927 /* All done, just insert the new page copy in the child */
928 pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 /* Uffd-wp needs to be delivered to dest pte as well */
932 pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 return 0;
935 }
936
937 /*
938 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
939 * is required to copy this pte.
940 */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 struct page **prealloc)
945 {
946 struct mm_struct *src_mm = src_vma->vm_mm;
947 unsigned long vm_flags = src_vma->vm_flags;
948 pte_t pte = *src_pte;
949 struct page *page;
950
951 page = vm_normal_page(src_vma, addr, pte);
952 if (page && PageAnon(page)) {
953 /*
954 * If this page may have been pinned by the parent process,
955 * copy the page immediately for the child so that we'll always
956 * guarantee the pinned page won't be randomly replaced in the
957 * future.
958 */
959 get_page(page);
960 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 /* Page maybe pinned, we have to copy. */
962 put_page(page);
963 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 addr, rss, prealloc, page);
965 }
966 rss[mm_counter(page)]++;
967 } else if (page) {
968 get_page(page);
969 page_dup_file_rmap(page, false);
970 rss[mm_counter(page)]++;
971 }
972
973 /*
974 * If it's a COW mapping, write protect it both
975 * in the parent and the child
976 */
977 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 ptep_set_wrprotect(src_mm, addr, src_pte);
979 pte = pte_wrprotect(pte);
980 }
981 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982
983 /*
984 * If it's a shared mapping, mark it clean in
985 * the child
986 */
987 if (vm_flags & VM_SHARED)
988 pte = pte_mkclean(pte);
989 pte = pte_mkold(pte);
990
991 if (!userfaultfd_wp(dst_vma))
992 pte = pte_clear_uffd_wp(pte);
993
994 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 return 0;
996 }
997
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 unsigned long addr)
1001 {
1002 struct page *new_page;
1003
1004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 if (!new_page)
1006 return NULL;
1007
1008 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 put_page(new_page);
1010 return NULL;
1011 }
1012 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013
1014 return new_page;
1015 }
1016
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 unsigned long end)
1021 {
1022 struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 struct mm_struct *src_mm = src_vma->vm_mm;
1024 pte_t *orig_src_pte, *orig_dst_pte;
1025 pte_t *src_pte, *dst_pte;
1026 spinlock_t *src_ptl, *dst_ptl;
1027 int progress, ret = 0;
1028 int rss[NR_MM_COUNTERS];
1029 swp_entry_t entry = (swp_entry_t){0};
1030 struct page *prealloc = NULL;
1031
1032 again:
1033 progress = 0;
1034 init_rss_vec(rss);
1035
1036 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 if (!dst_pte) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
1041 src_pte = pte_offset_map(src_pmd, addr);
1042 src_ptl = pte_lockptr(src_mm, src_pmd);
1043 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 orig_src_pte = src_pte;
1045 orig_dst_pte = dst_pte;
1046 arch_enter_lazy_mmu_mode();
1047
1048 do {
1049 /*
1050 * We are holding two locks at this point - either of them
1051 * could generate latencies in another task on another CPU.
1052 */
1053 if (progress >= 32) {
1054 progress = 0;
1055 if (need_resched() ||
1056 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 break;
1058 }
1059 if (pte_none(*src_pte)) {
1060 progress++;
1061 continue;
1062 }
1063 if (unlikely(!pte_present(*src_pte))) {
1064 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 dst_pte, src_pte,
1066 dst_vma, src_vma,
1067 addr, rss);
1068 if (ret == -EIO) {
1069 entry = pte_to_swp_entry(*src_pte);
1070 break;
1071 } else if (ret == -EBUSY) {
1072 break;
1073 } else if (!ret) {
1074 progress += 8;
1075 continue;
1076 }
1077
1078 /*
1079 * Device exclusive entry restored, continue by copying
1080 * the now present pte.
1081 */
1082 WARN_ON_ONCE(ret != -ENOENT);
1083 }
1084 /* copy_present_pte() will clear `*prealloc' if consumed */
1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 addr, rss, &prealloc);
1087 /*
1088 * If we need a pre-allocated page for this pte, drop the
1089 * locks, allocate, and try again.
1090 */
1091 if (unlikely(ret == -EAGAIN))
1092 break;
1093 if (unlikely(prealloc)) {
1094 /*
1095 * pre-alloc page cannot be reused by next time so as
1096 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 * will allocate page according to address). This
1098 * could only happen if one pinned pte changed.
1099 */
1100 put_page(prealloc);
1101 prealloc = NULL;
1102 }
1103 progress += 8;
1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105
1106 arch_leave_lazy_mmu_mode();
1107 spin_unlock(src_ptl);
1108 pte_unmap(orig_src_pte);
1109 add_mm_rss_vec(dst_mm, rss);
1110 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 cond_resched();
1112
1113 if (ret == -EIO) {
1114 VM_WARN_ON_ONCE(!entry.val);
1115 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 ret = -ENOMEM;
1117 goto out;
1118 }
1119 entry.val = 0;
1120 } else if (ret == -EBUSY) {
1121 goto out;
1122 } else if (ret == -EAGAIN) {
1123 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 if (!prealloc)
1125 return -ENOMEM;
1126 } else if (ret) {
1127 VM_WARN_ON_ONCE(1);
1128 }
1129
1130 /* We've captured and resolved the error. Reset, try again. */
1131 ret = 0;
1132
1133 if (addr != end)
1134 goto again;
1135 out:
1136 if (unlikely(prealloc))
1137 put_page(prealloc);
1138 return ret;
1139 }
1140
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 unsigned long end)
1145 {
1146 struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 struct mm_struct *src_mm = src_vma->vm_mm;
1148 pmd_t *src_pmd, *dst_pmd;
1149 unsigned long next;
1150
1151 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 if (!dst_pmd)
1153 return -ENOMEM;
1154 src_pmd = pmd_offset(src_pud, addr);
1155 do {
1156 next = pmd_addr_end(addr, end);
1157 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 || pmd_devmap(*src_pmd)) {
1159 int err;
1160 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 addr, dst_vma, src_vma);
1163 if (err == -ENOMEM)
1164 return -ENOMEM;
1165 if (!err)
1166 continue;
1167 /* fall through */
1168 }
1169 if (pmd_none_or_clear_bad(src_pmd))
1170 continue;
1171 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 addr, next))
1173 return -ENOMEM;
1174 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 return 0;
1176 }
1177
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 unsigned long end)
1182 {
1183 struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 struct mm_struct *src_mm = src_vma->vm_mm;
1185 pud_t *src_pud, *dst_pud;
1186 unsigned long next;
1187
1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 if (!dst_pud)
1190 return -ENOMEM;
1191 src_pud = pud_offset(src_p4d, addr);
1192 do {
1193 next = pud_addr_end(addr, end);
1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 int err;
1196
1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 err = copy_huge_pud(dst_mm, src_mm,
1199 dst_pud, src_pud, addr, src_vma);
1200 if (err == -ENOMEM)
1201 return -ENOMEM;
1202 if (!err)
1203 continue;
1204 /* fall through */
1205 }
1206 if (pud_none_or_clear_bad(src_pud))
1207 continue;
1208 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 addr, next))
1210 return -ENOMEM;
1211 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 return 0;
1213 }
1214
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 unsigned long end)
1219 {
1220 struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 p4d_t *src_p4d, *dst_p4d;
1222 unsigned long next;
1223
1224 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 if (!dst_p4d)
1226 return -ENOMEM;
1227 src_p4d = p4d_offset(src_pgd, addr);
1228 do {
1229 next = p4d_addr_end(addr, end);
1230 if (p4d_none_or_clear_bad(src_p4d))
1231 continue;
1232 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 addr, next))
1234 return -ENOMEM;
1235 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 return 0;
1237 }
1238
1239 /*
1240 * Return true if the vma needs to copy the pgtable during this fork(). Return
1241 * false when we can speed up fork() by allowing lazy page faults later until
1242 * when the child accesses the memory range.
1243 */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 /*
1248 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 * contains uffd-wp protection information, that's something we can't
1251 * retrieve from page cache, and skip copying will lose those info.
1252 */
1253 if (userfaultfd_wp(dst_vma))
1254 return true;
1255
1256 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 return true;
1258
1259 if (src_vma->anon_vma)
1260 return true;
1261
1262 /*
1263 * Don't copy ptes where a page fault will fill them correctly. Fork
1264 * becomes much lighter when there are big shared or private readonly
1265 * mappings. The tradeoff is that copy_page_range is more efficient
1266 * than faulting.
1267 */
1268 return false;
1269 }
1270
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 pgd_t *src_pgd, *dst_pgd;
1275 unsigned long next;
1276 unsigned long addr = src_vma->vm_start;
1277 unsigned long end = src_vma->vm_end;
1278 struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 struct mm_struct *src_mm = src_vma->vm_mm;
1280 struct mmu_notifier_range range;
1281 bool is_cow;
1282 int ret;
1283
1284 if (!vma_needs_copy(dst_vma, src_vma))
1285 return 0;
1286
1287 if (is_vm_hugetlb_page(src_vma))
1288 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289
1290 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 /*
1292 * We do not free on error cases below as remove_vma
1293 * gets called on error from higher level routine
1294 */
1295 ret = track_pfn_copy(src_vma);
1296 if (ret)
1297 return ret;
1298 }
1299
1300 /*
1301 * We need to invalidate the secondary MMU mappings only when
1302 * there could be a permission downgrade on the ptes of the
1303 * parent mm. And a permission downgrade will only happen if
1304 * is_cow_mapping() returns true.
1305 */
1306 is_cow = is_cow_mapping(src_vma->vm_flags);
1307
1308 if (is_cow) {
1309 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 0, src_vma, src_mm, addr, end);
1311 mmu_notifier_invalidate_range_start(&range);
1312 /*
1313 * Disabling preemption is not needed for the write side, as
1314 * the read side doesn't spin, but goes to the mmap_lock.
1315 *
1316 * Use the raw variant of the seqcount_t write API to avoid
1317 * lockdep complaining about preemptibility.
1318 */
1319 mmap_assert_write_locked(src_mm);
1320 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 }
1322
1323 ret = 0;
1324 dst_pgd = pgd_offset(dst_mm, addr);
1325 src_pgd = pgd_offset(src_mm, addr);
1326 do {
1327 next = pgd_addr_end(addr, end);
1328 if (pgd_none_or_clear_bad(src_pgd))
1329 continue;
1330 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 addr, next))) {
1332 ret = -ENOMEM;
1333 break;
1334 }
1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336
1337 if (is_cow) {
1338 raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 mmu_notifier_invalidate_range_end(&range);
1340 }
1341 return ret;
1342 }
1343
1344 /*
1345 * Parameter block passed down to zap_pte_range in exceptional cases.
1346 */
1347 struct zap_details {
1348 struct folio *single_folio; /* Locked folio to be unmapped */
1349 bool even_cows; /* Zap COWed private pages too? */
1350 zap_flags_t zap_flags; /* Extra flags for zapping */
1351 };
1352
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356 /* By default, zap all pages */
1357 if (!details)
1358 return true;
1359
1360 /* Or, we zap COWed pages only if the caller wants to */
1361 return details->even_cows;
1362 }
1363
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367 /* If we can make a decision without *page.. */
1368 if (should_zap_cows(details))
1369 return true;
1370
1371 /* E.g. the caller passes NULL for the case of a zero page */
1372 if (!page)
1373 return true;
1374
1375 /* Otherwise we should only zap non-anon pages */
1376 return !PageAnon(page);
1377 }
1378
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381 if (!details)
1382 return false;
1383
1384 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386
1387 /*
1388 * This function makes sure that we'll replace the none pte with an uffd-wp
1389 * swap special pte marker when necessary. Must be with the pgtable lock held.
1390 */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 unsigned long addr, pte_t *pte,
1394 struct zap_details *details, pte_t pteval)
1395 {
1396 if (zap_drop_file_uffd_wp(details))
1397 return;
1398
1399 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1400 }
1401
1402 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1403 struct vm_area_struct *vma, pmd_t *pmd,
1404 unsigned long addr, unsigned long end,
1405 struct zap_details *details)
1406 {
1407 struct mm_struct *mm = tlb->mm;
1408 int force_flush = 0;
1409 int rss[NR_MM_COUNTERS];
1410 spinlock_t *ptl;
1411 pte_t *start_pte;
1412 pte_t *pte;
1413 swp_entry_t entry;
1414
1415 tlb_change_page_size(tlb, PAGE_SIZE);
1416 again:
1417 init_rss_vec(rss);
1418 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 pte = start_pte;
1420 flush_tlb_batched_pending(mm);
1421 arch_enter_lazy_mmu_mode();
1422 do {
1423 pte_t ptent = *pte;
1424 struct page *page;
1425
1426 if (pte_none(ptent))
1427 continue;
1428
1429 if (need_resched())
1430 break;
1431
1432 if (pte_present(ptent)) {
1433 page = vm_normal_page(vma, addr, ptent);
1434 if (unlikely(!should_zap_page(details, page)))
1435 continue;
1436 ptent = ptep_get_and_clear_full(mm, addr, pte,
1437 tlb->fullmm);
1438 tlb_remove_tlb_entry(tlb, pte, addr);
1439 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440 ptent);
1441 if (unlikely(!page))
1442 continue;
1443
1444 if (!PageAnon(page)) {
1445 if (pte_dirty(ptent)) {
1446 force_flush = 1;
1447 set_page_dirty(page);
1448 }
1449 if (pte_young(ptent) &&
1450 likely(!(vma->vm_flags & VM_SEQ_READ)))
1451 mark_page_accessed(page);
1452 }
1453 rss[mm_counter(page)]--;
1454 page_remove_rmap(page, vma, false);
1455 if (unlikely(page_mapcount(page) < 0))
1456 print_bad_pte(vma, addr, ptent, page);
1457 if (unlikely(__tlb_remove_page(tlb, page))) {
1458 force_flush = 1;
1459 addr += PAGE_SIZE;
1460 break;
1461 }
1462 continue;
1463 }
1464
1465 entry = pte_to_swp_entry(ptent);
1466 if (is_device_private_entry(entry) ||
1467 is_device_exclusive_entry(entry)) {
1468 page = pfn_swap_entry_to_page(entry);
1469 if (unlikely(!should_zap_page(details, page)))
1470 continue;
1471 /*
1472 * Both device private/exclusive mappings should only
1473 * work with anonymous page so far, so we don't need to
1474 * consider uffd-wp bit when zap. For more information,
1475 * see zap_install_uffd_wp_if_needed().
1476 */
1477 WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 rss[mm_counter(page)]--;
1479 if (is_device_private_entry(entry))
1480 page_remove_rmap(page, vma, false);
1481 put_page(page);
1482 } else if (!non_swap_entry(entry)) {
1483 /* Genuine swap entry, hence a private anon page */
1484 if (!should_zap_cows(details))
1485 continue;
1486 rss[MM_SWAPENTS]--;
1487 if (unlikely(!free_swap_and_cache(entry)))
1488 print_bad_pte(vma, addr, ptent, NULL);
1489 } else if (is_migration_entry(entry)) {
1490 page = pfn_swap_entry_to_page(entry);
1491 if (!should_zap_page(details, page))
1492 continue;
1493 rss[mm_counter(page)]--;
1494 } else if (pte_marker_entry_uffd_wp(entry)) {
1495 /* Only drop the uffd-wp marker if explicitly requested */
1496 if (!zap_drop_file_uffd_wp(details))
1497 continue;
1498 } else if (is_hwpoison_entry(entry) ||
1499 is_swapin_error_entry(entry)) {
1500 if (!should_zap_cows(details))
1501 continue;
1502 } else {
1503 /* We should have covered all the swap entry types */
1504 WARN_ON_ONCE(1);
1505 }
1506 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1507 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1508 } while (pte++, addr += PAGE_SIZE, addr != end);
1509
1510 add_mm_rss_vec(mm, rss);
1511 arch_leave_lazy_mmu_mode();
1512
1513 /* Do the actual TLB flush before dropping ptl */
1514 if (force_flush)
1515 tlb_flush_mmu_tlbonly(tlb);
1516 pte_unmap_unlock(start_pte, ptl);
1517
1518 /*
1519 * If we forced a TLB flush (either due to running out of
1520 * batch buffers or because we needed to flush dirty TLB
1521 * entries before releasing the ptl), free the batched
1522 * memory too. Restart if we didn't do everything.
1523 */
1524 if (force_flush) {
1525 force_flush = 0;
1526 tlb_flush_mmu(tlb);
1527 }
1528
1529 if (addr != end) {
1530 cond_resched();
1531 goto again;
1532 }
1533
1534 return addr;
1535 }
1536
1537 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1538 struct vm_area_struct *vma, pud_t *pud,
1539 unsigned long addr, unsigned long end,
1540 struct zap_details *details)
1541 {
1542 pmd_t *pmd;
1543 unsigned long next;
1544
1545 pmd = pmd_offset(pud, addr);
1546 do {
1547 next = pmd_addr_end(addr, end);
1548 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1549 if (next - addr != HPAGE_PMD_SIZE)
1550 __split_huge_pmd(vma, pmd, addr, false, NULL);
1551 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1552 goto next;
1553 /* fall through */
1554 } else if (details && details->single_folio &&
1555 folio_test_pmd_mappable(details->single_folio) &&
1556 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 /*
1559 * Take and drop THP pmd lock so that we cannot return
1560 * prematurely, while zap_huge_pmd() has cleared *pmd,
1561 * but not yet decremented compound_mapcount().
1562 */
1563 spin_unlock(ptl);
1564 }
1565
1566 /*
1567 * Here there can be other concurrent MADV_DONTNEED or
1568 * trans huge page faults running, and if the pmd is
1569 * none or trans huge it can change under us. This is
1570 * because MADV_DONTNEED holds the mmap_lock in read
1571 * mode.
