]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
net: hns3: Fixes the state to indicate client-type initialization
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb);
251 #endif
252 __tlb_reset_range(tlb);
253 }
254
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 struct mmu_gather_batch *batch;
258
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336 /* Simply deliver the interrupt */
337 }
338
339 static void tlb_remove_table_one(void *table)
340 {
341 /*
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
344 *
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
347 */
348 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 __tlb_remove_table(table);
350 }
351
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354 struct mmu_table_batch *batch;
355 int i;
356
357 batch = container_of(head, struct mmu_table_batch, rcu);
358
359 for (i = 0; i < batch->nr; i++)
360 __tlb_remove_table(batch->tables[i]);
361
362 free_page((unsigned long)batch);
363 }
364
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367 struct mmu_table_batch **batch = &tlb->batch;
368
369 if (*batch) {
370 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 *batch = NULL;
372 }
373 }
374
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377 struct mmu_table_batch **batch = &tlb->batch;
378
379 /*
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
382 */
383 if (atomic_read(&tlb->mm->mm_users) < 2) {
384 __tlb_remove_table(table);
385 return;
386 }
387
388 if (*batch == NULL) {
389 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 if (*batch == NULL) {
391 tlb_remove_table_one(table);
392 return;
393 }
394 (*batch)->nr = 0;
395 }
396 (*batch)->tables[(*batch)->nr++] = table;
397 if ((*batch)->nr == MAX_TABLE_BATCH)
398 tlb_table_flush(tlb);
399 }
400
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402
403 /* tlb_gather_mmu
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
407 */
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 unsigned long start, unsigned long end)
410 {
411 arch_tlb_gather_mmu(tlb, mm, start, end);
412 inc_tlb_flush_pending(tlb->mm);
413 }
414
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 unsigned long start, unsigned long end)
417 {
418 /*
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
424 */
425 bool force = mm_tlb_flush_nested(tlb->mm);
426
427 arch_tlb_finish_mmu(tlb, start, end, force);
428 dec_tlb_flush_pending(tlb->mm);
429 }
430
431 /*
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
434 */
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 unsigned long addr)
437 {
438 pgtable_t token = pmd_pgtable(*pmd);
439 pmd_clear(pmd);
440 pte_free_tlb(tlb, token, addr);
441 mm_dec_nr_ptes(tlb->mm);
442 }
443
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 unsigned long addr, unsigned long end,
446 unsigned long floor, unsigned long ceiling)
447 {
448 pmd_t *pmd;
449 unsigned long next;
450 unsigned long start;
451
452 start = addr;
453 pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
457 continue;
458 free_pte_range(tlb, pmd, addr);
459 } while (pmd++, addr = next, addr != end);
460
461 start &= PUD_MASK;
462 if (start < floor)
463 return;
464 if (ceiling) {
465 ceiling &= PUD_MASK;
466 if (!ceiling)
467 return;
468 }
469 if (end - 1 > ceiling - 1)
470 return;
471
472 pmd = pmd_offset(pud, start);
473 pud_clear(pud);
474 pmd_free_tlb(tlb, pmd, start);
475 mm_dec_nr_pmds(tlb->mm);
476 }
477
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 unsigned long addr, unsigned long end,
480 unsigned long floor, unsigned long ceiling)
481 {
482 pud_t *pud;
483 unsigned long next;
484 unsigned long start;
485
486 start = addr;
487 pud = pud_offset(p4d, addr);
488 do {
489 next = pud_addr_end(addr, end);
490 if (pud_none_or_clear_bad(pud))
491 continue;
492 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 } while (pud++, addr = next, addr != end);
494
495 start &= P4D_MASK;
496 if (start < floor)
497 return;
498 if (ceiling) {
499 ceiling &= P4D_MASK;
500 if (!ceiling)
501 return;
502 }
503 if (end - 1 > ceiling - 1)
504 return;
505
506 pud = pud_offset(p4d, start);
507 p4d_clear(p4d);
508 pud_free_tlb(tlb, pud, start);
509 mm_dec_nr_puds(tlb->mm);
510 }
511
512 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
513 unsigned long addr, unsigned long end,
514 unsigned long floor, unsigned long ceiling)
515 {
516 p4d_t *p4d;
517 unsigned long next;
518 unsigned long start;
519
520 start = addr;
521 p4d = p4d_offset(pgd, addr);
522 do {
523 next = p4d_addr_end(addr, end);
524 if (p4d_none_or_clear_bad(p4d))
525 continue;
526 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
527 } while (p4d++, addr = next, addr != end);
528
529 start &= PGDIR_MASK;
530 if (start < floor)
531 return;
532 if (ceiling) {
533 ceiling &= PGDIR_MASK;
534 if (!ceiling)
535 return;
536 }
537 if (end - 1 > ceiling - 1)
538 return;
539
540 p4d = p4d_offset(pgd, start);
541 pgd_clear(pgd);
542 p4d_free_tlb(tlb, p4d, start);
543 }
544
545 /*
546 * This function frees user-level page tables of a process.
547 */
548 void free_pgd_range(struct mmu_gather *tlb,
549 unsigned long addr, unsigned long end,
550 unsigned long floor, unsigned long ceiling)
551 {
552 pgd_t *pgd;
553 unsigned long next;
554
555 /*
556 * The next few lines have given us lots of grief...
557 *
558 * Why are we testing PMD* at this top level? Because often
559 * there will be no work to do at all, and we'd prefer not to
560 * go all the way down to the bottom just to discover that.
561 *
562 * Why all these "- 1"s? Because 0 represents both the bottom
563 * of the address space and the top of it (using -1 for the
564 * top wouldn't help much: the masks would do the wrong thing).
565 * The rule is that addr 0 and floor 0 refer to the bottom of
566 * the address space, but end 0 and ceiling 0 refer to the top
567 * Comparisons need to use "end - 1" and "ceiling - 1" (though
568 * that end 0 case should be mythical).
569 *
570 * Wherever addr is brought up or ceiling brought down, we must
571 * be careful to reject "the opposite 0" before it confuses the
572 * subsequent tests. But what about where end is brought down
573 * by PMD_SIZE below? no, end can't go down to 0 there.
574 *
575 * Whereas we round start (addr) and ceiling down, by different
576 * masks at different levels, in order to test whether a table
577 * now has no other vmas using it, so can be freed, we don't
578 * bother to round floor or end up - the tests don't need that.
579 */
580
581 addr &= PMD_MASK;
582 if (addr < floor) {
583 addr += PMD_SIZE;
584 if (!addr)
585 return;
586 }
587 if (ceiling) {
588 ceiling &= PMD_MASK;
589 if (!ceiling)
590 return;
591 }
592 if (end - 1 > ceiling - 1)
593 end -= PMD_SIZE;
594 if (addr > end - 1)
595 return;
596 /*
597 * We add page table cache pages with PAGE_SIZE,
598 * (see pte_free_tlb()), flush the tlb if we need
599 */
600 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
601 pgd = pgd_offset(tlb->mm, addr);
602 do {
603 next = pgd_addr_end(addr, end);
604 if (pgd_none_or_clear_bad(pgd))
605 continue;
606 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
607 } while (pgd++, addr = next, addr != end);
608 }
609
610 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
611 unsigned long floor, unsigned long ceiling)
612 {
613 while (vma) {
614 struct vm_area_struct *next = vma->vm_next;
615 unsigned long addr = vma->vm_start;
616
617 /*
618 * Hide vma from rmap and truncate_pagecache before freeing
619 * pgtables
620 */
621 unlink_anon_vmas(vma);
622 unlink_file_vma(vma);
623
624 if (is_vm_hugetlb_page(vma)) {
625 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
626 floor, next ? next->vm_start : ceiling);
627 } else {
628 /*
629 * Optimization: gather nearby vmas into one call down
630 */
631 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
632 && !is_vm_hugetlb_page(next)) {
633 vma = next;
634 next = vma->vm_next;
635 unlink_anon_vmas(vma);
636 unlink_file_vma(vma);
637 }
638 free_pgd_range(tlb, addr, vma->vm_end,
639 floor, next ? next->vm_start : ceiling);
640 }
641 vma = next;
642 }
643 }
644
645 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
646 {
647 spinlock_t *ptl;
648 pgtable_t new = pte_alloc_one(mm, address);
649 if (!new)
650 return -ENOMEM;
651
652 /*
653 * Ensure all pte setup (eg. pte page lock and page clearing) are
654 * visible before the pte is made visible to other CPUs by being
655 * put into page tables.
656 *
657 * The other side of the story is the pointer chasing in the page
658 * table walking code (when walking the page table without locking;
659 * ie. most of the time). Fortunately, these data accesses consist
660 * of a chain of data-dependent loads, meaning most CPUs (alpha
661 * being the notable exception) will already guarantee loads are
662 * seen in-order. See the alpha page table accessors for the
663 * smp_read_barrier_depends() barriers in page table walking code.
664 */
665 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
666
667 ptl = pmd_lock(mm, pmd);
668 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
669 mm_inc_nr_ptes(mm);
670 pmd_populate(mm, pmd, new);
671 new = NULL;
672 }
673 spin_unlock(ptl);
674 if (new)
675 pte_free(mm, new);
676 return 0;
677 }
678
679 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
680 {
681 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
682 if (!new)
683 return -ENOMEM;
684
685 smp_wmb(); /* See comment in __pte_alloc */
686
687 spin_lock(&init_mm.page_table_lock);
688 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
689 pmd_populate_kernel(&init_mm, pmd, new);
690 new = NULL;
691 }
692 spin_unlock(&init_mm.page_table_lock);
693 if (new)
694 pte_free_kernel(&init_mm, new);
695 return 0;
696 }
697
698 static inline void init_rss_vec(int *rss)
699 {
700 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
701 }
702
703 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
704 {
705 int i;
706
707 if (current->mm == mm)
708 sync_mm_rss(mm);
709 for (i = 0; i < NR_MM_COUNTERS; i++)
710 if (rss[i])
711 add_mm_counter(mm, i, rss[i]);
712 }
713
714 /*
715 * This function is called to print an error when a bad pte
716 * is found. For example, we might have a PFN-mapped pte in
717 * a region that doesn't allow it.
718 *
719 * The calling function must still handle the error.
720 */
721 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
722 pte_t pte, struct page *page)
723 {
724 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
725 p4d_t *p4d = p4d_offset(pgd, addr);
726 pud_t *pud = pud_offset(p4d, addr);
727 pmd_t *pmd = pmd_offset(pud, addr);
728 struct address_space *mapping;
729 pgoff_t index;
730 static unsigned long resume;
731 static unsigned long nr_shown;
732 static unsigned long nr_unshown;
733
734 /*
735 * Allow a burst of 60 reports, then keep quiet for that minute;
736 * or allow a steady drip of one report per second.
737 */
738 if (nr_shown == 60) {
739 if (time_before(jiffies, resume)) {
740 nr_unshown++;
741 return;
742 }
743 if (nr_unshown) {
744 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
745 nr_unshown);
746 nr_unshown = 0;
747 }
748 nr_shown = 0;
749 }
750 if (nr_shown++ == 0)
751 resume = jiffies + 60 * HZ;
752
753 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
754 index = linear_page_index(vma, addr);
755
756 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
757 current->comm,
758 (long long)pte_val(pte), (long long)pmd_val(*pmd));
759 if (page)
760 dump_page(page, "bad pte");
761 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
762 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
763 /*
764 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
765 */
766 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
767 vma->vm_file,
768 vma->vm_ops ? vma->vm_ops->fault : NULL,
769 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
770 mapping ? mapping->a_ops->readpage : NULL);
771 dump_stack();
772 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
773 }
774
775 /*
776 * vm_normal_page -- This function gets the "struct page" associated with a pte.
777 *
778 * "Special" mappings do not wish to be associated with a "struct page" (either
779 * it doesn't exist, or it exists but they don't want to touch it). In this
780 * case, NULL is returned here. "Normal" mappings do have a struct page.
781 *
782 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
783 * pte bit, in which case this function is trivial. Secondly, an architecture
784 * may not have a spare pte bit, which requires a more complicated scheme,
785 * described below.
786 *
787 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
788 * special mapping (even if there are underlying and valid "struct pages").
789 * COWed pages of a VM_PFNMAP are always normal.
790 *
791 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
792 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
793 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
794 * mapping will always honor the rule
795 *
796 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
797 *
798 * And for normal mappings this is false.
799 *
800 * This restricts such mappings to be a linear translation from virtual address
801 * to pfn. To get around this restriction, we allow arbitrary mappings so long
802 * as the vma is not a COW mapping; in that case, we know that all ptes are
803 * special (because none can have been COWed).
804 *
805 *
806 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
807 *
808 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
809 * page" backing, however the difference is that _all_ pages with a struct
810 * page (that is, those where pfn_valid is true) are refcounted and considered
811 * normal pages by the VM. The disadvantage is that pages are refcounted
812 * (which can be slower and simply not an option for some PFNMAP users). The
813 * advantage is that we don't have to follow the strict linearity rule of
814 * PFNMAP mappings in order to support COWable mappings.
815 *
816 */
817 #ifdef __HAVE_ARCH_PTE_SPECIAL
818 # define HAVE_PTE_SPECIAL 1
819 #else
820 # define HAVE_PTE_SPECIAL 0
821 #endif
822 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
823 pte_t pte, bool with_public_device)
824 {
825 unsigned long pfn = pte_pfn(pte);
826
827 if (HAVE_PTE_SPECIAL) {
828 if (likely(!pte_special(pte)))
829 goto check_pfn;
830 if (vma->vm_ops && vma->vm_ops->find_special_page)
831 return vma->vm_ops->find_special_page(vma, addr);
832 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
833 return NULL;
834 if (is_zero_pfn(pfn))
835 return NULL;
836
837 /*
838 * Device public pages are special pages (they are ZONE_DEVICE
839 * pages but different from persistent memory). They behave
840 * allmost like normal pages. The difference is that they are
841 * not on the lru and thus should never be involve with any-
842 * thing that involve lru manipulation (mlock, numa balancing,
843 * ...).
844 *
845 * This is why we still want to return NULL for such page from
846 * vm_normal_page() so that we do not have to special case all
847 * call site of vm_normal_page().
848 */
849 if (likely(pfn <= highest_memmap_pfn)) {
850 struct page *page = pfn_to_page(pfn);
851
852 if (is_device_public_page(page)) {
853 if (with_public_device)
854 return page;
855 return NULL;
856 }
857 }
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
861
862 /* !HAVE_PTE_SPECIAL case follows: */
863
864 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
865 if (vma->vm_flags & VM_MIXEDMAP) {
866 if (!pfn_valid(pfn))
867 return NULL;
868 goto out;
869 } else {
870 unsigned long off;
871 off = (addr - vma->vm_start) >> PAGE_SHIFT;
872 if (pfn == vma->vm_pgoff + off)
873 return NULL;
874 if (!is_cow_mapping(vma->vm_flags))
875 return NULL;
876 }
877 }
878
879 if (is_zero_pfn(pfn))
880 return NULL;
881 check_pfn:
882 if (unlikely(pfn > highest_memmap_pfn)) {
883 print_bad_pte(vma, addr, pte, NULL);
884 return NULL;
885 }
886
887 /*
888 * NOTE! We still have PageReserved() pages in the page tables.
889 * eg. VDSO mappings can cause them to exist.
890 */
891 out:
892 return pfn_to_page(pfn);
893 }
894
895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
897 pmd_t pmd)
898 {
899 unsigned long pfn = pmd_pfn(pmd);
900
901 /*
902 * There is no pmd_special() but there may be special pmds, e.g.
903 * in a direct-access (dax) mapping, so let's just replicate the
904 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
905 */
906 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
907 if (vma->vm_flags & VM_MIXEDMAP) {
908 if (!pfn_valid(pfn))
909 return NULL;
910 goto out;
911 } else {
912 unsigned long off;
913 off = (addr - vma->vm_start) >> PAGE_SHIFT;
914 if (pfn == vma->vm_pgoff + off)
915 return NULL;
916 if (!is_cow_mapping(vma->vm_flags))
917 return NULL;
918 }
919 }
920
921 if (is_zero_pfn(pfn))
922 return NULL;
923 if (unlikely(pfn > highest_memmap_pfn))
924 return NULL;
925
926 /*
927 * NOTE! We still have PageReserved() pages in the page tables.
928 * eg. VDSO mappings can cause them to exist.
929 */
930 out:
931 return pfn_to_page(pfn);
932 }
933 #endif
934
935 /*
936 * copy one vm_area from one task to the other. Assumes the page tables
937 * already present in the new task to be cleared in the whole range
938 * covered by this vma.
