]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
kconfig: nconf: refactor in print_in_middle()
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 1;
121 #else
122 2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151 randomize_va_space = 0;
152 return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164 static int __init init_zero_pfn(void)
165 {
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168 }
169 core_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
186 }
187 }
188 current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
229 {
230 pgtable_t token = pmd_pgtable(*pmd);
231 pmd_clear(pmd);
232 pte_free_tlb(tlb, token, addr);
233 mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
239 {
240 pmd_t *pmd;
241 unsigned long next;
242 unsigned long start;
243
244 start = addr;
245 pmd = pmd_offset(pud, addr);
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
250 free_pte_range(tlb, pmd, addr);
251 } while (pmd++, addr = next, addr != end);
252
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
266 pmd_free_tlb(tlb, pmd, start);
267 mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
273 {
274 pud_t *pud;
275 unsigned long next;
276 unsigned long start;
277
278 start = addr;
279 pud = pud_offset(p4d, addr);
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 } while (pud++, addr = next, addr != end);
286
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
301 mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307 {
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
328 }
329 if (end - 1 > ceiling - 1)
330 return;
331
332 p4d = p4d_offset(pgd, start);
333 pgd_clear(pgd);
334 p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338 * This function frees user-level page tables of a process.
339 */
340 void free_pgd_range(struct mmu_gather *tlb,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
343 {
344 pgd_t *pgd;
345 unsigned long next;
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
372
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
392 tlb_change_page_size(tlb, PAGE_SIZE);
393 pgd = pgd_offset(tlb->mm, addr);
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 unsigned long floor, unsigned long ceiling)
404 {
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
409 /*
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
412 */
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
415
416 if (is_vm_hugetlb_page(vma)) {
417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 && !is_vm_hugetlb_page(next)) {
425 vma = next;
426 next = vma->vm_next;
427 unlink_anon_vmas(vma);
428 unlink_file_vma(vma);
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
431 floor, next ? next->vm_start : ceiling);
432 }
433 vma = next;
434 }
435 }
436
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 spinlock_t *ptl;
440 pgtable_t new = pte_alloc_one(mm);
441 if (!new)
442 return -ENOMEM;
443
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
455 * smp_rmb() barriers in page table walking code.
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
459 ptl = pmd_lock(mm, pmd);
460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
461 mm_inc_nr_ptes(mm);
462 pmd_populate(mm, pmd, new);
463 new = NULL;
464 }
465 spin_unlock(ptl);
466 if (new)
467 pte_free(mm, new);
468 return 0;
469 }
470
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473 pte_t *new = pte_alloc_one_kernel(&init_mm);
474 if (!new)
475 return -ENOMEM;
476
477 smp_wmb(); /* See comment in __pte_alloc */
478
479 spin_lock(&init_mm.page_table_lock);
480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
481 pmd_populate_kernel(&init_mm, pmd, new);
482 new = NULL;
483 }
484 spin_unlock(&init_mm.page_table_lock);
485 if (new)
486 pte_free_kernel(&init_mm, new);
487 return 0;
488 }
489
490 static inline void init_rss_vec(int *rss)
491 {
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497 int i;
498
499 if (current->mm == mm)
500 sync_mm_rss(mm);
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
504 }
505
506 /*
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
510 *
511 * The calling function must still handle the error.
512 */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
515 {
516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 if (page)
552 dump_page(page, "bad pte");
553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
560 dump_stack();
561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563
564 /*
565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
566 *
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
570 *
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
579 *
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
593 *
594 *
595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
605 */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
608 {
609 unsigned long pfn = pte_pfn(pte);
610
611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 if (likely(!pte_special(pte)))
613 goto check_pfn;
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
618 if (is_zero_pfn(pfn))
619 return NULL;
620 if (pte_devmap(pte))
621 return NULL;
622
623 print_bad_pte(vma, addr, pte, NULL);
624 return NULL;
625 }
626
627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
642 }
643
644 if (is_zero_pfn(pfn))
645 return NULL;
646
647 check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
652
653 /*
654 * NOTE! We still have PageReserved() pages in the page tables.
655 * eg. VDSO mappings can cause them to exist.
656 */
657 out:
658 return pfn_to_page(pfn);
659 }
660
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664 {
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
687 if (pmd_devmap(pmd))
688 return NULL;
689 if (is_huge_zero_pmd(pmd))
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698 out:
699 return pfn_to_page(pfn);
700 }
701 #endif
702
703 /*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
707 */
708
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 unsigned long addr, int *rss)
713 {
714 unsigned long vm_flags = vma->vm_flags;
715 pte_t pte = *src_pte;
716 struct page *page;
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
734
735 rss[mm_counter(page)]++;
736
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
739 /*
740 * COW mappings require pages in both
741 * parent and child to be set to read.
742 */
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
753
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
781 }
782 }
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785 }
786
787 /*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
811 {
812 struct page *new_page;
813
814 /*
815 * What we want to do is to check whether this page may
816 * have been pinned by the parent process. If so,
817 * instead of wrprotect the pte on both sides, we copy
818 * the page immediately so that we'll always guarantee
819 * the pinned page won't be randomly replaced in the
820 * future.
821 *
822 * The page pinning checks are just "has this mm ever
823 * seen pinning", along with the (inexact) check of
824 * the page count. That might give false positives for
825 * for pinning, but it will work correctly.
826 */
827 if (likely(!page_needs_cow_for_dma(src_vma, page)))
828 return 1;
829
830 new_page = *prealloc;
831 if (!new_page)
832 return -EAGAIN;
833
834 /*
835 * We have a prealloc page, all good! Take it
836 * over and copy the page & arm it.
837 */
838 *prealloc = NULL;
839 copy_user_highpage(new_page, page, addr, src_vma);
840 __SetPageUptodate(new_page);
841 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
843 rss[mm_counter(new_page)]++;
844
845 /* All done, just insert the new page copy in the child */
846 pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849 return 0;
850 }
851
852 /*
853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
854 * is required to copy this pte.
855 */
856 static inline int
857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 struct page **prealloc)
860 {
861 struct mm_struct *src_mm = src_vma->vm_mm;
862 unsigned long vm_flags = src_vma->vm_flags;
863 pte_t pte = *src_pte;
864 struct page *page;
865
866 page = vm_normal_page(src_vma, addr, pte);
867 if (page) {
868 int retval;
869
870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 addr, rss, prealloc, pte, page);
872 if (retval <= 0)
873 return retval;
874
875 get_page(page);
876 page_dup_rmap(page, false);
877 rss[mm_counter(page)]++;
878 }
879
880 /*
881 * If it's a COW mapping, write protect it both
882 * in the parent and the child
883 */
884 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885 ptep_set_wrprotect(src_mm, addr, src_pte);
886 pte = pte_wrprotect(pte);
887 }
888
889 /*
890 * If it's a shared mapping, mark it clean in
891 * the child
892 */
893 if (vm_flags & VM_SHARED)
894 pte = pte_mkclean(pte);
895 pte = pte_mkold(pte);
896
897 /*
898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 * does not have the VM_UFFD_WP, which means that the uffd
900 * fork event is not enabled.
901 */
902 if (!(vm_flags & VM_UFFD_WP))
903 pte = pte_clear_uffd_wp(pte);
904
905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
906 return 0;
907 }
908
909 static inline struct page *
910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 unsigned long addr)
912 {
913 struct page *new_page;
914
915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 if (!new_page)
917 return NULL;
918
919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 put_page(new_page);
921 return NULL;
922 }
923 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
924
925 return new_page;
926 }
927
928 static int
929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 unsigned long end)
932 {
933 struct mm_struct *dst_mm = dst_vma->vm_mm;
934 struct mm_struct *src_mm = src_vma->vm_mm;
935 pte_t *orig_src_pte, *orig_dst_pte;
936 pte_t *src_pte, *dst_pte;
937 spinlock_t *src_ptl, *dst_ptl;
938 int progress, ret = 0;
939 int rss[NR_MM_COUNTERS];
940 swp_entry_t entry = (swp_entry_t){0};
941 struct page *prealloc = NULL;
942
943 again:
944 progress = 0;
945 init_rss_vec(rss);
946
947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948 if (!dst_pte) {
949 ret = -ENOMEM;
950 goto out;
951 }
952 src_pte = pte_offset_map(src_pmd, addr);
953 src_ptl = pte_lockptr(src_mm, src_pmd);
954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
955 orig_src_pte = src_pte;
956 orig_dst_pte = dst_pte;
957 arch_enter_lazy_mmu_mode();
958
959 do {
960 /*
961 * We are holding two locks at this point - either of them
962 * could generate latencies in another task on another CPU.
963 */
964 if (progress >= 32) {
965 progress = 0;
966 if (need_resched() ||
967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
968 break;
969 }
970 if (pte_none(*src_pte)) {
971 progress++;
972 continue;
973 }
974 if (unlikely(!pte_present(*src_pte))) {
975 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 dst_pte, src_pte,
977 src_vma, addr, rss);
978 if (entry.val)
979 break;
980 progress += 8;
981 continue;
982 }
983 /* copy_present_pte() will clear `*prealloc' if consumed */
984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 addr, rss, &prealloc);
986 /*
987 * If we need a pre-allocated page for this pte, drop the
988 * locks, allocate, and try again.
989 */
990 if (unlikely(ret == -EAGAIN))
991 break;
992 if (unlikely(prealloc)) {
993 /*
994 * pre-alloc page cannot be reused by next time so as
995 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 * will allocate page according to address). This
997 * could only happen if one pinned pte changed.
998 */
999 put_page(prealloc);
1000 prealloc = NULL;
1001 }
1002 progress += 8;
1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004
1005 arch_leave_lazy_mmu_mode();
1006 spin_unlock(src_ptl);
1007 pte_unmap(orig_src_pte);
1008 add_mm_rss_vec(dst_mm, rss);
1009 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010 cond_resched();
1011
1012 if (entry.val) {
1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017 entry.val = 0;
1018 } else if (ret) {
1019 WARN_ON_ONCE(ret != -EAGAIN);
1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021 if (!prealloc)
1022 return -ENOMEM;
1023 /* We've captured and resolved the error. Reset, try again. */
1024 ret = 0;
1025 }
1026 if (addr != end)
1027 goto again;
1028 out:
1029 if (unlikely(prealloc))
1030 put_page(prealloc);
1031 return ret;
1032 }
1033
1034 static inline int
1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 unsigned long end)
1038 {
1039 struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 struct mm_struct *src_mm = src_vma->vm_mm;
1041 pmd_t *src_pmd, *dst_pmd;
1042 unsigned long next;
1043
1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 if (!dst_pmd)
1046 return -ENOMEM;
1047 src_pmd = pmd_offset(src_pud, addr);
1048 do {
1049 next = pmd_addr_end(addr, end);
1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 || pmd_devmap(*src_pmd)) {
1052 int err;
1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054 err = copy_huge_pmd(dst_mm, src_mm,
1055 dst_pmd, src_pmd, addr, src_vma);
1056 if (err == -ENOMEM)
1057 return -ENOMEM;
1058 if (!err)
1059 continue;
1060 /* fall through */
1061 }
1062 if (pmd_none_or_clear_bad(src_pmd))
1063 continue;
1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 addr, next))
1066 return -ENOMEM;
1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 return 0;
1069 }
1070
1071 static inline int
1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 unsigned long end)
1075 {
1076 struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 struct mm_struct *src_mm = src_vma->vm_mm;
1078 pud_t *src_pud, *dst_pud;
1079 unsigned long next;
1080
1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082 if (!dst_pud)
1083 return -ENOMEM;
1084 src_pud = pud_offset(src_p4d, addr);
1085 do {
1086 next = pud_addr_end(addr, end);
1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 int err;
1089
1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091 err = copy_huge_pud(dst_mm, src_mm,
1092 dst_pud, src_pud, addr, src_vma);
1093 if (err == -ENOMEM)
1094 return -ENOMEM;
1095 if (!err)
1096 continue;
1097 /* fall through */
1098 }
1099 if (pud_none_or_clear_bad(src_pud))
1100 continue;
1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 addr, next))
1103 return -ENOMEM;
1104 } while (dst_pud++, src_pud++, addr = next, addr != end);
1105 return 0;
1106 }
1107
1108 static inline int
1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 unsigned long end)
1112 {
1113 struct mm_struct *dst_mm = dst_vma->vm_mm;
1114 p4d_t *src_p4d, *dst_p4d;
1115 unsigned long next;
1116
1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 if (!dst_p4d)
1119 return -ENOMEM;
1120 src_p4d = p4d_offset(src_pgd, addr);
1121 do {
1122 next = p4d_addr_end(addr, end);
1123 if (p4d_none_or_clear_bad(src_p4d))
1124 continue;
1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 addr, next))
1127 return -ENOMEM;
1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 return 0;
1130 }
1131
1132 int
1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 {
1135 pgd_t *src_pgd, *dst_pgd;
1136 unsigned long next;
1137 unsigned long addr = src_vma->vm_start;
1138 unsigned long end = src_vma->vm_end;
1139 struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 struct mm_struct *src_mm = src_vma->vm_mm;
1141 struct mmu_notifier_range range;
1142 bool is_cow;
1143 int ret;
1144
1145 /*
1146 * Don't copy ptes where a page fault will fill them correctly.
1147 * Fork becomes much lighter when there are big shared or private
1148 * readonly mappings. The tradeoff is that copy_page_range is more
1149 * efficient than faulting.
1150 */
1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 !src_vma->anon_vma)
1153 return 0;
1154
1155 if (is_vm_hugetlb_page(src_vma))
1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157
1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159 /*
1160 * We do not free on error cases below as remove_vma
1161 * gets called on error from higher level routine
1162 */
1163 ret = track_pfn_copy(src_vma);
1164 if (ret)
1165 return ret;
1166 }
1167
1168 /*
1169 * We need to invalidate the secondary MMU mappings only when
1170 * there could be a permission downgrade on the ptes of the
1171 * parent mm. And a permission downgrade will only happen if
1172 * is_cow_mapping() returns true.
1173 */
1174 is_cow = is_cow_mapping(src_vma->vm_flags);
1175
1176 if (is_cow) {
1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178 0, src_vma, src_mm, addr, end);
1179 mmu_notifier_invalidate_range_start(&range);
1180 /*
1181 * Disabling preemption is not needed for the write side, as
1182 * the read side doesn't spin, but goes to the mmap_lock.
1183 *
1184 * Use the raw variant of the seqcount_t write API to avoid
1185 * lockdep complaining about preemptibility.
1186 */
1187 mmap_assert_write_locked(src_mm);
1188 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189 }
1190
1191 ret = 0;
1192 dst_pgd = pgd_offset(dst_mm, addr);
1193 src_pgd = pgd_offset(src_mm, addr);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 if (pgd_none_or_clear_bad(src_pgd))
1197 continue;
1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 addr, next))) {
1200 ret = -ENOMEM;
1201 break;
1202 }
1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204
1205 if (is_cow) {
1206 raw_write_seqcount_end(&src_mm->write_protect_seq);
1207 mmu_notifier_invalidate_range_end(&range);
1208 }
1209 return ret;
1210 }
1211
1212 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213 struct vm_area_struct *vma, pmd_t *pmd,
1214 unsigned long addr, unsigned long end,
1215 struct zap_details *details)
1216 {
1217 struct mm_struct *mm = tlb->mm;
1218 int force_flush = 0;
1219 int rss[NR_MM_COUNTERS];
1220 spinlock_t *ptl;
1221 pte_t *start_pte;
1222 pte_t *pte;
1223 swp_entry_t entry;
1224
1225 tlb_change_page_size(tlb, PAGE_SIZE);
1226 again:
1227 init_rss_vec(rss);
1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 pte = start_pte;
1230 flush_tlb_batched_pending(mm);
1231 arch_enter_lazy_mmu_mode();
1232 do {
1233 pte_t ptent = *pte;
1234 if (pte_none(ptent))
1235 continue;
1236
1237 if (need_resched())
1238 break;
1239
1240 if (pte_present(ptent)) {
1241 struct page *page;
1242
1243 page = vm_normal_page(vma, addr, ptent);
1244 if (unlikely(details) && page) {
1245 /*
1246 * unmap_shared_mapping_pages() wants to
1247 * invalidate cache without truncating:
1248 * unmap shared but keep private pages.
1249 */
1250 if (details->check_mapping &&
1251 details->check_mapping != page_rmapping(page))
1252 continue;
1253 }
1254 ptent = ptep_get_and_clear_full(mm, addr, pte,
1255 tlb->fullmm);
1256 tlb_remove_tlb_entry(tlb, pte, addr);
1257 if (unlikely(!page))
1258 continue;
1259
1260 if (!PageAnon(page)) {
1261 if (pte_dirty(ptent)) {
1262 force_flush = 1;
1263 set_page_dirty(page);
1264 }
1265 if (pte_young(ptent) &&
1266 likely(!(vma->vm_flags & VM_SEQ_READ)))
1267 mark_page_accessed(page);
1268 }
1269 rss[mm_counter(page)]--;
1270 page_remove_rmap(page, false);
1271 if (unlikely(page_mapcount(page) < 0))
1272 print_bad_pte(vma, addr, ptent, page);
1273 if (unlikely(__tlb_remove_page(tlb, page))) {
1274 force_flush = 1;
1275 addr += PAGE_SIZE;
1276 break;
1277 }
1278 continue;
1279 }
1280
1281 entry = pte_to_swp_entry(ptent);
1282 if (is_device_private_entry(entry)) {
1283 struct page *page = device_private_entry_to_page(entry);
1284
1285 if (unlikely(details && details->check_mapping)) {
1286 /*
1287 * unmap_shared_mapping_pages() wants to
1288 * invalidate cache without truncating:
1289 * unmap shared but keep private pages.
