]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory.c
mm: fix PageUptodate data race
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80 void * high_memory;
81
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84
85 int randomize_va_space __read_mostly = 1;
86
87 static int __init disable_randmaps(char *s)
88 {
89 randomize_va_space = 0;
90 return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93
94
95 /*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
105 }
106
107 void pud_clear_bad(pud_t *pud)
108 {
109 pud_ERROR(*pud);
110 pud_clear(pud);
111 }
112
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
117 }
118
119 /*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_zone_page_state(page, NR_PAGETABLE);
130 tlb->mm->nr_ptes--;
131 }
132
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
136 {
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
140
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
149
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
157 }
158 if (end - 1 > ceiling - 1)
159 return;
160
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
164 }
165
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
169 {
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
173
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
182
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
190 }
191 if (end - 1 > ceiling - 1)
192 return;
193
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
197 }
198
199 /*
200 * This function frees user-level page tables of a process.
201 *
202 * Must be called with pagetable lock held.
203 */
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
207 {
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
211
212 /*
213 * The next few lines have given us lots of grief...
214 *
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
218 *
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
226 *
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
231 *
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
236 */
237
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
243 }
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
253
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
262 }
263
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265 unsigned long floor, unsigned long ceiling)
266 {
267 while (vma) {
268 struct vm_area_struct *next = vma->vm_next;
269 unsigned long addr = vma->vm_start;
270
271 /*
272 * Hide vma from rmap and vmtruncate before freeing pgtables
273 */
274 anon_vma_unlink(vma);
275 unlink_file_vma(vma);
276
277 if (is_vm_hugetlb_page(vma)) {
278 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279 floor, next? next->vm_start: ceiling);
280 } else {
281 /*
282 * Optimization: gather nearby vmas into one call down
283 */
284 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285 && !is_vm_hugetlb_page(next)) {
286 vma = next;
287 next = vma->vm_next;
288 anon_vma_unlink(vma);
289 unlink_file_vma(vma);
290 }
291 free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 }
294 vma = next;
295 }
296 }
297
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299 {
300 struct page *new = pte_alloc_one(mm, address);
301 if (!new)
302 return -ENOMEM;
303
304 pte_lock_init(new);
305 spin_lock(&mm->page_table_lock);
306 if (pmd_present(*pmd)) { /* Another has populated it */
307 pte_lock_deinit(new);
308 pte_free(mm, new);
309 } else {
310 mm->nr_ptes++;
311 inc_zone_page_state(new, NR_PAGETABLE);
312 pmd_populate(mm, pmd, new);
313 }
314 spin_unlock(&mm->page_table_lock);
315 return 0;
316 }
317
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319 {
320 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321 if (!new)
322 return -ENOMEM;
323
324 spin_lock(&init_mm.page_table_lock);
325 if (pmd_present(*pmd)) /* Another has populated it */
326 pte_free_kernel(&init_mm, new);
327 else
328 pmd_populate_kernel(&init_mm, pmd, new);
329 spin_unlock(&init_mm.page_table_lock);
330 return 0;
331 }
332
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334 {
335 if (file_rss)
336 add_mm_counter(mm, file_rss, file_rss);
337 if (anon_rss)
338 add_mm_counter(mm, anon_rss, anon_rss);
339 }
340
341 /*
342 * This function is called to print an error when a bad pte
343 * is found. For example, we might have a PFN-mapped pte in
344 * a region that doesn't allow it.
345 *
346 * The calling function must still handle the error.
347 */
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349 {
350 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351 "vm_flags = %lx, vaddr = %lx\n",
352 (long long)pte_val(pte),
353 (vma->vm_mm == current->mm ? current->comm : "???"),
354 vma->vm_flags, vaddr);
355 dump_stack();
356 }
357
358 static inline int is_cow_mapping(unsigned int flags)
359 {
360 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361 }
362
363 /*
364 * This function gets the "struct page" associated with a pte.
365 *
366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367 * will have each page table entry just pointing to a raw page frame
368 * number, and as far as the VM layer is concerned, those do not have
369 * pages associated with them - even if the PFN might point to memory
370 * that otherwise is perfectly fine and has a "struct page".
371 *
372 * The way we recognize those mappings is through the rules set up
373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374 * and the vm_pgoff will point to the first PFN mapped: thus every
375 * page that is a raw mapping will always honor the rule
376 *
377 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378 *
379 * and if that isn't true, the page has been COW'ed (in which case it
380 * _does_ have a "struct page" associated with it even if it is in a
381 * VM_PFNMAP range).
382 */
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384 {
385 unsigned long pfn = pte_pfn(pte);
386
387 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389 if (pfn == vma->vm_pgoff + off)
390 return NULL;
391 if (!is_cow_mapping(vma->vm_flags))
392 return NULL;
393 }
394
395 #ifdef CONFIG_DEBUG_VM
396 /*
397 * Add some anal sanity checks for now. Eventually,
398 * we should just do "return pfn_to_page(pfn)", but
399 * in the meantime we check that we get a valid pfn,
400 * and that the resulting page looks ok.
401 */
402 if (unlikely(!pfn_valid(pfn))) {
403 print_bad_pte(vma, pte, addr);
404 return NULL;
405 }
406 #endif
407
408 /*
409 * NOTE! We still have PageReserved() pages in the page
410 * tables.
411 *
412 * The PAGE_ZERO() pages and various VDSO mappings can
413 * cause them to exist.
414 */
415 return pfn_to_page(pfn);
416 }
417
418 /*
419 * copy one vm_area from one task to the other. Assumes the page tables
420 * already present in the new task to be cleared in the whole range
421 * covered by this vma.
422 */
423
424 static inline void
425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
427 unsigned long addr, int *rss)
428 {
429 unsigned long vm_flags = vma->vm_flags;
430 pte_t pte = *src_pte;
431 struct page *page;
432
433 /* pte contains position in swap or file, so copy. */
434 if (unlikely(!pte_present(pte))) {
435 if (!pte_file(pte)) {
436 swp_entry_t entry = pte_to_swp_entry(pte);
437
438 swap_duplicate(entry);
439 /* make sure dst_mm is on swapoff's mmlist. */
440 if (unlikely(list_empty(&dst_mm->mmlist))) {
441 spin_lock(&mmlist_lock);
442 if (list_empty(&dst_mm->mmlist))
443 list_add(&dst_mm->mmlist,
444 &src_mm->mmlist);
445 spin_unlock(&mmlist_lock);
446 }
447 if (is_write_migration_entry(entry) &&
448 is_cow_mapping(vm_flags)) {
449 /*
450 * COW mappings require pages in both parent
451 * and child to be set to read.
452 */
453 make_migration_entry_read(&entry);
454 pte = swp_entry_to_pte(entry);
455 set_pte_at(src_mm, addr, src_pte, pte);
456 }
457 }
458 goto out_set_pte;
459 }
460
461 /*
462 * If it's a COW mapping, write protect it both
463 * in the parent and the child
464 */
465 if (is_cow_mapping(vm_flags)) {
466 ptep_set_wrprotect(src_mm, addr, src_pte);
467 pte = pte_wrprotect(pte);
468 }
469
470 /*
471 * If it's a shared mapping, mark it clean in
472 * the child
473 */
474 if (vm_flags & VM_SHARED)
475 pte = pte_mkclean(pte);
476 pte = pte_mkold(pte);
477
478 page = vm_normal_page(vma, addr, pte);
479 if (page) {
480 get_page(page);
481 page_dup_rmap(page, vma, addr);
482 rss[!!PageAnon(page)]++;
483 }
484
485 out_set_pte:
486 set_pte_at(dst_mm, addr, dst_pte, pte);
487 }
488
489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
490 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
491 unsigned long addr, unsigned long end)
492 {
493 pte_t *src_pte, *dst_pte;
494 spinlock_t *src_ptl, *dst_ptl;
495 int progress = 0;
496 int rss[2];
497
498 again:
499 rss[1] = rss[0] = 0;
500 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501 if (!dst_pte)
502 return -ENOMEM;
503 src_pte = pte_offset_map_nested(src_pmd, addr);
504 src_ptl = pte_lockptr(src_mm, src_pmd);
505 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
506 arch_enter_lazy_mmu_mode();
507
508 do {
509 /*
510 * We are holding two locks at this point - either of them
511 * could generate latencies in another task on another CPU.
512 */
513 if (progress >= 32) {
514 progress = 0;
515 if (need_resched() ||
516 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
517 break;
518 }
519 if (pte_none(*src_pte)) {
520 progress++;
521 continue;
522 }
523 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
524 progress += 8;
525 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
526
527 arch_leave_lazy_mmu_mode();
528 spin_unlock(src_ptl);
529 pte_unmap_nested(src_pte - 1);
530 add_mm_rss(dst_mm, rss[0], rss[1]);
531 pte_unmap_unlock(dst_pte - 1, dst_ptl);
532 cond_resched();
533 if (addr != end)
534 goto again;
535 return 0;
536 }
537
538 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
539 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
540 unsigned long addr, unsigned long end)
541 {
542 pmd_t *src_pmd, *dst_pmd;
543 unsigned long next;
544
545 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
546 if (!dst_pmd)
547 return -ENOMEM;
548 src_pmd = pmd_offset(src_pud, addr);
549 do {
550 next = pmd_addr_end(addr, end);
551 if (pmd_none_or_clear_bad(src_pmd))
552 continue;
553 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
554 vma, addr, next))
555 return -ENOMEM;
556 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
557 return 0;
558 }
559
560 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
561 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
562 unsigned long addr, unsigned long end)
563 {
564 pud_t *src_pud, *dst_pud;
565 unsigned long next;
566
567 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
568 if (!dst_pud)
569 return -ENOMEM;
570 src_pud = pud_offset(src_pgd, addr);
571 do {
572 next = pud_addr_end(addr, end);
573 if (pud_none_or_clear_bad(src_pud))
574 continue;
575 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
576 vma, addr, next))
577 return -ENOMEM;
578 } while (dst_pud++, src_pud++, addr = next, addr != end);
579 return 0;
580 }
581
582 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 struct vm_area_struct *vma)
584 {
585 pgd_t *src_pgd, *dst_pgd;
586 unsigned long next;
587 unsigned long addr = vma->vm_start;
588 unsigned long end = vma->vm_end;
589
590 /*
591 * Don't copy ptes where a page fault will fill them correctly.
