]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory.c
Merge tag 'sunxi-dt-for-5.10-2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "internal.h"
87
88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
90 #endif
91
92 #ifndef CONFIG_NEED_MULTIPLE_NODES
93 /* use the per-pgdat data instead for discontigmem - mbligh */
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 1;
120 #else
121 2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133 }
134 #endif
135
136 static int __init disable_randmaps(char *s)
137 {
138 randomize_va_space = 0;
139 return 1;
140 }
141 __setup("norandmaps", disable_randmaps);
142
143 unsigned long zero_pfn __read_mostly;
144 EXPORT_SYMBOL(zero_pfn);
145
146 unsigned long highest_memmap_pfn __read_mostly;
147
148 /*
149 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 */
151 static int __init init_zero_pfn(void)
152 {
153 zero_pfn = page_to_pfn(ZERO_PAGE(0));
154 return 0;
155 }
156 core_initcall(init_zero_pfn);
157
158 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
159 {
160 trace_rss_stat(mm, member, count);
161 }
162
163 #if defined(SPLIT_RSS_COUNTING)
164
165 void sync_mm_rss(struct mm_struct *mm)
166 {
167 int i;
168
169 for (i = 0; i < NR_MM_COUNTERS; i++) {
170 if (current->rss_stat.count[i]) {
171 add_mm_counter(mm, i, current->rss_stat.count[i]);
172 current->rss_stat.count[i] = 0;
173 }
174 }
175 current->rss_stat.events = 0;
176 }
177
178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 {
180 struct task_struct *task = current;
181
182 if (likely(task->mm == mm))
183 task->rss_stat.count[member] += val;
184 else
185 add_mm_counter(mm, member, val);
186 }
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH (64)
192 static void check_sync_rss_stat(struct task_struct *task)
193 {
194 if (unlikely(task != current))
195 return;
196 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
197 sync_mm_rss(task->mm);
198 }
199 #else /* SPLIT_RSS_COUNTING */
200
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 }
207
208 #endif /* SPLIT_RSS_COUNTING */
209
210 /*
211 * Note: this doesn't free the actual pages themselves. That
212 * has been handled earlier when unmapping all the memory regions.
213 */
214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
215 unsigned long addr)
216 {
217 pgtable_t token = pmd_pgtable(*pmd);
218 pmd_clear(pmd);
219 pte_free_tlb(tlb, token, addr);
220 mm_dec_nr_ptes(tlb->mm);
221 }
222
223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
226 {
227 pmd_t *pmd;
228 unsigned long next;
229 unsigned long start;
230
231 start = addr;
232 pmd = pmd_offset(pud, addr);
233 do {
234 next = pmd_addr_end(addr, end);
235 if (pmd_none_or_clear_bad(pmd))
236 continue;
237 free_pte_range(tlb, pmd, addr);
238 } while (pmd++, addr = next, addr != end);
239
240 start &= PUD_MASK;
241 if (start < floor)
242 return;
243 if (ceiling) {
244 ceiling &= PUD_MASK;
245 if (!ceiling)
246 return;
247 }
248 if (end - 1 > ceiling - 1)
249 return;
250
251 pmd = pmd_offset(pud, start);
252 pud_clear(pud);
253 pmd_free_tlb(tlb, pmd, start);
254 mm_dec_nr_pmds(tlb->mm);
255 }
256
257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
258 unsigned long addr, unsigned long end,
259 unsigned long floor, unsigned long ceiling)
260 {
261 pud_t *pud;
262 unsigned long next;
263 unsigned long start;
264
265 start = addr;
266 pud = pud_offset(p4d, addr);
267 do {
268 next = pud_addr_end(addr, end);
269 if (pud_none_or_clear_bad(pud))
270 continue;
271 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
272 } while (pud++, addr = next, addr != end);
273
274 start &= P4D_MASK;
275 if (start < floor)
276 return;
277 if (ceiling) {
278 ceiling &= P4D_MASK;
279 if (!ceiling)
280 return;
281 }
282 if (end - 1 > ceiling - 1)
283 return;
284
285 pud = pud_offset(p4d, start);
286 p4d_clear(p4d);
287 pud_free_tlb(tlb, pud, start);
288 mm_dec_nr_puds(tlb->mm);
289 }
290
291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292 unsigned long addr, unsigned long end,
293 unsigned long floor, unsigned long ceiling)
294 {
295 p4d_t *p4d;
296 unsigned long next;
297 unsigned long start;
298
299 start = addr;
300 p4d = p4d_offset(pgd, addr);
301 do {
302 next = p4d_addr_end(addr, end);
303 if (p4d_none_or_clear_bad(p4d))
304 continue;
305 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306 } while (p4d++, addr = next, addr != end);
307
308 start &= PGDIR_MASK;
309 if (start < floor)
310 return;
311 if (ceiling) {
312 ceiling &= PGDIR_MASK;
313 if (!ceiling)
314 return;
315 }
316 if (end - 1 > ceiling - 1)
317 return;
318
319 p4d = p4d_offset(pgd, start);
320 pgd_clear(pgd);
321 p4d_free_tlb(tlb, p4d, start);
322 }
323
324 /*
325 * This function frees user-level page tables of a process.
326 */
327 void free_pgd_range(struct mmu_gather *tlb,
328 unsigned long addr, unsigned long end,
329 unsigned long floor, unsigned long ceiling)
330 {
331 pgd_t *pgd;
332 unsigned long next;
333
334 /*
335 * The next few lines have given us lots of grief...
336 *
337 * Why are we testing PMD* at this top level? Because often
338 * there will be no work to do at all, and we'd prefer not to
339 * go all the way down to the bottom just to discover that.
340 *
341 * Why all these "- 1"s? Because 0 represents both the bottom
342 * of the address space and the top of it (using -1 for the
343 * top wouldn't help much: the masks would do the wrong thing).
344 * The rule is that addr 0 and floor 0 refer to the bottom of
345 * the address space, but end 0 and ceiling 0 refer to the top
346 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 * that end 0 case should be mythical).
348 *
349 * Wherever addr is brought up or ceiling brought down, we must
350 * be careful to reject "the opposite 0" before it confuses the
351 * subsequent tests. But what about where end is brought down
352 * by PMD_SIZE below? no, end can't go down to 0 there.
353 *
354 * Whereas we round start (addr) and ceiling down, by different
355 * masks at different levels, in order to test whether a table
356 * now has no other vmas using it, so can be freed, we don't
357 * bother to round floor or end up - the tests don't need that.
358 */
359
360 addr &= PMD_MASK;
361 if (addr < floor) {
362 addr += PMD_SIZE;
363 if (!addr)
364 return;
365 }
366 if (ceiling) {
367 ceiling &= PMD_MASK;
368 if (!ceiling)
369 return;
370 }
371 if (end - 1 > ceiling - 1)
372 end -= PMD_SIZE;
373 if (addr > end - 1)
374 return;
375 /*
376 * We add page table cache pages with PAGE_SIZE,
377 * (see pte_free_tlb()), flush the tlb if we need
378 */
379 tlb_change_page_size(tlb, PAGE_SIZE);
380 pgd = pgd_offset(tlb->mm, addr);
381 do {
382 next = pgd_addr_end(addr, end);
383 if (pgd_none_or_clear_bad(pgd))
384 continue;
385 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
386 } while (pgd++, addr = next, addr != end);
387 }
388
389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
390 unsigned long floor, unsigned long ceiling)
391 {
392 while (vma) {
393 struct vm_area_struct *next = vma->vm_next;
394 unsigned long addr = vma->vm_start;
395
396 /*
397 * Hide vma from rmap and truncate_pagecache before freeing
398 * pgtables
399 */
400 unlink_anon_vmas(vma);
401 unlink_file_vma(vma);
402
403 if (is_vm_hugetlb_page(vma)) {
404 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 } else {
407 /*
408 * Optimization: gather nearby vmas into one call down
409 */
410 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
411 && !is_vm_hugetlb_page(next)) {
412 vma = next;
413 next = vma->vm_next;
414 unlink_anon_vmas(vma);
415 unlink_file_vma(vma);
416 }
417 free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
419 }
420 vma = next;
421 }
422 }
423
424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
425 {
426 spinlock_t *ptl;
427 pgtable_t new = pte_alloc_one(mm);
428 if (!new)
429 return -ENOMEM;
430
431 /*
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
435 *
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_rmb() barriers in page table walking code.
443 */
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445
446 ptl = pmd_lock(mm, pmd);
447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
448 mm_inc_nr_ptes(mm);
449 pmd_populate(mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(ptl);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456 }
457
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 smp_wmb(); /* See comment in __pte_alloc */
465
466 spin_lock(&init_mm.page_table_lock);
467 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
468 pmd_populate_kernel(&init_mm, pmd, new);
469 new = NULL;
470 }
471 spin_unlock(&init_mm.page_table_lock);
472 if (new)
473 pte_free_kernel(&init_mm, new);
474 return 0;
475 }
476
477 static inline void init_rss_vec(int *rss)
478 {
479 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 }
481
482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
483 {
484 int i;
485
486 if (current->mm == mm)
487 sync_mm_rss(mm);
488 for (i = 0; i < NR_MM_COUNTERS; i++)
489 if (rss[i])
490 add_mm_counter(mm, i, rss[i]);
491 }
492
493 /*
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
497 *
498 * The calling function must still handle the error.
499 */
500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 pte_t pte, struct page *page)
502 {
503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504 p4d_t *p4d = p4d_offset(pgd, addr);
505 pud_t *pud = pud_offset(p4d, addr);
506 pmd_t *pmd = pmd_offset(pud, addr);
507 struct address_space *mapping;
508 pgoff_t index;
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 return;
521 }
522 if (nr_unshown) {
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 index = linear_page_index(vma, addr);
534
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 current->comm,
537 (long long)pte_val(pte), (long long)pmd_val(*pmd));
538 if (page)
539 dump_page(page, "bad pte");
540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma->vm_file,
544 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 mapping ? mapping->a_ops->readpage : NULL);
547 dump_stack();
548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
549 }
550
551 /*
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 *
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 *
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
561 * described below.
562 *
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
566 *
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
571 *
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 *
574 * And for normal mappings this is false.
575 *
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
580 *
581 *
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 *
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
591 *
592 */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595 {
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 return NULL;
609
610 print_bad_pte(vma, addr, pte, NULL);
611 return NULL;
612 }
613
614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615
616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617 if (vma->vm_flags & VM_MIXEDMAP) {
618 if (!pfn_valid(pfn))
619 return NULL;
620 goto out;
621 } else {
622 unsigned long off;
623 off = (addr - vma->vm_start) >> PAGE_SHIFT;
624 if (pfn == vma->vm_pgoff + off)
625 return NULL;
626 if (!is_cow_mapping(vma->vm_flags))
627 return NULL;
628 }
629 }
630
631 if (is_zero_pfn(pfn))
632 return NULL;
633
634 check_pfn:
635 if (unlikely(pfn > highest_memmap_pfn)) {
636 print_bad_pte(vma, addr, pte, NULL);
637 return NULL;
638 }
639
640 /*
641 * NOTE! We still have PageReserved() pages in the page tables.
642 * eg. VDSO mappings can cause them to exist.
643 */
644 out:
645 return pfn_to_page(pfn);
646 }
647
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
650 pmd_t pmd)
651 {
652 unsigned long pfn = pmd_pfn(pmd);
653
654 /*
655 * There is no pmd_special() but there may be special pmds, e.g.
656 * in a direct-access (dax) mapping, so let's just replicate the
657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 */
659 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660 if (vma->vm_flags & VM_MIXEDMAP) {
661 if (!pfn_valid(pfn))
662 return NULL;
663 goto out;
664 } else {
665 unsigned long off;
666 off = (addr - vma->vm_start) >> PAGE_SHIFT;
667 if (pfn == vma->vm_pgoff + off)
668 return NULL;
669 if (!is_cow_mapping(vma->vm_flags))
670 return NULL;
671 }
672 }
673
674 if (pmd_devmap(pmd))
675 return NULL;
676 if (is_huge_zero_pmd(pmd))
677 return NULL;
678 if (unlikely(pfn > highest_memmap_pfn))
679 return NULL;
680
681 /*
682 * NOTE! We still have PageReserved() pages in the page tables.
683 * eg. VDSO mappings can cause them to exist.
684 */
685 out:
686 return pfn_to_page(pfn);
687 }
688 #endif
689
690 /*
691 * copy one vm_area from one task to the other. Assumes the page tables
692 * already present in the new task to be cleared in the whole range
693 * covered by this vma.
694 */
695
696 static inline unsigned long
697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
698 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
699 unsigned long addr, int *rss)
700 {
701 unsigned long vm_flags = vma->vm_flags;
702 pte_t pte = *src_pte;
703 struct page *page;
704
705 /* pte contains position in swap or file, so copy. */
706 if (unlikely(!pte_present(pte))) {
707 swp_entry_t entry = pte_to_swp_entry(pte);
708
709 if (likely(!non_swap_entry(entry))) {
710 if (swap_duplicate(entry) < 0)
711 return entry.val;
712
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm->mmlist))) {
715 spin_lock(&mmlist_lock);
716 if (list_empty(&dst_mm->mmlist))
717 list_add(&dst_mm->mmlist,
718 &src_mm->mmlist);
719 spin_unlock(&mmlist_lock);
720 }
721 rss[MM_SWAPENTS]++;
722 } else if (is_migration_entry(entry)) {
723 page = migration_entry_to_page(entry);
724
725 rss[mm_counter(page)]++;
726
727 if (is_write_migration_entry(entry) &&
728 is_cow_mapping(vm_flags)) {
729 /*
730 * COW mappings require pages in both
731 * parent and child to be set to read.
732 */
733 make_migration_entry_read(&entry);
734 pte = swp_entry_to_pte(entry);
735 if (pte_swp_soft_dirty(*src_pte))
736 pte = pte_swp_mksoft_dirty(pte);
737 if (pte_swp_uffd_wp(*src_pte))
738 pte = pte_swp_mkuffd_wp(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
740 }
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 if (pte_swp_uffd_wp(*src_pte))
769 pte = pte_swp_mkuffd_wp(pte);
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
772 }
773 goto out_set_pte;
774 }
775
776 /*
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
779 */
780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 ptep_set_wrprotect(src_mm, addr, src_pte);
782 pte = pte_wrprotect(pte);
783 }
784
785 /*
786 * If it's a shared mapping, mark it clean in
787 * the child
788 */
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
792
793 /*
794 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795 * does not have the VM_UFFD_WP, which means that the uffd
796 * fork event is not enabled.
797 */
798 if (!(vm_flags & VM_UFFD_WP))
799 pte = pte_clear_uffd_wp(pte);
800
801 page = vm_normal_page(vma, addr, pte);
802 if (page) {
803 get_page(page);
804 page_dup_rmap(page, false);
805 rss[mm_counter(page)]++;
806 }
807
808 out_set_pte:
809 set_pte_at(dst_mm, addr, dst_pte, pte);
810 return 0;
811 }
812
813 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
814 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
815 unsigned long addr, unsigned long end)
816 {
817 pte_t *orig_src_pte, *orig_dst_pte;
818 pte_t *src_pte, *dst_pte;
819 spinlock_t *src_ptl, *dst_ptl;
820 int progress = 0;
821 int rss[NR_MM_COUNTERS];
822 swp_entry_t entry = (swp_entry_t){0};
823
824 again:
825 init_rss_vec(rss);
826
827 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
828 if (!dst_pte)
829 return -ENOMEM;
830 src_pte = pte_offset_map(src_pmd, addr);
831 src_ptl = pte_lockptr(src_mm, src_pmd);
832 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
833 orig_src_pte = src_pte;
834 orig_dst_pte = dst_pte;
835 arch_enter_lazy_mmu_mode();
836
837 do {
838 /*
839 * We are holding two locks at this point - either of them
840 * could generate latencies in another task on another CPU.
