]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
thp: rename split_huge_page_pmd() to split_huge_pmd()
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107 1;
108 #else
109 2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114 randomize_va_space = 0;
115 return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127 static int __init init_zero_pfn(void)
128 {
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
145 }
146 }
147 current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
191 return true;
192 }
193
194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195 return false;
196
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
199 return false;
200
201 tlb->batch_count++;
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
209 return true;
210 }
211
212 /* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219 tlb->mm = mm;
220
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
223 tlb->need_flush_all = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233
234 __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 if (!tlb->end)
240 return;
241
242 tlb_flush(tlb);
243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
246 #endif
247 __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252 struct mmu_gather_batch *batch;
253
254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295 struct mmu_gather_batch *batch;
296
297 VM_BUG_ON(!tlb->end);
298
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
304 batch = tlb->active;
305 }
306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308 return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316 * See the comment near struct mmu_table_batch.
317 */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321 /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
394 {
395 pgtable_t token = pmd_pgtable(*pmd);
396 pmd_clear(pmd);
397 pte_free_tlb(tlb, token, addr);
398 atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
404 {
405 pmd_t *pmd;
406 unsigned long next;
407 unsigned long start;
408
409 start = addr;
410 pmd = pmd_offset(pud, addr);
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
415 free_pte_range(tlb, pmd, addr);
416 } while (pmd++, addr = next, addr != end);
417
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
425 }
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
431 pmd_free_tlb(tlb, pmd, start);
432 mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
438 {
439 pud_t *pud;
440 unsigned long next;
441 unsigned long start;
442
443 start = addr;
444 pud = pud_offset(pgd, addr);
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450 } while (pud++, addr = next, addr != end);
451
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
459 }
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
465 pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469 * This function frees user-level page tables of a process.
470 */
471 void free_pgd_range(struct mmu_gather *tlb,
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
474 {
475 pgd_t *pgd;
476 unsigned long next;
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
503
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
520 pgd = pgd_offset(tlb->mm, addr);
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526 } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530 unsigned long floor, unsigned long ceiling)
531 {
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
536 /*
537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
539 */
540 unlink_anon_vmas(vma);
541 unlink_file_vma(vma);
542
543 if (is_vm_hugetlb_page(vma)) {
544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551 && !is_vm_hugetlb_page(next)) {
552 vma = next;
553 next = vma->vm_next;
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
560 vma = next;
561 }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
566 {
567 spinlock_t *ptl;
568 pgtable_t new = pte_alloc_one(mm, address);
569 int wait_split_huge_page;
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 wait_split_huge_page = 0;
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
591 atomic_long_inc(&mm->nr_ptes);
592 pmd_populate(mm, pmd, new);
593 new = NULL;
594 } else if (unlikely(pmd_trans_splitting(*pmd)))
595 wait_split_huge_page = 1;
596 spin_unlock(ptl);
597 if (new)
598 pte_free(mm, new);
599 if (wait_split_huge_page)
600 wait_split_huge_page(vma->anon_vma, pmd);
601 return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607 if (!new)
608 return -ENOMEM;
609
610 smp_wmb(); /* See comment in __pte_alloc */
611
612 spin_lock(&init_mm.page_table_lock);
613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
614 pmd_populate_kernel(&init_mm, pmd, new);
615 new = NULL;
616 } else
617 VM_BUG_ON(pmd_trans_splitting(*pmd));
618 spin_unlock(&init_mm.page_table_lock);
619 if (new)
620 pte_free_kernel(&init_mm, new);
621 return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631 int i;
632
633 if (current->mm == mm)
634 sync_mm_rss(mm);
635 for (i = 0; i < NR_MM_COUNTERS; i++)
636 if (rss[i])
637 add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
644 *
645 * The calling function must still handle the error.
646 */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte, struct page *page)
649 {
650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651 pud_t *pud = pud_offset(pgd, addr);
652 pmd_t *pmd = pmd_offset(pud, addr);
653 struct address_space *mapping;
654 pgoff_t index;
655 static unsigned long resume;
656 static unsigned long nr_shown;
657 static unsigned long nr_unshown;
658
659 /*
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
662 */
663 if (nr_shown == 60) {
664 if (time_before(jiffies, resume)) {
665 nr_unshown++;
666 return;
667 }
668 if (nr_unshown) {
669 printk(KERN_ALERT
670 "BUG: Bad page map: %lu messages suppressed\n",
671 nr_unshown);
672 nr_unshown = 0;
673 }
674 nr_shown = 0;
675 }
676 if (nr_shown++ == 0)
677 resume = jiffies + 60 * HZ;
678
679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680 index = linear_page_index(vma, addr);
681
682 printk(KERN_ALERT
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
684 current->comm,
685 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686 if (page)
687 dump_page(page, "bad pte");
688 printk(KERN_ALERT
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 /*
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 */
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695 vma->vm_file,
696 vma->vm_ops ? vma->vm_ops->fault : NULL,
697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698 mapping ? mapping->a_ops->readpage : NULL);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
762 if (!is_zero_pfn(pfn))
763 print_bad_pte(vma, addr, pte, NULL);
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
782 }
783
784 if (is_zero_pfn(pfn))
785 return NULL;
786 check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /*
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
795 */
796 out:
797 return pfn_to_page(pfn);
798 }
799
800 /*
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
804 */
805
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809 unsigned long addr, int *rss)
810 {
811 unsigned long vm_flags = vma->vm_flags;
812 pte_t pte = *src_pte;
813 struct page *page;
814
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte))) {
817 swp_entry_t entry = pte_to_swp_entry(pte);
818
819 if (likely(!non_swap_entry(entry))) {
820 if (swap_duplicate(entry) < 0)
821 return entry.val;
822
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm->mmlist))) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&dst_mm->mmlist))
827 list_add(&dst_mm->mmlist,
828 &src_mm->mmlist);
829 spin_unlock(&mmlist_lock);
830 }
831 rss[MM_SWAPENTS]++;
832 } else if (is_migration_entry(entry)) {
833 page = migration_entry_to_page(entry);
834
835 rss[mm_counter(page)]++;
836
837 if (is_write_migration_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 /*
840 * COW mappings require pages in both
841 * parent and child to be set to read.
842 */
843 make_migration_entry_read(&entry);
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_soft_dirty(*src_pte))
846 pte = pte_swp_mksoft_dirty(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
848 }
849 }
850 goto out_set_pte;
851 }
852
853 /*
854 * If it's a COW mapping, write protect it both
855 * in the parent and the child
856 */
857 if (is_cow_mapping(vm_flags)) {
858 ptep_set_wrprotect(src_mm, addr, src_pte);
859 pte = pte_wrprotect(pte);
860 }
861
862 /*
863 * If it's a shared mapping, mark it clean in
864 * the child
865 */
866 if (vm_flags & VM_SHARED)
867 pte = pte_mkclean(pte);
868 pte = pte_mkold(pte);
869
870 page = vm_normal_page(vma, addr, pte);
871 if (page) {
872 get_page(page);
873 page_dup_rmap(page);
874 rss[mm_counter(page)]++;
875 }
876
877 out_set_pte:
878 set_pte_at(dst_mm, addr, dst_pte, pte);
879 return 0;
880 }
881
882 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884 unsigned long addr, unsigned long end)
885 {
886 pte_t *orig_src_pte, *orig_dst_pte;
887 pte_t *src_pte, *dst_pte;
888 spinlock_t *src_ptl, *dst_ptl;
889 int progress = 0;
890 int rss[NR_MM_COUNTERS];
891 swp_entry_t entry = (swp_entry_t){0};
892
893 again:
894 init_rss_vec(rss);
895
896 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897 if (!dst_pte)
898 return -ENOMEM;
899 src_pte = pte_offset_map(src_pmd, addr);
900 src_ptl = pte_lockptr(src_mm, src_pmd);
901 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902 orig_src_pte = src_pte;
903 orig_dst_pte = dst_pte;
904 arch_enter_lazy_mmu_mode();
905
906 do {
907 /*
908 * We are holding two locks at this point - either of them
909 * could generate latencies in another task on another CPU.
910 */
911 if (progress >= 32) {
912 progress = 0;
913 if (need_resched() ||
914 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915 break;
916 }
917 if (pte_none(*src_pte)) {
918 progress++;
919 continue;
920 }
921 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922 vma, addr, rss);
923 if (entry.val)
924 break;
925 progress += 8;
926 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927
928 arch_leave_lazy_mmu_mode();
929 spin_unlock(src_ptl);
930 pte_unmap(orig_src_pte);
931 add_mm_rss_vec(dst_mm, rss);
932 pte_unmap_unlock(orig_dst_pte, dst_ptl);
933 cond_resched();
934
935 if (entry.val) {
936 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937 return -ENOMEM;
938 progress = 0;
939 }
940 if (addr != end)
941 goto again;
942 return 0;
943 }
944
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
948 {
949 pmd_t *src_pmd, *dst_pmd;
950 unsigned long next;
951
952 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953 if (!dst_pmd)
954 return -ENOMEM;
955 src_pmd = pmd_offset(src_pud, addr);
956 do {
957 next = pmd_addr_end(addr, end);
958 if (pmd_trans_huge(*src_pmd)) {
959 int err;
960 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961 err = copy_huge_pmd(dst_mm, src_mm,
962 dst_pmd, src_pmd, addr, vma);
963 if (err == -ENOMEM)
964 return -ENOMEM;
965 if (!err)
966 continue;
967 /* fall through */
968 }
969 if (pmd_none_or_clear_bad(src_pmd))
970 continue;
971 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972 vma, addr, next))
973 return -ENOMEM;
974 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975 return 0;
976 }
977
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
981 {
982 pud_t *src_pud, *dst_pud;
983 unsigned long next;
984
985 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986 if (!dst_pud)
987 return -ENOMEM;
988 src_pud = pud_offset(src_pgd, addr);
989 do {
990 next = pud_addr_end(addr, end);
991 if (pud_none_or_clear_bad(src_pud))
992 continue;
993 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994 vma, addr, next))
995 return -ENOMEM;
996 } while (dst_pud++, src_pud++, addr = next, addr != end);
997 return 0;
998 }
999
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001 struct vm_area_struct *vma)
1002 {
1003 pgd_t *src_pgd, *dst_pgd;
1004 unsigned long next;
1005 unsigned long addr = vma->vm_start;
1006 unsigned long end = vma->vm_end;
1007 unsigned long mmun_start; /* For mmu_notifiers */
1008 unsigned long mmun_end; /* For mmu_notifiers */
1009 bool is_cow;
1010 int ret;
1011
1012 /*
1013 * Don't copy ptes where a page fault will fill them correctly.
1014 * Fork becomes much lighter when there are big shared or private
1015 * readonly mappings. The tradeoff is that copy_page_range is more
1016 * efficient than faulting.
1017 */
1018 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1019 !vma->anon_vma)
1020 return 0;
1021
1022 if (is_vm_hugetlb_page(vma))
1023 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024
1025 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026 /*
1027 * We do not free on error cases below as remove_vma
1028 * gets called on error from higher level routine
1029 */
1030 ret = track_pfn_copy(vma);
1031 if (ret)
1032 return ret;
1033 }
1034
1035 /*
1036 * We need to invalidate the secondary MMU mappings only when
1037 * there could be a permission downgrade on the ptes of the
1038 * parent mm. And a permission downgrade will only happen if
1039 * is_cow_mapping() returns true.