592 * Fork becomes much lighter when there are big shared or private
593 * readonly mappings. The tradeoff is that copy_page_range is more
594 * efficient than faulting.
595 */
596 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
597 if (!vma->anon_vma)
598 return 0;
599 }
600
601 if (is_vm_hugetlb_page(vma))
602 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
603
604 dst_pgd = pgd_offset(dst_mm, addr);
605 src_pgd = pgd_offset(src_mm, addr);
606 do {
607 next = pgd_addr_end(addr, end);
608 if (pgd_none_or_clear_bad(src_pgd))
609 continue;
610 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
611 vma, addr, next))
612 return -ENOMEM;
613 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
614 return 0;
615 }
616
617 static unsigned long zap_pte_range(struct mmu_gather *tlb,
618 struct vm_area_struct *vma, pmd_t *pmd,
619 unsigned long addr, unsigned long end,
620 long *zap_work, struct zap_details *details)
621 {
622 struct mm_struct *mm = tlb->mm;
623 pte_t *pte;
624 spinlock_t *ptl;
625 int file_rss = 0;
626 int anon_rss = 0;
627
628 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
629 arch_enter_lazy_mmu_mode();
630 do {
631 pte_t ptent = *pte;
632 if (pte_none(ptent)) {
633 (*zap_work)--;
634 continue;
635 }
636
637 (*zap_work) -= PAGE_SIZE;
638
639 if (pte_present(ptent)) {
640 struct page *page;
641
642 page = vm_normal_page(vma, addr, ptent);
643 if (unlikely(details) && page) {
644 /*
645 * unmap_shared_mapping_pages() wants to
646 * invalidate cache without truncating:
647 * unmap shared but keep private pages.
648 */
649 if (details->check_mapping &&
650 details->check_mapping != page->mapping)
651 continue;
652 /*
653 * Each page->index must be checked when
654 * invalidating or truncating nonlinear.
655 */
656 if (details->nonlinear_vma &&
657 (page->index < details->first_index ||
658 page->index > details->last_index))
659 continue;
660 }
661 ptent = ptep_get_and_clear_full(mm, addr, pte,
662 tlb->fullmm);
663 tlb_remove_tlb_entry(tlb, pte, addr);
664 if (unlikely(!page))
665 continue;
666 if (unlikely(details) && details->nonlinear_vma
667 && linear_page_index(details->nonlinear_vma,
668 addr) != page->index)
669 set_pte_at(mm, addr, pte,
670 pgoff_to_pte(page->index));
671 if (PageAnon(page))
672 anon_rss--;
673 else {
674 if (pte_dirty(ptent))
675 set_page_dirty(page);
676 if (pte_young(ptent))
677 SetPageReferenced(page);
678 file_rss--;
679 }
680 page_remove_rmap(page, vma);
681 tlb_remove_page(tlb, page);
682 continue;
683 }
684 /*
685 * If details->check_mapping, we leave swap entries;
686 * if details->nonlinear_vma, we leave file entries.
687 */
688 if (unlikely(details))
689 continue;
690 if (!pte_file(ptent))
691 free_swap_and_cache(pte_to_swp_entry(ptent));
692 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
693 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
694
695 add_mm_rss(mm, file_rss, anon_rss);
696 arch_leave_lazy_mmu_mode();
697 pte_unmap_unlock(pte - 1, ptl);
698
699 return addr;
700 }
701
702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
703 struct vm_area_struct *vma, pud_t *pud,
704 unsigned long addr, unsigned long end,
705 long *zap_work, struct zap_details *details)
706 {
707 pmd_t *pmd;
708 unsigned long next;
709
710 pmd = pmd_offset(pud, addr);
711 do {
712 next = pmd_addr_end(addr, end);
713 if (pmd_none_or_clear_bad(pmd)) {
714 (*zap_work)--;
715 continue;
716 }
717 next = zap_pte_range(tlb, vma, pmd, addr, next,
718 zap_work, details);
719 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
720
721 return addr;
722 }
723
724 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
725 struct vm_area_struct *vma, pgd_t *pgd,
726 unsigned long addr, unsigned long end,
727 long *zap_work, struct zap_details *details)
728 {
729 pud_t *pud;
730 unsigned long next;
731
732 pud = pud_offset(pgd, addr);
733 do {
734 next = pud_addr_end(addr, end);
735 if (pud_none_or_clear_bad(pud)) {
736 (*zap_work)--;
737 continue;
738 }
739 next = zap_pmd_range(tlb, vma, pud, addr, next,
740 zap_work, details);
741 } while (pud++, addr = next, (addr != end && *zap_work > 0));
742
743 return addr;
744 }
745
746 static unsigned long unmap_page_range(struct mmu_gather *tlb,
747 struct vm_area_struct *vma,
748 unsigned long addr, unsigned long end,
749 long *zap_work, struct zap_details *details)
750 {
751 pgd_t *pgd;
752 unsigned long next;
753
754 if (details && !details->check_mapping && !details->nonlinear_vma)
755 details = NULL;
756
757 BUG_ON(addr >= end);
758 tlb_start_vma(tlb, vma);
759 pgd = pgd_offset(vma->vm_mm, addr);
760 do {
761 next = pgd_addr_end(addr, end);
762 if (pgd_none_or_clear_bad(pgd)) {
763 (*zap_work)--;
764 continue;
765 }
766 next = zap_pud_range(tlb, vma, pgd, addr, next,
767 zap_work, details);
768 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
769 tlb_end_vma(tlb, vma);
770
771 return addr;
772 }
773
774 #ifdef CONFIG_PREEMPT
775 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
776 #else
777 /* No preempt: go for improved straight-line efficiency */
778 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
779 #endif
780
781 /**
782 * unmap_vmas - unmap a range of memory covered by a list of vma's
783 * @tlbp: address of the caller's struct mmu_gather
784 * @vma: the starting vma
785 * @start_addr: virtual address at which to start unmapping
786 * @end_addr: virtual address at which to end unmapping
787 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
788 * @details: details of nonlinear truncation or shared cache invalidation
789 *
790 * Returns the end address of the unmapping (restart addr if interrupted).
791 *
792 * Unmap all pages in the vma list.
793 *
794 * We aim to not hold locks for too long (for scheduling latency reasons).
795 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
796 * return the ending mmu_gather to the caller.
797 *
798 * Only addresses between `start' and `end' will be unmapped.
799 *
800 * The VMA list must be sorted in ascending virtual address order.
801 *
802 * unmap_vmas() assumes that the caller will flush the whole unmapped address
803 * range after unmap_vmas() returns. So the only responsibility here is to
804 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
805 * drops the lock and schedules.
806 */
807 unsigned long unmap_vmas(struct mmu_gather **tlbp,
808 struct vm_area_struct *vma, unsigned long start_addr,
809 unsigned long end_addr, unsigned long *nr_accounted,
810 struct zap_details *details)
811 {
812 long zap_work = ZAP_BLOCK_SIZE;
813 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
814 int tlb_start_valid = 0;
815 unsigned long start = start_addr;
816 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
817 int fullmm = (*tlbp)->fullmm;
818
819 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
820 unsigned long end;
821
822 start = max(vma->vm_start, start_addr);
823 if (start >= vma->vm_end)
824 continue;
825 end = min(vma->vm_end, end_addr);
826 if (end <= vma->vm_start)
827 continue;
828
829 if (vma->vm_flags & VM_ACCOUNT)
830 *nr_accounted += (end - start) >> PAGE_SHIFT;
831
832 while (start != end) {
833 if (!tlb_start_valid) {
834 tlb_start = start;
835 tlb_start_valid = 1;
836 }
837
838 if (unlikely(is_vm_hugetlb_page(vma))) {
839 unmap_hugepage_range(vma, start, end);
840 zap_work -= (end - start) /
841 (HPAGE_SIZE / PAGE_SIZE);
842 start = end;
843 } else
844 start = unmap_page_range(*tlbp, vma,
845 start, end, &zap_work, details);
846
847 if (zap_work > 0) {
848 BUG_ON(start != end);
849 break;
850 }
851
852 tlb_finish_mmu(*tlbp, tlb_start, start);
853
854 if (need_resched() ||
855 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
856 if (i_mmap_lock) {
857 *tlbp = NULL;
858 goto out;
859 }
860 cond_resched();
861 }
862
863 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
864 tlb_start_valid = 0;
865 zap_work = ZAP_BLOCK_SIZE;
866 }
867 }
868 out:
869 return start; /* which is now the end (or restart) address */
870 }
871
872 /**
873 * zap_page_range - remove user pages in a given range
874 * @vma: vm_area_struct holding the applicable pages
875 * @address: starting address of pages to zap
876 * @size: number of bytes to zap
877 * @details: details of nonlinear truncation or shared cache invalidation
878 */
879 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
880 unsigned long size, struct zap_details *details)
881 {
882 struct mm_struct *mm = vma->vm_mm;
883 struct mmu_gather *tlb;
884 unsigned long end = address + size;
885 unsigned long nr_accounted = 0;
886
887 lru_add_drain();
888 tlb = tlb_gather_mmu(mm, 0);
889 update_hiwater_rss(mm);
890 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
891 if (tlb)
892 tlb_finish_mmu(tlb, address, end);
893 return end;
894 }
895
896 /*
897 * Do a quick page-table lookup for a single page.