841 */
842 if (progress >= 32) {
843 progress = 0;
844 if (need_resched() ||
845 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
846 break;
847 }
848 if (pte_none(*src_pte)) {
849 progress++;
850 continue;
851 }
852 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
853 vma, addr, rss);
854 if (entry.val)
855 break;
856 progress += 8;
857 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
858
859 arch_leave_lazy_mmu_mode();
860 spin_unlock(src_ptl);
861 pte_unmap(orig_src_pte);
862 add_mm_rss_vec(dst_mm, rss);
863 pte_unmap_unlock(orig_dst_pte, dst_ptl);
864 cond_resched();
865
866 if (entry.val) {
867 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
868 return -ENOMEM;
869 progress = 0;
870 }
871 if (addr != end)
872 goto again;
873 return 0;
874 }
875
876 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
878 unsigned long addr, unsigned long end)
879 {
880 pmd_t *src_pmd, *dst_pmd;
881 unsigned long next;
882
883 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
884 if (!dst_pmd)
885 return -ENOMEM;
886 src_pmd = pmd_offset(src_pud, addr);
887 do {
888 next = pmd_addr_end(addr, end);
889 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
890 || pmd_devmap(*src_pmd)) {
891 int err;
892 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
893 err = copy_huge_pmd(dst_mm, src_mm,
894 dst_pmd, src_pmd, addr, vma);
895 if (err == -ENOMEM)
896 return -ENOMEM;
897 if (!err)
898 continue;
899 /* fall through */
900 }
901 if (pmd_none_or_clear_bad(src_pmd))
902 continue;
903 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
904 vma, addr, next))
905 return -ENOMEM;
906 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
907 return 0;
908 }
909
910 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
912 unsigned long addr, unsigned long end)
913 {
914 pud_t *src_pud, *dst_pud;
915 unsigned long next;
916
917 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
918 if (!dst_pud)
919 return -ENOMEM;
920 src_pud = pud_offset(src_p4d, addr);
921 do {
922 next = pud_addr_end(addr, end);
923 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
924 int err;
925
926 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
927 err = copy_huge_pud(dst_mm, src_mm,
928 dst_pud, src_pud, addr, vma);
929 if (err == -ENOMEM)
930 return -ENOMEM;
931 if (!err)
932 continue;
933 /* fall through */
934 }
935 if (pud_none_or_clear_bad(src_pud))
936 continue;
937 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
938 vma, addr, next))
939 return -ENOMEM;
940 } while (dst_pud++, src_pud++, addr = next, addr != end);
941 return 0;
942 }
943
944 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
947 {
948 p4d_t *src_p4d, *dst_p4d;
949 unsigned long next;
950
951 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
952 if (!dst_p4d)
953 return -ENOMEM;
954 src_p4d = p4d_offset(src_pgd, addr);
955 do {
956 next = p4d_addr_end(addr, end);
957 if (p4d_none_or_clear_bad(src_p4d))
958 continue;
959 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
960 vma, addr, next))
961 return -ENOMEM;
962 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
963 return 0;
964 }
965
966 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 struct vm_area_struct *vma)
968 {
969 pgd_t *src_pgd, *dst_pgd;
970 unsigned long next;
971 unsigned long addr = vma->vm_start;
972 unsigned long end = vma->vm_end;
973 struct mmu_notifier_range range;
974 bool is_cow;
975 int ret;
976
977 /*
978 * Don't copy ptes where a page fault will fill them correctly.
979 * Fork becomes much lighter when there are big shared or private
980 * readonly mappings. The tradeoff is that copy_page_range is more
981 * efficient than faulting.
982 */
983 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
984 !vma->anon_vma)
985 return 0;
986
987 if (is_vm_hugetlb_page(vma))
988 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
989
990 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
991 /*
992 * We do not free on error cases below as remove_vma
993 * gets called on error from higher level routine
994 */
995 ret = track_pfn_copy(vma);
996 if (ret)
997 return ret;
998 }
999
1000 /*
1001 * We need to invalidate the secondary MMU mappings only when
1002 * there could be a permission downgrade on the ptes of the
1003 * parent mm. And a permission downgrade will only happen if
1004 * is_cow_mapping() returns true.
1005 */
1006 is_cow = is_cow_mapping(vma->vm_flags);
1007
1008 if (is_cow) {
1009 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1010 0, vma, src_mm, addr, end);
1011 mmu_notifier_invalidate_range_start(&range);
1012 }
1013
1014 ret = 0;
1015 dst_pgd = pgd_offset(dst_mm, addr);
1016 src_pgd = pgd_offset(src_mm, addr);
1017 do {
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(src_pgd))
1020 continue;
1021 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1022 vma, addr, next))) {
1023 ret = -ENOMEM;
1024 break;
1025 }
1026 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1027
1028 if (is_cow)
1029 mmu_notifier_invalidate_range_end(&range);
1030 return ret;
1031 }
1032
1033 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1034 struct vm_area_struct *vma, pmd_t *pmd,
1035 unsigned long addr, unsigned long end,
1036 struct zap_details *details)
1037 {
1038 struct mm_struct *mm = tlb->mm;
1039 int force_flush = 0;
1040 int rss[NR_MM_COUNTERS];
1041 spinlock_t *ptl;
1042 pte_t *start_pte;
1043 pte_t *pte;
1044 swp_entry_t entry;
1045
1046 tlb_change_page_size(tlb, PAGE_SIZE);
1047 again:
1048 init_rss_vec(rss);
1049 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1050 pte = start_pte;
1051 flush_tlb_batched_pending(mm);
1052 arch_enter_lazy_mmu_mode();
1053 do {
1054 pte_t ptent = *pte;
1055 if (pte_none(ptent))
1056 continue;
1057
1058 if (need_resched())
1059 break;
1060
1061 if (pte_present(ptent)) {
1062 struct page *page;
1063
1064 page = vm_normal_page(vma, addr, ptent);
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
1072 details->check_mapping != page_rmapping(page))
1073 continue;
1074 }
1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 tlb->fullmm);
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
1080
1081 if (!PageAnon(page)) {
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
1084 set_page_dirty(page);
1085 }
1086 if (pte_young(ptent) &&
1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 mark_page_accessed(page);
1089 }
1090 rss[mm_counter(page)]--;
1091 page_remove_rmap(page, false);
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1095 force_flush = 1;
1096 addr += PAGE_SIZE;
1097 break;
1098 }
1099 continue;
1100 }
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1126 continue;
1127
1128 if (!non_swap_entry(entry))
1129 rss[MM_SWAPENTS]--;
1130 else if (is_migration_entry(entry)) {
1131 struct page *page;
1132
1133 page = migration_entry_to_page(entry);
1134 rss[mm_counter(page)]--;
1135 }
1136 if (unlikely(!free_swap_and_cache(entry)))
1137 print_bad_pte(vma, addr, ptent, NULL);
1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141 add_mm_rss_vec(mm, rss);
1142 arch_leave_lazy_mmu_mode();
1143
1144 /* Do the actual TLB flush before dropping ptl */
1145 if (force_flush)
1146 tlb_flush_mmu_tlbonly(tlb);
1147 pte_unmap_unlock(start_pte, ptl);
1148
1149 /*
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1154 */
1155 if (force_flush) {
1156 force_flush = 0;
1157 tlb_flush_mmu(tlb);
1158 }
1159
1160 if (addr != end) {
1161 cond_resched();
1162 goto again;
1163 }
1164
1165 return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 struct vm_area_struct *vma, pud_t *pud,
1170 unsigned long addr, unsigned long end,
1171 struct zap_details *details)
1172 {
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 if (next - addr != HPAGE_PMD_SIZE)
1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 goto next;
1184 /* fall through */
1185 }
1186 /*
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_lock in read
1191 * mode.
1192 */
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 goto next;
1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 cond_resched();
1198 } while (pmd++, addr = next, addr != end);
1199
1200 return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, p4d_t *p4d,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207 {
1208 pud_t *pud;
1209 unsigned long next;
1210
1211 pud = pud_offset(p4d, addr);
1212 do {
1213 next = pud_addr_end(addr, end);
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
1216 mmap_assert_locked(tlb->mm);
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1219 goto next;
1220 /* fall through */
1221 }
1222 if (pud_none_or_clear_bad(pud))
1223 continue;
1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 cond_resched();
1227 } while (pud++, addr = next, addr != end);
1228
1229 return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236 {
1237 p4d_t *p4d;
1238 unsigned long next;
1239
1240 p4d = p4d_offset(pgd, addr);
1241 do {
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1244 continue;
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1247
1248 return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1255 {
1256 pgd_t *pgd;
1257 unsigned long next;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1276 {
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 }
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1313 }
1314
1315 /**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1336 {
1337 struct mmu_notifier_range range;
1338
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
1341 mmu_notifier_invalidate_range_start(&range);
1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1352 *
1353 * Caller must protect the VMA list
1354 */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 unsigned long size)
1357 {
1358 struct mmu_notifier_range range;
1359 struct mmu_gather tlb;
1360
1361 lru_add_drain();
1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 start, start + size);
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1379 *
1380 * The range must fit into one VMA.
1381 */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1384 {
1385 struct mmu_notifier_range range;
1386 struct mmu_gather tlb;
1387
1388 lru_add_drain();
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 address, address + size);
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
1409 */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size)
1412 {
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1415 return;
1416
1417 zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1422 {
1423 pgd_t *pgd;
1424 p4d_t *p4d;
1425 pud_t *pud;
1426 pmd_t *pmd;
1427
1428 pgd = pgd_offset(mm, addr);
1429 p4d = p4d_alloc(mm, pgd, addr);
1430 if (!p4d)
1431 return NULL;
1432 pud = pud_alloc(mm, p4d, addr);
1433 if (!pud)
1434 return NULL;
1435 pmd = pmd_alloc(mm, pud, addr);
1436 if (!pmd)
1437 return NULL;
1438
1439 VM_BUG_ON(pmd_trans_huge(*pmd));
1440 return pmd;
1441 }
1442
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1445 {
1446 pmd_t *pmd = walk_to_pmd(mm, addr);
1447
1448 if (!pmd)
1449 return NULL;
1450 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1451 }
1452
1453 static int validate_page_before_insert(struct page *page)
1454 {
1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 return -EINVAL;
1457 flush_dcache_page(page);
1458 return 0;
1459 }
1460
1461 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1462 unsigned long addr, struct page *page, pgprot_t prot)
1463 {
1464 if (!pte_none(*pte))
1465 return -EBUSY;
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
1468 inc_mm_counter_fast(mm, mm_counter_file(page));
1469 page_add_file_rmap(page, false);
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 return 0;
1472 }
1473
1474 /*
1475 * This is the old fallback for page remapping.
1476 *
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1480 */
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page, pgprot_t prot)
1483 {
1484 struct mm_struct *mm = vma->vm_mm;
1485 int retval;
1486 pte_t *pte;
1487 spinlock_t *ptl;
1488
1489 retval = validate_page_before_insert(page);
1490 if (retval)
1491 goto out;
1492 retval = -ENOMEM;
1493 pte = get_locked_pte(mm, addr, &ptl);
1494 if (!pte)
1495 goto out;
1496 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1497 pte_unmap_unlock(pte, ptl);
1498 out:
1499 return retval;
1500 }
1501
1502 #ifdef pte_index
1503 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1504 unsigned long addr, struct page *page, pgprot_t prot)
1505 {
1506 int err;
1507
1508 if (!page_count(page))
1509 return -EINVAL;
1510 err = validate_page_before_insert(page);
1511 if (err)
1512 return err;
1513 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1514 }
1515
1516 /* insert_pages() amortizes the cost of spinlock operations
1517 * when inserting pages in a loop. Arch *must* define pte_index.
1518 */
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520 struct page **pages, unsigned long *num, pgprot_t prot)
1521 {
1522 pmd_t *pmd = NULL;
1523 pte_t *start_pte, *pte;
1524 spinlock_t *pte_lock;
1525 struct mm_struct *const mm = vma->vm_mm;
1526 unsigned long curr_page_idx = 0;
1527 unsigned long remaining_pages_total = *num;
1528 unsigned long pages_to_write_in_pmd;
1529 int ret;
1530 more:
1531 ret = -EFAULT;
1532 pmd = walk_to_pmd(mm, addr);
1533 if (!pmd)
1534 goto out;
1535
1536 pages_to_write_in_pmd = min_t(unsigned long,
1537 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1538
1539 /* Allocate the PTE if necessary; takes PMD lock once only. */
1540 ret = -ENOMEM;
1541 if (pte_alloc(mm, pmd))
1542 goto out;
1543
1544 while (pages_to_write_in_pmd) {
1545 int pte_idx = 0;
1546 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547
1548 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1549 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1550 int err = insert_page_in_batch_locked(mm, pte,
1551 addr, pages[curr_page_idx], prot);
1552 if (unlikely(err)) {
1553 pte_unmap_unlock(start_pte, pte_lock);
1554 ret = err;
1555 remaining_pages_total -= pte_idx;
1556 goto out;
1557 }
1558 addr += PAGE_SIZE;
1559 ++curr_page_idx;
1560 }
1561 pte_unmap_unlock(start_pte, pte_lock);
1562 pages_to_write_in_pmd -= batch_size;
1563 remaining_pages_total -= batch_size;
1564 }
1565 if (remaining_pages_total)
1566 goto more;
1567 ret = 0;
1568 out:
1569 *num = remaining_pages_total;
1570 return ret;
1571 }
1572 #endif /* ifdef pte_index */
1573
1574 /**
1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576 * @vma: user vma to map to
1577 * @addr: target start user address of these pages
1578 * @pages: source kernel pages
1579 * @num: in: number of pages to map. out: number of pages that were *not*
1580 * mapped. (0 means all pages were successfully mapped).
1581 *
1582 * Preferred over vm_insert_page() when inserting multiple pages.
1583 *
1584 * In case of error, we may have mapped a subset of the provided
1585 * pages. It is the caller's responsibility to account for this case.
1586 *
1587 * The same restrictions apply as in vm_insert_page().
1588 */
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590 struct page **pages, unsigned long *num)
1591 {
1592 #ifdef pte_index
1593 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594
1595 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596 return -EFAULT;
1597 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598 BUG_ON(mmap_read_trylock(vma->vm_mm));
1599 BUG_ON(vma->vm_flags & VM_PFNMAP);
1600 vma->vm_flags |= VM_MIXEDMAP;
1601 }
1602 /* Defer page refcount checking till we're about to map that page. */
1603 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604 #else
1605 unsigned long idx = 0, pgcount = *num;
1606 int err = -EINVAL;
1607
1608 for (; idx < pgcount; ++idx) {
1609 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610 if (err)
1611 break;
1612 }
1613 *num = pgcount - idx;
1614 return err;
1615 #endif /* ifdef pte_index */
1616 }
1617 EXPORT_SYMBOL(vm_insert_pages);
1618
1619 /**
1620 * vm_insert_page - insert single page into user vma
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @page: source kernel page
1624 *
1625 * This allows drivers to insert individual pages they've allocated
1626 * into a user vma.
1627 *
1628 * The page has to be a nice clean _individual_ kernel allocation.
1629 * If you allocate a compound page, you need to have marked it as
1630 * such (__GFP_COMP), or manually just split the page up yourself
1631 * (see split_page()).
1632 *
1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634 * took an arbitrary page protection parameter. This doesn't allow
1635 * that. Your vma protection will have to be set up correctly, which
1636 * means that if you want a shared writable mapping, you'd better
1637 * ask for a shared writable mapping!
1638 *
1639 * The page does not need to be reserved.
1640 *
1641 * Usually this function is called from f_op->mmap() handler
1642 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644 * function from other places, for example from page-fault handler.
1645 *
1646 * Return: %0 on success, negative error code otherwise.
1647 */
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649 struct page *page)
1650 {
1651 if (addr < vma->vm_start || addr >= vma->vm_end)
1652 return -EFAULT;
1653 if (!page_count(page))
1654 return -EINVAL;
1655 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656 BUG_ON(mmap_read_trylock(vma->vm_mm));
1657 BUG_ON(vma->vm_flags & VM_PFNMAP);
1658 vma->vm_flags |= VM_MIXEDMAP;
1659 }
1660 return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663
1664 /*
1665 * __vm_map_pages - maps range of kernel pages into user vma
1666 * @vma: user vma to map to
1667 * @pages: pointer to array of source kernel pages
1668 * @num: number of pages in page array
1669 * @offset: user's requested vm_pgoff
1670 *
1671 * This allows drivers to map range of kernel pages into a user vma.
1672 *
1673 * Return: 0 on success and error code otherwise.
1674 */
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676 unsigned long num, unsigned long offset)
1677 {
1678 unsigned long count = vma_pages(vma);
1679 unsigned long uaddr = vma->vm_start;
1680 int ret, i;
1681
1682 /* Fail if the user requested offset is beyond the end of the object */
1683 if (offset >= num)
1684 return -ENXIO;
1685
1686 /* Fail if the user requested size exceeds available object size */
1687 if (count > num - offset)
1688 return -ENXIO;
1689
1690 for (i = 0; i < count; i++) {
1691 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692 if (ret < 0)
1693 return ret;
1694 uaddr += PAGE_SIZE;
1695 }
1696
1697 return 0;
1698 }
1699
1700 /**
1701 * vm_map_pages - maps range of kernel pages starts with non zero offset
1702 * @vma: user vma to map to
1703 * @pages: pointer to array of source kernel pages
1704 * @num: number of pages in page array
1705 *
1706 * Maps an object consisting of @num pages, catering for the user's
1707 * requested vm_pgoff
1708 *
1709 * If we fail to insert any page into the vma, the function will return
1710 * immediately leaving any previously inserted pages present. Callers
1711 * from the mmap handler may immediately return the error as their caller
1712 * will destroy the vma, removing any successfully inserted pages. Other
1713 * callers should make their own arrangements for calling unmap_region().
