]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memory.c
mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 1;
117 #else
118 2;
119 #endif
120
121 #ifndef arch_faults_on_old_pte
122 static inline bool arch_faults_on_old_pte(void)
123 {
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130 }
131 #endif
132
133 static int __init disable_randmaps(char *s)
134 {
135 randomize_va_space = 0;
136 return 1;
137 }
138 __setup("norandmaps", disable_randmaps);
139
140 unsigned long zero_pfn __read_mostly;
141 EXPORT_SYMBOL(zero_pfn);
142
143 unsigned long highest_memmap_pfn __read_mostly;
144
145 /*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148 static int __init init_zero_pfn(void)
149 {
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152 }
153 early_initcall(init_zero_pfn);
154
155
156 #if defined(SPLIT_RSS_COUNTING)
157
158 void sync_mm_rss(struct mm_struct *mm)
159 {
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
166 }
167 }
168 current->rss_stat.events = 0;
169 }
170
171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172 {
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179 }
180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183 /* sync counter once per 64 page faults */
184 #define TASK_RSS_EVENTS_THRESH (64)
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190 sync_mm_rss(task->mm);
191 }
192 #else /* SPLIT_RSS_COUNTING */
193
194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 }
200
201 #endif /* SPLIT_RSS_COUNTING */
202
203 /*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
209 {
210 pgtable_t token = pmd_pgtable(*pmd);
211 pmd_clear(pmd);
212 pte_free_tlb(tlb, token, addr);
213 mm_dec_nr_ptes(tlb->mm);
214 }
215
216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
219 {
220 pmd_t *pmd;
221 unsigned long next;
222 unsigned long start;
223
224 start = addr;
225 pmd = pmd_offset(pud, addr);
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
230 free_pte_range(tlb, pmd, addr);
231 } while (pmd++, addr = next, addr != end);
232
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
240 }
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
246 pmd_free_tlb(tlb, pmd, start);
247 mm_dec_nr_pmds(tlb->mm);
248 }
249
250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
253 {
254 pud_t *pud;
255 unsigned long next;
256 unsigned long start;
257
258 start = addr;
259 pud = pud_offset(p4d, addr);
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265 } while (pud++, addr = next, addr != end);
266
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
281 mm_dec_nr_puds(tlb->mm);
282 }
283
284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287 {
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
308 }
309 if (end - 1 > ceiling - 1)
310 return;
311
312 p4d = p4d_offset(pgd, start);
313 pgd_clear(pgd);
314 p4d_free_tlb(tlb, p4d, start);
315 }
316
317 /*
318 * This function frees user-level page tables of a process.
319 */
320 void free_pgd_range(struct mmu_gather *tlb,
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
323 {
324 pgd_t *pgd;
325 unsigned long next;
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
352
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
372 tlb_change_page_size(tlb, PAGE_SIZE);
373 pgd = pgd_offset(tlb->mm, addr);
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379 } while (pgd++, addr = next, addr != end);
380 }
381
382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383 unsigned long floor, unsigned long ceiling)
384 {
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
389 /*
390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
392 */
393 unlink_anon_vmas(vma);
394 unlink_file_vma(vma);
395
396 if (is_vm_hugetlb_page(vma)) {
397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398 floor, next ? next->vm_start : ceiling);
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404 && !is_vm_hugetlb_page(next)) {
405 vma = next;
406 next = vma->vm_next;
407 unlink_anon_vmas(vma);
408 unlink_file_vma(vma);
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
411 floor, next ? next->vm_start : ceiling);
412 }
413 vma = next;
414 }
415 }
416
417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
418 {
419 spinlock_t *ptl;
420 pgtable_t new = pte_alloc_one(mm);
421 if (!new)
422 return -ENOMEM;
423
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
439 ptl = pmd_lock(mm, pmd);
440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
441 mm_inc_nr_ptes(mm);
442 pmd_populate(mm, pmd, new);
443 new = NULL;
444 }
445 spin_unlock(ptl);
446 if (new)
447 pte_free(mm, new);
448 return 0;
449 }
450
451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453 pte_t *new = pte_alloc_one_kernel(&init_mm);
454 if (!new)
455 return -ENOMEM;
456
457 smp_wmb(); /* See comment in __pte_alloc */
458
459 spin_lock(&init_mm.page_table_lock);
460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
461 pmd_populate_kernel(&init_mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(&init_mm.page_table_lock);
465 if (new)
466 pte_free_kernel(&init_mm, new);
467 return 0;
468 }
469
470 static inline void init_rss_vec(int *rss)
471 {
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 int i;
478
479 if (current->mm == mm)
480 sync_mm_rss(mm);
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
484 }
485
486 /*
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
490 *
491 * The calling function must still handle the error.
492 */
493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
495 {
496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
531 if (page)
532 dump_page(page, "bad pte");
533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
540 dump_stack();
541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 }
543
544 /*
545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
546 *
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
550 *
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
559 *
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
573 *
574 *
575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
585 */
586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
588 {
589 unsigned long pfn = pte_pfn(pte);
590
591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592 if (likely(!pte_special(pte)))
593 goto check_pfn;
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
598 if (is_zero_pfn(pfn))
599 return NULL;
600 if (pte_devmap(pte))
601 return NULL;
602
603 print_bad_pte(vma, addr, pte, NULL);
604 return NULL;
605 }
606
607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
622 }
623
624 if (is_zero_pfn(pfn))
625 return NULL;
626
627 check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
632
633 /*
634 * NOTE! We still have PageReserved() pages in the page tables.
635 * eg. VDSO mappings can cause them to exist.
636 */
637 out:
638 return pfn_to_page(pfn);
639 }
640
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644 {
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
667 if (pmd_devmap(pmd))
668 return NULL;
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678 out:
679 return pfn_to_page(pfn);
680 }
681 #endif
682
683 /*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
687 */
688
689 static inline unsigned long
690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692 unsigned long addr, int *rss)
693 {
694 unsigned long vm_flags = vma->vm_flags;
695 pte_t pte = *src_pte;
696 struct page *page;
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
718 rss[mm_counter(page)]++;
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
731 }
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
761 }
762 goto out_set_pte;
763 }
764
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770 ptep_set_wrprotect(src_mm, addr, src_pte);
771 pte = pte_wrprotect(pte);
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
785 page_dup_rmap(page, false);
786 rss[mm_counter(page)]++;
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
789 }
790
791 out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
793 return 0;
794 }
795
796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
799 {
800 pte_t *orig_src_pte, *orig_dst_pte;
801 pte_t *src_pte, *dst_pte;
802 spinlock_t *src_ptl, *dst_ptl;
803 int progress = 0;
804 int rss[NR_MM_COUNTERS];
805 swp_entry_t entry = (swp_entry_t){0};
806
807 again:
808 init_rss_vec(rss);
809
810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811 if (!dst_pte)
812 return -ENOMEM;
813 src_pte = pte_offset_map(src_pmd, addr);
814 src_ptl = pte_lockptr(src_mm, src_pmd);
815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
818 arch_enter_lazy_mmu_mode();
819
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829 break;
830 }
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841
842 arch_leave_lazy_mmu_mode();
843 spin_unlock(src_ptl);
844 pte_unmap(orig_src_pte);
845 add_mm_rss_vec(dst_mm, rss);
846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
847 cond_resched();
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
854 if (addr != end)
855 goto again;
856 return 0;
857 }
858
859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862 {
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
874 int err;
875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891 }
892
893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895 unsigned long addr, unsigned long end)
896 {
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901 if (!dst_pud)
902 return -ENOMEM;
903 src_pud = pud_offset(src_p4d, addr);
904 do {
905 next = pud_addr_end(addr, end);
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925 }
926
927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930 {
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947 }
948
949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951 {
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
956 struct mmu_notifier_range range;
957 bool is_cow;
958 int ret;
959
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
969
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
978 ret = track_pfn_copy(vma);
979 if (ret)
980 return ret;
981 }
982
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
989 is_cow = is_cow_mapping(vma->vm_flags);
990
991 if (is_cow) {
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
994 mmu_notifier_invalidate_range_start(&range);
995 }
996
997 ret = 0;
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010
1011 if (is_cow)
1012 mmu_notifier_invalidate_range_end(&range);
1013 return ret;
1014 }
1015
1016 /* Whether we should zap all COWed (private) pages too */
1017 static inline bool should_zap_cows(struct zap_details *details)
1018 {
1019 /* By default, zap all pages */
1020 if (!details)
1021 return true;
1022
1023 /* Or, we zap COWed pages only if the caller wants to */
1024 return !details->check_mapping;
1025 }
1026
1027 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1028 struct vm_area_struct *vma, pmd_t *pmd,
1029 unsigned long addr, unsigned long end,
1030 struct zap_details *details)
1031 {
1032 struct mm_struct *mm = tlb->mm;
1033 int force_flush = 0;
1034 int rss[NR_MM_COUNTERS];
1035 spinlock_t *ptl;
1036 pte_t *start_pte;
1037 pte_t *pte;
1038 swp_entry_t entry;
1039
1040 tlb_change_page_size(tlb, PAGE_SIZE);
1041 again:
1042 init_rss_vec(rss);
1043 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1044 pte = start_pte;
1045 flush_tlb_batched_pending(mm);
1046 arch_enter_lazy_mmu_mode();
1047 do {
1048 pte_t ptent = *pte;
1049 if (pte_none(ptent))
1050 continue;
1051
1052 if (need_resched())
1053 break;
1054
1055 if (pte_present(ptent)) {
1056 struct page *page;
1057
1058 page = vm_normal_page(vma, addr, ptent);
1059 if (unlikely(details) && page) {
1060 /*
1061 * unmap_shared_mapping_pages() wants to
1062 * invalidate cache without truncating:
1063 * unmap shared but keep private pages.