898 */
899 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
900 unsigned int flags)
901 {
902 pgd_t *pgd;
903 pud_t *pud;
904 pmd_t *pmd;
905 pte_t *ptep, pte;
906 spinlock_t *ptl;
907 struct page *page;
908 struct mm_struct *mm = vma->vm_mm;
909
910 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
911 if (!IS_ERR(page)) {
912 BUG_ON(flags & FOLL_GET);
913 goto out;
914 }
915
916 page = NULL;
917 pgd = pgd_offset(mm, address);
918 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
919 goto no_page_table;
920
921 pud = pud_offset(pgd, address);
922 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
923 goto no_page_table;
924
925 pmd = pmd_offset(pud, address);
926 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
927 goto no_page_table;
928
929 if (pmd_huge(*pmd)) {
930 BUG_ON(flags & FOLL_GET);
931 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
932 goto out;
933 }
934
935 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
936 if (!ptep)
937 goto out;
938
939 pte = *ptep;
940 if (!pte_present(pte))
941 goto unlock;
942 if ((flags & FOLL_WRITE) && !pte_write(pte))
943 goto unlock;
944 page = vm_normal_page(vma, address, pte);
945 if (unlikely(!page))
946 goto unlock;
947
948 if (flags & FOLL_GET)
949 get_page(page);
950 if (flags & FOLL_TOUCH) {
951 if ((flags & FOLL_WRITE) &&
952 !pte_dirty(pte) && !PageDirty(page))
953 set_page_dirty(page);
954 mark_page_accessed(page);
955 }
956 unlock:
957 pte_unmap_unlock(ptep, ptl);
958 out:
959 return page;
960
961 no_page_table:
962 /*
963 * When core dumping an enormous anonymous area that nobody
964 * has touched so far, we don't want to allocate page tables.
965 */
966 if (flags & FOLL_ANON) {
967 page = ZERO_PAGE(0);
968 if (flags & FOLL_GET)
969 get_page(page);
970 BUG_ON(flags & FOLL_WRITE);
971 }
972 return page;
973 }
974
975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976 unsigned long start, int len, int write, int force,
977 struct page **pages, struct vm_area_struct **vmas)
978 {
979 int i;
980 unsigned int vm_flags;
981
982 /*
983 * Require read or write permissions.
984 * If 'force' is set, we only require the "MAY" flags.
985 */
986 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
987 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
988 i = 0;
989
990 do {
991 struct vm_area_struct *vma;
992 unsigned int foll_flags;
993
994 vma = find_extend_vma(mm, start);
995 if (!vma && in_gate_area(tsk, start)) {
996 unsigned long pg = start & PAGE_MASK;
997 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
998 pgd_t *pgd;
999 pud_t *pud;
1000 pmd_t *pmd;
1001 pte_t *pte;
1002 if (write) /* user gate pages are read-only */
1003 return i ? : -EFAULT;
1004 if (pg > TASK_SIZE)
1005 pgd = pgd_offset_k(pg);
1006 else
1007 pgd = pgd_offset_gate(mm, pg);
1008 BUG_ON(pgd_none(*pgd));
1009 pud = pud_offset(pgd, pg);
1010 BUG_ON(pud_none(*pud));
1011 pmd = pmd_offset(pud, pg);
1012 if (pmd_none(*pmd))
1013 return i ? : -EFAULT;
1014 pte = pte_offset_map(pmd, pg);
1015 if (pte_none(*pte)) {
1016 pte_unmap(pte);
1017 return i ? : -EFAULT;
1018 }
1019 if (pages) {
1020 struct page *page = vm_normal_page(gate_vma, start, *pte);
1021 pages[i] = page;
1022 if (page)
1023 get_page(page);
1024 }
1025 pte_unmap(pte);
1026 if (vmas)
1027 vmas[i] = gate_vma;
1028 i++;
1029 start += PAGE_SIZE;
1030 len--;
1031 continue;
1032 }
1033
1034 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1035 || !(vm_flags & vma->vm_flags))
1036 return i ? : -EFAULT;
1037
1038 if (is_vm_hugetlb_page(vma)) {
1039 i = follow_hugetlb_page(mm, vma, pages, vmas,
1040 &start, &len, i, write);
1041 continue;
1042 }
1043
1044 foll_flags = FOLL_TOUCH;
1045 if (pages)
1046 foll_flags |= FOLL_GET;
1047 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1048 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1049 !vma->vm_ops->fault)))
1050 foll_flags |= FOLL_ANON;
1051
1052 do {
1053 struct page *page;
1054
1055 /*
1056 * If tsk is ooming, cut off its access to large memory
1057 * allocations. It has a pending SIGKILL, but it can't
1058 * be processed until returning to user space.
1059 */
1060 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1061 return -ENOMEM;
1062
1063 if (write)
1064 foll_flags |= FOLL_WRITE;
1065
1066 cond_resched();
1067 while (!(page = follow_page(vma, start, foll_flags))) {
1068 int ret;
1069 ret = handle_mm_fault(mm, vma, start,
1070 foll_flags & FOLL_WRITE);
1071 if (ret & VM_FAULT_ERROR) {
1072 if (ret & VM_FAULT_OOM)
1073 return i ? i : -ENOMEM;
1074 else if (ret & VM_FAULT_SIGBUS)
1075 return i ? i : -EFAULT;
1076 BUG();
1077 }
1078 if (ret & VM_FAULT_MAJOR)
1079 tsk->maj_flt++;
1080 else
1081 tsk->min_flt++;
1082
1083 /*
1084 * The VM_FAULT_WRITE bit tells us that
1085 * do_wp_page has broken COW when necessary,
1086 * even if maybe_mkwrite decided not to set
1087 * pte_write. We can thus safely do subsequent
1088 * page lookups as if they were reads.
1089 */
1090 if (ret & VM_FAULT_WRITE)
1091 foll_flags &= ~FOLL_WRITE;
1092
1093 cond_resched();
1094 }
1095 if (pages) {
1096 pages[i] = page;
1097
1098 flush_anon_page(vma, page, start);
1099 flush_dcache_page(page);
1100 }
1101 if (vmas)
1102 vmas[i] = vma;
1103 i++;
1104 start += PAGE_SIZE;
1105 len--;
1106 } while (len && start < vma->vm_end);
1107 } while (len);
1108 return i;
1109 }
1110 EXPORT_SYMBOL(get_user_pages);
1111
1112 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1113 spinlock_t **ptl)
1114 {
1115 pgd_t * pgd = pgd_offset(mm, addr);
1116 pud_t * pud = pud_alloc(mm, pgd, addr);
1117 if (pud) {
1118 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1119 if (pmd)
1120 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1121 }
1122 return NULL;
1123 }
1124
1125 /*
1126 * This is the old fallback for page remapping.
1127 *
1128 * For historical reasons, it only allows reserved pages. Only
1129 * old drivers should use this, and they needed to mark their
1130 * pages reserved for the old functions anyway.
1131 */
1132 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1133 {
1134 int retval;
1135 pte_t *pte;
1136 spinlock_t *ptl;
1137
1138 retval = -EINVAL;
1139 if (PageAnon(page))
1140 goto out;
1141 retval = -ENOMEM;
1142 flush_dcache_page(page);
1143 pte = get_locked_pte(mm, addr, &ptl);
1144 if (!pte)
1145 goto out;
1146 retval = -EBUSY;
1147 if (!pte_none(*pte))
1148 goto out_unlock;
1149
1150 /* Ok, finally just insert the thing.. */
1151 get_page(page);
1152 inc_mm_counter(mm, file_rss);
1153 page_add_file_rmap(page);
1154 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1155
1156 retval = 0;
1157 out_unlock:
1158 pte_unmap_unlock(pte, ptl);
1159 out:
1160 return retval;
1161 }
1162
1163 /**
1164 * vm_insert_page - insert single page into user vma
1165 * @vma: user vma to map to
1166 * @addr: target user address of this page
1167 * @page: source kernel page
1168 *
1169 * This allows drivers to insert individual pages they've allocated
1170 * into a user vma.
1171 *
1172 * The page has to be a nice clean _individual_ kernel allocation.
1173 * If you allocate a compound page, you need to have marked it as
1174 * such (__GFP_COMP), or manually just split the page up yourself
1175 * (see split_page()).
1176 *
1177 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1178 * took an arbitrary page protection parameter. This doesn't allow
1179 * that. Your vma protection will have to be set up correctly, which
1180 * means that if you want a shared writable mapping, you'd better
1181 * ask for a shared writable mapping!
1182 *
1183 * The page does not need to be reserved.
1184 */
1185 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1186 {
1187 if (addr < vma->vm_start || addr >= vma->vm_end)
1188 return -EFAULT;
1189 if (!page_count(page))
1190 return -EINVAL;
1191 vma->vm_flags |= VM_INSERTPAGE;
1192 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1193 }
1194 EXPORT_SYMBOL(vm_insert_page);
1195
1196 /**
1197 * vm_insert_pfn - insert single pfn into user vma
1198 * @vma: user vma to map to
1199 * @addr: target user address of this page
1200 * @pfn: source kernel pfn
1201 *
1202 * Similar to vm_inert_page, this allows drivers to insert individual pages
1203 * they've allocated into a user vma. Same comments apply.
1204 *
1205 * This function should only be called from a vm_ops->fault handler, and
1206 * in that case the handler should return NULL.