1572 */
1573 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574 goto next;
1575 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 next:
1577 cond_resched();
1578 } while (pmd++, addr = next, addr != end);
1579
1580 return addr;
1581 }
1582
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584 struct vm_area_struct *vma, p4d_t *p4d,
1585 unsigned long addr, unsigned long end,
1586 struct zap_details *details)
1587 {
1588 pud_t *pud;
1589 unsigned long next;
1590
1591 pud = pud_offset(p4d, addr);
1592 do {
1593 next = pud_addr_end(addr, end);
1594 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 if (next - addr != HPAGE_PUD_SIZE) {
1596 mmap_assert_locked(tlb->mm);
1597 split_huge_pud(vma, pud, addr);
1598 } else if (zap_huge_pud(tlb, vma, pud, addr))
1599 goto next;
1600 /* fall through */
1601 }
1602 if (pud_none_or_clear_bad(pud))
1603 continue;
1604 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606 cond_resched();
1607 } while (pud++, addr = next, addr != end);
1608
1609 return addr;
1610 }
1611
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 struct vm_area_struct *vma, pgd_t *pgd,
1614 unsigned long addr, unsigned long end,
1615 struct zap_details *details)
1616 {
1617 p4d_t *p4d;
1618 unsigned long next;
1619
1620 p4d = p4d_offset(pgd, addr);
1621 do {
1622 next = p4d_addr_end(addr, end);
1623 if (p4d_none_or_clear_bad(p4d))
1624 continue;
1625 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 } while (p4d++, addr = next, addr != end);
1627
1628 return addr;
1629 }
1630
1631 void unmap_page_range(struct mmu_gather *tlb,
1632 struct vm_area_struct *vma,
1633 unsigned long addr, unsigned long end,
1634 struct zap_details *details)
1635 {
1636 pgd_t *pgd;
1637 unsigned long next;
1638
1639 BUG_ON(addr >= end);
1640 tlb_start_vma(tlb, vma);
1641 pgd = pgd_offset(vma->vm_mm, addr);
1642 do {
1643 next = pgd_addr_end(addr, end);
1644 if (pgd_none_or_clear_bad(pgd))
1645 continue;
1646 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647 } while (pgd++, addr = next, addr != end);
1648 tlb_end_vma(tlb, vma);
1649 }
1650
1651
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653 struct vm_area_struct *vma, unsigned long start_addr,
1654 unsigned long end_addr,
1655 struct zap_details *details)
1656 {
1657 unsigned long start = max(vma->vm_start, start_addr);
1658 unsigned long end;
1659
1660 if (start >= vma->vm_end)
1661 return;
1662 end = min(vma->vm_end, end_addr);
1663 if (end <= vma->vm_start)
1664 return;
1665
1666 if (vma->vm_file)
1667 uprobe_munmap(vma, start, end);
1668
1669 if (unlikely(vma->vm_flags & VM_PFNMAP))
1670 untrack_pfn(vma, 0, 0);
1671
1672 if (start != end) {
1673 if (unlikely(is_vm_hugetlb_page(vma))) {
1674 /*
1675 * It is undesirable to test vma->vm_file as it
1676 * should be non-null for valid hugetlb area.
1677 * However, vm_file will be NULL in the error
1678 * cleanup path of mmap_region. When
1679 * hugetlbfs ->mmap method fails,
1680 * mmap_region() nullifies vma->vm_file
1681 * before calling this function to clean up.
1682 * Since no pte has actually been setup, it is
1683 * safe to do nothing in this case.
1684 */
1685 if (vma->vm_file) {
1686 zap_flags_t zap_flags = details ?
1687 details->zap_flags : 0;
1688 i_mmap_lock_write(vma->vm_file->f_mapping);
1689 __unmap_hugepage_range_final(tlb, vma, start, end,
1690 NULL, zap_flags);
1691 i_mmap_unlock_write(vma->vm_file->f_mapping);
1692 }
1693 } else
1694 unmap_page_range(tlb, vma, start, end, details);
1695 }
1696 }
1697
1698 /**
1699 * unmap_vmas - unmap a range of memory covered by a list of vma's
1700 * @tlb: address of the caller's struct mmu_gather
1701 * @vma: the starting vma
1702 * @start_addr: virtual address at which to start unmapping
1703 * @end_addr: virtual address at which to end unmapping
1704 *
1705 * Unmap all pages in the vma list.
1706 *
1707 * Only addresses between `start' and `end' will be unmapped.
1708 *
1709 * The VMA list must be sorted in ascending virtual address order.
1710 *
1711 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712 * range after unmap_vmas() returns. So the only responsibility here is to
1713 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714 * drops the lock and schedules.
1715 */
1716 void unmap_vmas(struct mmu_gather *tlb,
1717 struct vm_area_struct *vma, unsigned long start_addr,
1718 unsigned long end_addr)
1719 {
1720 struct mmu_notifier_range range;
1721 struct zap_details details = {
1722 .zap_flags = ZAP_FLAG_DROP_MARKER,
1723 /* Careful - we need to zap private pages too! */
1724 .even_cows = true,
1725 };
1726
1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1728 start_addr, end_addr);
1729 mmu_notifier_invalidate_range_start(&range);
1730 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1732 mmu_notifier_invalidate_range_end(&range);
1733 }
1734
1735 /**
1736 * zap_page_range - remove user pages in a given range
1737 * @vma: vm_area_struct holding the applicable pages
1738 * @start: starting address of pages to zap
1739 * @size: number of bytes to zap
1740 *
1741 * Caller must protect the VMA list
1742 */
1743 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1744 unsigned long size)
1745 {
1746 struct mmu_notifier_range range;
1747 struct mmu_gather tlb;
1748
1749 lru_add_drain();
1750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1751 start, start + size);
1752 tlb_gather_mmu(&tlb, vma->vm_mm);
1753 update_hiwater_rss(vma->vm_mm);
1754 mmu_notifier_invalidate_range_start(&range);
1755 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1756 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1757 mmu_notifier_invalidate_range_end(&range);
1758 tlb_finish_mmu(&tlb);
1759 }
1760
1761 /**
1762 * zap_page_range_single - remove user pages in a given range
1763 * @vma: vm_area_struct holding the applicable pages
1764 * @address: starting address of pages to zap
1765 * @size: number of bytes to zap
1766 * @details: details of shared cache invalidation
1767 *
1768 * The range must fit into one VMA.
1769 */
1770 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1771 unsigned long size, struct zap_details *details)
1772 {
1773 struct mmu_notifier_range range;
1774 struct mmu_gather tlb;
1775
1776 lru_add_drain();
1777 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1778 address, address + size);
1779 tlb_gather_mmu(&tlb, vma->vm_mm);
1780 update_hiwater_rss(vma->vm_mm);
1781 mmu_notifier_invalidate_range_start(&range);
1782 unmap_single_vma(&tlb, vma, address, range.end, details);
1783 mmu_notifier_invalidate_range_end(&range);
1784 tlb_finish_mmu(&tlb);
1785 }
1786
1787 /**
1788 * zap_vma_ptes - remove ptes mapping the vma
1789 * @vma: vm_area_struct holding ptes to be zapped
1790 * @address: starting address of pages to zap
1791 * @size: number of bytes to zap
1792 *
1793 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1794 *
1795 * The entire address range must be fully contained within the vma.
1796 *
1797 */
1798 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1799 unsigned long size)
1800 {
1801 if (!range_in_vma(vma, address, address + size) ||
1802 !(vma->vm_flags & VM_PFNMAP))
1803 return;
1804
1805 zap_page_range_single(vma, address, size, NULL);
1806 }
1807 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1808
1809 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1810 {
1811 pgd_t *pgd;
1812 p4d_t *p4d;
1813 pud_t *pud;
1814 pmd_t *pmd;
1815
1816 pgd = pgd_offset(mm, addr);
1817 p4d = p4d_alloc(mm, pgd, addr);
1818 if (!p4d)
1819 return NULL;
1820 pud = pud_alloc(mm, p4d, addr);
1821 if (!pud)
1822 return NULL;
1823 pmd = pmd_alloc(mm, pud, addr);
1824 if (!pmd)
1825 return NULL;
1826
1827 VM_BUG_ON(pmd_trans_huge(*pmd));
1828 return pmd;
1829 }
1830
1831 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1832 spinlock_t **ptl)
1833 {
1834 pmd_t *pmd = walk_to_pmd(mm, addr);
1835
1836 if (!pmd)
1837 return NULL;
1838 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1839 }
1840
1841 static int validate_page_before_insert(struct page *page)
1842 {
1843 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1844 return -EINVAL;
1845 flush_dcache_page(page);
1846 return 0;
1847 }
1848
1849 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1850 unsigned long addr, struct page *page, pgprot_t prot)
1851 {
1852 if (!pte_none(*pte))
1853 return -EBUSY;
1854 /* Ok, finally just insert the thing.. */
1855 get_page(page);
1856 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1857 page_add_file_rmap(page, vma, false);
1858 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1859 return 0;
1860 }
1861
1862 /*
1863 * This is the old fallback for page remapping.
1864 *
1865 * For historical reasons, it only allows reserved pages. Only
1866 * old drivers should use this, and they needed to mark their
1867 * pages reserved for the old functions anyway.
1868 */
1869 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1870 struct page *page, pgprot_t prot)
1871 {
1872 int retval;
1873 pte_t *pte;
1874 spinlock_t *ptl;
1875
1876 retval = validate_page_before_insert(page);
1877 if (retval)
1878 goto out;
1879 retval = -ENOMEM;
1880 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1881 if (!pte)
1882 goto out;
1883 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 pte_unmap_unlock(pte, ptl);
1885 out:
1886 return retval;
1887 }
1888
1889 #ifdef pte_index
1890 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1891 unsigned long addr, struct page *page, pgprot_t prot)
1892 {
1893 int err;
1894
1895 if (!page_count(page))
1896 return -EINVAL;
1897 err = validate_page_before_insert(page);
1898 if (err)
1899 return err;
1900 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1901 }
1902
1903 /* insert_pages() amortizes the cost of spinlock operations
1904 * when inserting pages in a loop. Arch *must* define pte_index.
1905 */
1906 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1907 struct page **pages, unsigned long *num, pgprot_t prot)
1908 {
1909 pmd_t *pmd = NULL;
1910 pte_t *start_pte, *pte;
1911 spinlock_t *pte_lock;
1912 struct mm_struct *const mm = vma->vm_mm;
1913 unsigned long curr_page_idx = 0;
1914 unsigned long remaining_pages_total = *num;
1915 unsigned long pages_to_write_in_pmd;
1916 int ret;
1917 more:
1918 ret = -EFAULT;
1919 pmd = walk_to_pmd(mm, addr);
1920 if (!pmd)
1921 goto out;
1922
1923 pages_to_write_in_pmd = min_t(unsigned long,
1924 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1925
1926 /* Allocate the PTE if necessary; takes PMD lock once only. */
1927 ret = -ENOMEM;
1928 if (pte_alloc(mm, pmd))
1929 goto out;
1930
1931 while (pages_to_write_in_pmd) {
1932 int pte_idx = 0;
1933 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1934
1935 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1936 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1937 int err = insert_page_in_batch_locked(vma, pte,
1938 addr, pages[curr_page_idx], prot);
1939 if (unlikely(err)) {
1940 pte_unmap_unlock(start_pte, pte_lock);
1941 ret = err;
1942 remaining_pages_total -= pte_idx;
1943 goto out;
1944 }
1945 addr += PAGE_SIZE;
1946 ++curr_page_idx;
1947 }
1948 pte_unmap_unlock(start_pte, pte_lock);
1949 pages_to_write_in_pmd -= batch_size;
1950 remaining_pages_total -= batch_size;
1951 }
1952 if (remaining_pages_total)
1953 goto more;
1954 ret = 0;
1955 out:
1956 *num = remaining_pages_total;
1957 return ret;
1958 }
1959 #endif /* ifdef pte_index */
1960
1961 /**
1962 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1963 * @vma: user vma to map to
1964 * @addr: target start user address of these pages
1965 * @pages: source kernel pages
1966 * @num: in: number of pages to map. out: number of pages that were *not*
1967 * mapped. (0 means all pages were successfully mapped).
1968 *
1969 * Preferred over vm_insert_page() when inserting multiple pages.
1970 *
1971 * In case of error, we may have mapped a subset of the provided
1972 * pages. It is the caller's responsibility to account for this case.
1973 *
1974 * The same restrictions apply as in vm_insert_page().
1975 */
1976 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1977 struct page **pages, unsigned long *num)
1978 {
1979 #ifdef pte_index
1980 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1981
1982 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1983 return -EFAULT;
1984 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1985 BUG_ON(mmap_read_trylock(vma->vm_mm));
1986 BUG_ON(vma->vm_flags & VM_PFNMAP);
1987 vma->vm_flags |= VM_MIXEDMAP;
1988 }
1989 /* Defer page refcount checking till we're about to map that page. */
1990 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1991 #else
1992 unsigned long idx = 0, pgcount = *num;
1993 int err = -EINVAL;
1994
1995 for (; idx < pgcount; ++idx) {
1996 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1997 if (err)
1998 break;
1999 }
2000 *num = pgcount - idx;
2001 return err;
2002 #endif /* ifdef pte_index */
2003 }
2004 EXPORT_SYMBOL(vm_insert_pages);
2005
2006 /**
2007 * vm_insert_page - insert single page into user vma
2008 * @vma: user vma to map to
2009 * @addr: target user address of this page
2010 * @page: source kernel page
2011 *
2012 * This allows drivers to insert individual pages they've allocated
2013 * into a user vma.
2014 *
2015 * The page has to be a nice clean _individual_ kernel allocation.
2016 * If you allocate a compound page, you need to have marked it as
2017 * such (__GFP_COMP), or manually just split the page up yourself
2018 * (see split_page()).
2019 *
2020 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2021 * took an arbitrary page protection parameter. This doesn't allow
2022 * that. Your vma protection will have to be set up correctly, which
2023 * means that if you want a shared writable mapping, you'd better
2024 * ask for a shared writable mapping!
2025 *
2026 * The page does not need to be reserved.
2027 *
2028 * Usually this function is called from f_op->mmap() handler
2029 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2030 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2031 * function from other places, for example from page-fault handler.
2032 *
2033 * Return: %0 on success, negative error code otherwise.
2034 */
2035 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2036 struct page *page)
2037 {
2038 if (addr < vma->vm_start || addr >= vma->vm_end)
2039 return -EFAULT;
2040 if (!page_count(page))
2041 return -EINVAL;
2042 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2043 BUG_ON(mmap_read_trylock(vma->vm_mm));
2044 BUG_ON(vma->vm_flags & VM_PFNMAP);
2045 vma->vm_flags |= VM_MIXEDMAP;
2046 }
2047 return insert_page(vma, addr, page, vma->vm_page_prot);
2048 }
2049 EXPORT_SYMBOL(vm_insert_page);
2050
2051 /*
2052 * __vm_map_pages - maps range of kernel pages into user vma
2053 * @vma: user vma to map to
2054 * @pages: pointer to array of source kernel pages
2055 * @num: number of pages in page array
2056 * @offset: user's requested vm_pgoff
2057 *
2058 * This allows drivers to map range of kernel pages into a user vma.
2059 *
2060 * Return: 0 on success and error code otherwise.
2061 */
2062 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063 unsigned long num, unsigned long offset)
2064 {
2065 unsigned long count = vma_pages(vma);
2066 unsigned long uaddr = vma->vm_start;
2067 int ret, i;
2068
2069 /* Fail if the user requested offset is beyond the end of the object */
2070 if (offset >= num)
2071 return -ENXIO;
2072
2073 /* Fail if the user requested size exceeds available object size */
2074 if (count > num - offset)
2075 return -ENXIO;
2076
2077 for (i = 0; i < count; i++) {
2078 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2079 if (ret < 0)
2080 return ret;
2081 uaddr += PAGE_SIZE;
2082 }
2083
2084 return 0;
2085 }
2086
2087 /**
2088 * vm_map_pages - maps range of kernel pages starts with non zero offset
2089 * @vma: user vma to map to
2090 * @pages: pointer to array of source kernel pages
2091 * @num: number of pages in page array
2092 *
2093 * Maps an object consisting of @num pages, catering for the user's
2094 * requested vm_pgoff
2095 *
2096 * If we fail to insert any page into the vma, the function will return
2097 * immediately leaving any previously inserted pages present. Callers
2098 * from the mmap handler may immediately return the error as their caller
2099 * will destroy the vma, removing any successfully inserted pages. Other
2100 * callers should make their own arrangements for calling unmap_region().
2101 *
2102 * Context: Process context. Called by mmap handlers.
2103 * Return: 0 on success and error code otherwise.
2104 */
2105 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2106 unsigned long num)
2107 {
2108 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2109 }
2110 EXPORT_SYMBOL(vm_map_pages);
2111
2112 /**
2113 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2114 * @vma: user vma to map to
2115 * @pages: pointer to array of source kernel pages
2116 * @num: number of pages in page array
2117 *
2118 * Similar to vm_map_pages(), except that it explicitly sets the offset
2119 * to 0. This function is intended for the drivers that did not consider
2120 * vm_pgoff.
2121 *
2122 * Context: Process context. Called by mmap handlers.
2123 * Return: 0 on success and error code otherwise.
2124 */
2125 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2126 unsigned long num)
2127 {
2128 return __vm_map_pages(vma, pages, num, 0);
2129 }
2130 EXPORT_SYMBOL(vm_map_pages_zero);
2131
2132 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2133 pfn_t pfn, pgprot_t prot, bool mkwrite)
2134 {
2135 struct mm_struct *mm = vma->vm_mm;
2136 pte_t *pte, entry;
2137 spinlock_t *ptl;
2138
2139 pte = get_locked_pte(mm, addr, &ptl);
2140 if (!pte)
2141 return VM_FAULT_OOM;
2142 if (!pte_none(*pte)) {
2143 if (mkwrite) {
2144 /*
2145 * For read faults on private mappings the PFN passed
2146 * in may not match the PFN we have mapped if the
2147 * mapped PFN is a writeable COW page. In the mkwrite
2148 * case we are creating a writable PTE for a shared
2149 * mapping and we expect the PFNs to match. If they
2150 * don't match, we are likely racing with block
2151 * allocation and mapping invalidation so just skip the
2152 * update.