1064 */
1065 if (details->check_mapping &&
1066 details->check_mapping != page_rmapping(page))
1067 continue;
1068 }
1069 ptent = ptep_get_and_clear_full(mm, addr, pte,
1070 tlb->fullmm);
1071 tlb_remove_tlb_entry(tlb, pte, addr);
1072 if (unlikely(!page))
1073 continue;
1074
1075 if (!PageAnon(page)) {
1076 if (pte_dirty(ptent)) {
1077 force_flush = 1;
1078 set_page_dirty(page);
1079 }
1080 if (pte_young(ptent) &&
1081 likely(!(vma->vm_flags & VM_SEQ_READ)))
1082 mark_page_accessed(page);
1083 }
1084 rss[mm_counter(page)]--;
1085 page_remove_rmap(page, false);
1086 if (unlikely(page_mapcount(page) < 0))
1087 print_bad_pte(vma, addr, ptent, page);
1088 if (unlikely(__tlb_remove_page(tlb, page))) {
1089 force_flush = 1;
1090 addr += PAGE_SIZE;
1091 break;
1092 }
1093 continue;
1094 }
1095
1096 entry = pte_to_swp_entry(ptent);
1097 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1098 struct page *page = device_private_entry_to_page(entry);
1099
1100 if (unlikely(details && details->check_mapping)) {
1101 /*
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1105 */
1106 if (details->check_mapping !=
1107 page_rmapping(page))
1108 continue;
1109 }
1110
1111 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1112 rss[mm_counter(page)]--;
1113 page_remove_rmap(page, false);
1114 put_page(page);
1115 continue;
1116 }
1117
1118 if (!non_swap_entry(entry)) {
1119 /* Genuine swap entry, hence a private anon page */
1120 if (!should_zap_cows(details))
1121 continue;
1122 rss[MM_SWAPENTS]--;
1123 } else if (is_migration_entry(entry)) {
1124 struct page *page;
1125
1126 page = migration_entry_to_page(entry);
1127 if (details && details->check_mapping &&
1128 details->check_mapping != page_rmapping(page))
1129 continue;
1130 rss[mm_counter(page)]--;
1131 }
1132 if (unlikely(!free_swap_and_cache(entry)))
1133 print_bad_pte(vma, addr, ptent, NULL);
1134 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1135 } while (pte++, addr += PAGE_SIZE, addr != end);
1136
1137 add_mm_rss_vec(mm, rss);
1138 arch_leave_lazy_mmu_mode();
1139
1140 /* Do the actual TLB flush before dropping ptl */
1141 if (force_flush)
1142 tlb_flush_mmu_tlbonly(tlb);
1143 pte_unmap_unlock(start_pte, ptl);
1144
1145 /*
1146 * If we forced a TLB flush (either due to running out of
1147 * batch buffers or because we needed to flush dirty TLB
1148 * entries before releasing the ptl), free the batched
1149 * memory too. Restart if we didn't do everything.
1150 */
1151 if (force_flush) {
1152 force_flush = 0;
1153 tlb_flush_mmu(tlb);
1154 }
1155
1156 if (addr != end) {
1157 cond_resched();
1158 goto again;
1159 }
1160
1161 return addr;
1162 }
1163
1164 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1165 struct vm_area_struct *vma, pud_t *pud,
1166 unsigned long addr, unsigned long end,
1167 struct zap_details *details)
1168 {
1169 pmd_t *pmd;
1170 unsigned long next;
1171
1172 pmd = pmd_offset(pud, addr);
1173 do {
1174 next = pmd_addr_end(addr, end);
1175 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1176 if (next - addr != HPAGE_PMD_SIZE)
1177 __split_huge_pmd(vma, pmd, addr, false, NULL);
1178 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1179 goto next;
1180 /* fall through */
1181 } else if (details && details->single_page &&
1182 PageTransCompound(details->single_page) &&
1183 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1184 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1185 /*
1186 * Take and drop THP pmd lock so that we cannot return
1187 * prematurely, while zap_huge_pmd() has cleared *pmd,
1188 * but not yet decremented compound_mapcount().
1189 */
1190 spin_unlock(ptl);
1191 }
1192
1193 /*
1194 * Here there can be other concurrent MADV_DONTNEED or
1195 * trans huge page faults running, and if the pmd is
1196 * none or trans huge it can change under us. This is
1197 * because MADV_DONTNEED holds the mmap_sem in read
1198 * mode.
1199 */
1200 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1201 goto next;
1202 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1203 next:
1204 cond_resched();
1205 } while (pmd++, addr = next, addr != end);
1206
1207 return addr;
1208 }
1209
1210 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1211 struct vm_area_struct *vma, p4d_t *p4d,
1212 unsigned long addr, unsigned long end,
1213 struct zap_details *details)
1214 {
1215 pud_t *pud;
1216 unsigned long next;
1217
1218 pud = pud_offset(p4d, addr);
1219 do {
1220 next = pud_addr_end(addr, end);
1221 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1222 if (next - addr != HPAGE_PUD_SIZE) {
1223 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1224 split_huge_pud(vma, pud, addr);
1225 } else if (zap_huge_pud(tlb, vma, pud, addr))
1226 goto next;
1227 /* fall through */
1228 }
1229 if (pud_none_or_clear_bad(pud))
1230 continue;
1231 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1232 next:
1233 cond_resched();
1234 } while (pud++, addr = next, addr != end);
1235
1236 return addr;
1237 }
1238
1239 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1240 struct vm_area_struct *vma, pgd_t *pgd,
1241 unsigned long addr, unsigned long end,
1242 struct zap_details *details)
1243 {
1244 p4d_t *p4d;
1245 unsigned long next;
1246
1247 p4d = p4d_offset(pgd, addr);
1248 do {
1249 next = p4d_addr_end(addr, end);
1250 if (p4d_none_or_clear_bad(p4d))
1251 continue;
1252 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1253 } while (p4d++, addr = next, addr != end);
1254
1255 return addr;
1256 }
1257
1258 void unmap_page_range(struct mmu_gather *tlb,
1259 struct vm_area_struct *vma,
1260 unsigned long addr, unsigned long end,
1261 struct zap_details *details)
1262 {
1263 pgd_t *pgd;
1264 unsigned long next;
1265
1266 BUG_ON(addr >= end);
1267 tlb_start_vma(tlb, vma);
1268 pgd = pgd_offset(vma->vm_mm, addr);
1269 do {
1270 next = pgd_addr_end(addr, end);
1271 if (pgd_none_or_clear_bad(pgd))
1272 continue;
1273 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1274 } while (pgd++, addr = next, addr != end);
1275 tlb_end_vma(tlb, vma);
1276 }
1277
1278
1279 static void unmap_single_vma(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma, unsigned long start_addr,
1281 unsigned long end_addr,
1282 struct zap_details *details)
1283 {
1284 unsigned long start = max(vma->vm_start, start_addr);
1285 unsigned long end;
1286
1287 if (start >= vma->vm_end)
1288 return;
1289 end = min(vma->vm_end, end_addr);
1290 if (end <= vma->vm_start)
1291 return;
1292
1293 if (vma->vm_file)
1294 uprobe_munmap(vma, start, end);
1295
1296 if (unlikely(vma->vm_flags & VM_PFNMAP))
1297 untrack_pfn(vma, 0, 0);
1298
1299 if (start != end) {
1300 if (unlikely(is_vm_hugetlb_page(vma))) {
1301 /*
1302 * It is undesirable to test vma->vm_file as it
1303 * should be non-null for valid hugetlb area.
1304 * However, vm_file will be NULL in the error
1305 * cleanup path of mmap_region. When
1306 * hugetlbfs ->mmap method fails,
1307 * mmap_region() nullifies vma->vm_file
1308 * before calling this function to clean up.
1309 * Since no pte has actually been setup, it is
1310 * safe to do nothing in this case.
1311 */
1312 if (vma->vm_file) {
1313 i_mmap_lock_write(vma->vm_file->f_mapping);
1314 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1315 i_mmap_unlock_write(vma->vm_file->f_mapping);
1316 }
1317 } else
1318 unmap_page_range(tlb, vma, start, end, details);
1319 }
1320 }
1321
1322 /**
1323 * unmap_vmas - unmap a range of memory covered by a list of vma's
1324 * @tlb: address of the caller's struct mmu_gather
1325 * @vma: the starting vma
1326 * @start_addr: virtual address at which to start unmapping
1327 * @end_addr: virtual address at which to end unmapping
1328 *
1329 * Unmap all pages in the vma list.
1330 *
1331 * Only addresses between `start' and `end' will be unmapped.
1332 *
1333 * The VMA list must be sorted in ascending virtual address order.
1334 *
1335 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1336 * range after unmap_vmas() returns. So the only responsibility here is to
1337 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1338 * drops the lock and schedules.