1290 */
1291 if (details->check_mapping !=
1292 page_rmapping(page))
1293 continue;
1294 }
1295
1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 rss[mm_counter(page)]--;
1298 page_remove_rmap(page, false);
1299 put_page(page);
1300 continue;
1301 }
1302
1303 /* If details->check_mapping, we leave swap entries. */
1304 if (unlikely(details))
1305 continue;
1306
1307 if (!non_swap_entry(entry))
1308 rss[MM_SWAPENTS]--;
1309 else if (is_migration_entry(entry)) {
1310 struct page *page;
1311
1312 page = migration_entry_to_page(entry);
1313 rss[mm_counter(page)]--;
1314 }
1315 if (unlikely(!free_swap_and_cache(entry)))
1316 print_bad_pte(vma, addr, ptent, NULL);
1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318 } while (pte++, addr += PAGE_SIZE, addr != end);
1319
1320 add_mm_rss_vec(mm, rss);
1321 arch_leave_lazy_mmu_mode();
1322
1323 /* Do the actual TLB flush before dropping ptl */
1324 if (force_flush)
1325 tlb_flush_mmu_tlbonly(tlb);
1326 pte_unmap_unlock(start_pte, ptl);
1327
1328 /*
1329 * If we forced a TLB flush (either due to running out of
1330 * batch buffers or because we needed to flush dirty TLB
1331 * entries before releasing the ptl), free the batched
1332 * memory too. Restart if we didn't do everything.
1333 */
1334 if (force_flush) {
1335 force_flush = 0;
1336 tlb_flush_mmu(tlb);
1337 }
1338
1339 if (addr != end) {
1340 cond_resched();
1341 goto again;
1342 }
1343
1344 return addr;
1345 }
1346
1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348 struct vm_area_struct *vma, pud_t *pud,
1349 unsigned long addr, unsigned long end,
1350 struct zap_details *details)
1351 {
1352 pmd_t *pmd;
1353 unsigned long next;
1354
1355 pmd = pmd_offset(pud, addr);
1356 do {
1357 next = pmd_addr_end(addr, end);
1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359 if (next - addr != HPAGE_PMD_SIZE)
1360 __split_huge_pmd(vma, pmd, addr, false, NULL);
1361 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362 goto next;
1363 /* fall through */
1364 }
1365 /*
1366 * Here there can be other concurrent MADV_DONTNEED or
1367 * trans huge page faults running, and if the pmd is
1368 * none or trans huge it can change under us. This is
1369 * because MADV_DONTNEED holds the mmap_lock in read
1370 * mode.
1371 */
1372 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1373 goto next;
1374 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1375 next:
1376 cond_resched();
1377 } while (pmd++, addr = next, addr != end);
1378
1379 return addr;
1380 }
1381
1382 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1383 struct vm_area_struct *vma, p4d_t *p4d,
1384 unsigned long addr, unsigned long end,
1385 struct zap_details *details)
1386 {
1387 pud_t *pud;
1388 unsigned long next;
1389
1390 pud = pud_offset(p4d, addr);
1391 do {
1392 next = pud_addr_end(addr, end);
1393 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1394 if (next - addr != HPAGE_PUD_SIZE) {
1395 mmap_assert_locked(tlb->mm);
1396 split_huge_pud(vma, pud, addr);
1397 } else if (zap_huge_pud(tlb, vma, pud, addr))
1398 goto next;
1399 /* fall through */
1400 }
1401 if (pud_none_or_clear_bad(pud))
1402 continue;
1403 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1404 next:
1405 cond_resched();
1406 } while (pud++, addr = next, addr != end);
1407
1408 return addr;
1409 }
1410
1411 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1412 struct vm_area_struct *vma, pgd_t *pgd,
1413 unsigned long addr, unsigned long end,
1414 struct zap_details *details)
1415 {
1416 p4d_t *p4d;
1417 unsigned long next;
1418
1419 p4d = p4d_offset(pgd, addr);
1420 do {
1421 next = p4d_addr_end(addr, end);
1422 if (p4d_none_or_clear_bad(p4d))
1423 continue;
1424 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1425 } while (p4d++, addr = next, addr != end);
1426
1427 return addr;
1428 }
1429
1430 void unmap_page_range(struct mmu_gather *tlb,
1431 struct vm_area_struct *vma,
1432 unsigned long addr, unsigned long end,
1433 struct zap_details *details)
1434 {
1435 pgd_t *pgd;
1436 unsigned long next;
1437
1438 BUG_ON(addr >= end);
1439 tlb_start_vma(tlb, vma);
1440 pgd = pgd_offset(vma->vm_mm, addr);
1441 do {
1442 next = pgd_addr_end(addr, end);
1443 if (pgd_none_or_clear_bad(pgd))
1444 continue;
1445 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1446 } while (pgd++, addr = next, addr != end);
1447 tlb_end_vma(tlb, vma);
1448 }
1449
1450
1451 static void unmap_single_vma(struct mmu_gather *tlb,
1452 struct vm_area_struct *vma, unsigned long start_addr,
1453 unsigned long end_addr,
1454 struct zap_details *details)
1455 {
1456 unsigned long start = max(vma->vm_start, start_addr);
1457 unsigned long end;
1458
1459 if (start >= vma->vm_end)
1460 return;
1461 end = min(vma->vm_end, end_addr);
1462 if (end <= vma->vm_start)
1463 return;
1464
1465 if (vma->vm_file)
1466 uprobe_munmap(vma, start, end);
1467
1468 if (unlikely(vma->vm_flags & VM_PFNMAP))
1469 untrack_pfn(vma, 0, 0);
1470
1471 if (start != end) {
1472 if (unlikely(is_vm_hugetlb_page(vma))) {
1473 /*
1474 * It is undesirable to test vma->vm_file as it
1475 * should be non-null for valid hugetlb area.
1476 * However, vm_file will be NULL in the error
1477 * cleanup path of mmap_region. When
1478 * hugetlbfs ->mmap method fails,
1479 * mmap_region() nullifies vma->vm_file
1480 * before calling this function to clean up.
1481 * Since no pte has actually been setup, it is
1482 * safe to do nothing in this case.
1483 */
1484 if (vma->vm_file) {
1485 i_mmap_lock_write(vma->vm_file->f_mapping);
1486 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1487 i_mmap_unlock_write(vma->vm_file->f_mapping);
1488 }
1489 } else
1490 unmap_page_range(tlb, vma, start, end, details);
1491 }
1492 }
1493
1494 /**
1495 * unmap_vmas - unmap a range of memory covered by a list of vma's
1496 * @tlb: address of the caller's struct mmu_gather
1497 * @vma: the starting vma
1498 * @start_addr: virtual address at which to start unmapping
1499 * @end_addr: virtual address at which to end unmapping
1500 *
1501 * Unmap all pages in the vma list.
1502 *
1503 * Only addresses between `start' and `end' will be unmapped.
1504 *
1505 * The VMA list must be sorted in ascending virtual address order.
1506 *
1507 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1508 * range after unmap_vmas() returns. So the only responsibility here is to
1509 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1510 * drops the lock and schedules.
1511 */
1512 void unmap_vmas(struct mmu_gather *tlb,
1513 struct vm_area_struct *vma, unsigned long start_addr,
1514 unsigned long end_addr)
1515 {
1516 struct mmu_notifier_range range;
1517
1518 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1519 start_addr, end_addr);
1520 mmu_notifier_invalidate_range_start(&range);
1521 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1522 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1523 mmu_notifier_invalidate_range_end(&range);
1524 }
1525
1526 /**
1527 * zap_page_range - remove user pages in a given range
1528 * @vma: vm_area_struct holding the applicable pages
1529 * @start: starting address of pages to zap
1530 * @size: number of bytes to zap
1531 *
1532 * Caller must protect the VMA list
1533 */
1534 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1535 unsigned long size)
1536 {
1537 struct mmu_notifier_range range;
1538 struct mmu_gather tlb;
1539
1540 lru_add_drain();
1541 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1542 start, start + size);
1543 tlb_gather_mmu(&tlb, vma->vm_mm);
1544 update_hiwater_rss(vma->vm_mm);
1545 mmu_notifier_invalidate_range_start(&range);
1546 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1547 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1548 mmu_notifier_invalidate_range_end(&range);
1549 tlb_finish_mmu(&tlb);
1550 }
1551
1552 /**
1553 * zap_page_range_single - remove user pages in a given range
1554 * @vma: vm_area_struct holding the applicable pages
1555 * @address: starting address of pages to zap
1556 * @size: number of bytes to zap
1557 * @details: details of shared cache invalidation
1558 *
1559 * The range must fit into one VMA.
1560 */
1561 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1562 unsigned long size, struct zap_details *details)
1563 {
1564 struct mmu_notifier_range range;
1565 struct mmu_gather tlb;
1566
1567 lru_add_drain();
1568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1569 address, address + size);
1570 tlb_gather_mmu(&tlb, vma->vm_mm);
1571 update_hiwater_rss(vma->vm_mm);
1572 mmu_notifier_invalidate_range_start(&range);
1573 unmap_single_vma(&tlb, vma, address, range.end, details);
1574 mmu_notifier_invalidate_range_end(&range);
1575 tlb_finish_mmu(&tlb);
1576 }
1577
1578 /**
1579 * zap_vma_ptes - remove ptes mapping the vma
1580 * @vma: vm_area_struct holding ptes to be zapped
1581 * @address: starting address of pages to zap
1582 * @size: number of bytes to zap
1583 *
1584 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1585 *
1586 * The entire address range must be fully contained within the vma.
1587 *
1588 */
1589 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1590 unsigned long size)
1591 {
1592 if (address < vma->vm_start || address + size > vma->vm_end ||
1593 !(vma->vm_flags & VM_PFNMAP))
1594 return;
1595
1596 zap_page_range_single(vma, address, size, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1599
1600 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1601 {
1602 pgd_t *pgd;
1603 p4d_t *p4d;
1604 pud_t *pud;
1605 pmd_t *pmd;
1606
1607 pgd = pgd_offset(mm, addr);
1608 p4d = p4d_alloc(mm, pgd, addr);
1609 if (!p4d)
1610 return NULL;
1611 pud = pud_alloc(mm, p4d, addr);
1612 if (!pud)
1613 return NULL;
1614 pmd = pmd_alloc(mm, pud, addr);
1615 if (!pmd)
1616 return NULL;
1617
1618 VM_BUG_ON(pmd_trans_huge(*pmd));
1619 return pmd;
1620 }
1621
1622 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 spinlock_t **ptl)
1624 {
1625 pmd_t *pmd = walk_to_pmd(mm, addr);
1626
1627 if (!pmd)
1628 return NULL;
1629 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1630 }
1631
1632 static int validate_page_before_insert(struct page *page)
1633 {
1634 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1635 return -EINVAL;
1636 flush_dcache_page(page);
1637 return 0;
1638 }
1639
1640 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1641 unsigned long addr, struct page *page, pgprot_t prot)
1642 {
1643 if (!pte_none(*pte))
1644 return -EBUSY;
1645 /* Ok, finally just insert the thing.. */
1646 get_page(page);
1647 inc_mm_counter_fast(mm, mm_counter_file(page));
1648 page_add_file_rmap(page, false);
1649 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1650 return 0;
1651 }
1652
1653 /*
1654 * This is the old fallback for page remapping.
1655 *
1656 * For historical reasons, it only allows reserved pages. Only
1657 * old drivers should use this, and they needed to mark their
1658 * pages reserved for the old functions anyway.
1659 */
1660 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1661 struct page *page, pgprot_t prot)
1662 {
1663 struct mm_struct *mm = vma->vm_mm;
1664 int retval;
1665 pte_t *pte;
1666 spinlock_t *ptl;
1667
1668 retval = validate_page_before_insert(page);
1669 if (retval)
1670 goto out;
1671 retval = -ENOMEM;
1672 pte = get_locked_pte(mm, addr, &ptl);
1673 if (!pte)
1674 goto out;
1675 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 pte_unmap_unlock(pte, ptl);
1677 out:
1678 return retval;
1679 }
1680
1681 #ifdef pte_index
1682 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1683 unsigned long addr, struct page *page, pgprot_t prot)
1684 {
1685 int err;
1686
1687 if (!page_count(page))
1688 return -EINVAL;
1689 err = validate_page_before_insert(page);
1690 if (err)
1691 return err;
1692 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1693 }
1694
1695 /* insert_pages() amortizes the cost of spinlock operations
1696 * when inserting pages in a loop. Arch *must* define pte_index.
1697 */
1698 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1699 struct page **pages, unsigned long *num, pgprot_t prot)
1700 {
1701 pmd_t *pmd = NULL;
1702 pte_t *start_pte, *pte;
1703 spinlock_t *pte_lock;
1704 struct mm_struct *const mm = vma->vm_mm;
1705 unsigned long curr_page_idx = 0;
1706 unsigned long remaining_pages_total = *num;
1707 unsigned long pages_to_write_in_pmd;
1708 int ret;
1709 more:
1710 ret = -EFAULT;
1711 pmd = walk_to_pmd(mm, addr);
1712 if (!pmd)
1713 goto out;
1714
1715 pages_to_write_in_pmd = min_t(unsigned long,
1716 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1717
1718 /* Allocate the PTE if necessary; takes PMD lock once only. */
1719 ret = -ENOMEM;
1720 if (pte_alloc(mm, pmd))
1721 goto out;
1722
1723 while (pages_to_write_in_pmd) {
1724 int pte_idx = 0;
1725 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1726
1727 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1728 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1729 int err = insert_page_in_batch_locked(mm, pte,
1730 addr, pages[curr_page_idx], prot);
1731 if (unlikely(err)) {
1732 pte_unmap_unlock(start_pte, pte_lock);
1733 ret = err;
1734 remaining_pages_total -= pte_idx;
1735 goto out;
1736 }
1737 addr += PAGE_SIZE;
1738 ++curr_page_idx;
1739 }
1740 pte_unmap_unlock(start_pte, pte_lock);
1741 pages_to_write_in_pmd -= batch_size;
1742 remaining_pages_total -= batch_size;
1743 }
1744 if (remaining_pages_total)
1745 goto more;
1746 ret = 0;
1747 out:
1748 *num = remaining_pages_total;
1749 return ret;
1750 }
1751 #endif /* ifdef pte_index */
1752
1753 /**
1754 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1755 * @vma: user vma to map to
1756 * @addr: target start user address of these pages
1757 * @pages: source kernel pages
1758 * @num: in: number of pages to map. out: number of pages that were *not*
1759 * mapped. (0 means all pages were successfully mapped).
1760 *
1761 * Preferred over vm_insert_page() when inserting multiple pages.
1762 *
1763 * In case of error, we may have mapped a subset of the provided
1764 * pages. It is the caller's responsibility to account for this case.
1765 *
1766 * The same restrictions apply as in vm_insert_page().
1767 */
1768 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 struct page **pages, unsigned long *num)
1770 {
1771 #ifdef pte_index
1772 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1773
1774 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1775 return -EFAULT;
1776 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1777 BUG_ON(mmap_read_trylock(vma->vm_mm));
1778 BUG_ON(vma->vm_flags & VM_PFNMAP);
1779 vma->vm_flags |= VM_MIXEDMAP;
1780 }
1781 /* Defer page refcount checking till we're about to map that page. */
1782 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1783 #else
1784 unsigned long idx = 0, pgcount = *num;
1785 int err = -EINVAL;
1786
1787 for (; idx < pgcount; ++idx) {
1788 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1789 if (err)
1790 break;
1791 }
1792 *num = pgcount - idx;
1793 return err;
1794 #endif /* ifdef pte_index */
1795 }
1796 EXPORT_SYMBOL(vm_insert_pages);
1797
1798 /**
1799 * vm_insert_page - insert single page into user vma
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @page: source kernel page
1803 *
1804 * This allows drivers to insert individual pages they've allocated
1805 * into a user vma.
1806 *
1807 * The page has to be a nice clean _individual_ kernel allocation.
1808 * If you allocate a compound page, you need to have marked it as
1809 * such (__GFP_COMP), or manually just split the page up yourself
1810 * (see split_page()).
1811 *
1812 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1813 * took an arbitrary page protection parameter. This doesn't allow
1814 * that. Your vma protection will have to be set up correctly, which
1815 * means that if you want a shared writable mapping, you'd better
1816 * ask for a shared writable mapping!
1817 *
1818 * The page does not need to be reserved.
1819 *
1820 * Usually this function is called from f_op->mmap() handler
1821 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1822 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1823 * function from other places, for example from page-fault handler.
1824 *
1825 * Return: %0 on success, negative error code otherwise.