2153 */
2154 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2155 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2156 goto out_unlock;
2157 }
2158 entry = pte_mkyoung(*pte);
2159 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2160 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2161 update_mmu_cache(vma, addr, pte);
2162 }
2163 goto out_unlock;
2164 }
2165
2166 /* Ok, finally just insert the thing.. */
2167 if (pfn_t_devmap(pfn))
2168 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2169 else
2170 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2171
2172 if (mkwrite) {
2173 entry = pte_mkyoung(entry);
2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 }
2176
2177 set_pte_at(mm, addr, pte, entry);
2178 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2179
2180 out_unlock:
2181 pte_unmap_unlock(pte, ptl);
2182 return VM_FAULT_NOPAGE;
2183 }
2184
2185 /**
2186 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2187 * @vma: user vma to map to
2188 * @addr: target user address of this page
2189 * @pfn: source kernel pfn
2190 * @pgprot: pgprot flags for the inserted page
2191 *
2192 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2193 * to override pgprot on a per-page basis.
2194 *
2195 * This only makes sense for IO mappings, and it makes no sense for
2196 * COW mappings. In general, using multiple vmas is preferable;
2197 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2198 * impractical.
2199 *
2200 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2201 * a value of @pgprot different from that of @vma->vm_page_prot.
2202 *
2203 * Context: Process context. May allocate using %GFP_KERNEL.
2204 * Return: vm_fault_t value.
2205 */
2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207 unsigned long pfn, pgprot_t pgprot)
2208 {
2209 /*
2210 * Technically, architectures with pte_special can avoid all these
2211 * restrictions (same for remap_pfn_range). However we would like
2212 * consistency in testing and feature parity among all, so we should
2213 * try to keep these invariants in place for everybody.
2214 */
2215 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217 (VM_PFNMAP|VM_MIXEDMAP));
2218 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220
2221 if (addr < vma->vm_start || addr >= vma->vm_end)
2222 return VM_FAULT_SIGBUS;
2223
2224 if (!pfn_modify_allowed(pfn, pgprot))
2225 return VM_FAULT_SIGBUS;
2226
2227 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228
2229 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2230 false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2233
2234 /**
2235 * vmf_insert_pfn - insert single pfn into user vma
2236 * @vma: user vma to map to
2237 * @addr: target user address of this page
2238 * @pfn: source kernel pfn
2239 *
2240 * Similar to vm_insert_page, this allows drivers to insert individual pages
2241 * they've allocated into a user vma. Same comments apply.
2242 *
2243 * This function should only be called from a vm_ops->fault handler, and
2244 * in that case the handler should return the result of this function.
2245 *
2246 * vma cannot be a COW mapping.
2247 *
2248 * As this is called only for pages that do not currently exist, we
2249 * do not need to flush old virtual caches or the TLB.
2250 *
2251 * Context: Process context. May allocate using %GFP_KERNEL.
2252 * Return: vm_fault_t value.
2253 */
2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255 unsigned long pfn)
2256 {
2257 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_pfn);
2260
2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 {
2263 /* these checks mirror the abort conditions in vm_normal_page */
2264 if (vma->vm_flags & VM_MIXEDMAP)
2265 return true;
2266 if (pfn_t_devmap(pfn))
2267 return true;
2268 if (pfn_t_special(pfn))
2269 return true;
2270 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 return true;
2272 return false;
2273 }
2274
2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2276 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2277 bool mkwrite)
2278 {
2279 int err;
2280
2281 BUG_ON(!vm_mixed_ok(vma, pfn));
2282
2283 if (addr < vma->vm_start || addr >= vma->vm_end)
2284 return VM_FAULT_SIGBUS;
2285
2286 track_pfn_insert(vma, &pgprot, pfn);
2287
2288 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2289 return VM_FAULT_SIGBUS;
2290
2291 /*
2292 * If we don't have pte special, then we have to use the pfn_valid()
2293 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294 * refcount the page if pfn_valid is true (hence insert_page rather
2295 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2296 * without pte special, it would there be refcounted as a normal page.
2297 */
2298 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2300 struct page *page;
2301
2302 /*
2303 * At this point we are committed to insert_page()
2304 * regardless of whether the caller specified flags that
2305 * result in pfn_t_has_page() == false.
2306 */
2307 page = pfn_to_page(pfn_t_to_pfn(pfn));
2308 err = insert_page(vma, addr, page, pgprot);
2309 } else {
2310 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2311 }
2312
2313 if (err == -ENOMEM)
2314 return VM_FAULT_OOM;
2315 if (err < 0 && err != -EBUSY)
2316 return VM_FAULT_SIGBUS;
2317
2318 return VM_FAULT_NOPAGE;
2319 }
2320
2321 /**
2322 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2323 * @vma: user vma to map to
2324 * @addr: target user address of this page
2325 * @pfn: source kernel pfn
2326 * @pgprot: pgprot flags for the inserted page
2327 *
2328 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2329 * to override pgprot on a per-page basis.
2330 *
2331 * Typically this function should be used by drivers to set caching- and
2332 * encryption bits different than those of @vma->vm_page_prot, because
2333 * the caching- or encryption mode may not be known at mmap() time.
2334 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335 * to set caching and encryption bits for those vmas (except for COW pages).
2336 * This is ensured by core vm only modifying these page table entries using
2337 * functions that don't touch caching- or encryption bits, using pte_modify()
2338 * if needed. (See for example mprotect()).
2339 * Also when new page-table entries are created, this is only done using the
2340 * fault() callback, and never using the value of vma->vm_page_prot,
2341 * except for page-table entries that point to anonymous pages as the result
2342 * of COW.
2343 *
2344 * Context: Process context. May allocate using %GFP_KERNEL.
2345 * Return: vm_fault_t value.
2346 */
2347 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2348 pfn_t pfn, pgprot_t pgprot)
2349 {
2350 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2351 }
2352 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2353
2354 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2355 pfn_t pfn)
2356 {
2357 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2358 }
2359 EXPORT_SYMBOL(vmf_insert_mixed);
2360
2361 /*
2362 * If the insertion of PTE failed because someone else already added a
2363 * different entry in the mean time, we treat that as success as we assume
2364 * the same entry was actually inserted.
2365 */
2366 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2367 unsigned long addr, pfn_t pfn)
2368 {
2369 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2370 }
2371 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2372
2373 /*
2374 * maps a range of physical memory into the requested pages. the old
2375 * mappings are removed. any references to nonexistent pages results
2376 * in null mappings (currently treated as "copy-on-access")
2377 */
2378 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2379 unsigned long addr, unsigned long end,
2380 unsigned long pfn, pgprot_t prot)
2381 {
2382 pte_t *pte, *mapped_pte;
2383 spinlock_t *ptl;
2384 int err = 0;
2385
2386 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2387 if (!pte)
2388 return -ENOMEM;
2389 arch_enter_lazy_mmu_mode();
2390 do {
2391 BUG_ON(!pte_none(*pte));
2392 if (!pfn_modify_allowed(pfn, prot)) {
2393 err = -EACCES;
2394 break;
2395 }
2396 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2397 pfn++;
2398 } while (pte++, addr += PAGE_SIZE, addr != end);
2399 arch_leave_lazy_mmu_mode();
2400 pte_unmap_unlock(mapped_pte, ptl);
2401 return err;
2402 }
2403
2404 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2405 unsigned long addr, unsigned long end,
2406 unsigned long pfn, pgprot_t prot)
2407 {
2408 pmd_t *pmd;
2409 unsigned long next;
2410 int err;
2411
2412 pfn -= addr >> PAGE_SHIFT;
2413 pmd = pmd_alloc(mm, pud, addr);
2414 if (!pmd)
2415 return -ENOMEM;
2416 VM_BUG_ON(pmd_trans_huge(*pmd));
2417 do {
2418 next = pmd_addr_end(addr, end);
2419 err = remap_pte_range(mm, pmd, addr, next,
2420 pfn + (addr >> PAGE_SHIFT), prot);
2421 if (err)
2422 return err;
2423 } while (pmd++, addr = next, addr != end);
2424 return 0;
2425 }
2426
2427 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2428 unsigned long addr, unsigned long end,
2429 unsigned long pfn, pgprot_t prot)
2430 {
2431 pud_t *pud;
2432 unsigned long next;
2433 int err;
2434
2435 pfn -= addr >> PAGE_SHIFT;
2436 pud = pud_alloc(mm, p4d, addr);
2437 if (!pud)
2438 return -ENOMEM;
2439 do {
2440 next = pud_addr_end(addr, end);
2441 err = remap_pmd_range(mm, pud, addr, next,
2442 pfn + (addr >> PAGE_SHIFT), prot);
2443 if (err)
2444 return err;
2445 } while (pud++, addr = next, addr != end);
2446 return 0;
2447 }
2448
2449 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2450 unsigned long addr, unsigned long end,
2451 unsigned long pfn, pgprot_t prot)
2452 {
2453 p4d_t *p4d;
2454 unsigned long next;
2455 int err;
2456
2457 pfn -= addr >> PAGE_SHIFT;
2458 p4d = p4d_alloc(mm, pgd, addr);
2459 if (!p4d)
2460 return -ENOMEM;
2461 do {
2462 next = p4d_addr_end(addr, end);
2463 err = remap_pud_range(mm, p4d, addr, next,
2464 pfn + (addr >> PAGE_SHIFT), prot);
2465 if (err)
2466 return err;
2467 } while (p4d++, addr = next, addr != end);
2468 return 0;
2469 }
2470
2471 /*
2472 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2473 * must have pre-validated the caching bits of the pgprot_t.
2474 */
2475 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2476 unsigned long pfn, unsigned long size, pgprot_t prot)
2477 {
2478 pgd_t *pgd;
2479 unsigned long next;
2480 unsigned long end = addr + PAGE_ALIGN(size);
2481 struct mm_struct *mm = vma->vm_mm;
2482 int err;
2483
2484 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2485 return -EINVAL;
2486
2487 /*
2488 * Physically remapped pages are special. Tell the
2489 * rest of the world about it:
2490 * VM_IO tells people not to look at these pages
2491 * (accesses can have side effects).
2492 * VM_PFNMAP tells the core MM that the base pages are just
2493 * raw PFN mappings, and do not have a "struct page" associated
2494 * with them.
2495 * VM_DONTEXPAND
2496 * Disable vma merging and expanding with mremap().
2497 * VM_DONTDUMP
2498 * Omit vma from core dump, even when VM_IO turned off.
2499 *
2500 * There's a horrible special case to handle copy-on-write
2501 * behaviour that some programs depend on. We mark the "original"
2502 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2503 * See vm_normal_page() for details.
2504 */
2505 if (is_cow_mapping(vma->vm_flags)) {
2506 if (addr != vma->vm_start || end != vma->vm_end)
2507 return -EINVAL;
2508 vma->vm_pgoff = pfn;
2509 }
2510
2511 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2512
2513 BUG_ON(addr >= end);
2514 pfn -= addr >> PAGE_SHIFT;
2515 pgd = pgd_offset(mm, addr);
2516 flush_cache_range(vma, addr, end);
2517 do {
2518 next = pgd_addr_end(addr, end);
2519 err = remap_p4d_range(mm, pgd, addr, next,
2520 pfn + (addr >> PAGE_SHIFT), prot);
2521 if (err)
2522 return err;
2523 } while (pgd++, addr = next, addr != end);
2524
2525 return 0;
2526 }
2527
2528 /**
2529 * remap_pfn_range - remap kernel memory to userspace
2530 * @vma: user vma to map to
2531 * @addr: target page aligned user address to start at
2532 * @pfn: page frame number of kernel physical memory address
2533 * @size: size of mapping area
2534 * @prot: page protection flags for this mapping
2535 *
2536 * Note: this is only safe if the mm semaphore is held when called.
2537 *
2538 * Return: %0 on success, negative error code otherwise.
2539 */
2540 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2541 unsigned long pfn, unsigned long size, pgprot_t prot)
2542 {
2543 int err;
2544
2545 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2546 if (err)
2547 return -EINVAL;
2548
2549 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2550 if (err)
2551 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2552 return err;
2553 }
2554 EXPORT_SYMBOL(remap_pfn_range);
2555
2556 /**
2557 * vm_iomap_memory - remap memory to userspace
2558 * @vma: user vma to map to
2559 * @start: start of the physical memory to be mapped
2560 * @len: size of area
2561 *
2562 * This is a simplified io_remap_pfn_range() for common driver use. The
2563 * driver just needs to give us the physical memory range to be mapped,
2564 * we'll figure out the rest from the vma information.
2565 *
2566 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2567 * whatever write-combining details or similar.
2568 *
2569 * Return: %0 on success, negative error code otherwise.
2570 */
2571 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2572 {
2573 unsigned long vm_len, pfn, pages;
2574
2575 /* Check that the physical memory area passed in looks valid */
2576 if (start + len < start)
2577 return -EINVAL;
2578 /*
2579 * You *really* shouldn't map things that aren't page-aligned,
2580 * but we've historically allowed it because IO memory might
2581 * just have smaller alignment.
2582 */
2583 len += start & ~PAGE_MASK;
2584 pfn = start >> PAGE_SHIFT;
2585 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2586 if (pfn + pages < pfn)
2587 return -EINVAL;
2588
2589 /* We start the mapping 'vm_pgoff' pages into the area */
2590 if (vma->vm_pgoff > pages)
2591 return -EINVAL;
2592 pfn += vma->vm_pgoff;
2593 pages -= vma->vm_pgoff;
2594
2595 /* Can we fit all of the mapping? */
2596 vm_len = vma->vm_end - vma->vm_start;
2597 if (vm_len >> PAGE_SHIFT > pages)
2598 return -EINVAL;
2599
2600 /* Ok, let it rip */
2601 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2602 }
2603 EXPORT_SYMBOL(vm_iomap_memory);
2604
2605 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2606 unsigned long addr, unsigned long end,
2607 pte_fn_t fn, void *data, bool create,
2608 pgtbl_mod_mask *mask)
2609 {
2610 pte_t *pte, *mapped_pte;
2611 int err = 0;
2612 spinlock_t *ptl;
2613
2614 if (create) {
2615 mapped_pte = pte = (mm == &init_mm) ?
2616 pte_alloc_kernel_track(pmd, addr, mask) :
2617 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2618 if (!pte)
2619 return -ENOMEM;
2620 } else {
2621 mapped_pte = pte = (mm == &init_mm) ?
2622 pte_offset_kernel(pmd, addr) :
2623 pte_offset_map_lock(mm, pmd, addr, &ptl);
2624 }
2625
2626 BUG_ON(pmd_huge(*pmd));
2627
2628 arch_enter_lazy_mmu_mode();
2629
2630 if (fn) {
2631 do {
2632 if (create || !pte_none(*pte)) {
2633 err = fn(pte++, addr, data);
2634 if (err)
2635 break;
2636 }
2637 } while (addr += PAGE_SIZE, addr != end);
2638 }
2639 *mask |= PGTBL_PTE_MODIFIED;
2640
2641 arch_leave_lazy_mmu_mode();
2642
2643 if (mm != &init_mm)
2644 pte_unmap_unlock(mapped_pte, ptl);
2645 return err;
2646 }
2647
2648 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2649 unsigned long addr, unsigned long end,
2650 pte_fn_t fn, void *data, bool create,
2651 pgtbl_mod_mask *mask)
2652 {
2653 pmd_t *pmd;
2654 unsigned long next;
2655 int err = 0;
2656
2657 BUG_ON(pud_huge(*pud));
2658
2659 if (create) {
2660 pmd = pmd_alloc_track(mm, pud, addr, mask);
2661 if (!pmd)
2662 return -ENOMEM;
2663 } else {
2664 pmd = pmd_offset(pud, addr);
2665 }
2666 do {
2667 next = pmd_addr_end(addr, end);
2668 if (pmd_none(*pmd) && !create)
2669 continue;
2670 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2671 return -EINVAL;
2672 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2673 if (!create)
2674 continue;
2675 pmd_clear_bad(pmd);
2676 }
2677 err = apply_to_pte_range(mm, pmd, addr, next,
2678 fn, data, create, mask);
2679 if (err)
2680 break;
2681 } while (pmd++, addr = next, addr != end);
2682
2683 return err;
2684 }
2685
2686 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2687 unsigned long addr, unsigned long end,
2688 pte_fn_t fn, void *data, bool create,
2689 pgtbl_mod_mask *mask)
2690 {
2691 pud_t *pud;
2692 unsigned long next;
2693 int err = 0;
2694
2695 if (create) {
2696 pud = pud_alloc_track(mm, p4d, addr, mask);
2697 if (!pud)
2698 return -ENOMEM;
2699 } else {
2700 pud = pud_offset(p4d, addr);
2701 }
2702 do {
2703 next = pud_addr_end(addr, end);
2704 if (pud_none(*pud) && !create)
2705 continue;
2706 if (WARN_ON_ONCE(pud_leaf(*pud)))
2707 return -EINVAL;
2708 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2709 if (!create)
2710 continue;
2711 pud_clear_bad(pud);
2712 }
2713 err = apply_to_pmd_range(mm, pud, addr, next,
2714 fn, data, create, mask);
2715 if (err)
2716 break;
2717 } while (pud++, addr = next, addr != end);
2718
2719 return err;
2720 }
2721
2722 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2723 unsigned long addr, unsigned long end,
2724 pte_fn_t fn, void *data, bool create,
2725 pgtbl_mod_mask *mask)
2726 {
2727 p4d_t *p4d;
2728 unsigned long next;
2729 int err = 0;
2730
2731 if (create) {
2732 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2733 if (!p4d)
2734 return -ENOMEM;
2735 } else {
2736 p4d = p4d_offset(pgd, addr);
2737 }
2738 do {
2739 next = p4d_addr_end(addr, end);
2740 if (p4d_none(*p4d) && !create)
2741 continue;
2742 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2743 return -EINVAL;
2744 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2745 if (!create)
2746 continue;
2747 p4d_clear_bad(p4d);
2748 }
2749 err = apply_to_pud_range(mm, p4d, addr, next,
2750 fn, data, create, mask);
2751 if (err)
2752 break;
2753 } while (p4d++, addr = next, addr != end);
2754
2755 return err;
2756 }
2757
2758 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2759 unsigned long size, pte_fn_t fn,
2760 void *data, bool create)
2761 {
2762 pgd_t *pgd;
2763 unsigned long start = addr, next;
2764 unsigned long end = addr + size;
2765 pgtbl_mod_mask mask = 0;
2766 int err = 0;
2767
2768 if (WARN_ON(addr >= end))
2769 return -EINVAL;
2770
2771 pgd = pgd_offset(mm, addr);
2772 do {
2773 next = pgd_addr_end(addr, end);
2774 if (pgd_none(*pgd) && !create)
2775 continue;
2776 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2777 return -EINVAL;
2778 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2779 if (!create)
2780 continue;
2781 pgd_clear_bad(pgd);
2782 }
2783 err = apply_to_p4d_range(mm, pgd, addr, next,
2784 fn, data, create, &mask);
2785 if (err)
2786 break;
2787 } while (pgd++, addr = next, addr != end);
2788
2789 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2790 arch_sync_kernel_mappings(start, start + size);
2791
2792 return err;
2793 }
2794
2795 /*
2796 * Scan a region of virtual memory, filling in page tables as necessary
2797 * and calling a provided function on each leaf page table.