1040 */
1041 is_cow = is_cow_mapping(vma->vm_flags);
1042 mmun_start = addr;
1043 mmun_end = end;
1044 if (is_cow)
1045 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046 mmun_end);
1047
1048 ret = 0;
1049 dst_pgd = pgd_offset(dst_mm, addr);
1050 src_pgd = pgd_offset(src_mm, addr);
1051 do {
1052 next = pgd_addr_end(addr, end);
1053 if (pgd_none_or_clear_bad(src_pgd))
1054 continue;
1055 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056 vma, addr, next))) {
1057 ret = -ENOMEM;
1058 break;
1059 }
1060 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1061
1062 if (is_cow)
1063 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1064 return ret;
1065 }
1066
1067 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1068 struct vm_area_struct *vma, pmd_t *pmd,
1069 unsigned long addr, unsigned long end,
1070 struct zap_details *details)
1071 {
1072 struct mm_struct *mm = tlb->mm;
1073 int force_flush = 0;
1074 int rss[NR_MM_COUNTERS];
1075 spinlock_t *ptl;
1076 pte_t *start_pte;
1077 pte_t *pte;
1078 swp_entry_t entry;
1079
1080 again:
1081 init_rss_vec(rss);
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
1084 arch_enter_lazy_mmu_mode();
1085 do {
1086 pte_t ptent = *pte;
1087 if (pte_none(ptent)) {
1088 continue;
1089 }
1090
1091 if (pte_present(ptent)) {
1092 struct page *page;
1093
1094 page = vm_normal_page(vma, addr, ptent);
1095 if (unlikely(details) && page) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1104 }
1105 ptent = ptep_get_and_clear_full(mm, addr, pte,
1106 tlb->fullmm);
1107 tlb_remove_tlb_entry(tlb, pte, addr);
1108 if (unlikely(!page))
1109 continue;
1110
1111 if (!PageAnon(page)) {
1112 if (pte_dirty(ptent)) {
1113 force_flush = 1;
1114 set_page_dirty(page);
1115 }
1116 if (pte_young(ptent) &&
1117 likely(!(vma->vm_flags & VM_SEQ_READ)))
1118 mark_page_accessed(page);
1119 }
1120 rss[mm_counter(page)]--;
1121 page_remove_rmap(page, false);
1122 if (unlikely(page_mapcount(page) < 0))
1123 print_bad_pte(vma, addr, ptent, page);
1124 if (unlikely(!__tlb_remove_page(tlb, page))) {
1125 force_flush = 1;
1126 addr += PAGE_SIZE;
1127 break;
1128 }
1129 continue;
1130 }
1131 /* If details->check_mapping, we leave swap entries. */
1132 if (unlikely(details))
1133 continue;
1134
1135 entry = pte_to_swp_entry(ptent);
1136 if (!non_swap_entry(entry))
1137 rss[MM_SWAPENTS]--;
1138 else if (is_migration_entry(entry)) {
1139 struct page *page;
1140
1141 page = migration_entry_to_page(entry);
1142 rss[mm_counter(page)]--;
1143 }
1144 if (unlikely(!free_swap_and_cache(entry)))
1145 print_bad_pte(vma, addr, ptent, NULL);
1146 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1147 } while (pte++, addr += PAGE_SIZE, addr != end);
1148
1149 add_mm_rss_vec(mm, rss);
1150 arch_leave_lazy_mmu_mode();
1151
1152 /* Do the actual TLB flush before dropping ptl */
1153 if (force_flush)
1154 tlb_flush_mmu_tlbonly(tlb);
1155 pte_unmap_unlock(start_pte, ptl);
1156
1157 /*
1158 * If we forced a TLB flush (either due to running out of
1159 * batch buffers or because we needed to flush dirty TLB
1160 * entries before releasing the ptl), free the batched
1161 * memory too. Restart if we didn't do everything.
1162 */
1163 if (force_flush) {
1164 force_flush = 0;
1165 tlb_flush_mmu_free(tlb);
1166
1167 if (addr != end)
1168 goto again;
1169 }
1170
1171 return addr;
1172 }
1173
1174 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1175 struct vm_area_struct *vma, pud_t *pud,
1176 unsigned long addr, unsigned long end,
1177 struct zap_details *details)
1178 {
1179 pmd_t *pmd;
1180 unsigned long next;
1181
1182 pmd = pmd_offset(pud, addr);
1183 do {
1184 next = pmd_addr_end(addr, end);
1185 if (pmd_trans_huge(*pmd)) {
1186 if (next - addr != HPAGE_PMD_SIZE) {
1187 #ifdef CONFIG_DEBUG_VM
1188 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1189 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1190 __func__, addr, end,
1191 vma->vm_start,
1192 vma->vm_end);
1193 BUG();
1194 }
1195 #endif
1196 split_huge_pmd(vma, pmd, addr);
1197 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1198 goto next;
1199 /* fall through */
1200 }
1201 /*
1202 * Here there can be other concurrent MADV_DONTNEED or
1203 * trans huge page faults running, and if the pmd is
1204 * none or trans huge it can change under us. This is
1205 * because MADV_DONTNEED holds the mmap_sem in read
1206 * mode.
1207 */
1208 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1209 goto next;
1210 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1211 next:
1212 cond_resched();
1213 } while (pmd++, addr = next, addr != end);
1214
1215 return addr;
1216 }
1217
1218 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1219 struct vm_area_struct *vma, pgd_t *pgd,
1220 unsigned long addr, unsigned long end,
1221 struct zap_details *details)
1222 {
1223 pud_t *pud;
1224 unsigned long next;
1225
1226 pud = pud_offset(pgd, addr);
1227 do {
1228 next = pud_addr_end(addr, end);
1229 if (pud_none_or_clear_bad(pud))
1230 continue;
1231 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1232 } while (pud++, addr = next, addr != end);
1233
1234 return addr;
1235 }
1236
1237 static void unmap_page_range(struct mmu_gather *tlb,
1238 struct vm_area_struct *vma,
1239 unsigned long addr, unsigned long end,
1240 struct zap_details *details)
1241 {
1242 pgd_t *pgd;
1243 unsigned long next;
1244
1245 if (details && !details->check_mapping)
1246 details = NULL;
1247
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1251 do {
1252 next = pgd_addr_end(addr, end);
1253 if (pgd_none_or_clear_bad(pgd))
1254 continue;
1255 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1256 } while (pgd++, addr = next, addr != end);
1257 tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
1263 unsigned long end_addr,
1264 struct zap_details *details)
1265 {
1266 unsigned long start = max(vma->vm_start, start_addr);
1267 unsigned long end;
1268
1269 if (start >= vma->vm_end)
1270 return;
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1273 return;
1274
1275 if (vma->vm_file)
1276 uprobe_munmap(vma, start, end);
1277
1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 untrack_pfn(vma, 0, 0);
1280
1281 if (start != end) {
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1283 /*
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1293 */
1294 if (vma->vm_file) {
1295 i_mmap_lock_write(vma->vm_file->f_mapping);
1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298 }
1299 } else
1300 unmap_page_range(tlb, vma, start, end, details);
1301 }
1302 }
1303
1304 /**
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1310 *
1311 * Unmap all pages in the vma list.
1312 *
1313 * Only addresses between `start' and `end' will be unmapped.
1314 *
1315 * The VMA list must be sorted in ascending virtual address order.
1316 *
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1321 */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 struct vm_area_struct *vma, unsigned long start_addr,
1324 unsigned long end_addr)
1325 {
1326 struct mm_struct *mm = vma->vm_mm;
1327
1328 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1329 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1330 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1331 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1332 }
1333
1334 /**
1335 * zap_page_range - remove user pages in a given range
1336 * @vma: vm_area_struct holding the applicable pages
1337 * @start: starting address of pages to zap
1338 * @size: number of bytes to zap
1339 * @details: details of shared cache invalidation
1340 *
1341 * Caller must protect the VMA list
1342 */
1343 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1344 unsigned long size, struct zap_details *details)
1345 {
1346 struct mm_struct *mm = vma->vm_mm;
1347 struct mmu_gather tlb;
1348 unsigned long end = start + size;
1349
1350 lru_add_drain();
1351 tlb_gather_mmu(&tlb, mm, start, end);
1352 update_hiwater_rss(mm);
1353 mmu_notifier_invalidate_range_start(mm, start, end);
1354 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1355 unmap_single_vma(&tlb, vma, start, end, details);
1356 mmu_notifier_invalidate_range_end(mm, start, end);
1357 tlb_finish_mmu(&tlb, start, end);
1358 }
1359
1360 /**
1361 * zap_page_range_single - remove user pages in a given range
1362 * @vma: vm_area_struct holding the applicable pages
1363 * @address: starting address of pages to zap
1364 * @size: number of bytes to zap
1365 * @details: details of shared cache invalidation
1366 *
1367 * The range must fit into one VMA.
1368 */
1369 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1370 unsigned long size, struct zap_details *details)
1371 {
1372 struct mm_struct *mm = vma->vm_mm;
1373 struct mmu_gather tlb;
1374 unsigned long end = address + size;
1375
1376 lru_add_drain();
1377 tlb_gather_mmu(&tlb, mm, address, end);
1378 update_hiwater_rss(mm);
1379 mmu_notifier_invalidate_range_start(mm, address, end);
1380 unmap_single_vma(&tlb, vma, address, end, details);
1381 mmu_notifier_invalidate_range_end(mm, address, end);
1382 tlb_finish_mmu(&tlb, address, end);
1383 }
1384
1385 /**
1386 * zap_vma_ptes - remove ptes mapping the vma
1387 * @vma: vm_area_struct holding ptes to be zapped
1388 * @address: starting address of pages to zap
1389 * @size: number of bytes to zap
1390 *
1391 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1392 *
1393 * The entire address range must be fully contained within the vma.
1394 *
1395 * Returns 0 if successful.
1396 */
1397 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1398 unsigned long size)
1399 {
1400 if (address < vma->vm_start || address + size > vma->vm_end ||
1401 !(vma->vm_flags & VM_PFNMAP))
1402 return -1;
1403 zap_page_range_single(vma, address, size, NULL);
1404 return 0;
1405 }
1406 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1407
1408 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1409 spinlock_t **ptl)
1410 {
1411 pgd_t * pgd = pgd_offset(mm, addr);
1412 pud_t * pud = pud_alloc(mm, pgd, addr);
1413 if (pud) {
1414 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1415 if (pmd) {
1416 VM_BUG_ON(pmd_trans_huge(*pmd));
1417 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1418 }
1419 }
1420 return NULL;
1421 }
1422
1423 /*
1424 * This is the old fallback for page remapping.
1425 *
1426 * For historical reasons, it only allows reserved pages. Only
1427 * old drivers should use this, and they needed to mark their
1428 * pages reserved for the old functions anyway.
1429 */
1430 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1431 struct page *page, pgprot_t prot)
1432 {
1433 struct mm_struct *mm = vma->vm_mm;
1434 int retval;
1435 pte_t *pte;
1436 spinlock_t *ptl;
1437
1438 retval = -EINVAL;
1439 if (PageAnon(page))
1440 goto out;
1441 retval = -ENOMEM;
1442 flush_dcache_page(page);
1443 pte = get_locked_pte(mm, addr, &ptl);
1444 if (!pte)
1445 goto out;
1446 retval = -EBUSY;
1447 if (!pte_none(*pte))
1448 goto out_unlock;
1449
1450 /* Ok, finally just insert the thing.. */
1451 get_page(page);
1452 inc_mm_counter_fast(mm, mm_counter_file(page));
1453 page_add_file_rmap(page);
1454 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1455
1456 retval = 0;
1457 pte_unmap_unlock(pte, ptl);
1458 return retval;
1459 out_unlock:
1460 pte_unmap_unlock(pte, ptl);
1461 out:
1462 return retval;
1463 }
1464
1465 /**
1466 * vm_insert_page - insert single page into user vma
1467 * @vma: user vma to map to
1468 * @addr: target user address of this page
1469 * @page: source kernel page
1470 *
1471 * This allows drivers to insert individual pages they've allocated
1472 * into a user vma.
1473 *
1474 * The page has to be a nice clean _individual_ kernel allocation.
1475 * If you allocate a compound page, you need to have marked it as
1476 * such (__GFP_COMP), or manually just split the page up yourself
1477 * (see split_page()).
1478 *
1479 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1480 * took an arbitrary page protection parameter. This doesn't allow
1481 * that. Your vma protection will have to be set up correctly, which
1482 * means that if you want a shared writable mapping, you'd better
1483 * ask for a shared writable mapping!
1484 *
1485 * The page does not need to be reserved.
1486 *
1487 * Usually this function is called from f_op->mmap() handler
1488 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1489 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1490 * function from other places, for example from page-fault handler.
1491 */
1492 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1493 struct page *page)
1494 {
1495 if (addr < vma->vm_start || addr >= vma->vm_end)
1496 return -EFAULT;
1497 if (!page_count(page))
1498 return -EINVAL;
1499 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1500 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1501 BUG_ON(vma->vm_flags & VM_PFNMAP);
1502 vma->vm_flags |= VM_MIXEDMAP;
1503 }
1504 return insert_page(vma, addr, page, vma->vm_page_prot);
1505 }
1506 EXPORT_SYMBOL(vm_insert_page);
1507
1508 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1509 unsigned long pfn, pgprot_t prot)
1510 {
1511 struct mm_struct *mm = vma->vm_mm;
1512 int retval;
1513 pte_t *pte, entry;
1514 spinlock_t *ptl;
1515
1516 retval = -ENOMEM;
1517 pte = get_locked_pte(mm, addr, &ptl);
1518 if (!pte)
1519 goto out;
1520 retval = -EBUSY;
1521 if (!pte_none(*pte))
1522 goto out_unlock;
1523
1524 /* Ok, finally just insert the thing.. */
1525 entry = pte_mkspecial(pfn_pte(pfn, prot));
1526 set_pte_at(mm, addr, pte, entry);
1527 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1528
1529 retval = 0;
1530 out_unlock:
1531 pte_unmap_unlock(pte, ptl);
1532 out:
1533 return retval;
1534 }
1535
1536 /**
1537 * vm_insert_pfn - insert single pfn into user vma
1538 * @vma: user vma to map to
1539 * @addr: target user address of this page
1540 * @pfn: source kernel pfn
1541 *
1542 * Similar to vm_insert_page, this allows drivers to insert individual pages
1543 * they've allocated into a user vma. Same comments apply.
