]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
mm, memcontrol: move swap charge handling into get_swap_page()
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 1;
115 #else
116 2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121 randomize_va_space = 0;
122 return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134 static int __init init_zero_pfn(void)
135 {
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330 * See the comment near struct mmu_table_batch.
331 */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 struct mmu_table_batch **batch = &tlb->batch;
377
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /**
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
408 *
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
413 */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
416 {
417 arch_tlb_gather_mmu(tlb, mm, start, end);
418 inc_tlb_flush_pending(tlb->mm);
419 }
420
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
423 {
424 /*
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
430 */
431 bool force = mm_tlb_flush_nested(tlb->mm);
432
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
435 }
436
437 /*
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
440 */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
443 {
444 pgtable_t token = pmd_pgtable(*pmd);
445 pmd_clear(pmd);
446 pte_free_tlb(tlb, token, addr);
447 mm_dec_nr_ptes(tlb->mm);
448 }
449
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
453 {
454 pmd_t *pmd;
455 unsigned long next;
456 unsigned long start;
457
458 start = addr;
459 pmd = pmd_offset(pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
464 free_pte_range(tlb, pmd, addr);
465 } while (pmd++, addr = next, addr != end);
466
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
474 }
475 if (end - 1 > ceiling - 1)
476 return;
477
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
480 pmd_free_tlb(tlb, pmd, start);
481 mm_dec_nr_pmds(tlb->mm);
482 }
483
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487 {
488 pud_t *pud;
489 unsigned long next;
490 unsigned long start;
491
492 start = addr;
493 pud = pud_offset(p4d, addr);
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 } while (pud++, addr = next, addr != end);
500
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
508 }
509 if (end - 1 > ceiling - 1)
510 return;
511
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
515 mm_dec_nr_puds(tlb->mm);
516 }
517
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
521 {
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
525
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
534
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
542 }
543 if (end - 1 > ceiling - 1)
544 return;
545
546 p4d = p4d_offset(pgd, start);
547 pgd_clear(pgd);
548 p4d_free_tlb(tlb, p4d, start);
549 }
550
551 /*
552 * This function frees user-level page tables of a process.
553 */
554 void free_pgd_range(struct mmu_gather *tlb,
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
557 {
558 pgd_t *pgd;
559 unsigned long next;
560
561 /*
562 * The next few lines have given us lots of grief...
563 *
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
567 *
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
575 *
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
580 *
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
585 */
586
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
592 }
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
597 }
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
602 /*
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
605 */
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 pgd = pgd_offset(tlb->mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 } while (pgd++, addr = next, addr != end);
614 }
615
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 unsigned long floor, unsigned long ceiling)
618 {
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
622
623 /*
624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
626 */
627 unlink_anon_vmas(vma);
628 unlink_file_vma(vma);
629
630 if (is_vm_hugetlb_page(vma)) {
631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 floor, next ? next->vm_start : ceiling);
633 } else {
634 /*
635 * Optimization: gather nearby vmas into one call down
636 */
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 && !is_vm_hugetlb_page(next)) {
639 vma = next;
640 next = vma->vm_next;
641 unlink_anon_vmas(vma);
642 unlink_file_vma(vma);
643 }
644 free_pgd_range(tlb, addr, vma->vm_end,
645 floor, next ? next->vm_start : ceiling);
646 }
647 vma = next;
648 }
649 }
650
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653 spinlock_t *ptl;
654 pgtable_t new = pte_alloc_one(mm, address);
655 if (!new)
656 return -ENOMEM;
657
658 /*
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
662 *
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
670 */
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
673 ptl = pmd_lock(mm, pmd);
674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
675 mm_inc_nr_ptes(mm);
676 pmd_populate(mm, pmd, new);
677 new = NULL;
678 }
679 spin_unlock(ptl);
680 if (new)
681 pte_free(mm, new);
682 return 0;
683 }
684
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
690
691 smp_wmb(); /* See comment in __pte_alloc */
692
693 spin_lock(&init_mm.page_table_lock);
694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
695 pmd_populate_kernel(&init_mm, pmd, new);
696 new = NULL;
697 }
698 spin_unlock(&init_mm.page_table_lock);
699 if (new)
700 pte_free_kernel(&init_mm, new);
701 return 0;
702 }
703
704 static inline void init_rss_vec(int *rss)
705 {
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711 int i;
712
713 if (current->mm == mm)
714 sync_mm_rss(mm);
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
718 }
719
720 /*
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
724 *
725 * The calling function must still handle the error.
726 */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
729 {
730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
739
740 /*
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
743 */
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
748 }
749 if (nr_unshown) {
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
752 nr_unshown = 0;
753 }
754 nr_shown = 0;
755 }
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
758
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
761
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 if (page)
766 dump_page(page, "bad pte");
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
774 dump_stack();
775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777
778 /*
779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
780 *
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
784 *
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
789 *
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
793 *
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
798 *
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 *
801 * And for normal mappings this is false.
802 *
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
807 *
808 *
809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810 *
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
818 *
819 */
820 #ifdef __HAVE_ARCH_PTE_SPECIAL
821 # define HAVE_PTE_SPECIAL 1
822 #else
823 # define HAVE_PTE_SPECIAL 0
824 #endif
825 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
826 pte_t pte, bool with_public_device)
827 {
828 unsigned long pfn = pte_pfn(pte);
829
830 if (HAVE_PTE_SPECIAL) {
831 if (likely(!pte_special(pte)))
832 goto check_pfn;
833 if (vma->vm_ops && vma->vm_ops->find_special_page)
834 return vma->vm_ops->find_special_page(vma, addr);
835 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
836 return NULL;
837 if (is_zero_pfn(pfn))
838 return NULL;
839
840 /*
841 * Device public pages are special pages (they are ZONE_DEVICE
842 * pages but different from persistent memory). They behave
843 * allmost like normal pages. The difference is that they are
844 * not on the lru and thus should never be involve with any-
845 * thing that involve lru manipulation (mlock, numa balancing,
846 * ...).
847 *
848 * This is why we still want to return NULL for such page from
849 * vm_normal_page() so that we do not have to special case all
850 * call site of vm_normal_page().
851 */
852 if (likely(pfn <= highest_memmap_pfn)) {
853 struct page *page = pfn_to_page(pfn);
854
855 if (is_device_public_page(page)) {
856 if (with_public_device)
857 return page;
858 return NULL;
859 }
860 }
861 print_bad_pte(vma, addr, pte, NULL);
862 return NULL;
863 }
864
865 /* !HAVE_PTE_SPECIAL case follows: */
866
867 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
868 if (vma->vm_flags & VM_MIXEDMAP) {
869 if (!pfn_valid(pfn))
870 return NULL;
871 goto out;
872 } else {
873 unsigned long off;
874 off = (addr - vma->vm_start) >> PAGE_SHIFT;
875 if (pfn == vma->vm_pgoff + off)
876 return NULL;
877 if (!is_cow_mapping(vma->vm_flags))
878 return NULL;
879 }
880 }
881
882 if (is_zero_pfn(pfn))
883 return NULL;
884 check_pfn:
885 if (unlikely(pfn > highest_memmap_pfn)) {
886 print_bad_pte(vma, addr, pte, NULL);
887 return NULL;
888 }
889
890 /*
891 * NOTE! We still have PageReserved() pages in the page tables.
892 * eg. VDSO mappings can cause them to exist.
893 */
894 out:
895 return pfn_to_page(pfn);
896 }
897
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
899 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t pmd)
901 {
902 unsigned long pfn = pmd_pfn(pmd);
903
904 /*
905 * There is no pmd_special() but there may be special pmds, e.g.
906 * in a direct-access (dax) mapping, so let's just replicate the
907 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
908 */
909 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910 if (vma->vm_flags & VM_MIXEDMAP) {
911 if (!pfn_valid(pfn))
912 return NULL;
913 goto out;
914 } else {
915 unsigned long off;
916 off = (addr - vma->vm_start) >> PAGE_SHIFT;
917 if (pfn == vma->vm_pgoff + off)
918 return NULL;
919 if (!is_cow_mapping(vma->vm_flags))
920 return NULL;
921 }
922 }
923
924 if (is_zero_pfn(pfn))
925 return NULL;
926 if (unlikely(pfn > highest_memmap_pfn))
927 return NULL;
928
929 /*
930 * NOTE! We still have PageReserved() pages in the page tables.
931 * eg. VDSO mappings can cause them to exist.
932 */
933 out:
934 return pfn_to_page(pfn);
935 }
936 #endif
937
938 /*
939 * copy one vm_area from one task to the other. Assumes the page tables
940 * already present in the new task to be cleared in the whole range
941 * covered by this vma.
942 */
943
944 static inline unsigned long
945 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
947 unsigned long addr, int *rss)
948 {
949 unsigned long vm_flags = vma->vm_flags;
950 pte_t pte = *src_pte;
951 struct page *page;
952
953 /* pte contains position in swap or file, so copy. */
954 if (unlikely(!pte_present(pte))) {
955 swp_entry_t entry = pte_to_swp_entry(pte);
956
957 if (likely(!non_swap_entry(entry))) {
958 if (swap_duplicate(entry) < 0)
959 return entry.val;
960
961 /* make sure dst_mm is on swapoff's mmlist. */
962 if (unlikely(list_empty(&dst_mm->mmlist))) {
963 spin_lock(&mmlist_lock);
964 if (list_empty(&dst_mm->mmlist))
965 list_add(&dst_mm->mmlist,
966 &src_mm->mmlist);
967 spin_unlock(&mmlist_lock);
968 }
969 rss[MM_SWAPENTS]++;
970 } else if (is_migration_entry(entry)) {
971 page = migration_entry_to_page(entry);
972
973 rss[mm_counter(page)]++;
974
975 if (is_write_migration_entry(entry) &&
976 is_cow_mapping(vm_flags)) {
977 /*
978 * COW mappings require pages in both
979 * parent and child to be set to read.
980 */
981 make_migration_entry_read(&entry);
982 pte = swp_entry_to_pte(entry);
983 if (pte_swp_soft_dirty(*src_pte))
984 pte = pte_swp_mksoft_dirty(pte);
985 set_pte_at(src_mm, addr, src_pte, pte);
986 }
987 } else if (is_device_private_entry(entry)) {
988 page = device_private_entry_to_page(entry);
989
990 /*
991 * Update rss count even for unaddressable pages, as
992 * they should treated just like normal pages in this
993 * respect.
994 *
995 * We will likely want to have some new rss counters
996 * for unaddressable pages, at some point. But for now
997 * keep things as they are.
998 */
999 get_page(page);
1000 rss[mm_counter(page)]++;
1001 page_dup_rmap(page, false);
1002
1003 /*
1004 * We do not preserve soft-dirty information, because so
1005 * far, checkpoint/restore is the only feature that
1006 * requires that. And checkpoint/restore does not work
1007 * when a device driver is involved (you cannot easily
1008 * save and restore device driver state).
1009 */
1010 if (is_write_device_private_entry(entry) &&
1011 is_cow_mapping(vm_flags)) {
1012 make_device_private_entry_read(&entry);
1013 pte = swp_entry_to_pte(entry);
1014 set_pte_at(src_mm, addr, src_pte, pte);
1015 }
1016 }
1017 goto out_set_pte;
1018 }
1019
1020 /*
1021 * If it's a COW mapping, write protect it both
1022 * in the parent and the child
1023 */
1024 if (is_cow_mapping(vm_flags)) {
1025 ptep_set_wrprotect(src_mm, addr, src_pte);
1026 pte = pte_wrprotect(pte);
1027 }
1028
1029 /*
1030 * If it's a shared mapping, mark it clean in
1031 * the child
1032 */
1033 if (vm_flags & VM_SHARED)
1034 pte = pte_mkclean(pte);
1035 pte = pte_mkold(pte);
1036
1037 page = vm_normal_page(vma, addr, pte);
1038 if (page) {
1039 get_page(page);
1040 page_dup_rmap(page, false);
1041 rss[mm_counter(page)]++;
1042 } else if (pte_devmap(pte)) {
1043 page = pte_page(pte);
1044
1045 /*
1046 * Cache coherent device memory behave like regular page and
1047 * not like persistent memory page. For more informations see
1048 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049 */
1050 if (is_device_public_page(page)) {
1051 get_page(page);
1052 page_dup_rmap(page, false);
1053 rss[mm_counter(page)]++;
1054 }
1055 }
1056
1057 out_set_pte:
1058 set_pte_at(dst_mm, addr, dst_pte, pte);
1059 return 0;
1060 }
1061
1062 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064 unsigned long addr, unsigned long end)
1065 {
1066 pte_t *orig_src_pte, *orig_dst_pte;
1067 pte_t *src_pte, *dst_pte;
1068 spinlock_t *src_ptl, *dst_ptl;
1069 int progress = 0;
1070 int rss[NR_MM_COUNTERS];
1071 swp_entry_t entry = (swp_entry_t){0};
1072
1073 again:
1074 init_rss_vec(rss);
1075
1076 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077 if (!dst_pte)
1078 return -ENOMEM;
1079 src_pte = pte_offset_map(src_pmd, addr);
1080 src_ptl = pte_lockptr(src_mm, src_pmd);
1081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082 orig_src_pte = src_pte;
1083 orig_dst_pte = dst_pte;
1084 arch_enter_lazy_mmu_mode();
1085
1086 do {
1087 /*
1088 * We are holding two locks at this point - either of them
1089 * could generate latencies in another task on another CPU.
1090 */
1091 if (progress >= 32) {
1092 progress = 0;
1093 if (need_resched() ||
1094 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095 break;
1096 }
1097 if (pte_none(*src_pte)) {
1098 progress++;
1099 continue;
1100 }
1101 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102 vma, addr, rss);
1103 if (entry.val)
1104 break;
1105 progress += 8;
1106 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107
1108 arch_leave_lazy_mmu_mode();
1109 spin_unlock(src_ptl);
1110 pte_unmap(orig_src_pte);
1111 add_mm_rss_vec(dst_mm, rss);
1112 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113 cond_resched();
1114
1115 if (entry.val) {
1116 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117 return -ENOMEM;
1118 progress = 0;
1119 }
1120 if (addr != end)
1121 goto again;
1122 return 0;
1123 }
1124
1125 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127 unsigned long addr, unsigned long end)
1128 {
1129 pmd_t *src_pmd, *dst_pmd;
1130 unsigned long next;
1131
1132 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 if (!dst_pmd)
1134 return -ENOMEM;
1135 src_pmd = pmd_offset(src_pud, addr);
1136 do {
1137 next = pmd_addr_end(addr, end);
1138 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139 || pmd_devmap(*src_pmd)) {
1140 int err;
1141 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142 err = copy_huge_pmd(dst_mm, src_mm,
1143 dst_pmd, src_pmd, addr, vma);
1144 if (err == -ENOMEM)
1145 return -ENOMEM;
1146 if (!err)
1147 continue;
1148 /* fall through */
1149 }
1150 if (pmd_none_or_clear_bad(src_pmd))
1151 continue;
1152 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153 vma, addr, next))
1154 return -ENOMEM;
1155 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156 return 0;
1157 }
1158
1159 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161 unsigned long addr, unsigned long end)
1162 {
1163 pud_t *src_pud, *dst_pud;
1164 unsigned long next;
1165
1166 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167 if (!dst_pud)
1168 return -ENOMEM;
1169 src_pud = pud_offset(src_p4d, addr);
1170 do {
1171 next = pud_addr_end(addr, end);
1172 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173 int err;
1174
1175 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176 err = copy_huge_pud(dst_mm, src_mm,
1177 dst_pud, src_pud, addr, vma);
1178 if (err == -ENOMEM)
1179 return -ENOMEM;
1180 if (!err)
1181 continue;
1182 /* fall through */
1183 }
1184 if (pud_none_or_clear_bad(src_pud))
1185 continue;
1186 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187 vma, addr, next))
1188 return -ENOMEM;
1189 } while (dst_pud++, src_pud++, addr = next, addr != end);
1190 return 0;
1191 }
1192
1193 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195 unsigned long addr, unsigned long end)
1196 {
1197 p4d_t *src_p4d, *dst_p4d;
1198 unsigned long next;
1199
1200 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201 if (!dst_p4d)
1202 return -ENOMEM;
1203 src_p4d = p4d_offset(src_pgd, addr);
1204 do {
1205 next = p4d_addr_end(addr, end);
1206 if (p4d_none_or_clear_bad(src_p4d))
1207 continue;
1208 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209 vma, addr, next))
1210 return -ENOMEM;
1211 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212 return 0;
1213 }
1214
1215 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 struct vm_area_struct *vma)
1217 {
1218 pgd_t *src_pgd, *dst_pgd;
1219 unsigned long next;
1220 unsigned long addr = vma->vm_start;
1221 unsigned long end = vma->vm_end;
1222 unsigned long mmun_start; /* For mmu_notifiers */
1223 unsigned long mmun_end; /* For mmu_notifiers */
1224 bool is_cow;
1225 int ret;
1226
1227 /*
1228 * Don't copy ptes where a page fault will fill them correctly.