1207 */
1208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1209 unsigned long pfn)
1210 {
1211 struct mm_struct *mm = vma->vm_mm;
1212 int retval;
1213 pte_t *pte, entry;
1214 spinlock_t *ptl;
1215
1216 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1217 BUG_ON(is_cow_mapping(vma->vm_flags));
1218
1219 retval = -ENOMEM;
1220 pte = get_locked_pte(mm, addr, &ptl);
1221 if (!pte)
1222 goto out;
1223 retval = -EBUSY;
1224 if (!pte_none(*pte))
1225 goto out_unlock;
1226
1227 /* Ok, finally just insert the thing.. */
1228 entry = pfn_pte(pfn, vma->vm_page_prot);
1229 set_pte_at(mm, addr, pte, entry);
1230 update_mmu_cache(vma, addr, entry);
1231
1232 retval = 0;
1233 out_unlock:
1234 pte_unmap_unlock(pte, ptl);
1235
1236 out:
1237 return retval;
1238 }
1239 EXPORT_SYMBOL(vm_insert_pfn);
1240
1241 /*
1242 * maps a range of physical memory into the requested pages. the old
1243 * mappings are removed. any references to nonexistent pages results
1244 * in null mappings (currently treated as "copy-on-access")
1245 */
1246 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1247 unsigned long addr, unsigned long end,
1248 unsigned long pfn, pgprot_t prot)
1249 {
1250 pte_t *pte;
1251 spinlock_t *ptl;
1252
1253 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1254 if (!pte)
1255 return -ENOMEM;
1256 arch_enter_lazy_mmu_mode();
1257 do {
1258 BUG_ON(!pte_none(*pte));
1259 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1260 pfn++;
1261 } while (pte++, addr += PAGE_SIZE, addr != end);
1262 arch_leave_lazy_mmu_mode();
1263 pte_unmap_unlock(pte - 1, ptl);
1264 return 0;
1265 }
1266
1267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1268 unsigned long addr, unsigned long end,
1269 unsigned long pfn, pgprot_t prot)
1270 {
1271 pmd_t *pmd;
1272 unsigned long next;
1273
1274 pfn -= addr >> PAGE_SHIFT;
1275 pmd = pmd_alloc(mm, pud, addr);
1276 if (!pmd)
1277 return -ENOMEM;
1278 do {
1279 next = pmd_addr_end(addr, end);
1280 if (remap_pte_range(mm, pmd, addr, next,
1281 pfn + (addr >> PAGE_SHIFT), prot))
1282 return -ENOMEM;
1283 } while (pmd++, addr = next, addr != end);
1284 return 0;
1285 }
1286
1287 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1288 unsigned long addr, unsigned long end,
1289 unsigned long pfn, pgprot_t prot)
1290 {
1291 pud_t *pud;
1292 unsigned long next;
1293
1294 pfn -= addr >> PAGE_SHIFT;
1295 pud = pud_alloc(mm, pgd, addr);
1296 if (!pud)
1297 return -ENOMEM;
1298 do {
1299 next = pud_addr_end(addr, end);
1300 if (remap_pmd_range(mm, pud, addr, next,
1301 pfn + (addr >> PAGE_SHIFT), prot))
1302 return -ENOMEM;
1303 } while (pud++, addr = next, addr != end);
1304 return 0;
1305 }
1306
1307 /**
1308 * remap_pfn_range - remap kernel memory to userspace
1309 * @vma: user vma to map to
1310 * @addr: target user address to start at
1311 * @pfn: physical address of kernel memory
1312 * @size: size of map area
1313 * @prot: page protection flags for this mapping
1314 *
1315 * Note: this is only safe if the mm semaphore is held when called.
1316 */
1317 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1318 unsigned long pfn, unsigned long size, pgprot_t prot)
1319 {
1320 pgd_t *pgd;
1321 unsigned long next;
1322 unsigned long end = addr + PAGE_ALIGN(size);
1323 struct mm_struct *mm = vma->vm_mm;
1324 int err;
1325
1326 /*
1327 * Physically remapped pages are special. Tell the
1328 * rest of the world about it:
1329 * VM_IO tells people not to look at these pages
1330 * (accesses can have side effects).
1331 * VM_RESERVED is specified all over the place, because
1332 * in 2.4 it kept swapout's vma scan off this vma; but
1333 * in 2.6 the LRU scan won't even find its pages, so this
1334 * flag means no more than count its pages in reserved_vm,
1335 * and omit it from core dump, even when VM_IO turned off.
1336 * VM_PFNMAP tells the core MM that the base pages are just
1337 * raw PFN mappings, and do not have a "struct page" associated
1338 * with them.
1339 *
1340 * There's a horrible special case to handle copy-on-write
1341 * behaviour that some programs depend on. We mark the "original"
1342 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1343 */
1344 if (is_cow_mapping(vma->vm_flags)) {
1345 if (addr != vma->vm_start || end != vma->vm_end)
1346 return -EINVAL;
1347 vma->vm_pgoff = pfn;
1348 }
1349
1350 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1351
1352 BUG_ON(addr >= end);
1353 pfn -= addr >> PAGE_SHIFT;
1354 pgd = pgd_offset(mm, addr);
1355 flush_cache_range(vma, addr, end);
1356 do {
1357 next = pgd_addr_end(addr, end);
1358 err = remap_pud_range(mm, pgd, addr, next,
1359 pfn + (addr >> PAGE_SHIFT), prot);
1360 if (err)
1361 break;
1362 } while (pgd++, addr = next, addr != end);
1363 return err;
1364 }
1365 EXPORT_SYMBOL(remap_pfn_range);
1366
1367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1368 unsigned long addr, unsigned long end,
1369 pte_fn_t fn, void *data)
1370 {
1371 pte_t *pte;
1372 int err;
1373 struct page *pmd_page;
1374 spinlock_t *uninitialized_var(ptl);
1375
1376 pte = (mm == &init_mm) ?
1377 pte_alloc_kernel(pmd, addr) :
1378 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1379 if (!pte)
1380 return -ENOMEM;
1381
1382 BUG_ON(pmd_huge(*pmd));
1383
1384 pmd_page = pmd_page(*pmd);
1385
1386 do {
1387 err = fn(pte, pmd_page, addr, data);
1388 if (err)
1389 break;
1390 } while (pte++, addr += PAGE_SIZE, addr != end);
1391
1392 if (mm != &init_mm)
1393 pte_unmap_unlock(pte-1, ptl);
1394 return err;
1395 }
1396
1397 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1398 unsigned long addr, unsigned long end,
1399 pte_fn_t fn, void *data)
1400 {
1401 pmd_t *pmd;
1402 unsigned long next;
1403 int err;
1404
1405 pmd = pmd_alloc(mm, pud, addr);
1406 if (!pmd)
1407 return -ENOMEM;
1408 do {
1409 next = pmd_addr_end(addr, end);
1410 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1411 if (err)
1412 break;
1413 } while (pmd++, addr = next, addr != end);
1414 return err;
1415 }
1416
1417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1418 unsigned long addr, unsigned long end,
1419 pte_fn_t fn, void *data)
1420 {
1421 pud_t *pud;
1422 unsigned long next;
1423 int err;
1424
1425 pud = pud_alloc(mm, pgd, addr);
1426 if (!pud)
1427 return -ENOMEM;
1428 do {
1429 next = pud_addr_end(addr, end);
1430 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1431 if (err)
1432 break;
1433 } while (pud++, addr = next, addr != end);
1434 return err;
1435 }
1436
1437 /*
1438 * Scan a region of virtual memory, filling in page tables as necessary
1439 * and calling a provided function on each leaf page table.
1440 */
1441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1442 unsigned long size, pte_fn_t fn, void *data)
1443 {
1444 pgd_t *pgd;
1445 unsigned long next;
1446 unsigned long end = addr + size;
1447 int err;
1448
1449 BUG_ON(addr >= end);
1450 pgd = pgd_offset(mm, addr);
1451 do {
1452 next = pgd_addr_end(addr, end);
1453 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1454 if (err)
1455 break;
1456 } while (pgd++, addr = next, addr != end);
1457 return err;
1458 }
1459 EXPORT_SYMBOL_GPL(apply_to_page_range);
1460
1461 /*
1462 * handle_pte_fault chooses page fault handler according to an entry
1463 * which was read non-atomically. Before making any commitment, on
1464 * those architectures or configurations (e.g. i386 with PAE) which
1465 * might give a mix of unmatched parts, do_swap_page and do_file_page
1466 * must check under lock before unmapping the pte and proceeding
1467 * (but do_wp_page is only called after already making such a check;
1468 * and do_anonymous_page and do_no_page can safely check later on).
1469 */
1470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1471 pte_t *page_table, pte_t orig_pte)
1472 {
1473 int same = 1;
1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1475 if (sizeof(pte_t) > sizeof(unsigned long)) {
1476 spinlock_t *ptl = pte_lockptr(mm, pmd);
1477 spin_lock(ptl);
1478 same = pte_same(*page_table, orig_pte);
1479 spin_unlock(ptl);
1480 }
1481 #endif
1482 pte_unmap(page_table);
1483 return same;
1484 }
1485
1486 /*
1487 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1488 * servicing faults for write access. In the normal case, do always want
1489 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1490 * that do not have writing enabled, when used by access_process_vm.
1491 */
1492 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1493 {
1494 if (likely(vma->vm_flags & VM_WRITE))
1495 pte = pte_mkwrite(pte);
1496 return pte;
1497 }
1498
1499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1500 {
1501 /*
1502 * If the source page was a PFN mapping, we don't have
1503 * a "struct page" for it. We do a best-effort copy by
1504 * just copying from the original user address. If that
1505 * fails, we just zero-fill it. Live with it.
1506 */
1507 if (unlikely(!src)) {
1508 void *kaddr = kmap_atomic(dst, KM_USER0);
1509 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1510
1511 /*
1512 * This really shouldn't fail, because the page is there
1513 * in the page tables. But it might just be unreadable,
1514 * in which case we just give up and fill the result with
1515 * zeroes.