1544 *
1545 * This function should only be called from a vm_ops->fault handler, and
1546 * in that case the handler should return NULL.
1547 *
1548 * vma cannot be a COW mapping.
1549 *
1550 * As this is called only for pages that do not currently exist, we
1551 * do not need to flush old virtual caches or the TLB.
1552 */
1553 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1554 unsigned long pfn)
1555 {
1556 int ret;
1557 pgprot_t pgprot = vma->vm_page_prot;
1558 /*
1559 * Technically, architectures with pte_special can avoid all these
1560 * restrictions (same for remap_pfn_range). However we would like
1561 * consistency in testing and feature parity among all, so we should
1562 * try to keep these invariants in place for everybody.
1563 */
1564 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1565 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1566 (VM_PFNMAP|VM_MIXEDMAP));
1567 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1568 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1569
1570 if (addr < vma->vm_start || addr >= vma->vm_end)
1571 return -EFAULT;
1572 if (track_pfn_insert(vma, &pgprot, pfn))
1573 return -EINVAL;
1574
1575 ret = insert_pfn(vma, addr, pfn, pgprot);
1576
1577 return ret;
1578 }
1579 EXPORT_SYMBOL(vm_insert_pfn);
1580
1581 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1582 unsigned long pfn)
1583 {
1584 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1585
1586 if (addr < vma->vm_start || addr >= vma->vm_end)
1587 return -EFAULT;
1588
1589 /*
1590 * If we don't have pte special, then we have to use the pfn_valid()
1591 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1592 * refcount the page if pfn_valid is true (hence insert_page rather
1593 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1594 * without pte special, it would there be refcounted as a normal page.
1595 */
1596 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1597 struct page *page;
1598
1599 page = pfn_to_page(pfn);
1600 return insert_page(vma, addr, page, vma->vm_page_prot);
1601 }
1602 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1603 }
1604 EXPORT_SYMBOL(vm_insert_mixed);
1605
1606 /*
1607 * maps a range of physical memory into the requested pages. the old
1608 * mappings are removed. any references to nonexistent pages results
1609 * in null mappings (currently treated as "copy-on-access")
1610 */
1611 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1612 unsigned long addr, unsigned long end,
1613 unsigned long pfn, pgprot_t prot)
1614 {
1615 pte_t *pte;
1616 spinlock_t *ptl;
1617
1618 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1619 if (!pte)
1620 return -ENOMEM;
1621 arch_enter_lazy_mmu_mode();
1622 do {
1623 BUG_ON(!pte_none(*pte));
1624 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1625 pfn++;
1626 } while (pte++, addr += PAGE_SIZE, addr != end);
1627 arch_leave_lazy_mmu_mode();
1628 pte_unmap_unlock(pte - 1, ptl);
1629 return 0;
1630 }
1631
1632 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1633 unsigned long addr, unsigned long end,
1634 unsigned long pfn, pgprot_t prot)
1635 {
1636 pmd_t *pmd;
1637 unsigned long next;
1638
1639 pfn -= addr >> PAGE_SHIFT;
1640 pmd = pmd_alloc(mm, pud, addr);
1641 if (!pmd)
1642 return -ENOMEM;
1643 VM_BUG_ON(pmd_trans_huge(*pmd));
1644 do {
1645 next = pmd_addr_end(addr, end);
1646 if (remap_pte_range(mm, pmd, addr, next,
1647 pfn + (addr >> PAGE_SHIFT), prot))
1648 return -ENOMEM;
1649 } while (pmd++, addr = next, addr != end);
1650 return 0;
1651 }
1652
1653 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1654 unsigned long addr, unsigned long end,
1655 unsigned long pfn, pgprot_t prot)
1656 {
1657 pud_t *pud;
1658 unsigned long next;
1659
1660 pfn -= addr >> PAGE_SHIFT;
1661 pud = pud_alloc(mm, pgd, addr);
1662 if (!pud)
1663 return -ENOMEM;
1664 do {
1665 next = pud_addr_end(addr, end);
1666 if (remap_pmd_range(mm, pud, addr, next,
1667 pfn + (addr >> PAGE_SHIFT), prot))
1668 return -ENOMEM;
1669 } while (pud++, addr = next, addr != end);
1670 return 0;
1671 }
1672
1673 /**
1674 * remap_pfn_range - remap kernel memory to userspace
1675 * @vma: user vma to map to
1676 * @addr: target user address to start at
1677 * @pfn: physical address of kernel memory
1678 * @size: size of map area
1679 * @prot: page protection flags for this mapping
1680 *
1681 * Note: this is only safe if the mm semaphore is held when called.
1682 */
1683 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1684 unsigned long pfn, unsigned long size, pgprot_t prot)
1685 {
1686 pgd_t *pgd;
1687 unsigned long next;
1688 unsigned long end = addr + PAGE_ALIGN(size);
1689 struct mm_struct *mm = vma->vm_mm;
1690 int err;
1691
1692 /*
1693 * Physically remapped pages are special. Tell the
1694 * rest of the world about it:
1695 * VM_IO tells people not to look at these pages
1696 * (accesses can have side effects).
1697 * VM_PFNMAP tells the core MM that the base pages are just
1698 * raw PFN mappings, and do not have a "struct page" associated
1699 * with them.
1700 * VM_DONTEXPAND
1701 * Disable vma merging and expanding with mremap().
1702 * VM_DONTDUMP
1703 * Omit vma from core dump, even when VM_IO turned off.
1704 *
1705 * There's a horrible special case to handle copy-on-write
1706 * behaviour that some programs depend on. We mark the "original"
1707 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1708 * See vm_normal_page() for details.
1709 */
1710 if (is_cow_mapping(vma->vm_flags)) {
1711 if (addr != vma->vm_start || end != vma->vm_end)
1712 return -EINVAL;
1713 vma->vm_pgoff = pfn;
1714 }
1715
1716 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1717 if (err)
1718 return -EINVAL;
1719
1720 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1721
1722 BUG_ON(addr >= end);
1723 pfn -= addr >> PAGE_SHIFT;
1724 pgd = pgd_offset(mm, addr);
1725 flush_cache_range(vma, addr, end);
1726 do {
1727 next = pgd_addr_end(addr, end);
1728 err = remap_pud_range(mm, pgd, addr, next,
1729 pfn + (addr >> PAGE_SHIFT), prot);
1730 if (err)
1731 break;
1732 } while (pgd++, addr = next, addr != end);
1733
1734 if (err)
1735 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1736
1737 return err;
1738 }
1739 EXPORT_SYMBOL(remap_pfn_range);
1740
1741 /**
1742 * vm_iomap_memory - remap memory to userspace
1743 * @vma: user vma to map to
1744 * @start: start of area
1745 * @len: size of area
1746 *
1747 * This is a simplified io_remap_pfn_range() for common driver use. The
1748 * driver just needs to give us the physical memory range to be mapped,
1749 * we'll figure out the rest from the vma information.
1750 *
1751 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1752 * whatever write-combining details or similar.
1753 */
1754 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1755 {
1756 unsigned long vm_len, pfn, pages;
1757
1758 /* Check that the physical memory area passed in looks valid */
1759 if (start + len < start)
1760 return -EINVAL;
1761 /*
1762 * You *really* shouldn't map things that aren't page-aligned,
1763 * but we've historically allowed it because IO memory might
1764 * just have smaller alignment.
1765 */
1766 len += start & ~PAGE_MASK;
1767 pfn = start >> PAGE_SHIFT;
1768 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1769 if (pfn + pages < pfn)
1770 return -EINVAL;
1771
1772 /* We start the mapping 'vm_pgoff' pages into the area */
1773 if (vma->vm_pgoff > pages)
1774 return -EINVAL;
1775 pfn += vma->vm_pgoff;
1776 pages -= vma->vm_pgoff;
1777
1778 /* Can we fit all of the mapping? */
1779 vm_len = vma->vm_end - vma->vm_start;
1780 if (vm_len >> PAGE_SHIFT > pages)
1781 return -EINVAL;
1782
1783 /* Ok, let it rip */
1784 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_iomap_memory);
1787
1788 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1789 unsigned long addr, unsigned long end,
1790 pte_fn_t fn, void *data)
1791 {
1792 pte_t *pte;
1793 int err;
1794 pgtable_t token;
1795 spinlock_t *uninitialized_var(ptl);
1796
1797 pte = (mm == &init_mm) ?
1798 pte_alloc_kernel(pmd, addr) :
1799 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800 if (!pte)
1801 return -ENOMEM;
1802
1803 BUG_ON(pmd_huge(*pmd));
1804
1805 arch_enter_lazy_mmu_mode();
1806
1807 token = pmd_pgtable(*pmd);
1808
1809 do {
1810 err = fn(pte++, token, addr, data);
1811 if (err)
1812 break;
1813 } while (addr += PAGE_SIZE, addr != end);
1814
1815 arch_leave_lazy_mmu_mode();
1816
1817 if (mm != &init_mm)
1818 pte_unmap_unlock(pte-1, ptl);
1819 return err;
1820 }
1821
1822 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1823 unsigned long addr, unsigned long end,
1824 pte_fn_t fn, void *data)
1825 {
1826 pmd_t *pmd;
1827 unsigned long next;
1828 int err;
1829
1830 BUG_ON(pud_huge(*pud));
1831
1832 pmd = pmd_alloc(mm, pud, addr);
1833 if (!pmd)
1834 return -ENOMEM;
1835 do {
1836 next = pmd_addr_end(addr, end);
1837 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1838 if (err)
1839 break;
1840 } while (pmd++, addr = next, addr != end);
1841 return err;
1842 }
1843
1844 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1845 unsigned long addr, unsigned long end,
1846 pte_fn_t fn, void *data)
1847 {
1848 pud_t *pud;
1849 unsigned long next;
1850 int err;
1851
1852 pud = pud_alloc(mm, pgd, addr);
1853 if (!pud)
1854 return -ENOMEM;
1855 do {
1856 next = pud_addr_end(addr, end);
1857 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1858 if (err)
1859 break;
1860 } while (pud++, addr = next, addr != end);
1861 return err;
1862 }
1863
1864 /*
1865 * Scan a region of virtual memory, filling in page tables as necessary
1866 * and calling a provided function on each leaf page table.
1867 */
1868 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1869 unsigned long size, pte_fn_t fn, void *data)
1870 {
1871 pgd_t *pgd;
1872 unsigned long next;
1873 unsigned long end = addr + size;
1874 int err;
1875
1876 BUG_ON(addr >= end);
1877 pgd = pgd_offset(mm, addr);
1878 do {
1879 next = pgd_addr_end(addr, end);
1880 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1881 if (err)
1882 break;
1883 } while (pgd++, addr = next, addr != end);
1884
1885 return err;
1886 }
1887 EXPORT_SYMBOL_GPL(apply_to_page_range);
1888
1889 /*
1890 * handle_pte_fault chooses page fault handler according to an entry which was
1891 * read non-atomically. Before making any commitment, on those architectures
1892 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1893 * parts, do_swap_page must check under lock before unmapping the pte and
1894 * proceeding (but do_wp_page is only called after already making such a check;
1895 * and do_anonymous_page can safely check later on).
1896 */
1897 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1898 pte_t *page_table, pte_t orig_pte)
1899 {
1900 int same = 1;
1901 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1902 if (sizeof(pte_t) > sizeof(unsigned long)) {
1903 spinlock_t *ptl = pte_lockptr(mm, pmd);
1904 spin_lock(ptl);
1905 same = pte_same(*page_table, orig_pte);
1906 spin_unlock(ptl);
1907 }
1908 #endif
1909 pte_unmap(page_table);
1910 return same;
1911 }
1912
1913 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1914 {
1915 debug_dma_assert_idle(src);
1916
1917 /*
1918 * If the source page was a PFN mapping, we don't have
1919 * a "struct page" for it. We do a best-effort copy by
1920 * just copying from the original user address. If that
1921 * fails, we just zero-fill it. Live with it.