1229 * Fork becomes much lighter when there are big shared or private
1230 * readonly mappings. The tradeoff is that copy_page_range is more
1231 * efficient than faulting.
1232 */
1233 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234 !vma->anon_vma)
1235 return 0;
1236
1237 if (is_vm_hugetlb_page(vma))
1238 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
1240 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241 /*
1242 * We do not free on error cases below as remove_vma
1243 * gets called on error from higher level routine
1244 */
1245 ret = track_pfn_copy(vma);
1246 if (ret)
1247 return ret;
1248 }
1249
1250 /*
1251 * We need to invalidate the secondary MMU mappings only when
1252 * there could be a permission downgrade on the ptes of the
1253 * parent mm. And a permission downgrade will only happen if
1254 * is_cow_mapping() returns true.
1255 */
1256 is_cow = is_cow_mapping(vma->vm_flags);
1257 mmun_start = addr;
1258 mmun_end = end;
1259 if (is_cow)
1260 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261 mmun_end);
1262
1263 ret = 0;
1264 dst_pgd = pgd_offset(dst_mm, addr);
1265 src_pgd = pgd_offset(src_mm, addr);
1266 do {
1267 next = pgd_addr_end(addr, end);
1268 if (pgd_none_or_clear_bad(src_pgd))
1269 continue;
1270 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271 vma, addr, next))) {
1272 ret = -ENOMEM;
1273 break;
1274 }
1275 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276
1277 if (is_cow)
1278 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279 return ret;
1280 }
1281
1282 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283 struct vm_area_struct *vma, pmd_t *pmd,
1284 unsigned long addr, unsigned long end,
1285 struct zap_details *details)
1286 {
1287 struct mm_struct *mm = tlb->mm;
1288 int force_flush = 0;
1289 int rss[NR_MM_COUNTERS];
1290 spinlock_t *ptl;
1291 pte_t *start_pte;
1292 pte_t *pte;
1293 swp_entry_t entry;
1294
1295 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296 again:
1297 init_rss_vec(rss);
1298 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299 pte = start_pte;
1300 flush_tlb_batched_pending(mm);
1301 arch_enter_lazy_mmu_mode();
1302 do {
1303 pte_t ptent = *pte;
1304 if (pte_none(ptent))
1305 continue;
1306
1307 if (pte_present(ptent)) {
1308 struct page *page;
1309
1310 page = _vm_normal_page(vma, addr, ptent, true);
1311 if (unlikely(details) && page) {
1312 /*
1313 * unmap_shared_mapping_pages() wants to
1314 * invalidate cache without truncating:
1315 * unmap shared but keep private pages.
1316 */
1317 if (details->check_mapping &&
1318 details->check_mapping != page_rmapping(page))
1319 continue;
1320 }
1321 ptent = ptep_get_and_clear_full(mm, addr, pte,
1322 tlb->fullmm);
1323 tlb_remove_tlb_entry(tlb, pte, addr);
1324 if (unlikely(!page))
1325 continue;
1326
1327 if (!PageAnon(page)) {
1328 if (pte_dirty(ptent)) {
1329 force_flush = 1;
1330 set_page_dirty(page);
1331 }
1332 if (pte_young(ptent) &&
1333 likely(!(vma->vm_flags & VM_SEQ_READ)))
1334 mark_page_accessed(page);
1335 }
1336 rss[mm_counter(page)]--;
1337 page_remove_rmap(page, false);
1338 if (unlikely(page_mapcount(page) < 0))
1339 print_bad_pte(vma, addr, ptent, page);
1340 if (unlikely(__tlb_remove_page(tlb, page))) {
1341 force_flush = 1;
1342 addr += PAGE_SIZE;
1343 break;
1344 }
1345 continue;
1346 }
1347
1348 entry = pte_to_swp_entry(ptent);
1349 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350 struct page *page = device_private_entry_to_page(entry);
1351
1352 if (unlikely(details && details->check_mapping)) {
1353 /*
1354 * unmap_shared_mapping_pages() wants to
1355 * invalidate cache without truncating:
1356 * unmap shared but keep private pages.
1357 */
1358 if (details->check_mapping !=
1359 page_rmapping(page))
1360 continue;
1361 }
1362
1363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 rss[mm_counter(page)]--;
1365 page_remove_rmap(page, false);
1366 put_page(page);
1367 continue;
1368 }
1369
1370 /* If details->check_mapping, we leave swap entries. */
1371 if (unlikely(details))
1372 continue;
1373
1374 entry = pte_to_swp_entry(ptent);
1375 if (!non_swap_entry(entry))
1376 rss[MM_SWAPENTS]--;
1377 else if (is_migration_entry(entry)) {
1378 struct page *page;
1379
1380 page = migration_entry_to_page(entry);
1381 rss[mm_counter(page)]--;
1382 }
1383 if (unlikely(!free_swap_and_cache(entry)))
1384 print_bad_pte(vma, addr, ptent, NULL);
1385 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386 } while (pte++, addr += PAGE_SIZE, addr != end);
1387
1388 add_mm_rss_vec(mm, rss);
1389 arch_leave_lazy_mmu_mode();
1390
1391 /* Do the actual TLB flush before dropping ptl */
1392 if (force_flush)
1393 tlb_flush_mmu_tlbonly(tlb);
1394 pte_unmap_unlock(start_pte, ptl);
1395
1396 /*
1397 * If we forced a TLB flush (either due to running out of
1398 * batch buffers or because we needed to flush dirty TLB
1399 * entries before releasing the ptl), free the batched
1400 * memory too. Restart if we didn't do everything.
1401 */
1402 if (force_flush) {
1403 force_flush = 0;
1404 tlb_flush_mmu_free(tlb);
1405 if (addr != end)
1406 goto again;
1407 }
1408
1409 return addr;
1410 }
1411
1412 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413 struct vm_area_struct *vma, pud_t *pud,
1414 unsigned long addr, unsigned long end,
1415 struct zap_details *details)
1416 {
1417 pmd_t *pmd;
1418 unsigned long next;
1419
1420 pmd = pmd_offset(pud, addr);
1421 do {
1422 next = pmd_addr_end(addr, end);
1423 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424 if (next - addr != HPAGE_PMD_SIZE) {
1425 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427 __split_huge_pmd(vma, pmd, addr, false, NULL);
1428 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429 goto next;
1430 /* fall through */
1431 }
1432 /*
1433 * Here there can be other concurrent MADV_DONTNEED or
1434 * trans huge page faults running, and if the pmd is
1435 * none or trans huge it can change under us. This is
1436 * because MADV_DONTNEED holds the mmap_sem in read
1437 * mode.
1438 */
1439 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 goto next;
1441 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443 cond_resched();
1444 } while (pmd++, addr = next, addr != end);
1445
1446 return addr;
1447 }
1448
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450 struct vm_area_struct *vma, p4d_t *p4d,
1451 unsigned long addr, unsigned long end,
1452 struct zap_details *details)
1453 {
1454 pud_t *pud;
1455 unsigned long next;
1456
1457 pud = pud_offset(p4d, addr);
1458 do {
1459 next = pud_addr_end(addr, end);
1460 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 if (next - addr != HPAGE_PUD_SIZE) {
1462 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 split_huge_pud(vma, pud, addr);
1464 } else if (zap_huge_pud(tlb, vma, pud, addr))
1465 goto next;
1466 /* fall through */
1467 }
1468 if (pud_none_or_clear_bad(pud))
1469 continue;
1470 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472 cond_resched();
1473 } while (pud++, addr = next, addr != end);
1474
1475 return addr;
1476 }
1477
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 struct vm_area_struct *vma, pgd_t *pgd,
1480 unsigned long addr, unsigned long end,
1481 struct zap_details *details)
1482 {
1483 p4d_t *p4d;
1484 unsigned long next;
1485
1486 p4d = p4d_offset(pgd, addr);
1487 do {
1488 next = p4d_addr_end(addr, end);
1489 if (p4d_none_or_clear_bad(p4d))
1490 continue;
1491 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 } while (p4d++, addr = next, addr != end);
1493
1494 return addr;
1495 }
1496
1497 void unmap_page_range(struct mmu_gather *tlb,
1498 struct vm_area_struct *vma,
1499 unsigned long addr, unsigned long end,
1500 struct zap_details *details)
1501 {
1502 pgd_t *pgd;
1503 unsigned long next;
1504
1505 BUG_ON(addr >= end);
1506 tlb_start_vma(tlb, vma);
1507 pgd = pgd_offset(vma->vm_mm, addr);
1508 do {
1509 next = pgd_addr_end(addr, end);
1510 if (pgd_none_or_clear_bad(pgd))
1511 continue;
1512 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513 } while (pgd++, addr = next, addr != end);
1514 tlb_end_vma(tlb, vma);
1515 }
1516
1517
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, unsigned long start_addr,
1520 unsigned long end_addr,
1521 struct zap_details *details)
1522 {
1523 unsigned long start = max(vma->vm_start, start_addr);
1524 unsigned long end;
1525
1526 if (start >= vma->vm_end)
1527 return;
1528 end = min(vma->vm_end, end_addr);
1529 if (end <= vma->vm_start)
1530 return;
1531
1532 if (vma->vm_file)
1533 uprobe_munmap(vma, start, end);
1534
1535 if (unlikely(vma->vm_flags & VM_PFNMAP))
1536 untrack_pfn(vma, 0, 0);
1537
1538 if (start != end) {
1539 if (unlikely(is_vm_hugetlb_page(vma))) {
1540 /*
1541 * It is undesirable to test vma->vm_file as it
1542 * should be non-null for valid hugetlb area.
1543 * However, vm_file will be NULL in the error
1544 * cleanup path of mmap_region. When
1545 * hugetlbfs ->mmap method fails,
1546 * mmap_region() nullifies vma->vm_file
1547 * before calling this function to clean up.
1548 * Since no pte has actually been setup, it is
1549 * safe to do nothing in this case.
1550 */
1551 if (vma->vm_file) {
1552 i_mmap_lock_write(vma->vm_file->f_mapping);
1553 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554 i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 }
1556 } else
1557 unmap_page_range(tlb, vma, start, end, details);
1558 }
1559 }
1560
1561 /**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
1563 * @tlb: address of the caller's struct mmu_gather
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
1567 *
1568 * Unmap all pages in the vma list.
1569 *
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns. So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580 struct vm_area_struct *vma, unsigned long start_addr,
1581 unsigned long end_addr)
1582 {
1583 struct mm_struct *mm = vma->vm_mm;
1584
1585 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590
1591 /**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
1594 * @start: starting address of pages to zap
1595 * @size: number of bytes to zap
1596 *
1597 * Caller must protect the VMA list
1598 */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600 unsigned long size)
1601 {
1602 struct mm_struct *mm = vma->vm_mm;
1603 struct mmu_gather tlb;
1604 unsigned long end = start + size;
1605
1606 lru_add_drain();
1607 tlb_gather_mmu(&tlb, mm, start, end);
1608 update_hiwater_rss(mm);
1609 mmu_notifier_invalidate_range_start(mm, start, end);
1610 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611 unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613 /*
1614 * zap_page_range does not specify whether mmap_sem should be
1615 * held for read or write. That allows parallel zap_page_range
1616 * operations to unmap a PTE and defer a flush meaning that
1617 * this call observes pte_none and fails to flush the TLB.
1618 * Rather than adding a complex API, ensure that no stale
1619 * TLB entries exist when this call returns.
1620 */
1621 flush_tlb_range(vma, start, end);
1622 }
1623
1624 mmu_notifier_invalidate_range_end(mm, start, end);
1625 tlb_finish_mmu(&tlb, start, end);
1626 }
1627
1628 /**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
1633 * @details: details of shared cache invalidation
1634 *
1635 * The range must fit into one VMA.
1636 */
1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638 unsigned long size, struct zap_details *details)
1639 {
1640 struct mm_struct *mm = vma->vm_mm;
1641 struct mmu_gather tlb;
1642 unsigned long end = address + size;
1643
1644 lru_add_drain();
1645 tlb_gather_mmu(&tlb, mm, address, end);
1646 update_hiwater_rss(mm);
1647 mmu_notifier_invalidate_range_start(mm, address, end);
1648 unmap_single_vma(&tlb, vma, address, end, details);
1649 mmu_notifier_invalidate_range_end(mm, address, end);
1650 tlb_finish_mmu(&tlb, address, end);
1651 }
1652
1653 /**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
1663 * Returns 0 if successful.
1664 */
1665 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666 unsigned long size)
1667 {
1668 if (address < vma->vm_start || address + size > vma->vm_end ||
1669 !(vma->vm_flags & VM_PFNMAP))
1670 return -1;
1671 zap_page_range_single(vma, address, size, NULL);
1672 return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675
1676 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677 spinlock_t **ptl)
1678 {
1679 pgd_t *pgd;
1680 p4d_t *p4d;
1681 pud_t *pud;
1682 pmd_t *pmd;
1683
1684 pgd = pgd_offset(mm, addr);
1685 p4d = p4d_alloc(mm, pgd, addr);
1686 if (!p4d)
1687 return NULL;
1688 pud = pud_alloc(mm, p4d, addr);
1689 if (!pud)
1690 return NULL;
1691 pmd = pmd_alloc(mm, pud, addr);
1692 if (!pmd)
1693 return NULL;
1694
1695 VM_BUG_ON(pmd_trans_huge(*pmd));
1696 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697 }
1698
1699 /*
1700 * This is the old fallback for page remapping.
1701 *
1702 * For historical reasons, it only allows reserved pages. Only
1703 * old drivers should use this, and they needed to mark their
1704 * pages reserved for the old functions anyway.