939 */
940
941 static inline unsigned long
942 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
944 unsigned long addr, int *rss)
945 {
946 unsigned long vm_flags = vma->vm_flags;
947 pte_t pte = *src_pte;
948 struct page *page;
949
950 /* pte contains position in swap or file, so copy. */
951 if (unlikely(!pte_present(pte))) {
952 swp_entry_t entry = pte_to_swp_entry(pte);
953
954 if (likely(!non_swap_entry(entry))) {
955 if (swap_duplicate(entry) < 0)
956 return entry.val;
957
958 /* make sure dst_mm is on swapoff's mmlist. */
959 if (unlikely(list_empty(&dst_mm->mmlist))) {
960 spin_lock(&mmlist_lock);
961 if (list_empty(&dst_mm->mmlist))
962 list_add(&dst_mm->mmlist,
963 &src_mm->mmlist);
964 spin_unlock(&mmlist_lock);
965 }
966 rss[MM_SWAPENTS]++;
967 } else if (is_migration_entry(entry)) {
968 page = migration_entry_to_page(entry);
969
970 rss[mm_counter(page)]++;
971
972 if (is_write_migration_entry(entry) &&
973 is_cow_mapping(vm_flags)) {
974 /*
975 * COW mappings require pages in both
976 * parent and child to be set to read.
977 */
978 make_migration_entry_read(&entry);
979 pte = swp_entry_to_pte(entry);
980 if (pte_swp_soft_dirty(*src_pte))
981 pte = pte_swp_mksoft_dirty(pte);
982 set_pte_at(src_mm, addr, src_pte, pte);
983 }
984 } else if (is_device_private_entry(entry)) {
985 page = device_private_entry_to_page(entry);
986
987 /*
988 * Update rss count even for unaddressable pages, as
989 * they should treated just like normal pages in this
990 * respect.
991 *
992 * We will likely want to have some new rss counters
993 * for unaddressable pages, at some point. But for now
994 * keep things as they are.
995 */
996 get_page(page);
997 rss[mm_counter(page)]++;
998 page_dup_rmap(page, false);
999
1000 /*
1001 * We do not preserve soft-dirty information, because so
1002 * far, checkpoint/restore is the only feature that
1003 * requires that. And checkpoint/restore does not work
1004 * when a device driver is involved (you cannot easily
1005 * save and restore device driver state).
1006 */
1007 if (is_write_device_private_entry(entry) &&
1008 is_cow_mapping(vm_flags)) {
1009 make_device_private_entry_read(&entry);
1010 pte = swp_entry_to_pte(entry);
1011 set_pte_at(src_mm, addr, src_pte, pte);
1012 }
1013 }
1014 goto out_set_pte;
1015 }
1016
1017 /*
1018 * If it's a COW mapping, write protect it both
1019 * in the parent and the child
1020 */
1021 if (is_cow_mapping(vm_flags)) {
1022 ptep_set_wrprotect(src_mm, addr, src_pte);
1023 pte = pte_wrprotect(pte);
1024 }
1025
1026 /*
1027 * If it's a shared mapping, mark it clean in
1028 * the child
1029 */
1030 if (vm_flags & VM_SHARED)
1031 pte = pte_mkclean(pte);
1032 pte = pte_mkold(pte);
1033
1034 page = vm_normal_page(vma, addr, pte);
1035 if (page) {
1036 get_page(page);
1037 page_dup_rmap(page, false);
1038 rss[mm_counter(page)]++;
1039 } else if (pte_devmap(pte)) {
1040 page = pte_page(pte);
1041
1042 /*
1043 * Cache coherent device memory behave like regular page and
1044 * not like persistent memory page. For more informations see
1045 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 */
1047 if (is_device_public_page(page)) {
1048 get_page(page);
1049 page_dup_rmap(page, false);
1050 rss[mm_counter(page)]++;
1051 }
1052 }
1053
1054 out_set_pte:
1055 set_pte_at(dst_mm, addr, dst_pte, pte);
1056 return 0;
1057 }
1058
1059 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1061 unsigned long addr, unsigned long end)
1062 {
1063 pte_t *orig_src_pte, *orig_dst_pte;
1064 pte_t *src_pte, *dst_pte;
1065 spinlock_t *src_ptl, *dst_ptl;
1066 int progress = 0;
1067 int rss[NR_MM_COUNTERS];
1068 swp_entry_t entry = (swp_entry_t){0};
1069
1070 again:
1071 init_rss_vec(rss);
1072
1073 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1074 if (!dst_pte)
1075 return -ENOMEM;
1076 src_pte = pte_offset_map(src_pmd, addr);
1077 src_ptl = pte_lockptr(src_mm, src_pmd);
1078 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1079 orig_src_pte = src_pte;
1080 orig_dst_pte = dst_pte;
1081 arch_enter_lazy_mmu_mode();
1082
1083 do {
1084 /*
1085 * We are holding two locks at this point - either of them
1086 * could generate latencies in another task on another CPU.
1087 */
1088 if (progress >= 32) {
1089 progress = 0;
1090 if (need_resched() ||
1091 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1092 break;
1093 }
1094 if (pte_none(*src_pte)) {
1095 progress++;
1096 continue;
1097 }
1098 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1099 vma, addr, rss);
1100 if (entry.val)
1101 break;
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105 arch_leave_lazy_mmu_mode();
1106 spin_unlock(src_ptl);
1107 pte_unmap(orig_src_pte);
1108 add_mm_rss_vec(dst_mm, rss);
1109 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 cond_resched();
1111
1112 if (entry.val) {
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1114 return -ENOMEM;
1115 progress = 0;
1116 }
1117 if (addr != end)
1118 goto again;
1119 return 0;
1120 }
1121
1122 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125 {
1126 pmd_t *src_pmd, *dst_pmd;
1127 unsigned long next;
1128
1129 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1130 if (!dst_pmd)
1131 return -ENOMEM;
1132 src_pmd = pmd_offset(src_pud, addr);
1133 do {
1134 next = pmd_addr_end(addr, end);
1135 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1136 || pmd_devmap(*src_pmd)) {
1137 int err;
1138 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1139 err = copy_huge_pmd(dst_mm, src_mm,
1140 dst_pmd, src_pmd, addr, vma);
1141 if (err == -ENOMEM)
1142 return -ENOMEM;
1143 if (!err)
1144 continue;
1145 /* fall through */
1146 }
1147 if (pmd_none_or_clear_bad(src_pmd))
1148 continue;
1149 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1150 vma, addr, next))
1151 return -ENOMEM;
1152 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1153 return 0;
1154 }
1155
1156 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1157 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1158 unsigned long addr, unsigned long end)
1159 {
1160 pud_t *src_pud, *dst_pud;
1161 unsigned long next;
1162
1163 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1164 if (!dst_pud)
1165 return -ENOMEM;
1166 src_pud = pud_offset(src_p4d, addr);
1167 do {
1168 next = pud_addr_end(addr, end);
1169 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1170 int err;
1171
1172 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1173 err = copy_huge_pud(dst_mm, src_mm,
1174 dst_pud, src_pud, addr, vma);
1175 if (err == -ENOMEM)
1176 return -ENOMEM;
1177 if (!err)
1178 continue;
1179 /* fall through */
1180 }
1181 if (pud_none_or_clear_bad(src_pud))
1182 continue;
1183 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1184 vma, addr, next))
1185 return -ENOMEM;
1186 } while (dst_pud++, src_pud++, addr = next, addr != end);
1187 return 0;
1188 }
1189
1190 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1192 unsigned long addr, unsigned long end)
1193 {
1194 p4d_t *src_p4d, *dst_p4d;
1195 unsigned long next;
1196
1197 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1198 if (!dst_p4d)
1199 return -ENOMEM;
1200 src_p4d = p4d_offset(src_pgd, addr);
1201 do {
1202 next = p4d_addr_end(addr, end);
1203 if (p4d_none_or_clear_bad(src_p4d))
1204 continue;
1205 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1206 vma, addr, next))
1207 return -ENOMEM;
1208 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1209 return 0;
1210 }
1211
1212 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1213 struct vm_area_struct *vma)
1214 {
1215 pgd_t *src_pgd, *dst_pgd;
1216 unsigned long next;
1217 unsigned long addr = vma->vm_start;
1218 unsigned long end = vma->vm_end;
1219 unsigned long mmun_start; /* For mmu_notifiers */
1220 unsigned long mmun_end; /* For mmu_notifiers */
1221 bool is_cow;
1222 int ret;
1223
1224 /*
1225 * Don't copy ptes where a page fault will fill them correctly.
1226 * Fork becomes much lighter when there are big shared or private
1227 * readonly mappings. The tradeoff is that copy_page_range is more
1228 * efficient than faulting.
1229 */
1230 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231 !vma->anon_vma)
1232 return 0;
1233
1234 if (is_vm_hugetlb_page(vma))
1235 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236
1237 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 /*
1239 * We do not free on error cases below as remove_vma
1240 * gets called on error from higher level routine
1241 */
1242 ret = track_pfn_copy(vma);
1243 if (ret)
1244 return ret;
1245 }
1246
1247 /*
1248 * We need to invalidate the secondary MMU mappings only when
1249 * there could be a permission downgrade on the ptes of the
1250 * parent mm. And a permission downgrade will only happen if
1251 * is_cow_mapping() returns true.
1252 */
1253 is_cow = is_cow_mapping(vma->vm_flags);
1254 mmun_start = addr;
1255 mmun_end = end;
1256 if (is_cow)
1257 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1258 mmun_end);
1259
1260 ret = 0;
1261 dst_pgd = pgd_offset(dst_mm, addr);
1262 src_pgd = pgd_offset(src_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
1265 if (pgd_none_or_clear_bad(src_pgd))
1266 continue;
1267 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1268 vma, addr, next))) {
1269 ret = -ENOMEM;
1270 break;
1271 }
1272 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273
1274 if (is_cow)
1275 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1276 return ret;
1277 }
1278
1279 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma, pmd_t *pmd,
1281 unsigned long addr, unsigned long end,
1282 struct zap_details *details)
1283 {
1284 struct mm_struct *mm = tlb->mm;
1285 int force_flush = 0;
1286 int rss[NR_MM_COUNTERS];
1287 spinlock_t *ptl;
1288 pte_t *start_pte;
1289 pte_t *pte;
1290 swp_entry_t entry;
1291
1292 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1293 again:
1294 init_rss_vec(rss);
1295 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1296 pte = start_pte;
1297 flush_tlb_batched_pending(mm);
1298 arch_enter_lazy_mmu_mode();
1299 do {
1300 pte_t ptent = *pte;
1301 if (pte_none(ptent))
1302 continue;
1303
1304 if (pte_present(ptent)) {
1305 struct page *page;
1306
1307 page = _vm_normal_page(vma, addr, ptent, true);
1308 if (unlikely(details) && page) {
1309 /*
1310 * unmap_shared_mapping_pages() wants to
1311 * invalidate cache without truncating:
1312 * unmap shared but keep private pages.
1313 */
1314 if (details->check_mapping &&
1315 details->check_mapping != page_rmapping(page))
1316 continue;
1317 }
1318 ptent = ptep_get_and_clear_full(mm, addr, pte,
1319 tlb->fullmm);
1320 tlb_remove_tlb_entry(tlb, pte, addr);
1321 if (unlikely(!page))
1322 continue;
1323
1324 if (!PageAnon(page)) {
1325 if (pte_dirty(ptent)) {
1326 force_flush = 1;
1327 set_page_dirty(page);
1328 }
1329 if (pte_young(ptent) &&
1330 likely(!(vma->vm_flags & VM_SEQ_READ)))
1331 mark_page_accessed(page);
1332 }
1333 rss[mm_counter(page)]--;
1334 page_remove_rmap(page, false);
1335 if (unlikely(page_mapcount(page) < 0))
1336 print_bad_pte(vma, addr, ptent, page);
1337 if (unlikely(__tlb_remove_page(tlb, page))) {
1338 force_flush = 1;
1339 addr += PAGE_SIZE;
1340 break;
1341 }
1342 continue;
1343 }
1344
1345 entry = pte_to_swp_entry(ptent);
1346 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1347 struct page *page = device_private_entry_to_page(entry);
1348
1349 if (unlikely(details && details->check_mapping)) {
1350 /*
1351 * unmap_shared_mapping_pages() wants to
1352 * invalidate cache without truncating:
1353 * unmap shared but keep private pages.
1354 */
1355 if (details->check_mapping !=
1356 page_rmapping(page))
1357 continue;
1358 }
1359
1360 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1361 rss[mm_counter(page)]--;
1362 page_remove_rmap(page, false);
1363 put_page(page);
1364 continue;
1365 }
1366
1367 /* If details->check_mapping, we leave swap entries. */
1368 if (unlikely(details))
1369 continue;
1370
1371 entry = pte_to_swp_entry(ptent);
1372 if (!non_swap_entry(entry))
1373 rss[MM_SWAPENTS]--;
1374 else if (is_migration_entry(entry)) {
1375 struct page *page;
1376
1377 page = migration_entry_to_page(entry);
1378 rss[mm_counter(page)]--;
1379 }
1380 if (unlikely(!free_swap_and_cache(entry)))
1381 print_bad_pte(vma, addr, ptent, NULL);
1382 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1383 } while (pte++, addr += PAGE_SIZE, addr != end);
1384
1385 add_mm_rss_vec(mm, rss);
1386 arch_leave_lazy_mmu_mode();
1387
1388 /* Do the actual TLB flush before dropping ptl */
1389 if (force_flush)
1390 tlb_flush_mmu_tlbonly(tlb);
1391 pte_unmap_unlock(start_pte, ptl);
1392
1393 /*
1394 * If we forced a TLB flush (either due to running out of
1395 * batch buffers or because we needed to flush dirty TLB
1396 * entries before releasing the ptl), free the batched
1397 * memory too. Restart if we didn't do everything.
1398 */
1399 if (force_flush) {
1400 force_flush = 0;
1401 tlb_flush_mmu_free(tlb);
1402 if (addr != end)
1403 goto again;
1404 }
1405
1406 return addr;
1407 }
1408
1409 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1410 struct vm_area_struct *vma, pud_t *pud,
1411 unsigned long addr, unsigned long end,
1412 struct zap_details *details)
1413 {
1414 pmd_t *pmd;
1415 unsigned long next;
1416
1417 pmd = pmd_offset(pud, addr);
1418 do {
1419 next = pmd_addr_end(addr, end);
1420 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1421 if (next - addr != HPAGE_PMD_SIZE) {
1422 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1423 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1424 __split_huge_pmd(vma, pmd, addr, false, NULL);
1425 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1426 goto next;
1427 /* fall through */
1428 }
1429 /*
1430 * Here there can be other concurrent MADV_DONTNEED or
1431 * trans huge page faults running, and if the pmd is
1432 * none or trans huge it can change under us. This is
1433 * because MADV_DONTNEED holds the mmap_sem in read
1434 * mode.
1435 */
1436 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1437 goto next;
1438 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1439 next:
1440 cond_resched();
1441 } while (pmd++, addr = next, addr != end);
1442
1443 return addr;
1444 }
1445
1446 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1447 struct vm_area_struct *vma, p4d_t *p4d,
1448 unsigned long addr, unsigned long end,
1449 struct zap_details *details)
1450 {
1451 pud_t *pud;
1452 unsigned long next;
1453
1454 pud = pud_offset(p4d, addr);
1455 do {
1456 next = pud_addr_end(addr, end);
1457 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1458 if (next - addr != HPAGE_PUD_SIZE) {
1459 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1460 split_huge_pud(vma, pud, addr);
1461 } else if (zap_huge_pud(tlb, vma, pud, addr))
1462 goto next;
1463 /* fall through */
1464 }
1465 if (pud_none_or_clear_bad(pud))
1466 continue;
1467 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1468 next:
1469 cond_resched();
1470 } while (pud++, addr = next, addr != end);
1471
1472 return addr;
1473 }
1474
1475 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1476 struct vm_area_struct *vma, pgd_t *pgd,
1477 unsigned long addr, unsigned long end,
1478 struct zap_details *details)
1479 {
1480 p4d_t *p4d;
1481 unsigned long next;
1482
1483 p4d = p4d_offset(pgd, addr);
1484 do {
1485 next = p4d_addr_end(addr, end);
1486 if (p4d_none_or_clear_bad(p4d))
1487 continue;
1488 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1489 } while (p4d++, addr = next, addr != end);
1490
1491 return addr;
1492 }
1493
1494 void unmap_page_range(struct mmu_gather *tlb,
1495 struct vm_area_struct *vma,
1496 unsigned long addr, unsigned long end,
1497 struct zap_details *details)
1498 {
1499 pgd_t *pgd;
1500 unsigned long next;
1501
1502 BUG_ON(addr >= end);
1503 tlb_start_vma(tlb, vma);
1504 pgd = pgd_offset(vma->vm_mm, addr);
1505 do {
1506 next = pgd_addr_end(addr, end);
1507 if (pgd_none_or_clear_bad(pgd))
1508 continue;
1509 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1510 } while (pgd++, addr = next, addr != end);
1511 tlb_end_vma(tlb, vma);
1512 }
1513
1514
1515 static void unmap_single_vma(struct mmu_gather *tlb,
1516 struct vm_area_struct *vma, unsigned long start_addr,
1517 unsigned long end_addr,
1518 struct zap_details *details)
1519 {
1520 unsigned long start = max(vma->vm_start, start_addr);
1521 unsigned long end;
1522
1523 if (start >= vma->vm_end)
1524 return;
1525 end = min(vma->vm_end, end_addr);
1526 if (end <= vma->vm_start)
1527 return;
1528
1529 if (vma->vm_file)
1530 uprobe_munmap(vma, start, end);
1531
1532 if (unlikely(vma->vm_flags & VM_PFNMAP))
1533 untrack_pfn(vma, 0, 0);
1534
1535 if (start != end) {
1536 if (unlikely(is_vm_hugetlb_page(vma))) {
1537 /*
1538 * It is undesirable to test vma->vm_file as it
1539 * should be non-null for valid hugetlb area.