1714 *
1715 * Context: Process context. Called by mmap handlers.
1716 * Return: 0 on success and error code otherwise.
1717 */
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719 unsigned long num)
1720 {
1721 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722 }
1723 EXPORT_SYMBOL(vm_map_pages);
1724
1725 /**
1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727 * @vma: user vma to map to
1728 * @pages: pointer to array of source kernel pages
1729 * @num: number of pages in page array
1730 *
1731 * Similar to vm_map_pages(), except that it explicitly sets the offset
1732 * to 0. This function is intended for the drivers that did not consider
1733 * vm_pgoff.
1734 *
1735 * Context: Process context. Called by mmap handlers.
1736 * Return: 0 on success and error code otherwise.
1737 */
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739 unsigned long num)
1740 {
1741 return __vm_map_pages(vma, pages, num, 0);
1742 }
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1744
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746 pfn_t pfn, pgprot_t prot, bool mkwrite)
1747 {
1748 struct mm_struct *mm = vma->vm_mm;
1749 pte_t *pte, entry;
1750 spinlock_t *ptl;
1751
1752 pte = get_locked_pte(mm, addr, &ptl);
1753 if (!pte)
1754 return VM_FAULT_OOM;
1755 if (!pte_none(*pte)) {
1756 if (mkwrite) {
1757 /*
1758 * For read faults on private mappings the PFN passed
1759 * in may not match the PFN we have mapped if the
1760 * mapped PFN is a writeable COW page. In the mkwrite
1761 * case we are creating a writable PTE for a shared
1762 * mapping and we expect the PFNs to match. If they
1763 * don't match, we are likely racing with block
1764 * allocation and mapping invalidation so just skip the
1765 * update.
1766 */
1767 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1769 goto out_unlock;
1770 }
1771 entry = pte_mkyoung(*pte);
1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774 update_mmu_cache(vma, addr, pte);
1775 }
1776 goto out_unlock;
1777 }
1778
1779 /* Ok, finally just insert the thing.. */
1780 if (pfn_t_devmap(pfn))
1781 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782 else
1783 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1784
1785 if (mkwrite) {
1786 entry = pte_mkyoung(entry);
1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 }
1789
1790 set_pte_at(mm, addr, pte, entry);
1791 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1792
1793 out_unlock:
1794 pte_unmap_unlock(pte, ptl);
1795 return VM_FAULT_NOPAGE;
1796 }
1797
1798 /**
1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 * @pgprot: pgprot flags for the inserted page
1804 *
1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1806 * to override pgprot on a per-page basis.
1807 *
1808 * This only makes sense for IO mappings, and it makes no sense for
1809 * COW mappings. In general, using multiple vmas is preferable;
1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811 * impractical.
1812 *
1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814 * a value of @pgprot different from that of @vma->vm_page_prot.
1815 *
1816 * Context: Process context. May allocate using %GFP_KERNEL.
1817 * Return: vm_fault_t value.
1818 */
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820 unsigned long pfn, pgprot_t pgprot)
1821 {
1822 /*
1823 * Technically, architectures with pte_special can avoid all these
1824 * restrictions (same for remap_pfn_range). However we would like
1825 * consistency in testing and feature parity among all, so we should
1826 * try to keep these invariants in place for everybody.
1827 */
1828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830 (VM_PFNMAP|VM_MIXEDMAP));
1831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833
1834 if (addr < vma->vm_start || addr >= vma->vm_end)
1835 return VM_FAULT_SIGBUS;
1836
1837 if (!pfn_modify_allowed(pfn, pgprot))
1838 return VM_FAULT_SIGBUS;
1839
1840 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841
1842 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1843 false);
1844 }
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846
1847 /**
1848 * vmf_insert_pfn - insert single pfn into user vma
1849 * @vma: user vma to map to
1850 * @addr: target user address of this page
1851 * @pfn: source kernel pfn
1852 *
1853 * Similar to vm_insert_page, this allows drivers to insert individual pages
1854 * they've allocated into a user vma. Same comments apply.
1855 *
1856 * This function should only be called from a vm_ops->fault handler, and
1857 * in that case the handler should return the result of this function.
1858 *
1859 * vma cannot be a COW mapping.
1860 *
1861 * As this is called only for pages that do not currently exist, we
1862 * do not need to flush old virtual caches or the TLB.
1863 *
1864 * Context: Process context. May allocate using %GFP_KERNEL.
1865 * Return: vm_fault_t value.
1866 */
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868 unsigned long pfn)
1869 {
1870 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871 }
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1873
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875 {
1876 /* these checks mirror the abort conditions in vm_normal_page */
1877 if (vma->vm_flags & VM_MIXEDMAP)
1878 return true;
1879 if (pfn_t_devmap(pfn))
1880 return true;
1881 if (pfn_t_special(pfn))
1882 return true;
1883 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884 return true;
1885 return false;
1886 }
1887
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890 bool mkwrite)
1891 {
1892 int err;
1893
1894 BUG_ON(!vm_mixed_ok(vma, pfn));
1895
1896 if (addr < vma->vm_start || addr >= vma->vm_end)
1897 return VM_FAULT_SIGBUS;
1898
1899 track_pfn_insert(vma, &pgprot, pfn);
1900
1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902 return VM_FAULT_SIGBUS;
1903
1904 /*
1905 * If we don't have pte special, then we have to use the pfn_valid()
1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 * refcount the page if pfn_valid is true (hence insert_page rather
1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1909 * without pte special, it would there be refcounted as a normal page.
1910 */
1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1913 struct page *page;
1914
1915 /*
1916 * At this point we are committed to insert_page()
1917 * regardless of whether the caller specified flags that
1918 * result in pfn_t_has_page() == false.
1919 */
1920 page = pfn_to_page(pfn_t_to_pfn(pfn));
1921 err = insert_page(vma, addr, page, pgprot);
1922 } else {
1923 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924 }
1925
1926 if (err == -ENOMEM)
1927 return VM_FAULT_OOM;
1928 if (err < 0 && err != -EBUSY)
1929 return VM_FAULT_SIGBUS;
1930
1931 return VM_FAULT_NOPAGE;
1932 }
1933
1934 /**
1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936 * @vma: user vma to map to
1937 * @addr: target user address of this page
1938 * @pfn: source kernel pfn
1939 * @pgprot: pgprot flags for the inserted page
1940 *
1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers
1942 * to override pgprot on a per-page basis.
1943 *
1944 * Typically this function should be used by drivers to set caching- and
1945 * encryption bits different than those of @vma->vm_page_prot, because
1946 * the caching- or encryption mode may not be known at mmap() time.
1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948 * to set caching and encryption bits for those vmas (except for COW pages).
1949 * This is ensured by core vm only modifying these page table entries using
1950 * functions that don't touch caching- or encryption bits, using pte_modify()
1951 * if needed. (See for example mprotect()).
1952 * Also when new page-table entries are created, this is only done using the
1953 * fault() callback, and never using the value of vma->vm_page_prot,
1954 * except for page-table entries that point to anonymous pages as the result
1955 * of COW.
1956 *
1957 * Context: Process context. May allocate using %GFP_KERNEL.
1958 * Return: vm_fault_t value.
1959 */
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961 pfn_t pfn, pgprot_t pgprot)
1962 {
1963 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964 }
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1966
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968 pfn_t pfn)
1969 {
1970 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1973
1974 /*
1975 * If the insertion of PTE failed because someone else already added a
1976 * different entry in the mean time, we treat that as success as we assume
1977 * the same entry was actually inserted.
1978 */
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980 unsigned long addr, pfn_t pfn)
1981 {
1982 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1983 }
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985
1986 /*
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1990 */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 unsigned long addr, unsigned long end,
1993 unsigned long pfn, pgprot_t prot)
1994 {
1995 pte_t *pte;
1996 spinlock_t *ptl;
1997 int err = 0;
1998
1999 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2000 if (!pte)
2001 return -ENOMEM;
2002 arch_enter_lazy_mmu_mode();
2003 do {
2004 BUG_ON(!pte_none(*pte));
2005 if (!pfn_modify_allowed(pfn, prot)) {
2006 err = -EACCES;
2007 break;
2008 }
2009 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2010 pfn++;
2011 } while (pte++, addr += PAGE_SIZE, addr != end);
2012 arch_leave_lazy_mmu_mode();
2013 pte_unmap_unlock(pte - 1, ptl);
2014 return err;
2015 }
2016
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 unsigned long addr, unsigned long end,
2019 unsigned long pfn, pgprot_t prot)
2020 {
2021 pmd_t *pmd;
2022 unsigned long next;
2023 int err;
2024
2025 pfn -= addr >> PAGE_SHIFT;
2026 pmd = pmd_alloc(mm, pud, addr);
2027 if (!pmd)
2028 return -ENOMEM;
2029 VM_BUG_ON(pmd_trans_huge(*pmd));
2030 do {
2031 next = pmd_addr_end(addr, end);
2032 err = remap_pte_range(mm, pmd, addr, next,
2033 pfn + (addr >> PAGE_SHIFT), prot);
2034 if (err)
2035 return err;
2036 } while (pmd++, addr = next, addr != end);
2037 return 0;
2038 }
2039
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041 unsigned long addr, unsigned long end,
2042 unsigned long pfn, pgprot_t prot)
2043 {
2044 pud_t *pud;
2045 unsigned long next;
2046 int err;
2047
2048 pfn -= addr >> PAGE_SHIFT;
2049 pud = pud_alloc(mm, p4d, addr);
2050 if (!pud)
2051 return -ENOMEM;
2052 do {
2053 next = pud_addr_end(addr, end);
2054 err = remap_pmd_range(mm, pud, addr, next,
2055 pfn + (addr >> PAGE_SHIFT), prot);
2056 if (err)
2057 return err;
2058 } while (pud++, addr = next, addr != end);
2059 return 0;
2060 }
2061
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063 unsigned long addr, unsigned long end,
2064 unsigned long pfn, pgprot_t prot)
2065 {
2066 p4d_t *p4d;
2067 unsigned long next;
2068 int err;
2069
2070 pfn -= addr >> PAGE_SHIFT;
2071 p4d = p4d_alloc(mm, pgd, addr);
2072 if (!p4d)
2073 return -ENOMEM;
2074 do {
2075 next = p4d_addr_end(addr, end);
2076 err = remap_pud_range(mm, p4d, addr, next,
2077 pfn + (addr >> PAGE_SHIFT), prot);
2078 if (err)
2079 return err;
2080 } while (p4d++, addr = next, addr != end);
2081 return 0;
2082 }
2083
2084 /**
2085 * remap_pfn_range - remap kernel memory to userspace
2086 * @vma: user vma to map to
2087 * @addr: target page aligned user address to start at
2088 * @pfn: page frame number of kernel physical memory address
2089 * @size: size of mapping area
2090 * @prot: page protection flags for this mapping
2091 *
2092 * Note: this is only safe if the mm semaphore is held when called.
2093 *
2094 * Return: %0 on success, negative error code otherwise.
2095 */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099 pgd_t *pgd;
2100 unsigned long next;
2101 unsigned long end = addr + PAGE_ALIGN(size);
2102 struct mm_struct *mm = vma->vm_mm;
2103 unsigned long remap_pfn = pfn;
2104 int err;
2105
2106 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2107 return -EINVAL;
2108
2109 /*
2110 * Physically remapped pages are special. Tell the
2111 * rest of the world about it:
2112 * VM_IO tells people not to look at these pages
2113 * (accesses can have side effects).
2114 * VM_PFNMAP tells the core MM that the base pages are just
2115 * raw PFN mappings, and do not have a "struct page" associated
2116 * with them.
2117 * VM_DONTEXPAND
2118 * Disable vma merging and expanding with mremap().
2119 * VM_DONTDUMP
2120 * Omit vma from core dump, even when VM_IO turned off.
2121 *
2122 * There's a horrible special case to handle copy-on-write
2123 * behaviour that some programs depend on. We mark the "original"
2124 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2125 * See vm_normal_page() for details.
2126 */
2127 if (is_cow_mapping(vma->vm_flags)) {
2128 if (addr != vma->vm_start || end != vma->vm_end)
2129 return -EINVAL;
2130 vma->vm_pgoff = pfn;
2131 }
2132
2133 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2134 if (err)
2135 return -EINVAL;
2136
2137 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2138
2139 BUG_ON(addr >= end);
2140 pfn -= addr >> PAGE_SHIFT;
2141 pgd = pgd_offset(mm, addr);
2142 flush_cache_range(vma, addr, end);
2143 do {
2144 next = pgd_addr_end(addr, end);
2145 err = remap_p4d_range(mm, pgd, addr, next,
2146 pfn + (addr >> PAGE_SHIFT), prot);
2147 if (err)
2148 break;
2149 } while (pgd++, addr = next, addr != end);
2150
2151 if (err)
2152 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2153
2154 return err;
2155 }
2156 EXPORT_SYMBOL(remap_pfn_range);
2157
2158 /**
2159 * vm_iomap_memory - remap memory to userspace
2160 * @vma: user vma to map to
2161 * @start: start of the physical memory to be mapped
2162 * @len: size of area
2163 *
2164 * This is a simplified io_remap_pfn_range() for common driver use. The
2165 * driver just needs to give us the physical memory range to be mapped,
2166 * we'll figure out the rest from the vma information.
2167 *
2168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169 * whatever write-combining details or similar.
2170 *
2171 * Return: %0 on success, negative error code otherwise.
2172 */
2173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2174 {
2175 unsigned long vm_len, pfn, pages;
2176
2177 /* Check that the physical memory area passed in looks valid */
2178 if (start + len < start)
2179 return -EINVAL;
2180 /*
2181 * You *really* shouldn't map things that aren't page-aligned,
2182 * but we've historically allowed it because IO memory might
2183 * just have smaller alignment.
2184 */
2185 len += start & ~PAGE_MASK;
2186 pfn = start >> PAGE_SHIFT;
2187 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2188 if (pfn + pages < pfn)
2189 return -EINVAL;
2190
2191 /* We start the mapping 'vm_pgoff' pages into the area */
2192 if (vma->vm_pgoff > pages)
2193 return -EINVAL;
2194 pfn += vma->vm_pgoff;
2195 pages -= vma->vm_pgoff;
2196
2197 /* Can we fit all of the mapping? */
2198 vm_len = vma->vm_end - vma->vm_start;
2199 if (vm_len >> PAGE_SHIFT > pages)
2200 return -EINVAL;
2201
2202 /* Ok, let it rip */
2203 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2204 }
2205 EXPORT_SYMBOL(vm_iomap_memory);
2206
2207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 unsigned long addr, unsigned long end,
2209 pte_fn_t fn, void *data, bool create)
2210 {
2211 pte_t *pte;
2212 int err = 0;
2213 spinlock_t *ptl;
2214
2215 if (create) {
2216 pte = (mm == &init_mm) ?
2217 pte_alloc_kernel(pmd, addr) :
2218 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2219 if (!pte)
2220 return -ENOMEM;
2221 } else {
2222 pte = (mm == &init_mm) ?