1705 */
1706 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 struct page *page, pgprot_t prot)
1708 {
1709 struct mm_struct *mm = vma->vm_mm;
1710 int retval;
1711 pte_t *pte;
1712 spinlock_t *ptl;
1713
1714 retval = -EINVAL;
1715 if (PageAnon(page))
1716 goto out;
1717 retval = -ENOMEM;
1718 flush_dcache_page(page);
1719 pte = get_locked_pte(mm, addr, &ptl);
1720 if (!pte)
1721 goto out;
1722 retval = -EBUSY;
1723 if (!pte_none(*pte))
1724 goto out_unlock;
1725
1726 /* Ok, finally just insert the thing.. */
1727 get_page(page);
1728 inc_mm_counter_fast(mm, mm_counter_file(page));
1729 page_add_file_rmap(page, false);
1730 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731
1732 retval = 0;
1733 pte_unmap_unlock(pte, ptl);
1734 return retval;
1735 out_unlock:
1736 pte_unmap_unlock(pte, ptl);
1737 out:
1738 return retval;
1739 }
1740
1741 /**
1742 * vm_insert_page - insert single page into user vma
1743 * @vma: user vma to map to
1744 * @addr: target user address of this page
1745 * @page: source kernel page
1746 *
1747 * This allows drivers to insert individual pages they've allocated
1748 * into a user vma.
1749 *
1750 * The page has to be a nice clean _individual_ kernel allocation.
1751 * If you allocate a compound page, you need to have marked it as
1752 * such (__GFP_COMP), or manually just split the page up yourself
1753 * (see split_page()).
1754 *
1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756 * took an arbitrary page protection parameter. This doesn't allow
1757 * that. Your vma protection will have to be set up correctly, which
1758 * means that if you want a shared writable mapping, you'd better
1759 * ask for a shared writable mapping!
1760 *
1761 * The page does not need to be reserved.
1762 *
1763 * Usually this function is called from f_op->mmap() handler
1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766 * function from other places, for example from page-fault handler.
1767 */
1768 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 struct page *page)
1770 {
1771 if (addr < vma->vm_start || addr >= vma->vm_end)
1772 return -EFAULT;
1773 if (!page_count(page))
1774 return -EINVAL;
1775 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777 BUG_ON(vma->vm_flags & VM_PFNMAP);
1778 vma->vm_flags |= VM_MIXEDMAP;
1779 }
1780 return insert_page(vma, addr, page, vma->vm_page_prot);
1781 }
1782 EXPORT_SYMBOL(vm_insert_page);
1783
1784 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785 pfn_t pfn, pgprot_t prot, bool mkwrite)
1786 {
1787 struct mm_struct *mm = vma->vm_mm;
1788 int retval;
1789 pte_t *pte, entry;
1790 spinlock_t *ptl;
1791
1792 retval = -ENOMEM;
1793 pte = get_locked_pte(mm, addr, &ptl);
1794 if (!pte)
1795 goto out;
1796 retval = -EBUSY;
1797 if (!pte_none(*pte)) {
1798 if (mkwrite) {
1799 /*
1800 * For read faults on private mappings the PFN passed
1801 * in may not match the PFN we have mapped if the
1802 * mapped PFN is a writeable COW page. In the mkwrite
1803 * case we are creating a writable PTE for a shared
1804 * mapping and we expect the PFNs to match.
1805 */
1806 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807 goto out_unlock;
1808 entry = *pte;
1809 goto out_mkwrite;
1810 } else
1811 goto out_unlock;
1812 }
1813
1814 /* Ok, finally just insert the thing.. */
1815 if (pfn_t_devmap(pfn))
1816 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817 else
1818 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819
1820 out_mkwrite:
1821 if (mkwrite) {
1822 entry = pte_mkyoung(entry);
1823 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 }
1825
1826 set_pte_at(mm, addr, pte, entry);
1827 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828
1829 retval = 0;
1830 out_unlock:
1831 pte_unmap_unlock(pte, ptl);
1832 out:
1833 return retval;
1834 }
1835
1836 /**
1837 * vm_insert_pfn - insert single pfn into user vma
1838 * @vma: user vma to map to
1839 * @addr: target user address of this page
1840 * @pfn: source kernel pfn
1841 *
1842 * Similar to vm_insert_page, this allows drivers to insert individual pages
1843 * they've allocated into a user vma. Same comments apply.
1844 *
1845 * This function should only be called from a vm_ops->fault handler, and
1846 * in that case the handler should return NULL.
1847 *
1848 * vma cannot be a COW mapping.
1849 *
1850 * As this is called only for pages that do not currently exist, we
1851 * do not need to flush old virtual caches or the TLB.
1852 */
1853 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854 unsigned long pfn)
1855 {
1856 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857 }
1858 EXPORT_SYMBOL(vm_insert_pfn);
1859
1860 /**
1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862 * @vma: user vma to map to
1863 * @addr: target user address of this page
1864 * @pfn: source kernel pfn
1865 * @pgprot: pgprot flags for the inserted page
1866 *
1867 * This is exactly like vm_insert_pfn, except that it allows drivers to
1868 * to override pgprot on a per-page basis.
1869 *
1870 * This only makes sense for IO mappings, and it makes no sense for
1871 * cow mappings. In general, using multiple vmas is preferable;
1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873 * impractical.
1874 */
1875 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876 unsigned long pfn, pgprot_t pgprot)
1877 {
1878 int ret;
1879 /*
1880 * Technically, architectures with pte_special can avoid all these
1881 * restrictions (same for remap_pfn_range). However we would like
1882 * consistency in testing and feature parity among all, so we should
1883 * try to keep these invariants in place for everybody.
1884 */
1885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887 (VM_PFNMAP|VM_MIXEDMAP));
1888 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890
1891 if (addr < vma->vm_start || addr >= vma->vm_end)
1892 return -EFAULT;
1893
1894 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895
1896 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897 false);
1898
1899 return ret;
1900 }
1901 EXPORT_SYMBOL(vm_insert_pfn_prot);
1902
1903 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904 {
1905 /* these checks mirror the abort conditions in vm_normal_page */
1906 if (vma->vm_flags & VM_MIXEDMAP)
1907 return true;
1908 if (pfn_t_devmap(pfn))
1909 return true;
1910 if (pfn_t_special(pfn))
1911 return true;
1912 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913 return true;
1914 return false;
1915 }
1916
1917 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918 pfn_t pfn, bool mkwrite)
1919 {
1920 pgprot_t pgprot = vma->vm_page_prot;
1921
1922 BUG_ON(!vm_mixed_ok(vma, pfn));
1923
1924 if (addr < vma->vm_start || addr >= vma->vm_end)
1925 return -EFAULT;
1926
1927 track_pfn_insert(vma, &pgprot, pfn);
1928
1929 /*
1930 * If we don't have pte special, then we have to use the pfn_valid()
1931 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 * refcount the page if pfn_valid is true (hence insert_page rather
1933 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1934 * without pte special, it would there be refcounted as a normal page.
1935 */
1936 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 struct page *page;
1938
1939 /*
1940 * At this point we are committed to insert_page()
1941 * regardless of whether the caller specified flags that
1942 * result in pfn_t_has_page() == false.
1943 */
1944 page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 return insert_page(vma, addr, page, pgprot);
1946 }
1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 pfn_t pfn)
1952 {
1953 return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957
1958 /*
1959 * If the insertion of PTE failed because someone else already added a
1960 * different entry in the mean time, we treat that as success as we assume
1961 * the same entry was actually inserted.
1962 */
1963
1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1965 unsigned long addr, pfn_t pfn)
1966 {
1967 int err;
1968
1969 err = __vm_insert_mixed(vma, addr, pfn, true);
1970 if (err == -ENOMEM)
1971 return VM_FAULT_OOM;
1972 if (err < 0 && err != -EBUSY)
1973 return VM_FAULT_SIGBUS;
1974 return VM_FAULT_NOPAGE;
1975 }
1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1977
1978 /*
1979 * maps a range of physical memory into the requested pages. the old
1980 * mappings are removed. any references to nonexistent pages results
1981 * in null mappings (currently treated as "copy-on-access")
1982 */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 unsigned long addr, unsigned long end,
1985 unsigned long pfn, pgprot_t prot)
1986 {
1987 pte_t *pte;
1988 spinlock_t *ptl;
1989
1990 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1991 if (!pte)
1992 return -ENOMEM;
1993 arch_enter_lazy_mmu_mode();
1994 do {
1995 BUG_ON(!pte_none(*pte));
1996 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1997 pfn++;
1998 } while (pte++, addr += PAGE_SIZE, addr != end);
1999 arch_leave_lazy_mmu_mode();
2000 pte_unmap_unlock(pte - 1, ptl);
2001 return 0;
2002 }
2003
2004 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2005 unsigned long addr, unsigned long end,
2006 unsigned long pfn, pgprot_t prot)
2007 {
2008 pmd_t *pmd;
2009 unsigned long next;
2010
2011 pfn -= addr >> PAGE_SHIFT;
2012 pmd = pmd_alloc(mm, pud, addr);
2013 if (!pmd)
2014 return -ENOMEM;
2015 VM_BUG_ON(pmd_trans_huge(*pmd));
2016 do {
2017 next = pmd_addr_end(addr, end);
2018 if (remap_pte_range(mm, pmd, addr, next,
2019 pfn + (addr >> PAGE_SHIFT), prot))
2020 return -ENOMEM;
2021 } while (pmd++, addr = next, addr != end);
2022 return 0;
2023 }
2024
2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026 unsigned long addr, unsigned long end,
2027 unsigned long pfn, pgprot_t prot)
2028 {
2029 pud_t *pud;
2030 unsigned long next;
2031
2032 pfn -= addr >> PAGE_SHIFT;
2033 pud = pud_alloc(mm, p4d, addr);
2034 if (!pud)
2035 return -ENOMEM;
2036 do {
2037 next = pud_addr_end(addr, end);
2038 if (remap_pmd_range(mm, pud, addr, next,
2039 pfn + (addr >> PAGE_SHIFT), prot))
2040 return -ENOMEM;
2041 } while (pud++, addr = next, addr != end);
2042 return 0;
2043 }
2044
2045 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2046 unsigned long addr, unsigned long end,
2047 unsigned long pfn, pgprot_t prot)
2048 {
2049 p4d_t *p4d;
2050 unsigned long next;
2051
2052 pfn -= addr >> PAGE_SHIFT;
2053 p4d = p4d_alloc(mm, pgd, addr);
2054 if (!p4d)
2055 return -ENOMEM;
2056 do {
2057 next = p4d_addr_end(addr, end);
2058 if (remap_pud_range(mm, p4d, addr, next,
2059 pfn + (addr >> PAGE_SHIFT), prot))
2060 return -ENOMEM;
2061 } while (p4d++, addr = next, addr != end);
2062 return 0;
2063 }
2064
2065 /**
2066 * remap_pfn_range - remap kernel memory to userspace
2067 * @vma: user vma to map to
2068 * @addr: target user address to start at
2069 * @pfn: physical address of kernel memory
2070 * @size: size of map area
2071 * @prot: page protection flags for this mapping
2072 *
2073 * Note: this is only safe if the mm semaphore is held when called.
2074 */
2075 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2076 unsigned long pfn, unsigned long size, pgprot_t prot)
2077 {
2078 pgd_t *pgd;
2079 unsigned long next;
2080 unsigned long end = addr + PAGE_ALIGN(size);
2081 struct mm_struct *mm = vma->vm_mm;
2082 unsigned long remap_pfn = pfn;
2083 int err;
2084
2085 /*
2086 * Physically remapped pages are special. Tell the
2087 * rest of the world about it:
2088 * VM_IO tells people not to look at these pages
2089 * (accesses can have side effects).
2090 * VM_PFNMAP tells the core MM that the base pages are just
2091 * raw PFN mappings, and do not have a "struct page" associated
2092 * with them.
2093 * VM_DONTEXPAND
2094 * Disable vma merging and expanding with mremap().
2095 * VM_DONTDUMP
2096 * Omit vma from core dump, even when VM_IO turned off.
2097 *
2098 * There's a horrible special case to handle copy-on-write
2099 * behaviour that some programs depend on. We mark the "original"
2100 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2101 * See vm_normal_page() for details.
2102 */
2103 if (is_cow_mapping(vma->vm_flags)) {
2104 if (addr != vma->vm_start || end != vma->vm_end)
2105 return -EINVAL;
2106 vma->vm_pgoff = pfn;
2107 }
2108
2109 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2110 if (err)
2111 return -EINVAL;
2112
2113 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2114
2115 BUG_ON(addr >= end);
2116 pfn -= addr >> PAGE_SHIFT;
2117 pgd = pgd_offset(mm, addr);
2118 flush_cache_range(vma, addr, end);
2119 do {
2120 next = pgd_addr_end(addr, end);
2121 err = remap_p4d_range(mm, pgd, addr, next,
2122 pfn + (addr >> PAGE_SHIFT), prot);
2123 if (err)
2124 break;
2125 } while (pgd++, addr = next, addr != end);
2126
2127 if (err)
2128 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2129
2130 return err;
2131 }
2132 EXPORT_SYMBOL(remap_pfn_range);
2133
2134 /**
2135 * vm_iomap_memory - remap memory to userspace
2136 * @vma: user vma to map to
2137 * @start: start of area
2138 * @len: size of area
2139 *
2140 * This is a simplified io_remap_pfn_range() for common driver use. The
2141 * driver just needs to give us the physical memory range to be mapped,
2142 * we'll figure out the rest from the vma information.
2143 *
2144 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2145 * whatever write-combining details or similar.
2146 */
2147 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2148 {
2149 unsigned long vm_len, pfn, pages;
2150
2151 /* Check that the physical memory area passed in looks valid */
2152 if (start + len < start)
2153 return -EINVAL;
2154 /*
2155 * You *really* shouldn't map things that aren't page-aligned,
2156 * but we've historically allowed it because IO memory might
2157 * just have smaller alignment.
2158 */
2159 len += start & ~PAGE_MASK;
2160 pfn = start >> PAGE_SHIFT;
2161 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2162 if (pfn + pages < pfn)
2163 return -EINVAL;
2164
2165 /* We start the mapping 'vm_pgoff' pages into the area */
2166 if (vma->vm_pgoff > pages)
2167 return -EINVAL;
2168 pfn += vma->vm_pgoff;
2169 pages -= vma->vm_pgoff;
2170
2171 /* Can we fit all of the mapping? */
2172 vm_len = vma->vm_end - vma->vm_start;
2173 if (vm_len >> PAGE_SHIFT > pages)
2174 return -EINVAL;
2175
2176 /* Ok, let it rip */
2177 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2178 }
2179 EXPORT_SYMBOL(vm_iomap_memory);
2180
2181 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182 unsigned long addr, unsigned long end,
2183 pte_fn_t fn, void *data)
2184 {
2185 pte_t *pte;
2186 int err;
2187 pgtable_t token;
2188 spinlock_t *uninitialized_var(ptl);
2189
2190 pte = (mm == &init_mm) ?