2798 */
2799 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2800 unsigned long size, pte_fn_t fn, void *data)
2801 {
2802 return __apply_to_page_range(mm, addr, size, fn, data, true);
2803 }
2804 EXPORT_SYMBOL_GPL(apply_to_page_range);
2805
2806 /*
2807 * Scan a region of virtual memory, calling a provided function on
2808 * each leaf page table where it exists.
2809 *
2810 * Unlike apply_to_page_range, this does _not_ fill in page tables
2811 * where they are absent.
2812 */
2813 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2814 unsigned long size, pte_fn_t fn, void *data)
2815 {
2816 return __apply_to_page_range(mm, addr, size, fn, data, false);
2817 }
2818 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2819
2820 /*
2821 * handle_pte_fault chooses page fault handler according to an entry which was
2822 * read non-atomically. Before making any commitment, on those architectures
2823 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2824 * parts, do_swap_page must check under lock before unmapping the pte and
2825 * proceeding (but do_wp_page is only called after already making such a check;
2826 * and do_anonymous_page can safely check later on).
2827 */
2828 static inline int pte_unmap_same(struct vm_fault *vmf)
2829 {
2830 int same = 1;
2831 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2832 if (sizeof(pte_t) > sizeof(unsigned long)) {
2833 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2834 spin_lock(ptl);
2835 same = pte_same(*vmf->pte, vmf->orig_pte);
2836 spin_unlock(ptl);
2837 }
2838 #endif
2839 pte_unmap(vmf->pte);
2840 vmf->pte = NULL;
2841 return same;
2842 }
2843
2844 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2845 struct vm_fault *vmf)
2846 {
2847 bool ret;
2848 void *kaddr;
2849 void __user *uaddr;
2850 bool locked = false;
2851 struct vm_area_struct *vma = vmf->vma;
2852 struct mm_struct *mm = vma->vm_mm;
2853 unsigned long addr = vmf->address;
2854
2855 if (likely(src)) {
2856 copy_user_highpage(dst, src, addr, vma);
2857 return true;
2858 }
2859
2860 /*
2861 * If the source page was a PFN mapping, we don't have
2862 * a "struct page" for it. We do a best-effort copy by
2863 * just copying from the original user address. If that
2864 * fails, we just zero-fill it. Live with it.
2865 */
2866 kaddr = kmap_atomic(dst);
2867 uaddr = (void __user *)(addr & PAGE_MASK);
2868
2869 /*
2870 * On architectures with software "accessed" bits, we would
2871 * take a double page fault, so mark it accessed here.
2872 */
2873 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2874 pte_t entry;
2875
2876 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2877 locked = true;
2878 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879 /*
2880 * Other thread has already handled the fault
2881 * and update local tlb only
2882 */
2883 update_mmu_tlb(vma, addr, vmf->pte);
2884 ret = false;
2885 goto pte_unlock;
2886 }
2887
2888 entry = pte_mkyoung(vmf->orig_pte);
2889 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2890 update_mmu_cache(vma, addr, vmf->pte);
2891 }
2892
2893 /*
2894 * This really shouldn't fail, because the page is there
2895 * in the page tables. But it might just be unreadable,
2896 * in which case we just give up and fill the result with
2897 * zeroes.
2898 */
2899 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2900 if (locked)
2901 goto warn;
2902
2903 /* Re-validate under PTL if the page is still mapped */
2904 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2905 locked = true;
2906 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2907 /* The PTE changed under us, update local tlb */
2908 update_mmu_tlb(vma, addr, vmf->pte);
2909 ret = false;
2910 goto pte_unlock;
2911 }
2912
2913 /*
2914 * The same page can be mapped back since last copy attempt.
2915 * Try to copy again under PTL.
2916 */
2917 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2918 /*
2919 * Give a warn in case there can be some obscure
2920 * use-case
2921 */
2922 warn:
2923 WARN_ON_ONCE(1);
2924 clear_page(kaddr);
2925 }
2926 }
2927
2928 ret = true;
2929
2930 pte_unlock:
2931 if (locked)
2932 pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 kunmap_atomic(kaddr);
2934 flush_dcache_page(dst);
2935
2936 return ret;
2937 }
2938
2939 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2940 {
2941 struct file *vm_file = vma->vm_file;
2942
2943 if (vm_file)
2944 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2945
2946 /*
2947 * Special mappings (e.g. VDSO) do not have any file so fake
2948 * a default GFP_KERNEL for them.
2949 */
2950 return GFP_KERNEL;
2951 }
2952
2953 /*
2954 * Notify the address space that the page is about to become writable so that
2955 * it can prohibit this or wait for the page to get into an appropriate state.
2956 *
2957 * We do this without the lock held, so that it can sleep if it needs to.
2958 */
2959 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2960 {
2961 vm_fault_t ret;
2962 struct page *page = vmf->page;
2963 unsigned int old_flags = vmf->flags;
2964
2965 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2966
2967 if (vmf->vma->vm_file &&
2968 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2969 return VM_FAULT_SIGBUS;
2970
2971 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2972 /* Restore original flags so that caller is not surprised */
2973 vmf->flags = old_flags;
2974 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2975 return ret;
2976 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2977 lock_page(page);
2978 if (!page->mapping) {
2979 unlock_page(page);
2980 return 0; /* retry */
2981 }
2982 ret |= VM_FAULT_LOCKED;
2983 } else
2984 VM_BUG_ON_PAGE(!PageLocked(page), page);
2985 return ret;
2986 }
2987
2988 /*
2989 * Handle dirtying of a page in shared file mapping on a write fault.
2990 *
2991 * The function expects the page to be locked and unlocks it.
2992 */
2993 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2994 {
2995 struct vm_area_struct *vma = vmf->vma;
2996 struct address_space *mapping;
2997 struct page *page = vmf->page;
2998 bool dirtied;
2999 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3000
3001 dirtied = set_page_dirty(page);
3002 VM_BUG_ON_PAGE(PageAnon(page), page);
3003 /*
3004 * Take a local copy of the address_space - page.mapping may be zeroed
3005 * by truncate after unlock_page(). The address_space itself remains
3006 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3007 * release semantics to prevent the compiler from undoing this copying.
3008 */
3009 mapping = page_rmapping(page);
3010 unlock_page(page);
3011
3012 if (!page_mkwrite)
3013 file_update_time(vma->vm_file);
3014
3015 /*
3016 * Throttle page dirtying rate down to writeback speed.
3017 *
3018 * mapping may be NULL here because some device drivers do not
3019 * set page.mapping but still dirty their pages
3020 *
3021 * Drop the mmap_lock before waiting on IO, if we can. The file
3022 * is pinning the mapping, as per above.
3023 */
3024 if ((dirtied || page_mkwrite) && mapping) {
3025 struct file *fpin;
3026
3027 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3028 balance_dirty_pages_ratelimited(mapping);
3029 if (fpin) {
3030 fput(fpin);
3031 return VM_FAULT_COMPLETED;
3032 }
3033 }
3034
3035 return 0;
3036 }
3037
3038 /*
3039 * Handle write page faults for pages that can be reused in the current vma
3040 *
3041 * This can happen either due to the mapping being with the VM_SHARED flag,
3042 * or due to us being the last reference standing to the page. In either
3043 * case, all we need to do here is to mark the page as writable and update
3044 * any related book-keeping.
3045 */
3046 static inline void wp_page_reuse(struct vm_fault *vmf)
3047 __releases(vmf->ptl)
3048 {
3049 struct vm_area_struct *vma = vmf->vma;
3050 struct page *page = vmf->page;
3051 pte_t entry;
3052
3053 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3054 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3055
3056 /*
3057 * Clear the pages cpupid information as the existing
3058 * information potentially belongs to a now completely
3059 * unrelated process.
3060 */
3061 if (page)
3062 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3063
3064 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3065 entry = pte_mkyoung(vmf->orig_pte);
3066 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3067 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3068 update_mmu_cache(vma, vmf->address, vmf->pte);
3069 pte_unmap_unlock(vmf->pte, vmf->ptl);
3070 count_vm_event(PGREUSE);
3071 }
3072
3073 /*
3074 * Handle the case of a page which we actually need to copy to a new page,
3075 * either due to COW or unsharing.
3076 *
3077 * Called with mmap_lock locked and the old page referenced, but
3078 * without the ptl held.
3079 *
3080 * High level logic flow:
3081 *
3082 * - Allocate a page, copy the content of the old page to the new one.
3083 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3084 * - Take the PTL. If the pte changed, bail out and release the allocated page
3085 * - If the pte is still the way we remember it, update the page table and all
3086 * relevant references. This includes dropping the reference the page-table
3087 * held to the old page, as well as updating the rmap.
3088 * - In any case, unlock the PTL and drop the reference we took to the old page.
3089 */
3090 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3091 {
3092 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3093 struct vm_area_struct *vma = vmf->vma;
3094 struct mm_struct *mm = vma->vm_mm;
3095 struct page *old_page = vmf->page;
3096 struct page *new_page = NULL;
3097 pte_t entry;
3098 int page_copied = 0;
3099 struct mmu_notifier_range range;
3100
3101 delayacct_wpcopy_start();
3102
3103 if (unlikely(anon_vma_prepare(vma)))
3104 goto oom;
3105
3106 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3107 new_page = alloc_zeroed_user_highpage_movable(vma,
3108 vmf->address);
3109 if (!new_page)
3110 goto oom;
3111 } else {
3112 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3113 vmf->address);
3114 if (!new_page)
3115 goto oom;
3116
3117 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3118 /*
3119 * COW failed, if the fault was solved by other,
3120 * it's fine. If not, userspace would re-fault on
3121 * the same address and we will handle the fault
3122 * from the second attempt.
3123 */
3124 put_page(new_page);
3125 if (old_page)
3126 put_page(old_page);
3127
3128 delayacct_wpcopy_end();
3129 return 0;
3130 }
3131 }
3132
3133 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3134 goto oom_free_new;
3135 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3136
3137 __SetPageUptodate(new_page);
3138
3139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3140 vmf->address & PAGE_MASK,
3141 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3142 mmu_notifier_invalidate_range_start(&range);
3143
3144 /*
3145 * Re-check the pte - we dropped the lock
3146 */
3147 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3148 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3149 if (old_page) {
3150 if (!PageAnon(old_page)) {
3151 dec_mm_counter_fast(mm,
3152 mm_counter_file(old_page));
3153 inc_mm_counter_fast(mm, MM_ANONPAGES);
3154 }
3155 } else {
3156 inc_mm_counter_fast(mm, MM_ANONPAGES);
3157 }
3158 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3159 entry = mk_pte(new_page, vma->vm_page_prot);
3160 entry = pte_sw_mkyoung(entry);
3161 if (unlikely(unshare)) {
3162 if (pte_soft_dirty(vmf->orig_pte))
3163 entry = pte_mksoft_dirty(entry);
3164 if (pte_uffd_wp(vmf->orig_pte))
3165 entry = pte_mkuffd_wp(entry);
3166 } else {
3167 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3168 }
3169
3170 /*
3171 * Clear the pte entry and flush it first, before updating the
3172 * pte with the new entry, to keep TLBs on different CPUs in
3173 * sync. This code used to set the new PTE then flush TLBs, but
3174 * that left a window where the new PTE could be loaded into
3175 * some TLBs while the old PTE remains in others.
3176 */
3177 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3178 page_add_new_anon_rmap(new_page, vma, vmf->address);
3179 lru_cache_add_inactive_or_unevictable(new_page, vma);
3180 /*
3181 * We call the notify macro here because, when using secondary
3182 * mmu page tables (such as kvm shadow page tables), we want the
3183 * new page to be mapped directly into the secondary page table.
3184 */
3185 BUG_ON(unshare && pte_write(entry));
3186 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187 update_mmu_cache(vma, vmf->address, vmf->pte);
3188 if (old_page) {
3189 /*
3190 * Only after switching the pte to the new page may
3191 * we remove the mapcount here. Otherwise another
3192 * process may come and find the rmap count decremented
3193 * before the pte is switched to the new page, and
3194 * "reuse" the old page writing into it while our pte
3195 * here still points into it and can be read by other
3196 * threads.
3197 *
3198 * The critical issue is to order this
3199 * page_remove_rmap with the ptp_clear_flush above.
3200 * Those stores are ordered by (if nothing else,)
3201 * the barrier present in the atomic_add_negative
3202 * in page_remove_rmap.
3203 *
3204 * Then the TLB flush in ptep_clear_flush ensures that
3205 * no process can access the old page before the
3206 * decremented mapcount is visible. And the old page
3207 * cannot be reused until after the decremented
3208 * mapcount is visible. So transitively, TLBs to
3209 * old page will be flushed before it can be reused.
3210 */
3211 page_remove_rmap(old_page, vma, false);
3212 }
3213
3214 /* Free the old page.. */
3215 new_page = old_page;
3216 page_copied = 1;
3217 } else {
3218 update_mmu_tlb(vma, vmf->address, vmf->pte);
3219 }
3220
3221 if (new_page)
3222 put_page(new_page);
3223
3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
3225 /*
3226 * No need to double call mmu_notifier->invalidate_range() callback as
3227 * the above ptep_clear_flush_notify() did already call it.
3228 */
3229 mmu_notifier_invalidate_range_only_end(&range);
3230 if (old_page) {
3231 if (page_copied)
3232 free_swap_cache(old_page);
3233 put_page(old_page);
3234 }
3235
3236 delayacct_wpcopy_end();
3237 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3238 oom_free_new:
3239 put_page(new_page);
3240 oom:
3241 if (old_page)
3242 put_page(old_page);
3243
3244 delayacct_wpcopy_end();
3245 return VM_FAULT_OOM;
3246 }
3247
3248 /**
3249 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3250 * writeable once the page is prepared
3251 *
3252 * @vmf: structure describing the fault
3253 *
3254 * This function handles all that is needed to finish a write page fault in a
3255 * shared mapping due to PTE being read-only once the mapped page is prepared.
3256 * It handles locking of PTE and modifying it.
3257 *
3258 * The function expects the page to be locked or other protection against
3259 * concurrent faults / writeback (such as DAX radix tree locks).
3260 *
3261 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3262 * we acquired PTE lock.
3263 */
3264 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3265 {
3266 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3267 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3268 &vmf->ptl);
3269 /*
3270 * We might have raced with another page fault while we released the
3271 * pte_offset_map_lock.
3272 */
3273 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3274 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3275 pte_unmap_unlock(vmf->pte, vmf->ptl);
3276 return VM_FAULT_NOPAGE;
3277 }
3278 wp_page_reuse(vmf);
3279 return 0;
3280 }
3281
3282 /*
3283 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3284 * mapping
3285 */
3286 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3287 {
3288 struct vm_area_struct *vma = vmf->vma;
3289
3290 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3291 vm_fault_t ret;
3292
3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 vmf->flags |= FAULT_FLAG_MKWRITE;
3295 ret = vma->vm_ops->pfn_mkwrite(vmf);
3296 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3297 return ret;
3298 return finish_mkwrite_fault(vmf);
3299 }
3300 wp_page_reuse(vmf);
3301 return VM_FAULT_WRITE;
3302 }
3303
3304 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3305 __releases(vmf->ptl)
3306 {
3307 struct vm_area_struct *vma = vmf->vma;
3308 vm_fault_t ret = VM_FAULT_WRITE;
3309
3310 get_page(vmf->page);
3311
3312 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3313 vm_fault_t tmp;
3314
3315 pte_unmap_unlock(vmf->pte, vmf->ptl);
3316 tmp = do_page_mkwrite(vmf);
3317 if (unlikely(!tmp || (tmp &
3318 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3319 put_page(vmf->page);
3320 return tmp;
3321 }
3322 tmp = finish_mkwrite_fault(vmf);
3323 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3324 unlock_page(vmf->page);
3325 put_page(vmf->page);
3326 return tmp;
3327 }
3328 } else {
3329 wp_page_reuse(vmf);
3330 lock_page(vmf->page);
3331 }
3332 ret |= fault_dirty_shared_page(vmf);
3333 put_page(vmf->page);
3334
3335 return ret;
3336 }
3337
3338 /*
3339 * This routine handles present pages, when
3340 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3341 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3342 * (FAULT_FLAG_UNSHARE)
3343 *
3344 * It is done by copying the page to a new address and decrementing the
3345 * shared-page counter for the old page.
3346 *
3347 * Note that this routine assumes that the protection checks have been
3348 * done by the caller (the low-level page fault routine in most cases).
3349 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3350 * done any necessary COW.
3351 *
3352 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3353 * though the page will change only once the write actually happens. This
3354 * avoids a few races, and potentially makes it more efficient.
3355 *
3356 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3357 * but allow concurrent faults), with pte both mapped and locked.
3358 * We return with mmap_lock still held, but pte unmapped and unlocked.
3359 */
3360 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3361 __releases(vmf->ptl)
3362 {
3363 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3364 struct vm_area_struct *vma = vmf->vma;
3365
3366 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3367 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3368
3369 if (likely(!unshare)) {
3370 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3371 pte_unmap_unlock(vmf->pte, vmf->ptl);
3372 return handle_userfault(vmf, VM_UFFD_WP);
3373 }
3374
3375 /*
3376 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3377 * is flushed in this case before copying.
3378 */
3379 if (unlikely(userfaultfd_wp(vmf->vma) &&
3380 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3381 flush_tlb_page(vmf->vma, vmf->address);
3382 }
3383
3384 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3385 if (!vmf->page) {
3386 if (unlikely(unshare)) {
3387 /* No anonymous page -> nothing to do. */
3388 pte_unmap_unlock(vmf->pte, vmf->ptl);
3389 return 0;
3390 }
3391
3392 /*
3393 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3394 * VM_PFNMAP VMA.
3395 *
3396 * We should not cow pages in a shared writeable mapping.