1540 * However, vm_file will be NULL in the error
1541 * cleanup path of mmap_region. When
1542 * hugetlbfs ->mmap method fails,
1543 * mmap_region() nullifies vma->vm_file
1544 * before calling this function to clean up.
1545 * Since no pte has actually been setup, it is
1546 * safe to do nothing in this case.
1547 */
1548 if (vma->vm_file) {
1549 i_mmap_lock_write(vma->vm_file->f_mapping);
1550 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1551 i_mmap_unlock_write(vma->vm_file->f_mapping);
1552 }
1553 } else
1554 unmap_page_range(tlb, vma, start, end, details);
1555 }
1556 }
1557
1558 /**
1559 * unmap_vmas - unmap a range of memory covered by a list of vma's
1560 * @tlb: address of the caller's struct mmu_gather
1561 * @vma: the starting vma
1562 * @start_addr: virtual address at which to start unmapping
1563 * @end_addr: virtual address at which to end unmapping
1564 *
1565 * Unmap all pages in the vma list.
1566 *
1567 * Only addresses between `start' and `end' will be unmapped.
1568 *
1569 * The VMA list must be sorted in ascending virtual address order.
1570 *
1571 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572 * range after unmap_vmas() returns. So the only responsibility here is to
1573 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574 * drops the lock and schedules.
1575 */
1576 void unmap_vmas(struct mmu_gather *tlb,
1577 struct vm_area_struct *vma, unsigned long start_addr,
1578 unsigned long end_addr)
1579 {
1580 struct mm_struct *mm = vma->vm_mm;
1581
1582 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1583 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1584 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1585 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1586 }
1587
1588 /**
1589 * zap_page_range - remove user pages in a given range
1590 * @vma: vm_area_struct holding the applicable pages
1591 * @start: starting address of pages to zap
1592 * @size: number of bytes to zap
1593 *
1594 * Caller must protect the VMA list
1595 */
1596 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1597 unsigned long size)
1598 {
1599 struct mm_struct *mm = vma->vm_mm;
1600 struct mmu_gather tlb;
1601 unsigned long end = start + size;
1602
1603 lru_add_drain();
1604 tlb_gather_mmu(&tlb, mm, start, end);
1605 update_hiwater_rss(mm);
1606 mmu_notifier_invalidate_range_start(mm, start, end);
1607 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1608 unmap_single_vma(&tlb, vma, start, end, NULL);
1609
1610 /*
1611 * zap_page_range does not specify whether mmap_sem should be
1612 * held for read or write. That allows parallel zap_page_range
1613 * operations to unmap a PTE and defer a flush meaning that
1614 * this call observes pte_none and fails to flush the TLB.
1615 * Rather than adding a complex API, ensure that no stale
1616 * TLB entries exist when this call returns.
1617 */
1618 flush_tlb_range(vma, start, end);
1619 }
1620
1621 mmu_notifier_invalidate_range_end(mm, start, end);
1622 tlb_finish_mmu(&tlb, start, end);
1623 }
1624
1625 /**
1626 * zap_page_range_single - remove user pages in a given range
1627 * @vma: vm_area_struct holding the applicable pages
1628 * @address: starting address of pages to zap
1629 * @size: number of bytes to zap
1630 * @details: details of shared cache invalidation
1631 *
1632 * The range must fit into one VMA.
1633 */
1634 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long size, struct zap_details *details)
1636 {
1637 struct mm_struct *mm = vma->vm_mm;
1638 struct mmu_gather tlb;
1639 unsigned long end = address + size;
1640
1641 lru_add_drain();
1642 tlb_gather_mmu(&tlb, mm, address, end);
1643 update_hiwater_rss(mm);
1644 mmu_notifier_invalidate_range_start(mm, address, end);
1645 unmap_single_vma(&tlb, vma, address, end, details);
1646 mmu_notifier_invalidate_range_end(mm, address, end);
1647 tlb_finish_mmu(&tlb, address, end);
1648 }
1649
1650 /**
1651 * zap_vma_ptes - remove ptes mapping the vma
1652 * @vma: vm_area_struct holding ptes to be zapped
1653 * @address: starting address of pages to zap
1654 * @size: number of bytes to zap
1655 *
1656 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 *
1658 * The entire address range must be fully contained within the vma.
1659 *
1660 * Returns 0 if successful.
1661 */
1662 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1663 unsigned long size)
1664 {
1665 if (address < vma->vm_start || address + size > vma->vm_end ||
1666 !(vma->vm_flags & VM_PFNMAP))
1667 return -1;
1668 zap_page_range_single(vma, address, size, NULL);
1669 return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1672
1673 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1674 spinlock_t **ptl)
1675 {
1676 pgd_t *pgd;
1677 p4d_t *p4d;
1678 pud_t *pud;
1679 pmd_t *pmd;
1680
1681 pgd = pgd_offset(mm, addr);
1682 p4d = p4d_alloc(mm, pgd, addr);
1683 if (!p4d)
1684 return NULL;
1685 pud = pud_alloc(mm, p4d, addr);
1686 if (!pud)
1687 return NULL;
1688 pmd = pmd_alloc(mm, pud, addr);
1689 if (!pmd)
1690 return NULL;
1691
1692 VM_BUG_ON(pmd_trans_huge(*pmd));
1693 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1694 }
1695
1696 /*
1697 * This is the old fallback for page remapping.
1698 *
1699 * For historical reasons, it only allows reserved pages. Only
1700 * old drivers should use this, and they needed to mark their
1701 * pages reserved for the old functions anyway.
1702 */
1703 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1704 struct page *page, pgprot_t prot)
1705 {
1706 struct mm_struct *mm = vma->vm_mm;
1707 int retval;
1708 pte_t *pte;
1709 spinlock_t *ptl;
1710
1711 retval = -EINVAL;
1712 if (PageAnon(page))
1713 goto out;
1714 retval = -ENOMEM;
1715 flush_dcache_page(page);
1716 pte = get_locked_pte(mm, addr, &ptl);
1717 if (!pte)
1718 goto out;
1719 retval = -EBUSY;
1720 if (!pte_none(*pte))
1721 goto out_unlock;
1722
1723 /* Ok, finally just insert the thing.. */
1724 get_page(page);
1725 inc_mm_counter_fast(mm, mm_counter_file(page));
1726 page_add_file_rmap(page, false);
1727 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1728
1729 retval = 0;
1730 pte_unmap_unlock(pte, ptl);
1731 return retval;
1732 out_unlock:
1733 pte_unmap_unlock(pte, ptl);
1734 out:
1735 return retval;
1736 }
1737
1738 /**
1739 * vm_insert_page - insert single page into user vma
1740 * @vma: user vma to map to
1741 * @addr: target user address of this page
1742 * @page: source kernel page
1743 *
1744 * This allows drivers to insert individual pages they've allocated
1745 * into a user vma.
1746 *
1747 * The page has to be a nice clean _individual_ kernel allocation.
1748 * If you allocate a compound page, you need to have marked it as
1749 * such (__GFP_COMP), or manually just split the page up yourself
1750 * (see split_page()).
1751 *
1752 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753 * took an arbitrary page protection parameter. This doesn't allow
1754 * that. Your vma protection will have to be set up correctly, which
1755 * means that if you want a shared writable mapping, you'd better
1756 * ask for a shared writable mapping!
1757 *
1758 * The page does not need to be reserved.
1759 *
1760 * Usually this function is called from f_op->mmap() handler
1761 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763 * function from other places, for example from page-fault handler.
1764 */
1765 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1766 struct page *page)
1767 {
1768 if (addr < vma->vm_start || addr >= vma->vm_end)
1769 return -EFAULT;
1770 if (!page_count(page))
1771 return -EINVAL;
1772 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1773 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1774 BUG_ON(vma->vm_flags & VM_PFNMAP);
1775 vma->vm_flags |= VM_MIXEDMAP;
1776 }
1777 return insert_page(vma, addr, page, vma->vm_page_prot);
1778 }
1779 EXPORT_SYMBOL(vm_insert_page);
1780
1781 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1782 pfn_t pfn, pgprot_t prot, bool mkwrite)
1783 {
1784 struct mm_struct *mm = vma->vm_mm;
1785 int retval;
1786 pte_t *pte, entry;
1787 spinlock_t *ptl;
1788
1789 retval = -ENOMEM;
1790 pte = get_locked_pte(mm, addr, &ptl);
1791 if (!pte)
1792 goto out;
1793 retval = -EBUSY;
1794 if (!pte_none(*pte)) {
1795 if (mkwrite) {
1796 /*
1797 * For read faults on private mappings the PFN passed
1798 * in may not match the PFN we have mapped if the
1799 * mapped PFN is a writeable COW page. In the mkwrite
1800 * case we are creating a writable PTE for a shared
1801 * mapping and we expect the PFNs to match.
1802 */
1803 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1804 goto out_unlock;
1805 entry = *pte;
1806 goto out_mkwrite;
1807 } else
1808 goto out_unlock;
1809 }
1810
1811 /* Ok, finally just insert the thing.. */
1812 if (pfn_t_devmap(pfn))
1813 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1814 else
1815 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1816
1817 out_mkwrite:
1818 if (mkwrite) {
1819 entry = pte_mkyoung(entry);
1820 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1821 }
1822
1823 set_pte_at(mm, addr, pte, entry);
1824 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1825
1826 retval = 0;
1827 out_unlock:
1828 pte_unmap_unlock(pte, ptl);
1829 out:
1830 return retval;
1831 }
1832
1833 /**
1834 * vm_insert_pfn - insert single pfn into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @pfn: source kernel pfn
1838 *
1839 * Similar to vm_insert_page, this allows drivers to insert individual pages
1840 * they've allocated into a user vma. Same comments apply.
1841 *
1842 * This function should only be called from a vm_ops->fault handler, and
1843 * in that case the handler should return NULL.
1844 *
1845 * vma cannot be a COW mapping.
1846 *
1847 * As this is called only for pages that do not currently exist, we
1848 * do not need to flush old virtual caches or the TLB.
1849 */
1850 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1851 unsigned long pfn)
1852 {
1853 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1854 }
1855 EXPORT_SYMBOL(vm_insert_pfn);
1856
1857 /**
1858 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859 * @vma: user vma to map to
1860 * @addr: target user address of this page
1861 * @pfn: source kernel pfn
1862 * @pgprot: pgprot flags for the inserted page
1863 *
1864 * This is exactly like vm_insert_pfn, except that it allows drivers to
1865 * to override pgprot on a per-page basis.
1866 *
1867 * This only makes sense for IO mappings, and it makes no sense for
1868 * cow mappings. In general, using multiple vmas is preferable;
1869 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1870 * impractical.
1871 */
1872 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1873 unsigned long pfn, pgprot_t pgprot)
1874 {
1875 int ret;
1876 /*
1877 * Technically, architectures with pte_special can avoid all these
1878 * restrictions (same for remap_pfn_range). However we would like
1879 * consistency in testing and feature parity among all, so we should
1880 * try to keep these invariants in place for everybody.
1881 */
1882 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1883 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1884 (VM_PFNMAP|VM_MIXEDMAP));
1885 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1886 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1887
1888 if (addr < vma->vm_start || addr >= vma->vm_end)
1889 return -EFAULT;
1890
1891 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1892
1893 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1894 false);
1895
1896 return ret;
1897 }
1898 EXPORT_SYMBOL(vm_insert_pfn_prot);
1899
1900 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1901 {
1902 /* these checks mirror the abort conditions in vm_normal_page */
1903 if (vma->vm_flags & VM_MIXEDMAP)
1904 return true;
1905 if (pfn_t_devmap(pfn))
1906 return true;
1907 if (pfn_t_special(pfn))
1908 return true;
1909 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1910 return true;
1911 return false;
1912 }
1913
1914 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1915 pfn_t pfn, bool mkwrite)
1916 {
1917 pgprot_t pgprot = vma->vm_page_prot;
1918
1919 BUG_ON(!vm_mixed_ok(vma, pfn));
1920
1921 if (addr < vma->vm_start || addr >= vma->vm_end)
1922 return -EFAULT;
1923
1924 track_pfn_insert(vma, &pgprot, pfn);
1925
1926 /*
1927 * If we don't have pte special, then we have to use the pfn_valid()
1928 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1929 * refcount the page if pfn_valid is true (hence insert_page rather
1930 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1931 * without pte special, it would there be refcounted as a normal page.
1932 */
1933 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1934 struct page *page;
1935
1936 /*
1937 * At this point we are committed to insert_page()
1938 * regardless of whether the caller specified flags that
1939 * result in pfn_t_has_page() == false.
1940 */
1941 page = pfn_to_page(pfn_t_to_pfn(pfn));
1942 return insert_page(vma, addr, page, pgprot);
1943 }
1944 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1945 }
1946
1947 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1948 pfn_t pfn)
1949 {
1950 return __vm_insert_mixed(vma, addr, pfn, false);
1951
1952 }
1953 EXPORT_SYMBOL(vm_insert_mixed);
1954
1955 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1956 pfn_t pfn)
1957 {
1958 return __vm_insert_mixed(vma, addr, pfn, true);
1959 }
1960 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1961
1962 /*
1963 * maps a range of physical memory into the requested pages. the old
1964 * mappings are removed. any references to nonexistent pages results
1965 * in null mappings (currently treated as "copy-on-access")
1966 */
1967 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1968 unsigned long addr, unsigned long end,
1969 unsigned long pfn, pgprot_t prot)
1970 {
1971 pte_t *pte;
1972 spinlock_t *ptl;
1973
1974 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1975 if (!pte)
1976 return -ENOMEM;
1977 arch_enter_lazy_mmu_mode();
1978 do {
1979 BUG_ON(!pte_none(*pte));
1980 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1981 pfn++;
1982 } while (pte++, addr += PAGE_SIZE, addr != end);
1983 arch_leave_lazy_mmu_mode();
1984 pte_unmap_unlock(pte - 1, ptl);
1985 return 0;
1986 }
1987
1988 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1989 unsigned long addr, unsigned long end,
1990 unsigned long pfn, pgprot_t prot)
1991 {
1992 pmd_t *pmd;
1993 unsigned long next;
1994
1995 pfn -= addr >> PAGE_SHIFT;
1996 pmd = pmd_alloc(mm, pud, addr);
1997 if (!pmd)
1998 return -ENOMEM;
1999 VM_BUG_ON(pmd_trans_huge(*pmd));
2000 do {
2001 next = pmd_addr_end(addr, end);
2002 if (remap_pte_range(mm, pmd, addr, next,
2003 pfn + (addr >> PAGE_SHIFT), prot))
2004 return -ENOMEM;
2005 } while (pmd++, addr = next, addr != end);
2006 return 0;
2007 }
2008
2009 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2010 unsigned long addr, unsigned long end,
2011 unsigned long pfn, pgprot_t prot)
2012 {
2013 pud_t *pud;
2014 unsigned long next;
2015
2016 pfn -= addr >> PAGE_SHIFT;
2017 pud = pud_alloc(mm, p4d, addr);
2018 if (!pud)
2019 return -ENOMEM;
2020 do {
2021 next = pud_addr_end(addr, end);
2022 if (remap_pmd_range(mm, pud, addr, next,
2023 pfn + (addr >> PAGE_SHIFT), prot))
2024 return -ENOMEM;
2025 } while (pud++, addr = next, addr != end);
2026 return 0;
2027 }
2028
2029 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2030 unsigned long addr, unsigned long end,
2031 unsigned long pfn, pgprot_t prot)
2032 {
2033 p4d_t *p4d;
2034 unsigned long next;
2035
2036 pfn -= addr >> PAGE_SHIFT;
2037 p4d = p4d_alloc(mm, pgd, addr);
2038 if (!p4d)
2039 return -ENOMEM;
2040 do {
2041 next = p4d_addr_end(addr, end);
2042 if (remap_pud_range(mm, p4d, addr, next,
2043 pfn + (addr >> PAGE_SHIFT), prot))
2044 return -ENOMEM;
2045 } while (p4d++, addr = next, addr != end);
2046 return 0;
2047 }
2048
2049 /**
2050 * remap_pfn_range - remap kernel memory to userspace
2051 * @vma: user vma to map to
2052 * @addr: target user address to start at
2053 * @pfn: physical address of kernel memory
2054 * @size: size of map area
2055 * @prot: page protection flags for this mapping
2056 *
2057 * Note: this is only safe if the mm semaphore is held when called.