2191 pte_alloc_kernel(pmd, addr) :
2192 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2193 if (!pte)
2194 return -ENOMEM;
2195
2196 BUG_ON(pmd_huge(*pmd));
2197
2198 arch_enter_lazy_mmu_mode();
2199
2200 token = pmd_pgtable(*pmd);
2201
2202 do {
2203 err = fn(pte++, token, addr, data);
2204 if (err)
2205 break;
2206 } while (addr += PAGE_SIZE, addr != end);
2207
2208 arch_leave_lazy_mmu_mode();
2209
2210 if (mm != &init_mm)
2211 pte_unmap_unlock(pte-1, ptl);
2212 return err;
2213 }
2214
2215 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2216 unsigned long addr, unsigned long end,
2217 pte_fn_t fn, void *data)
2218 {
2219 pmd_t *pmd;
2220 unsigned long next;
2221 int err;
2222
2223 BUG_ON(pud_huge(*pud));
2224
2225 pmd = pmd_alloc(mm, pud, addr);
2226 if (!pmd)
2227 return -ENOMEM;
2228 do {
2229 next = pmd_addr_end(addr, end);
2230 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2231 if (err)
2232 break;
2233 } while (pmd++, addr = next, addr != end);
2234 return err;
2235 }
2236
2237 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2238 unsigned long addr, unsigned long end,
2239 pte_fn_t fn, void *data)
2240 {
2241 pud_t *pud;
2242 unsigned long next;
2243 int err;
2244
2245 pud = pud_alloc(mm, p4d, addr);
2246 if (!pud)
2247 return -ENOMEM;
2248 do {
2249 next = pud_addr_end(addr, end);
2250 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2251 if (err)
2252 break;
2253 } while (pud++, addr = next, addr != end);
2254 return err;
2255 }
2256
2257 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2258 unsigned long addr, unsigned long end,
2259 pte_fn_t fn, void *data)
2260 {
2261 p4d_t *p4d;
2262 unsigned long next;
2263 int err;
2264
2265 p4d = p4d_alloc(mm, pgd, addr);
2266 if (!p4d)
2267 return -ENOMEM;
2268 do {
2269 next = p4d_addr_end(addr, end);
2270 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2271 if (err)
2272 break;
2273 } while (p4d++, addr = next, addr != end);
2274 return err;
2275 }
2276
2277 /*
2278 * Scan a region of virtual memory, filling in page tables as necessary
2279 * and calling a provided function on each leaf page table.
2280 */
2281 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2282 unsigned long size, pte_fn_t fn, void *data)
2283 {
2284 pgd_t *pgd;
2285 unsigned long next;
2286 unsigned long end = addr + size;
2287 int err;
2288
2289 if (WARN_ON(addr >= end))
2290 return -EINVAL;
2291
2292 pgd = pgd_offset(mm, addr);
2293 do {
2294 next = pgd_addr_end(addr, end);
2295 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2296 if (err)
2297 break;
2298 } while (pgd++, addr = next, addr != end);
2299
2300 return err;
2301 }
2302 EXPORT_SYMBOL_GPL(apply_to_page_range);
2303
2304 /*
2305 * handle_pte_fault chooses page fault handler according to an entry which was
2306 * read non-atomically. Before making any commitment, on those architectures
2307 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2308 * parts, do_swap_page must check under lock before unmapping the pte and
2309 * proceeding (but do_wp_page is only called after already making such a check;
2310 * and do_anonymous_page can safely check later on).
2311 */
2312 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2313 pte_t *page_table, pte_t orig_pte)
2314 {
2315 int same = 1;
2316 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2317 if (sizeof(pte_t) > sizeof(unsigned long)) {
2318 spinlock_t *ptl = pte_lockptr(mm, pmd);
2319 spin_lock(ptl);
2320 same = pte_same(*page_table, orig_pte);
2321 spin_unlock(ptl);
2322 }
2323 #endif
2324 pte_unmap(page_table);
2325 return same;
2326 }
2327
2328 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2329 {
2330 debug_dma_assert_idle(src);
2331
2332 /*
2333 * If the source page was a PFN mapping, we don't have
2334 * a "struct page" for it. We do a best-effort copy by
2335 * just copying from the original user address. If that
2336 * fails, we just zero-fill it. Live with it.
2337 */
2338 if (unlikely(!src)) {
2339 void *kaddr = kmap_atomic(dst);
2340 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2341
2342 /*
2343 * This really shouldn't fail, because the page is there
2344 * in the page tables. But it might just be unreadable,
2345 * in which case we just give up and fill the result with
2346 * zeroes.
2347 */
2348 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2349 clear_page(kaddr);
2350 kunmap_atomic(kaddr);
2351 flush_dcache_page(dst);
2352 } else
2353 copy_user_highpage(dst, src, va, vma);
2354 }
2355
2356 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2357 {
2358 struct file *vm_file = vma->vm_file;
2359
2360 if (vm_file)
2361 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2362
2363 /*
2364 * Special mappings (e.g. VDSO) do not have any file so fake
2365 * a default GFP_KERNEL for them.
2366 */
2367 return GFP_KERNEL;
2368 }
2369
2370 /*
2371 * Notify the address space that the page is about to become writable so that
2372 * it can prohibit this or wait for the page to get into an appropriate state.
2373 *
2374 * We do this without the lock held, so that it can sleep if it needs to.
2375 */
2376 static int do_page_mkwrite(struct vm_fault *vmf)
2377 {
2378 int ret;
2379 struct page *page = vmf->page;
2380 unsigned int old_flags = vmf->flags;
2381
2382 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2383
2384 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2385 /* Restore original flags so that caller is not surprised */
2386 vmf->flags = old_flags;
2387 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2388 return ret;
2389 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2390 lock_page(page);
2391 if (!page->mapping) {
2392 unlock_page(page);
2393 return 0; /* retry */
2394 }
2395 ret |= VM_FAULT_LOCKED;
2396 } else
2397 VM_BUG_ON_PAGE(!PageLocked(page), page);
2398 return ret;
2399 }
2400
2401 /*
2402 * Handle dirtying of a page in shared file mapping on a write fault.
2403 *
2404 * The function expects the page to be locked and unlocks it.
2405 */
2406 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2407 struct page *page)
2408 {
2409 struct address_space *mapping;
2410 bool dirtied;
2411 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2412
2413 dirtied = set_page_dirty(page);
2414 VM_BUG_ON_PAGE(PageAnon(page), page);
2415 /*
2416 * Take a local copy of the address_space - page.mapping may be zeroed
2417 * by truncate after unlock_page(). The address_space itself remains
2418 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2419 * release semantics to prevent the compiler from undoing this copying.
2420 */
2421 mapping = page_rmapping(page);
2422 unlock_page(page);
2423
2424 if ((dirtied || page_mkwrite) && mapping) {
2425 /*
2426 * Some device drivers do not set page.mapping
2427 * but still dirty their pages
2428 */
2429 balance_dirty_pages_ratelimited(mapping);
2430 }
2431
2432 if (!page_mkwrite)
2433 file_update_time(vma->vm_file);
2434 }
2435
2436 /*
2437 * Handle write page faults for pages that can be reused in the current vma
2438 *
2439 * This can happen either due to the mapping being with the VM_SHARED flag,
2440 * or due to us being the last reference standing to the page. In either
2441 * case, all we need to do here is to mark the page as writable and update
2442 * any related book-keeping.
2443 */
2444 static inline void wp_page_reuse(struct vm_fault *vmf)
2445 __releases(vmf->ptl)
2446 {
2447 struct vm_area_struct *vma = vmf->vma;
2448 struct page *page = vmf->page;
2449 pte_t entry;
2450 /*
2451 * Clear the pages cpupid information as the existing
2452 * information potentially belongs to a now completely
2453 * unrelated process.
2454 */
2455 if (page)
2456 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2457
2458 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2459 entry = pte_mkyoung(vmf->orig_pte);
2460 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2461 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2462 update_mmu_cache(vma, vmf->address, vmf->pte);
2463 pte_unmap_unlock(vmf->pte, vmf->ptl);
2464 }
2465
2466 /*
2467 * Handle the case of a page which we actually need to copy to a new page.
2468 *
2469 * Called with mmap_sem locked and the old page referenced, but
2470 * without the ptl held.
2471 *
2472 * High level logic flow:
2473 *
2474 * - Allocate a page, copy the content of the old page to the new one.
2475 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2476 * - Take the PTL. If the pte changed, bail out and release the allocated page
2477 * - If the pte is still the way we remember it, update the page table and all
2478 * relevant references. This includes dropping the reference the page-table
2479 * held to the old page, as well as updating the rmap.
2480 * - In any case, unlock the PTL and drop the reference we took to the old page.
2481 */
2482 static int wp_page_copy(struct vm_fault *vmf)
2483 {
2484 struct vm_area_struct *vma = vmf->vma;
2485 struct mm_struct *mm = vma->vm_mm;
2486 struct page *old_page = vmf->page;
2487 struct page *new_page = NULL;
2488 pte_t entry;
2489 int page_copied = 0;
2490 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2491 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2492 struct mem_cgroup *memcg;
2493
2494 if (unlikely(anon_vma_prepare(vma)))
2495 goto oom;
2496
2497 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2498 new_page = alloc_zeroed_user_highpage_movable(vma,
2499 vmf->address);
2500 if (!new_page)
2501 goto oom;
2502 } else {
2503 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2504 vmf->address);
2505 if (!new_page)
2506 goto oom;
2507 cow_user_page(new_page, old_page, vmf->address, vma);
2508 }
2509
2510 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2511 goto oom_free_new;
2512
2513 __SetPageUptodate(new_page);
2514
2515 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2516
2517 /*
2518 * Re-check the pte - we dropped the lock
2519 */
2520 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2521 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2522 if (old_page) {
2523 if (!PageAnon(old_page)) {
2524 dec_mm_counter_fast(mm,
2525 mm_counter_file(old_page));
2526 inc_mm_counter_fast(mm, MM_ANONPAGES);
2527 }
2528 } else {
2529 inc_mm_counter_fast(mm, MM_ANONPAGES);
2530 }
2531 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2532 entry = mk_pte(new_page, vma->vm_page_prot);
2533 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2534 /*
2535 * Clear the pte entry and flush it first, before updating the
2536 * pte with the new entry. This will avoid a race condition
2537 * seen in the presence of one thread doing SMC and another
2538 * thread doing COW.
2539 */
2540 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2541 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2542 mem_cgroup_commit_charge(new_page, memcg, false, false);
2543 lru_cache_add_active_or_unevictable(new_page, vma);
2544 /*
2545 * We call the notify macro here because, when using secondary
2546 * mmu page tables (such as kvm shadow page tables), we want the
2547 * new page to be mapped directly into the secondary page table.
2548 */
2549 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2550 update_mmu_cache(vma, vmf->address, vmf->pte);
2551 if (old_page) {
2552 /*
2553 * Only after switching the pte to the new page may
2554 * we remove the mapcount here. Otherwise another
2555 * process may come and find the rmap count decremented
2556 * before the pte is switched to the new page, and
2557 * "reuse" the old page writing into it while our pte
2558 * here still points into it and can be read by other
2559 * threads.
2560 *
2561 * The critical issue is to order this
2562 * page_remove_rmap with the ptp_clear_flush above.
2563 * Those stores are ordered by (if nothing else,)
2564 * the barrier present in the atomic_add_negative
2565 * in page_remove_rmap.
2566 *
2567 * Then the TLB flush in ptep_clear_flush ensures that
2568 * no process can access the old page before the
2569 * decremented mapcount is visible. And the old page
2570 * cannot be reused until after the decremented
2571 * mapcount is visible. So transitively, TLBs to
2572 * old page will be flushed before it can be reused.
2573 */
2574 page_remove_rmap(old_page, false);
2575 }
2576
2577 /* Free the old page.. */
2578 new_page = old_page;
2579 page_copied = 1;
2580 } else {
2581 mem_cgroup_cancel_charge(new_page, memcg, false);
2582 }
2583
2584 if (new_page)
2585 put_page(new_page);
2586
2587 pte_unmap_unlock(vmf->pte, vmf->ptl);
2588 /*
2589 * No need to double call mmu_notifier->invalidate_range() callback as
2590 * the above ptep_clear_flush_notify() did already call it.
2591 */
2592 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2593 if (old_page) {
2594 /*
2595 * Don't let another task, with possibly unlocked vma,
2596 * keep the mlocked page.
2597 */
2598 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2599 lock_page(old_page); /* LRU manipulation */
2600 if (PageMlocked(old_page))
2601 munlock_vma_page(old_page);
2602 unlock_page(old_page);
2603 }
2604 put_page(old_page);
2605 }
2606 return page_copied ? VM_FAULT_WRITE : 0;
2607 oom_free_new:
2608 put_page(new_page);
2609 oom:
2610 if (old_page)
2611 put_page(old_page);
2612 return VM_FAULT_OOM;
2613 }
2614
2615 /**
2616 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2617 * writeable once the page is prepared
2618 *
2619 * @vmf: structure describing the fault
2620 *
2621 * This function handles all that is needed to finish a write page fault in a
2622 * shared mapping due to PTE being read-only once the mapped page is prepared.
2623 * It handles locking of PTE and modifying it. The function returns
2624 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2625 * lock.
2626 *
2627 * The function expects the page to be locked or other protection against
2628 * concurrent faults / writeback (such as DAX radix tree locks).
2629 */
2630 int finish_mkwrite_fault(struct vm_fault *vmf)
2631 {
2632 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2633 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2634 &vmf->ptl);
2635 /*
2636 * We might have raced with another page fault while we released the
2637 * pte_offset_map_lock.
2638 */
2639 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2640 pte_unmap_unlock(vmf->pte, vmf->ptl);
2641 return VM_FAULT_NOPAGE;
2642 }
2643 wp_page_reuse(vmf);
2644 return 0;
2645 }
2646
2647 /*
2648 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2649 * mapping
2650 */
2651 static int wp_pfn_shared(struct vm_fault *vmf)
2652 {
2653 struct vm_area_struct *vma = vmf->vma;
2654
2655 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2656 int ret;
2657
2658 pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 vmf->flags |= FAULT_FLAG_MKWRITE;
2660 ret = vma->vm_ops->pfn_mkwrite(vmf);
2661 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2662 return ret;
2663 return finish_mkwrite_fault(vmf);
2664 }
2665 wp_page_reuse(vmf);
2666 return VM_FAULT_WRITE;
2667 }
2668
2669 static int wp_page_shared(struct vm_fault *vmf)
2670 __releases(vmf->ptl)
2671 {
2672 struct vm_area_struct *vma = vmf->vma;
2673
2674 get_page(vmf->page);
2675
2676 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677 int tmp;
2678
2679 pte_unmap_unlock(vmf->pte, vmf->ptl);
2680 tmp = do_page_mkwrite(vmf);
2681 if (unlikely(!tmp || (tmp &
2682 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2683 put_page(vmf->page);
2684 return tmp;
2685 }
2686 tmp = finish_mkwrite_fault(vmf);
2687 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2688 unlock_page(vmf->page);
2689 put_page(vmf->page);
2690 return tmp;
2691 }
2692 } else {
2693 wp_page_reuse(vmf);
2694 lock_page(vmf->page);
2695 }
2696 fault_dirty_shared_page(vma, vmf->page);
2697 put_page(vmf->page);
2698
2699 return VM_FAULT_WRITE;
2700 }
2701
2702 /*
2703 * This routine handles present pages, when users try to write
2704 * to a shared page. It is done by copying the page to a new address
2705 * and decrementing the shared-page counter for the old page.
2706 *
2707 * Note that this routine assumes that the protection checks have been
2708 * done by the caller (the low-level page fault routine in most cases).
2709 * Thus we can safely just mark it writable once we've done any necessary
2710 * COW.
2711 *
2712 * We also mark the page dirty at this point even though the page will
2713 * change only once the write actually happens. This avoids a few races,
2714 * and potentially makes it more efficient.