3397 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3398 */
3399 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3400 (VM_WRITE|VM_SHARED))
3401 return wp_pfn_shared(vmf);
3402
3403 pte_unmap_unlock(vmf->pte, vmf->ptl);
3404 return wp_page_copy(vmf);
3405 }
3406
3407 /*
3408 * Take out anonymous pages first, anonymous shared vmas are
3409 * not dirty accountable.
3410 */
3411 if (PageAnon(vmf->page)) {
3412 struct page *page = vmf->page;
3413
3414 /*
3415 * If the page is exclusive to this process we must reuse the
3416 * page without further checks.
3417 */
3418 if (PageAnonExclusive(page))
3419 goto reuse;
3420
3421 /*
3422 * We have to verify under page lock: these early checks are
3423 * just an optimization to avoid locking the page and freeing
3424 * the swapcache if there is little hope that we can reuse.
3425 *
3426 * PageKsm() doesn't necessarily raise the page refcount.
3427 */
3428 if (PageKsm(page) || page_count(page) > 3)
3429 goto copy;
3430 if (!PageLRU(page))
3431 /*
3432 * Note: We cannot easily detect+handle references from
3433 * remote LRU pagevecs or references to PageLRU() pages.
3434 */
3435 lru_add_drain();
3436 if (page_count(page) > 1 + PageSwapCache(page))
3437 goto copy;
3438 if (!trylock_page(page))
3439 goto copy;
3440 if (PageSwapCache(page))
3441 try_to_free_swap(page);
3442 if (PageKsm(page) || page_count(page) != 1) {
3443 unlock_page(page);
3444 goto copy;
3445 }
3446 /*
3447 * Ok, we've got the only page reference from our mapping
3448 * and the page is locked, it's dark out, and we're wearing
3449 * sunglasses. Hit it.
3450 */
3451 page_move_anon_rmap(page, vma);
3452 unlock_page(page);
3453 reuse:
3454 if (unlikely(unshare)) {
3455 pte_unmap_unlock(vmf->pte, vmf->ptl);
3456 return 0;
3457 }
3458 wp_page_reuse(vmf);
3459 return VM_FAULT_WRITE;
3460 } else if (unshare) {
3461 /* No anonymous page -> nothing to do. */
3462 pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 return 0;
3464 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3465 (VM_WRITE|VM_SHARED))) {
3466 return wp_page_shared(vmf);
3467 }
3468 copy:
3469 /*
3470 * Ok, we need to copy. Oh, well..
3471 */
3472 get_page(vmf->page);
3473
3474 pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 #ifdef CONFIG_KSM
3476 if (PageKsm(vmf->page))
3477 count_vm_event(COW_KSM);
3478 #endif
3479 return wp_page_copy(vmf);
3480 }
3481
3482 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3483 unsigned long start_addr, unsigned long end_addr,
3484 struct zap_details *details)
3485 {
3486 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3487 }
3488
3489 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3490 pgoff_t first_index,
3491 pgoff_t last_index,
3492 struct zap_details *details)
3493 {
3494 struct vm_area_struct *vma;
3495 pgoff_t vba, vea, zba, zea;
3496
3497 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3498 vba = vma->vm_pgoff;
3499 vea = vba + vma_pages(vma) - 1;
3500 zba = max(first_index, vba);
3501 zea = min(last_index, vea);
3502
3503 unmap_mapping_range_vma(vma,
3504 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3505 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3506 details);
3507 }
3508 }
3509
3510 /**
3511 * unmap_mapping_folio() - Unmap single folio from processes.
3512 * @folio: The locked folio to be unmapped.
3513 *
3514 * Unmap this folio from any userspace process which still has it mmaped.
3515 * Typically, for efficiency, the range of nearby pages has already been
3516 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3517 * truncation or invalidation holds the lock on a folio, it may find that
3518 * the page has been remapped again: and then uses unmap_mapping_folio()
3519 * to unmap it finally.
3520 */
3521 void unmap_mapping_folio(struct folio *folio)
3522 {
3523 struct address_space *mapping = folio->mapping;
3524 struct zap_details details = { };
3525 pgoff_t first_index;
3526 pgoff_t last_index;
3527
3528 VM_BUG_ON(!folio_test_locked(folio));
3529
3530 first_index = folio->index;
3531 last_index = folio->index + folio_nr_pages(folio) - 1;
3532
3533 details.even_cows = false;
3534 details.single_folio = folio;
3535 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3536
3537 i_mmap_lock_read(mapping);
3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 last_index, &details);
3541 i_mmap_unlock_read(mapping);
3542 }
3543
3544 /**
3545 * unmap_mapping_pages() - Unmap pages from processes.
3546 * @mapping: The address space containing pages to be unmapped.
3547 * @start: Index of first page to be unmapped.
3548 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3549 * @even_cows: Whether to unmap even private COWed pages.
3550 *
3551 * Unmap the pages in this address space from any userspace process which
3552 * has them mmaped. Generally, you want to remove COWed pages as well when
3553 * a file is being truncated, but not when invalidating pages from the page
3554 * cache.
3555 */
3556 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3557 pgoff_t nr, bool even_cows)
3558 {
3559 struct zap_details details = { };
3560 pgoff_t first_index = start;
3561 pgoff_t last_index = start + nr - 1;
3562
3563 details.even_cows = even_cows;
3564 if (last_index < first_index)
3565 last_index = ULONG_MAX;
3566
3567 i_mmap_lock_read(mapping);
3568 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3569 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3570 last_index, &details);
3571 i_mmap_unlock_read(mapping);
3572 }
3573 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3574
3575 /**
3576 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3577 * address_space corresponding to the specified byte range in the underlying
3578 * file.
3579 *
3580 * @mapping: the address space containing mmaps to be unmapped.
3581 * @holebegin: byte in first page to unmap, relative to the start of
3582 * the underlying file. This will be rounded down to a PAGE_SIZE
3583 * boundary. Note that this is different from truncate_pagecache(), which
3584 * must keep the partial page. In contrast, we must get rid of
3585 * partial pages.
3586 * @holelen: size of prospective hole in bytes. This will be rounded
3587 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3588 * end of the file.
3589 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3590 * but 0 when invalidating pagecache, don't throw away private data.
3591 */
3592 void unmap_mapping_range(struct address_space *mapping,
3593 loff_t const holebegin, loff_t const holelen, int even_cows)
3594 {
3595 pgoff_t hba = holebegin >> PAGE_SHIFT;
3596 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3597
3598 /* Check for overflow. */
3599 if (sizeof(holelen) > sizeof(hlen)) {
3600 long long holeend =
3601 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602 if (holeend & ~(long long)ULONG_MAX)
3603 hlen = ULONG_MAX - hba + 1;
3604 }
3605
3606 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3607 }
3608 EXPORT_SYMBOL(unmap_mapping_range);
3609
3610 /*
3611 * Restore a potential device exclusive pte to a working pte entry
3612 */
3613 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3614 {
3615 struct page *page = vmf->page;
3616 struct vm_area_struct *vma = vmf->vma;
3617 struct mmu_notifier_range range;
3618
3619 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3620 return VM_FAULT_RETRY;
3621 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3622 vma->vm_mm, vmf->address & PAGE_MASK,
3623 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3624 mmu_notifier_invalidate_range_start(&range);
3625
3626 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3627 &vmf->ptl);
3628 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3629 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3630
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632 unlock_page(page);
3633
3634 mmu_notifier_invalidate_range_end(&range);
3635 return 0;
3636 }
3637
3638 static inline bool should_try_to_free_swap(struct page *page,
3639 struct vm_area_struct *vma,
3640 unsigned int fault_flags)
3641 {
3642 if (!PageSwapCache(page))
3643 return false;
3644 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3645 PageMlocked(page))
3646 return true;
3647 /*
3648 * If we want to map a page that's in the swapcache writable, we
3649 * have to detect via the refcount if we're really the exclusive
3650 * user. Try freeing the swapcache to get rid of the swapcache
3651 * reference only in case it's likely that we'll be the exlusive user.
3652 */
3653 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3654 page_count(page) == 2;
3655 }
3656
3657 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3658 {
3659 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3660 vmf->address, &vmf->ptl);
3661 /*
3662 * Be careful so that we will only recover a special uffd-wp pte into a
3663 * none pte. Otherwise it means the pte could have changed, so retry.
3664 */
3665 if (is_pte_marker(*vmf->pte))
3666 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3667 pte_unmap_unlock(vmf->pte, vmf->ptl);
3668 return 0;
3669 }
3670
3671 /*
3672 * This is actually a page-missing access, but with uffd-wp special pte
3673 * installed. It means this pte was wr-protected before being unmapped.
3674 */
3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3676 {
3677 /*
3678 * Just in case there're leftover special ptes even after the region
3679 * got unregistered - we can simply clear them. We can also do that
3680 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3681 * ranges, but it should be more efficient to be done lazily here.
3682 */
3683 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3684 return pte_marker_clear(vmf);
3685
3686 /* do_fault() can handle pte markers too like none pte */
3687 return do_fault(vmf);
3688 }
3689
3690 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3691 {
3692 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3693 unsigned long marker = pte_marker_get(entry);
3694
3695 /*
3696 * PTE markers should always be with file-backed memories, and the
3697 * marker should never be empty. If anything weird happened, the best
3698 * thing to do is to kill the process along with its mm.
3699 */
3700 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3701 return VM_FAULT_SIGBUS;
3702
3703 if (pte_marker_entry_uffd_wp(entry))
3704 return pte_marker_handle_uffd_wp(vmf);
3705
3706 /* This is an unknown pte marker */
3707 return VM_FAULT_SIGBUS;
3708 }
3709
3710 /*
3711 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712 * but allow concurrent faults), and pte mapped but not yet locked.
3713 * We return with pte unmapped and unlocked.
3714 *
3715 * We return with the mmap_lock locked or unlocked in the same cases
3716 * as does filemap_fault().
3717 */
3718 vm_fault_t do_swap_page(struct vm_fault *vmf)
3719 {
3720 struct vm_area_struct *vma = vmf->vma;
3721 struct page *page = NULL, *swapcache;
3722 struct swap_info_struct *si = NULL;
3723 rmap_t rmap_flags = RMAP_NONE;
3724 bool exclusive = false;
3725 swp_entry_t entry;
3726 pte_t pte;
3727 int locked;
3728 vm_fault_t ret = 0;
3729 void *shadow = NULL;
3730
3731 if (!pte_unmap_same(vmf))
3732 goto out;
3733
3734 entry = pte_to_swp_entry(vmf->orig_pte);
3735 if (unlikely(non_swap_entry(entry))) {
3736 if (is_migration_entry(entry)) {
3737 migration_entry_wait(vma->vm_mm, vmf->pmd,
3738 vmf->address);
3739 } else if (is_device_exclusive_entry(entry)) {
3740 vmf->page = pfn_swap_entry_to_page(entry);
3741 ret = remove_device_exclusive_entry(vmf);
3742 } else if (is_device_private_entry(entry)) {
3743 vmf->page = pfn_swap_entry_to_page(entry);
3744 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3745 } else if (is_hwpoison_entry(entry)) {
3746 ret = VM_FAULT_HWPOISON;
3747 } else if (is_swapin_error_entry(entry)) {
3748 ret = VM_FAULT_SIGBUS;
3749 } else if (is_pte_marker_entry(entry)) {
3750 ret = handle_pte_marker(vmf);
3751 } else {
3752 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3753 ret = VM_FAULT_SIGBUS;
3754 }
3755 goto out;
3756 }
3757
3758 /* Prevent swapoff from happening to us. */
3759 si = get_swap_device(entry);
3760 if (unlikely(!si))
3761 goto out;
3762
3763 page = lookup_swap_cache(entry, vma, vmf->address);
3764 swapcache = page;
3765
3766 if (!page) {
3767 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3768 __swap_count(entry) == 1) {
3769 /* skip swapcache */
3770 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3771 vmf->address);
3772 if (page) {
3773 __SetPageLocked(page);
3774 __SetPageSwapBacked(page);
3775
3776 if (mem_cgroup_swapin_charge_page(page,
3777 vma->vm_mm, GFP_KERNEL, entry)) {
3778 ret = VM_FAULT_OOM;
3779 goto out_page;
3780 }
3781 mem_cgroup_swapin_uncharge_swap(entry);
3782
3783 shadow = get_shadow_from_swap_cache(entry);
3784 if (shadow)
3785 workingset_refault(page_folio(page),
3786 shadow);
3787
3788 lru_cache_add(page);
3789
3790 /* To provide entry to swap_readpage() */
3791 set_page_private(page, entry.val);
3792 swap_readpage(page, true, NULL);
3793 set_page_private(page, 0);
3794 }
3795 } else {
3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 vmf);
3798 swapcache = page;
3799 }
3800
3801 if (!page) {
3802 /*
3803 * Back out if somebody else faulted in this pte
3804 * while we released the pte lock.
3805 */
3806 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 vmf->address, &vmf->ptl);
3808 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3809 ret = VM_FAULT_OOM;
3810 goto unlock;
3811 }
3812
3813 /* Had to read the page from swap area: Major fault */
3814 ret = VM_FAULT_MAJOR;
3815 count_vm_event(PGMAJFAULT);
3816 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3817 } else if (PageHWPoison(page)) {
3818 /*
3819 * hwpoisoned dirty swapcache pages are kept for killing
3820 * owner processes (which may be unknown at hwpoison time)
3821 */
3822 ret = VM_FAULT_HWPOISON;
3823 goto out_release;
3824 }
3825
3826 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3827
3828 if (!locked) {
3829 ret |= VM_FAULT_RETRY;
3830 goto out_release;
3831 }
3832
3833 if (swapcache) {
3834 /*
3835 * Make sure try_to_free_swap or swapoff did not release the
3836 * swapcache from under us. The page pin, and pte_same test
3837 * below, are not enough to exclude that. Even if it is still
3838 * swapcache, we need to check that the page's swap has not
3839 * changed.
3840 */
3841 if (unlikely(!PageSwapCache(page) ||
3842 page_private(page) != entry.val))
3843 goto out_page;
3844
3845 /*
3846 * KSM sometimes has to copy on read faults, for example, if
3847 * page->index of !PageKSM() pages would be nonlinear inside the
3848 * anon VMA -- PageKSM() is lost on actual swapout.
3849 */
3850 page = ksm_might_need_to_copy(page, vma, vmf->address);
3851 if (unlikely(!page)) {
3852 ret = VM_FAULT_OOM;
3853 page = swapcache;
3854 goto out_page;
3855 }
3856
3857 /*
3858 * If we want to map a page that's in the swapcache writable, we
3859 * have to detect via the refcount if we're really the exclusive
3860 * owner. Try removing the extra reference from the local LRU
3861 * pagevecs if required.
3862 */
3863 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3864 !PageKsm(page) && !PageLRU(page))
3865 lru_add_drain();
3866 }
3867
3868 cgroup_throttle_swaprate(page, GFP_KERNEL);
3869
3870 /*
3871 * Back out if somebody else already faulted in this pte.
3872 */
3873 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3874 &vmf->ptl);
3875 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3876 goto out_nomap;
3877
3878 if (unlikely(!PageUptodate(page))) {
3879 ret = VM_FAULT_SIGBUS;
3880 goto out_nomap;
3881 }
3882
3883 /*
3884 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3885 * must never point at an anonymous page in the swapcache that is
3886 * PG_anon_exclusive. Sanity check that this holds and especially, that
3887 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3888 * check after taking the PT lock and making sure that nobody
3889 * concurrently faulted in this page and set PG_anon_exclusive.
3890 */
3891 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3892 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3893
3894 /*
3895 * Check under PT lock (to protect against concurrent fork() sharing
3896 * the swap entry concurrently) for certainly exclusive pages.
3897 */
3898 if (!PageKsm(page)) {
3899 /*
3900 * Note that pte_swp_exclusive() == false for architectures
3901 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3902 */
3903 exclusive = pte_swp_exclusive(vmf->orig_pte);
3904 if (page != swapcache) {
3905 /*
3906 * We have a fresh page that is not exposed to the
3907 * swapcache -> certainly exclusive.
3908 */
3909 exclusive = true;
3910 } else if (exclusive && PageWriteback(page) &&
3911 data_race(si->flags & SWP_STABLE_WRITES)) {
3912 /*
3913 * This is tricky: not all swap backends support
3914 * concurrent page modifications while under writeback.
3915 *
3916 * So if we stumble over such a page in the swapcache
3917 * we must not set the page exclusive, otherwise we can
3918 * map it writable without further checks and modify it
3919 * while still under writeback.
3920 *
3921 * For these problematic swap backends, simply drop the
3922 * exclusive marker: this is perfectly fine as we start
3923 * writeback only if we fully unmapped the page and
3924 * there are no unexpected references on the page after
3925 * unmapping succeeded. After fully unmapped, no
3926 * further GUP references (FOLL_GET and FOLL_PIN) can
3927 * appear, so dropping the exclusive marker and mapping
3928 * it only R/O is fine.
3929 */
3930 exclusive = false;
3931 }
3932 }
3933
3934 /*
3935 * Remove the swap entry and conditionally try to free up the swapcache.
3936 * We're already holding a reference on the page but haven't mapped it
3937 * yet.
3938 */
3939 swap_free(entry);
3940 if (should_try_to_free_swap(page, vma, vmf->flags))
3941 try_to_free_swap(page);
3942
3943 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3944 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3945 pte = mk_pte(page, vma->vm_page_prot);
3946
3947 /*
3948 * Same logic as in do_wp_page(); however, optimize for pages that are
3949 * certainly not shared either because we just allocated them without
3950 * exposing them to the swapcache or because the swap entry indicates
3951 * exclusivity.