2058 */
2059 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2060 unsigned long pfn, unsigned long size, pgprot_t prot)
2061 {
2062 pgd_t *pgd;
2063 unsigned long next;
2064 unsigned long end = addr + PAGE_ALIGN(size);
2065 struct mm_struct *mm = vma->vm_mm;
2066 unsigned long remap_pfn = pfn;
2067 int err;
2068
2069 /*
2070 * Physically remapped pages are special. Tell the
2071 * rest of the world about it:
2072 * VM_IO tells people not to look at these pages
2073 * (accesses can have side effects).
2074 * VM_PFNMAP tells the core MM that the base pages are just
2075 * raw PFN mappings, and do not have a "struct page" associated
2076 * with them.
2077 * VM_DONTEXPAND
2078 * Disable vma merging and expanding with mremap().
2079 * VM_DONTDUMP
2080 * Omit vma from core dump, even when VM_IO turned off.
2081 *
2082 * There's a horrible special case to handle copy-on-write
2083 * behaviour that some programs depend on. We mark the "original"
2084 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2085 * See vm_normal_page() for details.
2086 */
2087 if (is_cow_mapping(vma->vm_flags)) {
2088 if (addr != vma->vm_start || end != vma->vm_end)
2089 return -EINVAL;
2090 vma->vm_pgoff = pfn;
2091 }
2092
2093 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2094 if (err)
2095 return -EINVAL;
2096
2097 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2098
2099 BUG_ON(addr >= end);
2100 pfn -= addr >> PAGE_SHIFT;
2101 pgd = pgd_offset(mm, addr);
2102 flush_cache_range(vma, addr, end);
2103 do {
2104 next = pgd_addr_end(addr, end);
2105 err = remap_p4d_range(mm, pgd, addr, next,
2106 pfn + (addr >> PAGE_SHIFT), prot);
2107 if (err)
2108 break;
2109 } while (pgd++, addr = next, addr != end);
2110
2111 if (err)
2112 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2113
2114 return err;
2115 }
2116 EXPORT_SYMBOL(remap_pfn_range);
2117
2118 /**
2119 * vm_iomap_memory - remap memory to userspace
2120 * @vma: user vma to map to
2121 * @start: start of area
2122 * @len: size of area
2123 *
2124 * This is a simplified io_remap_pfn_range() for common driver use. The
2125 * driver just needs to give us the physical memory range to be mapped,
2126 * we'll figure out the rest from the vma information.
2127 *
2128 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2129 * whatever write-combining details or similar.
2130 */
2131 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2132 {
2133 unsigned long vm_len, pfn, pages;
2134
2135 /* Check that the physical memory area passed in looks valid */
2136 if (start + len < start)
2137 return -EINVAL;
2138 /*
2139 * You *really* shouldn't map things that aren't page-aligned,
2140 * but we've historically allowed it because IO memory might
2141 * just have smaller alignment.
2142 */
2143 len += start & ~PAGE_MASK;
2144 pfn = start >> PAGE_SHIFT;
2145 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2146 if (pfn + pages < pfn)
2147 return -EINVAL;
2148
2149 /* We start the mapping 'vm_pgoff' pages into the area */
2150 if (vma->vm_pgoff > pages)
2151 return -EINVAL;
2152 pfn += vma->vm_pgoff;
2153 pages -= vma->vm_pgoff;
2154
2155 /* Can we fit all of the mapping? */
2156 vm_len = vma->vm_end - vma->vm_start;
2157 if (vm_len >> PAGE_SHIFT > pages)
2158 return -EINVAL;
2159
2160 /* Ok, let it rip */
2161 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2162 }
2163 EXPORT_SYMBOL(vm_iomap_memory);
2164
2165 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2166 unsigned long addr, unsigned long end,
2167 pte_fn_t fn, void *data)
2168 {
2169 pte_t *pte;
2170 int err;
2171 pgtable_t token;
2172 spinlock_t *uninitialized_var(ptl);
2173
2174 pte = (mm == &init_mm) ?
2175 pte_alloc_kernel(pmd, addr) :
2176 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2177 if (!pte)
2178 return -ENOMEM;
2179
2180 BUG_ON(pmd_huge(*pmd));
2181
2182 arch_enter_lazy_mmu_mode();
2183
2184 token = pmd_pgtable(*pmd);
2185
2186 do {
2187 err = fn(pte++, token, addr, data);
2188 if (err)
2189 break;
2190 } while (addr += PAGE_SIZE, addr != end);
2191
2192 arch_leave_lazy_mmu_mode();
2193
2194 if (mm != &init_mm)
2195 pte_unmap_unlock(pte-1, ptl);
2196 return err;
2197 }
2198
2199 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2200 unsigned long addr, unsigned long end,
2201 pte_fn_t fn, void *data)
2202 {
2203 pmd_t *pmd;
2204 unsigned long next;
2205 int err;
2206
2207 BUG_ON(pud_huge(*pud));
2208
2209 pmd = pmd_alloc(mm, pud, addr);
2210 if (!pmd)
2211 return -ENOMEM;
2212 do {
2213 next = pmd_addr_end(addr, end);
2214 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2215 if (err)
2216 break;
2217 } while (pmd++, addr = next, addr != end);
2218 return err;
2219 }
2220
2221 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2222 unsigned long addr, unsigned long end,
2223 pte_fn_t fn, void *data)
2224 {
2225 pud_t *pud;
2226 unsigned long next;
2227 int err;
2228
2229 pud = pud_alloc(mm, p4d, addr);
2230 if (!pud)
2231 return -ENOMEM;
2232 do {
2233 next = pud_addr_end(addr, end);
2234 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2235 if (err)
2236 break;
2237 } while (pud++, addr = next, addr != end);
2238 return err;
2239 }
2240
2241 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 unsigned long addr, unsigned long end,
2243 pte_fn_t fn, void *data)
2244 {
2245 p4d_t *p4d;
2246 unsigned long next;
2247 int err;
2248
2249 p4d = p4d_alloc(mm, pgd, addr);
2250 if (!p4d)
2251 return -ENOMEM;
2252 do {
2253 next = p4d_addr_end(addr, end);
2254 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2255 if (err)
2256 break;
2257 } while (p4d++, addr = next, addr != end);
2258 return err;
2259 }
2260
2261 /*
2262 * Scan a region of virtual memory, filling in page tables as necessary
2263 * and calling a provided function on each leaf page table.
2264 */
2265 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2266 unsigned long size, pte_fn_t fn, void *data)
2267 {
2268 pgd_t *pgd;
2269 unsigned long next;
2270 unsigned long end = addr + size;
2271 int err;
2272
2273 if (WARN_ON(addr >= end))
2274 return -EINVAL;
2275
2276 pgd = pgd_offset(mm, addr);
2277 do {
2278 next = pgd_addr_end(addr, end);
2279 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2280 if (err)
2281 break;
2282 } while (pgd++, addr = next, addr != end);
2283
2284 return err;
2285 }
2286 EXPORT_SYMBOL_GPL(apply_to_page_range);
2287
2288 /*
2289 * handle_pte_fault chooses page fault handler according to an entry which was
2290 * read non-atomically. Before making any commitment, on those architectures
2291 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2292 * parts, do_swap_page must check under lock before unmapping the pte and
2293 * proceeding (but do_wp_page is only called after already making such a check;
2294 * and do_anonymous_page can safely check later on).
2295 */
2296 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2297 pte_t *page_table, pte_t orig_pte)
2298 {
2299 int same = 1;
2300 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2301 if (sizeof(pte_t) > sizeof(unsigned long)) {
2302 spinlock_t *ptl = pte_lockptr(mm, pmd);
2303 spin_lock(ptl);
2304 same = pte_same(*page_table, orig_pte);
2305 spin_unlock(ptl);
2306 }
2307 #endif
2308 pte_unmap(page_table);
2309 return same;
2310 }
2311
2312 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2313 {
2314 debug_dma_assert_idle(src);
2315
2316 /*
2317 * If the source page was a PFN mapping, we don't have
2318 * a "struct page" for it. We do a best-effort copy by
2319 * just copying from the original user address. If that
2320 * fails, we just zero-fill it. Live with it.
2321 */
2322 if (unlikely(!src)) {
2323 void *kaddr = kmap_atomic(dst);
2324 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2325
2326 /*
2327 * This really shouldn't fail, because the page is there
2328 * in the page tables. But it might just be unreadable,
2329 * in which case we just give up and fill the result with
2330 * zeroes.
2331 */
2332 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2333 clear_page(kaddr);
2334 kunmap_atomic(kaddr);
2335 flush_dcache_page(dst);
2336 } else
2337 copy_user_highpage(dst, src, va, vma);
2338 }
2339
2340 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2341 {
2342 struct file *vm_file = vma->vm_file;
2343
2344 if (vm_file)
2345 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2346
2347 /*
2348 * Special mappings (e.g. VDSO) do not have any file so fake
2349 * a default GFP_KERNEL for them.
2350 */
2351 return GFP_KERNEL;
2352 }
2353
2354 /*
2355 * Notify the address space that the page is about to become writable so that
2356 * it can prohibit this or wait for the page to get into an appropriate state.
2357 *
2358 * We do this without the lock held, so that it can sleep if it needs to.
2359 */
2360 static int do_page_mkwrite(struct vm_fault *vmf)
2361 {
2362 int ret;
2363 struct page *page = vmf->page;
2364 unsigned int old_flags = vmf->flags;
2365
2366 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2367
2368 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2369 /* Restore original flags so that caller is not surprised */
2370 vmf->flags = old_flags;
2371 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2372 return ret;
2373 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2374 lock_page(page);
2375 if (!page->mapping) {
2376 unlock_page(page);
2377 return 0; /* retry */
2378 }
2379 ret |= VM_FAULT_LOCKED;
2380 } else
2381 VM_BUG_ON_PAGE(!PageLocked(page), page);
2382 return ret;
2383 }
2384
2385 /*
2386 * Handle dirtying of a page in shared file mapping on a write fault.
2387 *
2388 * The function expects the page to be locked and unlocks it.
2389 */
2390 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2391 struct page *page)
2392 {
2393 struct address_space *mapping;
2394 bool dirtied;
2395 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2396
2397 dirtied = set_page_dirty(page);
2398 VM_BUG_ON_PAGE(PageAnon(page), page);
2399 /*
2400 * Take a local copy of the address_space - page.mapping may be zeroed
2401 * by truncate after unlock_page(). The address_space itself remains
2402 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2403 * release semantics to prevent the compiler from undoing this copying.
2404 */
2405 mapping = page_rmapping(page);
2406 unlock_page(page);
2407
2408 if ((dirtied || page_mkwrite) && mapping) {
2409 /*
2410 * Some device drivers do not set page.mapping
2411 * but still dirty their pages
2412 */
2413 balance_dirty_pages_ratelimited(mapping);
2414 }
2415
2416 if (!page_mkwrite)
2417 file_update_time(vma->vm_file);
2418 }
2419
2420 /*
2421 * Handle write page faults for pages that can be reused in the current vma
2422 *
2423 * This can happen either due to the mapping being with the VM_SHARED flag,
2424 * or due to us being the last reference standing to the page. In either
2425 * case, all we need to do here is to mark the page as writable and update
2426 * any related book-keeping.
2427 */
2428 static inline void wp_page_reuse(struct vm_fault *vmf)
2429 __releases(vmf->ptl)
2430 {
2431 struct vm_area_struct *vma = vmf->vma;
2432 struct page *page = vmf->page;
2433 pte_t entry;
2434 /*
2435 * Clear the pages cpupid information as the existing
2436 * information potentially belongs to a now completely
2437 * unrelated process.
2438 */
2439 if (page)
2440 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2441
2442 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2443 entry = pte_mkyoung(vmf->orig_pte);
2444 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2445 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2446 update_mmu_cache(vma, vmf->address, vmf->pte);
2447 pte_unmap_unlock(vmf->pte, vmf->ptl);
2448 }
2449
2450 /*
2451 * Handle the case of a page which we actually need to copy to a new page.
2452 *
2453 * Called with mmap_sem locked and the old page referenced, but
2454 * without the ptl held.
2455 *
2456 * High level logic flow:
2457 *
2458 * - Allocate a page, copy the content of the old page to the new one.
2459 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2460 * - Take the PTL. If the pte changed, bail out and release the allocated page
2461 * - If the pte is still the way we remember it, update the page table and all
2462 * relevant references. This includes dropping the reference the page-table
2463 * held to the old page, as well as updating the rmap.
2464 * - In any case, unlock the PTL and drop the reference we took to the old page.
2465 */
2466 static int wp_page_copy(struct vm_fault *vmf)
2467 {
2468 struct vm_area_struct *vma = vmf->vma;
2469 struct mm_struct *mm = vma->vm_mm;
2470 struct page *old_page = vmf->page;
2471 struct page *new_page = NULL;
2472 pte_t entry;
2473 int page_copied = 0;
2474 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2475 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2476 struct mem_cgroup *memcg;
2477
2478 if (unlikely(anon_vma_prepare(vma)))
2479 goto oom;
2480
2481 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2482 new_page = alloc_zeroed_user_highpage_movable(vma,
2483 vmf->address);
2484 if (!new_page)
2485 goto oom;
2486 } else {
2487 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2488 vmf->address);
2489 if (!new_page)
2490 goto oom;
2491 cow_user_page(new_page, old_page, vmf->address, vma);
2492 }
2493
2494 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2495 goto oom_free_new;
2496
2497 __SetPageUptodate(new_page);
2498
2499 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2500
2501 /*
2502 * Re-check the pte - we dropped the lock
2503 */
2504 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2505 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2506 if (old_page) {
2507 if (!PageAnon(old_page)) {
2508 dec_mm_counter_fast(mm,
2509 mm_counter_file(old_page));
2510 inc_mm_counter_fast(mm, MM_ANONPAGES);
2511 }
2512 } else {
2513 inc_mm_counter_fast(mm, MM_ANONPAGES);
2514 }
2515 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2516 entry = mk_pte(new_page, vma->vm_page_prot);
2517 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2518 /*
2519 * Clear the pte entry and flush it first, before updating the
2520 * pte with the new entry. This will avoid a race condition
2521 * seen in the presence of one thread doing SMC and another
2522 * thread doing COW.
2523 */
2524 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2525 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2526 mem_cgroup_commit_charge(new_page, memcg, false, false);
2527 lru_cache_add_active_or_unevictable(new_page, vma);
2528 /*
2529 * We call the notify macro here because, when using secondary
2530 * mmu page tables (such as kvm shadow page tables), we want the
2531 * new page to be mapped directly into the secondary page table.
2532 */
2533 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2534 update_mmu_cache(vma, vmf->address, vmf->pte);
2535 if (old_page) {
2536 /*
2537 * Only after switching the pte to the new page may
2538 * we remove the mapcount here. Otherwise another
2539 * process may come and find the rmap count decremented
2540 * before the pte is switched to the new page, and
2541 * "reuse" the old page writing into it while our pte
2542 * here still points into it and can be read by other
2543 * threads.
2544 *
2545 * The critical issue is to order this
2546 * page_remove_rmap with the ptp_clear_flush above.