1516 */
1517 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1518 memset(kaddr, 0, PAGE_SIZE);
1519 kunmap_atomic(kaddr, KM_USER0);
1520 flush_dcache_page(dst);
1521 } else
1522 copy_user_highpage(dst, src, va, vma);
1523 }
1524
1525 /*
1526 * This routine handles present pages, when users try to write
1527 * to a shared page. It is done by copying the page to a new address
1528 * and decrementing the shared-page counter for the old page.
1529 *
1530 * Note that this routine assumes that the protection checks have been
1531 * done by the caller (the low-level page fault routine in most cases).
1532 * Thus we can safely just mark it writable once we've done any necessary
1533 * COW.
1534 *
1535 * We also mark the page dirty at this point even though the page will
1536 * change only once the write actually happens. This avoids a few races,
1537 * and potentially makes it more efficient.
1538 *
1539 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1540 * but allow concurrent faults), with pte both mapped and locked.
1541 * We return with mmap_sem still held, but pte unmapped and unlocked.
1542 */
1543 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1544 unsigned long address, pte_t *page_table, pmd_t *pmd,
1545 spinlock_t *ptl, pte_t orig_pte)
1546 {
1547 struct page *old_page, *new_page;
1548 pte_t entry;
1549 int reuse = 0, ret = 0;
1550 int page_mkwrite = 0;
1551 struct page *dirty_page = NULL;
1552
1553 old_page = vm_normal_page(vma, address, orig_pte);
1554 if (!old_page)
1555 goto gotten;
1556
1557 /*
1558 * Take out anonymous pages first, anonymous shared vmas are
1559 * not dirty accountable.
1560 */
1561 if (PageAnon(old_page)) {
1562 if (!TestSetPageLocked(old_page)) {
1563 reuse = can_share_swap_page(old_page);
1564 unlock_page(old_page);
1565 }
1566 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1567 (VM_WRITE|VM_SHARED))) {
1568 /*
1569 * Only catch write-faults on shared writable pages,
1570 * read-only shared pages can get COWed by
1571 * get_user_pages(.write=1, .force=1).
1572 */
1573 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1574 /*
1575 * Notify the address space that the page is about to
1576 * become writable so that it can prohibit this or wait
1577 * for the page to get into an appropriate state.
1578 *
1579 * We do this without the lock held, so that it can
1580 * sleep if it needs to.
1581 */
1582 page_cache_get(old_page);
1583 pte_unmap_unlock(page_table, ptl);
1584
1585 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1586 goto unwritable_page;
1587
1588 /*
1589 * Since we dropped the lock we need to revalidate
1590 * the PTE as someone else may have changed it. If
1591 * they did, we just return, as we can count on the
1592 * MMU to tell us if they didn't also make it writable.
1593 */
1594 page_table = pte_offset_map_lock(mm, pmd, address,
1595 &ptl);
1596 page_cache_release(old_page);
1597 if (!pte_same(*page_table, orig_pte))
1598 goto unlock;
1599
1600 page_mkwrite = 1;
1601 }
1602 dirty_page = old_page;
1603 get_page(dirty_page);
1604 reuse = 1;
1605 }
1606
1607 if (reuse) {
1608 flush_cache_page(vma, address, pte_pfn(orig_pte));
1609 entry = pte_mkyoung(orig_pte);
1610 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1611 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1612 update_mmu_cache(vma, address, entry);
1613 ret |= VM_FAULT_WRITE;
1614 goto unlock;
1615 }
1616
1617 /*
1618 * Ok, we need to copy. Oh, well..
1619 */
1620 page_cache_get(old_page);
1621 gotten:
1622 pte_unmap_unlock(page_table, ptl);
1623
1624 if (unlikely(anon_vma_prepare(vma)))
1625 goto oom;
1626 VM_BUG_ON(old_page == ZERO_PAGE(0));
1627 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1628 if (!new_page)
1629 goto oom;
1630 cow_user_page(new_page, old_page, address, vma);
1631 __SetPageUptodate(new_page);
1632
1633 /*
1634 * Re-check the pte - we dropped the lock
1635 */
1636 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1637 if (likely(pte_same(*page_table, orig_pte))) {
1638 if (old_page) {
1639 page_remove_rmap(old_page, vma);
1640 if (!PageAnon(old_page)) {
1641 dec_mm_counter(mm, file_rss);
1642 inc_mm_counter(mm, anon_rss);
1643 }
1644 } else
1645 inc_mm_counter(mm, anon_rss);
1646 flush_cache_page(vma, address, pte_pfn(orig_pte));
1647 entry = mk_pte(new_page, vma->vm_page_prot);
1648 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1649 /*
1650 * Clear the pte entry and flush it first, before updating the
1651 * pte with the new entry. This will avoid a race condition
1652 * seen in the presence of one thread doing SMC and another
1653 * thread doing COW.
1654 */
1655 ptep_clear_flush(vma, address, page_table);
1656 set_pte_at(mm, address, page_table, entry);
1657 update_mmu_cache(vma, address, entry);
1658 lru_cache_add_active(new_page);
1659 page_add_new_anon_rmap(new_page, vma, address);
1660
1661 /* Free the old page.. */
1662 new_page = old_page;
1663 ret |= VM_FAULT_WRITE;
1664 }
1665 if (new_page)
1666 page_cache_release(new_page);
1667 if (old_page)
1668 page_cache_release(old_page);
1669 unlock:
1670 pte_unmap_unlock(page_table, ptl);
1671 if (dirty_page) {
1672 if (vma->vm_file)
1673 file_update_time(vma->vm_file);
1674
1675 /*
1676 * Yes, Virginia, this is actually required to prevent a race
1677 * with clear_page_dirty_for_io() from clearing the page dirty
1678 * bit after it clear all dirty ptes, but before a racing
1679 * do_wp_page installs a dirty pte.
1680 *
1681 * do_no_page is protected similarly.
1682 */
1683 wait_on_page_locked(dirty_page);
1684 set_page_dirty_balance(dirty_page, page_mkwrite);
1685 put_page(dirty_page);
1686 }
1687 return ret;
1688 oom:
1689 if (old_page)
1690 page_cache_release(old_page);
1691 return VM_FAULT_OOM;
1692
1693 unwritable_page:
1694 page_cache_release(old_page);
1695 return VM_FAULT_SIGBUS;
1696 }
1697
1698 /*
1699 * Helper functions for unmap_mapping_range().
1700 *
1701 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1702 *
1703 * We have to restart searching the prio_tree whenever we drop the lock,
1704 * since the iterator is only valid while the lock is held, and anyway
1705 * a later vma might be split and reinserted earlier while lock dropped.
1706 *
1707 * The list of nonlinear vmas could be handled more efficiently, using
1708 * a placeholder, but handle it in the same way until a need is shown.
1709 * It is important to search the prio_tree before nonlinear list: a vma
1710 * may become nonlinear and be shifted from prio_tree to nonlinear list
1711 * while the lock is dropped; but never shifted from list to prio_tree.
1712 *
1713 * In order to make forward progress despite restarting the search,
1714 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1715 * quickly skip it next time around. Since the prio_tree search only
1716 * shows us those vmas affected by unmapping the range in question, we
1717 * can't efficiently keep all vmas in step with mapping->truncate_count:
1718 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1719 * mapping->truncate_count and vma->vm_truncate_count are protected by
1720 * i_mmap_lock.
1721 *
1722 * In order to make forward progress despite repeatedly restarting some
1723 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1724 * and restart from that address when we reach that vma again. It might
1725 * have been split or merged, shrunk or extended, but never shifted: so
1726 * restart_addr remains valid so long as it remains in the vma's range.
1727 * unmap_mapping_range forces truncate_count to leap over page-aligned
1728 * values so we can save vma's restart_addr in its truncate_count field.
1729 */
1730 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1731
1732 static void reset_vma_truncate_counts(struct address_space *mapping)
1733 {
1734 struct vm_area_struct *vma;
1735 struct prio_tree_iter iter;
1736
1737 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1738 vma->vm_truncate_count = 0;
1739 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1740 vma->vm_truncate_count = 0;
1741 }
1742
1743 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1744 unsigned long start_addr, unsigned long end_addr,
1745 struct zap_details *details)
1746 {
1747 unsigned long restart_addr;
1748 int need_break;
1749
1750 /*
1751 * files that support invalidating or truncating portions of the
1752 * file from under mmaped areas must have their ->fault function
1753 * return a locked page (and set VM_FAULT_LOCKED in the return).
1754 * This provides synchronisation against concurrent unmapping here.