2223 pte_offset_kernel(pmd, addr) :
2224 pte_offset_map_lock(mm, pmd, addr, &ptl);
2225 }
2226
2227 BUG_ON(pmd_huge(*pmd));
2228
2229 arch_enter_lazy_mmu_mode();
2230
2231 do {
2232 if (create || !pte_none(*pte)) {
2233 err = fn(pte++, addr, data);
2234 if (err)
2235 break;
2236 }
2237 } while (addr += PAGE_SIZE, addr != end);
2238
2239 arch_leave_lazy_mmu_mode();
2240
2241 if (mm != &init_mm)
2242 pte_unmap_unlock(pte-1, ptl);
2243 return err;
2244 }
2245
2246 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 unsigned long addr, unsigned long end,
2248 pte_fn_t fn, void *data, bool create)
2249 {
2250 pmd_t *pmd;
2251 unsigned long next;
2252 int err = 0;
2253
2254 BUG_ON(pud_huge(*pud));
2255
2256 if (create) {
2257 pmd = pmd_alloc(mm, pud, addr);
2258 if (!pmd)
2259 return -ENOMEM;
2260 } else {
2261 pmd = pmd_offset(pud, addr);
2262 }
2263 do {
2264 next = pmd_addr_end(addr, end);
2265 if (create || !pmd_none_or_clear_bad(pmd)) {
2266 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2267 create);
2268 if (err)
2269 break;
2270 }
2271 } while (pmd++, addr = next, addr != end);
2272 return err;
2273 }
2274
2275 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2276 unsigned long addr, unsigned long end,
2277 pte_fn_t fn, void *data, bool create)
2278 {
2279 pud_t *pud;
2280 unsigned long next;
2281 int err = 0;
2282
2283 if (create) {
2284 pud = pud_alloc(mm, p4d, addr);
2285 if (!pud)
2286 return -ENOMEM;
2287 } else {
2288 pud = pud_offset(p4d, addr);
2289 }
2290 do {
2291 next = pud_addr_end(addr, end);
2292 if (create || !pud_none_or_clear_bad(pud)) {
2293 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2294 create);
2295 if (err)
2296 break;
2297 }
2298 } while (pud++, addr = next, addr != end);
2299 return err;
2300 }
2301
2302 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2303 unsigned long addr, unsigned long end,
2304 pte_fn_t fn, void *data, bool create)
2305 {
2306 p4d_t *p4d;
2307 unsigned long next;
2308 int err = 0;
2309
2310 if (create) {
2311 p4d = p4d_alloc(mm, pgd, addr);
2312 if (!p4d)
2313 return -ENOMEM;
2314 } else {
2315 p4d = p4d_offset(pgd, addr);
2316 }
2317 do {
2318 next = p4d_addr_end(addr, end);
2319 if (create || !p4d_none_or_clear_bad(p4d)) {
2320 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2321 create);
2322 if (err)
2323 break;
2324 }
2325 } while (p4d++, addr = next, addr != end);
2326 return err;
2327 }
2328
2329 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2330 unsigned long size, pte_fn_t fn,
2331 void *data, bool create)
2332 {
2333 pgd_t *pgd;
2334 unsigned long next;
2335 unsigned long end = addr + size;
2336 int err = 0;
2337
2338 if (WARN_ON(addr >= end))
2339 return -EINVAL;
2340
2341 pgd = pgd_offset(mm, addr);
2342 do {
2343 next = pgd_addr_end(addr, end);
2344 if (!create && pgd_none_or_clear_bad(pgd))
2345 continue;
2346 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2347 if (err)
2348 break;
2349 } while (pgd++, addr = next, addr != end);
2350
2351 return err;
2352 }
2353
2354 /*
2355 * Scan a region of virtual memory, filling in page tables as necessary
2356 * and calling a provided function on each leaf page table.
2357 */
2358 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2359 unsigned long size, pte_fn_t fn, void *data)
2360 {
2361 return __apply_to_page_range(mm, addr, size, fn, data, true);
2362 }
2363 EXPORT_SYMBOL_GPL(apply_to_page_range);
2364
2365 /*
2366 * Scan a region of virtual memory, calling a provided function on
2367 * each leaf page table where it exists.
2368 *
2369 * Unlike apply_to_page_range, this does _not_ fill in page tables
2370 * where they are absent.
2371 */
2372 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2373 unsigned long size, pte_fn_t fn, void *data)
2374 {
2375 return __apply_to_page_range(mm, addr, size, fn, data, false);
2376 }
2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2378
2379 /*
2380 * handle_pte_fault chooses page fault handler according to an entry which was
2381 * read non-atomically. Before making any commitment, on those architectures
2382 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383 * parts, do_swap_page must check under lock before unmapping the pte and
2384 * proceeding (but do_wp_page is only called after already making such a check;
2385 * and do_anonymous_page can safely check later on).
2386 */
2387 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2388 pte_t *page_table, pte_t orig_pte)
2389 {
2390 int same = 1;
2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2392 if (sizeof(pte_t) > sizeof(unsigned long)) {
2393 spinlock_t *ptl = pte_lockptr(mm, pmd);
2394 spin_lock(ptl);
2395 same = pte_same(*page_table, orig_pte);
2396 spin_unlock(ptl);
2397 }
2398 #endif
2399 pte_unmap(page_table);
2400 return same;
2401 }
2402
2403 static inline bool cow_user_page(struct page *dst, struct page *src,
2404 struct vm_fault *vmf)
2405 {
2406 bool ret;
2407 void *kaddr;
2408 void __user *uaddr;
2409 bool locked = false;
2410 struct vm_area_struct *vma = vmf->vma;
2411 struct mm_struct *mm = vma->vm_mm;
2412 unsigned long addr = vmf->address;
2413
2414 if (likely(src)) {
2415 copy_user_highpage(dst, src, addr, vma);
2416 return true;
2417 }
2418
2419 /*
2420 * If the source page was a PFN mapping, we don't have
2421 * a "struct page" for it. We do a best-effort copy by
2422 * just copying from the original user address. If that
2423 * fails, we just zero-fill it. Live with it.
2424 */
2425 kaddr = kmap_atomic(dst);
2426 uaddr = (void __user *)(addr & PAGE_MASK);
2427
2428 /*
2429 * On architectures with software "accessed" bits, we would
2430 * take a double page fault, so mark it accessed here.
2431 */
2432 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2433 pte_t entry;
2434
2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2436 locked = true;
2437 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2438 /*
2439 * Other thread has already handled the fault
2440 * and update local tlb only
2441 */
2442 update_mmu_tlb(vma, addr, vmf->pte);
2443 ret = false;
2444 goto pte_unlock;
2445 }
2446
2447 entry = pte_mkyoung(vmf->orig_pte);
2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449 update_mmu_cache(vma, addr, vmf->pte);
2450 }
2451
2452 /*
2453 * This really shouldn't fail, because the page is there
2454 * in the page tables. But it might just be unreadable,
2455 * in which case we just give up and fill the result with
2456 * zeroes.
2457 */
2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2459 if (locked)
2460 goto warn;
2461
2462 /* Re-validate under PTL if the page is still mapped */
2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464 locked = true;
2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466 /* The PTE changed under us, update local tlb */
2467 update_mmu_tlb(vma, addr, vmf->pte);
2468 ret = false;
2469 goto pte_unlock;
2470 }
2471
2472 /*
2473 * The same page can be mapped back since last copy attempt.
2474 * Try to copy again under PTL.
2475 */
2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2477 /*
2478 * Give a warn in case there can be some obscure
2479 * use-case
2480 */
2481 warn:
2482 WARN_ON_ONCE(1);
2483 clear_page(kaddr);
2484 }
2485 }
2486
2487 ret = true;
2488
2489 pte_unlock:
2490 if (locked)
2491 pte_unmap_unlock(vmf->pte, vmf->ptl);
2492 kunmap_atomic(kaddr);
2493 flush_dcache_page(dst);
2494
2495 return ret;
2496 }
2497
2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2499 {
2500 struct file *vm_file = vma->vm_file;
2501
2502 if (vm_file)
2503 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2504
2505 /*
2506 * Special mappings (e.g. VDSO) do not have any file so fake
2507 * a default GFP_KERNEL for them.
2508 */
2509 return GFP_KERNEL;
2510 }
2511
2512 /*
2513 * Notify the address space that the page is about to become writable so that
2514 * it can prohibit this or wait for the page to get into an appropriate state.
2515 *
2516 * We do this without the lock held, so that it can sleep if it needs to.
2517 */
2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2519 {
2520 vm_fault_t ret;
2521 struct page *page = vmf->page;
2522 unsigned int old_flags = vmf->flags;
2523
2524 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2525
2526 if (vmf->vma->vm_file &&
2527 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2528 return VM_FAULT_SIGBUS;
2529
2530 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2531 /* Restore original flags so that caller is not surprised */
2532 vmf->flags = old_flags;
2533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2534 return ret;
2535 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2536 lock_page(page);
2537 if (!page->mapping) {
2538 unlock_page(page);
2539 return 0; /* retry */
2540 }
2541 ret |= VM_FAULT_LOCKED;
2542 } else
2543 VM_BUG_ON_PAGE(!PageLocked(page), page);
2544 return ret;
2545 }
2546
2547 /*
2548 * Handle dirtying of a page in shared file mapping on a write fault.
2549 *
2550 * The function expects the page to be locked and unlocks it.
2551 */
2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2553 {
2554 struct vm_area_struct *vma = vmf->vma;
2555 struct address_space *mapping;
2556 struct page *page = vmf->page;
2557 bool dirtied;
2558 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2559
2560 dirtied = set_page_dirty(page);
2561 VM_BUG_ON_PAGE(PageAnon(page), page);
2562 /*
2563 * Take a local copy of the address_space - page.mapping may be zeroed
2564 * by truncate after unlock_page(). The address_space itself remains
2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2566 * release semantics to prevent the compiler from undoing this copying.
2567 */
2568 mapping = page_rmapping(page);
2569 unlock_page(page);
2570
2571 if (!page_mkwrite)
2572 file_update_time(vma->vm_file);
2573
2574 /*
2575 * Throttle page dirtying rate down to writeback speed.
2576 *
2577 * mapping may be NULL here because some device drivers do not
2578 * set page.mapping but still dirty their pages
2579 *
2580 * Drop the mmap_lock before waiting on IO, if we can. The file
2581 * is pinning the mapping, as per above.
2582 */
2583 if ((dirtied || page_mkwrite) && mapping) {
2584 struct file *fpin;
2585
2586 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2587 balance_dirty_pages_ratelimited(mapping);
2588 if (fpin) {
2589 fput(fpin);
2590 return VM_FAULT_RETRY;
2591 }
2592 }
2593
2594 return 0;
2595 }
2596
2597 /*
2598 * Handle write page faults for pages that can be reused in the current vma
2599 *
2600 * This can happen either due to the mapping being with the VM_SHARED flag,
2601 * or due to us being the last reference standing to the page. In either
2602 * case, all we need to do here is to mark the page as writable and update
2603 * any related book-keeping.
2604 */
2605 static inline void wp_page_reuse(struct vm_fault *vmf)
2606 __releases(vmf->ptl)
2607 {
2608 struct vm_area_struct *vma = vmf->vma;
2609 struct page *page = vmf->page;
2610 pte_t entry;
2611 /*
2612 * Clear the pages cpupid information as the existing
2613 * information potentially belongs to a now completely
2614 * unrelated process.
2615 */
2616 if (page)
2617 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2618
2619 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2620 entry = pte_mkyoung(vmf->orig_pte);
2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2623 update_mmu_cache(vma, vmf->address, vmf->pte);
2624 pte_unmap_unlock(vmf->pte, vmf->ptl);
2625 }
2626
2627 /*
2628 * Handle the case of a page which we actually need to copy to a new page.
2629 *
2630 * Called with mmap_lock locked and the old page referenced, but
2631 * without the ptl held.
2632 *
2633 * High level logic flow:
2634 *
2635 * - Allocate a page, copy the content of the old page to the new one.
2636 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2637 * - Take the PTL. If the pte changed, bail out and release the allocated page
2638 * - If the pte is still the way we remember it, update the page table and all
2639 * relevant references. This includes dropping the reference the page-table
2640 * held to the old page, as well as updating the rmap.
2641 * - In any case, unlock the PTL and drop the reference we took to the old page.
2642 */
2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2644 {
2645 struct vm_area_struct *vma = vmf->vma;
2646 struct mm_struct *mm = vma->vm_mm;
2647 struct page *old_page = vmf->page;
2648 struct page *new_page = NULL;
2649 pte_t entry;
2650 int page_copied = 0;
2651 struct mmu_notifier_range range;
2652
2653 if (unlikely(anon_vma_prepare(vma)))
2654 goto oom;
2655
2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657 new_page = alloc_zeroed_user_highpage_movable(vma,
2658 vmf->address);
2659 if (!new_page)
2660 goto oom;
2661 } else {
2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2663 vmf->address);
2664 if (!new_page)
2665 goto oom;
2666
2667 if (!cow_user_page(new_page, old_page, vmf)) {
2668 /*
2669 * COW failed, if the fault was solved by other,
2670 * it's fine. If not, userspace would re-fault on
2671 * the same address and we will handle the fault
2672 * from the second attempt.
2673 */
2674 put_page(new_page);
2675 if (old_page)
2676 put_page(old_page);
2677 return 0;
2678 }
2679 }
2680
2681 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2682 goto oom_free_new;
2683 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2684
2685 __SetPageUptodate(new_page);
2686
2687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2688 vmf->address & PAGE_MASK,
2689 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2690 mmu_notifier_invalidate_range_start(&range);
2691
2692 /*
2693 * Re-check the pte - we dropped the lock
2694 */
2695 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2696 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2697 if (old_page) {
2698 if (!PageAnon(old_page)) {
2699 dec_mm_counter_fast(mm,
2700 mm_counter_file(old_page));
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 }
2703 } else {
2704 inc_mm_counter_fast(mm, MM_ANONPAGES);
2705 }
2706 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2707 entry = mk_pte(new_page, vma->vm_page_prot);
2708 entry = pte_sw_mkyoung(entry);
2709 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2710 /*
2711 * Clear the pte entry and flush it first, before updating the
2712 * pte with the new entry. This will avoid a race condition
2713 * seen in the presence of one thread doing SMC and another
2714 * thread doing COW.
2715 */
2716 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2717 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2718 lru_cache_add_inactive_or_unevictable(new_page, vma);
2719 /*
2720 * We call the notify macro here because, when using secondary
2721 * mmu page tables (such as kvm shadow page tables), we want the
2722 * new page to be mapped directly into the secondary page table.
2723 */
2724 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2725 update_mmu_cache(vma, vmf->address, vmf->pte);
2726 if (old_page) {
2727 /*
2728 * Only after switching the pte to the new page may
2729 * we remove the mapcount here. Otherwise another
2730 * process may come and find the rmap count decremented
2731 * before the pte is switched to the new page, and
2732 * "reuse" the old page writing into it while our pte
2733 * here still points into it and can be read by other
2734 * threads.
2735 *
2736 * The critical issue is to order this
2737 * page_remove_rmap with the ptp_clear_flush above.
2738 * Those stores are ordered by (if nothing else,)
2739 * the barrier present in the atomic_add_negative
2740 * in page_remove_rmap.
2741 *
2742 * Then the TLB flush in ptep_clear_flush ensures that
2743 * no process can access the old page before the
2744 * decremented mapcount is visible. And the old page
2745 * cannot be reused until after the decremented
2746 * mapcount is visible. So transitively, TLBs to
2747 * old page will be flushed before it can be reused.
2748 */
2749 page_remove_rmap(old_page, false);
2750 }
2751
2752 /* Free the old page.. */
2753 new_page = old_page;
2754 page_copied = 1;
2755 } else {
2756 update_mmu_tlb(vma, vmf->address, vmf->pte);
2757 }
2758
2759 if (new_page)
2760 put_page(new_page);
2761
2762 pte_unmap_unlock(vmf->pte, vmf->ptl);
2763 /*
2764 * No need to double call mmu_notifier->invalidate_range() callback as
2765 * the above ptep_clear_flush_notify() did already call it.
2766 */
2767 mmu_notifier_invalidate_range_only_end(&range);
2768 if (old_page) {
2769 /*
2770 * Don't let another task, with possibly unlocked vma,
2771 * keep the mlocked page.
2772 */
2773 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2774 lock_page(old_page); /* LRU manipulation */
2775 if (PageMlocked(old_page))
2776 munlock_vma_page(old_page);
2777 unlock_page(old_page);
2778 }
2779 put_page(old_page);
2780 }
2781 return page_copied ? VM_FAULT_WRITE : 0;
2782 oom_free_new:
2783 put_page(new_page);
2784 oom:
2785 if (old_page)
2786 put_page(old_page);
2787 return VM_FAULT_OOM;
2788 }
2789
2790 /**
2791 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2792 * writeable once the page is prepared
2793 *
2794 * @vmf: structure describing the fault
2795 *
2796 * This function handles all that is needed to finish a write page fault in a
2797 * shared mapping due to PTE being read-only once the mapped page is prepared.
2798 * It handles locking of PTE and modifying it.
2799 *
2800 * The function expects the page to be locked or other protection against
2801 * concurrent faults / writeback (such as DAX radix tree locks).
2802 *
2803 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2804 * we acquired PTE lock.
2805 */
2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2807 {
2808 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2809 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2810 &vmf->ptl);
2811 /*
2812 * We might have raced with another page fault while we released the
2813 * pte_offset_map_lock.
2814 */
2815 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2816 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2817 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 return VM_FAULT_NOPAGE;
2819 }
2820 wp_page_reuse(vmf);
2821 return 0;
2822 }
2823
2824 /*
2825 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826 * mapping
2827 */
2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2829 {
2830 struct vm_area_struct *vma = vmf->vma;
2831
2832 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2833 vm_fault_t ret;
2834
2835 pte_unmap_unlock(vmf->pte, vmf->ptl);
2836 vmf->flags |= FAULT_FLAG_MKWRITE;
2837 ret = vma->vm_ops->pfn_mkwrite(vmf);
2838 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2839 return ret;
2840 return finish_mkwrite_fault(vmf);
2841 }
2842 wp_page_reuse(vmf);
2843 return VM_FAULT_WRITE;
2844 }
2845
2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2847 __releases(vmf->ptl)
2848 {
2849 struct vm_area_struct *vma = vmf->vma;
2850 vm_fault_t ret = VM_FAULT_WRITE;
2851
2852 get_page(vmf->page);
2853
2854 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2855 vm_fault_t tmp;
2856
2857 pte_unmap_unlock(vmf->pte, vmf->ptl);
2858 tmp = do_page_mkwrite(vmf);
2859 if (unlikely(!tmp || (tmp &
2860 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2861 put_page(vmf->page);
2862 return tmp;
2863 }
2864 tmp = finish_mkwrite_fault(vmf);
2865 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2866 unlock_page(vmf->page);
2867 put_page(vmf->page);
2868 return tmp;
2869 }
2870 } else {
2871 wp_page_reuse(vmf);
2872 lock_page(vmf->page);
2873 }
2874 ret |= fault_dirty_shared_page(vmf);
2875 put_page(vmf->page);
2876
2877 return ret;
2878 }
2879
2880 /*
2881 * This routine handles present pages, when users try to write
2882 * to a shared page. It is done by copying the page to a new address
2883 * and decrementing the shared-page counter for the old page.