2547 * Those stores are ordered by (if nothing else,)
2548 * the barrier present in the atomic_add_negative
2549 * in page_remove_rmap.
2550 *
2551 * Then the TLB flush in ptep_clear_flush ensures that
2552 * no process can access the old page before the
2553 * decremented mapcount is visible. And the old page
2554 * cannot be reused until after the decremented
2555 * mapcount is visible. So transitively, TLBs to
2556 * old page will be flushed before it can be reused.
2557 */
2558 page_remove_rmap(old_page, false);
2559 }
2560
2561 /* Free the old page.. */
2562 new_page = old_page;
2563 page_copied = 1;
2564 } else {
2565 mem_cgroup_cancel_charge(new_page, memcg, false);
2566 }
2567
2568 if (new_page)
2569 put_page(new_page);
2570
2571 pte_unmap_unlock(vmf->pte, vmf->ptl);
2572 /*
2573 * No need to double call mmu_notifier->invalidate_range() callback as
2574 * the above ptep_clear_flush_notify() did already call it.
2575 */
2576 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2577 if (old_page) {
2578 /*
2579 * Don't let another task, with possibly unlocked vma,
2580 * keep the mlocked page.
2581 */
2582 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2583 lock_page(old_page); /* LRU manipulation */
2584 if (PageMlocked(old_page))
2585 munlock_vma_page(old_page);
2586 unlock_page(old_page);
2587 }
2588 put_page(old_page);
2589 }
2590 return page_copied ? VM_FAULT_WRITE : 0;
2591 oom_free_new:
2592 put_page(new_page);
2593 oom:
2594 if (old_page)
2595 put_page(old_page);
2596 return VM_FAULT_OOM;
2597 }
2598
2599 /**
2600 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2601 * writeable once the page is prepared
2602 *
2603 * @vmf: structure describing the fault
2604 *
2605 * This function handles all that is needed to finish a write page fault in a
2606 * shared mapping due to PTE being read-only once the mapped page is prepared.
2607 * It handles locking of PTE and modifying it. The function returns
2608 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2609 * lock.
2610 *
2611 * The function expects the page to be locked or other protection against
2612 * concurrent faults / writeback (such as DAX radix tree locks).
2613 */
2614 int finish_mkwrite_fault(struct vm_fault *vmf)
2615 {
2616 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2617 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2618 &vmf->ptl);
2619 /*
2620 * We might have raced with another page fault while we released the
2621 * pte_offset_map_lock.
2622 */
2623 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2624 pte_unmap_unlock(vmf->pte, vmf->ptl);
2625 return VM_FAULT_NOPAGE;
2626 }
2627 wp_page_reuse(vmf);
2628 return 0;
2629 }
2630
2631 /*
2632 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2633 * mapping
2634 */
2635 static int wp_pfn_shared(struct vm_fault *vmf)
2636 {
2637 struct vm_area_struct *vma = vmf->vma;
2638
2639 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2640 int ret;
2641
2642 pte_unmap_unlock(vmf->pte, vmf->ptl);
2643 vmf->flags |= FAULT_FLAG_MKWRITE;
2644 ret = vma->vm_ops->pfn_mkwrite(vmf);
2645 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2646 return ret;
2647 return finish_mkwrite_fault(vmf);
2648 }
2649 wp_page_reuse(vmf);
2650 return VM_FAULT_WRITE;
2651 }
2652
2653 static int wp_page_shared(struct vm_fault *vmf)
2654 __releases(vmf->ptl)
2655 {
2656 struct vm_area_struct *vma = vmf->vma;
2657
2658 get_page(vmf->page);
2659
2660 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2661 int tmp;
2662
2663 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664 tmp = do_page_mkwrite(vmf);
2665 if (unlikely(!tmp || (tmp &
2666 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2667 put_page(vmf->page);
2668 return tmp;
2669 }
2670 tmp = finish_mkwrite_fault(vmf);
2671 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2672 unlock_page(vmf->page);
2673 put_page(vmf->page);
2674 return tmp;
2675 }
2676 } else {
2677 wp_page_reuse(vmf);
2678 lock_page(vmf->page);
2679 }
2680 fault_dirty_shared_page(vma, vmf->page);
2681 put_page(vmf->page);
2682
2683 return VM_FAULT_WRITE;
2684 }
2685
2686 /*
2687 * This routine handles present pages, when users try to write
2688 * to a shared page. It is done by copying the page to a new address
2689 * and decrementing the shared-page counter for the old page.
2690 *
2691 * Note that this routine assumes that the protection checks have been
2692 * done by the caller (the low-level page fault routine in most cases).
2693 * Thus we can safely just mark it writable once we've done any necessary
2694 * COW.
2695 *
2696 * We also mark the page dirty at this point even though the page will
2697 * change only once the write actually happens. This avoids a few races,
2698 * and potentially makes it more efficient.
2699 *
2700 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2701 * but allow concurrent faults), with pte both mapped and locked.
2702 * We return with mmap_sem still held, but pte unmapped and unlocked.
2703 */
2704 static int do_wp_page(struct vm_fault *vmf)
2705 __releases(vmf->ptl)
2706 {
2707 struct vm_area_struct *vma = vmf->vma;
2708
2709 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2710 if (!vmf->page) {
2711 /*
2712 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2713 * VM_PFNMAP VMA.
2714 *
2715 * We should not cow pages in a shared writeable mapping.
2716 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2717 */
2718 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2719 (VM_WRITE|VM_SHARED))
2720 return wp_pfn_shared(vmf);
2721
2722 pte_unmap_unlock(vmf->pte, vmf->ptl);
2723 return wp_page_copy(vmf);
2724 }
2725
2726 /*
2727 * Take out anonymous pages first, anonymous shared vmas are
2728 * not dirty accountable.
2729 */
2730 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2731 int total_map_swapcount;
2732 if (!trylock_page(vmf->page)) {
2733 get_page(vmf->page);
2734 pte_unmap_unlock(vmf->pte, vmf->ptl);
2735 lock_page(vmf->page);
2736 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2737 vmf->address, &vmf->ptl);
2738 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2739 unlock_page(vmf->page);
2740 pte_unmap_unlock(vmf->pte, vmf->ptl);
2741 put_page(vmf->page);
2742 return 0;
2743 }
2744 put_page(vmf->page);
2745 }
2746 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2747 if (total_map_swapcount == 1) {
2748 /*
2749 * The page is all ours. Move it to
2750 * our anon_vma so the rmap code will
2751 * not search our parent or siblings.
2752 * Protected against the rmap code by
2753 * the page lock.
2754 */
2755 page_move_anon_rmap(vmf->page, vma);
2756 }
2757 unlock_page(vmf->page);
2758 wp_page_reuse(vmf);
2759 return VM_FAULT_WRITE;
2760 }
2761 unlock_page(vmf->page);
2762 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2763 (VM_WRITE|VM_SHARED))) {
2764 return wp_page_shared(vmf);
2765 }
2766
2767 /*
2768 * Ok, we need to copy. Oh, well..
2769 */
2770 get_page(vmf->page);
2771
2772 pte_unmap_unlock(vmf->pte, vmf->ptl);
2773 return wp_page_copy(vmf);
2774 }
2775
2776 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2777 unsigned long start_addr, unsigned long end_addr,
2778 struct zap_details *details)
2779 {
2780 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2781 }
2782
2783 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2784 struct zap_details *details)
2785 {
2786 struct vm_area_struct *vma;
2787 pgoff_t vba, vea, zba, zea;
2788
2789 vma_interval_tree_foreach(vma, root,
2790 details->first_index, details->last_index) {
2791
2792 vba = vma->vm_pgoff;
2793 vea = vba + vma_pages(vma) - 1;
2794 zba = details->first_index;
2795 if (zba < vba)
2796 zba = vba;
2797 zea = details->last_index;
2798 if (zea > vea)
2799 zea = vea;
2800
2801 unmap_mapping_range_vma(vma,
2802 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2803 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2804 details);
2805 }
2806 }
2807
2808 /**
2809 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2810 * address_space corresponding to the specified page range in the underlying
2811 * file.
2812 *
2813 * @mapping: the address space containing mmaps to be unmapped.
2814 * @holebegin: byte in first page to unmap, relative to the start of
2815 * the underlying file. This will be rounded down to a PAGE_SIZE
2816 * boundary. Note that this is different from truncate_pagecache(), which
2817 * must keep the partial page. In contrast, we must get rid of
2818 * partial pages.
2819 * @holelen: size of prospective hole in bytes. This will be rounded
2820 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2821 * end of the file.
2822 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2823 * but 0 when invalidating pagecache, don't throw away private data.
2824 */
2825 void unmap_mapping_range(struct address_space *mapping,
2826 loff_t const holebegin, loff_t const holelen, int even_cows)
2827 {
2828 struct zap_details details = { };
2829 pgoff_t hba = holebegin >> PAGE_SHIFT;
2830 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2831
2832 /* Check for overflow. */
2833 if (sizeof(holelen) > sizeof(hlen)) {
2834 long long holeend =
2835 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2836 if (holeend & ~(long long)ULONG_MAX)
2837 hlen = ULONG_MAX - hba + 1;
2838 }
2839
2840 details.check_mapping = even_cows ? NULL : mapping;
2841 details.first_index = hba;
2842 details.last_index = hba + hlen - 1;
2843 if (details.last_index < details.first_index)
2844 details.last_index = ULONG_MAX;
2845
2846 i_mmap_lock_write(mapping);
2847 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2848 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2849 i_mmap_unlock_write(mapping);
2850 }
2851 EXPORT_SYMBOL(unmap_mapping_range);
2852
2853 /*
2854 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2855 * but allow concurrent faults), and pte mapped but not yet locked.
2856 * We return with pte unmapped and unlocked.
2857 *
2858 * We return with the mmap_sem locked or unlocked in the same cases
2859 * as does filemap_fault().
2860 */
2861 int do_swap_page(struct vm_fault *vmf)
2862 {
2863 struct vm_area_struct *vma = vmf->vma;
2864 struct page *page = NULL, *swapcache = NULL;
2865 struct mem_cgroup *memcg;
2866 struct vma_swap_readahead swap_ra;
2867 swp_entry_t entry;
2868 pte_t pte;
2869 int locked;
2870 int exclusive = 0;
2871 int ret = 0;
2872 bool vma_readahead = swap_use_vma_readahead();
2873
2874 if (vma_readahead) {
2875 page = swap_readahead_detect(vmf, &swap_ra);
2876 swapcache = page;
2877 }
2878
2879 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2880 if (page)
2881 put_page(page);
2882 goto out;
2883 }
2884
2885 entry = pte_to_swp_entry(vmf->orig_pte);
2886 if (unlikely(non_swap_entry(entry))) {
2887 if (is_migration_entry(entry)) {
2888 migration_entry_wait(vma->vm_mm, vmf->pmd,
2889 vmf->address);
2890 } else if (is_device_private_entry(entry)) {
2891 /*
2892 * For un-addressable device memory we call the pgmap
2893 * fault handler callback. The callback must migrate
2894 * the page back to some CPU accessible page.
2895 */
2896 ret = device_private_entry_fault(vma, vmf->address, entry,
2897 vmf->flags, vmf->pmd);
2898 } else if (is_hwpoison_entry(entry)) {
2899 ret = VM_FAULT_HWPOISON;
2900 } else {
2901 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2902 ret = VM_FAULT_SIGBUS;
2903 }
2904 goto out;
2905 }
2906
2907
2908 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2909 if (!page) {
2910 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2911 vmf->address);
2912 swapcache = page;
2913 }
2914
2915 if (!page) {
2916 struct swap_info_struct *si = swp_swap_info(entry);
2917
2918 if (si->flags & SWP_SYNCHRONOUS_IO &&
2919 __swap_count(si, entry) == 1) {
2920 /* skip swapcache */
2921 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2922 if (page) {
2923 __SetPageLocked(page);
2924 __SetPageSwapBacked(page);
2925 set_page_private(page, entry.val);
2926 lru_cache_add_anon(page);
2927 swap_readpage(page, true);
2928 }
2929 } else {
2930 if (vma_readahead)
2931 page = do_swap_page_readahead(entry,
2932 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2933 else
2934 page = swapin_readahead(entry,
2935 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2936 swapcache = page;
2937 }
2938
2939 if (!page) {
2940 /*
2941 * Back out if somebody else faulted in this pte
2942 * while we released the pte lock.
2943 */
2944 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2945 vmf->address, &vmf->ptl);
2946 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2947 ret = VM_FAULT_OOM;
2948 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949 goto unlock;
2950 }
2951
2952 /* Had to read the page from swap area: Major fault */
2953 ret = VM_FAULT_MAJOR;
2954 count_vm_event(PGMAJFAULT);
2955 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2956 } else if (PageHWPoison(page)) {
2957 /*
2958 * hwpoisoned dirty swapcache pages are kept for killing
2959 * owner processes (which may be unknown at hwpoison time)
2960 */
2961 ret = VM_FAULT_HWPOISON;
2962 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2963 swapcache = page;
2964 goto out_release;
2965 }
2966
2967 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2968
2969 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2970 if (!locked) {
2971 ret |= VM_FAULT_RETRY;
2972 goto out_release;
2973 }
2974
2975 /*
2976 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2977 * release the swapcache from under us. The page pin, and pte_same
2978 * test below, are not enough to exclude that. Even if it is still
2979 * swapcache, we need to check that the page's swap has not changed.
2980 */
2981 if (unlikely((!PageSwapCache(page) ||
2982 page_private(page) != entry.val)) && swapcache)
2983 goto out_page;
2984
2985 page = ksm_might_need_to_copy(page, vma, vmf->address);
2986 if (unlikely(!page)) {
2987 ret = VM_FAULT_OOM;
2988 page = swapcache;
2989 goto out_page;
2990 }
2991
2992 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2993 &memcg, false)) {
2994 ret = VM_FAULT_OOM;
2995 goto out_page;
2996 }
2997
2998 /*
2999 * Back out if somebody else already faulted in this pte.
3000 */
3001 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3002 &vmf->ptl);
3003 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3004 goto out_nomap;
3005
3006 if (unlikely(!PageUptodate(page))) {
3007 ret = VM_FAULT_SIGBUS;
3008 goto out_nomap;
3009 }
3010
3011 /*
3012 * The page isn't present yet, go ahead with the fault.
3013 *
3014 * Be careful about the sequence of operations here.
3015 * To get its accounting right, reuse_swap_page() must be called
3016 * while the page is counted on swap but not yet in mapcount i.e.
3017 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3018 * must be called after the swap_free(), or it will never succeed.
3019 */
3020
3021 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3022 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3023 pte = mk_pte(page, vma->vm_page_prot);
3024 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3025 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3026 vmf->flags &= ~FAULT_FLAG_WRITE;
3027 ret |= VM_FAULT_WRITE;
3028 exclusive = RMAP_EXCLUSIVE;
3029 }
3030 flush_icache_page(vma, page);
3031 if (pte_swp_soft_dirty(vmf->orig_pte))
3032 pte = pte_mksoft_dirty(pte);
3033 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3034 vmf->orig_pte = pte;
3035
3036 /* ksm created a completely new copy */
3037 if (unlikely(page != swapcache && swapcache)) {
3038 page_add_new_anon_rmap(page, vma, vmf->address, false);
3039 mem_cgroup_commit_charge(page, memcg, false, false);
3040 lru_cache_add_active_or_unevictable(page, vma);
3041 } else {
3042 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3043 mem_cgroup_commit_charge(page, memcg, true, false);
3044 activate_page(page);
3045 }
3046
3047 swap_free(entry);
3048 if (mem_cgroup_swap_full(page) ||
3049 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3050 try_to_free_swap(page);
3051 unlock_page(page);
3052 if (page != swapcache && swapcache) {
3053 /*
3054 * Hold the lock to avoid the swap entry to be reused
3055 * until we take the PT lock for the pte_same() check
3056 * (to avoid false positives from pte_same). For
3057 * further safety release the lock after the swap_free
3058 * so that the swap count won't change under a
3059 * parallel locked swapcache.
3060 */
3061 unlock_page(swapcache);
3062 put_page(swapcache);
3063 }
3064
3065 if (vmf->flags & FAULT_FLAG_WRITE) {
3066 ret |= do_wp_page(vmf);
3067 if (ret & VM_FAULT_ERROR)
3068 ret &= VM_FAULT_ERROR;
3069 goto out;
3070 }
3071
3072 /* No need to invalidate - it was non-present before */
3073 update_mmu_cache(vma, vmf->address, vmf->pte);
3074 unlock:
3075 pte_unmap_unlock(vmf->pte, vmf->ptl);
3076 out:
3077 return ret;
3078 out_nomap:
3079 mem_cgroup_cancel_charge(page, memcg, false);
3080 pte_unmap_unlock(vmf->pte, vmf->ptl);
3081 out_page:
3082 unlock_page(page);
3083 out_release:
3084 put_page(page);
3085 if (page != swapcache && swapcache) {
3086 unlock_page(swapcache);
3087 put_page(swapcache);
3088 }
3089 return ret;
3090 }
3091
3092 /*
3093 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094 * but allow concurrent faults), and pte mapped but not yet locked.