3952 */
3953 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3954 if (vmf->flags & FAULT_FLAG_WRITE) {
3955 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3956 vmf->flags &= ~FAULT_FLAG_WRITE;
3957 ret |= VM_FAULT_WRITE;
3958 }
3959 rmap_flags |= RMAP_EXCLUSIVE;
3960 }
3961 flush_icache_page(vma, page);
3962 if (pte_swp_soft_dirty(vmf->orig_pte))
3963 pte = pte_mksoft_dirty(pte);
3964 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3965 pte = pte_mkuffd_wp(pte);
3966 pte = pte_wrprotect(pte);
3967 }
3968 vmf->orig_pte = pte;
3969
3970 /* ksm created a completely new copy */
3971 if (unlikely(page != swapcache && swapcache)) {
3972 page_add_new_anon_rmap(page, vma, vmf->address);
3973 lru_cache_add_inactive_or_unevictable(page, vma);
3974 } else {
3975 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3976 }
3977
3978 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
3982 unlock_page(page);
3983 if (page != swapcache && swapcache) {
3984 /*
3985 * Hold the lock to avoid the swap entry to be reused
3986 * until we take the PT lock for the pte_same() check
3987 * (to avoid false positives from pte_same). For
3988 * further safety release the lock after the swap_free
3989 * so that the swap count won't change under a
3990 * parallel locked swapcache.
3991 */
3992 unlock_page(swapcache);
3993 put_page(swapcache);
3994 }
3995
3996 if (vmf->flags & FAULT_FLAG_WRITE) {
3997 ret |= do_wp_page(vmf);
3998 if (ret & VM_FAULT_ERROR)
3999 ret &= VM_FAULT_ERROR;
4000 goto out;
4001 }
4002
4003 /* No need to invalidate - it was non-present before */
4004 update_mmu_cache(vma, vmf->address, vmf->pte);
4005 unlock:
4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 out:
4008 if (si)
4009 put_swap_device(si);
4010 return ret;
4011 out_nomap:
4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 out_page:
4014 unlock_page(page);
4015 out_release:
4016 put_page(page);
4017 if (page != swapcache && swapcache) {
4018 unlock_page(swapcache);
4019 put_page(swapcache);
4020 }
4021 if (si)
4022 put_swap_device(si);
4023 return ret;
4024 }
4025
4026 /*
4027 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028 * but allow concurrent faults), and pte mapped but not yet locked.
4029 * We return with mmap_lock still held, but pte unmapped and unlocked.
4030 */
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032 {
4033 struct vm_area_struct *vma = vmf->vma;
4034 struct page *page;
4035 vm_fault_t ret = 0;
4036 pte_t entry;
4037
4038 /* File mapping without ->vm_ops ? */
4039 if (vma->vm_flags & VM_SHARED)
4040 return VM_FAULT_SIGBUS;
4041
4042 /*
4043 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4044 * pte_offset_map() on pmds where a huge pmd might be created
4045 * from a different thread.
4046 *
4047 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4048 * parallel threads are excluded by other means.
4049 *
4050 * Here we only have mmap_read_lock(mm).
4051 */
4052 if (pte_alloc(vma->vm_mm, vmf->pmd))
4053 return VM_FAULT_OOM;
4054
4055 /* See comment in handle_pte_fault() */
4056 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4057 return 0;
4058
4059 /* Use the zero-page for reads */
4060 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4061 !mm_forbids_zeropage(vma->vm_mm)) {
4062 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4063 vma->vm_page_prot));
4064 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4065 vmf->address, &vmf->ptl);
4066 if (!pte_none(*vmf->pte)) {
4067 update_mmu_tlb(vma, vmf->address, vmf->pte);
4068 goto unlock;
4069 }
4070 ret = check_stable_address_space(vma->vm_mm);
4071 if (ret)
4072 goto unlock;
4073 /* Deliver the page fault to userland, check inside PT lock */
4074 if (userfaultfd_missing(vma)) {
4075 pte_unmap_unlock(vmf->pte, vmf->ptl);
4076 return handle_userfault(vmf, VM_UFFD_MISSING);
4077 }
4078 goto setpte;
4079 }
4080
4081 /* Allocate our own private page. */
4082 if (unlikely(anon_vma_prepare(vma)))
4083 goto oom;
4084 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4085 if (!page)
4086 goto oom;
4087
4088 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4089 goto oom_free_page;
4090 cgroup_throttle_swaprate(page, GFP_KERNEL);
4091
4092 /*
4093 * The memory barrier inside __SetPageUptodate makes sure that
4094 * preceding stores to the page contents become visible before
4095 * the set_pte_at() write.
4096 */
4097 __SetPageUptodate(page);
4098
4099 entry = mk_pte(page, vma->vm_page_prot);
4100 entry = pte_sw_mkyoung(entry);
4101 if (vma->vm_flags & VM_WRITE)
4102 entry = pte_mkwrite(pte_mkdirty(entry));
4103
4104 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4105 &vmf->ptl);
4106 if (!pte_none(*vmf->pte)) {
4107 update_mmu_cache(vma, vmf->address, vmf->pte);
4108 goto release;
4109 }
4110
4111 ret = check_stable_address_space(vma->vm_mm);
4112 if (ret)
4113 goto release;
4114
4115 /* Deliver the page fault to userland, check inside PT lock */
4116 if (userfaultfd_missing(vma)) {
4117 pte_unmap_unlock(vmf->pte, vmf->ptl);
4118 put_page(page);
4119 return handle_userfault(vmf, VM_UFFD_MISSING);
4120 }
4121
4122 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4123 page_add_new_anon_rmap(page, vma, vmf->address);
4124 lru_cache_add_inactive_or_unevictable(page, vma);
4125 setpte:
4126 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4127
4128 /* No need to invalidate - it was non-present before */
4129 update_mmu_cache(vma, vmf->address, vmf->pte);
4130 unlock:
4131 pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 return ret;
4133 release:
4134 put_page(page);
4135 goto unlock;
4136 oom_free_page:
4137 put_page(page);
4138 oom:
4139 return VM_FAULT_OOM;
4140 }
4141
4142 /*
4143 * The mmap_lock must have been held on entry, and may have been
4144 * released depending on flags and vma->vm_ops->fault() return value.
4145 * See filemap_fault() and __lock_page_retry().
4146 */
4147 static vm_fault_t __do_fault(struct vm_fault *vmf)
4148 {
4149 struct vm_area_struct *vma = vmf->vma;
4150 vm_fault_t ret;
4151
4152 /*
4153 * Preallocate pte before we take page_lock because this might lead to
4154 * deadlocks for memcg reclaim which waits for pages under writeback:
4155 * lock_page(A)
4156 * SetPageWriteback(A)
4157 * unlock_page(A)
4158 * lock_page(B)
4159 * lock_page(B)
4160 * pte_alloc_one
4161 * shrink_page_list
4162 * wait_on_page_writeback(A)
4163 * SetPageWriteback(B)
4164 * unlock_page(B)
4165 * # flush A, B to clear the writeback
4166 */
4167 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4168 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4169 if (!vmf->prealloc_pte)
4170 return VM_FAULT_OOM;
4171 }
4172
4173 ret = vma->vm_ops->fault(vmf);
4174 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4175 VM_FAULT_DONE_COW)))
4176 return ret;
4177
4178 if (unlikely(PageHWPoison(vmf->page))) {
4179 struct page *page = vmf->page;
4180 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4181 if (ret & VM_FAULT_LOCKED) {
4182 if (page_mapped(page))
4183 unmap_mapping_pages(page_mapping(page),
4184 page->index, 1, false);
4185 /* Retry if a clean page was removed from the cache. */
4186 if (invalidate_inode_page(page))
4187 poisonret = VM_FAULT_NOPAGE;
4188 unlock_page(page);
4189 }
4190 put_page(page);
4191 vmf->page = NULL;
4192 return poisonret;
4193 }
4194
4195 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4196 lock_page(vmf->page);
4197 else
4198 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4199
4200 return ret;
4201 }
4202
4203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4204 static void deposit_prealloc_pte(struct vm_fault *vmf)
4205 {
4206 struct vm_area_struct *vma = vmf->vma;
4207
4208 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4209 /*
4210 * We are going to consume the prealloc table,
4211 * count that as nr_ptes.
4212 */
4213 mm_inc_nr_ptes(vma->vm_mm);
4214 vmf->prealloc_pte = NULL;
4215 }
4216
4217 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4218 {
4219 struct vm_area_struct *vma = vmf->vma;
4220 bool write = vmf->flags & FAULT_FLAG_WRITE;
4221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4222 pmd_t entry;
4223 int i;
4224 vm_fault_t ret = VM_FAULT_FALLBACK;
4225
4226 if (!transhuge_vma_suitable(vma, haddr))
4227 return ret;
4228
4229 page = compound_head(page);
4230 if (compound_order(page) != HPAGE_PMD_ORDER)
4231 return ret;
4232
4233 /*
4234 * Just backoff if any subpage of a THP is corrupted otherwise
4235 * the corrupted page may mapped by PMD silently to escape the
4236 * check. This kind of THP just can be PTE mapped. Access to
4237 * the corrupted subpage should trigger SIGBUS as expected.
4238 */
4239 if (unlikely(PageHasHWPoisoned(page)))
4240 return ret;
4241
4242 /*
4243 * Archs like ppc64 need additional space to store information
4244 * related to pte entry. Use the preallocated table for that.
4245 */
4246 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4247 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4248 if (!vmf->prealloc_pte)
4249 return VM_FAULT_OOM;
4250 }
4251
4252 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4253 if (unlikely(!pmd_none(*vmf->pmd)))
4254 goto out;
4255
4256 for (i = 0; i < HPAGE_PMD_NR; i++)
4257 flush_icache_page(vma, page + i);
4258
4259 entry = mk_huge_pmd(page, vma->vm_page_prot);
4260 if (write)
4261 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4262
4263 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4264 page_add_file_rmap(page, vma, true);
4265
4266 /*
4267 * deposit and withdraw with pmd lock held
4268 */
4269 if (arch_needs_pgtable_deposit())
4270 deposit_prealloc_pte(vmf);
4271
4272 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4273
4274 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4275
4276 /* fault is handled */
4277 ret = 0;
4278 count_vm_event(THP_FILE_MAPPED);
4279 out:
4280 spin_unlock(vmf->ptl);
4281 return ret;
4282 }
4283 #else
4284 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4285 {
4286 return VM_FAULT_FALLBACK;
4287 }
4288 #endif
4289
4290 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4291 {
4292 struct vm_area_struct *vma = vmf->vma;
4293 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4294 bool write = vmf->flags & FAULT_FLAG_WRITE;
4295 bool prefault = vmf->address != addr;
4296 pte_t entry;
4297
4298 flush_icache_page(vma, page);
4299 entry = mk_pte(page, vma->vm_page_prot);
4300
4301 if (prefault && arch_wants_old_prefaulted_pte())
4302 entry = pte_mkold(entry);
4303 else
4304 entry = pte_sw_mkyoung(entry);
4305
4306 if (write)
4307 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4308 if (unlikely(uffd_wp))
4309 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4310 /* copy-on-write page */
4311 if (write && !(vma->vm_flags & VM_SHARED)) {
4312 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4313 page_add_new_anon_rmap(page, vma, addr);
4314 lru_cache_add_inactive_or_unevictable(page, vma);
4315 } else {
4316 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4317 page_add_file_rmap(page, vma, false);
4318 }
4319 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4320 }
4321
4322 static bool vmf_pte_changed(struct vm_fault *vmf)
4323 {
4324 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4325 return !pte_same(*vmf->pte, vmf->orig_pte);
4326
4327 return !pte_none(*vmf->pte);
4328 }
4329
4330 /**
4331 * finish_fault - finish page fault once we have prepared the page to fault
4332 *
4333 * @vmf: structure describing the fault
4334 *
4335 * This function handles all that is needed to finish a page fault once the
4336 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4337 * given page, adds reverse page mapping, handles memcg charges and LRU
4338 * addition.
4339 *
4340 * The function expects the page to be locked and on success it consumes a
4341 * reference of a page being mapped (for the PTE which maps it).
4342 *
4343 * Return: %0 on success, %VM_FAULT_ code in case of error.
4344 */
4345 vm_fault_t finish_fault(struct vm_fault *vmf)
4346 {
4347 struct vm_area_struct *vma = vmf->vma;
4348 struct page *page;
4349 vm_fault_t ret;
4350
4351 /* Did we COW the page? */
4352 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4353 page = vmf->cow_page;
4354 else
4355 page = vmf->page;
4356
4357 /*
4358 * check even for read faults because we might have lost our CoWed
4359 * page
4360 */
4361 if (!(vma->vm_flags & VM_SHARED)) {
4362 ret = check_stable_address_space(vma->vm_mm);
4363 if (ret)
4364 return ret;
4365 }
4366
4367 if (pmd_none(*vmf->pmd)) {
4368 if (PageTransCompound(page)) {
4369 ret = do_set_pmd(vmf, page);
4370 if (ret != VM_FAULT_FALLBACK)
4371 return ret;
4372 }
4373
4374 if (vmf->prealloc_pte)
4375 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4376 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4377 return VM_FAULT_OOM;
4378 }
4379
4380 /*
4381 * See comment in handle_pte_fault() for how this scenario happens, we
4382 * need to return NOPAGE so that we drop this page.
4383 */
4384 if (pmd_devmap_trans_unstable(vmf->pmd))
4385 return VM_FAULT_NOPAGE;
4386
4387 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4388 vmf->address, &vmf->ptl);
4389 ret = 0;
4390 /* Re-check under ptl */
4391 if (likely(!vmf_pte_changed(vmf)))
4392 do_set_pte(vmf, page, vmf->address);
4393 else
4394 ret = VM_FAULT_NOPAGE;
4395
4396 update_mmu_tlb(vma, vmf->address, vmf->pte);
4397 pte_unmap_unlock(vmf->pte, vmf->ptl);
4398 return ret;
4399 }
4400
4401 static unsigned long fault_around_bytes __read_mostly =
4402 rounddown_pow_of_two(65536);
4403
4404 #ifdef CONFIG_DEBUG_FS
4405 static int fault_around_bytes_get(void *data, u64 *val)
4406 {
4407 *val = fault_around_bytes;
4408 return 0;
4409 }
4410
4411 /*
4412 * fault_around_bytes must be rounded down to the nearest page order as it's
4413 * what do_fault_around() expects to see.
4414 */
4415 static int fault_around_bytes_set(void *data, u64 val)
4416 {
4417 if (val / PAGE_SIZE > PTRS_PER_PTE)
4418 return -EINVAL;
4419 if (val > PAGE_SIZE)
4420 fault_around_bytes = rounddown_pow_of_two(val);
4421 else
4422 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4423 return 0;
4424 }
4425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4426 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4427
4428 static int __init fault_around_debugfs(void)
4429 {
4430 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4431 &fault_around_bytes_fops);
4432 return 0;
4433 }
4434 late_initcall(fault_around_debugfs);
4435 #endif
4436
4437 /*
4438 * do_fault_around() tries to map few pages around the fault address. The hope
4439 * is that the pages will be needed soon and this will lower the number of
4440 * faults to handle.
4441 *
4442 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4443 * not ready to be mapped: not up-to-date, locked, etc.
4444 *
4445 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4446 * only once.
4447 *
4448 * fault_around_bytes defines how many bytes we'll try to map.
4449 * do_fault_around() expects it to be set to a power of two less than or equal
4450 * to PTRS_PER_PTE.
4451 *
4452 * The virtual address of the area that we map is naturally aligned to
4453 * fault_around_bytes rounded down to the machine page size
4454 * (and therefore to page order). This way it's easier to guarantee
4455 * that we don't cross page table boundaries.
4456 */
4457 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4458 {
4459 unsigned long address = vmf->address, nr_pages, mask;
4460 pgoff_t start_pgoff = vmf->pgoff;
4461 pgoff_t end_pgoff;
4462 int off;
4463
4464 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4465 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4466
4467 address = max(address & mask, vmf->vma->vm_start);
4468 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4469 start_pgoff -= off;
4470
4471 /*
4472 * end_pgoff is either the end of the page table, the end of
4473 * the vma or nr_pages from start_pgoff, depending what is nearest.
4474 */
4475 end_pgoff = start_pgoff -
4476 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4477 PTRS_PER_PTE - 1;
4478 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4479 start_pgoff + nr_pages - 1);
4480
4481 if (pmd_none(*vmf->pmd)) {
4482 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4483 if (!vmf->prealloc_pte)
4484 return VM_FAULT_OOM;
4485 }
4486
4487 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4488 }
4489
4490 /* Return true if we should do read fault-around, false otherwise */
4491 static inline bool should_fault_around(struct vm_fault *vmf)
4492 {
4493 /* No ->map_pages? No way to fault around... */
4494 if (!vmf->vma->vm_ops->map_pages)
4495 return false;
4496
4497 if (uffd_disable_fault_around(vmf->vma))
4498 return false;
4499
4500 return fault_around_bytes >> PAGE_SHIFT > 1;
4501 }
4502
4503 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4504 {
4505 vm_fault_t ret = 0;
4506
4507 /*
4508 * Let's call ->map_pages() first and use ->fault() as fallback
4509 * if page by the offset is not ready to be mapped (cold cache or
4510 * something).
4511 */
4512 if (should_fault_around(vmf)) {
4513 ret = do_fault_around(vmf);
4514 if (ret)
4515 return ret;
4516 }
4517
4518 ret = __do_fault(vmf);
4519 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4520 return ret;
4521
4522 ret |= finish_fault(vmf);
4523 unlock_page(vmf->page);
4524 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525 put_page(vmf->page);
4526 return ret;
4527 }
4528
4529 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4530 {
4531 struct vm_area_struct *vma = vmf->vma;
4532 vm_fault_t ret;
4533
4534 if (unlikely(anon_vma_prepare(vma)))
4535 return VM_FAULT_OOM;
4536
4537 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4538 if (!vmf->cow_page)
4539 return VM_FAULT_OOM;
4540
4541 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4542 GFP_KERNEL)) {
4543 put_page(vmf->cow_page);
4544 return VM_FAULT_OOM;
4545 }
4546 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4547
4548 ret = __do_fault(vmf);
4549 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4550 goto uncharge_out;
4551 if (ret & VM_FAULT_DONE_COW)
4552 return ret;
4553
4554 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4555 __SetPageUptodate(vmf->cow_page);
4556
4557 ret |= finish_fault(vmf);
4558 unlock_page(vmf->page);
4559 put_page(vmf->page);
4560 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4561 goto uncharge_out;
4562 return ret;
4563 uncharge_out:
4564 put_page(vmf->cow_page);
4565 return ret;
4566 }
4567
4568 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4569 {
4570 struct vm_area_struct *vma = vmf->vma;
4571 vm_fault_t ret, tmp;
4572
4573 ret = __do_fault(vmf);
4574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4575 return ret;
4576
4577 /*
4578 * Check if the backing address space wants to know that the page is
4579 * about to become writable
4580 */
4581 if (vma->vm_ops->page_mkwrite) {
4582 unlock_page(vmf->page);
4583 tmp = do_page_mkwrite(vmf);
4584 if (unlikely(!tmp ||
4585 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4586 put_page(vmf->page);
4587 return tmp;
4588 }
4589 }
4590
4591 ret |= finish_fault(vmf);
4592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4593 VM_FAULT_RETRY))) {
4594 unlock_page(vmf->page);
4595 put_page(vmf->page);
4596 return ret;
4597 }
4598
4599 ret |= fault_dirty_shared_page(vmf);
4600 return ret;
4601 }
4602
4603 /*
4604 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4605 * but allow concurrent faults).