1826 */
1827 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1828 struct page *page)
1829 {
1830 if (addr < vma->vm_start || addr >= vma->vm_end)
1831 return -EFAULT;
1832 if (!page_count(page))
1833 return -EINVAL;
1834 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1835 BUG_ON(mmap_read_trylock(vma->vm_mm));
1836 BUG_ON(vma->vm_flags & VM_PFNMAP);
1837 vma->vm_flags |= VM_MIXEDMAP;
1838 }
1839 return insert_page(vma, addr, page, vma->vm_page_prot);
1840 }
1841 EXPORT_SYMBOL(vm_insert_page);
1842
1843 /*
1844 * __vm_map_pages - maps range of kernel pages into user vma
1845 * @vma: user vma to map to
1846 * @pages: pointer to array of source kernel pages
1847 * @num: number of pages in page array
1848 * @offset: user's requested vm_pgoff
1849 *
1850 * This allows drivers to map range of kernel pages into a user vma.
1851 *
1852 * Return: 0 on success and error code otherwise.
1853 */
1854 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1855 unsigned long num, unsigned long offset)
1856 {
1857 unsigned long count = vma_pages(vma);
1858 unsigned long uaddr = vma->vm_start;
1859 int ret, i;
1860
1861 /* Fail if the user requested offset is beyond the end of the object */
1862 if (offset >= num)
1863 return -ENXIO;
1864
1865 /* Fail if the user requested size exceeds available object size */
1866 if (count > num - offset)
1867 return -ENXIO;
1868
1869 for (i = 0; i < count; i++) {
1870 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1871 if (ret < 0)
1872 return ret;
1873 uaddr += PAGE_SIZE;
1874 }
1875
1876 return 0;
1877 }
1878
1879 /**
1880 * vm_map_pages - maps range of kernel pages starts with non zero offset
1881 * @vma: user vma to map to
1882 * @pages: pointer to array of source kernel pages
1883 * @num: number of pages in page array
1884 *
1885 * Maps an object consisting of @num pages, catering for the user's
1886 * requested vm_pgoff
1887 *
1888 * If we fail to insert any page into the vma, the function will return
1889 * immediately leaving any previously inserted pages present. Callers
1890 * from the mmap handler may immediately return the error as their caller
1891 * will destroy the vma, removing any successfully inserted pages. Other
1892 * callers should make their own arrangements for calling unmap_region().
1893 *
1894 * Context: Process context. Called by mmap handlers.
1895 * Return: 0 on success and error code otherwise.
1896 */
1897 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1898 unsigned long num)
1899 {
1900 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1901 }
1902 EXPORT_SYMBOL(vm_map_pages);
1903
1904 /**
1905 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1906 * @vma: user vma to map to
1907 * @pages: pointer to array of source kernel pages
1908 * @num: number of pages in page array
1909 *
1910 * Similar to vm_map_pages(), except that it explicitly sets the offset
1911 * to 0. This function is intended for the drivers that did not consider
1912 * vm_pgoff.
1913 *
1914 * Context: Process context. Called by mmap handlers.
1915 * Return: 0 on success and error code otherwise.
1916 */
1917 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1918 unsigned long num)
1919 {
1920 return __vm_map_pages(vma, pages, num, 0);
1921 }
1922 EXPORT_SYMBOL(vm_map_pages_zero);
1923
1924 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1925 pfn_t pfn, pgprot_t prot, bool mkwrite)
1926 {
1927 struct mm_struct *mm = vma->vm_mm;
1928 pte_t *pte, entry;
1929 spinlock_t *ptl;
1930
1931 pte = get_locked_pte(mm, addr, &ptl);
1932 if (!pte)
1933 return VM_FAULT_OOM;
1934 if (!pte_none(*pte)) {
1935 if (mkwrite) {
1936 /*
1937 * For read faults on private mappings the PFN passed
1938 * in may not match the PFN we have mapped if the
1939 * mapped PFN is a writeable COW page. In the mkwrite
1940 * case we are creating a writable PTE for a shared
1941 * mapping and we expect the PFNs to match. If they
1942 * don't match, we are likely racing with block
1943 * allocation and mapping invalidation so just skip the
1944 * update.
1945 */
1946 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1947 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1948 goto out_unlock;
1949 }
1950 entry = pte_mkyoung(*pte);
1951 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1953 update_mmu_cache(vma, addr, pte);
1954 }
1955 goto out_unlock;
1956 }
1957
1958 /* Ok, finally just insert the thing.. */
1959 if (pfn_t_devmap(pfn))
1960 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1961 else
1962 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1963
1964 if (mkwrite) {
1965 entry = pte_mkyoung(entry);
1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 }
1968
1969 set_pte_at(mm, addr, pte, entry);
1970 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1971
1972 out_unlock:
1973 pte_unmap_unlock(pte, ptl);
1974 return VM_FAULT_NOPAGE;
1975 }
1976
1977 /**
1978 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1979 * @vma: user vma to map to
1980 * @addr: target user address of this page
1981 * @pfn: source kernel pfn
1982 * @pgprot: pgprot flags for the inserted page
1983 *
1984 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1985 * to override pgprot on a per-page basis.
1986 *
1987 * This only makes sense for IO mappings, and it makes no sense for
1988 * COW mappings. In general, using multiple vmas is preferable;
1989 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1990 * impractical.
1991 *
1992 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1993 * a value of @pgprot different from that of @vma->vm_page_prot.
1994 *
1995 * Context: Process context. May allocate using %GFP_KERNEL.
1996 * Return: vm_fault_t value.
1997 */
1998 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long pfn, pgprot_t pgprot)
2000 {
2001 /*
2002 * Technically, architectures with pte_special can avoid all these
2003 * restrictions (same for remap_pfn_range). However we would like
2004 * consistency in testing and feature parity among all, so we should
2005 * try to keep these invariants in place for everybody.
2006 */
2007 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2008 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2009 (VM_PFNMAP|VM_MIXEDMAP));
2010 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2011 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2012
2013 if (addr < vma->vm_start || addr >= vma->vm_end)
2014 return VM_FAULT_SIGBUS;
2015
2016 if (!pfn_modify_allowed(pfn, pgprot))
2017 return VM_FAULT_SIGBUS;
2018
2019 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2020
2021 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2022 false);
2023 }
2024 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2025
2026 /**
2027 * vmf_insert_pfn - insert single pfn into user vma
2028 * @vma: user vma to map to
2029 * @addr: target user address of this page
2030 * @pfn: source kernel pfn
2031 *
2032 * Similar to vm_insert_page, this allows drivers to insert individual pages
2033 * they've allocated into a user vma. Same comments apply.
2034 *
2035 * This function should only be called from a vm_ops->fault handler, and
2036 * in that case the handler should return the result of this function.
2037 *
2038 * vma cannot be a COW mapping.
2039 *
2040 * As this is called only for pages that do not currently exist, we
2041 * do not need to flush old virtual caches or the TLB.
2042 *
2043 * Context: Process context. May allocate using %GFP_KERNEL.
2044 * Return: vm_fault_t value.
2045 */
2046 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 unsigned long pfn)
2048 {
2049 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2050 }
2051 EXPORT_SYMBOL(vmf_insert_pfn);
2052
2053 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2054 {
2055 /* these checks mirror the abort conditions in vm_normal_page */
2056 if (vma->vm_flags & VM_MIXEDMAP)
2057 return true;
2058 if (pfn_t_devmap(pfn))
2059 return true;
2060 if (pfn_t_special(pfn))
2061 return true;
2062 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2063 return true;
2064 return false;
2065 }
2066
2067 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2068 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2069 bool mkwrite)
2070 {
2071 int err;
2072
2073 BUG_ON(!vm_mixed_ok(vma, pfn));
2074
2075 if (addr < vma->vm_start || addr >= vma->vm_end)
2076 return VM_FAULT_SIGBUS;
2077
2078 track_pfn_insert(vma, &pgprot, pfn);
2079
2080 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2081 return VM_FAULT_SIGBUS;
2082
2083 /*
2084 * If we don't have pte special, then we have to use the pfn_valid()
2085 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2086 * refcount the page if pfn_valid is true (hence insert_page rather
2087 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2088 * without pte special, it would there be refcounted as a normal page.
2089 */
2090 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2091 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2092 struct page *page;
2093
2094 /*
2095 * At this point we are committed to insert_page()
2096 * regardless of whether the caller specified flags that
2097 * result in pfn_t_has_page() == false.
2098 */
2099 page = pfn_to_page(pfn_t_to_pfn(pfn));
2100 err = insert_page(vma, addr, page, pgprot);
2101 } else {
2102 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2103 }
2104
2105 if (err == -ENOMEM)
2106 return VM_FAULT_OOM;
2107 if (err < 0 && err != -EBUSY)
2108 return VM_FAULT_SIGBUS;
2109
2110 return VM_FAULT_NOPAGE;
2111 }
2112
2113 /**
2114 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2115 * @vma: user vma to map to
2116 * @addr: target user address of this page
2117 * @pfn: source kernel pfn
2118 * @pgprot: pgprot flags for the inserted page
2119 *
2120 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2121 * to override pgprot on a per-page basis.
2122 *
2123 * Typically this function should be used by drivers to set caching- and
2124 * encryption bits different than those of @vma->vm_page_prot, because
2125 * the caching- or encryption mode may not be known at mmap() time.
2126 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2127 * to set caching and encryption bits for those vmas (except for COW pages).
2128 * This is ensured by core vm only modifying these page table entries using
2129 * functions that don't touch caching- or encryption bits, using pte_modify()
2130 * if needed. (See for example mprotect()).
2131 * Also when new page-table entries are created, this is only done using the
2132 * fault() callback, and never using the value of vma->vm_page_prot,
2133 * except for page-table entries that point to anonymous pages as the result
2134 * of COW.
2135 *
2136 * Context: Process context. May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2138 */
2139 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2140 pfn_t pfn, pgprot_t pgprot)
2141 {
2142 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2145
2146 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2147 pfn_t pfn)
2148 {
2149 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2150 }
2151 EXPORT_SYMBOL(vmf_insert_mixed);
2152
2153 /*
2154 * If the insertion of PTE failed because someone else already added a
2155 * different entry in the mean time, we treat that as success as we assume
2156 * the same entry was actually inserted.
2157 */
2158 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2159 unsigned long addr, pfn_t pfn)
2160 {
2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2162 }
2163 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2164
2165 /*
2166 * maps a range of physical memory into the requested pages. the old
2167 * mappings are removed. any references to nonexistent pages results
2168 * in null mappings (currently treated as "copy-on-access")
2169 */
2170 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 unsigned long addr, unsigned long end,
2172 unsigned long pfn, pgprot_t prot)
2173 {
2174 pte_t *pte, *mapped_pte;
2175 spinlock_t *ptl;
2176 int err = 0;
2177
2178 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2179 if (!pte)
2180 return -ENOMEM;
2181 arch_enter_lazy_mmu_mode();
2182 do {
2183 BUG_ON(!pte_none(*pte));
2184 if (!pfn_modify_allowed(pfn, prot)) {
2185 err = -EACCES;
2186 break;
2187 }
2188 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2189 pfn++;
2190 } while (pte++, addr += PAGE_SIZE, addr != end);
2191 arch_leave_lazy_mmu_mode();
2192 pte_unmap_unlock(mapped_pte, ptl);
2193 return err;
2194 }
2195
2196 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 unsigned long addr, unsigned long end,
2198 unsigned long pfn, pgprot_t prot)
2199 {
2200 pmd_t *pmd;
2201 unsigned long next;
2202 int err;
2203
2204 pfn -= addr >> PAGE_SHIFT;
2205 pmd = pmd_alloc(mm, pud, addr);
2206 if (!pmd)
2207 return -ENOMEM;
2208 VM_BUG_ON(pmd_trans_huge(*pmd));
2209 do {
2210 next = pmd_addr_end(addr, end);
2211 err = remap_pte_range(mm, pmd, addr, next,
2212 pfn + (addr >> PAGE_SHIFT), prot);
2213 if (err)
2214 return err;
2215 } while (pmd++, addr = next, addr != end);
2216 return 0;
2217 }
2218
2219 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2220 unsigned long addr, unsigned long end,
2221 unsigned long pfn, pgprot_t prot)
2222 {
2223 pud_t *pud;
2224 unsigned long next;
2225 int err;
2226
2227 pfn -= addr >> PAGE_SHIFT;
2228 pud = pud_alloc(mm, p4d, addr);
2229 if (!pud)
2230 return -ENOMEM;
2231 do {
2232 next = pud_addr_end(addr, end);
2233 err = remap_pmd_range(mm, pud, addr, next,
2234 pfn + (addr >> PAGE_SHIFT), prot);
2235 if (err)
2236 return err;
2237 } while (pud++, addr = next, addr != end);
2238 return 0;
2239 }
2240
2241 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 unsigned long addr, unsigned long end,
2243 unsigned long pfn, pgprot_t prot)
2244 {
2245 p4d_t *p4d;
2246 unsigned long next;
2247 int err;
2248
2249 pfn -= addr >> PAGE_SHIFT;
2250 p4d = p4d_alloc(mm, pgd, addr);
2251 if (!p4d)
2252 return -ENOMEM;
2253 do {
2254 next = p4d_addr_end(addr, end);
2255 err = remap_pud_range(mm, p4d, addr, next,
2256 pfn + (addr >> PAGE_SHIFT), prot);
2257 if (err)
2258 return err;
2259 } while (p4d++, addr = next, addr != end);
2260 return 0;
2261 }
2262
2263 /**
2264 * remap_pfn_range - remap kernel memory to userspace
2265 * @vma: user vma to map to
2266 * @addr: target page aligned user address to start at
2267 * @pfn: page frame number of kernel physical memory address
2268 * @size: size of mapping area
2269 * @prot: page protection flags for this mapping
2270 *
2271 * Note: this is only safe if the mm semaphore is held when called.
2272 *
2273 * Return: %0 on success, negative error code otherwise.
2274 */
2275 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2276 unsigned long pfn, unsigned long size, pgprot_t prot)
2277 {
2278 pgd_t *pgd;
2279 unsigned long next;
2280 unsigned long end = addr + PAGE_ALIGN(size);
2281 struct mm_struct *mm = vma->vm_mm;
2282 unsigned long remap_pfn = pfn;
2283 int err;
2284
2285 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2286 return -EINVAL;
2287
2288 /*
2289 * Physically remapped pages are special. Tell the
2290 * rest of the world about it:
2291 * VM_IO tells people not to look at these pages
2292 * (accesses can have side effects).
2293 * VM_PFNMAP tells the core MM that the base pages are just
2294 * raw PFN mappings, and do not have a "struct page" associated
2295 * with them.
2296 * VM_DONTEXPAND
2297 * Disable vma merging and expanding with mremap().
2298 * VM_DONTDUMP
2299 * Omit vma from core dump, even when VM_IO turned off.
2300 *
2301 * There's a horrible special case to handle copy-on-write
2302 * behaviour that some programs depend on. We mark the "original"
2303 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2304 * See vm_normal_page() for details.
2305 */
2306 if (is_cow_mapping(vma->vm_flags)) {
2307 if (addr != vma->vm_start || end != vma->vm_end)
2308 return -EINVAL;
2309 vma->vm_pgoff = pfn;
2310 }
2311
2312 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2313 if (err)
2314 return -EINVAL;
2315
2316 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2317
2318 BUG_ON(addr >= end);
2319 pfn -= addr >> PAGE_SHIFT;
2320 pgd = pgd_offset(mm, addr);
2321 flush_cache_range(vma, addr, end);
2322 do {
2323 next = pgd_addr_end(addr, end);
2324 err = remap_p4d_range(mm, pgd, addr, next,
2325 pfn + (addr >> PAGE_SHIFT), prot);
2326 if (err)
2327 break;
2328 } while (pgd++, addr = next, addr != end);
2329
2330 if (err)
2331 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2332
2333 return err;
2334 }
2335 EXPORT_SYMBOL(remap_pfn_range);
2336
2337 /**
2338 * vm_iomap_memory - remap memory to userspace
2339 * @vma: user vma to map to
2340 * @start: start of the physical memory to be mapped
2341 * @len: size of area
2342 *
2343 * This is a simplified io_remap_pfn_range() for common driver use. The
2344 * driver just needs to give us the physical memory range to be mapped,
2345 * we'll figure out the rest from the vma information.
2346 *
2347 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348 * whatever write-combining details or similar.
2349 *
2350 * Return: %0 on success, negative error code otherwise.
2351 */
2352 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2353 {
2354 unsigned long vm_len, pfn, pages;
2355
2356 /* Check that the physical memory area passed in looks valid */
2357 if (start + len < start)
2358 return -EINVAL;
2359 /*
2360 * You *really* shouldn't map things that aren't page-aligned,
2361 * but we've historically allowed it because IO memory might
2362 * just have smaller alignment.