3095 * We return with mmap_sem still held, but pte unmapped and unlocked.
3096 */
3097 static int do_anonymous_page(struct vm_fault *vmf)
3098 {
3099 struct vm_area_struct *vma = vmf->vma;
3100 struct mem_cgroup *memcg;
3101 struct page *page;
3102 int ret = 0;
3103 pte_t entry;
3104
3105 /* File mapping without ->vm_ops ? */
3106 if (vma->vm_flags & VM_SHARED)
3107 return VM_FAULT_SIGBUS;
3108
3109 /*
3110 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3111 * pte_offset_map() on pmds where a huge pmd might be created
3112 * from a different thread.
3113 *
3114 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3115 * parallel threads are excluded by other means.
3116 *
3117 * Here we only have down_read(mmap_sem).
3118 */
3119 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3120 return VM_FAULT_OOM;
3121
3122 /* See the comment in pte_alloc_one_map() */
3123 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3124 return 0;
3125
3126 /* Use the zero-page for reads */
3127 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3128 !mm_forbids_zeropage(vma->vm_mm)) {
3129 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3130 vma->vm_page_prot));
3131 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3132 vmf->address, &vmf->ptl);
3133 if (!pte_none(*vmf->pte))
3134 goto unlock;
3135 ret = check_stable_address_space(vma->vm_mm);
3136 if (ret)
3137 goto unlock;
3138 /* Deliver the page fault to userland, check inside PT lock */
3139 if (userfaultfd_missing(vma)) {
3140 pte_unmap_unlock(vmf->pte, vmf->ptl);
3141 return handle_userfault(vmf, VM_UFFD_MISSING);
3142 }
3143 goto setpte;
3144 }
3145
3146 /* Allocate our own private page. */
3147 if (unlikely(anon_vma_prepare(vma)))
3148 goto oom;
3149 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3150 if (!page)
3151 goto oom;
3152
3153 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3154 goto oom_free_page;
3155
3156 /*
3157 * The memory barrier inside __SetPageUptodate makes sure that
3158 * preceeding stores to the page contents become visible before
3159 * the set_pte_at() write.
3160 */
3161 __SetPageUptodate(page);
3162
3163 entry = mk_pte(page, vma->vm_page_prot);
3164 if (vma->vm_flags & VM_WRITE)
3165 entry = pte_mkwrite(pte_mkdirty(entry));
3166
3167 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3168 &vmf->ptl);
3169 if (!pte_none(*vmf->pte))
3170 goto release;
3171
3172 ret = check_stable_address_space(vma->vm_mm);
3173 if (ret)
3174 goto release;
3175
3176 /* Deliver the page fault to userland, check inside PT lock */
3177 if (userfaultfd_missing(vma)) {
3178 pte_unmap_unlock(vmf->pte, vmf->ptl);
3179 mem_cgroup_cancel_charge(page, memcg, false);
3180 put_page(page);
3181 return handle_userfault(vmf, VM_UFFD_MISSING);
3182 }
3183
3184 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3185 page_add_new_anon_rmap(page, vma, vmf->address, false);
3186 mem_cgroup_commit_charge(page, memcg, false, false);
3187 lru_cache_add_active_or_unevictable(page, vma);
3188 setpte:
3189 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3190
3191 /* No need to invalidate - it was non-present before */
3192 update_mmu_cache(vma, vmf->address, vmf->pte);
3193 unlock:
3194 pte_unmap_unlock(vmf->pte, vmf->ptl);
3195 return ret;
3196 release:
3197 mem_cgroup_cancel_charge(page, memcg, false);
3198 put_page(page);
3199 goto unlock;
3200 oom_free_page:
3201 put_page(page);
3202 oom:
3203 return VM_FAULT_OOM;
3204 }
3205
3206 /*
3207 * The mmap_sem must have been held on entry, and may have been
3208 * released depending on flags and vma->vm_ops->fault() return value.
3209 * See filemap_fault() and __lock_page_retry().
3210 */
3211 static int __do_fault(struct vm_fault *vmf)
3212 {
3213 struct vm_area_struct *vma = vmf->vma;
3214 int ret;
3215
3216 ret = vma->vm_ops->fault(vmf);
3217 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3218 VM_FAULT_DONE_COW)))
3219 return ret;
3220
3221 if (unlikely(PageHWPoison(vmf->page))) {
3222 if (ret & VM_FAULT_LOCKED)
3223 unlock_page(vmf->page);
3224 put_page(vmf->page);
3225 vmf->page = NULL;
3226 return VM_FAULT_HWPOISON;
3227 }
3228
3229 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3230 lock_page(vmf->page);
3231 else
3232 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3233
3234 return ret;
3235 }
3236
3237 /*
3238 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3239 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3240 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3241 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3242 */
3243 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3244 {
3245 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3246 }
3247
3248 static int pte_alloc_one_map(struct vm_fault *vmf)
3249 {
3250 struct vm_area_struct *vma = vmf->vma;
3251
3252 if (!pmd_none(*vmf->pmd))
3253 goto map_pte;
3254 if (vmf->prealloc_pte) {
3255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3256 if (unlikely(!pmd_none(*vmf->pmd))) {
3257 spin_unlock(vmf->ptl);
3258 goto map_pte;
3259 }
3260
3261 mm_inc_nr_ptes(vma->vm_mm);
3262 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3263 spin_unlock(vmf->ptl);
3264 vmf->prealloc_pte = NULL;
3265 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3266 return VM_FAULT_OOM;
3267 }
3268 map_pte:
3269 /*
3270 * If a huge pmd materialized under us just retry later. Use
3271 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3272 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3273 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3274 * running immediately after a huge pmd fault in a different thread of
3275 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3276 * All we have to ensure is that it is a regular pmd that we can walk
3277 * with pte_offset_map() and we can do that through an atomic read in
3278 * C, which is what pmd_trans_unstable() provides.
3279 */
3280 if (pmd_devmap_trans_unstable(vmf->pmd))
3281 return VM_FAULT_NOPAGE;
3282
3283 /*
3284 * At this point we know that our vmf->pmd points to a page of ptes
3285 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3286 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3287 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3288 * be valid and we will re-check to make sure the vmf->pte isn't
3289 * pte_none() under vmf->ptl protection when we return to
3290 * alloc_set_pte().
3291 */
3292 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3293 &vmf->ptl);
3294 return 0;
3295 }
3296
3297 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3298
3299 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3300 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3301 unsigned long haddr)
3302 {
3303 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3304 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3305 return false;
3306 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3307 return false;
3308 return true;
3309 }
3310
3311 static void deposit_prealloc_pte(struct vm_fault *vmf)
3312 {
3313 struct vm_area_struct *vma = vmf->vma;
3314
3315 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3316 /*
3317 * We are going to consume the prealloc table,
3318 * count that as nr_ptes.
3319 */
3320 mm_inc_nr_ptes(vma->vm_mm);
3321 vmf->prealloc_pte = NULL;
3322 }
3323
3324 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3325 {
3326 struct vm_area_struct *vma = vmf->vma;
3327 bool write = vmf->flags & FAULT_FLAG_WRITE;
3328 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3329 pmd_t entry;
3330 int i, ret;
3331
3332 if (!transhuge_vma_suitable(vma, haddr))
3333 return VM_FAULT_FALLBACK;
3334
3335 ret = VM_FAULT_FALLBACK;
3336 page = compound_head(page);
3337
3338 /*
3339 * Archs like ppc64 need additonal space to store information
3340 * related to pte entry. Use the preallocated table for that.
3341 */
3342 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3343 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3344 if (!vmf->prealloc_pte)
3345 return VM_FAULT_OOM;
3346 smp_wmb(); /* See comment in __pte_alloc() */
3347 }
3348
3349 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3350 if (unlikely(!pmd_none(*vmf->pmd)))
3351 goto out;
3352
3353 for (i = 0; i < HPAGE_PMD_NR; i++)
3354 flush_icache_page(vma, page + i);
3355
3356 entry = mk_huge_pmd(page, vma->vm_page_prot);
3357 if (write)
3358 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3359
3360 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3361 page_add_file_rmap(page, true);
3362 /*
3363 * deposit and withdraw with pmd lock held
3364 */
3365 if (arch_needs_pgtable_deposit())
3366 deposit_prealloc_pte(vmf);
3367
3368 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3369
3370 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3371
3372 /* fault is handled */
3373 ret = 0;
3374 count_vm_event(THP_FILE_MAPPED);
3375 out:
3376 spin_unlock(vmf->ptl);
3377 return ret;
3378 }
3379 #else
3380 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3381 {
3382 BUILD_BUG();
3383 return 0;
3384 }
3385 #endif
3386
3387 /**
3388 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3389 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3390 *
3391 * @vmf: fault environment
3392 * @memcg: memcg to charge page (only for private mappings)
3393 * @page: page to map
3394 *
3395 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3396 * return.
3397 *
3398 * Target users are page handler itself and implementations of
3399 * vm_ops->map_pages.
3400 */
3401 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3402 struct page *page)
3403 {
3404 struct vm_area_struct *vma = vmf->vma;
3405 bool write = vmf->flags & FAULT_FLAG_WRITE;
3406 pte_t entry;
3407 int ret;
3408
3409 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3410 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3411 /* THP on COW? */
3412 VM_BUG_ON_PAGE(memcg, page);
3413
3414 ret = do_set_pmd(vmf, page);
3415 if (ret != VM_FAULT_FALLBACK)
3416 return ret;
3417 }
3418
3419 if (!vmf->pte) {
3420 ret = pte_alloc_one_map(vmf);
3421 if (ret)
3422 return ret;
3423 }
3424
3425 /* Re-check under ptl */
3426 if (unlikely(!pte_none(*vmf->pte)))
3427 return VM_FAULT_NOPAGE;
3428
3429 flush_icache_page(vma, page);
3430 entry = mk_pte(page, vma->vm_page_prot);
3431 if (write)
3432 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3433 /* copy-on-write page */
3434 if (write && !(vma->vm_flags & VM_SHARED)) {
3435 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3436 page_add_new_anon_rmap(page, vma, vmf->address, false);
3437 mem_cgroup_commit_charge(page, memcg, false, false);
3438 lru_cache_add_active_or_unevictable(page, vma);
3439 } else {
3440 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3441 page_add_file_rmap(page, false);
3442 }
3443 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3444
3445 /* no need to invalidate: a not-present page won't be cached */
3446 update_mmu_cache(vma, vmf->address, vmf->pte);
3447
3448 return 0;
3449 }
3450
3451
3452 /**
3453 * finish_fault - finish page fault once we have prepared the page to fault
3454 *
3455 * @vmf: structure describing the fault
3456 *
3457 * This function handles all that is needed to finish a page fault once the
3458 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3459 * given page, adds reverse page mapping, handles memcg charges and LRU
3460 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3461 * error.
3462 *
3463 * The function expects the page to be locked and on success it consumes a
3464 * reference of a page being mapped (for the PTE which maps it).
3465 */
3466 int finish_fault(struct vm_fault *vmf)
3467 {
3468 struct page *page;
3469 int ret = 0;
3470
3471 /* Did we COW the page? */
3472 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3473 !(vmf->vma->vm_flags & VM_SHARED))
3474 page = vmf->cow_page;
3475 else
3476 page = vmf->page;
3477
3478 /*
3479 * check even for read faults because we might have lost our CoWed
3480 * page
3481 */
3482 if (!(vmf->vma->vm_flags & VM_SHARED))
3483 ret = check_stable_address_space(vmf->vma->vm_mm);
3484 if (!ret)
3485 ret = alloc_set_pte(vmf, vmf->memcg, page);
3486 if (vmf->pte)
3487 pte_unmap_unlock(vmf->pte, vmf->ptl);
3488 return ret;
3489 }
3490
3491 static unsigned long fault_around_bytes __read_mostly =
3492 rounddown_pow_of_two(65536);
3493
3494 #ifdef CONFIG_DEBUG_FS
3495 static int fault_around_bytes_get(void *data, u64 *val)
3496 {
3497 *val = fault_around_bytes;
3498 return 0;
3499 }
3500
3501 /*
3502 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3503 * rounded down to nearest page order. It's what do_fault_around() expects to
3504 * see.
3505 */
3506 static int fault_around_bytes_set(void *data, u64 val)
3507 {
3508 if (val / PAGE_SIZE > PTRS_PER_PTE)
3509 return -EINVAL;
3510 if (val > PAGE_SIZE)
3511 fault_around_bytes = rounddown_pow_of_two(val);
3512 else
3513 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3514 return 0;
3515 }
3516 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3517 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3518
3519 static int __init fault_around_debugfs(void)
3520 {
3521 void *ret;
3522
3523 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3524 &fault_around_bytes_fops);
3525 if (!ret)
3526 pr_warn("Failed to create fault_around_bytes in debugfs");
3527 return 0;
3528 }
3529 late_initcall(fault_around_debugfs);
3530 #endif
3531
3532 /*
3533 * do_fault_around() tries to map few pages around the fault address. The hope
3534 * is that the pages will be needed soon and this will lower the number of
3535 * faults to handle.
3536 *
3537 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3538 * not ready to be mapped: not up-to-date, locked, etc.
3539 *
3540 * This function is called with the page table lock taken. In the split ptlock
3541 * case the page table lock only protects only those entries which belong to
3542 * the page table corresponding to the fault address.
3543 *
3544 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3545 * only once.
3546 *
3547 * fault_around_pages() defines how many pages we'll try to map.
3548 * do_fault_around() expects it to return a power of two less than or equal to
3549 * PTRS_PER_PTE.
3550 *
3551 * The virtual address of the area that we map is naturally aligned to the
3552 * fault_around_pages() value (and therefore to page order). This way it's
3553 * easier to guarantee that we don't cross page table boundaries.
3554 */
3555 static int do_fault_around(struct vm_fault *vmf)
3556 {
3557 unsigned long address = vmf->address, nr_pages, mask;
3558 pgoff_t start_pgoff = vmf->pgoff;
3559 pgoff_t end_pgoff;
3560 int off, ret = 0;
3561
3562 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3563 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3564
3565 vmf->address = max(address & mask, vmf->vma->vm_start);
3566 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3567 start_pgoff -= off;
3568
3569 /*
3570 * end_pgoff is either end of page table or end of vma
3571 * or fault_around_pages() from start_pgoff, depending what is nearest.
3572 */
3573 end_pgoff = start_pgoff -
3574 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3575 PTRS_PER_PTE - 1;
3576 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3577 start_pgoff + nr_pages - 1);
3578
3579 if (pmd_none(*vmf->pmd)) {
3580 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3581 vmf->address);
3582 if (!vmf->prealloc_pte)
3583 goto out;
3584 smp_wmb(); /* See comment in __pte_alloc() */
3585 }
3586
3587 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3588
3589 /* Huge page is mapped? Page fault is solved */
3590 if (pmd_trans_huge(*vmf->pmd)) {
3591 ret = VM_FAULT_NOPAGE;
3592 goto out;
3593 }
3594
3595 /* ->map_pages() haven't done anything useful. Cold page cache? */
3596 if (!vmf->pte)
3597 goto out;
3598
3599 /* check if the page fault is solved */
3600 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3601 if (!pte_none(*vmf->pte))
3602 ret = VM_FAULT_NOPAGE;
3603 pte_unmap_unlock(vmf->pte, vmf->ptl);
3604 out:
3605 vmf->address = address;
3606 vmf->pte = NULL;
3607 return ret;
3608 }
3609
3610 static int do_read_fault(struct vm_fault *vmf)
3611 {
3612 struct vm_area_struct *vma = vmf->vma;
3613 int ret = 0;
3614
3615 /*
3616 * Let's call ->map_pages() first and use ->fault() as fallback
3617 * if page by the offset is not ready to be mapped (cold cache or
3618 * something).