4606 * The mmap_lock may have been released depending on flags and our
4607 * return value. See filemap_fault() and __folio_lock_or_retry().
4608 * If mmap_lock is released, vma may become invalid (for example
4609 * by other thread calling munmap()).
4610 */
4611 static vm_fault_t do_fault(struct vm_fault *vmf)
4612 {
4613 struct vm_area_struct *vma = vmf->vma;
4614 struct mm_struct *vm_mm = vma->vm_mm;
4615 vm_fault_t ret;
4616
4617 /*
4618 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4619 */
4620 if (!vma->vm_ops->fault) {
4621 /*
4622 * If we find a migration pmd entry or a none pmd entry, which
4623 * should never happen, return SIGBUS
4624 */
4625 if (unlikely(!pmd_present(*vmf->pmd)))
4626 ret = VM_FAULT_SIGBUS;
4627 else {
4628 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4629 vmf->pmd,
4630 vmf->address,
4631 &vmf->ptl);
4632 /*
4633 * Make sure this is not a temporary clearing of pte
4634 * by holding ptl and checking again. A R/M/W update
4635 * of pte involves: take ptl, clearing the pte so that
4636 * we don't have concurrent modification by hardware
4637 * followed by an update.
4638 */
4639 if (unlikely(pte_none(*vmf->pte)))
4640 ret = VM_FAULT_SIGBUS;
4641 else
4642 ret = VM_FAULT_NOPAGE;
4643
4644 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645 }
4646 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4647 ret = do_read_fault(vmf);
4648 else if (!(vma->vm_flags & VM_SHARED))
4649 ret = do_cow_fault(vmf);
4650 else
4651 ret = do_shared_fault(vmf);
4652
4653 /* preallocated pagetable is unused: free it */
4654 if (vmf->prealloc_pte) {
4655 pte_free(vm_mm, vmf->prealloc_pte);
4656 vmf->prealloc_pte = NULL;
4657 }
4658 return ret;
4659 }
4660
4661 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4662 unsigned long addr, int page_nid, int *flags)
4663 {
4664 get_page(page);
4665
4666 count_vm_numa_event(NUMA_HINT_FAULTS);
4667 if (page_nid == numa_node_id()) {
4668 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4669 *flags |= TNF_FAULT_LOCAL;
4670 }
4671
4672 return mpol_misplaced(page, vma, addr);
4673 }
4674
4675 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4676 {
4677 struct vm_area_struct *vma = vmf->vma;
4678 struct page *page = NULL;
4679 int page_nid = NUMA_NO_NODE;
4680 int last_cpupid;
4681 int target_nid;
4682 pte_t pte, old_pte;
4683 bool was_writable = pte_savedwrite(vmf->orig_pte);
4684 int flags = 0;
4685
4686 /*
4687 * The "pte" at this point cannot be used safely without
4688 * validation through pte_unmap_same(). It's of NUMA type but
4689 * the pfn may be screwed if the read is non atomic.
4690 */
4691 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4692 spin_lock(vmf->ptl);
4693 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4694 pte_unmap_unlock(vmf->pte, vmf->ptl);
4695 goto out;
4696 }
4697
4698 /* Get the normal PTE */
4699 old_pte = ptep_get(vmf->pte);
4700 pte = pte_modify(old_pte, vma->vm_page_prot);
4701
4702 page = vm_normal_page(vma, vmf->address, pte);
4703 if (!page || is_zone_device_page(page))
4704 goto out_map;
4705
4706 /* TODO: handle PTE-mapped THP */
4707 if (PageCompound(page))
4708 goto out_map;
4709
4710 /*
4711 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4712 * much anyway since they can be in shared cache state. This misses
4713 * the case where a mapping is writable but the process never writes
4714 * to it but pte_write gets cleared during protection updates and
4715 * pte_dirty has unpredictable behaviour between PTE scan updates,
4716 * background writeback, dirty balancing and application behaviour.
4717 */
4718 if (!was_writable)
4719 flags |= TNF_NO_GROUP;
4720
4721 /*
4722 * Flag if the page is shared between multiple address spaces. This
4723 * is later used when determining whether to group tasks together
4724 */
4725 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4726 flags |= TNF_SHARED;
4727
4728 last_cpupid = page_cpupid_last(page);
4729 page_nid = page_to_nid(page);
4730 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4731 &flags);
4732 if (target_nid == NUMA_NO_NODE) {
4733 put_page(page);
4734 goto out_map;
4735 }
4736 pte_unmap_unlock(vmf->pte, vmf->ptl);
4737
4738 /* Migrate to the requested node */
4739 if (migrate_misplaced_page(page, vma, target_nid)) {
4740 page_nid = target_nid;
4741 flags |= TNF_MIGRATED;
4742 } else {
4743 flags |= TNF_MIGRATE_FAIL;
4744 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4745 spin_lock(vmf->ptl);
4746 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4747 pte_unmap_unlock(vmf->pte, vmf->ptl);
4748 goto out;
4749 }
4750 goto out_map;
4751 }
4752
4753 out:
4754 if (page_nid != NUMA_NO_NODE)
4755 task_numa_fault(last_cpupid, page_nid, 1, flags);
4756 return 0;
4757 out_map:
4758 /*
4759 * Make it present again, depending on how arch implements
4760 * non-accessible ptes, some can allow access by kernel mode.
4761 */
4762 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4763 pte = pte_modify(old_pte, vma->vm_page_prot);
4764 pte = pte_mkyoung(pte);
4765 if (was_writable)
4766 pte = pte_mkwrite(pte);
4767 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4768 update_mmu_cache(vma, vmf->address, vmf->pte);
4769 pte_unmap_unlock(vmf->pte, vmf->ptl);
4770 goto out;
4771 }
4772
4773 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4774 {
4775 if (vma_is_anonymous(vmf->vma))
4776 return do_huge_pmd_anonymous_page(vmf);
4777 if (vmf->vma->vm_ops->huge_fault)
4778 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4779 return VM_FAULT_FALLBACK;
4780 }
4781
4782 /* `inline' is required to avoid gcc 4.1.2 build error */
4783 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4784 {
4785 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4786
4787 if (vma_is_anonymous(vmf->vma)) {
4788 if (likely(!unshare) &&
4789 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4790 return handle_userfault(vmf, VM_UFFD_WP);
4791 return do_huge_pmd_wp_page(vmf);
4792 }
4793 if (vmf->vma->vm_ops->huge_fault) {
4794 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4795
4796 if (!(ret & VM_FAULT_FALLBACK))
4797 return ret;
4798 }
4799
4800 /* COW or write-notify handled on pte level: split pmd. */
4801 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4802
4803 return VM_FAULT_FALLBACK;
4804 }
4805
4806 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4807 {
4808 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4809 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4810 /* No support for anonymous transparent PUD pages yet */
4811 if (vma_is_anonymous(vmf->vma))
4812 return VM_FAULT_FALLBACK;
4813 if (vmf->vma->vm_ops->huge_fault)
4814 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4816 return VM_FAULT_FALLBACK;
4817 }
4818
4819 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4820 {
4821 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4822 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4823 /* No support for anonymous transparent PUD pages yet */
4824 if (vma_is_anonymous(vmf->vma))
4825 goto split;
4826 if (vmf->vma->vm_ops->huge_fault) {
4827 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4828
4829 if (!(ret & VM_FAULT_FALLBACK))
4830 return ret;
4831 }
4832 split:
4833 /* COW or write-notify not handled on PUD level: split pud.*/
4834 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4836 return VM_FAULT_FALLBACK;
4837 }
4838
4839 /*
4840 * These routines also need to handle stuff like marking pages dirty
4841 * and/or accessed for architectures that don't do it in hardware (most
4842 * RISC architectures). The early dirtying is also good on the i386.
4843 *
4844 * There is also a hook called "update_mmu_cache()" that architectures
4845 * with external mmu caches can use to update those (ie the Sparc or
4846 * PowerPC hashed page tables that act as extended TLBs).
4847 *
4848 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4849 * concurrent faults).
4850 *
4851 * The mmap_lock may have been released depending on flags and our return value.
4852 * See filemap_fault() and __folio_lock_or_retry().
4853 */
4854 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4855 {
4856 pte_t entry;
4857
4858 if (unlikely(pmd_none(*vmf->pmd))) {
4859 /*
4860 * Leave __pte_alloc() until later: because vm_ops->fault may
4861 * want to allocate huge page, and if we expose page table
4862 * for an instant, it will be difficult to retract from
4863 * concurrent faults and from rmap lookups.
4864 */
4865 vmf->pte = NULL;
4866 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4867 } else {
4868 /*
4869 * If a huge pmd materialized under us just retry later. Use
4870 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4871 * of pmd_trans_huge() to ensure the pmd didn't become
4872 * pmd_trans_huge under us and then back to pmd_none, as a
4873 * result of MADV_DONTNEED running immediately after a huge pmd
4874 * fault in a different thread of this mm, in turn leading to a
4875 * misleading pmd_trans_huge() retval. All we have to ensure is
4876 * that it is a regular pmd that we can walk with
4877 * pte_offset_map() and we can do that through an atomic read
4878 * in C, which is what pmd_trans_unstable() provides.
4879 */
4880 if (pmd_devmap_trans_unstable(vmf->pmd))
4881 return 0;
4882 /*
4883 * A regular pmd is established and it can't morph into a huge
4884 * pmd from under us anymore at this point because we hold the
4885 * mmap_lock read mode and khugepaged takes it in write mode.
4886 * So now it's safe to run pte_offset_map().
4887 */
4888 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4889 vmf->orig_pte = *vmf->pte;
4890 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4891
4892 /*
4893 * some architectures can have larger ptes than wordsize,
4894 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4895 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4896 * accesses. The code below just needs a consistent view
4897 * for the ifs and we later double check anyway with the
4898 * ptl lock held. So here a barrier will do.
4899 */
4900 barrier();
4901 if (pte_none(vmf->orig_pte)) {
4902 pte_unmap(vmf->pte);
4903 vmf->pte = NULL;
4904 }
4905 }
4906
4907 if (!vmf->pte) {
4908 if (vma_is_anonymous(vmf->vma))
4909 return do_anonymous_page(vmf);
4910 else
4911 return do_fault(vmf);
4912 }
4913
4914 if (!pte_present(vmf->orig_pte))
4915 return do_swap_page(vmf);
4916
4917 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4918 return do_numa_page(vmf);
4919
4920 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4921 spin_lock(vmf->ptl);
4922 entry = vmf->orig_pte;
4923 if (unlikely(!pte_same(*vmf->pte, entry))) {
4924 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4925 goto unlock;
4926 }
4927 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4928 if (!pte_write(entry))
4929 return do_wp_page(vmf);
4930 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4931 entry = pte_mkdirty(entry);
4932 }
4933 entry = pte_mkyoung(entry);
4934 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4935 vmf->flags & FAULT_FLAG_WRITE)) {
4936 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4937 } else {
4938 /* Skip spurious TLB flush for retried page fault */
4939 if (vmf->flags & FAULT_FLAG_TRIED)
4940 goto unlock;
4941 /*
4942 * This is needed only for protection faults but the arch code
4943 * is not yet telling us if this is a protection fault or not.
4944 * This still avoids useless tlb flushes for .text page faults
4945 * with threads.
4946 */
4947 if (vmf->flags & FAULT_FLAG_WRITE)
4948 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4949 }
4950 unlock:
4951 pte_unmap_unlock(vmf->pte, vmf->ptl);
4952 return 0;
4953 }
4954
4955 /*
4956 * By the time we get here, we already hold the mm semaphore
4957 *
4958 * The mmap_lock may have been released depending on flags and our
4959 * return value. See filemap_fault() and __folio_lock_or_retry().
4960 */
4961 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4962 unsigned long address, unsigned int flags)
4963 {
4964 struct vm_fault vmf = {
4965 .vma = vma,
4966 .address = address & PAGE_MASK,
4967 .real_address = address,
4968 .flags = flags,
4969 .pgoff = linear_page_index(vma, address),
4970 .gfp_mask = __get_fault_gfp_mask(vma),
4971 };
4972 struct mm_struct *mm = vma->vm_mm;
4973 unsigned long vm_flags = vma->vm_flags;
4974 pgd_t *pgd;
4975 p4d_t *p4d;
4976 vm_fault_t ret;
4977
4978 pgd = pgd_offset(mm, address);
4979 p4d = p4d_alloc(mm, pgd, address);
4980 if (!p4d)
4981 return VM_FAULT_OOM;
4982
4983 vmf.pud = pud_alloc(mm, p4d, address);
4984 if (!vmf.pud)
4985 return VM_FAULT_OOM;
4986 retry_pud:
4987 if (pud_none(*vmf.pud) &&
4988 hugepage_vma_check(vma, vm_flags, false, true)) {
4989 ret = create_huge_pud(&vmf);
4990 if (!(ret & VM_FAULT_FALLBACK))
4991 return ret;
4992 } else {
4993 pud_t orig_pud = *vmf.pud;
4994
4995 barrier();
4996 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4997
4998 /*
4999 * TODO once we support anonymous PUDs: NUMA case and
5000 * FAULT_FLAG_UNSHARE handling.
5001 */
5002 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5003 ret = wp_huge_pud(&vmf, orig_pud);
5004 if (!(ret & VM_FAULT_FALLBACK))
5005 return ret;
5006 } else {
5007 huge_pud_set_accessed(&vmf, orig_pud);
5008 return 0;
5009 }
5010 }
5011 }
5012
5013 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5014 if (!vmf.pmd)
5015 return VM_FAULT_OOM;
5016
5017 /* Huge pud page fault raced with pmd_alloc? */
5018 if (pud_trans_unstable(vmf.pud))
5019 goto retry_pud;
5020
5021 if (pmd_none(*vmf.pmd) &&
5022 hugepage_vma_check(vma, vm_flags, false, true)) {
5023 ret = create_huge_pmd(&vmf);
5024 if (!(ret & VM_FAULT_FALLBACK))
5025 return ret;
5026 } else {
5027 vmf.orig_pmd = *vmf.pmd;
5028
5029 barrier();
5030 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5031 VM_BUG_ON(thp_migration_supported() &&
5032 !is_pmd_migration_entry(vmf.orig_pmd));
5033 if (is_pmd_migration_entry(vmf.orig_pmd))
5034 pmd_migration_entry_wait(mm, vmf.pmd);
5035 return 0;
5036 }
5037 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5038 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5039 return do_huge_pmd_numa_page(&vmf);
5040
5041 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5042 !pmd_write(vmf.orig_pmd)) {
5043 ret = wp_huge_pmd(&vmf);
5044 if (!(ret & VM_FAULT_FALLBACK))
5045 return ret;
5046 } else {
5047 huge_pmd_set_accessed(&vmf);
5048 return 0;
5049 }
5050 }
5051 }
5052
5053 return handle_pte_fault(&vmf);
5054 }
5055
5056 /**
5057 * mm_account_fault - Do page fault accounting
5058 *
5059 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5060 * of perf event counters, but we'll still do the per-task accounting to
5061 * the task who triggered this page fault.
5062 * @address: the faulted address.
5063 * @flags: the fault flags.
5064 * @ret: the fault retcode.
5065 *
5066 * This will take care of most of the page fault accounting. Meanwhile, it
5067 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5068 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5069 * still be in per-arch page fault handlers at the entry of page fault.
5070 */
5071 static inline void mm_account_fault(struct pt_regs *regs,
5072 unsigned long address, unsigned int flags,
5073 vm_fault_t ret)
5074 {
5075 bool major;
5076
5077 /*
5078 * We don't do accounting for some specific faults:
5079 *
5080 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5081 * includes arch_vma_access_permitted() failing before reaching here.
5082 * So this is not a "this many hardware page faults" counter. We
5083 * should use the hw profiling for that.
5084 *
5085 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5086 * once they're completed.
5087 */
5088 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5089 return;
5090
5091 /*
5092 * We define the fault as a major fault when the final successful fault
5093 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5094 * handle it immediately previously).
5095 */
5096 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5097
5098 if (major)
5099 current->maj_flt++;
5100 else
5101 current->min_flt++;
5102
5103 /*
5104 * If the fault is done for GUP, regs will be NULL. We only do the
5105 * accounting for the per thread fault counters who triggered the
5106 * fault, and we skip the perf event updates.
5107 */
5108 if (!regs)
5109 return;
5110
5111 if (major)
5112 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5113 else
5114 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5115 }
5116
5117 /*
5118 * By the time we get here, we already hold the mm semaphore
5119 *
5120 * The mmap_lock may have been released depending on flags and our
5121 * return value. See filemap_fault() and __folio_lock_or_retry().
5122 */
5123 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5124 unsigned int flags, struct pt_regs *regs)
5125 {
5126 vm_fault_t ret;
5127
5128 __set_current_state(TASK_RUNNING);
5129
5130 count_vm_event(PGFAULT);
5131 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5132
5133 /* do counter updates before entering really critical section. */
5134 check_sync_rss_stat(current);
5135
5136 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5137 flags & FAULT_FLAG_INSTRUCTION,
5138 flags & FAULT_FLAG_REMOTE))
5139 return VM_FAULT_SIGSEGV;
5140
5141 /*
5142 * Enable the memcg OOM handling for faults triggered in user
5143 * space. Kernel faults are handled more gracefully.
5144 */
5145 if (flags & FAULT_FLAG_USER)
5146 mem_cgroup_enter_user_fault();
5147
5148 if (unlikely(is_vm_hugetlb_page(vma)))
5149 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5150 else
5151 ret = __handle_mm_fault(vma, address, flags);
5152
5153 if (flags & FAULT_FLAG_USER) {
5154 mem_cgroup_exit_user_fault();
5155 /*
5156 * The task may have entered a memcg OOM situation but
5157 * if the allocation error was handled gracefully (no
5158 * VM_FAULT_OOM), there is no need to kill anything.