1339 */
1340 void unmap_vmas(struct mmu_gather *tlb,
1341 struct vm_area_struct *vma, unsigned long start_addr,
1342 unsigned long end_addr)
1343 {
1344 struct mmu_notifier_range range;
1345
1346 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1347 start_addr, end_addr);
1348 mmu_notifier_invalidate_range_start(&range);
1349 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1350 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1351 mmu_notifier_invalidate_range_end(&range);
1352 }
1353
1354 /**
1355 * zap_page_range - remove user pages in a given range
1356 * @vma: vm_area_struct holding the applicable pages
1357 * @start: starting address of pages to zap
1358 * @size: number of bytes to zap
1359 *
1360 * Caller must protect the VMA list
1361 */
1362 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1363 unsigned long size)
1364 {
1365 struct mmu_notifier_range range;
1366 struct mmu_gather tlb;
1367
1368 lru_add_drain();
1369 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1370 start, start + size);
1371 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1372 update_hiwater_rss(vma->vm_mm);
1373 mmu_notifier_invalidate_range_start(&range);
1374 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1375 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1376 mmu_notifier_invalidate_range_end(&range);
1377 tlb_finish_mmu(&tlb, start, range.end);
1378 }
1379 EXPORT_SYMBOL(zap_page_range);
1380
1381 /**
1382 * zap_page_range_single - remove user pages in a given range
1383 * @vma: vm_area_struct holding the applicable pages
1384 * @address: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 * @details: details of shared cache invalidation
1387 *
1388 * The range must fit into one VMA.
1389 */
1390 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1391 unsigned long size, struct zap_details *details)
1392 {
1393 struct mmu_notifier_range range;
1394 struct mmu_gather tlb;
1395
1396 lru_add_drain();
1397 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1398 address, address + size);
1399 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1400 update_hiwater_rss(vma->vm_mm);
1401 mmu_notifier_invalidate_range_start(&range);
1402 unmap_single_vma(&tlb, vma, address, range.end, details);
1403 mmu_notifier_invalidate_range_end(&range);
1404 tlb_finish_mmu(&tlb, address, range.end);
1405 }
1406
1407 /**
1408 * zap_vma_ptes - remove ptes mapping the vma
1409 * @vma: vm_area_struct holding ptes to be zapped
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1412 *
1413 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1414 *
1415 * The entire address range must be fully contained within the vma.
1416 *
1417 */
1418 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1419 unsigned long size)
1420 {
1421 if (address < vma->vm_start || address + size > vma->vm_end ||
1422 !(vma->vm_flags & VM_PFNMAP))
1423 return;
1424
1425 zap_page_range_single(vma, address, size, NULL);
1426 }
1427 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1428
1429 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1430 spinlock_t **ptl)
1431 {
1432 pgd_t *pgd;
1433 p4d_t *p4d;
1434 pud_t *pud;
1435 pmd_t *pmd;
1436
1437 pgd = pgd_offset(mm, addr);
1438 p4d = p4d_alloc(mm, pgd, addr);
1439 if (!p4d)
1440 return NULL;
1441 pud = pud_alloc(mm, p4d, addr);
1442 if (!pud)
1443 return NULL;
1444 pmd = pmd_alloc(mm, pud, addr);
1445 if (!pmd)
1446 return NULL;
1447
1448 VM_BUG_ON(pmd_trans_huge(*pmd));
1449 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1450 }
1451
1452 /*
1453 * This is the old fallback for page remapping.
1454 *
1455 * For historical reasons, it only allows reserved pages. Only
1456 * old drivers should use this, and they needed to mark their
1457 * pages reserved for the old functions anyway.
1458 */
1459 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1460 struct page *page, pgprot_t prot)
1461 {
1462 struct mm_struct *mm = vma->vm_mm;
1463 int retval;
1464 pte_t *pte;
1465 spinlock_t *ptl;
1466
1467 retval = -EINVAL;
1468 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1469 goto out;
1470 retval = -ENOMEM;
1471 flush_dcache_page(page);
1472 pte = get_locked_pte(mm, addr, &ptl);
1473 if (!pte)
1474 goto out;
1475 retval = -EBUSY;
1476 if (!pte_none(*pte))
1477 goto out_unlock;
1478
1479 /* Ok, finally just insert the thing.. */
1480 get_page(page);
1481 inc_mm_counter_fast(mm, mm_counter_file(page));
1482 page_add_file_rmap(page, false);
1483 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1484
1485 retval = 0;
1486 out_unlock:
1487 pte_unmap_unlock(pte, ptl);
1488 out:
1489 return retval;
1490 }
1491
1492 /**
1493 * vm_insert_page - insert single page into user vma
1494 * @vma: user vma to map to
1495 * @addr: target user address of this page
1496 * @page: source kernel page
1497 *
1498 * This allows drivers to insert individual pages they've allocated
1499 * into a user vma.
1500 *
1501 * The page has to be a nice clean _individual_ kernel allocation.
1502 * If you allocate a compound page, you need to have marked it as
1503 * such (__GFP_COMP), or manually just split the page up yourself
1504 * (see split_page()).
1505 *
1506 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1507 * took an arbitrary page protection parameter. This doesn't allow
1508 * that. Your vma protection will have to be set up correctly, which
1509 * means that if you want a shared writable mapping, you'd better
1510 * ask for a shared writable mapping!
1511 *
1512 * The page does not need to be reserved.
1513 *
1514 * Usually this function is called from f_op->mmap() handler
1515 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1516 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1517 * function from other places, for example from page-fault handler.
1518 *
1519 * Return: %0 on success, negative error code otherwise.
1520 */
1521 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1522 struct page *page)
1523 {
1524 if (addr < vma->vm_start || addr >= vma->vm_end)
1525 return -EFAULT;
1526 if (!page_count(page))
1527 return -EINVAL;
1528 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1529 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1530 BUG_ON(vma->vm_flags & VM_PFNMAP);
1531 vma->vm_flags |= VM_MIXEDMAP;
1532 }
1533 return insert_page(vma, addr, page, vma->vm_page_prot);
1534 }
1535 EXPORT_SYMBOL(vm_insert_page);
1536
1537 /*
1538 * __vm_map_pages - maps range of kernel pages into user vma
1539 * @vma: user vma to map to
1540 * @pages: pointer to array of source kernel pages
1541 * @num: number of pages in page array
1542 * @offset: user's requested vm_pgoff
1543 *
1544 * This allows drivers to map range of kernel pages into a user vma.
1545 *
1546 * Return: 0 on success and error code otherwise.
1547 */
1548 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1549 unsigned long num, unsigned long offset)
1550 {
1551 unsigned long count = vma_pages(vma);
1552 unsigned long uaddr = vma->vm_start;
1553 int ret, i;
1554
1555 /* Fail if the user requested offset is beyond the end of the object */
1556 if (offset >= num)
1557 return -ENXIO;
1558
1559 /* Fail if the user requested size exceeds available object size */
1560 if (count > num - offset)
1561 return -ENXIO;
1562
1563 for (i = 0; i < count; i++) {
1564 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1565 if (ret < 0)
1566 return ret;
1567 uaddr += PAGE_SIZE;
1568 }
1569
1570 return 0;
1571 }
1572
1573 /**
1574 * vm_map_pages - maps range of kernel pages starts with non zero offset
1575 * @vma: user vma to map to
1576 * @pages: pointer to array of source kernel pages
1577 * @num: number of pages in page array
1578 *
1579 * Maps an object consisting of @num pages, catering for the user's
1580 * requested vm_pgoff
1581 *
1582 * If we fail to insert any page into the vma, the function will return
1583 * immediately leaving any previously inserted pages present. Callers
1584 * from the mmap handler may immediately return the error as their caller
1585 * will destroy the vma, removing any successfully inserted pages. Other
1586 * callers should make their own arrangements for calling unmap_region().
1587 *
1588 * Context: Process context. Called by mmap handlers.
1589 * Return: 0 on success and error code otherwise.
1590 */
1591 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1592 unsigned long num)
1593 {
1594 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1595 }
1596 EXPORT_SYMBOL(vm_map_pages);
1597
1598 /**
1599 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1600 * @vma: user vma to map to
1601 * @pages: pointer to array of source kernel pages
1602 * @num: number of pages in page array
1603 *
1604 * Similar to vm_map_pages(), except that it explicitly sets the offset
1605 * to 0. This function is intended for the drivers that did not consider
1606 * vm_pgoff.
1607 *
1608 * Context: Process context. Called by mmap handlers.
1609 * Return: 0 on success and error code otherwise.
1610 */
1611 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1612 unsigned long num)
1613 {
1614 return __vm_map_pages(vma, pages, num, 0);
1615 }
1616 EXPORT_SYMBOL(vm_map_pages_zero);
1617
1618 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1619 pfn_t pfn, pgprot_t prot, bool mkwrite)
1620 {
1621 struct mm_struct *mm = vma->vm_mm;
1622 pte_t *pte, entry;
1623 spinlock_t *ptl;
1624
1625 pte = get_locked_pte(mm, addr, &ptl);
1626 if (!pte)
1627 return VM_FAULT_OOM;
1628 if (!pte_none(*pte)) {
1629 if (mkwrite) {
1630 /*
1631 * For read faults on private mappings the PFN passed
1632 * in may not match the PFN we have mapped if the
1633 * mapped PFN is a writeable COW page. In the mkwrite
1634 * case we are creating a writable PTE for a shared
1635 * mapping and we expect the PFNs to match. If they
1636 * don't match, we are likely racing with block
1637 * allocation and mapping invalidation so just skip the
1638 * update.