3619 */
3620 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3621 ret = do_fault_around(vmf);
3622 if (ret)
3623 return ret;
3624 }
3625
3626 ret = __do_fault(vmf);
3627 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3628 return ret;
3629
3630 ret |= finish_fault(vmf);
3631 unlock_page(vmf->page);
3632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3633 put_page(vmf->page);
3634 return ret;
3635 }
3636
3637 static int do_cow_fault(struct vm_fault *vmf)
3638 {
3639 struct vm_area_struct *vma = vmf->vma;
3640 int ret;
3641
3642 if (unlikely(anon_vma_prepare(vma)))
3643 return VM_FAULT_OOM;
3644
3645 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3646 if (!vmf->cow_page)
3647 return VM_FAULT_OOM;
3648
3649 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3650 &vmf->memcg, false)) {
3651 put_page(vmf->cow_page);
3652 return VM_FAULT_OOM;
3653 }
3654
3655 ret = __do_fault(vmf);
3656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3657 goto uncharge_out;
3658 if (ret & VM_FAULT_DONE_COW)
3659 return ret;
3660
3661 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3662 __SetPageUptodate(vmf->cow_page);
3663
3664 ret |= finish_fault(vmf);
3665 unlock_page(vmf->page);
3666 put_page(vmf->page);
3667 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3668 goto uncharge_out;
3669 return ret;
3670 uncharge_out:
3671 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3672 put_page(vmf->cow_page);
3673 return ret;
3674 }
3675
3676 static int do_shared_fault(struct vm_fault *vmf)
3677 {
3678 struct vm_area_struct *vma = vmf->vma;
3679 int ret, tmp;
3680
3681 ret = __do_fault(vmf);
3682 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 return ret;
3684
3685 /*
3686 * Check if the backing address space wants to know that the page is
3687 * about to become writable
3688 */
3689 if (vma->vm_ops->page_mkwrite) {
3690 unlock_page(vmf->page);
3691 tmp = do_page_mkwrite(vmf);
3692 if (unlikely(!tmp ||
3693 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3694 put_page(vmf->page);
3695 return tmp;
3696 }
3697 }
3698
3699 ret |= finish_fault(vmf);
3700 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3701 VM_FAULT_RETRY))) {
3702 unlock_page(vmf->page);
3703 put_page(vmf->page);
3704 return ret;
3705 }
3706
3707 fault_dirty_shared_page(vma, vmf->page);
3708 return ret;
3709 }
3710
3711 /*
3712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3713 * but allow concurrent faults).
3714 * The mmap_sem may have been released depending on flags and our
3715 * return value. See filemap_fault() and __lock_page_or_retry().
3716 */
3717 static int do_fault(struct vm_fault *vmf)
3718 {
3719 struct vm_area_struct *vma = vmf->vma;
3720 int ret;
3721
3722 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3723 if (!vma->vm_ops->fault)
3724 ret = VM_FAULT_SIGBUS;
3725 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3726 ret = do_read_fault(vmf);
3727 else if (!(vma->vm_flags & VM_SHARED))
3728 ret = do_cow_fault(vmf);
3729 else
3730 ret = do_shared_fault(vmf);
3731
3732 /* preallocated pagetable is unused: free it */
3733 if (vmf->prealloc_pte) {
3734 pte_free(vma->vm_mm, vmf->prealloc_pte);
3735 vmf->prealloc_pte = NULL;
3736 }
3737 return ret;
3738 }
3739
3740 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3741 unsigned long addr, int page_nid,
3742 int *flags)
3743 {
3744 get_page(page);
3745
3746 count_vm_numa_event(NUMA_HINT_FAULTS);
3747 if (page_nid == numa_node_id()) {
3748 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3749 *flags |= TNF_FAULT_LOCAL;
3750 }
3751
3752 return mpol_misplaced(page, vma, addr);
3753 }
3754
3755 static int do_numa_page(struct vm_fault *vmf)
3756 {
3757 struct vm_area_struct *vma = vmf->vma;
3758 struct page *page = NULL;
3759 int page_nid = -1;
3760 int last_cpupid;
3761 int target_nid;
3762 bool migrated = false;
3763 pte_t pte;
3764 bool was_writable = pte_savedwrite(vmf->orig_pte);
3765 int flags = 0;
3766
3767 /*
3768 * The "pte" at this point cannot be used safely without
3769 * validation through pte_unmap_same(). It's of NUMA type but
3770 * the pfn may be screwed if the read is non atomic.
3771 */
3772 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3773 spin_lock(vmf->ptl);
3774 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3775 pte_unmap_unlock(vmf->pte, vmf->ptl);
3776 goto out;
3777 }
3778
3779 /*
3780 * Make it present again, Depending on how arch implementes non
3781 * accessible ptes, some can allow access by kernel mode.
3782 */
3783 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3784 pte = pte_modify(pte, vma->vm_page_prot);
3785 pte = pte_mkyoung(pte);
3786 if (was_writable)
3787 pte = pte_mkwrite(pte);
3788 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3789 update_mmu_cache(vma, vmf->address, vmf->pte);
3790
3791 page = vm_normal_page(vma, vmf->address, pte);
3792 if (!page) {
3793 pte_unmap_unlock(vmf->pte, vmf->ptl);
3794 return 0;
3795 }
3796
3797 /* TODO: handle PTE-mapped THP */
3798 if (PageCompound(page)) {
3799 pte_unmap_unlock(vmf->pte, vmf->ptl);
3800 return 0;
3801 }
3802
3803 /*
3804 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3805 * much anyway since they can be in shared cache state. This misses
3806 * the case where a mapping is writable but the process never writes
3807 * to it but pte_write gets cleared during protection updates and
3808 * pte_dirty has unpredictable behaviour between PTE scan updates,
3809 * background writeback, dirty balancing and application behaviour.
3810 */
3811 if (!pte_write(pte))
3812 flags |= TNF_NO_GROUP;
3813
3814 /*
3815 * Flag if the page is shared between multiple address spaces. This
3816 * is later used when determining whether to group tasks together
3817 */
3818 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3819 flags |= TNF_SHARED;
3820
3821 last_cpupid = page_cpupid_last(page);
3822 page_nid = page_to_nid(page);
3823 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3824 &flags);
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 if (target_nid == -1) {
3827 put_page(page);
3828 goto out;
3829 }
3830
3831 /* Migrate to the requested node */
3832 migrated = migrate_misplaced_page(page, vma, target_nid);
3833 if (migrated) {
3834 page_nid = target_nid;
3835 flags |= TNF_MIGRATED;
3836 } else
3837 flags |= TNF_MIGRATE_FAIL;
3838
3839 out:
3840 if (page_nid != -1)
3841 task_numa_fault(last_cpupid, page_nid, 1, flags);
3842 return 0;
3843 }
3844
3845 static inline int create_huge_pmd(struct vm_fault *vmf)
3846 {
3847 if (vma_is_anonymous(vmf->vma))
3848 return do_huge_pmd_anonymous_page(vmf);
3849 if (vmf->vma->vm_ops->huge_fault)
3850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3851 return VM_FAULT_FALLBACK;
3852 }
3853
3854 /* `inline' is required to avoid gcc 4.1.2 build error */
3855 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3856 {
3857 if (vma_is_anonymous(vmf->vma))
3858 return do_huge_pmd_wp_page(vmf, orig_pmd);
3859 if (vmf->vma->vm_ops->huge_fault)
3860 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3861
3862 /* COW handled on pte level: split pmd */
3863 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3864 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3865
3866 return VM_FAULT_FALLBACK;
3867 }
3868
3869 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3870 {
3871 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3872 }
3873
3874 static int create_huge_pud(struct vm_fault *vmf)
3875 {
3876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3877 /* No support for anonymous transparent PUD pages yet */
3878 if (vma_is_anonymous(vmf->vma))
3879 return VM_FAULT_FALLBACK;
3880 if (vmf->vma->vm_ops->huge_fault)
3881 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3882 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3883 return VM_FAULT_FALLBACK;
3884 }
3885
3886 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3887 {
3888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3889 /* No support for anonymous transparent PUD pages yet */
3890 if (vma_is_anonymous(vmf->vma))
3891 return VM_FAULT_FALLBACK;
3892 if (vmf->vma->vm_ops->huge_fault)
3893 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3895 return VM_FAULT_FALLBACK;
3896 }
3897
3898 /*
3899 * These routines also need to handle stuff like marking pages dirty
3900 * and/or accessed for architectures that don't do it in hardware (most
3901 * RISC architectures). The early dirtying is also good on the i386.
3902 *
3903 * There is also a hook called "update_mmu_cache()" that architectures
3904 * with external mmu caches can use to update those (ie the Sparc or
3905 * PowerPC hashed page tables that act as extended TLBs).
3906 *
3907 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3908 * concurrent faults).
3909 *
3910 * The mmap_sem may have been released depending on flags and our return value.
3911 * See filemap_fault() and __lock_page_or_retry().
3912 */
3913 static int handle_pte_fault(struct vm_fault *vmf)
3914 {
3915 pte_t entry;
3916
3917 if (unlikely(pmd_none(*vmf->pmd))) {
3918 /*
3919 * Leave __pte_alloc() until later: because vm_ops->fault may
3920 * want to allocate huge page, and if we expose page table
3921 * for an instant, it will be difficult to retract from
3922 * concurrent faults and from rmap lookups.
3923 */
3924 vmf->pte = NULL;
3925 } else {
3926 /* See comment in pte_alloc_one_map() */
3927 if (pmd_devmap_trans_unstable(vmf->pmd))
3928 return 0;
3929 /*
3930 * A regular pmd is established and it can't morph into a huge
3931 * pmd from under us anymore at this point because we hold the
3932 * mmap_sem read mode and khugepaged takes it in write mode.
3933 * So now it's safe to run pte_offset_map().
3934 */
3935 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3936 vmf->orig_pte = *vmf->pte;
3937
3938 /*
3939 * some architectures can have larger ptes than wordsize,
3940 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3941 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3942 * accesses. The code below just needs a consistent view
3943 * for the ifs and we later double check anyway with the
3944 * ptl lock held. So here a barrier will do.
3945 */
3946 barrier();
3947 if (pte_none(vmf->orig_pte)) {
3948 pte_unmap(vmf->pte);
3949 vmf->pte = NULL;
3950 }
3951 }
3952
3953 if (!vmf->pte) {
3954 if (vma_is_anonymous(vmf->vma))
3955 return do_anonymous_page(vmf);
3956 else
3957 return do_fault(vmf);
3958 }
3959
3960 if (!pte_present(vmf->orig_pte))
3961 return do_swap_page(vmf);
3962
3963 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3964 return do_numa_page(vmf);
3965
3966 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3967 spin_lock(vmf->ptl);
3968 entry = vmf->orig_pte;
3969 if (unlikely(!pte_same(*vmf->pte, entry)))
3970 goto unlock;
3971 if (vmf->flags & FAULT_FLAG_WRITE) {
3972 if (!pte_write(entry))
3973 return do_wp_page(vmf);
3974 entry = pte_mkdirty(entry);
3975 }
3976 entry = pte_mkyoung(entry);
3977 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3978 vmf->flags & FAULT_FLAG_WRITE)) {
3979 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3980 } else {
3981 /*
3982 * This is needed only for protection faults but the arch code
3983 * is not yet telling us if this is a protection fault or not.
3984 * This still avoids useless tlb flushes for .text page faults
3985 * with threads.
3986 */
3987 if (vmf->flags & FAULT_FLAG_WRITE)
3988 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3989 }
3990 unlock:
3991 pte_unmap_unlock(vmf->pte, vmf->ptl);
3992 return 0;
3993 }
3994
3995 /*
3996 * By the time we get here, we already hold the mm semaphore
3997 *
3998 * The mmap_sem may have been released depending on flags and our
3999 * return value. See filemap_fault() and __lock_page_or_retry().
4000 */
4001 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4002 unsigned int flags)
4003 {
4004 struct vm_fault vmf = {
4005 .vma = vma,
4006 .address = address & PAGE_MASK,
4007 .flags = flags,
4008 .pgoff = linear_page_index(vma, address),
4009 .gfp_mask = __get_fault_gfp_mask(vma),
4010 };
4011 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4012 struct mm_struct *mm = vma->vm_mm;
4013 pgd_t *pgd;
4014 p4d_t *p4d;
4015 int ret;
4016
4017 pgd = pgd_offset(mm, address);
4018 p4d = p4d_alloc(mm, pgd, address);
4019 if (!p4d)
4020 return VM_FAULT_OOM;
4021
4022 vmf.pud = pud_alloc(mm, p4d, address);
4023 if (!vmf.pud)
4024 return VM_FAULT_OOM;
4025 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4026 ret = create_huge_pud(&vmf);
4027 if (!(ret & VM_FAULT_FALLBACK))
4028 return ret;
4029 } else {
4030 pud_t orig_pud = *vmf.pud;
4031
4032 barrier();
4033 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4034
4035 /* NUMA case for anonymous PUDs would go here */
4036
4037 if (dirty && !pud_write(orig_pud)) {
4038 ret = wp_huge_pud(&vmf, orig_pud);
4039 if (!(ret & VM_FAULT_FALLBACK))
4040 return ret;
4041 } else {
4042 huge_pud_set_accessed(&vmf, orig_pud);
4043 return 0;
4044 }
4045 }
4046 }
4047
4048 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4049 if (!vmf.pmd)
4050 return VM_FAULT_OOM;
4051 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4052 ret = create_huge_pmd(&vmf);
4053 if (!(ret & VM_FAULT_FALLBACK))
4054 return ret;
4055 } else {
4056 pmd_t orig_pmd = *vmf.pmd;
4057
4058 barrier();
4059 if (unlikely(is_swap_pmd(orig_pmd))) {
4060 VM_BUG_ON(thp_migration_supported() &&
4061 !is_pmd_migration_entry(orig_pmd));
4062 if (is_pmd_migration_entry(orig_pmd))
4063 pmd_migration_entry_wait(mm, vmf.pmd);
4064 return 0;
4065 }
4066 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4067 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4068 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4069
4070 if (dirty && !pmd_write(orig_pmd)) {
4071 ret = wp_huge_pmd(&vmf, orig_pmd);
4072 if (!(ret & VM_FAULT_FALLBACK))
4073 return ret;
4074 } else {
4075 huge_pmd_set_accessed(&vmf, orig_pmd);
4076 return 0;
4077 }
4078 }
4079 }
4080
4081 return handle_pte_fault(&vmf);
4082 }
4083
4084 /*
4085 * By the time we get here, we already hold the mm semaphore
4086 *
4087 * The mmap_sem may have been released depending on flags and our
4088 * return value. See filemap_fault() and __lock_page_or_retry().
4089 */
4090 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4091 unsigned int flags)
4092 {
4093 int ret;
4094
4095 __set_current_state(TASK_RUNNING);
4096
4097 count_vm_event(PGFAULT);
4098 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4099
4100 /* do counter updates before entering really critical section. */
4101 check_sync_rss_stat(current);
4102
4103 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4104 flags & FAULT_FLAG_INSTRUCTION,
4105 flags & FAULT_FLAG_REMOTE))
4106 return VM_FAULT_SIGSEGV;
4107
4108 /*
4109 * Enable the memcg OOM handling for faults triggered in user
4110 * space. Kernel faults are handled more gracefully.
4111 */
4112 if (flags & FAULT_FLAG_USER)
4113 mem_cgroup_oom_enable();
4114
4115 if (unlikely(is_vm_hugetlb_page(vma)))
4116 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4117 else
4118 ret = __handle_mm_fault(vma, address, flags);
4119
4120 if (flags & FAULT_FLAG_USER) {
4121 mem_cgroup_oom_disable();
4122 /*
4123 * The task may have entered a memcg OOM situation but
4124 * if the allocation error was handled gracefully (no
4125 * VM_FAULT_OOM), there is no need to kill anything.
4126 * Just clean up the OOM state peacefully.
4127 */
4128 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4129 mem_cgroup_oom_synchronize(false);
4130 }
4131
4132 return ret;
4133 }
4134 EXPORT_SYMBOL_GPL(handle_mm_fault);
4135
4136 #ifndef __PAGETABLE_P4D_FOLDED
4137 /*
4138 * Allocate p4d page table.
4139 * We've already handled the fast-path in-line.
4140 */
4141 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4142 {
4143 p4d_t *new = p4d_alloc_one(mm, address);
4144 if (!new)
4145 return -ENOMEM;
4146
4147 smp_wmb(); /* See comment in __pte_alloc */
4148
4149 spin_lock(&mm->page_table_lock);
4150 if (pgd_present(*pgd)) /* Another has populated it */
4151 p4d_free(mm, new);
4152 else
4153 pgd_populate(mm, pgd, new);
4154 spin_unlock(&mm->page_table_lock);
4155 return 0;
4156 }
4157 #endif /* __PAGETABLE_P4D_FOLDED */
4158
4159 #ifndef __PAGETABLE_PUD_FOLDED
4160 /*
4161 * Allocate page upper directory.