2363 */
2364 len += start & ~PAGE_MASK;
2365 pfn = start >> PAGE_SHIFT;
2366 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2367 if (pfn + pages < pfn)
2368 return -EINVAL;
2369
2370 /* We start the mapping 'vm_pgoff' pages into the area */
2371 if (vma->vm_pgoff > pages)
2372 return -EINVAL;
2373 pfn += vma->vm_pgoff;
2374 pages -= vma->vm_pgoff;
2375
2376 /* Can we fit all of the mapping? */
2377 vm_len = vma->vm_end - vma->vm_start;
2378 if (vm_len >> PAGE_SHIFT > pages)
2379 return -EINVAL;
2380
2381 /* Ok, let it rip */
2382 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2383 }
2384 EXPORT_SYMBOL(vm_iomap_memory);
2385
2386 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2387 unsigned long addr, unsigned long end,
2388 pte_fn_t fn, void *data, bool create,
2389 pgtbl_mod_mask *mask)
2390 {
2391 pte_t *pte, *mapped_pte;
2392 int err = 0;
2393 spinlock_t *ptl;
2394
2395 if (create) {
2396 mapped_pte = pte = (mm == &init_mm) ?
2397 pte_alloc_kernel_track(pmd, addr, mask) :
2398 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2399 if (!pte)
2400 return -ENOMEM;
2401 } else {
2402 mapped_pte = pte = (mm == &init_mm) ?
2403 pte_offset_kernel(pmd, addr) :
2404 pte_offset_map_lock(mm, pmd, addr, &ptl);
2405 }
2406
2407 BUG_ON(pmd_huge(*pmd));
2408
2409 arch_enter_lazy_mmu_mode();
2410
2411 if (fn) {
2412 do {
2413 if (create || !pte_none(*pte)) {
2414 err = fn(pte++, addr, data);
2415 if (err)
2416 break;
2417 }
2418 } while (addr += PAGE_SIZE, addr != end);
2419 }
2420 *mask |= PGTBL_PTE_MODIFIED;
2421
2422 arch_leave_lazy_mmu_mode();
2423
2424 if (mm != &init_mm)
2425 pte_unmap_unlock(mapped_pte, ptl);
2426 return err;
2427 }
2428
2429 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430 unsigned long addr, unsigned long end,
2431 pte_fn_t fn, void *data, bool create,
2432 pgtbl_mod_mask *mask)
2433 {
2434 pmd_t *pmd;
2435 unsigned long next;
2436 int err = 0;
2437
2438 BUG_ON(pud_huge(*pud));
2439
2440 if (create) {
2441 pmd = pmd_alloc_track(mm, pud, addr, mask);
2442 if (!pmd)
2443 return -ENOMEM;
2444 } else {
2445 pmd = pmd_offset(pud, addr);
2446 }
2447 do {
2448 next = pmd_addr_end(addr, end);
2449 if (create || !pmd_none_or_clear_bad(pmd)) {
2450 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2451 create, mask);
2452 if (err)
2453 break;
2454 }
2455 } while (pmd++, addr = next, addr != end);
2456 return err;
2457 }
2458
2459 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2460 unsigned long addr, unsigned long end,
2461 pte_fn_t fn, void *data, bool create,
2462 pgtbl_mod_mask *mask)
2463 {
2464 pud_t *pud;
2465 unsigned long next;
2466 int err = 0;
2467
2468 if (create) {
2469 pud = pud_alloc_track(mm, p4d, addr, mask);
2470 if (!pud)
2471 return -ENOMEM;
2472 } else {
2473 pud = pud_offset(p4d, addr);
2474 }
2475 do {
2476 next = pud_addr_end(addr, end);
2477 if (create || !pud_none_or_clear_bad(pud)) {
2478 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2479 create, mask);
2480 if (err)
2481 break;
2482 }
2483 } while (pud++, addr = next, addr != end);
2484 return err;
2485 }
2486
2487 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2488 unsigned long addr, unsigned long end,
2489 pte_fn_t fn, void *data, bool create,
2490 pgtbl_mod_mask *mask)
2491 {
2492 p4d_t *p4d;
2493 unsigned long next;
2494 int err = 0;
2495
2496 if (create) {
2497 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2498 if (!p4d)
2499 return -ENOMEM;
2500 } else {
2501 p4d = p4d_offset(pgd, addr);
2502 }
2503 do {
2504 next = p4d_addr_end(addr, end);
2505 if (create || !p4d_none_or_clear_bad(p4d)) {
2506 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2507 create, mask);
2508 if (err)
2509 break;
2510 }
2511 } while (p4d++, addr = next, addr != end);
2512 return err;
2513 }
2514
2515 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 unsigned long size, pte_fn_t fn,
2517 void *data, bool create)
2518 {
2519 pgd_t *pgd;
2520 unsigned long start = addr, next;
2521 unsigned long end = addr + size;
2522 pgtbl_mod_mask mask = 0;
2523 int err = 0;
2524
2525 if (WARN_ON(addr >= end))
2526 return -EINVAL;
2527
2528 pgd = pgd_offset(mm, addr);
2529 do {
2530 next = pgd_addr_end(addr, end);
2531 if (!create && pgd_none_or_clear_bad(pgd))
2532 continue;
2533 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2534 if (err)
2535 break;
2536 } while (pgd++, addr = next, addr != end);
2537
2538 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2539 arch_sync_kernel_mappings(start, start + size);
2540
2541 return err;
2542 }
2543
2544 /*
2545 * Scan a region of virtual memory, filling in page tables as necessary
2546 * and calling a provided function on each leaf page table.
2547 */
2548 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2549 unsigned long size, pte_fn_t fn, void *data)
2550 {
2551 return __apply_to_page_range(mm, addr, size, fn, data, true);
2552 }
2553 EXPORT_SYMBOL_GPL(apply_to_page_range);
2554
2555 /*
2556 * Scan a region of virtual memory, calling a provided function on
2557 * each leaf page table where it exists.
2558 *
2559 * Unlike apply_to_page_range, this does _not_ fill in page tables
2560 * where they are absent.
2561 */
2562 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2563 unsigned long size, pte_fn_t fn, void *data)
2564 {
2565 return __apply_to_page_range(mm, addr, size, fn, data, false);
2566 }
2567 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2568
2569 /*
2570 * handle_pte_fault chooses page fault handler according to an entry which was
2571 * read non-atomically. Before making any commitment, on those architectures
2572 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2573 * parts, do_swap_page must check under lock before unmapping the pte and
2574 * proceeding (but do_wp_page is only called after already making such a check;
2575 * and do_anonymous_page can safely check later on).
2576 */
2577 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2578 pte_t *page_table, pte_t orig_pte)
2579 {
2580 int same = 1;
2581 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2582 if (sizeof(pte_t) > sizeof(unsigned long)) {
2583 spinlock_t *ptl = pte_lockptr(mm, pmd);
2584 spin_lock(ptl);
2585 same = pte_same(*page_table, orig_pte);
2586 spin_unlock(ptl);
2587 }
2588 #endif
2589 pte_unmap(page_table);
2590 return same;
2591 }
2592
2593 static inline bool cow_user_page(struct page *dst, struct page *src,
2594 struct vm_fault *vmf)
2595 {
2596 bool ret;
2597 void *kaddr;
2598 void __user *uaddr;
2599 bool locked = false;
2600 struct vm_area_struct *vma = vmf->vma;
2601 struct mm_struct *mm = vma->vm_mm;
2602 unsigned long addr = vmf->address;
2603
2604 if (likely(src)) {
2605 copy_user_highpage(dst, src, addr, vma);
2606 return true;
2607 }
2608
2609 /*
2610 * If the source page was a PFN mapping, we don't have
2611 * a "struct page" for it. We do a best-effort copy by
2612 * just copying from the original user address. If that
2613 * fails, we just zero-fill it. Live with it.
2614 */
2615 kaddr = kmap_atomic(dst);
2616 uaddr = (void __user *)(addr & PAGE_MASK);
2617
2618 /*
2619 * On architectures with software "accessed" bits, we would
2620 * take a double page fault, so mark it accessed here.
2621 */
2622 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2623 pte_t entry;
2624
2625 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2626 locked = true;
2627 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2628 /*
2629 * Other thread has already handled the fault
2630 * and update local tlb only
2631 */
2632 update_mmu_tlb(vma, addr, vmf->pte);
2633 ret = false;
2634 goto pte_unlock;
2635 }
2636
2637 entry = pte_mkyoung(vmf->orig_pte);
2638 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2639 update_mmu_cache(vma, addr, vmf->pte);
2640 }
2641
2642 /*
2643 * This really shouldn't fail, because the page is there
2644 * in the page tables. But it might just be unreadable,
2645 * in which case we just give up and fill the result with
2646 * zeroes.
2647 */
2648 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649 if (locked)
2650 goto warn;
2651
2652 /* Re-validate under PTL if the page is still mapped */
2653 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2654 locked = true;
2655 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2656 /* The PTE changed under us, update local tlb */
2657 update_mmu_tlb(vma, addr, vmf->pte);
2658 ret = false;
2659 goto pte_unlock;
2660 }
2661
2662 /*
2663 * The same page can be mapped back since last copy attempt.
2664 * Try to copy again under PTL.
2665 */
2666 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2667 /*
2668 * Give a warn in case there can be some obscure
2669 * use-case
2670 */
2671 warn:
2672 WARN_ON_ONCE(1);
2673 clear_page(kaddr);
2674 }
2675 }
2676
2677 ret = true;
2678
2679 pte_unlock:
2680 if (locked)
2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 kunmap_atomic(kaddr);
2683 flush_dcache_page(dst);
2684
2685 return ret;
2686 }
2687
2688 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2689 {
2690 struct file *vm_file = vma->vm_file;
2691
2692 if (vm_file)
2693 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2694
2695 /*
2696 * Special mappings (e.g. VDSO) do not have any file so fake
2697 * a default GFP_KERNEL for them.
2698 */
2699 return GFP_KERNEL;
2700 }
2701
2702 /*
2703 * Notify the address space that the page is about to become writable so that
2704 * it can prohibit this or wait for the page to get into an appropriate state.
2705 *
2706 * We do this without the lock held, so that it can sleep if it needs to.
2707 */
2708 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2709 {
2710 vm_fault_t ret;
2711 struct page *page = vmf->page;
2712 unsigned int old_flags = vmf->flags;
2713
2714 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2715
2716 if (vmf->vma->vm_file &&
2717 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2718 return VM_FAULT_SIGBUS;
2719
2720 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2721 /* Restore original flags so that caller is not surprised */
2722 vmf->flags = old_flags;
2723 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2724 return ret;
2725 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2726 lock_page(page);
2727 if (!page->mapping) {
2728 unlock_page(page);
2729 return 0; /* retry */
2730 }
2731 ret |= VM_FAULT_LOCKED;
2732 } else
2733 VM_BUG_ON_PAGE(!PageLocked(page), page);
2734 return ret;
2735 }
2736
2737 /*
2738 * Handle dirtying of a page in shared file mapping on a write fault.
2739 *
2740 * The function expects the page to be locked and unlocks it.
2741 */
2742 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2743 {
2744 struct vm_area_struct *vma = vmf->vma;
2745 struct address_space *mapping;
2746 struct page *page = vmf->page;
2747 bool dirtied;
2748 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2749
2750 dirtied = set_page_dirty(page);
2751 VM_BUG_ON_PAGE(PageAnon(page), page);
2752 /*
2753 * Take a local copy of the address_space - page.mapping may be zeroed
2754 * by truncate after unlock_page(). The address_space itself remains
2755 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2756 * release semantics to prevent the compiler from undoing this copying.
2757 */
2758 mapping = page_rmapping(page);
2759 unlock_page(page);
2760
2761 if (!page_mkwrite)
2762 file_update_time(vma->vm_file);
2763
2764 /*
2765 * Throttle page dirtying rate down to writeback speed.
2766 *
2767 * mapping may be NULL here because some device drivers do not
2768 * set page.mapping but still dirty their pages
2769 *
2770 * Drop the mmap_lock before waiting on IO, if we can. The file
2771 * is pinning the mapping, as per above.
2772 */
2773 if ((dirtied || page_mkwrite) && mapping) {
2774 struct file *fpin;
2775
2776 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2777 balance_dirty_pages_ratelimited(mapping);
2778 if (fpin) {
2779 fput(fpin);
2780 return VM_FAULT_RETRY;
2781 }
2782 }
2783
2784 return 0;
2785 }
2786
2787 /*
2788 * Handle write page faults for pages that can be reused in the current vma
2789 *
2790 * This can happen either due to the mapping being with the VM_SHARED flag,
2791 * or due to us being the last reference standing to the page. In either
2792 * case, all we need to do here is to mark the page as writable and update
2793 * any related book-keeping.
2794 */
2795 static inline void wp_page_reuse(struct vm_fault *vmf)
2796 __releases(vmf->ptl)
2797 {
2798 struct vm_area_struct *vma = vmf->vma;
2799 struct page *page = vmf->page;
2800 pte_t entry;
2801 /*
2802 * Clear the pages cpupid information as the existing
2803 * information potentially belongs to a now completely
2804 * unrelated process.
2805 */
2806 if (page)
2807 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2808
2809 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2810 entry = pte_mkyoung(vmf->orig_pte);
2811 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2813 update_mmu_cache(vma, vmf->address, vmf->pte);
2814 pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 count_vm_event(PGREUSE);
2816 }
2817
2818 /*
2819 * Handle the case of a page which we actually need to copy to a new page.
2820 *
2821 * Called with mmap_lock locked and the old page referenced, but
2822 * without the ptl held.
2823 *
2824 * High level logic flow:
2825 *
2826 * - Allocate a page, copy the content of the old page to the new one.
2827 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2828 * - Take the PTL. If the pte changed, bail out and release the allocated page
2829 * - If the pte is still the way we remember it, update the page table and all
2830 * relevant references. This includes dropping the reference the page-table
2831 * held to the old page, as well as updating the rmap.
2832 * - In any case, unlock the PTL and drop the reference we took to the old page.
2833 */
2834 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2835 {
2836 struct vm_area_struct *vma = vmf->vma;
2837 struct mm_struct *mm = vma->vm_mm;
2838 struct page *old_page = vmf->page;
2839 struct page *new_page = NULL;
2840 pte_t entry;
2841 int page_copied = 0;
2842 struct mmu_notifier_range range;
2843
2844 if (unlikely(anon_vma_prepare(vma)))
2845 goto oom;
2846
2847 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2848 new_page = alloc_zeroed_user_highpage_movable(vma,
2849 vmf->address);
2850 if (!new_page)
2851 goto oom;
2852 } else {
2853 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2854 vmf->address);
2855 if (!new_page)
2856 goto oom;
2857
2858 if (!cow_user_page(new_page, old_page, vmf)) {
2859 /*
2860 * COW failed, if the fault was solved by other,
2861 * it's fine. If not, userspace would re-fault on
2862 * the same address and we will handle the fault
2863 * from the second attempt.
2864 */
2865 put_page(new_page);
2866 if (old_page)
2867 put_page(old_page);
2868 return 0;
2869 }
2870 }
2871
2872 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2873 goto oom_free_new;
2874 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2875
2876 __SetPageUptodate(new_page);
2877
2878 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2879 vmf->address & PAGE_MASK,
2880 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2881 mmu_notifier_invalidate_range_start(&range);
2882
2883 /*
2884 * Re-check the pte - we dropped the lock
2885 */
2886 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2887 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2888 if (old_page) {
2889 if (!PageAnon(old_page)) {
2890 dec_mm_counter_fast(mm,
2891 mm_counter_file(old_page));
2892 inc_mm_counter_fast(mm, MM_ANONPAGES);
2893 }
2894 } else {
2895 inc_mm_counter_fast(mm, MM_ANONPAGES);
2896 }
2897 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2898 entry = mk_pte(new_page, vma->vm_page_prot);
2899 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2900
2901 /*
2902 * Clear the pte entry and flush it first, before updating the
2903 * pte with the new entry, to keep TLBs on different CPUs in
2904 * sync. This code used to set the new PTE then flush TLBs, but
2905 * that left a window where the new PTE could be loaded into
2906 * some TLBs while the old PTE remains in others.
2907 */
2908 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2909 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2910 lru_cache_add_inactive_or_unevictable(new_page, vma);
2911 /*
2912 * We call the notify macro here because, when using secondary
2913 * mmu page tables (such as kvm shadow page tables), we want the
2914 * new page to be mapped directly into the secondary page table.
2915 */
2916 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2917 update_mmu_cache(vma, vmf->address, vmf->pte);
2918 if (old_page) {
2919 /*
2920 * Only after switching the pte to the new page may
2921 * we remove the mapcount here. Otherwise another
2922 * process may come and find the rmap count decremented
2923 * before the pte is switched to the new page, and
2924 * "reuse" the old page writing into it while our pte
2925 * here still points into it and can be read by other
2926 * threads.
2927 *
2928 * The critical issue is to order this
2929 * page_remove_rmap with the ptp_clear_flush above.
2930 * Those stores are ordered by (if nothing else,)
2931 * the barrier present in the atomic_add_negative
2932 * in page_remove_rmap.
2933 *
2934 * Then the TLB flush in ptep_clear_flush ensures that
2935 * no process can access the old page before the
2936 * decremented mapcount is visible. And the old page
2937 * cannot be reused until after the decremented
2938 * mapcount is visible. So transitively, TLBs to
2939 * old page will be flushed before it can be reused.
2940 */
2941 page_remove_rmap(old_page, false);
2942 }
2943
2944 /* Free the old page.. */
2945 new_page = old_page;
2946 page_copied = 1;
2947 } else {
2948 update_mmu_tlb(vma, vmf->address, vmf->pte);
2949 }
2950
2951 if (new_page)
2952 put_page(new_page);
2953
2954 pte_unmap_unlock(vmf->pte, vmf->ptl);
2955 /*
2956 * No need to double call mmu_notifier->invalidate_range() callback as
2957 * the above ptep_clear_flush_notify() did already call it.