1922 */
1923 if (unlikely(!src)) {
1924 void *kaddr = kmap_atomic(dst);
1925 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1926
1927 /*
1928 * This really shouldn't fail, because the page is there
1929 * in the page tables. But it might just be unreadable,
1930 * in which case we just give up and fill the result with
1931 * zeroes.
1932 */
1933 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1934 clear_page(kaddr);
1935 kunmap_atomic(kaddr);
1936 flush_dcache_page(dst);
1937 } else
1938 copy_user_highpage(dst, src, va, vma);
1939 }
1940
1941 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1942 {
1943 struct file *vm_file = vma->vm_file;
1944
1945 if (vm_file)
1946 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1947
1948 /*
1949 * Special mappings (e.g. VDSO) do not have any file so fake
1950 * a default GFP_KERNEL for them.
1951 */
1952 return GFP_KERNEL;
1953 }
1954
1955 /*
1956 * Notify the address space that the page is about to become writable so that
1957 * it can prohibit this or wait for the page to get into an appropriate state.
1958 *
1959 * We do this without the lock held, so that it can sleep if it needs to.
1960 */
1961 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1962 unsigned long address)
1963 {
1964 struct vm_fault vmf;
1965 int ret;
1966
1967 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1968 vmf.pgoff = page->index;
1969 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1970 vmf.gfp_mask = __get_fault_gfp_mask(vma);
1971 vmf.page = page;
1972 vmf.cow_page = NULL;
1973
1974 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1975 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1976 return ret;
1977 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1978 lock_page(page);
1979 if (!page->mapping) {
1980 unlock_page(page);
1981 return 0; /* retry */
1982 }
1983 ret |= VM_FAULT_LOCKED;
1984 } else
1985 VM_BUG_ON_PAGE(!PageLocked(page), page);
1986 return ret;
1987 }
1988
1989 /*
1990 * Handle write page faults for pages that can be reused in the current vma
1991 *
1992 * This can happen either due to the mapping being with the VM_SHARED flag,
1993 * or due to us being the last reference standing to the page. In either
1994 * case, all we need to do here is to mark the page as writable and update
1995 * any related book-keeping.
1996 */
1997 static inline int wp_page_reuse(struct mm_struct *mm,
1998 struct vm_area_struct *vma, unsigned long address,
1999 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2000 struct page *page, int page_mkwrite,
2001 int dirty_shared)
2002 __releases(ptl)
2003 {
2004 pte_t entry;
2005 /*
2006 * Clear the pages cpupid information as the existing
2007 * information potentially belongs to a now completely
2008 * unrelated process.
2009 */
2010 if (page)
2011 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2012
2013 flush_cache_page(vma, address, pte_pfn(orig_pte));
2014 entry = pte_mkyoung(orig_pte);
2015 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2016 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2017 update_mmu_cache(vma, address, page_table);
2018 pte_unmap_unlock(page_table, ptl);
2019
2020 if (dirty_shared) {
2021 struct address_space *mapping;
2022 int dirtied;
2023
2024 if (!page_mkwrite)
2025 lock_page(page);
2026
2027 dirtied = set_page_dirty(page);
2028 VM_BUG_ON_PAGE(PageAnon(page), page);
2029 mapping = page->mapping;
2030 unlock_page(page);
2031 page_cache_release(page);
2032
2033 if ((dirtied || page_mkwrite) && mapping) {
2034 /*
2035 * Some device drivers do not set page.mapping
2036 * but still dirty their pages
2037 */
2038 balance_dirty_pages_ratelimited(mapping);
2039 }
2040
2041 if (!page_mkwrite)
2042 file_update_time(vma->vm_file);
2043 }
2044
2045 return VM_FAULT_WRITE;
2046 }
2047
2048 /*
2049 * Handle the case of a page which we actually need to copy to a new page.
2050 *
2051 * Called with mmap_sem locked and the old page referenced, but
2052 * without the ptl held.
2053 *
2054 * High level logic flow:
2055 *
2056 * - Allocate a page, copy the content of the old page to the new one.
2057 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2058 * - Take the PTL. If the pte changed, bail out and release the allocated page
2059 * - If the pte is still the way we remember it, update the page table and all
2060 * relevant references. This includes dropping the reference the page-table
2061 * held to the old page, as well as updating the rmap.
2062 * - In any case, unlock the PTL and drop the reference we took to the old page.
2063 */
2064 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2065 unsigned long address, pte_t *page_table, pmd_t *pmd,
2066 pte_t orig_pte, struct page *old_page)
2067 {
2068 struct page *new_page = NULL;
2069 spinlock_t *ptl = NULL;
2070 pte_t entry;
2071 int page_copied = 0;
2072 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2073 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2074 struct mem_cgroup *memcg;
2075
2076 if (unlikely(anon_vma_prepare(vma)))
2077 goto oom;
2078
2079 if (is_zero_pfn(pte_pfn(orig_pte))) {
2080 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2081 if (!new_page)
2082 goto oom;
2083 } else {
2084 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2085 if (!new_page)
2086 goto oom;
2087 cow_user_page(new_page, old_page, address, vma);
2088 }
2089
2090 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2091 goto oom_free_new;
2092
2093 __SetPageUptodate(new_page);
2094
2095 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2096
2097 /*
2098 * Re-check the pte - we dropped the lock
2099 */
2100 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2101 if (likely(pte_same(*page_table, orig_pte))) {
2102 if (old_page) {
2103 if (!PageAnon(old_page)) {
2104 dec_mm_counter_fast(mm,
2105 mm_counter_file(old_page));
2106 inc_mm_counter_fast(mm, MM_ANONPAGES);
2107 }
2108 } else {
2109 inc_mm_counter_fast(mm, MM_ANONPAGES);
2110 }
2111 flush_cache_page(vma, address, pte_pfn(orig_pte));
2112 entry = mk_pte(new_page, vma->vm_page_prot);
2113 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2114 /*
2115 * Clear the pte entry and flush it first, before updating the
2116 * pte with the new entry. This will avoid a race condition
2117 * seen in the presence of one thread doing SMC and another
2118 * thread doing COW.
2119 */
2120 ptep_clear_flush_notify(vma, address, page_table);
2121 page_add_new_anon_rmap(new_page, vma, address, false);
2122 mem_cgroup_commit_charge(new_page, memcg, false, false);
2123 lru_cache_add_active_or_unevictable(new_page, vma);
2124 /*
2125 * We call the notify macro here because, when using secondary
2126 * mmu page tables (such as kvm shadow page tables), we want the
2127 * new page to be mapped directly into the secondary page table.
2128 */
2129 set_pte_at_notify(mm, address, page_table, entry);
2130 update_mmu_cache(vma, address, page_table);
2131 if (old_page) {
2132 /*
2133 * Only after switching the pte to the new page may
2134 * we remove the mapcount here. Otherwise another
2135 * process may come and find the rmap count decremented
2136 * before the pte is switched to the new page, and
2137 * "reuse" the old page writing into it while our pte
2138 * here still points into it and can be read by other
2139 * threads.
2140 *
2141 * The critical issue is to order this
2142 * page_remove_rmap with the ptp_clear_flush above.
2143 * Those stores are ordered by (if nothing else,)
2144 * the barrier present in the atomic_add_negative
2145 * in page_remove_rmap.
2146 *
2147 * Then the TLB flush in ptep_clear_flush ensures that
2148 * no process can access the old page before the
2149 * decremented mapcount is visible. And the old page
2150 * cannot be reused until after the decremented
2151 * mapcount is visible. So transitively, TLBs to
2152 * old page will be flushed before it can be reused.
2153 */
2154 page_remove_rmap(old_page, false);
2155 }
2156
2157 /* Free the old page.. */
2158 new_page = old_page;
2159 page_copied = 1;
2160 } else {
2161 mem_cgroup_cancel_charge(new_page, memcg, false);
2162 }
2163
2164 if (new_page)
2165 page_cache_release(new_page);
2166
2167 pte_unmap_unlock(page_table, ptl);
2168 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2169 /* THP pages are never mlocked */
2170 if (old_page && !PageTransCompound(old_page)) {
2171 /*
2172 * Don't let another task, with possibly unlocked vma,
2173 * keep the mlocked page.
2174 */
2175 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2176 lock_page(old_page); /* LRU manipulation */
2177 munlock_vma_page(old_page);
2178 unlock_page(old_page);
2179 }
2180 page_cache_release(old_page);
2181 }
2182 return page_copied ? VM_FAULT_WRITE : 0;
2183 oom_free_new:
2184 page_cache_release(new_page);
2185 oom:
2186 if (old_page)
2187 page_cache_release(old_page);
2188 return VM_FAULT_OOM;
2189 }
2190
2191 /*
2192 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2193 * mapping
2194 */
2195 static int wp_pfn_shared(struct mm_struct *mm,
2196 struct vm_area_struct *vma, unsigned long address,
2197 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2198 pmd_t *pmd)
2199 {
2200 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2201 struct vm_fault vmf = {
2202 .page = NULL,
2203 .pgoff = linear_page_index(vma, address),
2204 .virtual_address = (void __user *)(address & PAGE_MASK),
2205 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2206 };
2207 int ret;
2208
2209 pte_unmap_unlock(page_table, ptl);
2210 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2211 if (ret & VM_FAULT_ERROR)
2212 return ret;
2213 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2214 /*
2215 * We might have raced with another page fault while we
2216 * released the pte_offset_map_lock.
2217 */
2218 if (!pte_same(*page_table, orig_pte)) {
2219 pte_unmap_unlock(page_table, ptl);
2220 return 0;
2221 }
2222 }
2223 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2224 NULL, 0, 0);
2225 }
2226
2227 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2228 unsigned long address, pte_t *page_table,
2229 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2230 struct page *old_page)
2231 __releases(ptl)
2232 {
2233 int page_mkwrite = 0;
2234
2235 page_cache_get(old_page);
2236
2237 /*
2238 * Only catch write-faults on shared writable pages,
2239 * read-only shared pages can get COWed by
2240 * get_user_pages(.write=1, .force=1).
2241 */
2242 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2243 int tmp;
2244
2245 pte_unmap_unlock(page_table, ptl);
2246 tmp = do_page_mkwrite(vma, old_page, address);
2247 if (unlikely(!tmp || (tmp &
2248 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2249 page_cache_release(old_page);
2250 return tmp;
2251 }
2252 /*
2253 * Since we dropped the lock we need to revalidate
2254 * the PTE as someone else may have changed it. If
2255 * they did, we just return, as we can count on the
2256 * MMU to tell us if they didn't also make it writable.
2257 */
2258 page_table = pte_offset_map_lock(mm, pmd, address,
2259 &ptl);
2260 if (!pte_same(*page_table, orig_pte)) {
2261 unlock_page(old_page);
2262 pte_unmap_unlock(page_table, ptl);
2263 page_cache_release(old_page);
2264 return 0;
2265 }
2266 page_mkwrite = 1;
2267 }
2268
2269 return wp_page_reuse(mm, vma, address, page_table, ptl,
2270 orig_pte, old_page, page_mkwrite, 1);
2271 }
2272
2273 /*
2274 * This routine handles present pages, when users try to write
2275 * to a shared page. It is done by copying the page to a new address
2276 * and decrementing the shared-page counter for the old page.
2277 *
2278 * Note that this routine assumes that the protection checks have been
2279 * done by the caller (the low-level page fault routine in most cases).
2280 * Thus we can safely just mark it writable once we've done any necessary
2281 * COW.
2282 *
2283 * We also mark the page dirty at this point even though the page will
2284 * change only once the write actually happens. This avoids a few races,
2285 * and potentially makes it more efficient.
2286 *
2287 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2288 * but allow concurrent faults), with pte both mapped and locked.
2289 * We return with mmap_sem still held, but pte unmapped and unlocked.
2290 */
2291 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2292 unsigned long address, pte_t *page_table, pmd_t *pmd,
2293 spinlock_t *ptl, pte_t orig_pte)
2294 __releases(ptl)
2295 {
2296 struct page *old_page;
2297
2298 old_page = vm_normal_page(vma, address, orig_pte);
2299 if (!old_page) {
2300 /*
2301 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2302 * VM_PFNMAP VMA.
2303 *
2304 * We should not cow pages in a shared writeable mapping.