1755 */
1756
1757 again:
1758 restart_addr = vma->vm_truncate_count;
1759 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1760 start_addr = restart_addr;
1761 if (start_addr >= end_addr) {
1762 /* Top of vma has been split off since last time */
1763 vma->vm_truncate_count = details->truncate_count;
1764 return 0;
1765 }
1766 }
1767
1768 restart_addr = zap_page_range(vma, start_addr,
1769 end_addr - start_addr, details);
1770 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1771
1772 if (restart_addr >= end_addr) {
1773 /* We have now completed this vma: mark it so */
1774 vma->vm_truncate_count = details->truncate_count;
1775 if (!need_break)
1776 return 0;
1777 } else {
1778 /* Note restart_addr in vma's truncate_count field */
1779 vma->vm_truncate_count = restart_addr;
1780 if (!need_break)
1781 goto again;
1782 }
1783
1784 spin_unlock(details->i_mmap_lock);
1785 cond_resched();
1786 spin_lock(details->i_mmap_lock);
1787 return -EINTR;
1788 }
1789
1790 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1791 struct zap_details *details)
1792 {
1793 struct vm_area_struct *vma;
1794 struct prio_tree_iter iter;
1795 pgoff_t vba, vea, zba, zea;
1796
1797 restart:
1798 vma_prio_tree_foreach(vma, &iter, root,
1799 details->first_index, details->last_index) {
1800 /* Skip quickly over those we have already dealt with */
1801 if (vma->vm_truncate_count == details->truncate_count)
1802 continue;
1803
1804 vba = vma->vm_pgoff;
1805 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1806 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1807 zba = details->first_index;
1808 if (zba < vba)
1809 zba = vba;
1810 zea = details->last_index;
1811 if (zea > vea)
1812 zea = vea;
1813
1814 if (unmap_mapping_range_vma(vma,
1815 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1816 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1817 details) < 0)
1818 goto restart;
1819 }
1820 }
1821
1822 static inline void unmap_mapping_range_list(struct list_head *head,
1823 struct zap_details *details)
1824 {
1825 struct vm_area_struct *vma;
1826
1827 /*
1828 * In nonlinear VMAs there is no correspondence between virtual address
1829 * offset and file offset. So we must perform an exhaustive search
1830 * across *all* the pages in each nonlinear VMA, not just the pages
1831 * whose virtual address lies outside the file truncation point.
1832 */
1833 restart:
1834 list_for_each_entry(vma, head, shared.vm_set.list) {
1835 /* Skip quickly over those we have already dealt with */
1836 if (vma->vm_truncate_count == details->truncate_count)
1837 continue;
1838 details->nonlinear_vma = vma;
1839 if (unmap_mapping_range_vma(vma, vma->vm_start,
1840 vma->vm_end, details) < 0)
1841 goto restart;
1842 }
1843 }
1844
1845 /**
1846 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1847 * @mapping: the address space containing mmaps to be unmapped.
1848 * @holebegin: byte in first page to unmap, relative to the start of
1849 * the underlying file. This will be rounded down to a PAGE_SIZE
1850 * boundary. Note that this is different from vmtruncate(), which
1851 * must keep the partial page. In contrast, we must get rid of
1852 * partial pages.
1853 * @holelen: size of prospective hole in bytes. This will be rounded
1854 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1855 * end of the file.
1856 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1857 * but 0 when invalidating pagecache, don't throw away private data.
1858 */
1859 void unmap_mapping_range(struct address_space *mapping,
1860 loff_t const holebegin, loff_t const holelen, int even_cows)
1861 {
1862 struct zap_details details;
1863 pgoff_t hba = holebegin >> PAGE_SHIFT;
1864 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1865
1866 /* Check for overflow. */
1867 if (sizeof(holelen) > sizeof(hlen)) {
1868 long long holeend =
1869 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1870 if (holeend & ~(long long)ULONG_MAX)
1871 hlen = ULONG_MAX - hba + 1;
1872 }
1873
1874 details.check_mapping = even_cows? NULL: mapping;
1875 details.nonlinear_vma = NULL;
1876 details.first_index = hba;
1877 details.last_index = hba + hlen - 1;
1878 if (details.last_index < details.first_index)
1879 details.last_index = ULONG_MAX;
1880 details.i_mmap_lock = &mapping->i_mmap_lock;
1881
1882 spin_lock(&mapping->i_mmap_lock);
1883
1884 /* Protect against endless unmapping loops */
1885 mapping->truncate_count++;
1886 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1887 if (mapping->truncate_count == 0)
1888 reset_vma_truncate_counts(mapping);
1889 mapping->truncate_count++;
1890 }
1891 details.truncate_count = mapping->truncate_count;
1892
1893 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1894 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1895 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1896 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1897 spin_unlock(&mapping->i_mmap_lock);
1898 }
1899 EXPORT_SYMBOL(unmap_mapping_range);
1900
1901 /**
1902 * vmtruncate - unmap mappings "freed" by truncate() syscall
1903 * @inode: inode of the file used
1904 * @offset: file offset to start truncating
1905 *
1906 * NOTE! We have to be ready to update the memory sharing
1907 * between the file and the memory map for a potential last
1908 * incomplete page. Ugly, but necessary.
1909 */
1910 int vmtruncate(struct inode * inode, loff_t offset)
1911 {
1912 if (inode->i_size < offset) {
1913 unsigned long limit;
1914
1915 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1916 if (limit != RLIM_INFINITY && offset > limit)
1917 goto out_sig;
1918 if (offset > inode->i_sb->s_maxbytes)
1919 goto out_big;
1920 i_size_write(inode, offset);
1921 } else {
1922 struct address_space *mapping = inode->i_mapping;
1923
1924 /*
1925 * truncation of in-use swapfiles is disallowed - it would
1926 * cause subsequent swapout to scribble on the now-freed
1927 * blocks.
1928 */
1929 if (IS_SWAPFILE(inode))
1930 return -ETXTBSY;
1931 i_size_write(inode, offset);
1932
1933 /*
1934 * unmap_mapping_range is called twice, first simply for
1935 * efficiency so that truncate_inode_pages does fewer
1936 * single-page unmaps. However after this first call, and
1937 * before truncate_inode_pages finishes, it is possible for
1938 * private pages to be COWed, which remain after
1939 * truncate_inode_pages finishes, hence the second
1940 * unmap_mapping_range call must be made for correctness.
1941 */
1942 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1943 truncate_inode_pages(mapping, offset);
1944 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1945 }
1946
1947 if (inode->i_op && inode->i_op->truncate)
1948 inode->i_op->truncate(inode);
1949 return 0;
1950
1951 out_sig:
1952 send_sig(SIGXFSZ, current, 0);
1953 out_big:
1954 return -EFBIG;
1955 }
1956 EXPORT_SYMBOL(vmtruncate);
1957
1958 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1959 {
1960 struct address_space *mapping = inode->i_mapping;
1961
1962 /*
1963 * If the underlying filesystem is not going to provide
1964 * a way to truncate a range of blocks (punch a hole) -
1965 * we should return failure right now.
1966 */
1967 if (!inode->i_op || !inode->i_op->truncate_range)
1968 return -ENOSYS;
1969
1970 mutex_lock(&inode->i_mutex);
1971 down_write(&inode->i_alloc_sem);
1972 unmap_mapping_range(mapping, offset, (end - offset), 1);
1973 truncate_inode_pages_range(mapping, offset, end);
1974 unmap_mapping_range(mapping, offset, (end - offset), 1);
1975 inode->i_op->truncate_range(inode, offset, end);
1976 up_write(&inode->i_alloc_sem);
1977 mutex_unlock(&inode->i_mutex);
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1984 * but allow concurrent faults), and pte mapped but not yet locked.
1985 * We return with mmap_sem still held, but pte unmapped and unlocked.
1986 */
1987 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1988 unsigned long address, pte_t *page_table, pmd_t *pmd,
1989 int write_access, pte_t orig_pte)
1990 {
1991 spinlock_t *ptl;
1992 struct page *page;
1993 swp_entry_t entry;
1994 pte_t pte;
1995 int ret = 0;
1996
1997 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1998 goto out;
1999
2000 entry = pte_to_swp_entry(orig_pte);
2001 if (is_migration_entry(entry)) {
2002 migration_entry_wait(mm, pmd, address);
2003 goto out;
2004 }
2005 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2006 page = lookup_swap_cache(entry);
2007 if (!page) {
2008 grab_swap_token(); /* Contend for token _before_ read-in */
2009 page = swapin_readahead(entry,
2010 GFP_HIGHUSER_MOVABLE, vma, address);
2011 if (!page) {
2012 /*
2013 * Back out if somebody else faulted in this pte
2014 * while we released the pte lock.
2015 */
2016 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2017 if (likely(pte_same(*page_table, orig_pte)))
2018 ret = VM_FAULT_OOM;
2019 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2020 goto unlock;
2021 }
2022
2023 /* Had to read the page from swap area: Major fault */
2024 ret = VM_FAULT_MAJOR;
2025 count_vm_event(PGMAJFAULT);
2026 }
2027
2028 mark_page_accessed(page);
2029 lock_page(page);
2030 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2031
2032 /*
2033 * Back out if somebody else already faulted in this pte.
2034 */
2035 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2036 if (unlikely(!pte_same(*page_table, orig_pte)))
2037 goto out_nomap;
2038
2039 if (unlikely(!PageUptodate(page))) {
2040 ret = VM_FAULT_SIGBUS;
2041 goto out_nomap;
2042 }
2043
2044 /* The page isn't present yet, go ahead with the fault. */
2045
2046 inc_mm_counter(mm, anon_rss);
2047 pte = mk_pte(page, vma->vm_page_prot);
2048 if (write_access && can_share_swap_page(page)) {
2049 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2050 write_access = 0;
2051 }
2052
2053 flush_icache_page(vma, page);
2054 set_pte_at(mm, address, page_table, pte);
2055 page_add_anon_rmap(page, vma, address);
2056
2057 swap_free(entry);
2058 if (vm_swap_full())
2059 remove_exclusive_swap_page(page);
2060 unlock_page(page);
2061
2062 if (write_access) {
2063 /* XXX: We could OR the do_wp_page code with this one? */
2064 if (do_wp_page(mm, vma, address,
2065 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2066 ret = VM_FAULT_OOM;
2067 goto out;
2068 }
2069
2070 /* No need to invalidate - it was non-present before */
2071 update_mmu_cache(vma, address, pte);
2072 unlock:
2073 pte_unmap_unlock(page_table, ptl);
2074 out:
2075 return ret;
2076 out_nomap:
2077 pte_unmap_unlock(page_table, ptl);
2078 unlock_page(page);
2079 page_cache_release(page);
2080 return ret;
2081 }
2082
2083 /*
2084 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2085 * but allow concurrent faults), and pte mapped but not yet locked.