2715 *
2716 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2717 * but allow concurrent faults), with pte both mapped and locked.
2718 * We return with mmap_sem still held, but pte unmapped and unlocked.
2719 */
2720 static int do_wp_page(struct vm_fault *vmf)
2721 __releases(vmf->ptl)
2722 {
2723 struct vm_area_struct *vma = vmf->vma;
2724
2725 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2726 if (!vmf->page) {
2727 /*
2728 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2729 * VM_PFNMAP VMA.
2730 *
2731 * We should not cow pages in a shared writeable mapping.
2732 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2733 */
2734 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2735 (VM_WRITE|VM_SHARED))
2736 return wp_pfn_shared(vmf);
2737
2738 pte_unmap_unlock(vmf->pte, vmf->ptl);
2739 return wp_page_copy(vmf);
2740 }
2741
2742 /*
2743 * Take out anonymous pages first, anonymous shared vmas are
2744 * not dirty accountable.
2745 */
2746 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2747 int total_map_swapcount;
2748 if (!trylock_page(vmf->page)) {
2749 get_page(vmf->page);
2750 pte_unmap_unlock(vmf->pte, vmf->ptl);
2751 lock_page(vmf->page);
2752 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2753 vmf->address, &vmf->ptl);
2754 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2755 unlock_page(vmf->page);
2756 pte_unmap_unlock(vmf->pte, vmf->ptl);
2757 put_page(vmf->page);
2758 return 0;
2759 }
2760 put_page(vmf->page);
2761 }
2762 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2763 if (total_map_swapcount == 1) {
2764 /*
2765 * The page is all ours. Move it to
2766 * our anon_vma so the rmap code will
2767 * not search our parent or siblings.
2768 * Protected against the rmap code by
2769 * the page lock.
2770 */
2771 page_move_anon_rmap(vmf->page, vma);
2772 }
2773 unlock_page(vmf->page);
2774 wp_page_reuse(vmf);
2775 return VM_FAULT_WRITE;
2776 }
2777 unlock_page(vmf->page);
2778 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2779 (VM_WRITE|VM_SHARED))) {
2780 return wp_page_shared(vmf);
2781 }
2782
2783 /*
2784 * Ok, we need to copy. Oh, well..
2785 */
2786 get_page(vmf->page);
2787
2788 pte_unmap_unlock(vmf->pte, vmf->ptl);
2789 return wp_page_copy(vmf);
2790 }
2791
2792 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2793 unsigned long start_addr, unsigned long end_addr,
2794 struct zap_details *details)
2795 {
2796 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2797 }
2798
2799 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2800 struct zap_details *details)
2801 {
2802 struct vm_area_struct *vma;
2803 pgoff_t vba, vea, zba, zea;
2804
2805 vma_interval_tree_foreach(vma, root,
2806 details->first_index, details->last_index) {
2807
2808 vba = vma->vm_pgoff;
2809 vea = vba + vma_pages(vma) - 1;
2810 zba = details->first_index;
2811 if (zba < vba)
2812 zba = vba;
2813 zea = details->last_index;
2814 if (zea > vea)
2815 zea = vea;
2816
2817 unmap_mapping_range_vma(vma,
2818 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2819 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2820 details);
2821 }
2822 }
2823
2824 /**
2825 * unmap_mapping_pages() - Unmap pages from processes.
2826 * @mapping: The address space containing pages to be unmapped.
2827 * @start: Index of first page to be unmapped.
2828 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2829 * @even_cows: Whether to unmap even private COWed pages.
2830 *
2831 * Unmap the pages in this address space from any userspace process which
2832 * has them mmaped. Generally, you want to remove COWed pages as well when
2833 * a file is being truncated, but not when invalidating pages from the page
2834 * cache.
2835 */
2836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2837 pgoff_t nr, bool even_cows)
2838 {
2839 struct zap_details details = { };
2840
2841 details.check_mapping = even_cows ? NULL : mapping;
2842 details.first_index = start;
2843 details.last_index = start + nr - 1;
2844 if (details.last_index < details.first_index)
2845 details.last_index = ULONG_MAX;
2846
2847 i_mmap_lock_write(mapping);
2848 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2849 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2850 i_mmap_unlock_write(mapping);
2851 }
2852
2853 /**
2854 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2855 * address_space corresponding to the specified byte range in the underlying
2856 * file.
2857 *
2858 * @mapping: the address space containing mmaps to be unmapped.
2859 * @holebegin: byte in first page to unmap, relative to the start of
2860 * the underlying file. This will be rounded down to a PAGE_SIZE
2861 * boundary. Note that this is different from truncate_pagecache(), which
2862 * must keep the partial page. In contrast, we must get rid of
2863 * partial pages.
2864 * @holelen: size of prospective hole in bytes. This will be rounded
2865 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2866 * end of the file.
2867 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2868 * but 0 when invalidating pagecache, don't throw away private data.
2869 */
2870 void unmap_mapping_range(struct address_space *mapping,
2871 loff_t const holebegin, loff_t const holelen, int even_cows)
2872 {
2873 pgoff_t hba = holebegin >> PAGE_SHIFT;
2874 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2875
2876 /* Check for overflow. */
2877 if (sizeof(holelen) > sizeof(hlen)) {
2878 long long holeend =
2879 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2880 if (holeend & ~(long long)ULONG_MAX)
2881 hlen = ULONG_MAX - hba + 1;
2882 }
2883
2884 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2885 }
2886 EXPORT_SYMBOL(unmap_mapping_range);
2887
2888 /*
2889 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2890 * but allow concurrent faults), and pte mapped but not yet locked.
2891 * We return with pte unmapped and unlocked.
2892 *
2893 * We return with the mmap_sem locked or unlocked in the same cases
2894 * as does filemap_fault().
2895 */
2896 int do_swap_page(struct vm_fault *vmf)
2897 {
2898 struct vm_area_struct *vma = vmf->vma;
2899 struct page *page = NULL, *swapcache;
2900 struct mem_cgroup *memcg;
2901 swp_entry_t entry;
2902 pte_t pte;
2903 int locked;
2904 int exclusive = 0;
2905 int ret = 0;
2906
2907 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2908 goto out;
2909
2910 entry = pte_to_swp_entry(vmf->orig_pte);
2911 if (unlikely(non_swap_entry(entry))) {
2912 if (is_migration_entry(entry)) {
2913 migration_entry_wait(vma->vm_mm, vmf->pmd,
2914 vmf->address);
2915 } else if (is_device_private_entry(entry)) {
2916 /*
2917 * For un-addressable device memory we call the pgmap
2918 * fault handler callback. The callback must migrate
2919 * the page back to some CPU accessible page.
2920 */
2921 ret = device_private_entry_fault(vma, vmf->address, entry,
2922 vmf->flags, vmf->pmd);
2923 } else if (is_hwpoison_entry(entry)) {
2924 ret = VM_FAULT_HWPOISON;
2925 } else {
2926 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2927 ret = VM_FAULT_SIGBUS;
2928 }
2929 goto out;
2930 }
2931
2932
2933 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2934 page = lookup_swap_cache(entry, vma, vmf->address);
2935 swapcache = page;
2936
2937 if (!page) {
2938 struct swap_info_struct *si = swp_swap_info(entry);
2939
2940 if (si->flags & SWP_SYNCHRONOUS_IO &&
2941 __swap_count(si, entry) == 1) {
2942 /* skip swapcache */
2943 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2944 vmf->address);
2945 if (page) {
2946 __SetPageLocked(page);
2947 __SetPageSwapBacked(page);
2948 set_page_private(page, entry.val);
2949 lru_cache_add_anon(page);
2950 swap_readpage(page, true);
2951 }
2952 } else {
2953 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2954 vmf);
2955 swapcache = page;
2956 }
2957
2958 if (!page) {
2959 /*
2960 * Back out if somebody else faulted in this pte
2961 * while we released the pte lock.
2962 */
2963 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2964 vmf->address, &vmf->ptl);
2965 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2966 ret = VM_FAULT_OOM;
2967 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968 goto unlock;
2969 }
2970
2971 /* Had to read the page from swap area: Major fault */
2972 ret = VM_FAULT_MAJOR;
2973 count_vm_event(PGMAJFAULT);
2974 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2975 } else if (PageHWPoison(page)) {
2976 /*
2977 * hwpoisoned dirty swapcache pages are kept for killing
2978 * owner processes (which may be unknown at hwpoison time)
2979 */
2980 ret = VM_FAULT_HWPOISON;
2981 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982 goto out_release;
2983 }
2984
2985 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2986
2987 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2988 if (!locked) {
2989 ret |= VM_FAULT_RETRY;
2990 goto out_release;
2991 }
2992
2993 /*
2994 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2995 * release the swapcache from under us. The page pin, and pte_same
2996 * test below, are not enough to exclude that. Even if it is still
2997 * swapcache, we need to check that the page's swap has not changed.
2998 */
2999 if (unlikely((!PageSwapCache(page) ||
3000 page_private(page) != entry.val)) && swapcache)
3001 goto out_page;
3002
3003 page = ksm_might_need_to_copy(page, vma, vmf->address);
3004 if (unlikely(!page)) {
3005 ret = VM_FAULT_OOM;
3006 page = swapcache;
3007 goto out_page;
3008 }
3009
3010 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3011 &memcg, false)) {
3012 ret = VM_FAULT_OOM;
3013 goto out_page;
3014 }
3015
3016 /*
3017 * Back out if somebody else already faulted in this pte.
3018 */
3019 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3020 &vmf->ptl);
3021 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3022 goto out_nomap;
3023
3024 if (unlikely(!PageUptodate(page))) {
3025 ret = VM_FAULT_SIGBUS;
3026 goto out_nomap;
3027 }
3028
3029 /*
3030 * The page isn't present yet, go ahead with the fault.
3031 *
3032 * Be careful about the sequence of operations here.
3033 * To get its accounting right, reuse_swap_page() must be called
3034 * while the page is counted on swap but not yet in mapcount i.e.
3035 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3036 * must be called after the swap_free(), or it will never succeed.
3037 */
3038
3039 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3040 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3041 pte = mk_pte(page, vma->vm_page_prot);
3042 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3043 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3044 vmf->flags &= ~FAULT_FLAG_WRITE;
3045 ret |= VM_FAULT_WRITE;
3046 exclusive = RMAP_EXCLUSIVE;
3047 }
3048 flush_icache_page(vma, page);
3049 if (pte_swp_soft_dirty(vmf->orig_pte))
3050 pte = pte_mksoft_dirty(pte);
3051 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3052 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3053 vmf->orig_pte = pte;
3054
3055 /* ksm created a completely new copy */
3056 if (unlikely(page != swapcache && swapcache)) {
3057 page_add_new_anon_rmap(page, vma, vmf->address, false);
3058 mem_cgroup_commit_charge(page, memcg, false, false);
3059 lru_cache_add_active_or_unevictable(page, vma);
3060 } else {
3061 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3062 mem_cgroup_commit_charge(page, memcg, true, false);
3063 activate_page(page);
3064 }
3065
3066 swap_free(entry);
3067 if (mem_cgroup_swap_full(page) ||
3068 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3069 try_to_free_swap(page);
3070 unlock_page(page);
3071 if (page != swapcache && swapcache) {
3072 /*
3073 * Hold the lock to avoid the swap entry to be reused
3074 * until we take the PT lock for the pte_same() check
3075 * (to avoid false positives from pte_same). For
3076 * further safety release the lock after the swap_free
3077 * so that the swap count won't change under a
3078 * parallel locked swapcache.
3079 */
3080 unlock_page(swapcache);
3081 put_page(swapcache);
3082 }
3083
3084 if (vmf->flags & FAULT_FLAG_WRITE) {
3085 ret |= do_wp_page(vmf);
3086 if (ret & VM_FAULT_ERROR)
3087 ret &= VM_FAULT_ERROR;
3088 goto out;
3089 }
3090
3091 /* No need to invalidate - it was non-present before */
3092 update_mmu_cache(vma, vmf->address, vmf->pte);
3093 unlock:
3094 pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 out:
3096 return ret;
3097 out_nomap:
3098 mem_cgroup_cancel_charge(page, memcg, false);
3099 pte_unmap_unlock(vmf->pte, vmf->ptl);
3100 out_page:
3101 unlock_page(page);
3102 out_release:
3103 put_page(page);
3104 if (page != swapcache && swapcache) {
3105 unlock_page(swapcache);
3106 put_page(swapcache);
3107 }
3108 return ret;
3109 }
3110
3111 /*
3112 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113 * but allow concurrent faults), and pte mapped but not yet locked.
3114 * We return with mmap_sem still held, but pte unmapped and unlocked.
3115 */
3116 static int do_anonymous_page(struct vm_fault *vmf)
3117 {
3118 struct vm_area_struct *vma = vmf->vma;
3119 struct mem_cgroup *memcg;
3120 struct page *page;
3121 int ret = 0;
3122 pte_t entry;
3123
3124 /* File mapping without ->vm_ops ? */
3125 if (vma->vm_flags & VM_SHARED)
3126 return VM_FAULT_SIGBUS;
3127
3128 /*
3129 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3130 * pte_offset_map() on pmds where a huge pmd might be created
3131 * from a different thread.
3132 *
3133 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3134 * parallel threads are excluded by other means.
3135 *
3136 * Here we only have down_read(mmap_sem).
3137 */
3138 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3139 return VM_FAULT_OOM;
3140
3141 /* See the comment in pte_alloc_one_map() */
3142 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3143 return 0;
3144
3145 /* Use the zero-page for reads */
3146 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3147 !mm_forbids_zeropage(vma->vm_mm)) {
3148 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3149 vma->vm_page_prot));
3150 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3151 vmf->address, &vmf->ptl);
3152 if (!pte_none(*vmf->pte))
3153 goto unlock;
3154 ret = check_stable_address_space(vma->vm_mm);
3155 if (ret)
3156 goto unlock;
3157 /* Deliver the page fault to userland, check inside PT lock */
3158 if (userfaultfd_missing(vma)) {
3159 pte_unmap_unlock(vmf->pte, vmf->ptl);
3160 return handle_userfault(vmf, VM_UFFD_MISSING);
3161 }
3162 goto setpte;
3163 }
3164
3165 /* Allocate our own private page. */
3166 if (unlikely(anon_vma_prepare(vma)))
3167 goto oom;
3168 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3169 if (!page)
3170 goto oom;
3171
3172 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3173 goto oom_free_page;
3174
3175 /*
3176 * The memory barrier inside __SetPageUptodate makes sure that
3177 * preceeding stores to the page contents become visible before
3178 * the set_pte_at() write.