5159 * Just clean up the OOM state peacefully.
5160 */
5161 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5162 mem_cgroup_oom_synchronize(false);
5163 }
5164
5165 mm_account_fault(regs, address, flags, ret);
5166
5167 return ret;
5168 }
5169 EXPORT_SYMBOL_GPL(handle_mm_fault);
5170
5171 #ifndef __PAGETABLE_P4D_FOLDED
5172 /*
5173 * Allocate p4d page table.
5174 * We've already handled the fast-path in-line.
5175 */
5176 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5177 {
5178 p4d_t *new = p4d_alloc_one(mm, address);
5179 if (!new)
5180 return -ENOMEM;
5181
5182 spin_lock(&mm->page_table_lock);
5183 if (pgd_present(*pgd)) { /* Another has populated it */
5184 p4d_free(mm, new);
5185 } else {
5186 smp_wmb(); /* See comment in pmd_install() */
5187 pgd_populate(mm, pgd, new);
5188 }
5189 spin_unlock(&mm->page_table_lock);
5190 return 0;
5191 }
5192 #endif /* __PAGETABLE_P4D_FOLDED */
5193
5194 #ifndef __PAGETABLE_PUD_FOLDED
5195 /*
5196 * Allocate page upper directory.
5197 * We've already handled the fast-path in-line.
5198 */
5199 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5200 {
5201 pud_t *new = pud_alloc_one(mm, address);
5202 if (!new)
5203 return -ENOMEM;
5204
5205 spin_lock(&mm->page_table_lock);
5206 if (!p4d_present(*p4d)) {
5207 mm_inc_nr_puds(mm);
5208 smp_wmb(); /* See comment in pmd_install() */
5209 p4d_populate(mm, p4d, new);
5210 } else /* Another has populated it */
5211 pud_free(mm, new);
5212 spin_unlock(&mm->page_table_lock);
5213 return 0;
5214 }
5215 #endif /* __PAGETABLE_PUD_FOLDED */
5216
5217 #ifndef __PAGETABLE_PMD_FOLDED
5218 /*
5219 * Allocate page middle directory.
5220 * We've already handled the fast-path in-line.
5221 */
5222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5223 {
5224 spinlock_t *ptl;
5225 pmd_t *new = pmd_alloc_one(mm, address);
5226 if (!new)
5227 return -ENOMEM;
5228
5229 ptl = pud_lock(mm, pud);
5230 if (!pud_present(*pud)) {
5231 mm_inc_nr_pmds(mm);
5232 smp_wmb(); /* See comment in pmd_install() */
5233 pud_populate(mm, pud, new);
5234 } else { /* Another has populated it */
5235 pmd_free(mm, new);
5236 }
5237 spin_unlock(ptl);
5238 return 0;
5239 }
5240 #endif /* __PAGETABLE_PMD_FOLDED */
5241
5242 /**
5243 * follow_pte - look up PTE at a user virtual address
5244 * @mm: the mm_struct of the target address space
5245 * @address: user virtual address
5246 * @ptepp: location to store found PTE
5247 * @ptlp: location to store the lock for the PTE
5248 *
5249 * On a successful return, the pointer to the PTE is stored in @ptepp;
5250 * the corresponding lock is taken and its location is stored in @ptlp.
5251 * The contents of the PTE are only stable until @ptlp is released;
5252 * any further use, if any, must be protected against invalidation
5253 * with MMU notifiers.
5254 *
5255 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5256 * should be taken for read.
5257 *
5258 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5259 * it is not a good general-purpose API.
5260 *
5261 * Return: zero on success, -ve otherwise.
5262 */
5263 int follow_pte(struct mm_struct *mm, unsigned long address,
5264 pte_t **ptepp, spinlock_t **ptlp)
5265 {
5266 pgd_t *pgd;
5267 p4d_t *p4d;
5268 pud_t *pud;
5269 pmd_t *pmd;
5270 pte_t *ptep;
5271
5272 pgd = pgd_offset(mm, address);
5273 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5274 goto out;
5275
5276 p4d = p4d_offset(pgd, address);
5277 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5278 goto out;
5279
5280 pud = pud_offset(p4d, address);
5281 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5282 goto out;
5283
5284 pmd = pmd_offset(pud, address);
5285 VM_BUG_ON(pmd_trans_huge(*pmd));
5286
5287 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5288 goto out;
5289
5290 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5291 if (!pte_present(*ptep))
5292 goto unlock;
5293 *ptepp = ptep;
5294 return 0;
5295 unlock:
5296 pte_unmap_unlock(ptep, *ptlp);
5297 out:
5298 return -EINVAL;
5299 }
5300 EXPORT_SYMBOL_GPL(follow_pte);
5301
5302 /**
5303 * follow_pfn - look up PFN at a user virtual address
5304 * @vma: memory mapping
5305 * @address: user virtual address
5306 * @pfn: location to store found PFN
5307 *
5308 * Only IO mappings and raw PFN mappings are allowed.
5309 *
5310 * This function does not allow the caller to read the permissions
5311 * of the PTE. Do not use it.
5312 *
5313 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5314 */
5315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5316 unsigned long *pfn)
5317 {
5318 int ret = -EINVAL;
5319 spinlock_t *ptl;
5320 pte_t *ptep;
5321
5322 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5323 return ret;
5324
5325 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5326 if (ret)
5327 return ret;
5328 *pfn = pte_pfn(*ptep);
5329 pte_unmap_unlock(ptep, ptl);
5330 return 0;
5331 }
5332 EXPORT_SYMBOL(follow_pfn);
5333
5334 #ifdef CONFIG_HAVE_IOREMAP_PROT
5335 int follow_phys(struct vm_area_struct *vma,
5336 unsigned long address, unsigned int flags,
5337 unsigned long *prot, resource_size_t *phys)
5338 {
5339 int ret = -EINVAL;
5340 pte_t *ptep, pte;
5341 spinlock_t *ptl;
5342
5343 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5344 goto out;
5345
5346 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5347 goto out;
5348 pte = *ptep;
5349
5350 if ((flags & FOLL_WRITE) && !pte_write(pte))
5351 goto unlock;
5352
5353 *prot = pgprot_val(pte_pgprot(pte));
5354 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5355
5356 ret = 0;
5357 unlock:
5358 pte_unmap_unlock(ptep, ptl);
5359 out:
5360 return ret;
5361 }
5362
5363 /**
5364 * generic_access_phys - generic implementation for iomem mmap access
5365 * @vma: the vma to access
5366 * @addr: userspace address, not relative offset within @vma
5367 * @buf: buffer to read/write
5368 * @len: length of transfer
5369 * @write: set to FOLL_WRITE when writing, otherwise reading
5370 *
5371 * This is a generic implementation for &vm_operations_struct.access for an
5372 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5373 * not page based.
5374 */
5375 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5376 void *buf, int len, int write)
5377 {
5378 resource_size_t phys_addr;
5379 unsigned long prot = 0;
5380 void __iomem *maddr;
5381 pte_t *ptep, pte;
5382 spinlock_t *ptl;
5383 int offset = offset_in_page(addr);
5384 int ret = -EINVAL;
5385
5386 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387 return -EINVAL;
5388
5389 retry:
5390 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5391 return -EINVAL;
5392 pte = *ptep;
5393 pte_unmap_unlock(ptep, ptl);
5394
5395 prot = pgprot_val(pte_pgprot(pte));
5396 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5397
5398 if ((write & FOLL_WRITE) && !pte_write(pte))
5399 return -EINVAL;
5400
5401 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5402 if (!maddr)
5403 return -ENOMEM;
5404
5405 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5406 goto out_unmap;
5407
5408 if (!pte_same(pte, *ptep)) {
5409 pte_unmap_unlock(ptep, ptl);
5410 iounmap(maddr);
5411
5412 goto retry;
5413 }
5414
5415 if (write)
5416 memcpy_toio(maddr + offset, buf, len);
5417 else
5418 memcpy_fromio(buf, maddr + offset, len);
5419 ret = len;
5420 pte_unmap_unlock(ptep, ptl);
5421 out_unmap:
5422 iounmap(maddr);
5423
5424 return ret;
5425 }
5426 EXPORT_SYMBOL_GPL(generic_access_phys);
5427 #endif
5428
5429 /*
5430 * Access another process' address space as given in mm.
5431 */
5432 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5433 int len, unsigned int gup_flags)
5434 {
5435 struct vm_area_struct *vma;
5436 void *old_buf = buf;
5437 int write = gup_flags & FOLL_WRITE;
5438
5439 if (mmap_read_lock_killable(mm))
5440 return 0;
5441
5442 /* ignore errors, just check how much was successfully transferred */
5443 while (len) {
5444 int bytes, ret, offset;
5445 void *maddr;
5446 struct page *page = NULL;
5447
5448 ret = get_user_pages_remote(mm, addr, 1,
5449 gup_flags, &page, &vma, NULL);
5450 if (ret <= 0) {
5451 #ifndef CONFIG_HAVE_IOREMAP_PROT
5452 break;
5453 #else
5454 /*
5455 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5456 * we can access using slightly different code.
5457 */
5458 vma = vma_lookup(mm, addr);
5459 if (!vma)
5460 break;
5461 if (vma->vm_ops && vma->vm_ops->access)
5462 ret = vma->vm_ops->access(vma, addr, buf,
5463 len, write);
5464 if (ret <= 0)
5465 break;
5466 bytes = ret;
5467 #endif
5468 } else {
5469 bytes = len;
5470 offset = addr & (PAGE_SIZE-1);
5471 if (bytes > PAGE_SIZE-offset)
5472 bytes = PAGE_SIZE-offset;
5473
5474 maddr = kmap(page);
5475 if (write) {
5476 copy_to_user_page(vma, page, addr,
5477 maddr + offset, buf, bytes);
5478 set_page_dirty_lock(page);
5479 } else {
5480 copy_from_user_page(vma, page, addr,
5481 buf, maddr + offset, bytes);
5482 }
5483 kunmap(page);
5484 put_page(page);
5485 }
5486 len -= bytes;
5487 buf += bytes;
5488 addr += bytes;
5489 }
5490 mmap_read_unlock(mm);
5491
5492 return buf - old_buf;
5493 }
5494
5495 /**
5496 * access_remote_vm - access another process' address space
5497 * @mm: the mm_struct of the target address space
5498 * @addr: start address to access
5499 * @buf: source or destination buffer
5500 * @len: number of bytes to transfer
5501 * @gup_flags: flags modifying lookup behaviour
5502 *
5503 * The caller must hold a reference on @mm.
5504 *
5505 * Return: number of bytes copied from source to destination.
5506 */
5507 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5508 void *buf, int len, unsigned int gup_flags)
5509 {
5510 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5511 }
5512
5513 /*
5514 * Access another process' address space.
5515 * Source/target buffer must be kernel space,
5516 * Do not walk the page table directly, use get_user_pages
5517 */
5518 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5519 void *buf, int len, unsigned int gup_flags)
5520 {
5521 struct mm_struct *mm;
5522 int ret;
5523
5524 mm = get_task_mm(tsk);
5525 if (!mm)
5526 return 0;
5527
5528 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5529
5530 mmput(mm);
5531
5532 return ret;
5533 }
5534 EXPORT_SYMBOL_GPL(access_process_vm);
5535
5536 /*
5537 * Print the name of a VMA.
5538 */
5539 void print_vma_addr(char *prefix, unsigned long ip)
5540 {
5541 struct mm_struct *mm = current->mm;
5542 struct vm_area_struct *vma;
5543
5544 /*
5545 * we might be running from an atomic context so we cannot sleep
5546 */
5547 if (!mmap_read_trylock(mm))
5548 return;
5549
5550 vma = find_vma(mm, ip);
5551 if (vma && vma->vm_file) {
5552 struct file *f = vma->vm_file;
5553 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5554 if (buf) {
5555 char *p;
5556
5557 p = file_path(f, buf, PAGE_SIZE);
5558 if (IS_ERR(p))
5559 p = "?";
5560 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5561 vma->vm_start,
5562 vma->vm_end - vma->vm_start);
5563 free_page((unsigned long)buf);
5564 }
5565 }
5566 mmap_read_unlock(mm);
5567 }
5568
5569 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5570 void __might_fault(const char *file, int line)
5571 {
5572 if (pagefault_disabled())
5573 return;
5574 __might_sleep(file, line);
5575 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5576 if (current->mm)
5577 might_lock_read(&current->mm->mmap_lock);
5578 #endif
5579 }
5580 EXPORT_SYMBOL(__might_fault);
5581 #endif
5582
5583 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5584 /*
5585 * Process all subpages of the specified huge page with the specified
5586 * operation. The target subpage will be processed last to keep its
5587 * cache lines hot.
5588 */
5589 static inline void process_huge_page(
5590 unsigned long addr_hint, unsigned int pages_per_huge_page,
5591 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5592 void *arg)
5593 {
5594 int i, n, base, l;
5595 unsigned long addr = addr_hint &
5596 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5597
5598 /* Process target subpage last to keep its cache lines hot */
5599 might_sleep();
5600 n = (addr_hint - addr) / PAGE_SIZE;
5601 if (2 * n <= pages_per_huge_page) {
5602 /* If target subpage in first half of huge page */
5603 base = 0;
5604 l = n;
5605 /* Process subpages at the end of huge page */
5606 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5607 cond_resched();
5608 process_subpage(addr + i * PAGE_SIZE, i, arg);
5609 }
5610 } else {
5611 /* If target subpage in second half of huge page */
5612 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5613 l = pages_per_huge_page - n;
5614 /* Process subpages at the begin of huge page */
5615 for (i = 0; i < base; i++) {
5616 cond_resched();
5617 process_subpage(addr + i * PAGE_SIZE, i, arg);
5618 }
5619 }
5620 /*
5621 * Process remaining subpages in left-right-left-right pattern
5622 * towards the target subpage
5623 */
5624 for (i = 0; i < l; i++) {
5625 int left_idx = base + i;
5626 int right_idx = base + 2 * l - 1 - i;
5627
5628 cond_resched();
5629 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5630 cond_resched();
5631 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5632 }
5633 }
5634
5635 static void clear_gigantic_page(struct page *page,
5636 unsigned long addr,
5637 unsigned int pages_per_huge_page)
5638 {
5639 int i;
5640 struct page *p = page;
5641
5642 might_sleep();
5643 for (i = 0; i < pages_per_huge_page;
5644 i++, p = mem_map_next(p, page, i)) {
5645 cond_resched();
5646 clear_user_highpage(p, addr + i * PAGE_SIZE);
5647 }
5648 }
5649
5650 static void clear_subpage(unsigned long addr, int idx, void *arg)
5651 {
5652 struct page *page = arg;
5653
5654 clear_user_highpage(page + idx, addr);
5655 }
5656
5657 void clear_huge_page(struct page *page,
5658 unsigned long addr_hint, unsigned int pages_per_huge_page)
5659 {
5660 unsigned long addr = addr_hint &
5661 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5662
5663 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5664 clear_gigantic_page(page, addr, pages_per_huge_page);
5665 return;
5666 }
5667
5668 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5669 }
5670
5671 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5672 unsigned long addr,
5673 struct vm_area_struct *vma,
5674 unsigned int pages_per_huge_page)
5675 {
5676 int i;
5677 struct page *dst_base = dst;
5678 struct page *src_base = src;
5679
5680 for (i = 0; i < pages_per_huge_page; ) {
5681 cond_resched();
5682 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5683
5684 i++;
5685 dst = mem_map_next(dst, dst_base, i);
5686 src = mem_map_next(src, src_base, i);
5687 }
5688 }
5689
5690 struct copy_subpage_arg {
5691 struct page *dst;
5692 struct page *src;
5693 struct vm_area_struct *vma;
5694 };
5695
5696 static void copy_subpage(unsigned long addr, int idx, void *arg)
5697 {
5698 struct copy_subpage_arg *copy_arg = arg;
5699
5700 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5701 addr, copy_arg->vma);
5702 }
5703
5704 void copy_user_huge_page(struct page *dst, struct page *src,
5705 unsigned long addr_hint, struct vm_area_struct *vma,
5706 unsigned int pages_per_huge_page)
5707 {
5708 unsigned long addr = addr_hint &
5709 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710 struct copy_subpage_arg arg = {
5711 .dst = dst,
5712 .src = src,
5713 .vma = vma,
5714 };
5715
5716 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717 copy_user_gigantic_page(dst, src, addr, vma,
5718 pages_per_huge_page);
5719 return;
5720 }
5721
5722 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5723 }
5724
5725 long copy_huge_page_from_user(struct page *dst_page,
5726 const void __user *usr_src,
5727 unsigned int pages_per_huge_page,
5728 bool allow_pagefault)
5729 {
5730 void *page_kaddr;
5731 unsigned long i, rc = 0;
5732 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5733 struct page *subpage = dst_page;
5734
5735 for (i = 0; i < pages_per_huge_page;
5736 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5737 if (allow_pagefault)
5738 page_kaddr = kmap(subpage);
5739 else
5740 page_kaddr = kmap_atomic(subpage);
5741 rc = copy_from_user(page_kaddr,
5742 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5743 if (allow_pagefault)
5744 kunmap(subpage);
5745 else
5746 kunmap_atomic(page_kaddr);
5747
5748 ret_val -= (PAGE_SIZE - rc);
5749 if (rc)
5750 break;
5751
5752 flush_dcache_page(subpage);
5753
5754 cond_resched();
5755 }
5756 return ret_val;
5757 }
5758 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5759
5760 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5761
5762 static struct kmem_cache *page_ptl_cachep;
5763
5764 void __init ptlock_cache_init(void)
5765 {
5766 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5767 SLAB_PANIC, NULL);
5768 }
5769
5770 bool ptlock_alloc(struct page *page)
5771 {
5772 spinlock_t *ptl;
5773
5774 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5775 if (!ptl)
5776 return false;
5777 page->ptl = ptl;
5778 return true;
5779 }
5780
5781 void ptlock_free(struct page *page)
5782 {
5783 kmem_cache_free(page_ptl_cachep, page->ptl);
5784 }
5785 #endif