4162 * We've already handled the fast-path in-line.
4163 */
4164 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4165 {
4166 pud_t *new = pud_alloc_one(mm, address);
4167 if (!new)
4168 return -ENOMEM;
4169
4170 smp_wmb(); /* See comment in __pte_alloc */
4171
4172 spin_lock(&mm->page_table_lock);
4173 #ifndef __ARCH_HAS_5LEVEL_HACK
4174 if (!p4d_present(*p4d)) {
4175 mm_inc_nr_puds(mm);
4176 p4d_populate(mm, p4d, new);
4177 } else /* Another has populated it */
4178 pud_free(mm, new);
4179 #else
4180 if (!pgd_present(*p4d)) {
4181 mm_inc_nr_puds(mm);
4182 pgd_populate(mm, p4d, new);
4183 } else /* Another has populated it */
4184 pud_free(mm, new);
4185 #endif /* __ARCH_HAS_5LEVEL_HACK */
4186 spin_unlock(&mm->page_table_lock);
4187 return 0;
4188 }
4189 #endif /* __PAGETABLE_PUD_FOLDED */
4190
4191 #ifndef __PAGETABLE_PMD_FOLDED
4192 /*
4193 * Allocate page middle directory.
4194 * We've already handled the fast-path in-line.
4195 */
4196 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4197 {
4198 spinlock_t *ptl;
4199 pmd_t *new = pmd_alloc_one(mm, address);
4200 if (!new)
4201 return -ENOMEM;
4202
4203 smp_wmb(); /* See comment in __pte_alloc */
4204
4205 ptl = pud_lock(mm, pud);
4206 #ifndef __ARCH_HAS_4LEVEL_HACK
4207 if (!pud_present(*pud)) {
4208 mm_inc_nr_pmds(mm);
4209 pud_populate(mm, pud, new);
4210 } else /* Another has populated it */
4211 pmd_free(mm, new);
4212 #else
4213 if (!pgd_present(*pud)) {
4214 mm_inc_nr_pmds(mm);
4215 pgd_populate(mm, pud, new);
4216 } else /* Another has populated it */
4217 pmd_free(mm, new);
4218 #endif /* __ARCH_HAS_4LEVEL_HACK */
4219 spin_unlock(ptl);
4220 return 0;
4221 }
4222 #endif /* __PAGETABLE_PMD_FOLDED */
4223
4224 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4225 unsigned long *start, unsigned long *end,
4226 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4227 {
4228 pgd_t *pgd;
4229 p4d_t *p4d;
4230 pud_t *pud;
4231 pmd_t *pmd;
4232 pte_t *ptep;
4233
4234 pgd = pgd_offset(mm, address);
4235 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4236 goto out;
4237
4238 p4d = p4d_offset(pgd, address);
4239 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4240 goto out;
4241
4242 pud = pud_offset(p4d, address);
4243 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4244 goto out;
4245
4246 pmd = pmd_offset(pud, address);
4247 VM_BUG_ON(pmd_trans_huge(*pmd));
4248
4249 if (pmd_huge(*pmd)) {
4250 if (!pmdpp)
4251 goto out;
4252
4253 if (start && end) {
4254 *start = address & PMD_MASK;
4255 *end = *start + PMD_SIZE;
4256 mmu_notifier_invalidate_range_start(mm, *start, *end);
4257 }
4258 *ptlp = pmd_lock(mm, pmd);
4259 if (pmd_huge(*pmd)) {
4260 *pmdpp = pmd;
4261 return 0;
4262 }
4263 spin_unlock(*ptlp);
4264 if (start && end)
4265 mmu_notifier_invalidate_range_end(mm, *start, *end);
4266 }
4267
4268 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4269 goto out;
4270
4271 if (start && end) {
4272 *start = address & PAGE_MASK;
4273 *end = *start + PAGE_SIZE;
4274 mmu_notifier_invalidate_range_start(mm, *start, *end);
4275 }
4276 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4277 if (!pte_present(*ptep))
4278 goto unlock;
4279 *ptepp = ptep;
4280 return 0;
4281 unlock:
4282 pte_unmap_unlock(ptep, *ptlp);
4283 if (start && end)
4284 mmu_notifier_invalidate_range_end(mm, *start, *end);
4285 out:
4286 return -EINVAL;
4287 }
4288
4289 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4290 pte_t **ptepp, spinlock_t **ptlp)
4291 {
4292 int res;
4293
4294 /* (void) is needed to make gcc happy */
4295 (void) __cond_lock(*ptlp,
4296 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4297 ptepp, NULL, ptlp)));
4298 return res;
4299 }
4300
4301 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4302 unsigned long *start, unsigned long *end,
4303 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4304 {
4305 int res;
4306
4307 /* (void) is needed to make gcc happy */
4308 (void) __cond_lock(*ptlp,
4309 !(res = __follow_pte_pmd(mm, address, start, end,
4310 ptepp, pmdpp, ptlp)));
4311 return res;
4312 }
4313 EXPORT_SYMBOL(follow_pte_pmd);
4314
4315 /**
4316 * follow_pfn - look up PFN at a user virtual address
4317 * @vma: memory mapping
4318 * @address: user virtual address
4319 * @pfn: location to store found PFN
4320 *
4321 * Only IO mappings and raw PFN mappings are allowed.
4322 *
4323 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4324 */
4325 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4326 unsigned long *pfn)
4327 {
4328 int ret = -EINVAL;
4329 spinlock_t *ptl;
4330 pte_t *ptep;
4331
4332 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4333 return ret;
4334
4335 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4336 if (ret)
4337 return ret;
4338 *pfn = pte_pfn(*ptep);
4339 pte_unmap_unlock(ptep, ptl);
4340 return 0;
4341 }
4342 EXPORT_SYMBOL(follow_pfn);
4343
4344 #ifdef CONFIG_HAVE_IOREMAP_PROT
4345 int follow_phys(struct vm_area_struct *vma,
4346 unsigned long address, unsigned int flags,
4347 unsigned long *prot, resource_size_t *phys)
4348 {
4349 int ret = -EINVAL;
4350 pte_t *ptep, pte;
4351 spinlock_t *ptl;
4352
4353 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4354 goto out;
4355
4356 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4357 goto out;
4358 pte = *ptep;
4359
4360 if ((flags & FOLL_WRITE) && !pte_write(pte))
4361 goto unlock;
4362
4363 *prot = pgprot_val(pte_pgprot(pte));
4364 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4365
4366 ret = 0;
4367 unlock:
4368 pte_unmap_unlock(ptep, ptl);
4369 out:
4370 return ret;
4371 }
4372
4373 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4374 void *buf, int len, int write)
4375 {
4376 resource_size_t phys_addr;
4377 unsigned long prot = 0;
4378 void __iomem *maddr;
4379 int offset = addr & (PAGE_SIZE-1);
4380
4381 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4382 return -EINVAL;
4383
4384 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4385 if (write)
4386 memcpy_toio(maddr + offset, buf, len);
4387 else
4388 memcpy_fromio(buf, maddr + offset, len);
4389 iounmap(maddr);
4390
4391 return len;
4392 }
4393 EXPORT_SYMBOL_GPL(generic_access_phys);
4394 #endif
4395
4396 /*
4397 * Access another process' address space as given in mm. If non-NULL, use the
4398 * given task for page fault accounting.
4399 */
4400 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4401 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4402 {
4403 struct vm_area_struct *vma;
4404 void *old_buf = buf;
4405 int write = gup_flags & FOLL_WRITE;
4406
4407 down_read(&mm->mmap_sem);
4408 /* ignore errors, just check how much was successfully transferred */
4409 while (len) {
4410 int bytes, ret, offset;
4411 void *maddr;
4412 struct page *page = NULL;
4413
4414 ret = get_user_pages_remote(tsk, mm, addr, 1,
4415 gup_flags, &page, &vma, NULL);
4416 if (ret <= 0) {
4417 #ifndef CONFIG_HAVE_IOREMAP_PROT
4418 break;
4419 #else
4420 /*
4421 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4422 * we can access using slightly different code.
4423 */
4424 vma = find_vma(mm, addr);
4425 if (!vma || vma->vm_start > addr)
4426 break;
4427 if (vma->vm_ops && vma->vm_ops->access)
4428 ret = vma->vm_ops->access(vma, addr, buf,
4429 len, write);
4430 if (ret <= 0)
4431 break;
4432 bytes = ret;
4433 #endif
4434 } else {
4435 bytes = len;
4436 offset = addr & (PAGE_SIZE-1);
4437 if (bytes > PAGE_SIZE-offset)
4438 bytes = PAGE_SIZE-offset;
4439
4440 maddr = kmap(page);
4441 if (write) {
4442 copy_to_user_page(vma, page, addr,
4443 maddr + offset, buf, bytes);
4444 set_page_dirty_lock(page);
4445 } else {
4446 copy_from_user_page(vma, page, addr,
4447 buf, maddr + offset, bytes);
4448 }
4449 kunmap(page);
4450 put_page(page);
4451 }
4452 len -= bytes;
4453 buf += bytes;
4454 addr += bytes;
4455 }
4456 up_read(&mm->mmap_sem);
4457
4458 return buf - old_buf;
4459 }
4460
4461 /**
4462 * access_remote_vm - access another process' address space
4463 * @mm: the mm_struct of the target address space
4464 * @addr: start address to access
4465 * @buf: source or destination buffer
4466 * @len: number of bytes to transfer
4467 * @gup_flags: flags modifying lookup behaviour
4468 *
4469 * The caller must hold a reference on @mm.
4470 */
4471 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4472 void *buf, int len, unsigned int gup_flags)
4473 {
4474 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4475 }
4476
4477 /*
4478 * Access another process' address space.
4479 * Source/target buffer must be kernel space,
4480 * Do not walk the page table directly, use get_user_pages
4481 */
4482 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4483 void *buf, int len, unsigned int gup_flags)
4484 {
4485 struct mm_struct *mm;
4486 int ret;
4487
4488 mm = get_task_mm(tsk);
4489 if (!mm)
4490 return 0;
4491
4492 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4493
4494 mmput(mm);
4495
4496 return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(access_process_vm);
4499
4500 /*
4501 * Print the name of a VMA.
4502 */
4503 void print_vma_addr(char *prefix, unsigned long ip)
4504 {
4505 struct mm_struct *mm = current->mm;
4506 struct vm_area_struct *vma;
4507
4508 /*
4509 * we might be running from an atomic context so we cannot sleep
4510 */
4511 if (!down_read_trylock(&mm->mmap_sem))
4512 return;
4513
4514 vma = find_vma(mm, ip);
4515 if (vma && vma->vm_file) {
4516 struct file *f = vma->vm_file;
4517 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4518 if (buf) {
4519 char *p;
4520
4521 p = file_path(f, buf, PAGE_SIZE);
4522 if (IS_ERR(p))
4523 p = "?";
4524 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4525 vma->vm_start,
4526 vma->vm_end - vma->vm_start);
4527 free_page((unsigned long)buf);
4528 }
4529 }
4530 up_read(&mm->mmap_sem);
4531 }
4532
4533 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4534 void __might_fault(const char *file, int line)
4535 {
4536 /*
4537 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4538 * holding the mmap_sem, this is safe because kernel memory doesn't
4539 * get paged out, therefore we'll never actually fault, and the
4540 * below annotations will generate false positives.
4541 */
4542 if (uaccess_kernel())
4543 return;
4544 if (pagefault_disabled())
4545 return;
4546 __might_sleep(file, line, 0);
4547 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4548 if (current->mm)
4549 might_lock_read(&current->mm->mmap_sem);
4550 #endif
4551 }
4552 EXPORT_SYMBOL(__might_fault);
4553 #endif
4554
4555 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4556 static void clear_gigantic_page(struct page *page,
4557 unsigned long addr,
4558 unsigned int pages_per_huge_page)
4559 {
4560 int i;
4561 struct page *p = page;
4562
4563 might_sleep();
4564 for (i = 0; i < pages_per_huge_page;
4565 i++, p = mem_map_next(p, page, i)) {
4566 cond_resched();
4567 clear_user_highpage(p, addr + i * PAGE_SIZE);
4568 }
4569 }
4570 void clear_huge_page(struct page *page,
4571 unsigned long addr_hint, unsigned int pages_per_huge_page)
4572 {
4573 int i, n, base, l;
4574 unsigned long addr = addr_hint &
4575 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4576
4577 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4578 clear_gigantic_page(page, addr, pages_per_huge_page);
4579 return;
4580 }
4581
4582 /* Clear sub-page to access last to keep its cache lines hot */
4583 might_sleep();
4584 n = (addr_hint - addr) / PAGE_SIZE;
4585 if (2 * n <= pages_per_huge_page) {
4586 /* If sub-page to access in first half of huge page */
4587 base = 0;
4588 l = n;
4589 /* Clear sub-pages at the end of huge page */
4590 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4591 cond_resched();
4592 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4593 }
4594 } else {
4595 /* If sub-page to access in second half of huge page */
4596 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4597 l = pages_per_huge_page - n;
4598 /* Clear sub-pages at the begin of huge page */
4599 for (i = 0; i < base; i++) {
4600 cond_resched();
4601 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4602 }
4603 }
4604 /*
4605 * Clear remaining sub-pages in left-right-left-right pattern
4606 * towards the sub-page to access
4607 */
4608 for (i = 0; i < l; i++) {
4609 int left_idx = base + i;
4610 int right_idx = base + 2 * l - 1 - i;
4611
4612 cond_resched();
4613 clear_user_highpage(page + left_idx,
4614 addr + left_idx * PAGE_SIZE);
4615 cond_resched();
4616 clear_user_highpage(page + right_idx,
4617 addr + right_idx * PAGE_SIZE);
4618 }
4619 }
4620
4621 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4622 unsigned long addr,
4623 struct vm_area_struct *vma,
4624 unsigned int pages_per_huge_page)
4625 {
4626 int i;
4627 struct page *dst_base = dst;
4628 struct page *src_base = src;
4629
4630 for (i = 0; i < pages_per_huge_page; ) {
4631 cond_resched();
4632 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4633
4634 i++;
4635 dst = mem_map_next(dst, dst_base, i);
4636 src = mem_map_next(src, src_base, i);
4637 }
4638 }
4639
4640 void copy_user_huge_page(struct page *dst, struct page *src,
4641 unsigned long addr, struct vm_area_struct *vma,
4642 unsigned int pages_per_huge_page)
4643 {
4644 int i;
4645
4646 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4647 copy_user_gigantic_page(dst, src, addr, vma,
4648 pages_per_huge_page);
4649 return;
4650 }
4651
4652 might_sleep();
4653 for (i = 0; i < pages_per_huge_page; i++) {
4654 cond_resched();
4655 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4656 }
4657 }
4658
4659 long copy_huge_page_from_user(struct page *dst_page,
4660 const void __user *usr_src,
4661 unsigned int pages_per_huge_page,
4662 bool allow_pagefault)
4663 {
4664 void *src = (void *)usr_src;
4665 void *page_kaddr;
4666 unsigned long i, rc = 0;
4667 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4668
4669 for (i = 0; i < pages_per_huge_page; i++) {
4670 if (allow_pagefault)
4671 page_kaddr = kmap(dst_page + i);
4672 else
4673 page_kaddr = kmap_atomic(dst_page + i);
4674 rc = copy_from_user(page_kaddr,
4675 (const void __user *)(src + i * PAGE_SIZE),
4676 PAGE_SIZE);
4677 if (allow_pagefault)
4678 kunmap(dst_page + i);
4679 else
4680 kunmap_atomic(page_kaddr);
4681
4682 ret_val -= (PAGE_SIZE - rc);
4683 if (rc)
4684 break;
4685
4686 cond_resched();
4687 }
4688 return ret_val;
4689 }
4690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4691
4692 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4693
4694 static struct kmem_cache *page_ptl_cachep;
4695
4696 void __init ptlock_cache_init(void)
4697 {
4698 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4699 SLAB_PANIC, NULL);
4700 }
4701
4702 bool ptlock_alloc(struct page *page)
4703 {
4704 spinlock_t *ptl;
4705
4706 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4707 if (!ptl)
4708 return false;
4709 page->ptl = ptl;
4710 return true;
4711 }
4712
4713 void ptlock_free(struct page *page)
4714 {
4715 kmem_cache_free(page_ptl_cachep, page->ptl);
4716 }
4717 #endif