2958 */
2959 mmu_notifier_invalidate_range_only_end(&range);
2960 if (old_page) {
2961 /*
2962 * Don't let another task, with possibly unlocked vma,
2963 * keep the mlocked page.
2964 */
2965 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2966 lock_page(old_page); /* LRU manipulation */
2967 if (PageMlocked(old_page))
2968 munlock_vma_page(old_page);
2969 unlock_page(old_page);
2970 }
2971 put_page(old_page);
2972 }
2973 return page_copied ? VM_FAULT_WRITE : 0;
2974 oom_free_new:
2975 put_page(new_page);
2976 oom:
2977 if (old_page)
2978 put_page(old_page);
2979 return VM_FAULT_OOM;
2980 }
2981
2982 /**
2983 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2984 * writeable once the page is prepared
2985 *
2986 * @vmf: structure describing the fault
2987 *
2988 * This function handles all that is needed to finish a write page fault in a
2989 * shared mapping due to PTE being read-only once the mapped page is prepared.
2990 * It handles locking of PTE and modifying it.
2991 *
2992 * The function expects the page to be locked or other protection against
2993 * concurrent faults / writeback (such as DAX radix tree locks).
2994 *
2995 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2996 * we acquired PTE lock.
2997 */
2998 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2999 {
3000 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3001 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3002 &vmf->ptl);
3003 /*
3004 * We might have raced with another page fault while we released the
3005 * pte_offset_map_lock.
3006 */
3007 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3008 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 return VM_FAULT_NOPAGE;
3011 }
3012 wp_page_reuse(vmf);
3013 return 0;
3014 }
3015
3016 /*
3017 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3018 * mapping
3019 */
3020 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3021 {
3022 struct vm_area_struct *vma = vmf->vma;
3023
3024 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3025 vm_fault_t ret;
3026
3027 pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 vmf->flags |= FAULT_FLAG_MKWRITE;
3029 ret = vma->vm_ops->pfn_mkwrite(vmf);
3030 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3031 return ret;
3032 return finish_mkwrite_fault(vmf);
3033 }
3034 wp_page_reuse(vmf);
3035 return VM_FAULT_WRITE;
3036 }
3037
3038 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3039 __releases(vmf->ptl)
3040 {
3041 struct vm_area_struct *vma = vmf->vma;
3042 vm_fault_t ret = VM_FAULT_WRITE;
3043
3044 get_page(vmf->page);
3045
3046 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3047 vm_fault_t tmp;
3048
3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
3050 tmp = do_page_mkwrite(vmf);
3051 if (unlikely(!tmp || (tmp &
3052 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053 put_page(vmf->page);
3054 return tmp;
3055 }
3056 tmp = finish_mkwrite_fault(vmf);
3057 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3058 unlock_page(vmf->page);
3059 put_page(vmf->page);
3060 return tmp;
3061 }
3062 } else {
3063 wp_page_reuse(vmf);
3064 lock_page(vmf->page);
3065 }
3066 ret |= fault_dirty_shared_page(vmf);
3067 put_page(vmf->page);
3068
3069 return ret;
3070 }
3071
3072 /*
3073 * This routine handles present pages, when users try to write
3074 * to a shared page. It is done by copying the page to a new address
3075 * and decrementing the shared-page counter for the old page.
3076 *
3077 * Note that this routine assumes that the protection checks have been
3078 * done by the caller (the low-level page fault routine in most cases).
3079 * Thus we can safely just mark it writable once we've done any necessary
3080 * COW.
3081 *
3082 * We also mark the page dirty at this point even though the page will
3083 * change only once the write actually happens. This avoids a few races,
3084 * and potentially makes it more efficient.
3085 *
3086 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3087 * but allow concurrent faults), with pte both mapped and locked.
3088 * We return with mmap_lock still held, but pte unmapped and unlocked.
3089 */
3090 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3091 __releases(vmf->ptl)
3092 {
3093 struct vm_area_struct *vma = vmf->vma;
3094
3095 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3096 pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 return handle_userfault(vmf, VM_UFFD_WP);
3098 }
3099
3100 /*
3101 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3102 * is flushed in this case before copying.
3103 */
3104 if (unlikely(userfaultfd_wp(vmf->vma) &&
3105 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3106 flush_tlb_page(vmf->vma, vmf->address);
3107
3108 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3109 if (!vmf->page) {
3110 /*
3111 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3112 * VM_PFNMAP VMA.
3113 *
3114 * We should not cow pages in a shared writeable mapping.
3115 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3116 */
3117 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118 (VM_WRITE|VM_SHARED))
3119 return wp_pfn_shared(vmf);
3120
3121 pte_unmap_unlock(vmf->pte, vmf->ptl);
3122 return wp_page_copy(vmf);
3123 }
3124
3125 /*
3126 * Take out anonymous pages first, anonymous shared vmas are
3127 * not dirty accountable.
3128 */
3129 if (PageAnon(vmf->page)) {
3130 struct page *page = vmf->page;
3131
3132 /* PageKsm() doesn't necessarily raise the page refcount */
3133 if (PageKsm(page) || page_count(page) != 1)
3134 goto copy;
3135 if (!trylock_page(page))
3136 goto copy;
3137 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3138 unlock_page(page);
3139 goto copy;
3140 }
3141 /*
3142 * Ok, we've got the only map reference, and the only
3143 * page count reference, and the page is locked,
3144 * it's dark out, and we're wearing sunglasses. Hit it.
3145 */
3146 unlock_page(page);
3147 wp_page_reuse(vmf);
3148 return VM_FAULT_WRITE;
3149 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3150 (VM_WRITE|VM_SHARED))) {
3151 return wp_page_shared(vmf);
3152 }
3153 copy:
3154 /*
3155 * Ok, we need to copy. Oh, well..
3156 */
3157 get_page(vmf->page);
3158
3159 pte_unmap_unlock(vmf->pte, vmf->ptl);
3160 return wp_page_copy(vmf);
3161 }
3162
3163 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3164 unsigned long start_addr, unsigned long end_addr,
3165 struct zap_details *details)
3166 {
3167 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3168 }
3169
3170 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3171 struct zap_details *details)
3172 {
3173 struct vm_area_struct *vma;
3174 pgoff_t vba, vea, zba, zea;
3175
3176 vma_interval_tree_foreach(vma, root,
3177 details->first_index, details->last_index) {
3178
3179 vba = vma->vm_pgoff;
3180 vea = vba + vma_pages(vma) - 1;
3181 zba = details->first_index;
3182 if (zba < vba)
3183 zba = vba;
3184 zea = details->last_index;
3185 if (zea > vea)
3186 zea = vea;
3187
3188 unmap_mapping_range_vma(vma,
3189 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3190 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3191 details);
3192 }
3193 }
3194
3195 /**
3196 * unmap_mapping_pages() - Unmap pages from processes.
3197 * @mapping: The address space containing pages to be unmapped.
3198 * @start: Index of first page to be unmapped.
3199 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3200 * @even_cows: Whether to unmap even private COWed pages.
3201 *
3202 * Unmap the pages in this address space from any userspace process which
3203 * has them mmaped. Generally, you want to remove COWed pages as well when
3204 * a file is being truncated, but not when invalidating pages from the page
3205 * cache.
3206 */
3207 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3208 pgoff_t nr, bool even_cows)
3209 {
3210 struct zap_details details = { };
3211
3212 details.check_mapping = even_cows ? NULL : mapping;
3213 details.first_index = start;
3214 details.last_index = start + nr - 1;
3215 if (details.last_index < details.first_index)
3216 details.last_index = ULONG_MAX;
3217
3218 i_mmap_lock_write(mapping);
3219 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3220 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3221 i_mmap_unlock_write(mapping);
3222 }
3223
3224 /**
3225 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3226 * address_space corresponding to the specified byte range in the underlying
3227 * file.
3228 *
3229 * @mapping: the address space containing mmaps to be unmapped.
3230 * @holebegin: byte in first page to unmap, relative to the start of
3231 * the underlying file. This will be rounded down to a PAGE_SIZE
3232 * boundary. Note that this is different from truncate_pagecache(), which
3233 * must keep the partial page. In contrast, we must get rid of
3234 * partial pages.
3235 * @holelen: size of prospective hole in bytes. This will be rounded
3236 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3237 * end of the file.
3238 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3239 * but 0 when invalidating pagecache, don't throw away private data.
3240 */
3241 void unmap_mapping_range(struct address_space *mapping,
3242 loff_t const holebegin, loff_t const holelen, int even_cows)
3243 {
3244 pgoff_t hba = holebegin >> PAGE_SHIFT;
3245 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3246
3247 /* Check for overflow. */
3248 if (sizeof(holelen) > sizeof(hlen)) {
3249 long long holeend =
3250 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3251 if (holeend & ~(long long)ULONG_MAX)
3252 hlen = ULONG_MAX - hba + 1;
3253 }
3254
3255 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3256 }
3257 EXPORT_SYMBOL(unmap_mapping_range);
3258
3259 /*
3260 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3261 * but allow concurrent faults), and pte mapped but not yet locked.
3262 * We return with pte unmapped and unlocked.
3263 *
3264 * We return with the mmap_lock locked or unlocked in the same cases
3265 * as does filemap_fault().
3266 */
3267 vm_fault_t do_swap_page(struct vm_fault *vmf)
3268 {
3269 struct vm_area_struct *vma = vmf->vma;
3270 struct page *page = NULL, *swapcache;
3271 swp_entry_t entry;
3272 pte_t pte;
3273 int locked;
3274 int exclusive = 0;
3275 vm_fault_t ret = 0;
3276 void *shadow = NULL;
3277
3278 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3279 goto out;
3280
3281 entry = pte_to_swp_entry(vmf->orig_pte);
3282 if (unlikely(non_swap_entry(entry))) {
3283 if (is_migration_entry(entry)) {
3284 migration_entry_wait(vma->vm_mm, vmf->pmd,
3285 vmf->address);
3286 } else if (is_device_private_entry(entry)) {
3287 vmf->page = device_private_entry_to_page(entry);
3288 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3289 } else if (is_hwpoison_entry(entry)) {
3290 ret = VM_FAULT_HWPOISON;
3291 } else {
3292 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3293 ret = VM_FAULT_SIGBUS;
3294 }
3295 goto out;
3296 }
3297
3298
3299 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3300 page = lookup_swap_cache(entry, vma, vmf->address);
3301 swapcache = page;
3302
3303 if (!page) {
3304 struct swap_info_struct *si = swp_swap_info(entry);
3305
3306 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3307 __swap_count(entry) == 1) {
3308 /* skip swapcache */
3309 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3310 vmf->address);
3311 if (page) {
3312 int err;
3313
3314 __SetPageLocked(page);
3315 __SetPageSwapBacked(page);
3316 set_page_private(page, entry.val);
3317
3318 /* Tell memcg to use swap ownership records */
3319 SetPageSwapCache(page);
3320 err = mem_cgroup_charge(page, vma->vm_mm,
3321 GFP_KERNEL);
3322 ClearPageSwapCache(page);
3323 if (err) {
3324 ret = VM_FAULT_OOM;
3325 goto out_page;
3326 }
3327
3328 shadow = get_shadow_from_swap_cache(entry);
3329 if (shadow)
3330 workingset_refault(page, shadow);
3331
3332 lru_cache_add(page);
3333 swap_readpage(page, true);
3334 }
3335 } else {
3336 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3337 vmf);
3338 swapcache = page;
3339 }
3340
3341 if (!page) {
3342 /*
3343 * Back out if somebody else faulted in this pte
3344 * while we released the pte lock.
3345 */
3346 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3347 vmf->address, &vmf->ptl);
3348 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3349 ret = VM_FAULT_OOM;
3350 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3351 goto unlock;
3352 }
3353
3354 /* Had to read the page from swap area: Major fault */
3355 ret = VM_FAULT_MAJOR;
3356 count_vm_event(PGMAJFAULT);
3357 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3358 } else if (PageHWPoison(page)) {
3359 /*
3360 * hwpoisoned dirty swapcache pages are kept for killing
3361 * owner processes (which may be unknown at hwpoison time)
3362 */
3363 ret = VM_FAULT_HWPOISON;
3364 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3365 goto out_release;
3366 }
3367
3368 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3369
3370 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3371 if (!locked) {
3372 ret |= VM_FAULT_RETRY;
3373 goto out_release;
3374 }
3375
3376 /*
3377 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3378 * release the swapcache from under us. The page pin, and pte_same
3379 * test below, are not enough to exclude that. Even if it is still
3380 * swapcache, we need to check that the page's swap has not changed.
3381 */
3382 if (unlikely((!PageSwapCache(page) ||
3383 page_private(page) != entry.val)) && swapcache)
3384 goto out_page;
3385
3386 page = ksm_might_need_to_copy(page, vma, vmf->address);
3387 if (unlikely(!page)) {
3388 ret = VM_FAULT_OOM;
3389 page = swapcache;
3390 goto out_page;
3391 }
3392
3393 cgroup_throttle_swaprate(page, GFP_KERNEL);
3394
3395 /*
3396 * Back out if somebody else already faulted in this pte.
3397 */
3398 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3399 &vmf->ptl);
3400 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3401 goto out_nomap;
3402
3403 if (unlikely(!PageUptodate(page))) {
3404 ret = VM_FAULT_SIGBUS;
3405 goto out_nomap;
3406 }
3407
3408 /*
3409 * The page isn't present yet, go ahead with the fault.
3410 *
3411 * Be careful about the sequence of operations here.
3412 * To get its accounting right, reuse_swap_page() must be called
3413 * while the page is counted on swap but not yet in mapcount i.e.
3414 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3415 * must be called after the swap_free(), or it will never succeed.
3416 */
3417
3418 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3419 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3420 pte = mk_pte(page, vma->vm_page_prot);
3421 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3422 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3423 vmf->flags &= ~FAULT_FLAG_WRITE;
3424 ret |= VM_FAULT_WRITE;
3425 exclusive = RMAP_EXCLUSIVE;
3426 }
3427 flush_icache_page(vma, page);
3428 if (pte_swp_soft_dirty(vmf->orig_pte))
3429 pte = pte_mksoft_dirty(pte);
3430 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3431 pte = pte_mkuffd_wp(pte);
3432 pte = pte_wrprotect(pte);
3433 }
3434 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3435 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3436 vmf->orig_pte = pte;
3437
3438 /* ksm created a completely new copy */
3439 if (unlikely(page != swapcache && swapcache)) {
3440 page_add_new_anon_rmap(page, vma, vmf->address, false);
3441 lru_cache_add_inactive_or_unevictable(page, vma);
3442 } else {
3443 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3444 }
3445
3446 swap_free(entry);
3447 if (mem_cgroup_swap_full(page) ||
3448 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3449 try_to_free_swap(page);
3450 unlock_page(page);
3451 if (page != swapcache && swapcache) {
3452 /*
3453 * Hold the lock to avoid the swap entry to be reused
3454 * until we take the PT lock for the pte_same() check
3455 * (to avoid false positives from pte_same). For
3456 * further safety release the lock after the swap_free
3457 * so that the swap count won't change under a
3458 * parallel locked swapcache.
3459 */
3460 unlock_page(swapcache);
3461 put_page(swapcache);
3462 }
3463
3464 if (vmf->flags & FAULT_FLAG_WRITE) {
3465 ret |= do_wp_page(vmf);
3466 if (ret & VM_FAULT_ERROR)
3467 ret &= VM_FAULT_ERROR;
3468 goto out;
3469 }
3470
3471 /* No need to invalidate - it was non-present before */
3472 update_mmu_cache(vma, vmf->address, vmf->pte);
3473 unlock:
3474 pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 out:
3476 return ret;
3477 out_nomap:
3478 pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 out_page:
3480 unlock_page(page);
3481 out_release:
3482 put_page(page);
3483 if (page != swapcache && swapcache) {
3484 unlock_page(swapcache);
3485 put_page(swapcache);
3486 }
3487 return ret;
3488 }
3489
3490 /*
3491 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3492 * but allow concurrent faults), and pte mapped but not yet locked.
3493 * We return with mmap_lock still held, but pte unmapped and unlocked.
3494 */
3495 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3496 {
3497 struct vm_area_struct *vma = vmf->vma;
3498 struct page *page;
3499 vm_fault_t ret = 0;
3500 pte_t entry;
3501
3502 /* File mapping without ->vm_ops ? */
3503 if (vma->vm_flags & VM_SHARED)
3504 return VM_FAULT_SIGBUS;
3505
3506 /*
3507 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3508 * pte_offset_map() on pmds where a huge pmd might be created
3509 * from a different thread.
3510 *
3511 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3512 * parallel threads are excluded by other means.
3513 *
3514 * Here we only have mmap_read_lock(mm).