2305 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2306 */
2307 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2308 (VM_WRITE|VM_SHARED))
2309 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2310 orig_pte, pmd);
2311
2312 pte_unmap_unlock(page_table, ptl);
2313 return wp_page_copy(mm, vma, address, page_table, pmd,
2314 orig_pte, old_page);
2315 }
2316
2317 /*
2318 * Take out anonymous pages first, anonymous shared vmas are
2319 * not dirty accountable.
2320 */
2321 if (PageAnon(old_page) && !PageKsm(old_page)) {
2322 if (!trylock_page(old_page)) {
2323 page_cache_get(old_page);
2324 pte_unmap_unlock(page_table, ptl);
2325 lock_page(old_page);
2326 page_table = pte_offset_map_lock(mm, pmd, address,
2327 &ptl);
2328 if (!pte_same(*page_table, orig_pte)) {
2329 unlock_page(old_page);
2330 pte_unmap_unlock(page_table, ptl);
2331 page_cache_release(old_page);
2332 return 0;
2333 }
2334 page_cache_release(old_page);
2335 }
2336 if (reuse_swap_page(old_page)) {
2337 /*
2338 * The page is all ours. Move it to our anon_vma so
2339 * the rmap code will not search our parent or siblings.
2340 * Protected against the rmap code by the page lock.
2341 */
2342 page_move_anon_rmap(old_page, vma, address);
2343 unlock_page(old_page);
2344 return wp_page_reuse(mm, vma, address, page_table, ptl,
2345 orig_pte, old_page, 0, 0);
2346 }
2347 unlock_page(old_page);
2348 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2349 (VM_WRITE|VM_SHARED))) {
2350 return wp_page_shared(mm, vma, address, page_table, pmd,
2351 ptl, orig_pte, old_page);
2352 }
2353
2354 /*
2355 * Ok, we need to copy. Oh, well..
2356 */
2357 page_cache_get(old_page);
2358
2359 pte_unmap_unlock(page_table, ptl);
2360 return wp_page_copy(mm, vma, address, page_table, pmd,
2361 orig_pte, old_page);
2362 }
2363
2364 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2365 unsigned long start_addr, unsigned long end_addr,
2366 struct zap_details *details)
2367 {
2368 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2369 }
2370
2371 static inline void unmap_mapping_range_tree(struct rb_root *root,
2372 struct zap_details *details)
2373 {
2374 struct vm_area_struct *vma;
2375 pgoff_t vba, vea, zba, zea;
2376
2377 vma_interval_tree_foreach(vma, root,
2378 details->first_index, details->last_index) {
2379
2380 vba = vma->vm_pgoff;
2381 vea = vba + vma_pages(vma) - 1;
2382 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2383 zba = details->first_index;
2384 if (zba < vba)
2385 zba = vba;
2386 zea = details->last_index;
2387 if (zea > vea)
2388 zea = vea;
2389
2390 unmap_mapping_range_vma(vma,
2391 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2392 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2393 details);
2394 }
2395 }
2396
2397 /**
2398 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2399 * address_space corresponding to the specified page range in the underlying
2400 * file.
2401 *
2402 * @mapping: the address space containing mmaps to be unmapped.
2403 * @holebegin: byte in first page to unmap, relative to the start of
2404 * the underlying file. This will be rounded down to a PAGE_SIZE
2405 * boundary. Note that this is different from truncate_pagecache(), which
2406 * must keep the partial page. In contrast, we must get rid of
2407 * partial pages.
2408 * @holelen: size of prospective hole in bytes. This will be rounded
2409 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2410 * end of the file.
2411 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2412 * but 0 when invalidating pagecache, don't throw away private data.
2413 */
2414 void unmap_mapping_range(struct address_space *mapping,
2415 loff_t const holebegin, loff_t const holelen, int even_cows)
2416 {
2417 struct zap_details details;
2418 pgoff_t hba = holebegin >> PAGE_SHIFT;
2419 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2420
2421 /* Check for overflow. */
2422 if (sizeof(holelen) > sizeof(hlen)) {
2423 long long holeend =
2424 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425 if (holeend & ~(long long)ULONG_MAX)
2426 hlen = ULONG_MAX - hba + 1;
2427 }
2428
2429 details.check_mapping = even_cows? NULL: mapping;
2430 details.first_index = hba;
2431 details.last_index = hba + hlen - 1;
2432 if (details.last_index < details.first_index)
2433 details.last_index = ULONG_MAX;
2434
2435
2436 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2437 i_mmap_lock_write(mapping);
2438 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2439 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2440 i_mmap_unlock_write(mapping);
2441 }
2442 EXPORT_SYMBOL(unmap_mapping_range);
2443
2444 /*
2445 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2446 * but allow concurrent faults), and pte mapped but not yet locked.
2447 * We return with pte unmapped and unlocked.
2448 *
2449 * We return with the mmap_sem locked or unlocked in the same cases
2450 * as does filemap_fault().
2451 */
2452 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2453 unsigned long address, pte_t *page_table, pmd_t *pmd,
2454 unsigned int flags, pte_t orig_pte)
2455 {
2456 spinlock_t *ptl;
2457 struct page *page, *swapcache;
2458 struct mem_cgroup *memcg;
2459 swp_entry_t entry;
2460 pte_t pte;
2461 int locked;
2462 int exclusive = 0;
2463 int ret = 0;
2464
2465 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2466 goto out;
2467
2468 entry = pte_to_swp_entry(orig_pte);
2469 if (unlikely(non_swap_entry(entry))) {
2470 if (is_migration_entry(entry)) {
2471 migration_entry_wait(mm, pmd, address);
2472 } else if (is_hwpoison_entry(entry)) {
2473 ret = VM_FAULT_HWPOISON;
2474 } else {
2475 print_bad_pte(vma, address, orig_pte, NULL);
2476 ret = VM_FAULT_SIGBUS;
2477 }
2478 goto out;
2479 }
2480 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2481 page = lookup_swap_cache(entry);
2482 if (!page) {
2483 page = swapin_readahead(entry,
2484 GFP_HIGHUSER_MOVABLE, vma, address);
2485 if (!page) {
2486 /*
2487 * Back out if somebody else faulted in this pte
2488 * while we released the pte lock.
2489 */
2490 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2491 if (likely(pte_same(*page_table, orig_pte)))
2492 ret = VM_FAULT_OOM;
2493 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2494 goto unlock;
2495 }
2496
2497 /* Had to read the page from swap area: Major fault */
2498 ret = VM_FAULT_MAJOR;
2499 count_vm_event(PGMAJFAULT);
2500 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2501 } else if (PageHWPoison(page)) {
2502 /*
2503 * hwpoisoned dirty swapcache pages are kept for killing
2504 * owner processes (which may be unknown at hwpoison time)
2505 */
2506 ret = VM_FAULT_HWPOISON;
2507 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2508 swapcache = page;
2509 goto out_release;
2510 }
2511
2512 swapcache = page;
2513 locked = lock_page_or_retry(page, mm, flags);
2514
2515 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2516 if (!locked) {
2517 ret |= VM_FAULT_RETRY;
2518 goto out_release;
2519 }
2520
2521 /*
2522 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2523 * release the swapcache from under us. The page pin, and pte_same
2524 * test below, are not enough to exclude that. Even if it is still
2525 * swapcache, we need to check that the page's swap has not changed.
2526 */
2527 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2528 goto out_page;
2529
2530 page = ksm_might_need_to_copy(page, vma, address);
2531 if (unlikely(!page)) {
2532 ret = VM_FAULT_OOM;
2533 page = swapcache;
2534 goto out_page;
2535 }
2536
2537 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2538 ret = VM_FAULT_OOM;
2539 goto out_page;
2540 }
2541
2542 /*
2543 * Back out if somebody else already faulted in this pte.
2544 */
2545 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2546 if (unlikely(!pte_same(*page_table, orig_pte)))
2547 goto out_nomap;
2548
2549 if (unlikely(!PageUptodate(page))) {
2550 ret = VM_FAULT_SIGBUS;
2551 goto out_nomap;
2552 }
2553
2554 /*
2555 * The page isn't present yet, go ahead with the fault.
2556 *
2557 * Be careful about the sequence of operations here.
2558 * To get its accounting right, reuse_swap_page() must be called
2559 * while the page is counted on swap but not yet in mapcount i.e.
2560 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2561 * must be called after the swap_free(), or it will never succeed.
2562 */
2563
2564 inc_mm_counter_fast(mm, MM_ANONPAGES);
2565 dec_mm_counter_fast(mm, MM_SWAPENTS);
2566 pte = mk_pte(page, vma->vm_page_prot);
2567 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2568 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2569 flags &= ~FAULT_FLAG_WRITE;
2570 ret |= VM_FAULT_WRITE;
2571 exclusive = RMAP_EXCLUSIVE;
2572 }
2573 flush_icache_page(vma, page);
2574 if (pte_swp_soft_dirty(orig_pte))
2575 pte = pte_mksoft_dirty(pte);
2576 set_pte_at(mm, address, page_table, pte);
2577 if (page == swapcache) {
2578 do_page_add_anon_rmap(page, vma, address, exclusive);
2579 mem_cgroup_commit_charge(page, memcg, true, false);
2580 } else { /* ksm created a completely new copy */
2581 page_add_new_anon_rmap(page, vma, address, false);
2582 mem_cgroup_commit_charge(page, memcg, false, false);
2583 lru_cache_add_active_or_unevictable(page, vma);
2584 }
2585
2586 swap_free(entry);
2587 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2588 try_to_free_swap(page);
2589 unlock_page(page);
2590 if (page != swapcache) {
2591 /*
2592 * Hold the lock to avoid the swap entry to be reused
2593 * until we take the PT lock for the pte_same() check
2594 * (to avoid false positives from pte_same). For
2595 * further safety release the lock after the swap_free
2596 * so that the swap count won't change under a
2597 * parallel locked swapcache.
2598 */
2599 unlock_page(swapcache);
2600 page_cache_release(swapcache);
2601 }
2602
2603 if (flags & FAULT_FLAG_WRITE) {
2604 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2605 if (ret & VM_FAULT_ERROR)
2606 ret &= VM_FAULT_ERROR;
2607 goto out;
2608 }
2609
2610 /* No need to invalidate - it was non-present before */
2611 update_mmu_cache(vma, address, page_table);
2612 unlock:
2613 pte_unmap_unlock(page_table, ptl);
2614 out:
2615 return ret;
2616 out_nomap:
2617 mem_cgroup_cancel_charge(page, memcg, false);
2618 pte_unmap_unlock(page_table, ptl);
2619 out_page:
2620 unlock_page(page);
2621 out_release:
2622 page_cache_release(page);
2623 if (page != swapcache) {
2624 unlock_page(swapcache);
2625 page_cache_release(swapcache);
2626 }
2627 return ret;
2628 }
2629
2630 /*
2631 * This is like a special single-page "expand_{down|up}wards()",
2632 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2633 * doesn't hit another vma.
2634 */
2635 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2636 {
2637 address &= PAGE_MASK;
2638 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2639 struct vm_area_struct *prev = vma->vm_prev;
2640
2641 /*
2642 * Is there a mapping abutting this one below?
2643 *
2644 * That's only ok if it's the same stack mapping
2645 * that has gotten split..
2646 */
2647 if (prev && prev->vm_end == address)
2648 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2649
2650 return expand_downwards(vma, address - PAGE_SIZE);
2651 }
2652 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2653 struct vm_area_struct *next = vma->vm_next;
2654
2655 /* As VM_GROWSDOWN but s/below/above/ */
2656 if (next && next->vm_start == address + PAGE_SIZE)
2657 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2658
2659 return expand_upwards(vma, address + PAGE_SIZE);
2660 }
2661 return 0;
2662 }
2663
2664 /*
2665 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2666 * but allow concurrent faults), and pte mapped but not yet locked.
2667 * We return with mmap_sem still held, but pte unmapped and unlocked.