2884 *
2885 * Note that this routine assumes that the protection checks have been
2886 * done by the caller (the low-level page fault routine in most cases).
2887 * Thus we can safely just mark it writable once we've done any necessary
2888 * COW.
2889 *
2890 * We also mark the page dirty at this point even though the page will
2891 * change only once the write actually happens. This avoids a few races,
2892 * and potentially makes it more efficient.
2893 *
2894 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2895 * but allow concurrent faults), with pte both mapped and locked.
2896 * We return with mmap_lock still held, but pte unmapped and unlocked.
2897 */
2898 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2899 __releases(vmf->ptl)
2900 {
2901 struct vm_area_struct *vma = vmf->vma;
2902
2903 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2904 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905 return handle_userfault(vmf, VM_UFFD_WP);
2906 }
2907
2908 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2909 if (!vmf->page) {
2910 /*
2911 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912 * VM_PFNMAP VMA.
2913 *
2914 * We should not cow pages in a shared writeable mapping.
2915 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2916 */
2917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2918 (VM_WRITE|VM_SHARED))
2919 return wp_pfn_shared(vmf);
2920
2921 pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 return wp_page_copy(vmf);
2923 }
2924
2925 /*
2926 * Take out anonymous pages first, anonymous shared vmas are
2927 * not dirty accountable.
2928 */
2929 if (PageAnon(vmf->page)) {
2930 int total_map_swapcount;
2931 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2932 page_count(vmf->page) != 1))
2933 goto copy;
2934 if (!trylock_page(vmf->page)) {
2935 get_page(vmf->page);
2936 pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 lock_page(vmf->page);
2938 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2939 vmf->address, &vmf->ptl);
2940 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2941 update_mmu_tlb(vma, vmf->address, vmf->pte);
2942 unlock_page(vmf->page);
2943 pte_unmap_unlock(vmf->pte, vmf->ptl);
2944 put_page(vmf->page);
2945 return 0;
2946 }
2947 put_page(vmf->page);
2948 }
2949 if (PageKsm(vmf->page)) {
2950 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2951 vmf->address);
2952 unlock_page(vmf->page);
2953 if (!reused)
2954 goto copy;
2955 wp_page_reuse(vmf);
2956 return VM_FAULT_WRITE;
2957 }
2958 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2959 if (total_map_swapcount == 1) {
2960 /*
2961 * The page is all ours. Move it to
2962 * our anon_vma so the rmap code will
2963 * not search our parent or siblings.
2964 * Protected against the rmap code by
2965 * the page lock.
2966 */
2967 page_move_anon_rmap(vmf->page, vma);
2968 }
2969 unlock_page(vmf->page);
2970 wp_page_reuse(vmf);
2971 return VM_FAULT_WRITE;
2972 }
2973 unlock_page(vmf->page);
2974 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2975 (VM_WRITE|VM_SHARED))) {
2976 return wp_page_shared(vmf);
2977 }
2978 copy:
2979 /*
2980 * Ok, we need to copy. Oh, well..
2981 */
2982 get_page(vmf->page);
2983
2984 pte_unmap_unlock(vmf->pte, vmf->ptl);
2985 return wp_page_copy(vmf);
2986 }
2987
2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2989 unsigned long start_addr, unsigned long end_addr,
2990 struct zap_details *details)
2991 {
2992 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2993 }
2994
2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2996 struct zap_details *details)
2997 {
2998 struct vm_area_struct *vma;
2999 pgoff_t vba, vea, zba, zea;
3000
3001 vma_interval_tree_foreach(vma, root,
3002 details->first_index, details->last_index) {
3003
3004 vba = vma->vm_pgoff;
3005 vea = vba + vma_pages(vma) - 1;
3006 zba = details->first_index;
3007 if (zba < vba)
3008 zba = vba;
3009 zea = details->last_index;
3010 if (zea > vea)
3011 zea = vea;
3012
3013 unmap_mapping_range_vma(vma,
3014 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3015 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3016 details);
3017 }
3018 }
3019
3020 /**
3021 * unmap_mapping_pages() - Unmap pages from processes.
3022 * @mapping: The address space containing pages to be unmapped.
3023 * @start: Index of first page to be unmapped.
3024 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3025 * @even_cows: Whether to unmap even private COWed pages.
3026 *
3027 * Unmap the pages in this address space from any userspace process which
3028 * has them mmaped. Generally, you want to remove COWed pages as well when
3029 * a file is being truncated, but not when invalidating pages from the page
3030 * cache.
3031 */
3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3033 pgoff_t nr, bool even_cows)
3034 {
3035 struct zap_details details = { };
3036
3037 details.check_mapping = even_cows ? NULL : mapping;
3038 details.first_index = start;
3039 details.last_index = start + nr - 1;
3040 if (details.last_index < details.first_index)
3041 details.last_index = ULONG_MAX;
3042
3043 i_mmap_lock_write(mapping);
3044 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3045 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3046 i_mmap_unlock_write(mapping);
3047 }
3048
3049 /**
3050 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3051 * address_space corresponding to the specified byte range in the underlying
3052 * file.
3053 *
3054 * @mapping: the address space containing mmaps to be unmapped.
3055 * @holebegin: byte in first page to unmap, relative to the start of
3056 * the underlying file. This will be rounded down to a PAGE_SIZE
3057 * boundary. Note that this is different from truncate_pagecache(), which
3058 * must keep the partial page. In contrast, we must get rid of
3059 * partial pages.
3060 * @holelen: size of prospective hole in bytes. This will be rounded
3061 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3062 * end of the file.
3063 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3064 * but 0 when invalidating pagecache, don't throw away private data.
3065 */
3066 void unmap_mapping_range(struct address_space *mapping,
3067 loff_t const holebegin, loff_t const holelen, int even_cows)
3068 {
3069 pgoff_t hba = holebegin >> PAGE_SHIFT;
3070 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071
3072 /* Check for overflow. */
3073 if (sizeof(holelen) > sizeof(hlen)) {
3074 long long holeend =
3075 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3076 if (holeend & ~(long long)ULONG_MAX)
3077 hlen = ULONG_MAX - hba + 1;
3078 }
3079
3080 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3081 }
3082 EXPORT_SYMBOL(unmap_mapping_range);
3083
3084 /*
3085 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3086 * but allow concurrent faults), and pte mapped but not yet locked.
3087 * We return with pte unmapped and unlocked.
3088 *
3089 * We return with the mmap_lock locked or unlocked in the same cases
3090 * as does filemap_fault().
3091 */
3092 vm_fault_t do_swap_page(struct vm_fault *vmf)
3093 {
3094 struct vm_area_struct *vma = vmf->vma;
3095 struct page *page = NULL, *swapcache;
3096 swp_entry_t entry;
3097 pte_t pte;
3098 int locked;
3099 int exclusive = 0;
3100 vm_fault_t ret = 0;
3101 void *shadow = NULL;
3102
3103 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3104 goto out;
3105
3106 entry = pte_to_swp_entry(vmf->orig_pte);
3107 if (unlikely(non_swap_entry(entry))) {
3108 if (is_migration_entry(entry)) {
3109 migration_entry_wait(vma->vm_mm, vmf->pmd,
3110 vmf->address);
3111 } else if (is_device_private_entry(entry)) {
3112 vmf->page = device_private_entry_to_page(entry);
3113 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3114 } else if (is_hwpoison_entry(entry)) {
3115 ret = VM_FAULT_HWPOISON;
3116 } else {
3117 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3118 ret = VM_FAULT_SIGBUS;
3119 }
3120 goto out;
3121 }
3122
3123
3124 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3125 page = lookup_swap_cache(entry, vma, vmf->address);
3126 swapcache = page;
3127
3128 if (!page) {
3129 struct swap_info_struct *si = swp_swap_info(entry);
3130
3131 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3132 __swap_count(entry) == 1) {
3133 /* skip swapcache */
3134 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3135 vmf->address);
3136 if (page) {
3137 int err;
3138
3139 __SetPageLocked(page);
3140 __SetPageSwapBacked(page);
3141 set_page_private(page, entry.val);
3142
3143 /* Tell memcg to use swap ownership records */
3144 SetPageSwapCache(page);
3145 err = mem_cgroup_charge(page, vma->vm_mm,
3146 GFP_KERNEL);
3147 ClearPageSwapCache(page);
3148 if (err) {
3149 ret = VM_FAULT_OOM;
3150 goto out_page;
3151 }
3152
3153 shadow = get_shadow_from_swap_cache(entry);
3154 if (shadow)
3155 workingset_refault(page, shadow);
3156
3157 lru_cache_add(page);
3158 swap_readpage(page, true);
3159 }
3160 } else {
3161 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3162 vmf);
3163 swapcache = page;
3164 }
3165
3166 if (!page) {
3167 /*
3168 * Back out if somebody else faulted in this pte
3169 * while we released the pte lock.
3170 */
3171 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172 vmf->address, &vmf->ptl);
3173 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3174 ret = VM_FAULT_OOM;
3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176 goto unlock;
3177 }
3178
3179 /* Had to read the page from swap area: Major fault */
3180 ret = VM_FAULT_MAJOR;
3181 count_vm_event(PGMAJFAULT);
3182 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3183 } else if (PageHWPoison(page)) {
3184 /*
3185 * hwpoisoned dirty swapcache pages are kept for killing
3186 * owner processes (which may be unknown at hwpoison time)
3187 */
3188 ret = VM_FAULT_HWPOISON;
3189 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3190 goto out_release;
3191 }
3192
3193 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3194
3195 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3196 if (!locked) {
3197 ret |= VM_FAULT_RETRY;
3198 goto out_release;
3199 }
3200
3201 /*
3202 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203 * release the swapcache from under us. The page pin, and pte_same
3204 * test below, are not enough to exclude that. Even if it is still
3205 * swapcache, we need to check that the page's swap has not changed.
3206 */
3207 if (unlikely((!PageSwapCache(page) ||
3208 page_private(page) != entry.val)) && swapcache)
3209 goto out_page;
3210
3211 page = ksm_might_need_to_copy(page, vma, vmf->address);
3212 if (unlikely(!page)) {
3213 ret = VM_FAULT_OOM;
3214 page = swapcache;
3215 goto out_page;
3216 }
3217
3218 cgroup_throttle_swaprate(page, GFP_KERNEL);
3219
3220 /*
3221 * Back out if somebody else already faulted in this pte.
3222 */
3223 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3224 &vmf->ptl);
3225 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3226 goto out_nomap;
3227
3228 if (unlikely(!PageUptodate(page))) {
3229 ret = VM_FAULT_SIGBUS;
3230 goto out_nomap;
3231 }
3232
3233 /*
3234 * The page isn't present yet, go ahead with the fault.
3235 *
3236 * Be careful about the sequence of operations here.
3237 * To get its accounting right, reuse_swap_page() must be called
3238 * while the page is counted on swap but not yet in mapcount i.e.
3239 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240 * must be called after the swap_free(), or it will never succeed.
3241 */
3242
3243 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3245 pte = mk_pte(page, vma->vm_page_prot);
3246 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3247 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3248 vmf->flags &= ~FAULT_FLAG_WRITE;
3249 ret |= VM_FAULT_WRITE;
3250 exclusive = RMAP_EXCLUSIVE;
3251 }
3252 flush_icache_page(vma, page);
3253 if (pte_swp_soft_dirty(vmf->orig_pte))
3254 pte = pte_mksoft_dirty(pte);
3255 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256 pte = pte_mkuffd_wp(pte);
3257 pte = pte_wrprotect(pte);
3258 }
3259 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3260 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3261 vmf->orig_pte = pte;
3262
3263 /* ksm created a completely new copy */
3264 if (unlikely(page != swapcache && swapcache)) {
3265 page_add_new_anon_rmap(page, vma, vmf->address, false);
3266 lru_cache_add_inactive_or_unevictable(page, vma);
3267 } else {
3268 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3269 }
3270
3271 swap_free(entry);
3272 if (mem_cgroup_swap_full(page) ||
3273 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3274 try_to_free_swap(page);
3275 unlock_page(page);
3276 if (page != swapcache && swapcache) {
3277 /*
3278 * Hold the lock to avoid the swap entry to be reused
3279 * until we take the PT lock for the pte_same() check
3280 * (to avoid false positives from pte_same). For
3281 * further safety release the lock after the swap_free
3282 * so that the swap count won't change under a
3283 * parallel locked swapcache.
3284 */
3285 unlock_page(swapcache);
3286 put_page(swapcache);
3287 }
3288
3289 if (vmf->flags & FAULT_FLAG_WRITE) {
3290 ret |= do_wp_page(vmf);
3291 if (ret & VM_FAULT_ERROR)
3292 ret &= VM_FAULT_ERROR;
3293 goto out;
3294 }
3295
3296 /* No need to invalidate - it was non-present before */
3297 update_mmu_cache(vma, vmf->address, vmf->pte);
3298 unlock:
3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 out:
3301 return ret;
3302 out_nomap:
3303 pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 out_page:
3305 unlock_page(page);
3306 out_release:
3307 put_page(page);
3308 if (page != swapcache && swapcache) {
3309 unlock_page(swapcache);
3310 put_page(swapcache);
3311 }
3312 return ret;
3313 }
3314
3315 /*
3316 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3317 * but allow concurrent faults), and pte mapped but not yet locked.
3318 * We return with mmap_lock still held, but pte unmapped and unlocked.
3319 */
3320 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3321 {
3322 struct vm_area_struct *vma = vmf->vma;
3323 struct page *page;
3324 vm_fault_t ret = 0;
3325 pte_t entry;
3326
3327 /* File mapping without ->vm_ops ? */
3328 if (vma->vm_flags & VM_SHARED)
3329 return VM_FAULT_SIGBUS;
3330
3331 /*
3332 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3333 * pte_offset_map() on pmds where a huge pmd might be created
3334 * from a different thread.
3335 *
3336 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3337 * parallel threads are excluded by other means.
3338 *
3339 * Here we only have mmap_read_lock(mm).
3340 */
3341 if (pte_alloc(vma->vm_mm, vmf->pmd))
3342 return VM_FAULT_OOM;
3343
3344 /* See the comment in pte_alloc_one_map() */
3345 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3346 return 0;
3347
3348 /* Use the zero-page for reads */
3349 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3350 !mm_forbids_zeropage(vma->vm_mm)) {
3351 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3352 vma->vm_page_prot));
3353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3354 vmf->address, &vmf->ptl);
3355 if (!pte_none(*vmf->pte)) {
3356 update_mmu_tlb(vma, vmf->address, vmf->pte);
3357 goto unlock;
3358 }
3359 ret = check_stable_address_space(vma->vm_mm);
3360 if (ret)
3361 goto unlock;
3362 /* Deliver the page fault to userland, check inside PT lock */
3363 if (userfaultfd_missing(vma)) {
3364 pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 return handle_userfault(vmf, VM_UFFD_MISSING);
3366 }
3367 goto setpte;
3368 }
3369
3370 /* Allocate our own private page. */
3371 if (unlikely(anon_vma_prepare(vma)))
3372 goto oom;
3373 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3374 if (!page)
3375 goto oom;
3376
3377 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3378 goto oom_free_page;
3379 cgroup_throttle_swaprate(page, GFP_KERNEL);
3380
3381 /*
3382 * The memory barrier inside __SetPageUptodate makes sure that
3383 * preceding stores to the page contents become visible before
3384 * the set_pte_at() write.