1639 */
1640 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1641 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1642 goto out_unlock;
1643 }
1644 entry = pte_mkyoung(*pte);
1645 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1646 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1647 update_mmu_cache(vma, addr, pte);
1648 }
1649 goto out_unlock;
1650 }
1651
1652 /* Ok, finally just insert the thing.. */
1653 if (pfn_t_devmap(pfn))
1654 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1655 else
1656 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1657
1658 if (mkwrite) {
1659 entry = pte_mkyoung(entry);
1660 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1661 }
1662
1663 set_pte_at(mm, addr, pte, entry);
1664 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1665
1666 out_unlock:
1667 pte_unmap_unlock(pte, ptl);
1668 return VM_FAULT_NOPAGE;
1669 }
1670
1671 /**
1672 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1673 * @vma: user vma to map to
1674 * @addr: target user address of this page
1675 * @pfn: source kernel pfn
1676 * @pgprot: pgprot flags for the inserted page
1677 *
1678 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1679 * to override pgprot on a per-page basis.
1680 *
1681 * This only makes sense for IO mappings, and it makes no sense for
1682 * COW mappings. In general, using multiple vmas is preferable;
1683 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1684 * impractical.
1685 *
1686 * Context: Process context. May allocate using %GFP_KERNEL.
1687 * Return: vm_fault_t value.
1688 */
1689 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn, pgprot_t pgprot)
1691 {
1692 /*
1693 * Technically, architectures with pte_special can avoid all these
1694 * restrictions (same for remap_pfn_range). However we would like
1695 * consistency in testing and feature parity among all, so we should
1696 * try to keep these invariants in place for everybody.
1697 */
1698 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1699 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1700 (VM_PFNMAP|VM_MIXEDMAP));
1701 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1702 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1703
1704 if (addr < vma->vm_start || addr >= vma->vm_end)
1705 return VM_FAULT_SIGBUS;
1706
1707 if (!pfn_modify_allowed(pfn, pgprot))
1708 return VM_FAULT_SIGBUS;
1709
1710 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1711
1712 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1713 false);
1714 }
1715 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1716
1717 /**
1718 * vmf_insert_pfn - insert single pfn into user vma
1719 * @vma: user vma to map to
1720 * @addr: target user address of this page
1721 * @pfn: source kernel pfn
1722 *
1723 * Similar to vm_insert_page, this allows drivers to insert individual pages
1724 * they've allocated into a user vma. Same comments apply.
1725 *
1726 * This function should only be called from a vm_ops->fault handler, and
1727 * in that case the handler should return the result of this function.
1728 *
1729 * vma cannot be a COW mapping.
1730 *
1731 * As this is called only for pages that do not currently exist, we
1732 * do not need to flush old virtual caches or the TLB.
1733 *
1734 * Context: Process context. May allocate using %GFP_KERNEL.
1735 * Return: vm_fault_t value.
1736 */
1737 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1738 unsigned long pfn)
1739 {
1740 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1741 }
1742 EXPORT_SYMBOL(vmf_insert_pfn);
1743
1744 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1745 {
1746 /* these checks mirror the abort conditions in vm_normal_page */
1747 if (vma->vm_flags & VM_MIXEDMAP)
1748 return true;
1749 if (pfn_t_devmap(pfn))
1750 return true;
1751 if (pfn_t_special(pfn))
1752 return true;
1753 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1754 return true;
1755 return false;
1756 }
1757
1758 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1759 unsigned long addr, pfn_t pfn, bool mkwrite)
1760 {
1761 pgprot_t pgprot = vma->vm_page_prot;
1762 int err;
1763
1764 BUG_ON(!vm_mixed_ok(vma, pfn));
1765
1766 if (addr < vma->vm_start || addr >= vma->vm_end)
1767 return VM_FAULT_SIGBUS;
1768
1769 track_pfn_insert(vma, &pgprot, pfn);
1770
1771 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1772 return VM_FAULT_SIGBUS;
1773
1774 /*
1775 * If we don't have pte special, then we have to use the pfn_valid()
1776 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1777 * refcount the page if pfn_valid is true (hence insert_page rather
1778 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1779 * without pte special, it would there be refcounted as a normal page.
1780 */
1781 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1782 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1783 struct page *page;
1784
1785 /*
1786 * At this point we are committed to insert_page()
1787 * regardless of whether the caller specified flags that
1788 * result in pfn_t_has_page() == false.
1789 */
1790 page = pfn_to_page(pfn_t_to_pfn(pfn));
1791 err = insert_page(vma, addr, page, pgprot);
1792 } else {
1793 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1794 }
1795
1796 if (err == -ENOMEM)
1797 return VM_FAULT_OOM;
1798 if (err < 0 && err != -EBUSY)
1799 return VM_FAULT_SIGBUS;
1800
1801 return VM_FAULT_NOPAGE;
1802 }
1803
1804 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1805 pfn_t pfn)
1806 {
1807 return __vm_insert_mixed(vma, addr, pfn, false);
1808 }
1809 EXPORT_SYMBOL(vmf_insert_mixed);
1810
1811 /*
1812 * If the insertion of PTE failed because someone else already added a
1813 * different entry in the mean time, we treat that as success as we assume
1814 * the same entry was actually inserted.
1815 */
1816 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1817 unsigned long addr, pfn_t pfn)
1818 {
1819 return __vm_insert_mixed(vma, addr, pfn, true);
1820 }
1821 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1822
1823 /*
1824 * maps a range of physical memory into the requested pages. the old
1825 * mappings are removed. any references to nonexistent pages results
1826 * in null mappings (currently treated as "copy-on-access")
1827 */
1828 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1829 unsigned long addr, unsigned long end,
1830 unsigned long pfn, pgprot_t prot)
1831 {
1832 pte_t *pte, *mapped_pte;
1833 spinlock_t *ptl;
1834 int err = 0;
1835
1836 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1837 if (!pte)
1838 return -ENOMEM;
1839 arch_enter_lazy_mmu_mode();
1840 do {
1841 BUG_ON(!pte_none(*pte));
1842 if (!pfn_modify_allowed(pfn, prot)) {
1843 err = -EACCES;
1844 break;
1845 }
1846 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1847 pfn++;
1848 } while (pte++, addr += PAGE_SIZE, addr != end);
1849 arch_leave_lazy_mmu_mode();
1850 pte_unmap_unlock(mapped_pte, ptl);
1851 return err;
1852 }
1853
1854 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1855 unsigned long addr, unsigned long end,
1856 unsigned long pfn, pgprot_t prot)
1857 {
1858 pmd_t *pmd;
1859 unsigned long next;
1860 int err;
1861
1862 pfn -= addr >> PAGE_SHIFT;
1863 pmd = pmd_alloc(mm, pud, addr);
1864 if (!pmd)
1865 return -ENOMEM;
1866 VM_BUG_ON(pmd_trans_huge(*pmd));
1867 do {
1868 next = pmd_addr_end(addr, end);
1869 err = remap_pte_range(mm, pmd, addr, next,
1870 pfn + (addr >> PAGE_SHIFT), prot);
1871 if (err)
1872 return err;
1873 } while (pmd++, addr = next, addr != end);
1874 return 0;
1875 }
1876
1877 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1878 unsigned long addr, unsigned long end,
1879 unsigned long pfn, pgprot_t prot)
1880 {
1881 pud_t *pud;
1882 unsigned long next;
1883 int err;
1884
1885 pfn -= addr >> PAGE_SHIFT;
1886 pud = pud_alloc(mm, p4d, addr);
1887 if (!pud)
1888 return -ENOMEM;
1889 do {
1890 next = pud_addr_end(addr, end);
1891 err = remap_pmd_range(mm, pud, addr, next,
1892 pfn + (addr >> PAGE_SHIFT), prot);
1893 if (err)
1894 return err;
1895 } while (pud++, addr = next, addr != end);
1896 return 0;
1897 }
1898
1899 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1900 unsigned long addr, unsigned long end,
1901 unsigned long pfn, pgprot_t prot)
1902 {
1903 p4d_t *p4d;
1904 unsigned long next;
1905 int err;
1906
1907 pfn -= addr >> PAGE_SHIFT;
1908 p4d = p4d_alloc(mm, pgd, addr);
1909 if (!p4d)
1910 return -ENOMEM;
1911 do {
1912 next = p4d_addr_end(addr, end);
1913 err = remap_pud_range(mm, p4d, addr, next,
1914 pfn + (addr >> PAGE_SHIFT), prot);
1915 if (err)
1916 return err;
1917 } while (p4d++, addr = next, addr != end);
1918 return 0;
1919 }
1920
1921 /**
1922 * remap_pfn_range - remap kernel memory to userspace
1923 * @vma: user vma to map to
1924 * @addr: target user address to start at
1925 * @pfn: physical address of kernel memory
1926 * @size: size of map area
1927 * @prot: page protection flags for this mapping
1928 *
1929 * Note: this is only safe if the mm semaphore is held when called.
1930 *
1931 * Return: %0 on success, negative error code otherwise.
1932 */
1933 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1934 unsigned long pfn, unsigned long size, pgprot_t prot)
1935 {
1936 pgd_t *pgd;
1937 unsigned long next;
1938 unsigned long end = addr + PAGE_ALIGN(size);
1939 struct mm_struct *mm = vma->vm_mm;
1940 unsigned long remap_pfn = pfn;
1941 int err;
1942
1943 /*
1944 * Physically remapped pages are special. Tell the
1945 * rest of the world about it:
1946 * VM_IO tells people not to look at these pages
1947 * (accesses can have side effects).