2668 */
2669 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2670 unsigned long address, pte_t *page_table, pmd_t *pmd,
2671 unsigned int flags)
2672 {
2673 struct mem_cgroup *memcg;
2674 struct page *page;
2675 spinlock_t *ptl;
2676 pte_t entry;
2677
2678 pte_unmap(page_table);
2679
2680 /* File mapping without ->vm_ops ? */
2681 if (vma->vm_flags & VM_SHARED)
2682 return VM_FAULT_SIGBUS;
2683
2684 /* Check if we need to add a guard page to the stack */
2685 if (check_stack_guard_page(vma, address) < 0)
2686 return VM_FAULT_SIGSEGV;
2687
2688 /* Use the zero-page for reads */
2689 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2690 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2691 vma->vm_page_prot));
2692 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2693 if (!pte_none(*page_table))
2694 goto unlock;
2695 /* Deliver the page fault to userland, check inside PT lock */
2696 if (userfaultfd_missing(vma)) {
2697 pte_unmap_unlock(page_table, ptl);
2698 return handle_userfault(vma, address, flags,
2699 VM_UFFD_MISSING);
2700 }
2701 goto setpte;
2702 }
2703
2704 /* Allocate our own private page. */
2705 if (unlikely(anon_vma_prepare(vma)))
2706 goto oom;
2707 page = alloc_zeroed_user_highpage_movable(vma, address);
2708 if (!page)
2709 goto oom;
2710
2711 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2712 goto oom_free_page;
2713
2714 /*
2715 * The memory barrier inside __SetPageUptodate makes sure that
2716 * preceeding stores to the page contents become visible before
2717 * the set_pte_at() write.
2718 */
2719 __SetPageUptodate(page);
2720
2721 entry = mk_pte(page, vma->vm_page_prot);
2722 if (vma->vm_flags & VM_WRITE)
2723 entry = pte_mkwrite(pte_mkdirty(entry));
2724
2725 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2726 if (!pte_none(*page_table))
2727 goto release;
2728
2729 /* Deliver the page fault to userland, check inside PT lock */
2730 if (userfaultfd_missing(vma)) {
2731 pte_unmap_unlock(page_table, ptl);
2732 mem_cgroup_cancel_charge(page, memcg, false);
2733 page_cache_release(page);
2734 return handle_userfault(vma, address, flags,
2735 VM_UFFD_MISSING);
2736 }
2737
2738 inc_mm_counter_fast(mm, MM_ANONPAGES);
2739 page_add_new_anon_rmap(page, vma, address, false);
2740 mem_cgroup_commit_charge(page, memcg, false, false);
2741 lru_cache_add_active_or_unevictable(page, vma);
2742 setpte:
2743 set_pte_at(mm, address, page_table, entry);
2744
2745 /* No need to invalidate - it was non-present before */
2746 update_mmu_cache(vma, address, page_table);
2747 unlock:
2748 pte_unmap_unlock(page_table, ptl);
2749 return 0;
2750 release:
2751 mem_cgroup_cancel_charge(page, memcg, false);
2752 page_cache_release(page);
2753 goto unlock;
2754 oom_free_page:
2755 page_cache_release(page);
2756 oom:
2757 return VM_FAULT_OOM;
2758 }
2759
2760 /*
2761 * The mmap_sem must have been held on entry, and may have been
2762 * released depending on flags and vma->vm_ops->fault() return value.
2763 * See filemap_fault() and __lock_page_retry().
2764 */
2765 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2766 pgoff_t pgoff, unsigned int flags,
2767 struct page *cow_page, struct page **page)
2768 {
2769 struct vm_fault vmf;
2770 int ret;
2771
2772 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2773 vmf.pgoff = pgoff;
2774 vmf.flags = flags;
2775 vmf.page = NULL;
2776 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2777 vmf.cow_page = cow_page;
2778
2779 ret = vma->vm_ops->fault(vma, &vmf);
2780 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2781 return ret;
2782 if (!vmf.page)
2783 goto out;
2784
2785 if (unlikely(PageHWPoison(vmf.page))) {
2786 if (ret & VM_FAULT_LOCKED)
2787 unlock_page(vmf.page);
2788 page_cache_release(vmf.page);
2789 return VM_FAULT_HWPOISON;
2790 }
2791
2792 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2793 lock_page(vmf.page);
2794 else
2795 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2796
2797 out:
2798 *page = vmf.page;
2799 return ret;
2800 }
2801
2802 /**
2803 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2804 *
2805 * @vma: virtual memory area
2806 * @address: user virtual address
2807 * @page: page to map
2808 * @pte: pointer to target page table entry
2809 * @write: true, if new entry is writable
2810 * @anon: true, if it's anonymous page
2811 *
2812 * Caller must hold page table lock relevant for @pte.
2813 *
2814 * Target users are page handler itself and implementations of
2815 * vm_ops->map_pages.
2816 */
2817 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2818 struct page *page, pte_t *pte, bool write, bool anon)
2819 {
2820 pte_t entry;
2821
2822 flush_icache_page(vma, page);
2823 entry = mk_pte(page, vma->vm_page_prot);
2824 if (write)
2825 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2826 if (anon) {
2827 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2828 page_add_new_anon_rmap(page, vma, address, false);
2829 } else {
2830 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2831 page_add_file_rmap(page);
2832 }
2833 set_pte_at(vma->vm_mm, address, pte, entry);
2834
2835 /* no need to invalidate: a not-present page won't be cached */
2836 update_mmu_cache(vma, address, pte);
2837 }
2838
2839 static unsigned long fault_around_bytes __read_mostly =
2840 rounddown_pow_of_two(65536);
2841
2842 #ifdef CONFIG_DEBUG_FS
2843 static int fault_around_bytes_get(void *data, u64 *val)
2844 {
2845 *val = fault_around_bytes;
2846 return 0;
2847 }
2848
2849 /*
2850 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2851 * rounded down to nearest page order. It's what do_fault_around() expects to
2852 * see.
2853 */
2854 static int fault_around_bytes_set(void *data, u64 val)
2855 {
2856 if (val / PAGE_SIZE > PTRS_PER_PTE)
2857 return -EINVAL;
2858 if (val > PAGE_SIZE)
2859 fault_around_bytes = rounddown_pow_of_two(val);
2860 else
2861 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2862 return 0;
2863 }
2864 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2865 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2866
2867 static int __init fault_around_debugfs(void)
2868 {
2869 void *ret;
2870
2871 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2872 &fault_around_bytes_fops);
2873 if (!ret)
2874 pr_warn("Failed to create fault_around_bytes in debugfs");
2875 return 0;
2876 }
2877 late_initcall(fault_around_debugfs);
2878 #endif
2879
2880 /*
2881 * do_fault_around() tries to map few pages around the fault address. The hope
2882 * is that the pages will be needed soon and this will lower the number of
2883 * faults to handle.
2884 *
2885 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2886 * not ready to be mapped: not up-to-date, locked, etc.
2887 *
2888 * This function is called with the page table lock taken. In the split ptlock
2889 * case the page table lock only protects only those entries which belong to
2890 * the page table corresponding to the fault address.
2891 *
2892 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2893 * only once.
2894 *
2895 * fault_around_pages() defines how many pages we'll try to map.
2896 * do_fault_around() expects it to return a power of two less than or equal to
2897 * PTRS_PER_PTE.
2898 *
2899 * The virtual address of the area that we map is naturally aligned to the
2900 * fault_around_pages() value (and therefore to page order). This way it's
2901 * easier to guarantee that we don't cross page table boundaries.
2902 */
2903 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2904 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2905 {
2906 unsigned long start_addr, nr_pages, mask;
2907 pgoff_t max_pgoff;
2908 struct vm_fault vmf;
2909 int off;
2910
2911 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2912 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2913
2914 start_addr = max(address & mask, vma->vm_start);
2915 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2916 pte -= off;
2917 pgoff -= off;
2918
2919 /*
2920 * max_pgoff is either end of page table or end of vma
2921 * or fault_around_pages() from pgoff, depending what is nearest.
2922 */
2923 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2924 PTRS_PER_PTE - 1;
2925 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2926 pgoff + nr_pages - 1);
2927
2928 /* Check if it makes any sense to call ->map_pages */
2929 while (!pte_none(*pte)) {
2930 if (++pgoff > max_pgoff)
2931 return;
2932 start_addr += PAGE_SIZE;
2933 if (start_addr >= vma->vm_end)
2934 return;
2935 pte++;
2936 }
2937
2938 vmf.virtual_address = (void __user *) start_addr;
2939 vmf.pte = pte;
2940 vmf.pgoff = pgoff;
2941 vmf.max_pgoff = max_pgoff;
2942 vmf.flags = flags;
2943 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2944 vma->vm_ops->map_pages(vma, &vmf);
2945 }
2946
2947 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2948 unsigned long address, pmd_t *pmd,
2949 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2950 {
2951 struct page *fault_page;
2952 spinlock_t *ptl;
2953 pte_t *pte;
2954 int ret = 0;
2955
2956 /*
2957 * Let's call ->map_pages() first and use ->fault() as fallback
2958 * if page by the offset is not ready to be mapped (cold cache or
2959 * something).
2960 */
2961 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2962 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2963 do_fault_around(vma, address, pte, pgoff, flags);
2964 if (!pte_same(*pte, orig_pte))
2965 goto unlock_out;
2966 pte_unmap_unlock(pte, ptl);
2967 }
2968
2969 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2971 return ret;
2972
2973 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 if (unlikely(!pte_same(*pte, orig_pte))) {
2975 pte_unmap_unlock(pte, ptl);
2976 unlock_page(fault_page);
2977 page_cache_release(fault_page);
2978 return ret;
2979 }
2980 do_set_pte(vma, address, fault_page, pte, false, false);
2981 unlock_page(fault_page);
2982 unlock_out:
2983 pte_unmap_unlock(pte, ptl);
2984 return ret;
2985 }
2986
2987 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2988 unsigned long address, pmd_t *pmd,
2989 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2990 {
2991 struct page *fault_page, *new_page;
2992 struct mem_cgroup *memcg;
2993 spinlock_t *ptl;
2994 pte_t *pte;
2995 int ret;
2996
2997 if (unlikely(anon_vma_prepare(vma)))
2998 return VM_FAULT_OOM;
2999
3000 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3001 if (!new_page)
3002 return VM_FAULT_OOM;
3003
3004 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3005 page_cache_release(new_page);
3006 return VM_FAULT_OOM;
3007 }
3008
3009 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3010 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3011 goto uncharge_out;
3012
3013 if (fault_page)
3014 copy_user_highpage(new_page, fault_page, address, vma);
3015 __SetPageUptodate(new_page);
3016
3017 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3018 if (unlikely(!pte_same(*pte, orig_pte))) {
3019 pte_unmap_unlock(pte, ptl);
3020 if (fault_page) {
3021 unlock_page(fault_page);
3022 page_cache_release(fault_page);
3023 } else {
3024 /*
3025 * The fault handler has no page to lock, so it holds
3026 * i_mmap_lock for read to protect against truncate.
3027 */
3028 i_mmap_unlock_read(vma->vm_file->f_mapping);
3029 }
3030 goto uncharge_out;
3031 }
3032 do_set_pte(vma, address, new_page, pte, true, true);
3033 mem_cgroup_commit_charge(new_page, memcg, false, false);
3034 lru_cache_add_active_or_unevictable(new_page, vma);
3035 pte_unmap_unlock(pte, ptl);
3036 if (fault_page) {
3037 unlock_page(fault_page);
3038 page_cache_release(fault_page);
3039 } else {
3040 /*
3041 * The fault handler has no page to lock, so it holds
3042 * i_mmap_lock for read to protect against truncate.
3043 */
3044 i_mmap_unlock_read(vma->vm_file->f_mapping);
3045 }
3046 return ret;
3047 uncharge_out:
3048 mem_cgroup_cancel_charge(new_page, memcg, false);
3049 page_cache_release(new_page);
3050 return ret;
3051 }
3052
3053 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3054 unsigned long address, pmd_t *pmd,
3055 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3056 {
3057 struct page *fault_page;
3058 struct address_space *mapping;
3059 spinlock_t *ptl;
3060 pte_t *pte;
3061 int dirtied = 0;
3062 int ret, tmp;
3063
3064 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3065 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3066 return ret;
3067
3068 /*
3069 * Check if the backing address space wants to know that the page is
3070 * about to become writable
3071 */
3072 if (vma->vm_ops->page_mkwrite) {
3073 unlock_page(fault_page);
3074 tmp = do_page_mkwrite(vma, fault_page, address);
3075 if (unlikely(!tmp ||
3076 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3077 page_cache_release(fault_page);
3078 return tmp;
3079 }
3080 }
3081
3082 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3083 if (unlikely(!pte_same(*pte, orig_pte))) {
3084 pte_unmap_unlock(pte, ptl);
3085 unlock_page(fault_page);
3086 page_cache_release(fault_page);
3087 return ret;
3088 }
3089 do_set_pte(vma, address, fault_page, pte, true, false);
3090 pte_unmap_unlock(pte, ptl);
3091
3092 if (set_page_dirty(fault_page))
3093 dirtied = 1;
3094 /*
3095 * Take a local copy of the address_space - page.mapping may be zeroed
3096 * by truncate after unlock_page(). The address_space itself remains
3097 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3098 * release semantics to prevent the compiler from undoing this copying.