3385 */
3386 __SetPageUptodate(page);
3387
3388 entry = mk_pte(page, vma->vm_page_prot);
3389 entry = pte_sw_mkyoung(entry);
3390 if (vma->vm_flags & VM_WRITE)
3391 entry = pte_mkwrite(pte_mkdirty(entry));
3392
3393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3394 &vmf->ptl);
3395 if (!pte_none(*vmf->pte)) {
3396 update_mmu_cache(vma, vmf->address, vmf->pte);
3397 goto release;
3398 }
3399
3400 ret = check_stable_address_space(vma->vm_mm);
3401 if (ret)
3402 goto release;
3403
3404 /* Deliver the page fault to userland, check inside PT lock */
3405 if (userfaultfd_missing(vma)) {
3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
3407 put_page(page);
3408 return handle_userfault(vmf, VM_UFFD_MISSING);
3409 }
3410
3411 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3412 page_add_new_anon_rmap(page, vma, vmf->address, false);
3413 lru_cache_add_inactive_or_unevictable(page, vma);
3414 setpte:
3415 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3416
3417 /* No need to invalidate - it was non-present before */
3418 update_mmu_cache(vma, vmf->address, vmf->pte);
3419 unlock:
3420 pte_unmap_unlock(vmf->pte, vmf->ptl);
3421 return ret;
3422 release:
3423 put_page(page);
3424 goto unlock;
3425 oom_free_page:
3426 put_page(page);
3427 oom:
3428 return VM_FAULT_OOM;
3429 }
3430
3431 /*
3432 * The mmap_lock must have been held on entry, and may have been
3433 * released depending on flags and vma->vm_ops->fault() return value.
3434 * See filemap_fault() and __lock_page_retry().
3435 */
3436 static vm_fault_t __do_fault(struct vm_fault *vmf)
3437 {
3438 struct vm_area_struct *vma = vmf->vma;
3439 vm_fault_t ret;
3440
3441 /*
3442 * Preallocate pte before we take page_lock because this might lead to
3443 * deadlocks for memcg reclaim which waits for pages under writeback:
3444 * lock_page(A)
3445 * SetPageWriteback(A)
3446 * unlock_page(A)
3447 * lock_page(B)
3448 * lock_page(B)
3449 * pte_alloc_pne
3450 * shrink_page_list
3451 * wait_on_page_writeback(A)
3452 * SetPageWriteback(B)
3453 * unlock_page(B)
3454 * # flush A, B to clear the writeback
3455 */
3456 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3457 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3458 if (!vmf->prealloc_pte)
3459 return VM_FAULT_OOM;
3460 smp_wmb(); /* See comment in __pte_alloc() */
3461 }
3462
3463 ret = vma->vm_ops->fault(vmf);
3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3465 VM_FAULT_DONE_COW)))
3466 return ret;
3467
3468 if (unlikely(PageHWPoison(vmf->page))) {
3469 if (ret & VM_FAULT_LOCKED)
3470 unlock_page(vmf->page);
3471 put_page(vmf->page);
3472 vmf->page = NULL;
3473 return VM_FAULT_HWPOISON;
3474 }
3475
3476 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3477 lock_page(vmf->page);
3478 else
3479 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3480
3481 return ret;
3482 }
3483
3484 /*
3485 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3486 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3487 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3488 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3489 */
3490 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3491 {
3492 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3493 }
3494
3495 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3496 {
3497 struct vm_area_struct *vma = vmf->vma;
3498
3499 if (!pmd_none(*vmf->pmd))
3500 goto map_pte;
3501 if (vmf->prealloc_pte) {
3502 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3503 if (unlikely(!pmd_none(*vmf->pmd))) {
3504 spin_unlock(vmf->ptl);
3505 goto map_pte;
3506 }
3507
3508 mm_inc_nr_ptes(vma->vm_mm);
3509 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3510 spin_unlock(vmf->ptl);
3511 vmf->prealloc_pte = NULL;
3512 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3513 return VM_FAULT_OOM;
3514 }
3515 map_pte:
3516 /*
3517 * If a huge pmd materialized under us just retry later. Use
3518 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3519 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3520 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3521 * running immediately after a huge pmd fault in a different thread of
3522 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3523 * All we have to ensure is that it is a regular pmd that we can walk
3524 * with pte_offset_map() and we can do that through an atomic read in
3525 * C, which is what pmd_trans_unstable() provides.
3526 */
3527 if (pmd_devmap_trans_unstable(vmf->pmd))
3528 return VM_FAULT_NOPAGE;
3529
3530 /*
3531 * At this point we know that our vmf->pmd points to a page of ptes
3532 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3533 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3534 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3535 * be valid and we will re-check to make sure the vmf->pte isn't
3536 * pte_none() under vmf->ptl protection when we return to
3537 * alloc_set_pte().
3538 */
3539 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3540 &vmf->ptl);
3541 return 0;
3542 }
3543
3544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3545 static void deposit_prealloc_pte(struct vm_fault *vmf)
3546 {
3547 struct vm_area_struct *vma = vmf->vma;
3548
3549 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3550 /*
3551 * We are going to consume the prealloc table,
3552 * count that as nr_ptes.
3553 */
3554 mm_inc_nr_ptes(vma->vm_mm);
3555 vmf->prealloc_pte = NULL;
3556 }
3557
3558 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3559 {
3560 struct vm_area_struct *vma = vmf->vma;
3561 bool write = vmf->flags & FAULT_FLAG_WRITE;
3562 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3563 pmd_t entry;
3564 int i;
3565 vm_fault_t ret;
3566
3567 if (!transhuge_vma_suitable(vma, haddr))
3568 return VM_FAULT_FALLBACK;
3569
3570 ret = VM_FAULT_FALLBACK;
3571 page = compound_head(page);
3572
3573 /*
3574 * Archs like ppc64 need additonal space to store information
3575 * related to pte entry. Use the preallocated table for that.
3576 */
3577 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3578 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3579 if (!vmf->prealloc_pte)
3580 return VM_FAULT_OOM;
3581 smp_wmb(); /* See comment in __pte_alloc() */
3582 }
3583
3584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3585 if (unlikely(!pmd_none(*vmf->pmd)))
3586 goto out;
3587
3588 for (i = 0; i < HPAGE_PMD_NR; i++)
3589 flush_icache_page(vma, page + i);
3590
3591 entry = mk_huge_pmd(page, vma->vm_page_prot);
3592 if (write)
3593 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3594
3595 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3596 page_add_file_rmap(page, true);
3597 /*
3598 * deposit and withdraw with pmd lock held
3599 */
3600 if (arch_needs_pgtable_deposit())
3601 deposit_prealloc_pte(vmf);
3602
3603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3604
3605 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3606
3607 /* fault is handled */
3608 ret = 0;
3609 count_vm_event(THP_FILE_MAPPED);
3610 out:
3611 spin_unlock(vmf->ptl);
3612 return ret;
3613 }
3614 #else
3615 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3616 {
3617 BUILD_BUG();
3618 return 0;
3619 }
3620 #endif
3621
3622 /**
3623 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3624 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3625 *
3626 * @vmf: fault environment
3627 * @page: page to map
3628 *
3629 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3630 * return.
3631 *
3632 * Target users are page handler itself and implementations of
3633 * vm_ops->map_pages.
3634 *
3635 * Return: %0 on success, %VM_FAULT_ code in case of error.
3636 */
3637 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3638 {
3639 struct vm_area_struct *vma = vmf->vma;
3640 bool write = vmf->flags & FAULT_FLAG_WRITE;
3641 pte_t entry;
3642 vm_fault_t ret;
3643
3644 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3645 ret = do_set_pmd(vmf, page);
3646 if (ret != VM_FAULT_FALLBACK)
3647 return ret;
3648 }
3649
3650 if (!vmf->pte) {
3651 ret = pte_alloc_one_map(vmf);
3652 if (ret)
3653 return ret;
3654 }
3655
3656 /* Re-check under ptl */
3657 if (unlikely(!pte_none(*vmf->pte))) {
3658 update_mmu_tlb(vma, vmf->address, vmf->pte);
3659 return VM_FAULT_NOPAGE;
3660 }
3661
3662 flush_icache_page(vma, page);
3663 entry = mk_pte(page, vma->vm_page_prot);
3664 entry = pte_sw_mkyoung(entry);
3665 if (write)
3666 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3667 /* copy-on-write page */
3668 if (write && !(vma->vm_flags & VM_SHARED)) {
3669 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3670 page_add_new_anon_rmap(page, vma, vmf->address, false);
3671 lru_cache_add_inactive_or_unevictable(page, vma);
3672 } else {
3673 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3674 page_add_file_rmap(page, false);
3675 }
3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3677
3678 /* no need to invalidate: a not-present page won't be cached */
3679 update_mmu_cache(vma, vmf->address, vmf->pte);
3680
3681 return 0;
3682 }
3683
3684
3685 /**
3686 * finish_fault - finish page fault once we have prepared the page to fault
3687 *
3688 * @vmf: structure describing the fault
3689 *
3690 * This function handles all that is needed to finish a page fault once the
3691 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3692 * given page, adds reverse page mapping, handles memcg charges and LRU
3693 * addition.
3694 *
3695 * The function expects the page to be locked and on success it consumes a
3696 * reference of a page being mapped (for the PTE which maps it).
3697 *
3698 * Return: %0 on success, %VM_FAULT_ code in case of error.
3699 */
3700 vm_fault_t finish_fault(struct vm_fault *vmf)
3701 {
3702 struct page *page;
3703 vm_fault_t ret = 0;
3704
3705 /* Did we COW the page? */
3706 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3707 !(vmf->vma->vm_flags & VM_SHARED))
3708 page = vmf->cow_page;
3709 else
3710 page = vmf->page;
3711
3712 /*
3713 * check even for read faults because we might have lost our CoWed
3714 * page
3715 */
3716 if (!(vmf->vma->vm_flags & VM_SHARED))
3717 ret = check_stable_address_space(vmf->vma->vm_mm);
3718 if (!ret)
3719 ret = alloc_set_pte(vmf, page);
3720 if (vmf->pte)
3721 pte_unmap_unlock(vmf->pte, vmf->ptl);
3722 return ret;
3723 }
3724
3725 static unsigned long fault_around_bytes __read_mostly =
3726 rounddown_pow_of_two(65536);
3727
3728 #ifdef CONFIG_DEBUG_FS
3729 static int fault_around_bytes_get(void *data, u64 *val)
3730 {
3731 *val = fault_around_bytes;
3732 return 0;
3733 }
3734
3735 /*
3736 * fault_around_bytes must be rounded down to the nearest page order as it's
3737 * what do_fault_around() expects to see.
3738 */
3739 static int fault_around_bytes_set(void *data, u64 val)
3740 {
3741 if (val / PAGE_SIZE > PTRS_PER_PTE)
3742 return -EINVAL;
3743 if (val > PAGE_SIZE)
3744 fault_around_bytes = rounddown_pow_of_two(val);
3745 else
3746 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3747 return 0;
3748 }
3749 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3750 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3751
3752 static int __init fault_around_debugfs(void)
3753 {
3754 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3755 &fault_around_bytes_fops);
3756 return 0;
3757 }
3758 late_initcall(fault_around_debugfs);
3759 #endif
3760
3761 /*
3762 * do_fault_around() tries to map few pages around the fault address. The hope
3763 * is that the pages will be needed soon and this will lower the number of
3764 * faults to handle.
3765 *
3766 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3767 * not ready to be mapped: not up-to-date, locked, etc.
3768 *
3769 * This function is called with the page table lock taken. In the split ptlock
3770 * case the page table lock only protects only those entries which belong to
3771 * the page table corresponding to the fault address.
3772 *
3773 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3774 * only once.
3775 *
3776 * fault_around_bytes defines how many bytes we'll try to map.
3777 * do_fault_around() expects it to be set to a power of two less than or equal
3778 * to PTRS_PER_PTE.
3779 *
3780 * The virtual address of the area that we map is naturally aligned to
3781 * fault_around_bytes rounded down to the machine page size
3782 * (and therefore to page order). This way it's easier to guarantee
3783 * that we don't cross page table boundaries.
3784 */
3785 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3786 {
3787 unsigned long address = vmf->address, nr_pages, mask;
3788 pgoff_t start_pgoff = vmf->pgoff;
3789 pgoff_t end_pgoff;
3790 int off;
3791 vm_fault_t ret = 0;
3792
3793 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3794 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3795
3796 vmf->address = max(address & mask, vmf->vma->vm_start);
3797 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3798 start_pgoff -= off;
3799
3800 /*
3801 * end_pgoff is either the end of the page table, the end of
3802 * the vma or nr_pages from start_pgoff, depending what is nearest.
3803 */
3804 end_pgoff = start_pgoff -
3805 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3806 PTRS_PER_PTE - 1;
3807 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3808 start_pgoff + nr_pages - 1);
3809
3810 if (pmd_none(*vmf->pmd)) {
3811 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3812 if (!vmf->prealloc_pte)
3813 goto out;
3814 smp_wmb(); /* See comment in __pte_alloc() */
3815 }
3816
3817 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3818
3819 /* Huge page is mapped? Page fault is solved */
3820 if (pmd_trans_huge(*vmf->pmd)) {
3821 ret = VM_FAULT_NOPAGE;
3822 goto out;
3823 }
3824
3825 /* ->map_pages() haven't done anything useful. Cold page cache? */
3826 if (!vmf->pte)
3827 goto out;
3828
3829 /* check if the page fault is solved */
3830 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3831 if (!pte_none(*vmf->pte))
3832 ret = VM_FAULT_NOPAGE;
3833 pte_unmap_unlock(vmf->pte, vmf->ptl);
3834 out:
3835 vmf->address = address;
3836 vmf->pte = NULL;
3837 return ret;
3838 }
3839
3840 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3841 {
3842 struct vm_area_struct *vma = vmf->vma;
3843 vm_fault_t ret = 0;
3844
3845 /*
3846 * Let's call ->map_pages() first and use ->fault() as fallback
3847 * if page by the offset is not ready to be mapped (cold cache or
3848 * something).
3849 */
3850 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3851 ret = do_fault_around(vmf);
3852 if (ret)
3853 return ret;
3854 }
3855
3856 ret = __do_fault(vmf);
3857 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3858 return ret;
3859
3860 ret |= finish_fault(vmf);
3861 unlock_page(vmf->page);
3862 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3863 put_page(vmf->page);
3864 return ret;
3865 }
3866
3867 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3868 {
3869 struct vm_area_struct *vma = vmf->vma;
3870 vm_fault_t ret;
3871
3872 if (unlikely(anon_vma_prepare(vma)))
3873 return VM_FAULT_OOM;
3874
3875 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3876 if (!vmf->cow_page)
3877 return VM_FAULT_OOM;
3878
3879 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3880 put_page(vmf->cow_page);
3881 return VM_FAULT_OOM;
3882 }
3883 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3884
3885 ret = __do_fault(vmf);
3886 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3887 goto uncharge_out;
3888 if (ret & VM_FAULT_DONE_COW)
3889 return ret;
3890
3891 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3892 __SetPageUptodate(vmf->cow_page);
3893
3894 ret |= finish_fault(vmf);
3895 unlock_page(vmf->page);
3896 put_page(vmf->page);
3897 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3898 goto uncharge_out;
3899 return ret;
3900 uncharge_out:
3901 put_page(vmf->cow_page);
3902 return ret;
3903 }
3904
3905 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3906 {
3907 struct vm_area_struct *vma = vmf->vma;
3908 vm_fault_t ret, tmp;
3909
3910 ret = __do_fault(vmf);
3911 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3912 return ret;
3913
3914 /*
3915 * Check if the backing address space wants to know that the page is
3916 * about to become writable
3917 */
3918 if (vma->vm_ops->page_mkwrite) {
3919 unlock_page(vmf->page);
3920 tmp = do_page_mkwrite(vmf);
3921 if (unlikely(!tmp ||
3922 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3923 put_page(vmf->page);
3924 return tmp;
3925 }
3926 }
3927
3928 ret |= finish_fault(vmf);
3929 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3930 VM_FAULT_RETRY))) {
3931 unlock_page(vmf->page);
3932 put_page(vmf->page);
3933 return ret;
3934 }
3935
3936 ret |= fault_dirty_shared_page(vmf);
3937 return ret;
3938 }
3939
3940 /*
3941 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3942 * but allow concurrent faults).
3943 * The mmap_lock may have been released depending on flags and our
3944 * return value. See filemap_fault() and __lock_page_or_retry().
3945 * If mmap_lock is released, vma may become invalid (for example
3946 * by other thread calling munmap()).
3947 */
3948 static vm_fault_t do_fault(struct vm_fault *vmf)
3949 {
3950 struct vm_area_struct *vma = vmf->vma;
3951 struct mm_struct *vm_mm = vma->vm_mm;
3952 vm_fault_t ret;
3953
3954 /*
3955 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3956 */
3957 if (!vma->vm_ops->fault) {
3958 /*
3959 * If we find a migration pmd entry or a none pmd entry, which
3960 * should never happen, return SIGBUS
3961 */
3962 if (unlikely(!pmd_present(*vmf->pmd)))
3963 ret = VM_FAULT_SIGBUS;
3964 else {
3965 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3966 vmf->pmd,
3967 vmf->address,
3968 &vmf->ptl);
3969 /*
3970 * Make sure this is not a temporary clearing of pte
3971 * by holding ptl and checking again. A R/M/W update
3972 * of pte involves: take ptl, clearing the pte so that
3973 * we don't have concurrent modification by hardware
3974 * followed by an update.