1948 * VM_PFNMAP tells the core MM that the base pages are just
1949 * raw PFN mappings, and do not have a "struct page" associated
1950 * with them.
1951 * VM_DONTEXPAND
1952 * Disable vma merging and expanding with mremap().
1953 * VM_DONTDUMP
1954 * Omit vma from core dump, even when VM_IO turned off.
1955 *
1956 * There's a horrible special case to handle copy-on-write
1957 * behaviour that some programs depend on. We mark the "original"
1958 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1959 * See vm_normal_page() for details.
1960 */
1961 if (is_cow_mapping(vma->vm_flags)) {
1962 if (addr != vma->vm_start || end != vma->vm_end)
1963 return -EINVAL;
1964 vma->vm_pgoff = pfn;
1965 }
1966
1967 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1968 if (err)
1969 return -EINVAL;
1970
1971 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1972
1973 BUG_ON(addr >= end);
1974 pfn -= addr >> PAGE_SHIFT;
1975 pgd = pgd_offset(mm, addr);
1976 flush_cache_range(vma, addr, end);
1977 do {
1978 next = pgd_addr_end(addr, end);
1979 err = remap_p4d_range(mm, pgd, addr, next,
1980 pfn + (addr >> PAGE_SHIFT), prot);
1981 if (err)
1982 break;
1983 } while (pgd++, addr = next, addr != end);
1984
1985 if (err)
1986 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1987
1988 return err;
1989 }
1990 EXPORT_SYMBOL(remap_pfn_range);
1991
1992 /**
1993 * vm_iomap_memory - remap memory to userspace
1994 * @vma: user vma to map to
1995 * @start: start of area
1996 * @len: size of area
1997 *
1998 * This is a simplified io_remap_pfn_range() for common driver use. The
1999 * driver just needs to give us the physical memory range to be mapped,
2000 * we'll figure out the rest from the vma information.
2001 *
2002 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2003 * whatever write-combining details or similar.
2004 *
2005 * Return: %0 on success, negative error code otherwise.
2006 */
2007 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2008 {
2009 unsigned long vm_len, pfn, pages;
2010
2011 /* Check that the physical memory area passed in looks valid */
2012 if (start + len < start)
2013 return -EINVAL;
2014 /*
2015 * You *really* shouldn't map things that aren't page-aligned,
2016 * but we've historically allowed it because IO memory might
2017 * just have smaller alignment.
2018 */
2019 len += start & ~PAGE_MASK;
2020 pfn = start >> PAGE_SHIFT;
2021 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2022 if (pfn + pages < pfn)
2023 return -EINVAL;
2024
2025 /* We start the mapping 'vm_pgoff' pages into the area */
2026 if (vma->vm_pgoff > pages)
2027 return -EINVAL;
2028 pfn += vma->vm_pgoff;
2029 pages -= vma->vm_pgoff;
2030
2031 /* Can we fit all of the mapping? */
2032 vm_len = vma->vm_end - vma->vm_start;
2033 if (vm_len >> PAGE_SHIFT > pages)
2034 return -EINVAL;
2035
2036 /* Ok, let it rip */
2037 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2038 }
2039 EXPORT_SYMBOL(vm_iomap_memory);
2040
2041 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2042 unsigned long addr, unsigned long end,
2043 pte_fn_t fn, void *data)
2044 {
2045 pte_t *pte;
2046 int err;
2047 spinlock_t *uninitialized_var(ptl);
2048
2049 pte = (mm == &init_mm) ?
2050 pte_alloc_kernel(pmd, addr) :
2051 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2052 if (!pte)
2053 return -ENOMEM;
2054
2055 BUG_ON(pmd_huge(*pmd));
2056
2057 arch_enter_lazy_mmu_mode();
2058
2059 do {
2060 err = fn(pte++, addr, data);
2061 if (err)
2062 break;
2063 } while (addr += PAGE_SIZE, addr != end);
2064
2065 arch_leave_lazy_mmu_mode();
2066
2067 if (mm != &init_mm)
2068 pte_unmap_unlock(pte-1, ptl);
2069 return err;
2070 }
2071
2072 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2073 unsigned long addr, unsigned long end,
2074 pte_fn_t fn, void *data)
2075 {
2076 pmd_t *pmd;
2077 unsigned long next;
2078 int err;
2079
2080 BUG_ON(pud_huge(*pud));
2081
2082 pmd = pmd_alloc(mm, pud, addr);
2083 if (!pmd)
2084 return -ENOMEM;
2085 do {
2086 next = pmd_addr_end(addr, end);
2087 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2088 if (err)
2089 break;
2090 } while (pmd++, addr = next, addr != end);
2091 return err;
2092 }
2093
2094 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2095 unsigned long addr, unsigned long end,
2096 pte_fn_t fn, void *data)
2097 {
2098 pud_t *pud;
2099 unsigned long next;
2100 int err;
2101
2102 pud = pud_alloc(mm, p4d, addr);
2103 if (!pud)
2104 return -ENOMEM;
2105 do {
2106 next = pud_addr_end(addr, end);
2107 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2108 if (err)
2109 break;
2110 } while (pud++, addr = next, addr != end);
2111 return err;
2112 }
2113
2114 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2115 unsigned long addr, unsigned long end,
2116 pte_fn_t fn, void *data)
2117 {
2118 p4d_t *p4d;
2119 unsigned long next;
2120 int err;
2121
2122 p4d = p4d_alloc(mm, pgd, addr);
2123 if (!p4d)
2124 return -ENOMEM;
2125 do {
2126 next = p4d_addr_end(addr, end);
2127 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2128 if (err)
2129 break;
2130 } while (p4d++, addr = next, addr != end);
2131 return err;
2132 }
2133
2134 /*
2135 * Scan a region of virtual memory, filling in page tables as necessary
2136 * and calling a provided function on each leaf page table.
2137 */
2138 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2139 unsigned long size, pte_fn_t fn, void *data)
2140 {
2141 pgd_t *pgd;
2142 unsigned long next;
2143 unsigned long end = addr + size;
2144 int err;
2145
2146 if (WARN_ON(addr >= end))
2147 return -EINVAL;
2148
2149 pgd = pgd_offset(mm, addr);
2150 do {
2151 next = pgd_addr_end(addr, end);
2152 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2153 if (err)
2154 break;
2155 } while (pgd++, addr = next, addr != end);
2156
2157 return err;
2158 }
2159 EXPORT_SYMBOL_GPL(apply_to_page_range);
2160
2161 /*
2162 * handle_pte_fault chooses page fault handler according to an entry which was
2163 * read non-atomically. Before making any commitment, on those architectures
2164 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2165 * parts, do_swap_page must check under lock before unmapping the pte and
2166 * proceeding (but do_wp_page is only called after already making such a check;
2167 * and do_anonymous_page can safely check later on).
2168 */
2169 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2170 pte_t *page_table, pte_t orig_pte)
2171 {
2172 int same = 1;
2173 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2174 if (sizeof(pte_t) > sizeof(unsigned long)) {
2175 spinlock_t *ptl = pte_lockptr(mm, pmd);
2176 spin_lock(ptl);
2177 same = pte_same(*page_table, orig_pte);
2178 spin_unlock(ptl);
2179 }
2180 #endif
2181 pte_unmap(page_table);
2182 return same;
2183 }
2184
2185 static inline bool cow_user_page(struct page *dst, struct page *src,
2186 struct vm_fault *vmf)
2187 {
2188 bool ret;
2189 void *kaddr;
2190 void __user *uaddr;
2191 bool locked = false;
2192 struct vm_area_struct *vma = vmf->vma;
2193 struct mm_struct *mm = vma->vm_mm;
2194 unsigned long addr = vmf->address;
2195
2196 debug_dma_assert_idle(src);
2197
2198 if (likely(src)) {
2199 copy_user_highpage(dst, src, addr, vma);
2200 return true;
2201 }
2202
2203 /*
2204 * If the source page was a PFN mapping, we don't have
2205 * a "struct page" for it. We do a best-effort copy by
2206 * just copying from the original user address. If that
2207 * fails, we just zero-fill it. Live with it.
2208 */
2209 kaddr = kmap_atomic(dst);
2210 uaddr = (void __user *)(addr & PAGE_MASK);
2211
2212 /*
2213 * On architectures with software "accessed" bits, we would
2214 * take a double page fault, so mark it accessed here.
2215 */
2216 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2217 pte_t entry;
2218
2219 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2220 locked = true;
2221 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2222 /*
2223 * Other thread has already handled the fault
2224 * and we don't need to do anything. If it's
2225 * not the case, the fault will be triggered
2226 * again on the same address.
2227 */
2228 ret = false;
2229 goto pte_unlock;
2230 }
2231
2232 entry = pte_mkyoung(vmf->orig_pte);
2233 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2234 update_mmu_cache(vma, addr, vmf->pte);
2235 }
2236
2237 /*
2238 * This really shouldn't fail, because the page is there
2239 * in the page tables. But it might just be unreadable,
2240 * in which case we just give up and fill the result with
2241 * zeroes.