3515 */
3516 if (pte_alloc(vma->vm_mm, vmf->pmd))
3517 return VM_FAULT_OOM;
3518
3519 /* See comment in handle_pte_fault() */
3520 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3521 return 0;
3522
3523 /* Use the zero-page for reads */
3524 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3525 !mm_forbids_zeropage(vma->vm_mm)) {
3526 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3527 vma->vm_page_prot));
3528 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3529 vmf->address, &vmf->ptl);
3530 if (!pte_none(*vmf->pte)) {
3531 update_mmu_tlb(vma, vmf->address, vmf->pte);
3532 goto unlock;
3533 }
3534 ret = check_stable_address_space(vma->vm_mm);
3535 if (ret)
3536 goto unlock;
3537 /* Deliver the page fault to userland, check inside PT lock */
3538 if (userfaultfd_missing(vma)) {
3539 pte_unmap_unlock(vmf->pte, vmf->ptl);
3540 return handle_userfault(vmf, VM_UFFD_MISSING);
3541 }
3542 goto setpte;
3543 }
3544
3545 /* Allocate our own private page. */
3546 if (unlikely(anon_vma_prepare(vma)))
3547 goto oom;
3548 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3549 if (!page)
3550 goto oom;
3551
3552 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3553 goto oom_free_page;
3554 cgroup_throttle_swaprate(page, GFP_KERNEL);
3555
3556 /*
3557 * The memory barrier inside __SetPageUptodate makes sure that
3558 * preceding stores to the page contents become visible before
3559 * the set_pte_at() write.
3560 */
3561 __SetPageUptodate(page);
3562
3563 entry = mk_pte(page, vma->vm_page_prot);
3564 if (vma->vm_flags & VM_WRITE)
3565 entry = pte_mkwrite(pte_mkdirty(entry));
3566
3567 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568 &vmf->ptl);
3569 if (!pte_none(*vmf->pte)) {
3570 update_mmu_cache(vma, vmf->address, vmf->pte);
3571 goto release;
3572 }
3573
3574 ret = check_stable_address_space(vma->vm_mm);
3575 if (ret)
3576 goto release;
3577
3578 /* Deliver the page fault to userland, check inside PT lock */
3579 if (userfaultfd_missing(vma)) {
3580 pte_unmap_unlock(vmf->pte, vmf->ptl);
3581 put_page(page);
3582 return handle_userfault(vmf, VM_UFFD_MISSING);
3583 }
3584
3585 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3586 page_add_new_anon_rmap(page, vma, vmf->address, false);
3587 lru_cache_add_inactive_or_unevictable(page, vma);
3588 setpte:
3589 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3590
3591 /* No need to invalidate - it was non-present before */
3592 update_mmu_cache(vma, vmf->address, vmf->pte);
3593 unlock:
3594 pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 return ret;
3596 release:
3597 put_page(page);
3598 goto unlock;
3599 oom_free_page:
3600 put_page(page);
3601 oom:
3602 return VM_FAULT_OOM;
3603 }
3604
3605 /*
3606 * The mmap_lock must have been held on entry, and may have been
3607 * released depending on flags and vma->vm_ops->fault() return value.
3608 * See filemap_fault() and __lock_page_retry().
3609 */
3610 static vm_fault_t __do_fault(struct vm_fault *vmf)
3611 {
3612 struct vm_area_struct *vma = vmf->vma;
3613 vm_fault_t ret;
3614
3615 /*
3616 * Preallocate pte before we take page_lock because this might lead to
3617 * deadlocks for memcg reclaim which waits for pages under writeback:
3618 * lock_page(A)
3619 * SetPageWriteback(A)
3620 * unlock_page(A)
3621 * lock_page(B)
3622 * lock_page(B)
3623 * pte_alloc_one
3624 * shrink_page_list
3625 * wait_on_page_writeback(A)
3626 * SetPageWriteback(B)
3627 * unlock_page(B)
3628 * # flush A, B to clear the writeback
3629 */
3630 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3631 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3632 if (!vmf->prealloc_pte)
3633 return VM_FAULT_OOM;
3634 smp_wmb(); /* See comment in __pte_alloc() */
3635 }
3636
3637 ret = vma->vm_ops->fault(vmf);
3638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3639 VM_FAULT_DONE_COW)))
3640 return ret;
3641
3642 if (unlikely(PageHWPoison(vmf->page))) {
3643 if (ret & VM_FAULT_LOCKED)
3644 unlock_page(vmf->page);
3645 put_page(vmf->page);
3646 vmf->page = NULL;
3647 return VM_FAULT_HWPOISON;
3648 }
3649
3650 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3651 lock_page(vmf->page);
3652 else
3653 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3654
3655 return ret;
3656 }
3657
3658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659 static void deposit_prealloc_pte(struct vm_fault *vmf)
3660 {
3661 struct vm_area_struct *vma = vmf->vma;
3662
3663 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3664 /*
3665 * We are going to consume the prealloc table,
3666 * count that as nr_ptes.
3667 */
3668 mm_inc_nr_ptes(vma->vm_mm);
3669 vmf->prealloc_pte = NULL;
3670 }
3671
3672 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3673 {
3674 struct vm_area_struct *vma = vmf->vma;
3675 bool write = vmf->flags & FAULT_FLAG_WRITE;
3676 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3677 pmd_t entry;
3678 int i;
3679 vm_fault_t ret = VM_FAULT_FALLBACK;
3680
3681 if (!transhuge_vma_suitable(vma, haddr))
3682 return ret;
3683
3684 page = compound_head(page);
3685 if (compound_order(page) != HPAGE_PMD_ORDER)
3686 return ret;
3687
3688 /*
3689 * Archs like ppc64 need additonal space to store information
3690 * related to pte entry. Use the preallocated table for that.
3691 */
3692 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3693 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3694 if (!vmf->prealloc_pte)
3695 return VM_FAULT_OOM;
3696 smp_wmb(); /* See comment in __pte_alloc() */
3697 }
3698
3699 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700 if (unlikely(!pmd_none(*vmf->pmd)))
3701 goto out;
3702
3703 for (i = 0; i < HPAGE_PMD_NR; i++)
3704 flush_icache_page(vma, page + i);
3705
3706 entry = mk_huge_pmd(page, vma->vm_page_prot);
3707 if (write)
3708 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3709
3710 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3711 page_add_file_rmap(page, true);
3712 /*
3713 * deposit and withdraw with pmd lock held
3714 */
3715 if (arch_needs_pgtable_deposit())
3716 deposit_prealloc_pte(vmf);
3717
3718 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3719
3720 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3721
3722 /* fault is handled */
3723 ret = 0;
3724 count_vm_event(THP_FILE_MAPPED);
3725 out:
3726 spin_unlock(vmf->ptl);
3727 return ret;
3728 }
3729 #else
3730 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3731 {
3732 return VM_FAULT_FALLBACK;
3733 }
3734 #endif
3735
3736 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3737 {
3738 struct vm_area_struct *vma = vmf->vma;
3739 bool write = vmf->flags & FAULT_FLAG_WRITE;
3740 bool prefault = vmf->address != addr;
3741 pte_t entry;
3742
3743 flush_icache_page(vma, page);
3744 entry = mk_pte(page, vma->vm_page_prot);
3745
3746 if (prefault && arch_wants_old_prefaulted_pte())
3747 entry = pte_mkold(entry);
3748
3749 if (write)
3750 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3751 /* copy-on-write page */
3752 if (write && !(vma->vm_flags & VM_SHARED)) {
3753 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3754 page_add_new_anon_rmap(page, vma, addr, false);
3755 lru_cache_add_inactive_or_unevictable(page, vma);
3756 } else {
3757 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3758 page_add_file_rmap(page, false);
3759 }
3760 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3761 }
3762
3763 /**
3764 * finish_fault - finish page fault once we have prepared the page to fault
3765 *
3766 * @vmf: structure describing the fault
3767 *
3768 * This function handles all that is needed to finish a page fault once the
3769 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3770 * given page, adds reverse page mapping, handles memcg charges and LRU
3771 * addition.
3772 *
3773 * The function expects the page to be locked and on success it consumes a
3774 * reference of a page being mapped (for the PTE which maps it).
3775 *
3776 * Return: %0 on success, %VM_FAULT_ code in case of error.
3777 */
3778 vm_fault_t finish_fault(struct vm_fault *vmf)
3779 {
3780 struct vm_area_struct *vma = vmf->vma;
3781 struct page *page;
3782 vm_fault_t ret;
3783
3784 /* Did we COW the page? */
3785 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3786 page = vmf->cow_page;
3787 else
3788 page = vmf->page;
3789
3790 /*
3791 * check even for read faults because we might have lost our CoWed
3792 * page
3793 */
3794 if (!(vma->vm_flags & VM_SHARED)) {
3795 ret = check_stable_address_space(vma->vm_mm);
3796 if (ret)
3797 return ret;
3798 }
3799
3800 if (pmd_none(*vmf->pmd)) {
3801 if (PageTransCompound(page)) {
3802 ret = do_set_pmd(vmf, page);
3803 if (ret != VM_FAULT_FALLBACK)
3804 return ret;
3805 }
3806
3807 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3808 return VM_FAULT_OOM;
3809 }
3810
3811 /* See comment in handle_pte_fault() */
3812 if (pmd_devmap_trans_unstable(vmf->pmd))
3813 return 0;
3814
3815 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3816 vmf->address, &vmf->ptl);
3817 ret = 0;
3818 /* Re-check under ptl */
3819 if (likely(pte_none(*vmf->pte)))
3820 do_set_pte(vmf, page, vmf->address);
3821 else
3822 ret = VM_FAULT_NOPAGE;
3823
3824 update_mmu_tlb(vma, vmf->address, vmf->pte);
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 return ret;
3827 }
3828
3829 static unsigned long fault_around_bytes __read_mostly =
3830 rounddown_pow_of_two(65536);
3831
3832 #ifdef CONFIG_DEBUG_FS
3833 static int fault_around_bytes_get(void *data, u64 *val)
3834 {
3835 *val = fault_around_bytes;
3836 return 0;
3837 }
3838
3839 /*
3840 * fault_around_bytes must be rounded down to the nearest page order as it's
3841 * what do_fault_around() expects to see.
3842 */
3843 static int fault_around_bytes_set(void *data, u64 val)
3844 {
3845 if (val / PAGE_SIZE > PTRS_PER_PTE)
3846 return -EINVAL;
3847 if (val > PAGE_SIZE)
3848 fault_around_bytes = rounddown_pow_of_two(val);
3849 else
3850 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3851 return 0;
3852 }
3853 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3854 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3855
3856 static int __init fault_around_debugfs(void)
3857 {
3858 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3859 &fault_around_bytes_fops);
3860 return 0;
3861 }
3862 late_initcall(fault_around_debugfs);
3863 #endif
3864
3865 /*
3866 * do_fault_around() tries to map few pages around the fault address. The hope
3867 * is that the pages will be needed soon and this will lower the number of
3868 * faults to handle.
3869 *
3870 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3871 * not ready to be mapped: not up-to-date, locked, etc.
3872 *
3873 * This function is called with the page table lock taken. In the split ptlock
3874 * case the page table lock only protects only those entries which belong to
3875 * the page table corresponding to the fault address.
3876 *
3877 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3878 * only once.
3879 *
3880 * fault_around_bytes defines how many bytes we'll try to map.
3881 * do_fault_around() expects it to be set to a power of two less than or equal
3882 * to PTRS_PER_PTE.
3883 *
3884 * The virtual address of the area that we map is naturally aligned to
3885 * fault_around_bytes rounded down to the machine page size
3886 * (and therefore to page order). This way it's easier to guarantee
3887 * that we don't cross page table boundaries.
3888 */
3889 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3890 {
3891 unsigned long address = vmf->address, nr_pages, mask;
3892 pgoff_t start_pgoff = vmf->pgoff;
3893 pgoff_t end_pgoff;
3894 int off;
3895
3896 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3897 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3898
3899 address = max(address & mask, vmf->vma->vm_start);
3900 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3901 start_pgoff -= off;
3902
3903 /*
3904 * end_pgoff is either the end of the page table, the end of
3905 * the vma or nr_pages from start_pgoff, depending what is nearest.
3906 */
3907 end_pgoff = start_pgoff -
3908 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3909 PTRS_PER_PTE - 1;
3910 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3911 start_pgoff + nr_pages - 1);
3912
3913 if (pmd_none(*vmf->pmd)) {
3914 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3915 if (!vmf->prealloc_pte)
3916 return VM_FAULT_OOM;
3917 smp_wmb(); /* See comment in __pte_alloc() */
3918 }
3919
3920 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3921 }
3922
3923 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3924 {
3925 struct vm_area_struct *vma = vmf->vma;
3926 vm_fault_t ret = 0;
3927
3928 /*
3929 * Let's call ->map_pages() first and use ->fault() as fallback
3930 * if page by the offset is not ready to be mapped (cold cache or
3931 * something).
3932 */
3933 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3934 ret = do_fault_around(vmf);
3935 if (ret)
3936 return ret;
3937 }
3938
3939 ret = __do_fault(vmf);
3940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3941 return ret;
3942
3943 ret |= finish_fault(vmf);
3944 unlock_page(vmf->page);
3945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3946 put_page(vmf->page);
3947 return ret;
3948 }
3949
3950 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3951 {
3952 struct vm_area_struct *vma = vmf->vma;
3953 vm_fault_t ret;
3954
3955 if (unlikely(anon_vma_prepare(vma)))
3956 return VM_FAULT_OOM;
3957
3958 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3959 if (!vmf->cow_page)
3960 return VM_FAULT_OOM;
3961
3962 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3963 put_page(vmf->cow_page);
3964 return VM_FAULT_OOM;
3965 }
3966 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3967
3968 ret = __do_fault(vmf);
3969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3970 goto uncharge_out;
3971 if (ret & VM_FAULT_DONE_COW)
3972 return ret;
3973
3974 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3975 __SetPageUptodate(vmf->cow_page);
3976
3977 ret |= finish_fault(vmf);
3978 unlock_page(vmf->page);
3979 put_page(vmf->page);
3980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3981 goto uncharge_out;
3982 return ret;
3983 uncharge_out:
3984 put_page(vmf->cow_page);
3985 return ret;
3986 }
3987
3988 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3989 {
3990 struct vm_area_struct *vma = vmf->vma;
3991 vm_fault_t ret, tmp;
3992
3993 ret = __do_fault(vmf);
3994 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3995 return ret;
3996
3997 /*
3998 * Check if the backing address space wants to know that the page is
3999 * about to become writable
4000 */
4001 if (vma->vm_ops->page_mkwrite) {
4002 unlock_page(vmf->page);
4003 tmp = do_page_mkwrite(vmf);
4004 if (unlikely(!tmp ||
4005 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4006 put_page(vmf->page);
4007 return tmp;
4008 }
4009 }
4010
4011 ret |= finish_fault(vmf);
4012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4013 VM_FAULT_RETRY))) {
4014 unlock_page(vmf->page);
4015 put_page(vmf->page);
4016 return ret;
4017 }
4018
4019 ret |= fault_dirty_shared_page(vmf);
4020 return ret;
4021 }
4022
4023 /*
4024 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4025 * but allow concurrent faults).
4026 * The mmap_lock may have been released depending on flags and our
4027 * return value. See filemap_fault() and __lock_page_or_retry().
4028 * If mmap_lock is released, vma may become invalid (for example
4029 * by other thread calling munmap()).
4030 */
4031 static vm_fault_t do_fault(struct vm_fault *vmf)
4032 {
4033 struct vm_area_struct *vma = vmf->vma;
4034 struct mm_struct *vm_mm = vma->vm_mm;
4035 vm_fault_t ret;
4036
4037 /*
4038 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4039 */
4040 if (!vma->vm_ops->fault) {
4041 /*
4042 * If we find a migration pmd entry or a none pmd entry, which
4043 * should never happen, return SIGBUS
4044 */
4045 if (unlikely(!pmd_present(*vmf->pmd)))
4046 ret = VM_FAULT_SIGBUS;
4047 else {
4048 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4049 vmf->pmd,
4050 vmf->address,
4051 &vmf->ptl);
4052 /*
4053 * Make sure this is not a temporary clearing of pte
4054 * by holding ptl and checking again. A R/M/W update
4055 * of pte involves: take ptl, clearing the pte so that
4056 * we don't have concurrent modification by hardware
4057 * followed by an update.
4058 */
4059 if (unlikely(pte_none(*vmf->pte)))
4060 ret = VM_FAULT_SIGBUS;
4061 else
4062 ret = VM_FAULT_NOPAGE;
4063
4064 pte_unmap_unlock(vmf->pte, vmf->ptl);
4065 }
4066 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4067 ret = do_read_fault(vmf);
4068 else if (!(vma->vm_flags & VM_SHARED))
4069 ret = do_cow_fault(vmf);
4070 else
4071 ret = do_shared_fault(vmf);
4072
4073 /* preallocated pagetable is unused: free it */
4074 if (vmf->prealloc_pte) {
4075 pte_free(vm_mm, vmf->prealloc_pte);
4076 vmf->prealloc_pte = NULL;
4077 }
4078 return ret;
4079 }
4080
4081 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4082 unsigned long addr, int page_nid,
4083 int *flags)
4084 {
4085 get_page(page);
4086
4087 count_vm_numa_event(NUMA_HINT_FAULTS);
4088 if (page_nid == numa_node_id()) {
4089 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4090 *flags |= TNF_FAULT_LOCAL;
4091 }
4092
4093 return mpol_misplaced(page, vma, addr);
4094 }
4095
4096 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4097 {
4098 struct vm_area_struct *vma = vmf->vma;
4099 struct page *page = NULL;
4100 int page_nid = NUMA_NO_NODE;
4101 int last_cpupid;
4102 int target_nid;
4103 bool migrated = false;
4104 pte_t pte, old_pte;
4105 bool was_writable = pte_savedwrite(vmf->orig_pte);
4106 int flags = 0;
4107
4108 /*
4109 * The "pte" at this point cannot be used safely without
4110 * validation through pte_unmap_same(). It's of NUMA type but
4111 * the pfn may be screwed if the read is non atomic.