2086 * We return with mmap_sem still held, but pte unmapped and unlocked.
2087 */
2088 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2089 unsigned long address, pte_t *page_table, pmd_t *pmd,
2090 int write_access)
2091 {
2092 struct page *page;
2093 spinlock_t *ptl;
2094 pte_t entry;
2095
2096 /* Allocate our own private page. */
2097 pte_unmap(page_table);
2098
2099 if (unlikely(anon_vma_prepare(vma)))
2100 goto oom;
2101 page = alloc_zeroed_user_highpage_movable(vma, address);
2102 if (!page)
2103 goto oom;
2104 __SetPageUptodate(page);
2105
2106 entry = mk_pte(page, vma->vm_page_prot);
2107 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108
2109 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2110 if (!pte_none(*page_table))
2111 goto release;
2112 inc_mm_counter(mm, anon_rss);
2113 lru_cache_add_active(page);
2114 page_add_new_anon_rmap(page, vma, address);
2115 set_pte_at(mm, address, page_table, entry);
2116
2117 /* No need to invalidate - it was non-present before */
2118 update_mmu_cache(vma, address, entry);
2119 unlock:
2120 pte_unmap_unlock(page_table, ptl);
2121 return 0;
2122 release:
2123 page_cache_release(page);
2124 goto unlock;
2125 oom:
2126 return VM_FAULT_OOM;
2127 }
2128
2129 /*
2130 * __do_fault() tries to create a new page mapping. It aggressively
2131 * tries to share with existing pages, but makes a separate copy if
2132 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2133 * the next page fault.
2134 *
2135 * As this is called only for pages that do not currently exist, we
2136 * do not need to flush old virtual caches or the TLB.
2137 *
2138 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2139 * but allow concurrent faults), and pte neither mapped nor locked.
2140 * We return with mmap_sem still held, but pte unmapped and unlocked.
2141 */
2142 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2143 unsigned long address, pmd_t *pmd,
2144 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2145 {
2146 pte_t *page_table;
2147 spinlock_t *ptl;
2148 struct page *page;
2149 pte_t entry;
2150 int anon = 0;
2151 struct page *dirty_page = NULL;
2152 struct vm_fault vmf;
2153 int ret;
2154 int page_mkwrite = 0;
2155
2156 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2157 vmf.pgoff = pgoff;
2158 vmf.flags = flags;
2159 vmf.page = NULL;
2160
2161 BUG_ON(vma->vm_flags & VM_PFNMAP);
2162
2163 if (likely(vma->vm_ops->fault)) {
2164 ret = vma->vm_ops->fault(vma, &vmf);
2165 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2166 return ret;
2167 } else {
2168 /* Legacy ->nopage path */
2169 ret = 0;
2170 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2171 /* no page was available -- either SIGBUS or OOM */
2172 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2173 return VM_FAULT_SIGBUS;
2174 else if (unlikely(vmf.page == NOPAGE_OOM))
2175 return VM_FAULT_OOM;
2176 }
2177
2178 /*
2179 * For consistency in subsequent calls, make the faulted page always
2180 * locked.
2181 */
2182 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2183 lock_page(vmf.page);
2184 else
2185 VM_BUG_ON(!PageLocked(vmf.page));
2186
2187 /*
2188 * Should we do an early C-O-W break?
2189 */
2190 page = vmf.page;
2191 if (flags & FAULT_FLAG_WRITE) {
2192 if (!(vma->vm_flags & VM_SHARED)) {
2193 anon = 1;
2194 if (unlikely(anon_vma_prepare(vma))) {
2195 ret = VM_FAULT_OOM;
2196 goto out;
2197 }
2198 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2199 vma, address);
2200 if (!page) {
2201 ret = VM_FAULT_OOM;
2202 goto out;
2203 }
2204 copy_user_highpage(page, vmf.page, address, vma);
2205 __SetPageUptodate(page);
2206 } else {
2207 /*
2208 * If the page will be shareable, see if the backing
2209 * address space wants to know that the page is about
2210 * to become writable
2211 */
2212 if (vma->vm_ops->page_mkwrite) {
2213 unlock_page(page);
2214 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2215 ret = VM_FAULT_SIGBUS;
2216 anon = 1; /* no anon but release vmf.page */
2217 goto out_unlocked;
2218 }
2219 lock_page(page);
2220 /*
2221 * XXX: this is not quite right (racy vs
2222 * invalidate) to unlock and relock the page
2223 * like this, however a better fix requires
2224 * reworking page_mkwrite locking API, which
2225 * is better done later.
2226 */
2227 if (!page->mapping) {
2228 ret = 0;
2229 anon = 1; /* no anon but release vmf.page */
2230 goto out;
2231 }
2232 page_mkwrite = 1;
2233 }
2234 }
2235
2236 }
2237
2238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2239
2240 /*
2241 * This silly early PAGE_DIRTY setting removes a race
2242 * due to the bad i386 page protection. But it's valid
2243 * for other architectures too.
2244 *
2245 * Note that if write_access is true, we either now have
2246 * an exclusive copy of the page, or this is a shared mapping,
2247 * so we can make it writable and dirty to avoid having to
2248 * handle that later.
2249 */
2250 /* Only go through if we didn't race with anybody else... */
2251 if (likely(pte_same(*page_table, orig_pte))) {
2252 flush_icache_page(vma, page);
2253 entry = mk_pte(page, vma->vm_page_prot);
2254 if (flags & FAULT_FLAG_WRITE)
2255 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2256 set_pte_at(mm, address, page_table, entry);
2257 if (anon) {
2258 inc_mm_counter(mm, anon_rss);
2259 lru_cache_add_active(page);
2260 page_add_new_anon_rmap(page, vma, address);
2261 } else {
2262 inc_mm_counter(mm, file_rss);
2263 page_add_file_rmap(page);
2264 if (flags & FAULT_FLAG_WRITE) {
2265 dirty_page = page;
2266 get_page(dirty_page);
2267 }
2268 }
2269
2270 /* no need to invalidate: a not-present page won't be cached */
2271 update_mmu_cache(vma, address, entry);
2272 } else {
2273 if (anon)
2274 page_cache_release(page);
2275 else
2276 anon = 1; /* no anon but release faulted_page */
2277 }
2278
2279 pte_unmap_unlock(page_table, ptl);
2280
2281 out:
2282 unlock_page(vmf.page);
2283 out_unlocked:
2284 if (anon)
2285 page_cache_release(vmf.page);
2286 else if (dirty_page) {
2287 if (vma->vm_file)
2288 file_update_time(vma->vm_file);
2289
2290 set_page_dirty_balance(dirty_page, page_mkwrite);
2291 put_page(dirty_page);
2292 }
2293
2294 return ret;
2295 }
2296
2297 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2298 unsigned long address, pte_t *page_table, pmd_t *pmd,
2299 int write_access, pte_t orig_pte)
2300 {
2301 pgoff_t pgoff = (((address & PAGE_MASK)
2302 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2303 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2304
2305 pte_unmap(page_table);
2306 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2307 }
2308
2309
2310 /*
2311 * do_no_pfn() tries to create a new page mapping for a page without
2312 * a struct_page backing it
2313 *
2314 * As this is called only for pages that do not currently exist, we
2315 * do not need to flush old virtual caches or the TLB.
2316 *
2317 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2318 * but allow concurrent faults), and pte mapped but not yet locked.
2319 * We return with mmap_sem still held, but pte unmapped and unlocked.
2320 *
2321 * It is expected that the ->nopfn handler always returns the same pfn
2322 * for a given virtual mapping.
2323 *
2324 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2325 */
2326 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2327 unsigned long address, pte_t *page_table, pmd_t *pmd,
2328 int write_access)
2329 {
2330 spinlock_t *ptl;
2331 pte_t entry;
2332 unsigned long pfn;
2333
2334 pte_unmap(page_table);
2335 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2336 BUG_ON(is_cow_mapping(vma->vm_flags));
2337
2338 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2339 if (unlikely(pfn == NOPFN_OOM))
2340 return VM_FAULT_OOM;
2341 else if (unlikely(pfn == NOPFN_SIGBUS))
2342 return VM_FAULT_SIGBUS;
2343 else if (unlikely(pfn == NOPFN_REFAULT))
2344 return 0;
2345
2346 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2347
2348 /* Only go through if we didn't race with anybody else... */
2349 if (pte_none(*page_table)) {
2350 entry = pfn_pte(pfn, vma->vm_page_prot);
2351 if (write_access)
2352 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2353 set_pte_at(mm, address, page_table, entry);
2354 }
2355 pte_unmap_unlock(page_table, ptl);
2356 return 0;
2357 }
2358
2359 /*
2360 * Fault of a previously existing named mapping. Repopulate the pte
2361 * from the encoded file_pte if possible. This enables swappable
2362 * nonlinear vmas.
2363 *
2364 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2365 * but allow concurrent faults), and pte mapped but not yet locked.
2366 * We return with mmap_sem still held, but pte unmapped and unlocked.
2367 */
2368 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2369 unsigned long address, pte_t *page_table, pmd_t *pmd,
2370 int write_access, pte_t orig_pte)
2371 {
2372 unsigned int flags = FAULT_FLAG_NONLINEAR |
2373 (write_access ? FAULT_FLAG_WRITE : 0);
2374 pgoff_t pgoff;
2375
2376 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2377 return 0;
2378
2379 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2380 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2381 /*
2382 * Page table corrupted: show pte and kill process.
2383 */
2384 print_bad_pte(vma, orig_pte, address);
2385 return VM_FAULT_OOM;
2386 }
2387
2388 pgoff = pte_to_pgoff(orig_pte);
2389 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2390 }
2391
2392 /*
2393 * These routines also need to handle stuff like marking pages dirty
2394 * and/or accessed for architectures that don't do it in hardware (most
2395 * RISC architectures). The early dirtying is also good on the i386.