3179 */
3180 __SetPageUptodate(page);
3181
3182 entry = mk_pte(page, vma->vm_page_prot);
3183 if (vma->vm_flags & VM_WRITE)
3184 entry = pte_mkwrite(pte_mkdirty(entry));
3185
3186 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3187 &vmf->ptl);
3188 if (!pte_none(*vmf->pte))
3189 goto release;
3190
3191 ret = check_stable_address_space(vma->vm_mm);
3192 if (ret)
3193 goto release;
3194
3195 /* Deliver the page fault to userland, check inside PT lock */
3196 if (userfaultfd_missing(vma)) {
3197 pte_unmap_unlock(vmf->pte, vmf->ptl);
3198 mem_cgroup_cancel_charge(page, memcg, false);
3199 put_page(page);
3200 return handle_userfault(vmf, VM_UFFD_MISSING);
3201 }
3202
3203 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3204 page_add_new_anon_rmap(page, vma, vmf->address, false);
3205 mem_cgroup_commit_charge(page, memcg, false, false);
3206 lru_cache_add_active_or_unevictable(page, vma);
3207 setpte:
3208 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3209
3210 /* No need to invalidate - it was non-present before */
3211 update_mmu_cache(vma, vmf->address, vmf->pte);
3212 unlock:
3213 pte_unmap_unlock(vmf->pte, vmf->ptl);
3214 return ret;
3215 release:
3216 mem_cgroup_cancel_charge(page, memcg, false);
3217 put_page(page);
3218 goto unlock;
3219 oom_free_page:
3220 put_page(page);
3221 oom:
3222 return VM_FAULT_OOM;
3223 }
3224
3225 /*
3226 * The mmap_sem must have been held on entry, and may have been
3227 * released depending on flags and vma->vm_ops->fault() return value.
3228 * See filemap_fault() and __lock_page_retry().
3229 */
3230 static int __do_fault(struct vm_fault *vmf)
3231 {
3232 struct vm_area_struct *vma = vmf->vma;
3233 int ret;
3234
3235 ret = vma->vm_ops->fault(vmf);
3236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3237 VM_FAULT_DONE_COW)))
3238 return ret;
3239
3240 if (unlikely(PageHWPoison(vmf->page))) {
3241 if (ret & VM_FAULT_LOCKED)
3242 unlock_page(vmf->page);
3243 put_page(vmf->page);
3244 vmf->page = NULL;
3245 return VM_FAULT_HWPOISON;
3246 }
3247
3248 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3249 lock_page(vmf->page);
3250 else
3251 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3252
3253 return ret;
3254 }
3255
3256 /*
3257 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3258 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3259 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3260 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3261 */
3262 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3263 {
3264 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3265 }
3266
3267 static int pte_alloc_one_map(struct vm_fault *vmf)
3268 {
3269 struct vm_area_struct *vma = vmf->vma;
3270
3271 if (!pmd_none(*vmf->pmd))
3272 goto map_pte;
3273 if (vmf->prealloc_pte) {
3274 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3275 if (unlikely(!pmd_none(*vmf->pmd))) {
3276 spin_unlock(vmf->ptl);
3277 goto map_pte;
3278 }
3279
3280 mm_inc_nr_ptes(vma->vm_mm);
3281 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3282 spin_unlock(vmf->ptl);
3283 vmf->prealloc_pte = NULL;
3284 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3285 return VM_FAULT_OOM;
3286 }
3287 map_pte:
3288 /*
3289 * If a huge pmd materialized under us just retry later. Use
3290 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3291 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3292 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3293 * running immediately after a huge pmd fault in a different thread of
3294 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3295 * All we have to ensure is that it is a regular pmd that we can walk
3296 * with pte_offset_map() and we can do that through an atomic read in
3297 * C, which is what pmd_trans_unstable() provides.
3298 */
3299 if (pmd_devmap_trans_unstable(vmf->pmd))
3300 return VM_FAULT_NOPAGE;
3301
3302 /*
3303 * At this point we know that our vmf->pmd points to a page of ptes
3304 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3305 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3306 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3307 * be valid and we will re-check to make sure the vmf->pte isn't
3308 * pte_none() under vmf->ptl protection when we return to
3309 * alloc_set_pte().
3310 */
3311 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3312 &vmf->ptl);
3313 return 0;
3314 }
3315
3316 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3317
3318 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3319 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3320 unsigned long haddr)
3321 {
3322 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3323 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3324 return false;
3325 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3326 return false;
3327 return true;
3328 }
3329
3330 static void deposit_prealloc_pte(struct vm_fault *vmf)
3331 {
3332 struct vm_area_struct *vma = vmf->vma;
3333
3334 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3335 /*
3336 * We are going to consume the prealloc table,
3337 * count that as nr_ptes.
3338 */
3339 mm_inc_nr_ptes(vma->vm_mm);
3340 vmf->prealloc_pte = NULL;
3341 }
3342
3343 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3344 {
3345 struct vm_area_struct *vma = vmf->vma;
3346 bool write = vmf->flags & FAULT_FLAG_WRITE;
3347 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3348 pmd_t entry;
3349 int i, ret;
3350
3351 if (!transhuge_vma_suitable(vma, haddr))
3352 return VM_FAULT_FALLBACK;
3353
3354 ret = VM_FAULT_FALLBACK;
3355 page = compound_head(page);
3356
3357 /*
3358 * Archs like ppc64 need additonal space to store information
3359 * related to pte entry. Use the preallocated table for that.
3360 */
3361 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3362 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3363 if (!vmf->prealloc_pte)
3364 return VM_FAULT_OOM;
3365 smp_wmb(); /* See comment in __pte_alloc() */
3366 }
3367
3368 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3369 if (unlikely(!pmd_none(*vmf->pmd)))
3370 goto out;
3371
3372 for (i = 0; i < HPAGE_PMD_NR; i++)
3373 flush_icache_page(vma, page + i);
3374
3375 entry = mk_huge_pmd(page, vma->vm_page_prot);
3376 if (write)
3377 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3378
3379 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3380 page_add_file_rmap(page, true);
3381 /*
3382 * deposit and withdraw with pmd lock held
3383 */
3384 if (arch_needs_pgtable_deposit())
3385 deposit_prealloc_pte(vmf);
3386
3387 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3388
3389 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3390
3391 /* fault is handled */
3392 ret = 0;
3393 count_vm_event(THP_FILE_MAPPED);
3394 out:
3395 spin_unlock(vmf->ptl);
3396 return ret;
3397 }
3398 #else
3399 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3400 {
3401 BUILD_BUG();
3402 return 0;
3403 }
3404 #endif
3405
3406 /**
3407 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3408 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3409 *
3410 * @vmf: fault environment
3411 * @memcg: memcg to charge page (only for private mappings)
3412 * @page: page to map
3413 *
3414 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3415 * return.
3416 *
3417 * Target users are page handler itself and implementations of
3418 * vm_ops->map_pages.
3419 */
3420 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3421 struct page *page)
3422 {
3423 struct vm_area_struct *vma = vmf->vma;
3424 bool write = vmf->flags & FAULT_FLAG_WRITE;
3425 pte_t entry;
3426 int ret;
3427
3428 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3429 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3430 /* THP on COW? */
3431 VM_BUG_ON_PAGE(memcg, page);
3432
3433 ret = do_set_pmd(vmf, page);
3434 if (ret != VM_FAULT_FALLBACK)
3435 return ret;
3436 }
3437
3438 if (!vmf->pte) {
3439 ret = pte_alloc_one_map(vmf);
3440 if (ret)
3441 return ret;
3442 }
3443
3444 /* Re-check under ptl */
3445 if (unlikely(!pte_none(*vmf->pte)))
3446 return VM_FAULT_NOPAGE;
3447
3448 flush_icache_page(vma, page);
3449 entry = mk_pte(page, vma->vm_page_prot);
3450 if (write)
3451 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3452 /* copy-on-write page */
3453 if (write && !(vma->vm_flags & VM_SHARED)) {
3454 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3455 page_add_new_anon_rmap(page, vma, vmf->address, false);
3456 mem_cgroup_commit_charge(page, memcg, false, false);
3457 lru_cache_add_active_or_unevictable(page, vma);
3458 } else {
3459 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3460 page_add_file_rmap(page, false);
3461 }
3462 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3463
3464 /* no need to invalidate: a not-present page won't be cached */
3465 update_mmu_cache(vma, vmf->address, vmf->pte);
3466
3467 return 0;
3468 }
3469
3470
3471 /**
3472 * finish_fault - finish page fault once we have prepared the page to fault
3473 *
3474 * @vmf: structure describing the fault
3475 *
3476 * This function handles all that is needed to finish a page fault once the
3477 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3478 * given page, adds reverse page mapping, handles memcg charges and LRU
3479 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3480 * error.
3481 *
3482 * The function expects the page to be locked and on success it consumes a
3483 * reference of a page being mapped (for the PTE which maps it).
3484 */
3485 int finish_fault(struct vm_fault *vmf)
3486 {
3487 struct page *page;
3488 int ret = 0;
3489
3490 /* Did we COW the page? */
3491 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3492 !(vmf->vma->vm_flags & VM_SHARED))
3493 page = vmf->cow_page;
3494 else
3495 page = vmf->page;
3496
3497 /*
3498 * check even for read faults because we might have lost our CoWed
3499 * page
3500 */
3501 if (!(vmf->vma->vm_flags & VM_SHARED))
3502 ret = check_stable_address_space(vmf->vma->vm_mm);
3503 if (!ret)
3504 ret = alloc_set_pte(vmf, vmf->memcg, page);
3505 if (vmf->pte)
3506 pte_unmap_unlock(vmf->pte, vmf->ptl);
3507 return ret;
3508 }
3509
3510 static unsigned long fault_around_bytes __read_mostly =
3511 rounddown_pow_of_two(65536);
3512
3513 #ifdef CONFIG_DEBUG_FS
3514 static int fault_around_bytes_get(void *data, u64 *val)
3515 {
3516 *val = fault_around_bytes;
3517 return 0;
3518 }
3519
3520 /*
3521 * fault_around_bytes must be rounded down to the nearest page order as it's
3522 * what do_fault_around() expects to see.
3523 */
3524 static int fault_around_bytes_set(void *data, u64 val)
3525 {
3526 if (val / PAGE_SIZE > PTRS_PER_PTE)
3527 return -EINVAL;
3528 if (val > PAGE_SIZE)
3529 fault_around_bytes = rounddown_pow_of_two(val);
3530 else
3531 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3532 return 0;
3533 }
3534 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3535 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3536
3537 static int __init fault_around_debugfs(void)
3538 {
3539 void *ret;
3540
3541 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3542 &fault_around_bytes_fops);
3543 if (!ret)
3544 pr_warn("Failed to create fault_around_bytes in debugfs");
3545 return 0;
3546 }
3547 late_initcall(fault_around_debugfs);
3548 #endif
3549
3550 /*
3551 * do_fault_around() tries to map few pages around the fault address. The hope
3552 * is that the pages will be needed soon and this will lower the number of
3553 * faults to handle.
3554 *
3555 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3556 * not ready to be mapped: not up-to-date, locked, etc.
3557 *
3558 * This function is called with the page table lock taken. In the split ptlock
3559 * case the page table lock only protects only those entries which belong to
3560 * the page table corresponding to the fault address.
3561 *
3562 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3563 * only once.
3564 *
3565 * fault_around_bytes defines how many bytes we'll try to map.
3566 * do_fault_around() expects it to be set to a power of two less than or equal
3567 * to PTRS_PER_PTE.
3568 *
3569 * The virtual address of the area that we map is naturally aligned to
3570 * fault_around_bytes rounded down to the machine page size
3571 * (and therefore to page order). This way it's easier to guarantee
3572 * that we don't cross page table boundaries.
3573 */
3574 static int do_fault_around(struct vm_fault *vmf)
3575 {
3576 unsigned long address = vmf->address, nr_pages, mask;
3577 pgoff_t start_pgoff = vmf->pgoff;
3578 pgoff_t end_pgoff;
3579 int off, ret = 0;
3580
3581 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3582 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3583
3584 vmf->address = max(address & mask, vmf->vma->vm_start);
3585 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3586 start_pgoff -= off;
3587
3588 /*
3589 * end_pgoff is either the end of the page table, the end of
3590 * the vma or nr_pages from start_pgoff, depending what is nearest.
3591 */
3592 end_pgoff = start_pgoff -
3593 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3594 PTRS_PER_PTE - 1;
3595 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3596 start_pgoff + nr_pages - 1);
3597
3598 if (pmd_none(*vmf->pmd)) {
3599 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3600 vmf->address);
3601 if (!vmf->prealloc_pte)
3602 goto out;
3603 smp_wmb(); /* See comment in __pte_alloc() */
3604 }
3605
3606 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3607
3608 /* Huge page is mapped? Page fault is solved */
3609 if (pmd_trans_huge(*vmf->pmd)) {
3610 ret = VM_FAULT_NOPAGE;
3611 goto out;
3612 }
3613
3614 /* ->map_pages() haven't done anything useful. Cold page cache? */
3615 if (!vmf->pte)
3616 goto out;
3617
3618 /* check if the page fault is solved */
3619 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3620 if (!pte_none(*vmf->pte))
3621 ret = VM_FAULT_NOPAGE;
3622 pte_unmap_unlock(vmf->pte, vmf->ptl);
3623 out:
3624 vmf->address = address;
3625 vmf->pte = NULL;
3626 return ret;
3627 }
3628
3629 static int do_read_fault(struct vm_fault *vmf)
3630 {
3631 struct vm_area_struct *vma = vmf->vma;
3632 int ret = 0;
3633
3634 /*
3635 * Let's call ->map_pages() first and use ->fault() as fallback
3636 * if page by the offset is not ready to be mapped (cold cache or
3637 * something).
3638 */
3639 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3640 ret = do_fault_around(vmf);
3641 if (ret)
3642 return ret;
3643 }
3644
3645 ret = __do_fault(vmf);
3646 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3647 return ret;
3648
3649 ret |= finish_fault(vmf);
3650 unlock_page(vmf->page);
3651 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3652 put_page(vmf->page);
3653 return ret;
3654 }
3655
3656 static int do_cow_fault(struct vm_fault *vmf)
3657 {
3658 struct vm_area_struct *vma = vmf->vma;
3659 int ret;
3660
3661 if (unlikely(anon_vma_prepare(vma)))
3662 return VM_FAULT_OOM;
3663
3664 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3665 if (!vmf->cow_page)
3666 return VM_FAULT_OOM;
3667
3668 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3669 &vmf->memcg, false)) {
3670 put_page(vmf->cow_page);
3671 return VM_FAULT_OOM;
3672 }
3673
3674 ret = __do_fault(vmf);
3675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3676 goto uncharge_out;
3677 if (ret & VM_FAULT_DONE_COW)
3678 return ret;
3679
3680 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3681 __SetPageUptodate(vmf->cow_page);
3682
3683 ret |= finish_fault(vmf);
3684 unlock_page(vmf->page);
3685 put_page(vmf->page);
3686 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3687 goto uncharge_out;
3688 return ret;
3689 uncharge_out:
3690 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3691 put_page(vmf->cow_page);
3692 return ret;
3693 }
3694
3695 static int do_shared_fault(struct vm_fault *vmf)
3696 {
3697 struct vm_area_struct *vma = vmf->vma;
3698 int ret, tmp;
3699
3700 ret = __do_fault(vmf);
3701 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3702 return ret;
3703
3704 /*
3705 * Check if the backing address space wants to know that the page is
3706 * about to become writable
3707 */
3708 if (vma->vm_ops->page_mkwrite) {
3709 unlock_page(vmf->page);
3710 tmp = do_page_mkwrite(vmf);
3711 if (unlikely(!tmp ||
3712 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3713 put_page(vmf->page);
3714 return tmp;
3715 }
3716 }
3717
3718 ret |= finish_fault(vmf);
3719 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3720 VM_FAULT_RETRY))) {
3721 unlock_page(vmf->page);
3722 put_page(vmf->page);
3723 return ret;
3724 }
3725
3726 fault_dirty_shared_page(vma, vmf->page);
3727 return ret;
3728 }
3729
3730 /*
3731 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3732 * but allow concurrent faults).