4112 */
4113 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4114 spin_lock(vmf->ptl);
4115 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4116 pte_unmap_unlock(vmf->pte, vmf->ptl);
4117 goto out;
4118 }
4119
4120 /*
4121 * Make it present again, Depending on how arch implementes non
4122 * accessible ptes, some can allow access by kernel mode.
4123 */
4124 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4125 pte = pte_modify(old_pte, vma->vm_page_prot);
4126 pte = pte_mkyoung(pte);
4127 if (was_writable)
4128 pte = pte_mkwrite(pte);
4129 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4130 update_mmu_cache(vma, vmf->address, vmf->pte);
4131
4132 page = vm_normal_page(vma, vmf->address, pte);
4133 if (!page) {
4134 pte_unmap_unlock(vmf->pte, vmf->ptl);
4135 return 0;
4136 }
4137
4138 /* TODO: handle PTE-mapped THP */
4139 if (PageCompound(page)) {
4140 pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 return 0;
4142 }
4143
4144 /*
4145 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4146 * much anyway since they can be in shared cache state. This misses
4147 * the case where a mapping is writable but the process never writes
4148 * to it but pte_write gets cleared during protection updates and
4149 * pte_dirty has unpredictable behaviour between PTE scan updates,
4150 * background writeback, dirty balancing and application behaviour.
4151 */
4152 if (!pte_write(pte))
4153 flags |= TNF_NO_GROUP;
4154
4155 /*
4156 * Flag if the page is shared between multiple address spaces. This
4157 * is later used when determining whether to group tasks together
4158 */
4159 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4160 flags |= TNF_SHARED;
4161
4162 last_cpupid = page_cpupid_last(page);
4163 page_nid = page_to_nid(page);
4164 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4165 &flags);
4166 pte_unmap_unlock(vmf->pte, vmf->ptl);
4167 if (target_nid == NUMA_NO_NODE) {
4168 put_page(page);
4169 goto out;
4170 }
4171
4172 /* Migrate to the requested node */
4173 migrated = migrate_misplaced_page(page, vma, target_nid);
4174 if (migrated) {
4175 page_nid = target_nid;
4176 flags |= TNF_MIGRATED;
4177 } else
4178 flags |= TNF_MIGRATE_FAIL;
4179
4180 out:
4181 if (page_nid != NUMA_NO_NODE)
4182 task_numa_fault(last_cpupid, page_nid, 1, flags);
4183 return 0;
4184 }
4185
4186 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4187 {
4188 if (vma_is_anonymous(vmf->vma))
4189 return do_huge_pmd_anonymous_page(vmf);
4190 if (vmf->vma->vm_ops->huge_fault)
4191 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4192 return VM_FAULT_FALLBACK;
4193 }
4194
4195 /* `inline' is required to avoid gcc 4.1.2 build error */
4196 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4197 {
4198 if (vma_is_anonymous(vmf->vma)) {
4199 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4200 return handle_userfault(vmf, VM_UFFD_WP);
4201 return do_huge_pmd_wp_page(vmf, orig_pmd);
4202 }
4203 if (vmf->vma->vm_ops->huge_fault) {
4204 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4205
4206 if (!(ret & VM_FAULT_FALLBACK))
4207 return ret;
4208 }
4209
4210 /* COW or write-notify handled on pte level: split pmd. */
4211 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4212
4213 return VM_FAULT_FALLBACK;
4214 }
4215
4216 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4217 {
4218 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4219 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4220 /* No support for anonymous transparent PUD pages yet */
4221 if (vma_is_anonymous(vmf->vma))
4222 goto split;
4223 if (vmf->vma->vm_ops->huge_fault) {
4224 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4225
4226 if (!(ret & VM_FAULT_FALLBACK))
4227 return ret;
4228 }
4229 split:
4230 /* COW or write-notify not handled on PUD level: split pud.*/
4231 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4232 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4233 return VM_FAULT_FALLBACK;
4234 }
4235
4236 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4237 {
4238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4239 /* No support for anonymous transparent PUD pages yet */
4240 if (vma_is_anonymous(vmf->vma))
4241 return VM_FAULT_FALLBACK;
4242 if (vmf->vma->vm_ops->huge_fault)
4243 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4244 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4245 return VM_FAULT_FALLBACK;
4246 }
4247
4248 /*
4249 * These routines also need to handle stuff like marking pages dirty
4250 * and/or accessed for architectures that don't do it in hardware (most
4251 * RISC architectures). The early dirtying is also good on the i386.
4252 *
4253 * There is also a hook called "update_mmu_cache()" that architectures
4254 * with external mmu caches can use to update those (ie the Sparc or
4255 * PowerPC hashed page tables that act as extended TLBs).
4256 *
4257 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4258 * concurrent faults).
4259 *
4260 * The mmap_lock may have been released depending on flags and our return value.
4261 * See filemap_fault() and __lock_page_or_retry().
4262 */
4263 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4264 {
4265 pte_t entry;
4266
4267 if (unlikely(pmd_none(*vmf->pmd))) {
4268 /*
4269 * Leave __pte_alloc() until later: because vm_ops->fault may
4270 * want to allocate huge page, and if we expose page table
4271 * for an instant, it will be difficult to retract from
4272 * concurrent faults and from rmap lookups.
4273 */
4274 vmf->pte = NULL;
4275 } else {
4276 /*
4277 * If a huge pmd materialized under us just retry later. Use
4278 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4279 * of pmd_trans_huge() to ensure the pmd didn't become
4280 * pmd_trans_huge under us and then back to pmd_none, as a
4281 * result of MADV_DONTNEED running immediately after a huge pmd
4282 * fault in a different thread of this mm, in turn leading to a
4283 * misleading pmd_trans_huge() retval. All we have to ensure is
4284 * that it is a regular pmd that we can walk with
4285 * pte_offset_map() and we can do that through an atomic read
4286 * in C, which is what pmd_trans_unstable() provides.
4287 */
4288 if (pmd_devmap_trans_unstable(vmf->pmd))
4289 return 0;
4290 /*
4291 * A regular pmd is established and it can't morph into a huge
4292 * pmd from under us anymore at this point because we hold the
4293 * mmap_lock read mode and khugepaged takes it in write mode.
4294 * So now it's safe to run pte_offset_map().
4295 */
4296 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4297 vmf->orig_pte = *vmf->pte;
4298
4299 /*
4300 * some architectures can have larger ptes than wordsize,
4301 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4302 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4303 * accesses. The code below just needs a consistent view
4304 * for the ifs and we later double check anyway with the
4305 * ptl lock held. So here a barrier will do.
4306 */
4307 barrier();
4308 if (pte_none(vmf->orig_pte)) {
4309 pte_unmap(vmf->pte);
4310 vmf->pte = NULL;
4311 }
4312 }
4313
4314 if (!vmf->pte) {
4315 if (vma_is_anonymous(vmf->vma))
4316 return do_anonymous_page(vmf);
4317 else
4318 return do_fault(vmf);
4319 }
4320
4321 if (!pte_present(vmf->orig_pte))
4322 return do_swap_page(vmf);
4323
4324 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4325 return do_numa_page(vmf);
4326
4327 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4328 spin_lock(vmf->ptl);
4329 entry = vmf->orig_pte;
4330 if (unlikely(!pte_same(*vmf->pte, entry))) {
4331 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4332 goto unlock;
4333 }
4334 if (vmf->flags & FAULT_FLAG_WRITE) {
4335 if (!pte_write(entry))
4336 return do_wp_page(vmf);
4337 entry = pte_mkdirty(entry);
4338 }
4339 entry = pte_mkyoung(entry);
4340 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4341 vmf->flags & FAULT_FLAG_WRITE)) {
4342 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4343 } else {
4344 /* Skip spurious TLB flush for retried page fault */
4345 if (vmf->flags & FAULT_FLAG_TRIED)
4346 goto unlock;
4347 /*
4348 * This is needed only for protection faults but the arch code
4349 * is not yet telling us if this is a protection fault or not.
4350 * This still avoids useless tlb flushes for .text page faults
4351 * with threads.
4352 */
4353 if (vmf->flags & FAULT_FLAG_WRITE)
4354 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4355 }
4356 unlock:
4357 pte_unmap_unlock(vmf->pte, vmf->ptl);
4358 return 0;
4359 }
4360
4361 /*
4362 * By the time we get here, we already hold the mm semaphore
4363 *
4364 * The mmap_lock may have been released depending on flags and our
4365 * return value. See filemap_fault() and __lock_page_or_retry().
4366 */
4367 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4368 unsigned long address, unsigned int flags)
4369 {
4370 struct vm_fault vmf = {
4371 .vma = vma,
4372 .address = address & PAGE_MASK,
4373 .flags = flags,
4374 .pgoff = linear_page_index(vma, address),
4375 .gfp_mask = __get_fault_gfp_mask(vma),
4376 };
4377 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4378 struct mm_struct *mm = vma->vm_mm;
4379 pgd_t *pgd;
4380 p4d_t *p4d;
4381 vm_fault_t ret;
4382
4383 pgd = pgd_offset(mm, address);
4384 p4d = p4d_alloc(mm, pgd, address);
4385 if (!p4d)
4386 return VM_FAULT_OOM;
4387
4388 vmf.pud = pud_alloc(mm, p4d, address);
4389 if (!vmf.pud)
4390 return VM_FAULT_OOM;
4391 retry_pud:
4392 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4393 ret = create_huge_pud(&vmf);
4394 if (!(ret & VM_FAULT_FALLBACK))
4395 return ret;
4396 } else {
4397 pud_t orig_pud = *vmf.pud;
4398
4399 barrier();
4400 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4401
4402 /* NUMA case for anonymous PUDs would go here */
4403
4404 if (dirty && !pud_write(orig_pud)) {
4405 ret = wp_huge_pud(&vmf, orig_pud);
4406 if (!(ret & VM_FAULT_FALLBACK))
4407 return ret;
4408 } else {
4409 huge_pud_set_accessed(&vmf, orig_pud);
4410 return 0;
4411 }
4412 }
4413 }
4414
4415 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4416 if (!vmf.pmd)
4417 return VM_FAULT_OOM;
4418
4419 /* Huge pud page fault raced with pmd_alloc? */
4420 if (pud_trans_unstable(vmf.pud))
4421 goto retry_pud;
4422
4423 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4424 ret = create_huge_pmd(&vmf);
4425 if (!(ret & VM_FAULT_FALLBACK))
4426 return ret;
4427 } else {
4428 pmd_t orig_pmd = *vmf.pmd;
4429
4430 barrier();
4431 if (unlikely(is_swap_pmd(orig_pmd))) {
4432 VM_BUG_ON(thp_migration_supported() &&
4433 !is_pmd_migration_entry(orig_pmd));
4434 if (is_pmd_migration_entry(orig_pmd))
4435 pmd_migration_entry_wait(mm, vmf.pmd);
4436 return 0;
4437 }
4438 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4439 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4440 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4441
4442 if (dirty && !pmd_write(orig_pmd)) {
4443 ret = wp_huge_pmd(&vmf, orig_pmd);
4444 if (!(ret & VM_FAULT_FALLBACK))
4445 return ret;
4446 } else {
4447 huge_pmd_set_accessed(&vmf, orig_pmd);
4448 return 0;
4449 }
4450 }
4451 }
4452
4453 return handle_pte_fault(&vmf);
4454 }
4455
4456 /**
4457 * mm_account_fault - Do page fault accountings
4458 *
4459 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4460 * of perf event counters, but we'll still do the per-task accounting to
4461 * the task who triggered this page fault.
4462 * @address: the faulted address.
4463 * @flags: the fault flags.
4464 * @ret: the fault retcode.
4465 *
4466 * This will take care of most of the page fault accountings. Meanwhile, it
4467 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4468 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4469 * still be in per-arch page fault handlers at the entry of page fault.
4470 */
4471 static inline void mm_account_fault(struct pt_regs *regs,
4472 unsigned long address, unsigned int flags,
4473 vm_fault_t ret)
4474 {
4475 bool major;
4476
4477 /*
4478 * We don't do accounting for some specific faults:
4479 *
4480 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4481 * includes arch_vma_access_permitted() failing before reaching here.
4482 * So this is not a "this many hardware page faults" counter. We
4483 * should use the hw profiling for that.
4484 *
4485 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4486 * once they're completed.
4487 */
4488 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4489 return;
4490
4491 /*
4492 * We define the fault as a major fault when the final successful fault
4493 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4494 * handle it immediately previously).
4495 */
4496 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4497
4498 if (major)
4499 current->maj_flt++;
4500 else
4501 current->min_flt++;
4502
4503 /*
4504 * If the fault is done for GUP, regs will be NULL. We only do the
4505 * accounting for the per thread fault counters who triggered the
4506 * fault, and we skip the perf event updates.
4507 */
4508 if (!regs)
4509 return;
4510
4511 if (major)
4512 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4513 else
4514 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4515 }
4516
4517 /*
4518 * By the time we get here, we already hold the mm semaphore
4519 *
4520 * The mmap_lock may have been released depending on flags and our
4521 * return value. See filemap_fault() and __lock_page_or_retry().
4522 */
4523 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4524 unsigned int flags, struct pt_regs *regs)
4525 {
4526 vm_fault_t ret;
4527
4528 __set_current_state(TASK_RUNNING);
4529
4530 count_vm_event(PGFAULT);
4531 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4532
4533 /* do counter updates before entering really critical section. */
4534 check_sync_rss_stat(current);
4535
4536 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4537 flags & FAULT_FLAG_INSTRUCTION,
4538 flags & FAULT_FLAG_REMOTE))
4539 return VM_FAULT_SIGSEGV;
4540
4541 /*
4542 * Enable the memcg OOM handling for faults triggered in user
4543 * space. Kernel faults are handled more gracefully.
4544 */
4545 if (flags & FAULT_FLAG_USER)
4546 mem_cgroup_enter_user_fault();
4547
4548 if (unlikely(is_vm_hugetlb_page(vma)))
4549 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4550 else
4551 ret = __handle_mm_fault(vma, address, flags);
4552
4553 if (flags & FAULT_FLAG_USER) {
4554 mem_cgroup_exit_user_fault();
4555 /*
4556 * The task may have entered a memcg OOM situation but
4557 * if the allocation error was handled gracefully (no
4558 * VM_FAULT_OOM), there is no need to kill anything.
4559 * Just clean up the OOM state peacefully.
4560 */
4561 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4562 mem_cgroup_oom_synchronize(false);
4563 }
4564
4565 mm_account_fault(regs, address, flags, ret);
4566
4567 return ret;
4568 }
4569 EXPORT_SYMBOL_GPL(handle_mm_fault);
4570
4571 #ifndef __PAGETABLE_P4D_FOLDED
4572 /*
4573 * Allocate p4d page table.
4574 * We've already handled the fast-path in-line.
4575 */
4576 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4577 {
4578 p4d_t *new = p4d_alloc_one(mm, address);
4579 if (!new)
4580 return -ENOMEM;
4581
4582 smp_wmb(); /* See comment in __pte_alloc */
4583
4584 spin_lock(&mm->page_table_lock);
4585 if (pgd_present(*pgd)) /* Another has populated it */
4586 p4d_free(mm, new);
4587 else
4588 pgd_populate(mm, pgd, new);
4589 spin_unlock(&mm->page_table_lock);
4590 return 0;
4591 }
4592 #endif /* __PAGETABLE_P4D_FOLDED */
4593
4594 #ifndef __PAGETABLE_PUD_FOLDED
4595 /*
4596 * Allocate page upper directory.
4597 * We've already handled the fast-path in-line.
4598 */
4599 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4600 {
4601 pud_t *new = pud_alloc_one(mm, address);
4602 if (!new)
4603 return -ENOMEM;
4604
4605 smp_wmb(); /* See comment in __pte_alloc */
4606
4607 spin_lock(&mm->page_table_lock);
4608 if (!p4d_present(*p4d)) {
4609 mm_inc_nr_puds(mm);
4610 p4d_populate(mm, p4d, new);
4611 } else /* Another has populated it */
4612 pud_free(mm, new);
4613 spin_unlock(&mm->page_table_lock);
4614 return 0;
4615 }
4616 #endif /* __PAGETABLE_PUD_FOLDED */
4617
4618 #ifndef __PAGETABLE_PMD_FOLDED
4619 /*
4620 * Allocate page middle directory.
4621 * We've already handled the fast-path in-line.