2396 *
2397 * There is also a hook called "update_mmu_cache()" that architectures
2398 * with external mmu caches can use to update those (ie the Sparc or
2399 * PowerPC hashed page tables that act as extended TLBs).
2400 *
2401 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2402 * but allow concurrent faults), and pte mapped but not yet locked.
2403 * We return with mmap_sem still held, but pte unmapped and unlocked.
2404 */
2405 static inline int handle_pte_fault(struct mm_struct *mm,
2406 struct vm_area_struct *vma, unsigned long address,
2407 pte_t *pte, pmd_t *pmd, int write_access)
2408 {
2409 pte_t entry;
2410 spinlock_t *ptl;
2411
2412 entry = *pte;
2413 if (!pte_present(entry)) {
2414 if (pte_none(entry)) {
2415 if (vma->vm_ops) {
2416 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2417 return do_linear_fault(mm, vma, address,
2418 pte, pmd, write_access, entry);
2419 if (unlikely(vma->vm_ops->nopfn))
2420 return do_no_pfn(mm, vma, address, pte,
2421 pmd, write_access);
2422 }
2423 return do_anonymous_page(mm, vma, address,
2424 pte, pmd, write_access);
2425 }
2426 if (pte_file(entry))
2427 return do_nonlinear_fault(mm, vma, address,
2428 pte, pmd, write_access, entry);
2429 return do_swap_page(mm, vma, address,
2430 pte, pmd, write_access, entry);
2431 }
2432
2433 ptl = pte_lockptr(mm, pmd);
2434 spin_lock(ptl);
2435 if (unlikely(!pte_same(*pte, entry)))
2436 goto unlock;
2437 if (write_access) {
2438 if (!pte_write(entry))
2439 return do_wp_page(mm, vma, address,
2440 pte, pmd, ptl, entry);
2441 entry = pte_mkdirty(entry);
2442 }
2443 entry = pte_mkyoung(entry);
2444 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2445 update_mmu_cache(vma, address, entry);
2446 } else {
2447 /*
2448 * This is needed only for protection faults but the arch code
2449 * is not yet telling us if this is a protection fault or not.
2450 * This still avoids useless tlb flushes for .text page faults
2451 * with threads.
2452 */
2453 if (write_access)
2454 flush_tlb_page(vma, address);
2455 }
2456 unlock:
2457 pte_unmap_unlock(pte, ptl);
2458 return 0;
2459 }
2460
2461 /*
2462 * By the time we get here, we already hold the mm semaphore
2463 */
2464 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2465 unsigned long address, int write_access)
2466 {
2467 pgd_t *pgd;
2468 pud_t *pud;
2469 pmd_t *pmd;
2470 pte_t *pte;
2471
2472 __set_current_state(TASK_RUNNING);
2473
2474 count_vm_event(PGFAULT);
2475
2476 if (unlikely(is_vm_hugetlb_page(vma)))
2477 return hugetlb_fault(mm, vma, address, write_access);
2478
2479 pgd = pgd_offset(mm, address);
2480 pud = pud_alloc(mm, pgd, address);
2481 if (!pud)
2482 return VM_FAULT_OOM;
2483 pmd = pmd_alloc(mm, pud, address);
2484 if (!pmd)
2485 return VM_FAULT_OOM;
2486 pte = pte_alloc_map(mm, pmd, address);
2487 if (!pte)
2488 return VM_FAULT_OOM;
2489
2490 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2491 }
2492
2493 #ifndef __PAGETABLE_PUD_FOLDED
2494 /*
2495 * Allocate page upper directory.
2496 * We've already handled the fast-path in-line.
2497 */
2498 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2499 {
2500 pud_t *new = pud_alloc_one(mm, address);
2501 if (!new)
2502 return -ENOMEM;
2503
2504 spin_lock(&mm->page_table_lock);
2505 if (pgd_present(*pgd)) /* Another has populated it */
2506 pud_free(mm, new);
2507 else
2508 pgd_populate(mm, pgd, new);
2509 spin_unlock(&mm->page_table_lock);
2510 return 0;
2511 }
2512 #endif /* __PAGETABLE_PUD_FOLDED */
2513
2514 #ifndef __PAGETABLE_PMD_FOLDED
2515 /*
2516 * Allocate page middle directory.
2517 * We've already handled the fast-path in-line.
2518 */
2519 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2520 {
2521 pmd_t *new = pmd_alloc_one(mm, address);
2522 if (!new)
2523 return -ENOMEM;
2524
2525 spin_lock(&mm->page_table_lock);
2526 #ifndef __ARCH_HAS_4LEVEL_HACK
2527 if (pud_present(*pud)) /* Another has populated it */
2528 pmd_free(mm, new);
2529 else
2530 pud_populate(mm, pud, new);
2531 #else
2532 if (pgd_present(*pud)) /* Another has populated it */
2533 pmd_free(mm, new);
2534 else
2535 pgd_populate(mm, pud, new);
2536 #endif /* __ARCH_HAS_4LEVEL_HACK */
2537 spin_unlock(&mm->page_table_lock);
2538 return 0;
2539 }
2540 #endif /* __PAGETABLE_PMD_FOLDED */
2541
2542 int make_pages_present(unsigned long addr, unsigned long end)
2543 {
2544 int ret, len, write;
2545 struct vm_area_struct * vma;
2546
2547 vma = find_vma(current->mm, addr);
2548 if (!vma)
2549 return -1;
2550 write = (vma->vm_flags & VM_WRITE) != 0;
2551 BUG_ON(addr >= end);
2552 BUG_ON(end > vma->vm_end);
2553 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2554 ret = get_user_pages(current, current->mm, addr,
2555 len, write, 0, NULL, NULL);
2556 if (ret < 0)
2557 return ret;
2558 return ret == len ? 0 : -1;
2559 }
2560
2561 #if !defined(__HAVE_ARCH_GATE_AREA)
2562
2563 #if defined(AT_SYSINFO_EHDR)
2564 static struct vm_area_struct gate_vma;
2565
2566 static int __init gate_vma_init(void)
2567 {
2568 gate_vma.vm_mm = NULL;
2569 gate_vma.vm_start = FIXADDR_USER_START;
2570 gate_vma.vm_end = FIXADDR_USER_END;
2571 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2572 gate_vma.vm_page_prot = __P101;
2573 /*
2574 * Make sure the vDSO gets into every core dump.
2575 * Dumping its contents makes post-mortem fully interpretable later
2576 * without matching up the same kernel and hardware config to see
2577 * what PC values meant.
2578 */
2579 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2580 return 0;
2581 }
2582 __initcall(gate_vma_init);
2583 #endif
2584
2585 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2586 {
2587 #ifdef AT_SYSINFO_EHDR
2588 return &gate_vma;
2589 #else
2590 return NULL;
2591 #endif
2592 }
2593
2594 int in_gate_area_no_task(unsigned long addr)
2595 {
2596 #ifdef AT_SYSINFO_EHDR
2597 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2598 return 1;
2599 #endif
2600 return 0;
2601 }
2602
2603 #endif /* __HAVE_ARCH_GATE_AREA */
2604
2605 /*
2606 * Access another process' address space.
2607 * Source/target buffer must be kernel space,
2608 * Do not walk the page table directly, use get_user_pages
2609 */
2610 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2611 {
2612 struct mm_struct *mm;
2613 struct vm_area_struct *vma;
2614 struct page *page;
2615 void *old_buf = buf;
2616
2617 mm = get_task_mm(tsk);
2618 if (!mm)
2619 return 0;
2620
2621 down_read(&mm->mmap_sem);
2622 /* ignore errors, just check how much was successfully transferred */
2623 while (len) {
2624 int bytes, ret, offset;
2625 void *maddr;
2626
2627 ret = get_user_pages(tsk, mm, addr, 1,
2628 write, 1, &page, &vma);
2629 if (ret <= 0)
2630 break;
2631
2632 bytes = len;
2633 offset = addr & (PAGE_SIZE-1);
2634 if (bytes > PAGE_SIZE-offset)
2635 bytes = PAGE_SIZE-offset;
2636
2637 maddr = kmap(page);
2638 if (write) {
2639 copy_to_user_page(vma, page, addr,
2640 maddr + offset, buf, bytes);
2641 set_page_dirty_lock(page);
2642 } else {
2643 copy_from_user_page(vma, page, addr,
2644 buf, maddr + offset, bytes);
2645 }
2646 kunmap(page);
2647 page_cache_release(page);
2648 len -= bytes;
2649 buf += bytes;
2650 addr += bytes;
2651 }
2652 up_read(&mm->mmap_sem);
2653 mmput(mm);
2654
2655 return buf - old_buf;
2656 }
2657
2658 /*
2659 * Print the name of a VMA.
2660 */
2661 void print_vma_addr(char *prefix, unsigned long ip)
2662 {
2663 struct mm_struct *mm = current->mm;
2664 struct vm_area_struct *vma;
2665
2666 down_read(&mm->mmap_sem);
2667 vma = find_vma(mm, ip);
2668 if (vma && vma->vm_file) {
2669 struct file *f = vma->vm_file;
2670 char *buf = (char *)__get_free_page(GFP_KERNEL);
2671 if (buf) {
2672 char *p, *s;
2673
2674 p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2675 if (IS_ERR(p))
2676 p = "?";
2677 s = strrchr(p, '/');
2678 if (s)
2679 p = s+1;
2680 printk("%s%s[%lx+%lx]", prefix, p,
2681 vma->vm_start,
2682 vma->vm_end - vma->vm_start);
2683 free_page((unsigned long)buf);
2684 }
2685 }
2686 up_read(&current->mm->mmap_sem);
2687 }