3733 * The mmap_sem may have been released depending on flags and our
3734 * return value. See filemap_fault() and __lock_page_or_retry().
3735 */
3736 static int do_fault(struct vm_fault *vmf)
3737 {
3738 struct vm_area_struct *vma = vmf->vma;
3739 int ret;
3740
3741 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3742 if (!vma->vm_ops->fault)
3743 ret = VM_FAULT_SIGBUS;
3744 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3745 ret = do_read_fault(vmf);
3746 else if (!(vma->vm_flags & VM_SHARED))
3747 ret = do_cow_fault(vmf);
3748 else
3749 ret = do_shared_fault(vmf);
3750
3751 /* preallocated pagetable is unused: free it */
3752 if (vmf->prealloc_pte) {
3753 pte_free(vma->vm_mm, vmf->prealloc_pte);
3754 vmf->prealloc_pte = NULL;
3755 }
3756 return ret;
3757 }
3758
3759 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3760 unsigned long addr, int page_nid,
3761 int *flags)
3762 {
3763 get_page(page);
3764
3765 count_vm_numa_event(NUMA_HINT_FAULTS);
3766 if (page_nid == numa_node_id()) {
3767 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3768 *flags |= TNF_FAULT_LOCAL;
3769 }
3770
3771 return mpol_misplaced(page, vma, addr);
3772 }
3773
3774 static int do_numa_page(struct vm_fault *vmf)
3775 {
3776 struct vm_area_struct *vma = vmf->vma;
3777 struct page *page = NULL;
3778 int page_nid = -1;
3779 int last_cpupid;
3780 int target_nid;
3781 bool migrated = false;
3782 pte_t pte;
3783 bool was_writable = pte_savedwrite(vmf->orig_pte);
3784 int flags = 0;
3785
3786 /*
3787 * The "pte" at this point cannot be used safely without
3788 * validation through pte_unmap_same(). It's of NUMA type but
3789 * the pfn may be screwed if the read is non atomic.
3790 */
3791 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3792 spin_lock(vmf->ptl);
3793 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3794 pte_unmap_unlock(vmf->pte, vmf->ptl);
3795 goto out;
3796 }
3797
3798 /*
3799 * Make it present again, Depending on how arch implementes non
3800 * accessible ptes, some can allow access by kernel mode.
3801 */
3802 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3803 pte = pte_modify(pte, vma->vm_page_prot);
3804 pte = pte_mkyoung(pte);
3805 if (was_writable)
3806 pte = pte_mkwrite(pte);
3807 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3808 update_mmu_cache(vma, vmf->address, vmf->pte);
3809
3810 page = vm_normal_page(vma, vmf->address, pte);
3811 if (!page) {
3812 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 return 0;
3814 }
3815
3816 /* TODO: handle PTE-mapped THP */
3817 if (PageCompound(page)) {
3818 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 return 0;
3820 }
3821
3822 /*
3823 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3824 * much anyway since they can be in shared cache state. This misses
3825 * the case where a mapping is writable but the process never writes
3826 * to it but pte_write gets cleared during protection updates and
3827 * pte_dirty has unpredictable behaviour between PTE scan updates,
3828 * background writeback, dirty balancing and application behaviour.
3829 */
3830 if (!pte_write(pte))
3831 flags |= TNF_NO_GROUP;
3832
3833 /*
3834 * Flag if the page is shared between multiple address spaces. This
3835 * is later used when determining whether to group tasks together
3836 */
3837 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3838 flags |= TNF_SHARED;
3839
3840 last_cpupid = page_cpupid_last(page);
3841 page_nid = page_to_nid(page);
3842 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3843 &flags);
3844 pte_unmap_unlock(vmf->pte, vmf->ptl);
3845 if (target_nid == -1) {
3846 put_page(page);
3847 goto out;
3848 }
3849
3850 /* Migrate to the requested node */
3851 migrated = migrate_misplaced_page(page, vma, target_nid);
3852 if (migrated) {
3853 page_nid = target_nid;
3854 flags |= TNF_MIGRATED;
3855 } else
3856 flags |= TNF_MIGRATE_FAIL;
3857
3858 out:
3859 if (page_nid != -1)
3860 task_numa_fault(last_cpupid, page_nid, 1, flags);
3861 return 0;
3862 }
3863
3864 static inline int create_huge_pmd(struct vm_fault *vmf)
3865 {
3866 if (vma_is_anonymous(vmf->vma))
3867 return do_huge_pmd_anonymous_page(vmf);
3868 if (vmf->vma->vm_ops->huge_fault)
3869 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3870 return VM_FAULT_FALLBACK;
3871 }
3872
3873 /* `inline' is required to avoid gcc 4.1.2 build error */
3874 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3875 {
3876 if (vma_is_anonymous(vmf->vma))
3877 return do_huge_pmd_wp_page(vmf, orig_pmd);
3878 if (vmf->vma->vm_ops->huge_fault)
3879 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3880
3881 /* COW handled on pte level: split pmd */
3882 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3883 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3884
3885 return VM_FAULT_FALLBACK;
3886 }
3887
3888 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3889 {
3890 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3891 }
3892
3893 static int create_huge_pud(struct vm_fault *vmf)
3894 {
3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3896 /* No support for anonymous transparent PUD pages yet */
3897 if (vma_is_anonymous(vmf->vma))
3898 return VM_FAULT_FALLBACK;
3899 if (vmf->vma->vm_ops->huge_fault)
3900 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3902 return VM_FAULT_FALLBACK;
3903 }
3904
3905 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3906 {
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 /* No support for anonymous transparent PUD pages yet */
3909 if (vma_is_anonymous(vmf->vma))
3910 return VM_FAULT_FALLBACK;
3911 if (vmf->vma->vm_ops->huge_fault)
3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 return VM_FAULT_FALLBACK;
3915 }
3916
3917 /*
3918 * These routines also need to handle stuff like marking pages dirty
3919 * and/or accessed for architectures that don't do it in hardware (most
3920 * RISC architectures). The early dirtying is also good on the i386.
3921 *
3922 * There is also a hook called "update_mmu_cache()" that architectures
3923 * with external mmu caches can use to update those (ie the Sparc or
3924 * PowerPC hashed page tables that act as extended TLBs).
3925 *
3926 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3927 * concurrent faults).
3928 *
3929 * The mmap_sem may have been released depending on flags and our return value.
3930 * See filemap_fault() and __lock_page_or_retry().
3931 */
3932 static int handle_pte_fault(struct vm_fault *vmf)
3933 {
3934 pte_t entry;
3935
3936 if (unlikely(pmd_none(*vmf->pmd))) {
3937 /*
3938 * Leave __pte_alloc() until later: because vm_ops->fault may
3939 * want to allocate huge page, and if we expose page table
3940 * for an instant, it will be difficult to retract from
3941 * concurrent faults and from rmap lookups.
3942 */
3943 vmf->pte = NULL;
3944 } else {
3945 /* See comment in pte_alloc_one_map() */
3946 if (pmd_devmap_trans_unstable(vmf->pmd))
3947 return 0;
3948 /*
3949 * A regular pmd is established and it can't morph into a huge
3950 * pmd from under us anymore at this point because we hold the
3951 * mmap_sem read mode and khugepaged takes it in write mode.
3952 * So now it's safe to run pte_offset_map().
3953 */
3954 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3955 vmf->orig_pte = *vmf->pte;
3956
3957 /*
3958 * some architectures can have larger ptes than wordsize,
3959 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3960 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3961 * accesses. The code below just needs a consistent view
3962 * for the ifs and we later double check anyway with the
3963 * ptl lock held. So here a barrier will do.
3964 */
3965 barrier();
3966 if (pte_none(vmf->orig_pte)) {
3967 pte_unmap(vmf->pte);
3968 vmf->pte = NULL;
3969 }
3970 }
3971
3972 if (!vmf->pte) {
3973 if (vma_is_anonymous(vmf->vma))
3974 return do_anonymous_page(vmf);
3975 else
3976 return do_fault(vmf);
3977 }
3978
3979 if (!pte_present(vmf->orig_pte))
3980 return do_swap_page(vmf);
3981
3982 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3983 return do_numa_page(vmf);
3984
3985 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3986 spin_lock(vmf->ptl);
3987 entry = vmf->orig_pte;
3988 if (unlikely(!pte_same(*vmf->pte, entry)))
3989 goto unlock;
3990 if (vmf->flags & FAULT_FLAG_WRITE) {
3991 if (!pte_write(entry))
3992 return do_wp_page(vmf);
3993 entry = pte_mkdirty(entry);
3994 }
3995 entry = pte_mkyoung(entry);
3996 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3997 vmf->flags & FAULT_FLAG_WRITE)) {
3998 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3999 } else {
4000 /*
4001 * This is needed only for protection faults but the arch code
4002 * is not yet telling us if this is a protection fault or not.
4003 * This still avoids useless tlb flushes for .text page faults
4004 * with threads.
4005 */
4006 if (vmf->flags & FAULT_FLAG_WRITE)
4007 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4008 }
4009 unlock:
4010 pte_unmap_unlock(vmf->pte, vmf->ptl);
4011 return 0;
4012 }
4013
4014 /*
4015 * By the time we get here, we already hold the mm semaphore
4016 *
4017 * The mmap_sem may have been released depending on flags and our
4018 * return value. See filemap_fault() and __lock_page_or_retry().
4019 */
4020 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4021 unsigned int flags)
4022 {
4023 struct vm_fault vmf = {
4024 .vma = vma,
4025 .address = address & PAGE_MASK,
4026 .flags = flags,
4027 .pgoff = linear_page_index(vma, address),
4028 .gfp_mask = __get_fault_gfp_mask(vma),
4029 };
4030 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4031 struct mm_struct *mm = vma->vm_mm;
4032 pgd_t *pgd;
4033 p4d_t *p4d;
4034 int ret;
4035
4036 pgd = pgd_offset(mm, address);
4037 p4d = p4d_alloc(mm, pgd, address);
4038 if (!p4d)
4039 return VM_FAULT_OOM;
4040
4041 vmf.pud = pud_alloc(mm, p4d, address);
4042 if (!vmf.pud)
4043 return VM_FAULT_OOM;
4044 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4045 ret = create_huge_pud(&vmf);
4046 if (!(ret & VM_FAULT_FALLBACK))
4047 return ret;
4048 } else {
4049 pud_t orig_pud = *vmf.pud;
4050
4051 barrier();
4052 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4053
4054 /* NUMA case for anonymous PUDs would go here */
4055
4056 if (dirty && !pud_write(orig_pud)) {
4057 ret = wp_huge_pud(&vmf, orig_pud);
4058 if (!(ret & VM_FAULT_FALLBACK))
4059 return ret;
4060 } else {
4061 huge_pud_set_accessed(&vmf, orig_pud);
4062 return 0;
4063 }
4064 }
4065 }
4066
4067 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4068 if (!vmf.pmd)
4069 return VM_FAULT_OOM;
4070 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4071 ret = create_huge_pmd(&vmf);
4072 if (!(ret & VM_FAULT_FALLBACK))
4073 return ret;
4074 } else {
4075 pmd_t orig_pmd = *vmf.pmd;
4076
4077 barrier();
4078 if (unlikely(is_swap_pmd(orig_pmd))) {
4079 VM_BUG_ON(thp_migration_supported() &&
4080 !is_pmd_migration_entry(orig_pmd));
4081 if (is_pmd_migration_entry(orig_pmd))
4082 pmd_migration_entry_wait(mm, vmf.pmd);
4083 return 0;
4084 }
4085 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4086 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4087 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4088
4089 if (dirty && !pmd_write(orig_pmd)) {
4090 ret = wp_huge_pmd(&vmf, orig_pmd);
4091 if (!(ret & VM_FAULT_FALLBACK))
4092 return ret;
4093 } else {
4094 huge_pmd_set_accessed(&vmf, orig_pmd);
4095 return 0;
4096 }
4097 }
4098 }
4099
4100 return handle_pte_fault(&vmf);
4101 }
4102
4103 /*
4104 * By the time we get here, we already hold the mm semaphore
4105 *
4106 * The mmap_sem may have been released depending on flags and our
4107 * return value. See filemap_fault() and __lock_page_or_retry().
4108 */
4109 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4110 unsigned int flags)
4111 {
4112 int ret;
4113
4114 __set_current_state(TASK_RUNNING);
4115
4116 count_vm_event(PGFAULT);
4117 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4118
4119 /* do counter updates before entering really critical section. */
4120 check_sync_rss_stat(current);
4121
4122 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4123 flags & FAULT_FLAG_INSTRUCTION,
4124 flags & FAULT_FLAG_REMOTE))
4125 return VM_FAULT_SIGSEGV;
4126
4127 /*
4128 * Enable the memcg OOM handling for faults triggered in user
4129 * space. Kernel faults are handled more gracefully.
4130 */
4131 if (flags & FAULT_FLAG_USER)
4132 mem_cgroup_oom_enable();
4133
4134 if (unlikely(is_vm_hugetlb_page(vma)))
4135 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4136 else
4137 ret = __handle_mm_fault(vma, address, flags);
4138
4139 if (flags & FAULT_FLAG_USER) {
4140 mem_cgroup_oom_disable();
4141 /*
4142 * The task may have entered a memcg OOM situation but
4143 * if the allocation error was handled gracefully (no
4144 * VM_FAULT_OOM), there is no need to kill anything.
4145 * Just clean up the OOM state peacefully.
4146 */
4147 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4148 mem_cgroup_oom_synchronize(false);
4149 }
4150
4151 return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(handle_mm_fault);
4154
4155 #ifndef __PAGETABLE_P4D_FOLDED
4156 /*
4157 * Allocate p4d page table.
4158 * We've already handled the fast-path in-line.
4159 */
4160 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4161 {
4162 p4d_t *new = p4d_alloc_one(mm, address);
4163 if (!new)
4164 return -ENOMEM;
4165
4166 smp_wmb(); /* See comment in __pte_alloc */
4167
4168 spin_lock(&mm->page_table_lock);
4169 if (pgd_present(*pgd)) /* Another has populated it */
4170 p4d_free(mm, new);
4171 else
4172 pgd_populate(mm, pgd, new);
4173 spin_unlock(&mm->page_table_lock);
4174 return 0;
4175 }
4176 #endif /* __PAGETABLE_P4D_FOLDED */
4177
4178 #ifndef __PAGETABLE_PUD_FOLDED
4179 /*
4180 * Allocate page upper directory.
4181 * We've already handled the fast-path in-line.
4182 */
4183 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4184 {
4185 pud_t *new = pud_alloc_one(mm, address);
4186 if (!new)
4187 return -ENOMEM;
4188
4189 smp_wmb(); /* See comment in __pte_alloc */
4190
4191 spin_lock(&mm->page_table_lock);
4192 #ifndef __ARCH_HAS_5LEVEL_HACK
4193 if (!p4d_present(*p4d)) {
4194 mm_inc_nr_puds(mm);
4195 p4d_populate(mm, p4d, new);
4196 } else /* Another has populated it */
4197 pud_free(mm, new);
4198 #else
4199 if (!pgd_present(*p4d)) {
4200 mm_inc_nr_puds(mm);
4201 pgd_populate(mm, p4d, new);
4202 } else /* Another has populated it */
4203 pud_free(mm, new);
4204 #endif /* __ARCH_HAS_5LEVEL_HACK */
4205 spin_unlock(&mm->page_table_lock);
4206 return 0;
4207 }
4208 #endif /* __PAGETABLE_PUD_FOLDED */
4209
4210 #ifndef __PAGETABLE_PMD_FOLDED
4211 /*
4212 * Allocate page middle directory.