3975 */
3976 if (unlikely(pte_none(*vmf->pte)))
3977 ret = VM_FAULT_SIGBUS;
3978 else
3979 ret = VM_FAULT_NOPAGE;
3980
3981 pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 }
3983 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3984 ret = do_read_fault(vmf);
3985 else if (!(vma->vm_flags & VM_SHARED))
3986 ret = do_cow_fault(vmf);
3987 else
3988 ret = do_shared_fault(vmf);
3989
3990 /* preallocated pagetable is unused: free it */
3991 if (vmf->prealloc_pte) {
3992 pte_free(vm_mm, vmf->prealloc_pte);
3993 vmf->prealloc_pte = NULL;
3994 }
3995 return ret;
3996 }
3997
3998 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3999 unsigned long addr, int page_nid,
4000 int *flags)
4001 {
4002 get_page(page);
4003
4004 count_vm_numa_event(NUMA_HINT_FAULTS);
4005 if (page_nid == numa_node_id()) {
4006 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4007 *flags |= TNF_FAULT_LOCAL;
4008 }
4009
4010 return mpol_misplaced(page, vma, addr);
4011 }
4012
4013 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4014 {
4015 struct vm_area_struct *vma = vmf->vma;
4016 struct page *page = NULL;
4017 int page_nid = NUMA_NO_NODE;
4018 int last_cpupid;
4019 int target_nid;
4020 bool migrated = false;
4021 pte_t pte, old_pte;
4022 bool was_writable = pte_savedwrite(vmf->orig_pte);
4023 int flags = 0;
4024
4025 /*
4026 * The "pte" at this point cannot be used safely without
4027 * validation through pte_unmap_same(). It's of NUMA type but
4028 * the pfn may be screwed if the read is non atomic.
4029 */
4030 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4031 spin_lock(vmf->ptl);
4032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4033 pte_unmap_unlock(vmf->pte, vmf->ptl);
4034 goto out;
4035 }
4036
4037 /*
4038 * Make it present again, Depending on how arch implementes non
4039 * accessible ptes, some can allow access by kernel mode.
4040 */
4041 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4042 pte = pte_modify(old_pte, vma->vm_page_prot);
4043 pte = pte_mkyoung(pte);
4044 if (was_writable)
4045 pte = pte_mkwrite(pte);
4046 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4047 update_mmu_cache(vma, vmf->address, vmf->pte);
4048
4049 page = vm_normal_page(vma, vmf->address, pte);
4050 if (!page) {
4051 pte_unmap_unlock(vmf->pte, vmf->ptl);
4052 return 0;
4053 }
4054
4055 /* TODO: handle PTE-mapped THP */
4056 if (PageCompound(page)) {
4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
4058 return 0;
4059 }
4060
4061 /*
4062 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4063 * much anyway since they can be in shared cache state. This misses
4064 * the case where a mapping is writable but the process never writes
4065 * to it but pte_write gets cleared during protection updates and
4066 * pte_dirty has unpredictable behaviour between PTE scan updates,
4067 * background writeback, dirty balancing and application behaviour.
4068 */
4069 if (!pte_write(pte))
4070 flags |= TNF_NO_GROUP;
4071
4072 /*
4073 * Flag if the page is shared between multiple address spaces. This
4074 * is later used when determining whether to group tasks together
4075 */
4076 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4077 flags |= TNF_SHARED;
4078
4079 last_cpupid = page_cpupid_last(page);
4080 page_nid = page_to_nid(page);
4081 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4082 &flags);
4083 pte_unmap_unlock(vmf->pte, vmf->ptl);
4084 if (target_nid == NUMA_NO_NODE) {
4085 put_page(page);
4086 goto out;
4087 }
4088
4089 /* Migrate to the requested node */
4090 migrated = migrate_misplaced_page(page, vma, target_nid);
4091 if (migrated) {
4092 page_nid = target_nid;
4093 flags |= TNF_MIGRATED;
4094 } else
4095 flags |= TNF_MIGRATE_FAIL;
4096
4097 out:
4098 if (page_nid != NUMA_NO_NODE)
4099 task_numa_fault(last_cpupid, page_nid, 1, flags);
4100 return 0;
4101 }
4102
4103 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4104 {
4105 if (vma_is_anonymous(vmf->vma))
4106 return do_huge_pmd_anonymous_page(vmf);
4107 if (vmf->vma->vm_ops->huge_fault)
4108 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109 return VM_FAULT_FALLBACK;
4110 }
4111
4112 /* `inline' is required to avoid gcc 4.1.2 build error */
4113 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4114 {
4115 if (vma_is_anonymous(vmf->vma)) {
4116 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4117 return handle_userfault(vmf, VM_UFFD_WP);
4118 return do_huge_pmd_wp_page(vmf, orig_pmd);
4119 }
4120 if (vmf->vma->vm_ops->huge_fault) {
4121 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4122
4123 if (!(ret & VM_FAULT_FALLBACK))
4124 return ret;
4125 }
4126
4127 /* COW or write-notify handled on pte level: split pmd. */
4128 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4129
4130 return VM_FAULT_FALLBACK;
4131 }
4132
4133 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4134 {
4135 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4136 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4137 /* No support for anonymous transparent PUD pages yet */
4138 if (vma_is_anonymous(vmf->vma))
4139 goto split;
4140 if (vmf->vma->vm_ops->huge_fault) {
4141 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4142
4143 if (!(ret & VM_FAULT_FALLBACK))
4144 return ret;
4145 }
4146 split:
4147 /* COW or write-notify not handled on PUD level: split pud.*/
4148 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4150 return VM_FAULT_FALLBACK;
4151 }
4152
4153 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4154 {
4155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4156 /* No support for anonymous transparent PUD pages yet */
4157 if (vma_is_anonymous(vmf->vma))
4158 return VM_FAULT_FALLBACK;
4159 if (vmf->vma->vm_ops->huge_fault)
4160 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4161 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4162 return VM_FAULT_FALLBACK;
4163 }
4164
4165 /*
4166 * These routines also need to handle stuff like marking pages dirty
4167 * and/or accessed for architectures that don't do it in hardware (most
4168 * RISC architectures). The early dirtying is also good on the i386.
4169 *
4170 * There is also a hook called "update_mmu_cache()" that architectures
4171 * with external mmu caches can use to update those (ie the Sparc or
4172 * PowerPC hashed page tables that act as extended TLBs).
4173 *
4174 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4175 * concurrent faults).
4176 *
4177 * The mmap_lock may have been released depending on flags and our return value.
4178 * See filemap_fault() and __lock_page_or_retry().
4179 */
4180 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4181 {
4182 pte_t entry;
4183
4184 if (unlikely(pmd_none(*vmf->pmd))) {
4185 /*
4186 * Leave __pte_alloc() until later: because vm_ops->fault may
4187 * want to allocate huge page, and if we expose page table
4188 * for an instant, it will be difficult to retract from
4189 * concurrent faults and from rmap lookups.
4190 */
4191 vmf->pte = NULL;
4192 } else {
4193 /* See comment in pte_alloc_one_map() */
4194 if (pmd_devmap_trans_unstable(vmf->pmd))
4195 return 0;
4196 /*
4197 * A regular pmd is established and it can't morph into a huge
4198 * pmd from under us anymore at this point because we hold the
4199 * mmap_lock read mode and khugepaged takes it in write mode.
4200 * So now it's safe to run pte_offset_map().
4201 */
4202 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4203 vmf->orig_pte = *vmf->pte;
4204
4205 /*
4206 * some architectures can have larger ptes than wordsize,
4207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4208 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4209 * accesses. The code below just needs a consistent view
4210 * for the ifs and we later double check anyway with the
4211 * ptl lock held. So here a barrier will do.
4212 */
4213 barrier();
4214 if (pte_none(vmf->orig_pte)) {
4215 pte_unmap(vmf->pte);
4216 vmf->pte = NULL;
4217 }
4218 }
4219
4220 if (!vmf->pte) {
4221 if (vma_is_anonymous(vmf->vma))
4222 return do_anonymous_page(vmf);
4223 else
4224 return do_fault(vmf);
4225 }
4226
4227 if (!pte_present(vmf->orig_pte))
4228 return do_swap_page(vmf);
4229
4230 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4231 return do_numa_page(vmf);
4232
4233 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4234 spin_lock(vmf->ptl);
4235 entry = vmf->orig_pte;
4236 if (unlikely(!pte_same(*vmf->pte, entry))) {
4237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4238 goto unlock;
4239 }
4240 if (vmf->flags & FAULT_FLAG_WRITE) {
4241 if (!pte_write(entry))
4242 return do_wp_page(vmf);
4243 entry = pte_mkdirty(entry);
4244 }
4245 entry = pte_mkyoung(entry);
4246 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4247 vmf->flags & FAULT_FLAG_WRITE)) {
4248 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4249 } else {
4250 /* Skip spurious TLB flush for retried page fault */
4251 if (vmf->flags & FAULT_FLAG_TRIED)
4252 goto unlock;
4253 /*
4254 * This is needed only for protection faults but the arch code
4255 * is not yet telling us if this is a protection fault or not.
4256 * This still avoids useless tlb flushes for .text page faults
4257 * with threads.
4258 */
4259 if (vmf->flags & FAULT_FLAG_WRITE)
4260 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4261 }
4262 unlock:
4263 pte_unmap_unlock(vmf->pte, vmf->ptl);
4264 return 0;
4265 }
4266
4267 /*
4268 * By the time we get here, we already hold the mm semaphore
4269 *
4270 * The mmap_lock may have been released depending on flags and our
4271 * return value. See filemap_fault() and __lock_page_or_retry().
4272 */
4273 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4274 unsigned long address, unsigned int flags)
4275 {
4276 struct vm_fault vmf = {
4277 .vma = vma,
4278 .address = address & PAGE_MASK,
4279 .flags = flags,
4280 .pgoff = linear_page_index(vma, address),
4281 .gfp_mask = __get_fault_gfp_mask(vma),
4282 };
4283 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4284 struct mm_struct *mm = vma->vm_mm;
4285 pgd_t *pgd;
4286 p4d_t *p4d;
4287 vm_fault_t ret;
4288
4289 pgd = pgd_offset(mm, address);
4290 p4d = p4d_alloc(mm, pgd, address);
4291 if (!p4d)
4292 return VM_FAULT_OOM;
4293
4294 vmf.pud = pud_alloc(mm, p4d, address);
4295 if (!vmf.pud)
4296 return VM_FAULT_OOM;
4297 retry_pud:
4298 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4299 ret = create_huge_pud(&vmf);
4300 if (!(ret & VM_FAULT_FALLBACK))
4301 return ret;
4302 } else {
4303 pud_t orig_pud = *vmf.pud;
4304
4305 barrier();
4306 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4307
4308 /* NUMA case for anonymous PUDs would go here */
4309
4310 if (dirty && !pud_write(orig_pud)) {
4311 ret = wp_huge_pud(&vmf, orig_pud);
4312 if (!(ret & VM_FAULT_FALLBACK))
4313 return ret;
4314 } else {
4315 huge_pud_set_accessed(&vmf, orig_pud);
4316 return 0;
4317 }
4318 }
4319 }
4320
4321 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4322 if (!vmf.pmd)
4323 return VM_FAULT_OOM;
4324
4325 /* Huge pud page fault raced with pmd_alloc? */
4326 if (pud_trans_unstable(vmf.pud))
4327 goto retry_pud;
4328
4329 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4330 ret = create_huge_pmd(&vmf);
4331 if (!(ret & VM_FAULT_FALLBACK))
4332 return ret;
4333 } else {
4334 pmd_t orig_pmd = *vmf.pmd;
4335
4336 barrier();
4337 if (unlikely(is_swap_pmd(orig_pmd))) {
4338 VM_BUG_ON(thp_migration_supported() &&
4339 !is_pmd_migration_entry(orig_pmd));
4340 if (is_pmd_migration_entry(orig_pmd))
4341 pmd_migration_entry_wait(mm, vmf.pmd);
4342 return 0;
4343 }
4344 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4345 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4346 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4347
4348 if (dirty && !pmd_write(orig_pmd)) {
4349 ret = wp_huge_pmd(&vmf, orig_pmd);
4350 if (!(ret & VM_FAULT_FALLBACK))
4351 return ret;
4352 } else {
4353 huge_pmd_set_accessed(&vmf, orig_pmd);
4354 return 0;
4355 }
4356 }
4357 }
4358
4359 return handle_pte_fault(&vmf);
4360 }
4361
4362 /**
4363 * mm_account_fault - Do page fault accountings
4364 *
4365 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4366 * of perf event counters, but we'll still do the per-task accounting to
4367 * the task who triggered this page fault.
4368 * @address: the faulted address.
4369 * @flags: the fault flags.
4370 * @ret: the fault retcode.
4371 *
4372 * This will take care of most of the page fault accountings. Meanwhile, it
4373 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4374 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4375 * still be in per-arch page fault handlers at the entry of page fault.
4376 */
4377 static inline void mm_account_fault(struct pt_regs *regs,
4378 unsigned long address, unsigned int flags,
4379 vm_fault_t ret)
4380 {
4381 bool major;
4382
4383 /*
4384 * We don't do accounting for some specific faults:
4385 *
4386 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4387 * includes arch_vma_access_permitted() failing before reaching here.
4388 * So this is not a "this many hardware page faults" counter. We
4389 * should use the hw profiling for that.
4390 *
4391 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4392 * once they're completed.
4393 */
4394 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4395 return;
4396
4397 /*
4398 * We define the fault as a major fault when the final successful fault
4399 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4400 * handle it immediately previously).
4401 */
4402 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4403
4404 if (major)
4405 current->maj_flt++;
4406 else
4407 current->min_flt++;
4408
4409 /*
4410 * If the fault is done for GUP, regs will be NULL. We only do the
4411 * accounting for the per thread fault counters who triggered the
4412 * fault, and we skip the perf event updates.
4413 */
4414 if (!regs)
4415 return;
4416
4417 if (major)
4418 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4419 else
4420 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4421 }
4422
4423 /*
4424 * By the time we get here, we already hold the mm semaphore
4425 *
4426 * The mmap_lock may have been released depending on flags and our
4427 * return value. See filemap_fault() and __lock_page_or_retry().
4428 */
4429 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4430 unsigned int flags, struct pt_regs *regs)
4431 {
4432 vm_fault_t ret;
4433
4434 __set_current_state(TASK_RUNNING);
4435
4436 count_vm_event(PGFAULT);
4437 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4438
4439 /* do counter updates before entering really critical section. */
4440 check_sync_rss_stat(current);
4441
4442 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4443 flags & FAULT_FLAG_INSTRUCTION,
4444 flags & FAULT_FLAG_REMOTE))
4445 return VM_FAULT_SIGSEGV;
4446
4447 /*
4448 * Enable the memcg OOM handling for faults triggered in user
4449 * space. Kernel faults are handled more gracefully.
4450 */
4451 if (flags & FAULT_FLAG_USER)
4452 mem_cgroup_enter_user_fault();
4453
4454 if (unlikely(is_vm_hugetlb_page(vma)))
4455 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4456 else
4457 ret = __handle_mm_fault(vma, address, flags);
4458
4459 if (flags & FAULT_FLAG_USER) {
4460 mem_cgroup_exit_user_fault();
4461 /*
4462 * The task may have entered a memcg OOM situation but
4463 * if the allocation error was handled gracefully (no
4464 * VM_FAULT_OOM), there is no need to kill anything.
4465 * Just clean up the OOM state peacefully.
4466 */
4467 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4468 mem_cgroup_oom_synchronize(false);
4469 }
4470
4471 mm_account_fault(regs, address, flags, ret);
4472
4473 return ret;
4474 }
4475 EXPORT_SYMBOL_GPL(handle_mm_fault);
4476
4477 #ifndef __PAGETABLE_P4D_FOLDED
4478 /*
4479 * Allocate p4d page table.
4480 * We've already handled the fast-path in-line.
4481 */
4482 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4483 {
4484 p4d_t *new = p4d_alloc_one(mm, address);
4485 if (!new)
4486 return -ENOMEM;
4487
4488 smp_wmb(); /* See comment in __pte_alloc */
4489
4490 spin_lock(&mm->page_table_lock);
4491 if (pgd_present(*pgd)) /* Another has populated it */
4492 p4d_free(mm, new);
4493 else
4494 pgd_populate(mm, pgd, new);
4495 spin_unlock(&mm->page_table_lock);
4496 return 0;
4497 }
4498 #endif /* __PAGETABLE_P4D_FOLDED */
4499
4500 #ifndef __PAGETABLE_PUD_FOLDED
4501 /*
4502 * Allocate page upper directory.