2242 */
2243 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2244 if (locked)
2245 goto warn;
2246
2247 /* Re-validate under PTL if the page is still mapped */
2248 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2249 locked = true;
2250 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2251 /* The PTE changed under us. Retry page fault. */
2252 ret = false;
2253 goto pte_unlock;
2254 }
2255
2256 /*
2257 * The same page can be mapped back since last copy attampt.
2258 * Try to copy again under PTL.
2259 */
2260 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2261 /*
2262 * Give a warn in case there can be some obscure
2263 * use-case
2264 */
2265 warn:
2266 WARN_ON_ONCE(1);
2267 clear_page(kaddr);
2268 }
2269 }
2270
2271 ret = true;
2272
2273 pte_unlock:
2274 if (locked)
2275 pte_unmap_unlock(vmf->pte, vmf->ptl);
2276 kunmap_atomic(kaddr);
2277 flush_dcache_page(dst);
2278
2279 return ret;
2280 }
2281
2282 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2283 {
2284 struct file *vm_file = vma->vm_file;
2285
2286 if (vm_file)
2287 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2288
2289 /*
2290 * Special mappings (e.g. VDSO) do not have any file so fake
2291 * a default GFP_KERNEL for them.
2292 */
2293 return GFP_KERNEL;
2294 }
2295
2296 /*
2297 * Notify the address space that the page is about to become writable so that
2298 * it can prohibit this or wait for the page to get into an appropriate state.
2299 *
2300 * We do this without the lock held, so that it can sleep if it needs to.
2301 */
2302 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2303 {
2304 vm_fault_t ret;
2305 struct page *page = vmf->page;
2306 unsigned int old_flags = vmf->flags;
2307
2308 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2309
2310 if (vmf->vma->vm_file &&
2311 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2312 return VM_FAULT_SIGBUS;
2313
2314 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2315 /* Restore original flags so that caller is not surprised */
2316 vmf->flags = old_flags;
2317 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2318 return ret;
2319 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2320 lock_page(page);
2321 if (!page->mapping) {
2322 unlock_page(page);
2323 return 0; /* retry */
2324 }
2325 ret |= VM_FAULT_LOCKED;
2326 } else
2327 VM_BUG_ON_PAGE(!PageLocked(page), page);
2328 return ret;
2329 }
2330
2331 /*
2332 * Handle dirtying of a page in shared file mapping on a write fault.
2333 *
2334 * The function expects the page to be locked and unlocks it.
2335 */
2336 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2337 {
2338 struct vm_area_struct *vma = vmf->vma;
2339 struct address_space *mapping;
2340 struct page *page = vmf->page;
2341 bool dirtied;
2342 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2343
2344 dirtied = set_page_dirty(page);
2345 VM_BUG_ON_PAGE(PageAnon(page), page);
2346 /*
2347 * Take a local copy of the address_space - page.mapping may be zeroed
2348 * by truncate after unlock_page(). The address_space itself remains
2349 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2350 * release semantics to prevent the compiler from undoing this copying.
2351 */
2352 mapping = page_rmapping(page);
2353 unlock_page(page);
2354
2355 if (!page_mkwrite)
2356 file_update_time(vma->vm_file);
2357
2358 /*
2359 * Throttle page dirtying rate down to writeback speed.
2360 *
2361 * mapping may be NULL here because some device drivers do not
2362 * set page.mapping but still dirty their pages
2363 *
2364 * Drop the mmap_sem before waiting on IO, if we can. The file
2365 * is pinning the mapping, as per above.
2366 */
2367 if ((dirtied || page_mkwrite) && mapping) {
2368 struct file *fpin;
2369
2370 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2371 balance_dirty_pages_ratelimited(mapping);
2372 if (fpin) {
2373 fput(fpin);
2374 return VM_FAULT_RETRY;
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 /*
2382 * Handle write page faults for pages that can be reused in the current vma
2383 *
2384 * This can happen either due to the mapping being with the VM_SHARED flag,
2385 * or due to us being the last reference standing to the page. In either
2386 * case, all we need to do here is to mark the page as writable and update
2387 * any related book-keeping.
2388 */
2389 static inline void wp_page_reuse(struct vm_fault *vmf)
2390 __releases(vmf->ptl)
2391 {
2392 struct vm_area_struct *vma = vmf->vma;
2393 struct page *page = vmf->page;
2394 pte_t entry;
2395 /*
2396 * Clear the pages cpupid information as the existing
2397 * information potentially belongs to a now completely
2398 * unrelated process.
2399 */
2400 if (page)
2401 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2402
2403 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2404 entry = pte_mkyoung(vmf->orig_pte);
2405 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2406 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2407 update_mmu_cache(vma, vmf->address, vmf->pte);
2408 pte_unmap_unlock(vmf->pte, vmf->ptl);
2409 }
2410
2411 /*
2412 * Handle the case of a page which we actually need to copy to a new page.
2413 *
2414 * Called with mmap_sem locked and the old page referenced, but
2415 * without the ptl held.
2416 *
2417 * High level logic flow:
2418 *
2419 * - Allocate a page, copy the content of the old page to the new one.
2420 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2421 * - Take the PTL. If the pte changed, bail out and release the allocated page
2422 * - If the pte is still the way we remember it, update the page table and all
2423 * relevant references. This includes dropping the reference the page-table
2424 * held to the old page, as well as updating the rmap.
2425 * - In any case, unlock the PTL and drop the reference we took to the old page.
2426 */
2427 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2428 {
2429 struct vm_area_struct *vma = vmf->vma;
2430 struct mm_struct *mm = vma->vm_mm;
2431 struct page *old_page = vmf->page;
2432 struct page *new_page = NULL;
2433 pte_t entry;
2434 int page_copied = 0;
2435 struct mem_cgroup *memcg;
2436 struct mmu_notifier_range range;
2437
2438 if (unlikely(anon_vma_prepare(vma)))
2439 goto oom;
2440
2441 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2442 new_page = alloc_zeroed_user_highpage_movable(vma,
2443 vmf->address);
2444 if (!new_page)
2445 goto oom;
2446 } else {
2447 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2448 vmf->address);
2449 if (!new_page)
2450 goto oom;
2451
2452 if (!cow_user_page(new_page, old_page, vmf)) {
2453 /*
2454 * COW failed, if the fault was solved by other,
2455 * it's fine. If not, userspace would re-fault on
2456 * the same address and we will handle the fault
2457 * from the second attempt.
2458 */
2459 put_page(new_page);
2460 if (old_page)
2461 put_page(old_page);
2462 return 0;
2463 }
2464 }
2465
2466 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2467 goto oom_free_new;
2468
2469 __SetPageUptodate(new_page);
2470
2471 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2472 vmf->address & PAGE_MASK,
2473 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2474 mmu_notifier_invalidate_range_start(&range);
2475
2476 /*
2477 * Re-check the pte - we dropped the lock
2478 */
2479 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2480 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2481 if (old_page) {
2482 if (!PageAnon(old_page)) {
2483 dec_mm_counter_fast(mm,
2484 mm_counter_file(old_page));
2485 inc_mm_counter_fast(mm, MM_ANONPAGES);
2486 }
2487 } else {
2488 inc_mm_counter_fast(mm, MM_ANONPAGES);
2489 }
2490 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2491 entry = mk_pte(new_page, vma->vm_page_prot);
2492 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2493 /*
2494 * Clear the pte entry and flush it first, before updating the
2495 * pte with the new entry. This will avoid a race condition
2496 * seen in the presence of one thread doing SMC and another
2497 * thread doing COW.
2498 */
2499 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2500 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2501 mem_cgroup_commit_charge(new_page, memcg, false, false);
2502 lru_cache_add_active_or_unevictable(new_page, vma);
2503 /*
2504 * We call the notify macro here because, when using secondary
2505 * mmu page tables (such as kvm shadow page tables), we want the
2506 * new page to be mapped directly into the secondary page table.
2507 */
2508 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2509 update_mmu_cache(vma, vmf->address, vmf->pte);
2510 if (old_page) {
2511 /*
2512 * Only after switching the pte to the new page may
2513 * we remove the mapcount here. Otherwise another
2514 * process may come and find the rmap count decremented
2515 * before the pte is switched to the new page, and
2516 * "reuse" the old page writing into it while our pte
2517 * here still points into it and can be read by other
2518 * threads.
2519 *
2520 * The critical issue is to order this
2521 * page_remove_rmap with the ptp_clear_flush above.
2522 * Those stores are ordered by (if nothing else,)
2523 * the barrier present in the atomic_add_negative
2524 * in page_remove_rmap.
2525 *
2526 * Then the TLB flush in ptep_clear_flush ensures that
2527 * no process can access the old page before the
2528 * decremented mapcount is visible. And the old page
2529 * cannot be reused until after the decremented
2530 * mapcount is visible. So transitively, TLBs to
2531 * old page will be flushed before it can be reused.
2532 */
2533 page_remove_rmap(old_page, false);
2534 }
2535
2536 /* Free the old page.. */
2537 new_page = old_page;
2538 page_copied = 1;
2539 } else {
2540 mem_cgroup_cancel_charge(new_page, memcg, false);
2541 }
2542
2543 if (new_page)
2544 put_page(new_page);
2545
2546 pte_unmap_unlock(vmf->pte, vmf->ptl);
2547 /*
2548 * No need to double call mmu_notifier->invalidate_range() callback as
2549 * the above ptep_clear_flush_notify() did already call it.