4622 */
4623 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4624 {
4625 spinlock_t *ptl;
4626 pmd_t *new = pmd_alloc_one(mm, address);
4627 if (!new)
4628 return -ENOMEM;
4629
4630 smp_wmb(); /* See comment in __pte_alloc */
4631
4632 ptl = pud_lock(mm, pud);
4633 if (!pud_present(*pud)) {
4634 mm_inc_nr_pmds(mm);
4635 pud_populate(mm, pud, new);
4636 } else /* Another has populated it */
4637 pmd_free(mm, new);
4638 spin_unlock(ptl);
4639 return 0;
4640 }
4641 #endif /* __PAGETABLE_PMD_FOLDED */
4642
4643 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4644 struct mmu_notifier_range *range, pte_t **ptepp,
4645 pmd_t **pmdpp, spinlock_t **ptlp)
4646 {
4647 pgd_t *pgd;
4648 p4d_t *p4d;
4649 pud_t *pud;
4650 pmd_t *pmd;
4651 pte_t *ptep;
4652
4653 pgd = pgd_offset(mm, address);
4654 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4655 goto out;
4656
4657 p4d = p4d_offset(pgd, address);
4658 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4659 goto out;
4660
4661 pud = pud_offset(p4d, address);
4662 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4663 goto out;
4664
4665 pmd = pmd_offset(pud, address);
4666 VM_BUG_ON(pmd_trans_huge(*pmd));
4667
4668 if (pmd_huge(*pmd)) {
4669 if (!pmdpp)
4670 goto out;
4671
4672 if (range) {
4673 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4674 NULL, mm, address & PMD_MASK,
4675 (address & PMD_MASK) + PMD_SIZE);
4676 mmu_notifier_invalidate_range_start(range);
4677 }
4678 *ptlp = pmd_lock(mm, pmd);
4679 if (pmd_huge(*pmd)) {
4680 *pmdpp = pmd;
4681 return 0;
4682 }
4683 spin_unlock(*ptlp);
4684 if (range)
4685 mmu_notifier_invalidate_range_end(range);
4686 }
4687
4688 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4689 goto out;
4690
4691 if (range) {
4692 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4693 address & PAGE_MASK,
4694 (address & PAGE_MASK) + PAGE_SIZE);
4695 mmu_notifier_invalidate_range_start(range);
4696 }
4697 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4698 if (!pte_present(*ptep))
4699 goto unlock;
4700 *ptepp = ptep;
4701 return 0;
4702 unlock:
4703 pte_unmap_unlock(ptep, *ptlp);
4704 if (range)
4705 mmu_notifier_invalidate_range_end(range);
4706 out:
4707 return -EINVAL;
4708 }
4709
4710 /**
4711 * follow_pte - look up PTE at a user virtual address
4712 * @mm: the mm_struct of the target address space
4713 * @address: user virtual address
4714 * @ptepp: location to store found PTE
4715 * @ptlp: location to store the lock for the PTE
4716 *
4717 * On a successful return, the pointer to the PTE is stored in @ptepp;
4718 * the corresponding lock is taken and its location is stored in @ptlp.
4719 * The contents of the PTE are only stable until @ptlp is released;
4720 * any further use, if any, must be protected against invalidation
4721 * with MMU notifiers.
4722 *
4723 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4724 * should be taken for read.
4725 *
4726 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4727 * it is not a good general-purpose API.
4728 *
4729 * Return: zero on success, -ve otherwise.
4730 */
4731 int follow_pte(struct mm_struct *mm, unsigned long address,
4732 pte_t **ptepp, spinlock_t **ptlp)
4733 {
4734 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4735 }
4736 EXPORT_SYMBOL_GPL(follow_pte);
4737
4738 /**
4739 * follow_pfn - look up PFN at a user virtual address
4740 * @vma: memory mapping
4741 * @address: user virtual address
4742 * @pfn: location to store found PFN
4743 *
4744 * Only IO mappings and raw PFN mappings are allowed.
4745 *
4746 * This function does not allow the caller to read the permissions
4747 * of the PTE. Do not use it.
4748 *
4749 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4750 */
4751 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4752 unsigned long *pfn)
4753 {
4754 int ret = -EINVAL;
4755 spinlock_t *ptl;
4756 pte_t *ptep;
4757
4758 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4759 return ret;
4760
4761 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4762 if (ret)
4763 return ret;
4764 *pfn = pte_pfn(*ptep);
4765 pte_unmap_unlock(ptep, ptl);
4766 return 0;
4767 }
4768 EXPORT_SYMBOL(follow_pfn);
4769
4770 #ifdef CONFIG_HAVE_IOREMAP_PROT
4771 int follow_phys(struct vm_area_struct *vma,
4772 unsigned long address, unsigned int flags,
4773 unsigned long *prot, resource_size_t *phys)
4774 {
4775 int ret = -EINVAL;
4776 pte_t *ptep, pte;
4777 spinlock_t *ptl;
4778
4779 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4780 goto out;
4781
4782 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4783 goto out;
4784 pte = *ptep;
4785
4786 if ((flags & FOLL_WRITE) && !pte_write(pte))
4787 goto unlock;
4788
4789 *prot = pgprot_val(pte_pgprot(pte));
4790 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4791
4792 ret = 0;
4793 unlock:
4794 pte_unmap_unlock(ptep, ptl);
4795 out:
4796 return ret;
4797 }
4798
4799 /**
4800 * generic_access_phys - generic implementation for iomem mmap access
4801 * @vma: the vma to access
4802 * @addr: userspace addres, not relative offset within @vma
4803 * @buf: buffer to read/write
4804 * @len: length of transfer
4805 * @write: set to FOLL_WRITE when writing, otherwise reading
4806 *
4807 * This is a generic implementation for &vm_operations_struct.access for an
4808 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4809 * not page based.
4810 */
4811 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4812 void *buf, int len, int write)
4813 {
4814 resource_size_t phys_addr;
4815 unsigned long prot = 0;
4816 void __iomem *maddr;
4817 pte_t *ptep, pte;
4818 spinlock_t *ptl;
4819 int offset = offset_in_page(addr);
4820 int ret = -EINVAL;
4821
4822 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4823 return -EINVAL;
4824
4825 retry:
4826 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4827 return -EINVAL;
4828 pte = *ptep;
4829 pte_unmap_unlock(ptep, ptl);
4830
4831 prot = pgprot_val(pte_pgprot(pte));
4832 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4833
4834 if ((write & FOLL_WRITE) && !pte_write(pte))
4835 return -EINVAL;
4836
4837 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4838 if (!maddr)
4839 return -ENOMEM;
4840
4841 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4842 goto out_unmap;
4843
4844 if (!pte_same(pte, *ptep)) {
4845 pte_unmap_unlock(ptep, ptl);
4846 iounmap(maddr);
4847
4848 goto retry;
4849 }
4850
4851 if (write)
4852 memcpy_toio(maddr + offset, buf, len);
4853 else
4854 memcpy_fromio(buf, maddr + offset, len);
4855 ret = len;
4856 pte_unmap_unlock(ptep, ptl);
4857 out_unmap:
4858 iounmap(maddr);
4859
4860 return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(generic_access_phys);
4863 #endif
4864
4865 /*
4866 * Access another process' address space as given in mm.
4867 */
4868 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4869 int len, unsigned int gup_flags)
4870 {
4871 struct vm_area_struct *vma;
4872 void *old_buf = buf;
4873 int write = gup_flags & FOLL_WRITE;
4874
4875 if (mmap_read_lock_killable(mm))
4876 return 0;
4877
4878 /* ignore errors, just check how much was successfully transferred */
4879 while (len) {
4880 int bytes, ret, offset;
4881 void *maddr;
4882 struct page *page = NULL;
4883
4884 ret = get_user_pages_remote(mm, addr, 1,
4885 gup_flags, &page, &vma, NULL);
4886 if (ret <= 0) {
4887 #ifndef CONFIG_HAVE_IOREMAP_PROT
4888 break;
4889 #else
4890 /*
4891 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4892 * we can access using slightly different code.
4893 */
4894 vma = find_vma(mm, addr);
4895 if (!vma || vma->vm_start > addr)
4896 break;
4897 if (vma->vm_ops && vma->vm_ops->access)
4898 ret = vma->vm_ops->access(vma, addr, buf,
4899 len, write);
4900 if (ret <= 0)
4901 break;
4902 bytes = ret;
4903 #endif
4904 } else {
4905 bytes = len;
4906 offset = addr & (PAGE_SIZE-1);
4907 if (bytes > PAGE_SIZE-offset)
4908 bytes = PAGE_SIZE-offset;
4909
4910 maddr = kmap(page);
4911 if (write) {
4912 copy_to_user_page(vma, page, addr,
4913 maddr + offset, buf, bytes);
4914 set_page_dirty_lock(page);
4915 } else {
4916 copy_from_user_page(vma, page, addr,
4917 buf, maddr + offset, bytes);
4918 }
4919 kunmap(page);
4920 put_page(page);
4921 }
4922 len -= bytes;
4923 buf += bytes;
4924 addr += bytes;
4925 }
4926 mmap_read_unlock(mm);
4927
4928 return buf - old_buf;
4929 }
4930
4931 /**
4932 * access_remote_vm - access another process' address space
4933 * @mm: the mm_struct of the target address space
4934 * @addr: start address to access
4935 * @buf: source or destination buffer
4936 * @len: number of bytes to transfer
4937 * @gup_flags: flags modifying lookup behaviour
4938 *
4939 * The caller must hold a reference on @mm.
4940 *
4941 * Return: number of bytes copied from source to destination.
4942 */
4943 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4944 void *buf, int len, unsigned int gup_flags)
4945 {
4946 return __access_remote_vm(mm, addr, buf, len, gup_flags);
4947 }
4948
4949 /*
4950 * Access another process' address space.
4951 * Source/target buffer must be kernel space,
4952 * Do not walk the page table directly, use get_user_pages
4953 */
4954 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4955 void *buf, int len, unsigned int gup_flags)
4956 {
4957 struct mm_struct *mm;
4958 int ret;
4959
4960 mm = get_task_mm(tsk);
4961 if (!mm)
4962 return 0;
4963
4964 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4965
4966 mmput(mm);
4967
4968 return ret;
4969 }
4970 EXPORT_SYMBOL_GPL(access_process_vm);
4971
4972 /*
4973 * Print the name of a VMA.
4974 */
4975 void print_vma_addr(char *prefix, unsigned long ip)
4976 {
4977 struct mm_struct *mm = current->mm;
4978 struct vm_area_struct *vma;
4979
4980 /*
4981 * we might be running from an atomic context so we cannot sleep
4982 */
4983 if (!mmap_read_trylock(mm))
4984 return;
4985
4986 vma = find_vma(mm, ip);
4987 if (vma && vma->vm_file) {
4988 struct file *f = vma->vm_file;
4989 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4990 if (buf) {
4991 char *p;
4992
4993 p = file_path(f, buf, PAGE_SIZE);
4994 if (IS_ERR(p))
4995 p = "?";
4996 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4997 vma->vm_start,
4998 vma->vm_end - vma->vm_start);
4999 free_page((unsigned long)buf);
5000 }
5001 }
5002 mmap_read_unlock(mm);
5003 }
5004
5005 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5006 void __might_fault(const char *file, int line)
5007 {
5008 /*
5009 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5010 * holding the mmap_lock, this is safe because kernel memory doesn't
5011 * get paged out, therefore we'll never actually fault, and the
5012 * below annotations will generate false positives.
5013 */
5014 if (uaccess_kernel())
5015 return;
5016 if (pagefault_disabled())
5017 return;
5018 __might_sleep(file, line, 0);
5019 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5020 if (current->mm)
5021 might_lock_read(&current->mm->mmap_lock);
5022 #endif
5023 }
5024 EXPORT_SYMBOL(__might_fault);
5025 #endif
5026
5027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5028 /*
5029 * Process all subpages of the specified huge page with the specified
5030 * operation. The target subpage will be processed last to keep its
5031 * cache lines hot.
5032 */
5033 static inline void process_huge_page(
5034 unsigned long addr_hint, unsigned int pages_per_huge_page,
5035 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5036 void *arg)
5037 {
5038 int i, n, base, l;
5039 unsigned long addr = addr_hint &
5040 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5041
5042 /* Process target subpage last to keep its cache lines hot */
5043 might_sleep();
5044 n = (addr_hint - addr) / PAGE_SIZE;
5045 if (2 * n <= pages_per_huge_page) {
5046 /* If target subpage in first half of huge page */
5047 base = 0;
5048 l = n;
5049 /* Process subpages at the end of huge page */
5050 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5051 cond_resched();
5052 process_subpage(addr + i * PAGE_SIZE, i, arg);
5053 }
5054 } else {
5055 /* If target subpage in second half of huge page */
5056 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5057 l = pages_per_huge_page - n;
5058 /* Process subpages at the begin of huge page */
5059 for (i = 0; i < base; i++) {
5060 cond_resched();
5061 process_subpage(addr + i * PAGE_SIZE, i, arg);
5062 }
5063 }
5064 /*
5065 * Process remaining subpages in left-right-left-right pattern
5066 * towards the target subpage
5067 */
5068 for (i = 0; i < l; i++) {
5069 int left_idx = base + i;
5070 int right_idx = base + 2 * l - 1 - i;
5071
5072 cond_resched();
5073 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5074 cond_resched();
5075 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5076 }
5077 }
5078
5079 static void clear_gigantic_page(struct page *page,
5080 unsigned long addr,
5081 unsigned int pages_per_huge_page)
5082 {
5083 int i;
5084 struct page *p = page;
5085
5086 might_sleep();
5087 for (i = 0; i < pages_per_huge_page;
5088 i++, p = mem_map_next(p, page, i)) {
5089 cond_resched();
5090 clear_user_highpage(p, addr + i * PAGE_SIZE);
5091 }
5092 }
5093
5094 static void clear_subpage(unsigned long addr, int idx, void *arg)
5095 {
5096 struct page *page = arg;
5097
5098 clear_user_highpage(page + idx, addr);
5099 }
5100
5101 void clear_huge_page(struct page *page,
5102 unsigned long addr_hint, unsigned int pages_per_huge_page)
5103 {
5104 unsigned long addr = addr_hint &
5105 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5106
5107 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5108 clear_gigantic_page(page, addr, pages_per_huge_page);
5109 return;
5110 }
5111
5112 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5113 }
5114
5115 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5116 unsigned long addr,
5117 struct vm_area_struct *vma,
5118 unsigned int pages_per_huge_page)
5119 {
5120 int i;
5121 struct page *dst_base = dst;
5122 struct page *src_base = src;
5123
5124 for (i = 0; i < pages_per_huge_page; ) {
5125 cond_resched();
5126 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5127
5128 i++;
5129 dst = mem_map_next(dst, dst_base, i);
5130 src = mem_map_next(src, src_base, i);
5131 }
5132 }
5133
5134 struct copy_subpage_arg {
5135 struct page *dst;
5136 struct page *src;
5137 struct vm_area_struct *vma;
5138 };
5139
5140 static void copy_subpage(unsigned long addr, int idx, void *arg)
5141 {
5142 struct copy_subpage_arg *copy_arg = arg;
5143
5144 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5145 addr, copy_arg->vma);
5146 }
5147
5148 void copy_user_huge_page(struct page *dst, struct page *src,
5149 unsigned long addr_hint, struct vm_area_struct *vma,
5150 unsigned int pages_per_huge_page)
5151 {
5152 unsigned long addr = addr_hint &
5153 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5154 struct copy_subpage_arg arg = {
5155 .dst = dst,
5156 .src = src,
5157 .vma = vma,
5158 };
5159
5160 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5161 copy_user_gigantic_page(dst, src, addr, vma,
5162 pages_per_huge_page);
5163 return;
5164 }
5165
5166 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5167 }
5168
5169 long copy_huge_page_from_user(struct page *dst_page,
5170 const void __user *usr_src,
5171 unsigned int pages_per_huge_page,
5172 bool allow_pagefault)
5173 {
5174 void *src = (void *)usr_src;
5175 void *page_kaddr;
5176 unsigned long i, rc = 0;
5177 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5178 struct page *subpage = dst_page;
5179
5180 for (i = 0; i < pages_per_huge_page;
5181 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5182 if (allow_pagefault)
5183 page_kaddr = kmap(subpage);
5184 else
5185 page_kaddr = kmap_atomic(subpage);
5186 rc = copy_from_user(page_kaddr,
5187 (const void __user *)(src + i * PAGE_SIZE),
5188 PAGE_SIZE);
5189 if (allow_pagefault)
5190 kunmap(subpage);
5191 else
5192 kunmap_atomic(page_kaddr);
5193
5194 ret_val -= (PAGE_SIZE - rc);
5195 if (rc)
5196 break;
5197
5198 cond_resched();
5199 }
5200 return ret_val;
5201 }
5202 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5203
5204 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5205
5206 static struct kmem_cache *page_ptl_cachep;
5207
5208 void __init ptlock_cache_init(void)
5209 {
5210 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5211 SLAB_PANIC, NULL);
5212 }
5213
5214 bool ptlock_alloc(struct page *page)
5215 {
5216 spinlock_t *ptl;
5217
5218 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5219 if (!ptl)
5220 return false;
5221 page->ptl = ptl;
5222 return true;
5223 }
5224
5225 void ptlock_free(struct page *page)
5226 {
5227 kmem_cache_free(page_ptl_cachep, page->ptl);
5228 }
5229 #endif