4503 * We've already handled the fast-path in-line.
4504 */
4505 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4506 {
4507 pud_t *new = pud_alloc_one(mm, address);
4508 if (!new)
4509 return -ENOMEM;
4510
4511 smp_wmb(); /* See comment in __pte_alloc */
4512
4513 spin_lock(&mm->page_table_lock);
4514 if (!p4d_present(*p4d)) {
4515 mm_inc_nr_puds(mm);
4516 p4d_populate(mm, p4d, new);
4517 } else /* Another has populated it */
4518 pud_free(mm, new);
4519 spin_unlock(&mm->page_table_lock);
4520 return 0;
4521 }
4522 #endif /* __PAGETABLE_PUD_FOLDED */
4523
4524 #ifndef __PAGETABLE_PMD_FOLDED
4525 /*
4526 * Allocate page middle directory.
4527 * We've already handled the fast-path in-line.
4528 */
4529 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4530 {
4531 spinlock_t *ptl;
4532 pmd_t *new = pmd_alloc_one(mm, address);
4533 if (!new)
4534 return -ENOMEM;
4535
4536 smp_wmb(); /* See comment in __pte_alloc */
4537
4538 ptl = pud_lock(mm, pud);
4539 if (!pud_present(*pud)) {
4540 mm_inc_nr_pmds(mm);
4541 pud_populate(mm, pud, new);
4542 } else /* Another has populated it */
4543 pmd_free(mm, new);
4544 spin_unlock(ptl);
4545 return 0;
4546 }
4547 #endif /* __PAGETABLE_PMD_FOLDED */
4548
4549 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4550 struct mmu_notifier_range *range,
4551 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4552 {
4553 pgd_t *pgd;
4554 p4d_t *p4d;
4555 pud_t *pud;
4556 pmd_t *pmd;
4557 pte_t *ptep;
4558
4559 pgd = pgd_offset(mm, address);
4560 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4561 goto out;
4562
4563 p4d = p4d_offset(pgd, address);
4564 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4565 goto out;
4566
4567 pud = pud_offset(p4d, address);
4568 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4569 goto out;
4570
4571 pmd = pmd_offset(pud, address);
4572 VM_BUG_ON(pmd_trans_huge(*pmd));
4573
4574 if (pmd_huge(*pmd)) {
4575 if (!pmdpp)
4576 goto out;
4577
4578 if (range) {
4579 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4580 NULL, mm, address & PMD_MASK,
4581 (address & PMD_MASK) + PMD_SIZE);
4582 mmu_notifier_invalidate_range_start(range);
4583 }
4584 *ptlp = pmd_lock(mm, pmd);
4585 if (pmd_huge(*pmd)) {
4586 *pmdpp = pmd;
4587 return 0;
4588 }
4589 spin_unlock(*ptlp);
4590 if (range)
4591 mmu_notifier_invalidate_range_end(range);
4592 }
4593
4594 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4595 goto out;
4596
4597 if (range) {
4598 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4599 address & PAGE_MASK,
4600 (address & PAGE_MASK) + PAGE_SIZE);
4601 mmu_notifier_invalidate_range_start(range);
4602 }
4603 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4604 if (!pte_present(*ptep))
4605 goto unlock;
4606 *ptepp = ptep;
4607 return 0;
4608 unlock:
4609 pte_unmap_unlock(ptep, *ptlp);
4610 if (range)
4611 mmu_notifier_invalidate_range_end(range);
4612 out:
4613 return -EINVAL;
4614 }
4615
4616 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4617 pte_t **ptepp, spinlock_t **ptlp)
4618 {
4619 int res;
4620
4621 /* (void) is needed to make gcc happy */
4622 (void) __cond_lock(*ptlp,
4623 !(res = __follow_pte_pmd(mm, address, NULL,
4624 ptepp, NULL, ptlp)));
4625 return res;
4626 }
4627
4628 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4629 struct mmu_notifier_range *range,
4630 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4631 {
4632 int res;
4633
4634 /* (void) is needed to make gcc happy */
4635 (void) __cond_lock(*ptlp,
4636 !(res = __follow_pte_pmd(mm, address, range,
4637 ptepp, pmdpp, ptlp)));
4638 return res;
4639 }
4640 EXPORT_SYMBOL(follow_pte_pmd);
4641
4642 /**
4643 * follow_pfn - look up PFN at a user virtual address
4644 * @vma: memory mapping
4645 * @address: user virtual address
4646 * @pfn: location to store found PFN
4647 *
4648 * Only IO mappings and raw PFN mappings are allowed.
4649 *
4650 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4651 */
4652 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4653 unsigned long *pfn)
4654 {
4655 int ret = -EINVAL;
4656 spinlock_t *ptl;
4657 pte_t *ptep;
4658
4659 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4660 return ret;
4661
4662 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4663 if (ret)
4664 return ret;
4665 *pfn = pte_pfn(*ptep);
4666 pte_unmap_unlock(ptep, ptl);
4667 return 0;
4668 }
4669 EXPORT_SYMBOL(follow_pfn);
4670
4671 #ifdef CONFIG_HAVE_IOREMAP_PROT
4672 int follow_phys(struct vm_area_struct *vma,
4673 unsigned long address, unsigned int flags,
4674 unsigned long *prot, resource_size_t *phys)
4675 {
4676 int ret = -EINVAL;
4677 pte_t *ptep, pte;
4678 spinlock_t *ptl;
4679
4680 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4681 goto out;
4682
4683 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4684 goto out;
4685 pte = *ptep;
4686
4687 if ((flags & FOLL_WRITE) && !pte_write(pte))
4688 goto unlock;
4689
4690 *prot = pgprot_val(pte_pgprot(pte));
4691 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4692
4693 ret = 0;
4694 unlock:
4695 pte_unmap_unlock(ptep, ptl);
4696 out:
4697 return ret;
4698 }
4699
4700 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4701 void *buf, int len, int write)
4702 {
4703 resource_size_t phys_addr;
4704 unsigned long prot = 0;
4705 void __iomem *maddr;
4706 int offset = addr & (PAGE_SIZE-1);
4707
4708 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4709 return -EINVAL;
4710
4711 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4712 if (!maddr)
4713 return -ENOMEM;
4714
4715 if (write)
4716 memcpy_toio(maddr + offset, buf, len);
4717 else
4718 memcpy_fromio(buf, maddr + offset, len);
4719 iounmap(maddr);
4720
4721 return len;
4722 }
4723 EXPORT_SYMBOL_GPL(generic_access_phys);
4724 #endif
4725
4726 /*
4727 * Access another process' address space as given in mm. If non-NULL, use the
4728 * given task for page fault accounting.
4729 */
4730 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4731 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4732 {
4733 struct vm_area_struct *vma;
4734 void *old_buf = buf;
4735 int write = gup_flags & FOLL_WRITE;
4736
4737 if (mmap_read_lock_killable(mm))
4738 return 0;
4739
4740 /* ignore errors, just check how much was successfully transferred */
4741 while (len) {
4742 int bytes, ret, offset;
4743 void *maddr;
4744 struct page *page = NULL;
4745
4746 ret = get_user_pages_remote(mm, addr, 1,
4747 gup_flags, &page, &vma, NULL);
4748 if (ret <= 0) {
4749 #ifndef CONFIG_HAVE_IOREMAP_PROT
4750 break;
4751 #else
4752 /*
4753 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4754 * we can access using slightly different code.
4755 */
4756 vma = find_vma(mm, addr);
4757 if (!vma || vma->vm_start > addr)
4758 break;
4759 if (vma->vm_ops && vma->vm_ops->access)
4760 ret = vma->vm_ops->access(vma, addr, buf,
4761 len, write);
4762 if (ret <= 0)
4763 break;
4764 bytes = ret;
4765 #endif
4766 } else {
4767 bytes = len;
4768 offset = addr & (PAGE_SIZE-1);
4769 if (bytes > PAGE_SIZE-offset)
4770 bytes = PAGE_SIZE-offset;
4771
4772 maddr = kmap(page);
4773 if (write) {
4774 copy_to_user_page(vma, page, addr,
4775 maddr + offset, buf, bytes);
4776 set_page_dirty_lock(page);
4777 } else {
4778 copy_from_user_page(vma, page, addr,
4779 buf, maddr + offset, bytes);
4780 }
4781 kunmap(page);
4782 put_page(page);
4783 }
4784 len -= bytes;
4785 buf += bytes;
4786 addr += bytes;
4787 }
4788 mmap_read_unlock(mm);
4789
4790 return buf - old_buf;
4791 }
4792
4793 /**
4794 * access_remote_vm - access another process' address space
4795 * @mm: the mm_struct of the target address space
4796 * @addr: start address to access
4797 * @buf: source or destination buffer
4798 * @len: number of bytes to transfer
4799 * @gup_flags: flags modifying lookup behaviour
4800 *
4801 * The caller must hold a reference on @mm.
4802 *
4803 * Return: number of bytes copied from source to destination.
4804 */
4805 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4806 void *buf, int len, unsigned int gup_flags)
4807 {
4808 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4809 }
4810
4811 /*
4812 * Access another process' address space.
4813 * Source/target buffer must be kernel space,
4814 * Do not walk the page table directly, use get_user_pages
4815 */
4816 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4817 void *buf, int len, unsigned int gup_flags)
4818 {
4819 struct mm_struct *mm;
4820 int ret;
4821
4822 mm = get_task_mm(tsk);
4823 if (!mm)
4824 return 0;
4825
4826 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4827
4828 mmput(mm);
4829
4830 return ret;
4831 }
4832 EXPORT_SYMBOL_GPL(access_process_vm);
4833
4834 /*
4835 * Print the name of a VMA.
4836 */
4837 void print_vma_addr(char *prefix, unsigned long ip)
4838 {
4839 struct mm_struct *mm = current->mm;
4840 struct vm_area_struct *vma;
4841
4842 /*
4843 * we might be running from an atomic context so we cannot sleep
4844 */
4845 if (!mmap_read_trylock(mm))
4846 return;
4847
4848 vma = find_vma(mm, ip);
4849 if (vma && vma->vm_file) {
4850 struct file *f = vma->vm_file;
4851 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4852 if (buf) {
4853 char *p;
4854
4855 p = file_path(f, buf, PAGE_SIZE);
4856 if (IS_ERR(p))
4857 p = "?";
4858 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4859 vma->vm_start,
4860 vma->vm_end - vma->vm_start);
4861 free_page((unsigned long)buf);
4862 }
4863 }
4864 mmap_read_unlock(mm);
4865 }
4866
4867 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4868 void __might_fault(const char *file, int line)
4869 {
4870 /*
4871 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4872 * holding the mmap_lock, this is safe because kernel memory doesn't
4873 * get paged out, therefore we'll never actually fault, and the
4874 * below annotations will generate false positives.
4875 */
4876 if (uaccess_kernel())
4877 return;
4878 if (pagefault_disabled())
4879 return;
4880 __might_sleep(file, line, 0);
4881 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4882 if (current->mm)
4883 might_lock_read(&current->mm->mmap_lock);
4884 #endif
4885 }
4886 EXPORT_SYMBOL(__might_fault);
4887 #endif
4888
4889 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4890 /*
4891 * Process all subpages of the specified huge page with the specified
4892 * operation. The target subpage will be processed last to keep its
4893 * cache lines hot.
4894 */
4895 static inline void process_huge_page(
4896 unsigned long addr_hint, unsigned int pages_per_huge_page,
4897 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4898 void *arg)
4899 {
4900 int i, n, base, l;
4901 unsigned long addr = addr_hint &
4902 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4903
4904 /* Process target subpage last to keep its cache lines hot */
4905 might_sleep();
4906 n = (addr_hint - addr) / PAGE_SIZE;
4907 if (2 * n <= pages_per_huge_page) {
4908 /* If target subpage in first half of huge page */
4909 base = 0;
4910 l = n;
4911 /* Process subpages at the end of huge page */
4912 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4913 cond_resched();
4914 process_subpage(addr + i * PAGE_SIZE, i, arg);
4915 }
4916 } else {
4917 /* If target subpage in second half of huge page */
4918 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4919 l = pages_per_huge_page - n;
4920 /* Process subpages at the begin of huge page */
4921 for (i = 0; i < base; i++) {
4922 cond_resched();
4923 process_subpage(addr + i * PAGE_SIZE, i, arg);
4924 }
4925 }
4926 /*
4927 * Process remaining subpages in left-right-left-right pattern
4928 * towards the target subpage
4929 */
4930 for (i = 0; i < l; i++) {
4931 int left_idx = base + i;
4932 int right_idx = base + 2 * l - 1 - i;
4933
4934 cond_resched();
4935 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4936 cond_resched();
4937 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4938 }
4939 }
4940
4941 static void clear_gigantic_page(struct page *page,
4942 unsigned long addr,
4943 unsigned int pages_per_huge_page)
4944 {
4945 int i;
4946 struct page *p = page;
4947
4948 might_sleep();
4949 for (i = 0; i < pages_per_huge_page;
4950 i++, p = mem_map_next(p, page, i)) {
4951 cond_resched();
4952 clear_user_highpage(p, addr + i * PAGE_SIZE);
4953 }
4954 }
4955
4956 static void clear_subpage(unsigned long addr, int idx, void *arg)
4957 {
4958 struct page *page = arg;
4959
4960 clear_user_highpage(page + idx, addr);
4961 }
4962
4963 void clear_huge_page(struct page *page,
4964 unsigned long addr_hint, unsigned int pages_per_huge_page)
4965 {
4966 unsigned long addr = addr_hint &
4967 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4968
4969 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4970 clear_gigantic_page(page, addr, pages_per_huge_page);
4971 return;
4972 }
4973
4974 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4975 }
4976
4977 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4978 unsigned long addr,
4979 struct vm_area_struct *vma,
4980 unsigned int pages_per_huge_page)
4981 {
4982 int i;
4983 struct page *dst_base = dst;
4984 struct page *src_base = src;
4985
4986 for (i = 0; i < pages_per_huge_page; ) {
4987 cond_resched();
4988 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4989
4990 i++;
4991 dst = mem_map_next(dst, dst_base, i);
4992 src = mem_map_next(src, src_base, i);
4993 }
4994 }
4995
4996 struct copy_subpage_arg {
4997 struct page *dst;
4998 struct page *src;
4999 struct vm_area_struct *vma;
5000 };
5001
5002 static void copy_subpage(unsigned long addr, int idx, void *arg)
5003 {
5004 struct copy_subpage_arg *copy_arg = arg;
5005
5006 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5007 addr, copy_arg->vma);
5008 }
5009
5010 void copy_user_huge_page(struct page *dst, struct page *src,
5011 unsigned long addr_hint, struct vm_area_struct *vma,
5012 unsigned int pages_per_huge_page)
5013 {
5014 unsigned long addr = addr_hint &
5015 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5016 struct copy_subpage_arg arg = {
5017 .dst = dst,
5018 .src = src,
5019 .vma = vma,
5020 };
5021
5022 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5023 copy_user_gigantic_page(dst, src, addr, vma,
5024 pages_per_huge_page);
5025 return;
5026 }
5027
5028 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5029 }
5030
5031 long copy_huge_page_from_user(struct page *dst_page,
5032 const void __user *usr_src,
5033 unsigned int pages_per_huge_page,
5034 bool allow_pagefault)
5035 {
5036 void *src = (void *)usr_src;
5037 void *page_kaddr;
5038 unsigned long i, rc = 0;
5039 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5040
5041 for (i = 0; i < pages_per_huge_page; i++) {
5042 if (allow_pagefault)
5043 page_kaddr = kmap(dst_page + i);
5044 else
5045 page_kaddr = kmap_atomic(dst_page + i);
5046 rc = copy_from_user(page_kaddr,
5047 (const void __user *)(src + i * PAGE_SIZE),
5048 PAGE_SIZE);
5049 if (allow_pagefault)
5050 kunmap(dst_page + i);
5051 else
5052 kunmap_atomic(page_kaddr);
5053
5054 ret_val -= (PAGE_SIZE - rc);
5055 if (rc)
5056 break;
5057
5058 cond_resched();
5059 }
5060 return ret_val;
5061 }
5062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5063
5064 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5065
5066 static struct kmem_cache *page_ptl_cachep;
5067
5068 void __init ptlock_cache_init(void)
5069 {
5070 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5071 SLAB_PANIC, NULL);
5072 }
5073
5074 bool ptlock_alloc(struct page *page)
5075 {
5076 spinlock_t *ptl;
5077
5078 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5079 if (!ptl)
5080 return false;
5081 page->ptl = ptl;
5082 return true;
5083 }
5084
5085 void ptlock_free(struct page *page)
5086 {
5087 kmem_cache_free(page_ptl_cachep, page->ptl);
5088 }
5089 #endif