2550 */
2551 mmu_notifier_invalidate_range_only_end(&range);
2552 if (old_page) {
2553 /*
2554 * Don't let another task, with possibly unlocked vma,
2555 * keep the mlocked page.
2556 */
2557 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2558 lock_page(old_page); /* LRU manipulation */
2559 if (PageMlocked(old_page))
2560 munlock_vma_page(old_page);
2561 unlock_page(old_page);
2562 }
2563 put_page(old_page);
2564 }
2565 return page_copied ? VM_FAULT_WRITE : 0;
2566 oom_free_new:
2567 put_page(new_page);
2568 oom:
2569 if (old_page)
2570 put_page(old_page);
2571 return VM_FAULT_OOM;
2572 }
2573
2574 /**
2575 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2576 * writeable once the page is prepared
2577 *
2578 * @vmf: structure describing the fault
2579 *
2580 * This function handles all that is needed to finish a write page fault in a
2581 * shared mapping due to PTE being read-only once the mapped page is prepared.
2582 * It handles locking of PTE and modifying it.
2583 *
2584 * The function expects the page to be locked or other protection against
2585 * concurrent faults / writeback (such as DAX radix tree locks).
2586 *
2587 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2588 * we acquired PTE lock.
2589 */
2590 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2591 {
2592 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2593 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2594 &vmf->ptl);
2595 /*
2596 * We might have raced with another page fault while we released the
2597 * pte_offset_map_lock.
2598 */
2599 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2600 pte_unmap_unlock(vmf->pte, vmf->ptl);
2601 return VM_FAULT_NOPAGE;
2602 }
2603 wp_page_reuse(vmf);
2604 return 0;
2605 }
2606
2607 /*
2608 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2609 * mapping
2610 */
2611 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2612 {
2613 struct vm_area_struct *vma = vmf->vma;
2614
2615 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2616 vm_fault_t ret;
2617
2618 pte_unmap_unlock(vmf->pte, vmf->ptl);
2619 vmf->flags |= FAULT_FLAG_MKWRITE;
2620 ret = vma->vm_ops->pfn_mkwrite(vmf);
2621 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2622 return ret;
2623 return finish_mkwrite_fault(vmf);
2624 }
2625 wp_page_reuse(vmf);
2626 return VM_FAULT_WRITE;
2627 }
2628
2629 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2630 __releases(vmf->ptl)
2631 {
2632 struct vm_area_struct *vma = vmf->vma;
2633 vm_fault_t ret = VM_FAULT_WRITE;
2634
2635 get_page(vmf->page);
2636
2637 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2638 vm_fault_t tmp;
2639
2640 pte_unmap_unlock(vmf->pte, vmf->ptl);
2641 tmp = do_page_mkwrite(vmf);
2642 if (unlikely(!tmp || (tmp &
2643 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2644 put_page(vmf->page);
2645 return tmp;
2646 }
2647 tmp = finish_mkwrite_fault(vmf);
2648 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2649 unlock_page(vmf->page);
2650 put_page(vmf->page);
2651 return tmp;
2652 }
2653 } else {
2654 wp_page_reuse(vmf);
2655 lock_page(vmf->page);
2656 }
2657 ret |= fault_dirty_shared_page(vmf);
2658 put_page(vmf->page);
2659
2660 return ret;
2661 }
2662
2663 /*
2664 * This routine handles present pages, when users try to write
2665 * to a shared page. It is done by copying the page to a new address
2666 * and decrementing the shared-page counter for the old page.
2667 *
2668 * Note that this routine assumes that the protection checks have been
2669 * done by the caller (the low-level page fault routine in most cases).
2670 * Thus we can safely just mark it writable once we've done any necessary
2671 * COW.
2672 *
2673 * We also mark the page dirty at this point even though the page will
2674 * change only once the write actually happens. This avoids a few races,
2675 * and potentially makes it more efficient.
2676 *
2677 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2678 * but allow concurrent faults), with pte both mapped and locked.
2679 * We return with mmap_sem still held, but pte unmapped and unlocked.
2680 */
2681 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2682 __releases(vmf->ptl)
2683 {
2684 struct vm_area_struct *vma = vmf->vma;
2685
2686 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2687 if (!vmf->page) {
2688 /*
2689 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2690 * VM_PFNMAP VMA.
2691 *
2692 * We should not cow pages in a shared writeable mapping.
2693 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2694 */
2695 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2696 (VM_WRITE|VM_SHARED))
2697 return wp_pfn_shared(vmf);
2698
2699 pte_unmap_unlock(vmf->pte, vmf->ptl);
2700 return wp_page_copy(vmf);
2701 }
2702
2703 /*
2704 * Take out anonymous pages first, anonymous shared vmas are
2705 * not dirty accountable.
2706 */
2707 if (PageAnon(vmf->page)) {
2708 int total_map_swapcount;
2709 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2710 page_count(vmf->page) != 1))
2711 goto copy;
2712 if (!trylock_page(vmf->page)) {
2713 get_page(vmf->page);
2714 pte_unmap_unlock(vmf->pte, vmf->ptl);
2715 lock_page(vmf->page);
2716 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2717 vmf->address, &vmf->ptl);
2718 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2719 unlock_page(vmf->page);
2720 pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 put_page(vmf->page);
2722 return 0;
2723 }
2724 put_page(vmf->page);
2725 }
2726 if (PageKsm(vmf->page)) {
2727 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2728 vmf->address);
2729 unlock_page(vmf->page);
2730 if (!reused)
2731 goto copy;
2732 wp_page_reuse(vmf);
2733 return VM_FAULT_WRITE;
2734 }
2735 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2736 if (total_map_swapcount == 1) {
2737 /*
2738 * The page is all ours. Move it to
2739 * our anon_vma so the rmap code will
2740 * not search our parent or siblings.
2741 * Protected against the rmap code by
2742 * the page lock.
2743 */
2744 page_move_anon_rmap(vmf->page, vma);
2745 }
2746 unlock_page(vmf->page);
2747 wp_page_reuse(vmf);
2748 return VM_FAULT_WRITE;
2749 }
2750 unlock_page(vmf->page);
2751 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2752 (VM_WRITE|VM_SHARED))) {
2753 return wp_page_shared(vmf);
2754 }
2755 copy:
2756 /*
2757 * Ok, we need to copy. Oh, well..
2758 */
2759 get_page(vmf->page);
2760
2761 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 return wp_page_copy(vmf);
2763 }
2764
2765 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2766 unsigned long start_addr, unsigned long end_addr,
2767 struct zap_details *details)
2768 {
2769 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2770 }
2771
2772 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2773 struct zap_details *details)
2774 {
2775 struct vm_area_struct *vma;
2776 pgoff_t vba, vea, zba, zea;
2777
2778 vma_interval_tree_foreach(vma, root,
2779 details->first_index, details->last_index) {
2780
2781 vba = vma->vm_pgoff;
2782 vea = vba + vma_pages(vma) - 1;
2783 zba = details->first_index;
2784 if (zba < vba)
2785 zba = vba;
2786 zea = details->last_index;
2787 if (zea > vea)
2788 zea = vea;
2789
2790 unmap_mapping_range_vma(vma,
2791 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2792 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2793 details);
2794 }
2795 }
2796
2797 /**
2798 * unmap_mapping_page() - Unmap single page from processes.
2799 * @page: The locked page to be unmapped.
2800 *
2801 * Unmap this page from any userspace process which still has it mmaped.
2802 * Typically, for efficiency, the range of nearby pages has already been
2803 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
2804 * truncation or invalidation holds the lock on a page, it may find that
2805 * the page has been remapped again: and then uses unmap_mapping_page()
2806 * to unmap it finally.
2807 */
2808 void unmap_mapping_page(struct page *page)
2809 {
2810 struct address_space *mapping = page->mapping;
2811 struct zap_details details = { };
2812
2813 VM_BUG_ON(!PageLocked(page));
2814 VM_BUG_ON(PageTail(page));
2815
2816 details.check_mapping = mapping;
2817 details.first_index = page->index;
2818 details.last_index = page->index + hpage_nr_pages(page) - 1;
2819 details.single_page = page;
2820
2821 i_mmap_lock_write(mapping);
2822 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2823 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2824 i_mmap_unlock_write(mapping);
2825 }
2826
2827 /**
2828 * unmap_mapping_pages() - Unmap pages from processes.
2829 * @mapping: The address space containing pages to be unmapped.
2830 * @start: Index of first page to be unmapped.
2831 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2832 * @even_cows: Whether to unmap even private COWed pages.
2833 *
2834 * Unmap the pages in this address space from any userspace process which
2835 * has them mmaped. Generally, you want to remove COWed pages as well when
2836 * a file is being truncated, but not when invalidating pages from the page
2837 * cache.
2838 */
2839 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2840 pgoff_t nr, bool even_cows)
2841 {
2842 struct zap_details details = { };
2843
2844 details.check_mapping = even_cows ? NULL : mapping;
2845 details.first_index = start;
2846 details.last_index = start + nr - 1;
2847 if (details.last_index < details.first_index)
2848 details.last_index = ULONG_MAX;
2849
2850 i_mmap_lock_write(mapping);
2851 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2852 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2853 i_mmap_unlock_write(mapping);
2854 }
2855
2856 /**
2857 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2858 * address_space corresponding to the specified byte range in the underlying
2859 * file.
2860 *
2861 * @mapping: the address space containing mmaps to be unmapped.