3099 */
3100 mapping = page_rmapping(fault_page);
3101 unlock_page(fault_page);
3102 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3103 /*
3104 * Some device drivers do not set page.mapping but still
3105 * dirty their pages
3106 */
3107 balance_dirty_pages_ratelimited(mapping);
3108 }
3109
3110 if (!vma->vm_ops->page_mkwrite)
3111 file_update_time(vma->vm_file);
3112
3113 return ret;
3114 }
3115
3116 /*
3117 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3118 * but allow concurrent faults).
3119 * The mmap_sem may have been released depending on flags and our
3120 * return value. See filemap_fault() and __lock_page_or_retry().
3121 */
3122 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3123 unsigned long address, pte_t *page_table, pmd_t *pmd,
3124 unsigned int flags, pte_t orig_pte)
3125 {
3126 pgoff_t pgoff = (((address & PAGE_MASK)
3127 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3128
3129 pte_unmap(page_table);
3130 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3131 if (!vma->vm_ops->fault)
3132 return VM_FAULT_SIGBUS;
3133 if (!(flags & FAULT_FLAG_WRITE))
3134 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3135 orig_pte);
3136 if (!(vma->vm_flags & VM_SHARED))
3137 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3138 orig_pte);
3139 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3140 }
3141
3142 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3143 unsigned long addr, int page_nid,
3144 int *flags)
3145 {
3146 get_page(page);
3147
3148 count_vm_numa_event(NUMA_HINT_FAULTS);
3149 if (page_nid == numa_node_id()) {
3150 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3151 *flags |= TNF_FAULT_LOCAL;
3152 }
3153
3154 return mpol_misplaced(page, vma, addr);
3155 }
3156
3157 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3158 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3159 {
3160 struct page *page = NULL;
3161 spinlock_t *ptl;
3162 int page_nid = -1;
3163 int last_cpupid;
3164 int target_nid;
3165 bool migrated = false;
3166 bool was_writable = pte_write(pte);
3167 int flags = 0;
3168
3169 /* A PROT_NONE fault should not end up here */
3170 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3171
3172 /*
3173 * The "pte" at this point cannot be used safely without
3174 * validation through pte_unmap_same(). It's of NUMA type but
3175 * the pfn may be screwed if the read is non atomic.
3176 *
3177 * We can safely just do a "set_pte_at()", because the old
3178 * page table entry is not accessible, so there would be no
3179 * concurrent hardware modifications to the PTE.
3180 */
3181 ptl = pte_lockptr(mm, pmd);
3182 spin_lock(ptl);
3183 if (unlikely(!pte_same(*ptep, pte))) {
3184 pte_unmap_unlock(ptep, ptl);
3185 goto out;
3186 }
3187
3188 /* Make it present again */
3189 pte = pte_modify(pte, vma->vm_page_prot);
3190 pte = pte_mkyoung(pte);
3191 if (was_writable)
3192 pte = pte_mkwrite(pte);
3193 set_pte_at(mm, addr, ptep, pte);
3194 update_mmu_cache(vma, addr, ptep);
3195
3196 page = vm_normal_page(vma, addr, pte);
3197 if (!page) {
3198 pte_unmap_unlock(ptep, ptl);
3199 return 0;
3200 }
3201
3202 /*
3203 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3204 * much anyway since they can be in shared cache state. This misses
3205 * the case where a mapping is writable but the process never writes
3206 * to it but pte_write gets cleared during protection updates and
3207 * pte_dirty has unpredictable behaviour between PTE scan updates,
3208 * background writeback, dirty balancing and application behaviour.
3209 */
3210 if (!(vma->vm_flags & VM_WRITE))
3211 flags |= TNF_NO_GROUP;
3212
3213 /*
3214 * Flag if the page is shared between multiple address spaces. This
3215 * is later used when determining whether to group tasks together
3216 */
3217 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3218 flags |= TNF_SHARED;
3219
3220 last_cpupid = page_cpupid_last(page);
3221 page_nid = page_to_nid(page);
3222 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3223 pte_unmap_unlock(ptep, ptl);
3224 if (target_nid == -1) {
3225 put_page(page);
3226 goto out;
3227 }
3228
3229 /* Migrate to the requested node */
3230 migrated = migrate_misplaced_page(page, vma, target_nid);
3231 if (migrated) {
3232 page_nid = target_nid;
3233 flags |= TNF_MIGRATED;
3234 } else
3235 flags |= TNF_MIGRATE_FAIL;
3236
3237 out:
3238 if (page_nid != -1)
3239 task_numa_fault(last_cpupid, page_nid, 1, flags);
3240 return 0;
3241 }
3242
3243 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3244 unsigned long address, pmd_t *pmd, unsigned int flags)
3245 {
3246 if (vma_is_anonymous(vma))
3247 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3248 if (vma->vm_ops->pmd_fault)
3249 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3250 return VM_FAULT_FALLBACK;
3251 }
3252
3253 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3254 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3255 unsigned int flags)
3256 {
3257 if (vma_is_anonymous(vma))
3258 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3259 if (vma->vm_ops->pmd_fault)
3260 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3261 return VM_FAULT_FALLBACK;
3262 }
3263
3264 /*
3265 * These routines also need to handle stuff like marking pages dirty
3266 * and/or accessed for architectures that don't do it in hardware (most
3267 * RISC architectures). The early dirtying is also good on the i386.
3268 *
3269 * There is also a hook called "update_mmu_cache()" that architectures
3270 * with external mmu caches can use to update those (ie the Sparc or
3271 * PowerPC hashed page tables that act as extended TLBs).
3272 *
3273 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3274 * but allow concurrent faults), and pte mapped but not yet locked.
3275 * We return with pte unmapped and unlocked.
3276 *
3277 * The mmap_sem may have been released depending on flags and our
3278 * return value. See filemap_fault() and __lock_page_or_retry().
3279 */
3280 static int handle_pte_fault(struct mm_struct *mm,
3281 struct vm_area_struct *vma, unsigned long address,
3282 pte_t *pte, pmd_t *pmd, unsigned int flags)
3283 {
3284 pte_t entry;
3285 spinlock_t *ptl;
3286
3287 /*
3288 * some architectures can have larger ptes than wordsize,
3289 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3290 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3291 * The code below just needs a consistent view for the ifs and
3292 * we later double check anyway with the ptl lock held. So here
3293 * a barrier will do.
3294 */
3295 entry = *pte;
3296 barrier();
3297 if (!pte_present(entry)) {
3298 if (pte_none(entry)) {
3299 if (vma_is_anonymous(vma))
3300 return do_anonymous_page(mm, vma, address,
3301 pte, pmd, flags);
3302 else
3303 return do_fault(mm, vma, address, pte, pmd,
3304 flags, entry);
3305 }
3306 return do_swap_page(mm, vma, address,
3307 pte, pmd, flags, entry);
3308 }
3309
3310 if (pte_protnone(entry))
3311 return do_numa_page(mm, vma, address, entry, pte, pmd);
3312
3313 ptl = pte_lockptr(mm, pmd);
3314 spin_lock(ptl);
3315 if (unlikely(!pte_same(*pte, entry)))
3316 goto unlock;
3317 if (flags & FAULT_FLAG_WRITE) {
3318 if (!pte_write(entry))
3319 return do_wp_page(mm, vma, address,
3320 pte, pmd, ptl, entry);
3321 entry = pte_mkdirty(entry);
3322 }
3323 entry = pte_mkyoung(entry);
3324 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3325 update_mmu_cache(vma, address, pte);
3326 } else {
3327 /*
3328 * This is needed only for protection faults but the arch code
3329 * is not yet telling us if this is a protection fault or not.
3330 * This still avoids useless tlb flushes for .text page faults
3331 * with threads.
3332 */
3333 if (flags & FAULT_FLAG_WRITE)
3334 flush_tlb_fix_spurious_fault(vma, address);
3335 }
3336 unlock:
3337 pte_unmap_unlock(pte, ptl);
3338 return 0;
3339 }
3340
3341 /*
3342 * By the time we get here, we already hold the mm semaphore
3343 *
3344 * The mmap_sem may have been released depending on flags and our
3345 * return value. See filemap_fault() and __lock_page_or_retry().
3346 */
3347 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3348 unsigned long address, unsigned int flags)
3349 {
3350 pgd_t *pgd;
3351 pud_t *pud;
3352 pmd_t *pmd;
3353 pte_t *pte;
3354
3355 if (unlikely(is_vm_hugetlb_page(vma)))
3356 return hugetlb_fault(mm, vma, address, flags);
3357
3358 pgd = pgd_offset(mm, address);
3359 pud = pud_alloc(mm, pgd, address);
3360 if (!pud)
3361 return VM_FAULT_OOM;
3362 pmd = pmd_alloc(mm, pud, address);
3363 if (!pmd)
3364 return VM_FAULT_OOM;
3365 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3366 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3367 if (!(ret & VM_FAULT_FALLBACK))
3368 return ret;
3369 } else {
3370 pmd_t orig_pmd = *pmd;
3371 int ret;
3372
3373 barrier();
3374 if (pmd_trans_huge(orig_pmd)) {
3375 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3376
3377 /*
3378 * If the pmd is splitting, return and retry the
3379 * the fault. Alternative: wait until the split
3380 * is done, and goto retry.
3381 */
3382 if (pmd_trans_splitting(orig_pmd))
3383 return 0;
3384
3385 if (pmd_protnone(orig_pmd))
3386 return do_huge_pmd_numa_page(mm, vma, address,
3387 orig_pmd, pmd);
3388
3389 if (dirty && !pmd_write(orig_pmd)) {
3390 ret = wp_huge_pmd(mm, vma, address, pmd,
3391 orig_pmd, flags);
3392 if (!(ret & VM_FAULT_FALLBACK))
3393 return ret;
3394 } else {
3395 huge_pmd_set_accessed(mm, vma, address, pmd,
3396 orig_pmd, dirty);
3397 return 0;
3398 }
3399 }
3400 }
3401
3402 /*
3403 * Use __pte_alloc instead of pte_alloc_map, because we can't
3404 * run pte_offset_map on the pmd, if an huge pmd could
3405 * materialize from under us from a different thread.
3406 */
3407 if (unlikely(pmd_none(*pmd)) &&
3408 unlikely(__pte_alloc(mm, vma, pmd, address)))
3409 return VM_FAULT_OOM;
3410 /* if an huge pmd materialized from under us just retry later */
3411 if (unlikely(pmd_trans_huge(*pmd)))
3412 return 0;
3413 /*
3414 * A regular pmd is established and it can't morph into a huge pmd
3415 * from under us anymore at this point because we hold the mmap_sem
3416 * read mode and khugepaged takes it in write mode. So now it's
3417 * safe to run pte_offset_map().
3418 */
3419 pte = pte_offset_map(pmd, address);
3420
3421 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3422 }
3423
3424 /*
3425 * By the time we get here, we already hold the mm semaphore
3426 *
3427 * The mmap_sem may have been released depending on flags and our
3428 * return value. See filemap_fault() and __lock_page_or_retry().
3429 */
3430 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3431 unsigned long address, unsigned int flags)
3432 {
3433 int ret;
3434
3435 __set_current_state(TASK_RUNNING);
3436
3437 count_vm_event(PGFAULT);
3438 mem_cgroup_count_vm_event(mm, PGFAULT);
3439
3440 /* do counter updates before entering really critical section. */
3441 check_sync_rss_stat(current);
3442
3443 /*
3444 * Enable the memcg OOM handling for faults triggered in user
3445 * space. Kernel faults are handled more gracefully.
3446 */
3447 if (flags & FAULT_FLAG_USER)
3448 mem_cgroup_oom_enable();
3449
3450 ret = __handle_mm_fault(mm, vma, address, flags);
3451
3452 if (flags & FAULT_FLAG_USER) {
3453 mem_cgroup_oom_disable();
3454 /*
3455 * The task may have entered a memcg OOM situation but
3456 * if the allocation error was handled gracefully (no
3457 * VM_FAULT_OOM), there is no need to kill anything.
3458 * Just clean up the OOM state peacefully.
3459 */
3460 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3461 mem_cgroup_oom_synchronize(false);
3462 }
3463
3464 return ret;
3465 }
3466 EXPORT_SYMBOL_GPL(handle_mm_fault);
3467
3468 #ifndef __PAGETABLE_PUD_FOLDED
3469 /*
3470 * Allocate page upper directory.