4213 * We've already handled the fast-path in-line.
4214 */
4215 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4216 {
4217 spinlock_t *ptl;
4218 pmd_t *new = pmd_alloc_one(mm, address);
4219 if (!new)
4220 return -ENOMEM;
4221
4222 smp_wmb(); /* See comment in __pte_alloc */
4223
4224 ptl = pud_lock(mm, pud);
4225 #ifndef __ARCH_HAS_4LEVEL_HACK
4226 if (!pud_present(*pud)) {
4227 mm_inc_nr_pmds(mm);
4228 pud_populate(mm, pud, new);
4229 } else /* Another has populated it */
4230 pmd_free(mm, new);
4231 #else
4232 if (!pgd_present(*pud)) {
4233 mm_inc_nr_pmds(mm);
4234 pgd_populate(mm, pud, new);
4235 } else /* Another has populated it */
4236 pmd_free(mm, new);
4237 #endif /* __ARCH_HAS_4LEVEL_HACK */
4238 spin_unlock(ptl);
4239 return 0;
4240 }
4241 #endif /* __PAGETABLE_PMD_FOLDED */
4242
4243 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4244 unsigned long *start, unsigned long *end,
4245 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4246 {
4247 pgd_t *pgd;
4248 p4d_t *p4d;
4249 pud_t *pud;
4250 pmd_t *pmd;
4251 pte_t *ptep;
4252
4253 pgd = pgd_offset(mm, address);
4254 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4255 goto out;
4256
4257 p4d = p4d_offset(pgd, address);
4258 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4259 goto out;
4260
4261 pud = pud_offset(p4d, address);
4262 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4263 goto out;
4264
4265 pmd = pmd_offset(pud, address);
4266 VM_BUG_ON(pmd_trans_huge(*pmd));
4267
4268 if (pmd_huge(*pmd)) {
4269 if (!pmdpp)
4270 goto out;
4271
4272 if (start && end) {
4273 *start = address & PMD_MASK;
4274 *end = *start + PMD_SIZE;
4275 mmu_notifier_invalidate_range_start(mm, *start, *end);
4276 }
4277 *ptlp = pmd_lock(mm, pmd);
4278 if (pmd_huge(*pmd)) {
4279 *pmdpp = pmd;
4280 return 0;
4281 }
4282 spin_unlock(*ptlp);
4283 if (start && end)
4284 mmu_notifier_invalidate_range_end(mm, *start, *end);
4285 }
4286
4287 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4288 goto out;
4289
4290 if (start && end) {
4291 *start = address & PAGE_MASK;
4292 *end = *start + PAGE_SIZE;
4293 mmu_notifier_invalidate_range_start(mm, *start, *end);
4294 }
4295 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4296 if (!pte_present(*ptep))
4297 goto unlock;
4298 *ptepp = ptep;
4299 return 0;
4300 unlock:
4301 pte_unmap_unlock(ptep, *ptlp);
4302 if (start && end)
4303 mmu_notifier_invalidate_range_end(mm, *start, *end);
4304 out:
4305 return -EINVAL;
4306 }
4307
4308 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4309 pte_t **ptepp, spinlock_t **ptlp)
4310 {
4311 int res;
4312
4313 /* (void) is needed to make gcc happy */
4314 (void) __cond_lock(*ptlp,
4315 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4316 ptepp, NULL, ptlp)));
4317 return res;
4318 }
4319
4320 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4321 unsigned long *start, unsigned long *end,
4322 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4323 {
4324 int res;
4325
4326 /* (void) is needed to make gcc happy */
4327 (void) __cond_lock(*ptlp,
4328 !(res = __follow_pte_pmd(mm, address, start, end,
4329 ptepp, pmdpp, ptlp)));
4330 return res;
4331 }
4332 EXPORT_SYMBOL(follow_pte_pmd);
4333
4334 /**
4335 * follow_pfn - look up PFN at a user virtual address
4336 * @vma: memory mapping
4337 * @address: user virtual address
4338 * @pfn: location to store found PFN
4339 *
4340 * Only IO mappings and raw PFN mappings are allowed.
4341 *
4342 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4343 */
4344 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4345 unsigned long *pfn)
4346 {
4347 int ret = -EINVAL;
4348 spinlock_t *ptl;
4349 pte_t *ptep;
4350
4351 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4352 return ret;
4353
4354 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4355 if (ret)
4356 return ret;
4357 *pfn = pte_pfn(*ptep);
4358 pte_unmap_unlock(ptep, ptl);
4359 return 0;
4360 }
4361 EXPORT_SYMBOL(follow_pfn);
4362
4363 #ifdef CONFIG_HAVE_IOREMAP_PROT
4364 int follow_phys(struct vm_area_struct *vma,
4365 unsigned long address, unsigned int flags,
4366 unsigned long *prot, resource_size_t *phys)
4367 {
4368 int ret = -EINVAL;
4369 pte_t *ptep, pte;
4370 spinlock_t *ptl;
4371
4372 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4373 goto out;
4374
4375 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4376 goto out;
4377 pte = *ptep;
4378
4379 if ((flags & FOLL_WRITE) && !pte_write(pte))
4380 goto unlock;
4381
4382 *prot = pgprot_val(pte_pgprot(pte));
4383 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4384
4385 ret = 0;
4386 unlock:
4387 pte_unmap_unlock(ptep, ptl);
4388 out:
4389 return ret;
4390 }
4391
4392 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4393 void *buf, int len, int write)
4394 {
4395 resource_size_t phys_addr;
4396 unsigned long prot = 0;
4397 void __iomem *maddr;
4398 int offset = addr & (PAGE_SIZE-1);
4399
4400 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4401 return -EINVAL;
4402
4403 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4404 if (write)
4405 memcpy_toio(maddr + offset, buf, len);
4406 else
4407 memcpy_fromio(buf, maddr + offset, len);
4408 iounmap(maddr);
4409
4410 return len;
4411 }
4412 EXPORT_SYMBOL_GPL(generic_access_phys);
4413 #endif
4414
4415 /*
4416 * Access another process' address space as given in mm. If non-NULL, use the
4417 * given task for page fault accounting.
4418 */
4419 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4420 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4421 {
4422 struct vm_area_struct *vma;
4423 void *old_buf = buf;
4424 int write = gup_flags & FOLL_WRITE;
4425
4426 down_read(&mm->mmap_sem);
4427 /* ignore errors, just check how much was successfully transferred */
4428 while (len) {
4429 int bytes, ret, offset;
4430 void *maddr;
4431 struct page *page = NULL;
4432
4433 ret = get_user_pages_remote(tsk, mm, addr, 1,
4434 gup_flags, &page, &vma, NULL);
4435 if (ret <= 0) {
4436 #ifndef CONFIG_HAVE_IOREMAP_PROT
4437 break;
4438 #else
4439 /*
4440 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4441 * we can access using slightly different code.
4442 */
4443 vma = find_vma(mm, addr);
4444 if (!vma || vma->vm_start > addr)
4445 break;
4446 if (vma->vm_ops && vma->vm_ops->access)
4447 ret = vma->vm_ops->access(vma, addr, buf,
4448 len, write);
4449 if (ret <= 0)
4450 break;
4451 bytes = ret;
4452 #endif
4453 } else {
4454 bytes = len;
4455 offset = addr & (PAGE_SIZE-1);
4456 if (bytes > PAGE_SIZE-offset)
4457 bytes = PAGE_SIZE-offset;
4458
4459 maddr = kmap(page);
4460 if (write) {
4461 copy_to_user_page(vma, page, addr,
4462 maddr + offset, buf, bytes);
4463 set_page_dirty_lock(page);
4464 } else {
4465 copy_from_user_page(vma, page, addr,
4466 buf, maddr + offset, bytes);
4467 }
4468 kunmap(page);
4469 put_page(page);
4470 }
4471 len -= bytes;
4472 buf += bytes;
4473 addr += bytes;
4474 }
4475 up_read(&mm->mmap_sem);
4476
4477 return buf - old_buf;
4478 }
4479
4480 /**
4481 * access_remote_vm - access another process' address space
4482 * @mm: the mm_struct of the target address space
4483 * @addr: start address to access
4484 * @buf: source or destination buffer
4485 * @len: number of bytes to transfer
4486 * @gup_flags: flags modifying lookup behaviour
4487 *
4488 * The caller must hold a reference on @mm.
4489 */
4490 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4491 void *buf, int len, unsigned int gup_flags)
4492 {
4493 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4494 }
4495
4496 /*
4497 * Access another process' address space.
4498 * Source/target buffer must be kernel space,
4499 * Do not walk the page table directly, use get_user_pages
4500 */
4501 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4502 void *buf, int len, unsigned int gup_flags)
4503 {
4504 struct mm_struct *mm;
4505 int ret;
4506
4507 mm = get_task_mm(tsk);
4508 if (!mm)
4509 return 0;
4510
4511 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4512
4513 mmput(mm);
4514
4515 return ret;
4516 }
4517 EXPORT_SYMBOL_GPL(access_process_vm);
4518
4519 /*
4520 * Print the name of a VMA.
4521 */
4522 void print_vma_addr(char *prefix, unsigned long ip)
4523 {
4524 struct mm_struct *mm = current->mm;
4525 struct vm_area_struct *vma;
4526
4527 /*
4528 * we might be running from an atomic context so we cannot sleep
4529 */
4530 if (!down_read_trylock(&mm->mmap_sem))
4531 return;
4532
4533 vma = find_vma(mm, ip);
4534 if (vma && vma->vm_file) {
4535 struct file *f = vma->vm_file;
4536 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4537 if (buf) {
4538 char *p;
4539
4540 p = file_path(f, buf, PAGE_SIZE);
4541 if (IS_ERR(p))
4542 p = "?";
4543 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4544 vma->vm_start,
4545 vma->vm_end - vma->vm_start);
4546 free_page((unsigned long)buf);
4547 }
4548 }
4549 up_read(&mm->mmap_sem);
4550 }
4551
4552 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4553 void __might_fault(const char *file, int line)
4554 {
4555 /*
4556 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4557 * holding the mmap_sem, this is safe because kernel memory doesn't
4558 * get paged out, therefore we'll never actually fault, and the
4559 * below annotations will generate false positives.
4560 */
4561 if (uaccess_kernel())
4562 return;
4563 if (pagefault_disabled())
4564 return;
4565 __might_sleep(file, line, 0);
4566 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4567 if (current->mm)
4568 might_lock_read(&current->mm->mmap_sem);
4569 #endif
4570 }
4571 EXPORT_SYMBOL(__might_fault);
4572 #endif
4573
4574 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4575 static void clear_gigantic_page(struct page *page,
4576 unsigned long addr,
4577 unsigned int pages_per_huge_page)
4578 {
4579 int i;
4580 struct page *p = page;
4581
4582 might_sleep();
4583 for (i = 0; i < pages_per_huge_page;
4584 i++, p = mem_map_next(p, page, i)) {
4585 cond_resched();
4586 clear_user_highpage(p, addr + i * PAGE_SIZE);
4587 }
4588 }
4589 void clear_huge_page(struct page *page,
4590 unsigned long addr_hint, unsigned int pages_per_huge_page)
4591 {
4592 int i, n, base, l;
4593 unsigned long addr = addr_hint &
4594 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4595
4596 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4597 clear_gigantic_page(page, addr, pages_per_huge_page);
4598 return;
4599 }
4600
4601 /* Clear sub-page to access last to keep its cache lines hot */
4602 might_sleep();
4603 n = (addr_hint - addr) / PAGE_SIZE;
4604 if (2 * n <= pages_per_huge_page) {
4605 /* If sub-page to access in first half of huge page */
4606 base = 0;
4607 l = n;
4608 /* Clear sub-pages at the end of huge page */
4609 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4610 cond_resched();
4611 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4612 }
4613 } else {
4614 /* If sub-page to access in second half of huge page */
4615 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4616 l = pages_per_huge_page - n;
4617 /* Clear sub-pages at the begin of huge page */
4618 for (i = 0; i < base; i++) {
4619 cond_resched();
4620 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4621 }
4622 }
4623 /*
4624 * Clear remaining sub-pages in left-right-left-right pattern
4625 * towards the sub-page to access
4626 */
4627 for (i = 0; i < l; i++) {
4628 int left_idx = base + i;
4629 int right_idx = base + 2 * l - 1 - i;
4630
4631 cond_resched();
4632 clear_user_highpage(page + left_idx,
4633 addr + left_idx * PAGE_SIZE);
4634 cond_resched();
4635 clear_user_highpage(page + right_idx,
4636 addr + right_idx * PAGE_SIZE);
4637 }
4638 }
4639
4640 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4641 unsigned long addr,
4642 struct vm_area_struct *vma,
4643 unsigned int pages_per_huge_page)
4644 {
4645 int i;
4646 struct page *dst_base = dst;
4647 struct page *src_base = src;
4648
4649 for (i = 0; i < pages_per_huge_page; ) {
4650 cond_resched();
4651 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4652
4653 i++;
4654 dst = mem_map_next(dst, dst_base, i);
4655 src = mem_map_next(src, src_base, i);
4656 }
4657 }
4658
4659 void copy_user_huge_page(struct page *dst, struct page *src,
4660 unsigned long addr, struct vm_area_struct *vma,
4661 unsigned int pages_per_huge_page)
4662 {
4663 int i;
4664
4665 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4666 copy_user_gigantic_page(dst, src, addr, vma,
4667 pages_per_huge_page);
4668 return;
4669 }
4670
4671 might_sleep();
4672 for (i = 0; i < pages_per_huge_page; i++) {
4673 cond_resched();
4674 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4675 }
4676 }
4677
4678 long copy_huge_page_from_user(struct page *dst_page,
4679 const void __user *usr_src,
4680 unsigned int pages_per_huge_page,
4681 bool allow_pagefault)
4682 {
4683 void *src = (void *)usr_src;
4684 void *page_kaddr;
4685 unsigned long i, rc = 0;
4686 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4687
4688 for (i = 0; i < pages_per_huge_page; i++) {
4689 if (allow_pagefault)
4690 page_kaddr = kmap(dst_page + i);
4691 else
4692 page_kaddr = kmap_atomic(dst_page + i);
4693 rc = copy_from_user(page_kaddr,
4694 (const void __user *)(src + i * PAGE_SIZE),
4695 PAGE_SIZE);
4696 if (allow_pagefault)
4697 kunmap(dst_page + i);
4698 else
4699 kunmap_atomic(page_kaddr);
4700
4701 ret_val -= (PAGE_SIZE - rc);
4702 if (rc)
4703 break;
4704
4705 cond_resched();
4706 }
4707 return ret_val;
4708 }
4709 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4710
4711 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4712
4713 static struct kmem_cache *page_ptl_cachep;
4714
4715 void __init ptlock_cache_init(void)
4716 {
4717 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4718 SLAB_PANIC, NULL);
4719 }
4720
4721 bool ptlock_alloc(struct page *page)
4722 {
4723 spinlock_t *ptl;
4724
4725 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4726 if (!ptl)
4727 return false;
4728 page->ptl = ptl;
4729 return true;
4730 }
4731
4732 void ptlock_free(struct page *page)
4733 {
4734 kmem_cache_free(page_ptl_cachep, page->ptl);
4735 }
4736 #endif