3471 * We've already handled the fast-path in-line.
3472 */
3473 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3474 {
3475 pud_t *new = pud_alloc_one(mm, address);
3476 if (!new)
3477 return -ENOMEM;
3478
3479 smp_wmb(); /* See comment in __pte_alloc */
3480
3481 spin_lock(&mm->page_table_lock);
3482 if (pgd_present(*pgd)) /* Another has populated it */
3483 pud_free(mm, new);
3484 else
3485 pgd_populate(mm, pgd, new);
3486 spin_unlock(&mm->page_table_lock);
3487 return 0;
3488 }
3489 #endif /* __PAGETABLE_PUD_FOLDED */
3490
3491 #ifndef __PAGETABLE_PMD_FOLDED
3492 /*
3493 * Allocate page middle directory.
3494 * We've already handled the fast-path in-line.
3495 */
3496 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3497 {
3498 pmd_t *new = pmd_alloc_one(mm, address);
3499 if (!new)
3500 return -ENOMEM;
3501
3502 smp_wmb(); /* See comment in __pte_alloc */
3503
3504 spin_lock(&mm->page_table_lock);
3505 #ifndef __ARCH_HAS_4LEVEL_HACK
3506 if (!pud_present(*pud)) {
3507 mm_inc_nr_pmds(mm);
3508 pud_populate(mm, pud, new);
3509 } else /* Another has populated it */
3510 pmd_free(mm, new);
3511 #else
3512 if (!pgd_present(*pud)) {
3513 mm_inc_nr_pmds(mm);
3514 pgd_populate(mm, pud, new);
3515 } else /* Another has populated it */
3516 pmd_free(mm, new);
3517 #endif /* __ARCH_HAS_4LEVEL_HACK */
3518 spin_unlock(&mm->page_table_lock);
3519 return 0;
3520 }
3521 #endif /* __PAGETABLE_PMD_FOLDED */
3522
3523 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3524 pte_t **ptepp, spinlock_t **ptlp)
3525 {
3526 pgd_t *pgd;
3527 pud_t *pud;
3528 pmd_t *pmd;
3529 pte_t *ptep;
3530
3531 pgd = pgd_offset(mm, address);
3532 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3533 goto out;
3534
3535 pud = pud_offset(pgd, address);
3536 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3537 goto out;
3538
3539 pmd = pmd_offset(pud, address);
3540 VM_BUG_ON(pmd_trans_huge(*pmd));
3541 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3542 goto out;
3543
3544 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3545 if (pmd_huge(*pmd))
3546 goto out;
3547
3548 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3549 if (!ptep)
3550 goto out;
3551 if (!pte_present(*ptep))
3552 goto unlock;
3553 *ptepp = ptep;
3554 return 0;
3555 unlock:
3556 pte_unmap_unlock(ptep, *ptlp);
3557 out:
3558 return -EINVAL;
3559 }
3560
3561 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3562 pte_t **ptepp, spinlock_t **ptlp)
3563 {
3564 int res;
3565
3566 /* (void) is needed to make gcc happy */
3567 (void) __cond_lock(*ptlp,
3568 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3569 return res;
3570 }
3571
3572 /**
3573 * follow_pfn - look up PFN at a user virtual address
3574 * @vma: memory mapping
3575 * @address: user virtual address
3576 * @pfn: location to store found PFN
3577 *
3578 * Only IO mappings and raw PFN mappings are allowed.
3579 *
3580 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3581 */
3582 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3583 unsigned long *pfn)
3584 {
3585 int ret = -EINVAL;
3586 spinlock_t *ptl;
3587 pte_t *ptep;
3588
3589 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3590 return ret;
3591
3592 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3593 if (ret)
3594 return ret;
3595 *pfn = pte_pfn(*ptep);
3596 pte_unmap_unlock(ptep, ptl);
3597 return 0;
3598 }
3599 EXPORT_SYMBOL(follow_pfn);
3600
3601 #ifdef CONFIG_HAVE_IOREMAP_PROT
3602 int follow_phys(struct vm_area_struct *vma,
3603 unsigned long address, unsigned int flags,
3604 unsigned long *prot, resource_size_t *phys)
3605 {
3606 int ret = -EINVAL;
3607 pte_t *ptep, pte;
3608 spinlock_t *ptl;
3609
3610 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3611 goto out;
3612
3613 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3614 goto out;
3615 pte = *ptep;
3616
3617 if ((flags & FOLL_WRITE) && !pte_write(pte))
3618 goto unlock;
3619
3620 *prot = pgprot_val(pte_pgprot(pte));
3621 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3622
3623 ret = 0;
3624 unlock:
3625 pte_unmap_unlock(ptep, ptl);
3626 out:
3627 return ret;
3628 }
3629
3630 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3631 void *buf, int len, int write)
3632 {
3633 resource_size_t phys_addr;
3634 unsigned long prot = 0;
3635 void __iomem *maddr;
3636 int offset = addr & (PAGE_SIZE-1);
3637
3638 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3639 return -EINVAL;
3640
3641 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3642 if (write)
3643 memcpy_toio(maddr + offset, buf, len);
3644 else
3645 memcpy_fromio(buf, maddr + offset, len);
3646 iounmap(maddr);
3647
3648 return len;
3649 }
3650 EXPORT_SYMBOL_GPL(generic_access_phys);
3651 #endif
3652
3653 /*
3654 * Access another process' address space as given in mm. If non-NULL, use the
3655 * given task for page fault accounting.
3656 */
3657 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3658 unsigned long addr, void *buf, int len, int write)
3659 {
3660 struct vm_area_struct *vma;
3661 void *old_buf = buf;
3662
3663 down_read(&mm->mmap_sem);
3664 /* ignore errors, just check how much was successfully transferred */
3665 while (len) {
3666 int bytes, ret, offset;
3667 void *maddr;
3668 struct page *page = NULL;
3669
3670 ret = get_user_pages(tsk, mm, addr, 1,
3671 write, 1, &page, &vma);
3672 if (ret <= 0) {
3673 #ifndef CONFIG_HAVE_IOREMAP_PROT
3674 break;
3675 #else
3676 /*
3677 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3678 * we can access using slightly different code.
3679 */
3680 vma = find_vma(mm, addr);
3681 if (!vma || vma->vm_start > addr)
3682 break;
3683 if (vma->vm_ops && vma->vm_ops->access)
3684 ret = vma->vm_ops->access(vma, addr, buf,
3685 len, write);
3686 if (ret <= 0)
3687 break;
3688 bytes = ret;
3689 #endif
3690 } else {
3691 bytes = len;
3692 offset = addr & (PAGE_SIZE-1);
3693 if (bytes > PAGE_SIZE-offset)
3694 bytes = PAGE_SIZE-offset;
3695
3696 maddr = kmap(page);
3697 if (write) {
3698 copy_to_user_page(vma, page, addr,
3699 maddr + offset, buf, bytes);
3700 set_page_dirty_lock(page);
3701 } else {
3702 copy_from_user_page(vma, page, addr,
3703 buf, maddr + offset, bytes);
3704 }
3705 kunmap(page);
3706 page_cache_release(page);
3707 }
3708 len -= bytes;
3709 buf += bytes;
3710 addr += bytes;
3711 }
3712 up_read(&mm->mmap_sem);
3713
3714 return buf - old_buf;
3715 }
3716
3717 /**
3718 * access_remote_vm - access another process' address space
3719 * @mm: the mm_struct of the target address space
3720 * @addr: start address to access
3721 * @buf: source or destination buffer
3722 * @len: number of bytes to transfer
3723 * @write: whether the access is a write
3724 *
3725 * The caller must hold a reference on @mm.
3726 */
3727 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3728 void *buf, int len, int write)
3729 {
3730 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3731 }
3732
3733 /*
3734 * Access another process' address space.
3735 * Source/target buffer must be kernel space,
3736 * Do not walk the page table directly, use get_user_pages
3737 */
3738 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3739 void *buf, int len, int write)
3740 {
3741 struct mm_struct *mm;
3742 int ret;
3743
3744 mm = get_task_mm(tsk);
3745 if (!mm)
3746 return 0;
3747
3748 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3749 mmput(mm);
3750
3751 return ret;
3752 }
3753
3754 /*
3755 * Print the name of a VMA.
3756 */
3757 void print_vma_addr(char *prefix, unsigned long ip)
3758 {
3759 struct mm_struct *mm = current->mm;
3760 struct vm_area_struct *vma;
3761
3762 /*
3763 * Do not print if we are in atomic
3764 * contexts (in exception stacks, etc.):
3765 */
3766 if (preempt_count())
3767 return;
3768
3769 down_read(&mm->mmap_sem);
3770 vma = find_vma(mm, ip);
3771 if (vma && vma->vm_file) {
3772 struct file *f = vma->vm_file;
3773 char *buf = (char *)__get_free_page(GFP_KERNEL);
3774 if (buf) {
3775 char *p;
3776
3777 p = file_path(f, buf, PAGE_SIZE);
3778 if (IS_ERR(p))
3779 p = "?";
3780 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3781 vma->vm_start,
3782 vma->vm_end - vma->vm_start);
3783 free_page((unsigned long)buf);
3784 }
3785 }
3786 up_read(&mm->mmap_sem);
3787 }
3788
3789 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3790 void __might_fault(const char *file, int line)
3791 {
3792 /*
3793 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3794 * holding the mmap_sem, this is safe because kernel memory doesn't
3795 * get paged out, therefore we'll never actually fault, and the
3796 * below annotations will generate false positives.
3797 */
3798 if (segment_eq(get_fs(), KERNEL_DS))
3799 return;
3800 if (pagefault_disabled())
3801 return;
3802 __might_sleep(file, line, 0);
3803 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3804 if (current->mm)
3805 might_lock_read(&current->mm->mmap_sem);
3806 #endif
3807 }
3808 EXPORT_SYMBOL(__might_fault);
3809 #endif
3810
3811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3812 static void clear_gigantic_page(struct page *page,
3813 unsigned long addr,
3814 unsigned int pages_per_huge_page)
3815 {
3816 int i;
3817 struct page *p = page;
3818
3819 might_sleep();
3820 for (i = 0; i < pages_per_huge_page;
3821 i++, p = mem_map_next(p, page, i)) {
3822 cond_resched();
3823 clear_user_highpage(p, addr + i * PAGE_SIZE);
3824 }
3825 }
3826 void clear_huge_page(struct page *page,
3827 unsigned long addr, unsigned int pages_per_huge_page)
3828 {
3829 int i;
3830
3831 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3832 clear_gigantic_page(page, addr, pages_per_huge_page);
3833 return;
3834 }
3835
3836 might_sleep();
3837 for (i = 0; i < pages_per_huge_page; i++) {
3838 cond_resched();
3839 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3840 }
3841 }
3842
3843 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3844 unsigned long addr,
3845 struct vm_area_struct *vma,
3846 unsigned int pages_per_huge_page)
3847 {
3848 int i;
3849 struct page *dst_base = dst;
3850 struct page *src_base = src;
3851
3852 for (i = 0; i < pages_per_huge_page; ) {
3853 cond_resched();
3854 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3855
3856 i++;
3857 dst = mem_map_next(dst, dst_base, i);
3858 src = mem_map_next(src, src_base, i);
3859 }
3860 }
3861
3862 void copy_user_huge_page(struct page *dst, struct page *src,
3863 unsigned long addr, struct vm_area_struct *vma,
3864 unsigned int pages_per_huge_page)
3865 {
3866 int i;
3867
3868 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3869 copy_user_gigantic_page(dst, src, addr, vma,
3870 pages_per_huge_page);
3871 return;
3872 }
3873
3874 might_sleep();
3875 for (i = 0; i < pages_per_huge_page; i++) {
3876 cond_resched();
3877 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3878 }
3879 }
3880 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3881
3882 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3883
3884 static struct kmem_cache *page_ptl_cachep;
3885
3886 void __init ptlock_cache_init(void)
3887 {
3888 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3889 SLAB_PANIC, NULL);
3890 }
3891
3892 bool ptlock_alloc(struct page *page)
3893 {
3894 spinlock_t *ptl;
3895
3896 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3897 if (!ptl)
3898 return false;
3899 page->ptl = ptl;
3900 return true;
3901 }
3902
3903 void ptlock_free(struct page *page)
3904 {
3905 kmem_cache_free(page_ptl_cachep, page->ptl);
3906 }
3907 #endif