2862 * @holebegin: byte in first page to unmap, relative to the start of
2863 * the underlying file. This will be rounded down to a PAGE_SIZE
2864 * boundary. Note that this is different from truncate_pagecache(), which
2865 * must keep the partial page. In contrast, we must get rid of
2866 * partial pages.
2867 * @holelen: size of prospective hole in bytes. This will be rounded
2868 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2869 * end of the file.
2870 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2871 * but 0 when invalidating pagecache, don't throw away private data.
2872 */
2873 void unmap_mapping_range(struct address_space *mapping,
2874 loff_t const holebegin, loff_t const holelen, int even_cows)
2875 {
2876 pgoff_t hba = holebegin >> PAGE_SHIFT;
2877 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2878
2879 /* Check for overflow. */
2880 if (sizeof(holelen) > sizeof(hlen)) {
2881 long long holeend =
2882 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2883 if (holeend & ~(long long)ULONG_MAX)
2884 hlen = ULONG_MAX - hba + 1;
2885 }
2886
2887 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2888 }
2889 EXPORT_SYMBOL(unmap_mapping_range);
2890
2891 /*
2892 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2893 * but allow concurrent faults), and pte mapped but not yet locked.
2894 * We return with pte unmapped and unlocked.
2895 *
2896 * We return with the mmap_sem locked or unlocked in the same cases
2897 * as does filemap_fault().
2898 */
2899 vm_fault_t do_swap_page(struct vm_fault *vmf)
2900 {
2901 struct vm_area_struct *vma = vmf->vma;
2902 struct page *page = NULL, *swapcache;
2903 struct mem_cgroup *memcg;
2904 swp_entry_t entry;
2905 pte_t pte;
2906 int locked;
2907 int exclusive = 0;
2908 vm_fault_t ret = 0;
2909
2910 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2911 goto out;
2912
2913 entry = pte_to_swp_entry(vmf->orig_pte);
2914 if (unlikely(non_swap_entry(entry))) {
2915 if (is_migration_entry(entry)) {
2916 migration_entry_wait(vma->vm_mm, vmf->pmd,
2917 vmf->address);
2918 } else if (is_device_private_entry(entry)) {
2919 vmf->page = device_private_entry_to_page(entry);
2920 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2921 } else if (is_hwpoison_entry(entry)) {
2922 ret = VM_FAULT_HWPOISON;
2923 } else {
2924 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2925 ret = VM_FAULT_SIGBUS;
2926 }
2927 goto out;
2928 }
2929
2930
2931 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2932 page = lookup_swap_cache(entry, vma, vmf->address);
2933 swapcache = page;
2934
2935 if (!page) {
2936 struct swap_info_struct *si = swp_swap_info(entry);
2937
2938 if (si->flags & SWP_SYNCHRONOUS_IO &&
2939 __swap_count(entry) == 1) {
2940 /* skip swapcache */
2941 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2942 vmf->address);
2943 if (page) {
2944 __SetPageLocked(page);
2945 __SetPageSwapBacked(page);
2946 set_page_private(page, entry.val);
2947 lru_cache_add_anon(page);
2948 swap_readpage(page, true);
2949 }
2950 } else {
2951 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2952 vmf);
2953 swapcache = page;
2954 }
2955
2956 if (!page) {
2957 /*
2958 * Back out if somebody else faulted in this pte
2959 * while we released the pte lock.
2960 */
2961 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2962 vmf->address, &vmf->ptl);
2963 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2964 ret = VM_FAULT_OOM;
2965 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2966 goto unlock;
2967 }
2968
2969 /* Had to read the page from swap area: Major fault */
2970 ret = VM_FAULT_MAJOR;
2971 count_vm_event(PGMAJFAULT);
2972 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2973 } else if (PageHWPoison(page)) {
2974 /*
2975 * hwpoisoned dirty swapcache pages are kept for killing
2976 * owner processes (which may be unknown at hwpoison time)
2977 */
2978 ret = VM_FAULT_HWPOISON;
2979 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2980 goto out_release;
2981 }
2982
2983 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2984
2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986 if (!locked) {
2987 ret |= VM_FAULT_RETRY;
2988 goto out_release;
2989 }
2990
2991 /*
2992 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2993 * release the swapcache from under us. The page pin, and pte_same
2994 * test below, are not enough to exclude that. Even if it is still
2995 * swapcache, we need to check that the page's swap has not changed.
2996 */
2997 if (unlikely((!PageSwapCache(page) ||
2998 page_private(page) != entry.val)) && swapcache)
2999 goto out_page;
3000
3001 page = ksm_might_need_to_copy(page, vma, vmf->address);
3002 if (unlikely(!page)) {
3003 ret = VM_FAULT_OOM;
3004 page = swapcache;
3005 goto out_page;
3006 }
3007
3008 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3009 &memcg, false)) {
3010 ret = VM_FAULT_OOM;
3011 goto out_page;
3012 }
3013
3014 /*
3015 * Back out if somebody else already faulted in this pte.
3016 */
3017 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3018 &vmf->ptl);
3019 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3020 goto out_nomap;
3021
3022 if (unlikely(!PageUptodate(page))) {
3023 ret = VM_FAULT_SIGBUS;
3024 goto out_nomap;
3025 }
3026
3027 /*
3028 * The page isn't present yet, go ahead with the fault.
3029 *
3030 * Be careful about the sequence of operations here.
3031 * To get its accounting right, reuse_swap_page() must be called
3032 * while the page is counted on swap but not yet in mapcount i.e.
3033 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3034 * must be called after the swap_free(), or it will never succeed.
3035 */
3036
3037 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3038 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3039 pte = mk_pte(page, vma->vm_page_prot);
3040 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3041 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3042 vmf->flags &= ~FAULT_FLAG_WRITE;
3043 ret |= VM_FAULT_WRITE;
3044 exclusive = RMAP_EXCLUSIVE;
3045 }
3046 flush_icache_page(vma, page);
3047 if (pte_swp_soft_dirty(vmf->orig_pte))
3048 pte = pte_mksoft_dirty(pte);
3049 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3050 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3051 vmf->orig_pte = pte;
3052
3053 /* ksm created a completely new copy */
3054 if (unlikely(page != swapcache && swapcache)) {
3055 page_add_new_anon_rmap(page, vma, vmf->address, false);
3056 mem_cgroup_commit_charge(page, memcg, false, false);
3057 lru_cache_add_active_or_unevictable(page, vma);
3058 } else {
3059 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3060 mem_cgroup_commit_charge(page, memcg, true, false);
3061 activate_page(page);
3062 }
3063
3064 swap_free(entry);
3065 if (mem_cgroup_swap_full(page) ||
3066 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3067 try_to_free_swap(page);
3068 unlock_page(page);
3069 if (page != swapcache && swapcache) {
3070 /*
3071 * Hold the lock to avoid the swap entry to be reused
3072 * until we take the PT lock for the pte_same() check
3073 * (to avoid false positives from pte_same). For
3074 * further safety release the lock after the swap_free
3075 * so that the swap count won't change under a
3076 * parallel locked swapcache.
3077 */
3078 unlock_page(swapcache);
3079 put_page(swapcache);
3080 }
3081
3082 if (vmf->flags & FAULT_FLAG_WRITE) {
3083 ret |= do_wp_page(vmf);
3084 if (ret & VM_FAULT_ERROR)
3085 ret &= VM_FAULT_ERROR;
3086 goto out;
3087 }
3088
3089 /* No need to invalidate - it was non-present before */
3090 update_mmu_cache(vma, vmf->address, vmf->pte);
3091 unlock:
3092 pte_unmap_unlock(vmf->pte, vmf->ptl);
3093 out:
3094 return ret;
3095 out_nomap:
3096 mem_cgroup_cancel_charge(page, memcg, false);
3097 pte_unmap_unlock(vmf->pte, vmf->ptl);
3098 out_page:
3099 unlock_page(page);
3100 out_release:
3101 put_page(page);
3102 if (page != swapcache && swapcache) {
3103 unlock_page(swapcache);
3104 put_page(swapcache);
3105 }
3106 return ret;
3107 }
3108
3109 /*
3110 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3111 * but allow concurrent faults), and pte mapped but not yet locked.
3112 * We return with mmap_sem still held, but pte unmapped and unlocked.
3113 */
3114 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3115 {
3116 struct vm_area_struct *vma = vmf->vma;
3117 struct mem_cgroup *memcg;
3118 struct page *page;
3119 vm_fault_t ret = 0;
3120 pte_t entry;
3121
3122 /* File mapping without ->vm_ops ? */
3123 if (vma->vm_flags & VM_SHARED)
3124 return VM_FAULT_SIGBUS;
3125
3126 /*
3127 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3128 * pte_offset_map() on pmds where a huge pmd might be created
3129 * from a different thread.
3130 *
3131 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3132 * parallel threads are excluded by other means.
3133 *
3134 * Here we only have down_read(mmap_sem).
3135 */
3136 if (pte_alloc(vma->vm_mm, vmf->pmd))
3137 return VM_FAULT_OOM;
3138
3139 /* See the comment in pte_alloc_one_map() */
3140 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3141 return 0;
3142
3143 /* Use the zero-page for reads */
3144 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3145 !mm_forbids_zeropage(vma->vm_mm)) {
3146 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3147 vma->vm_page_prot));
3148 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3149 vmf->address, &vmf->ptl);
3150 if (!pte_none(*vmf->pte))
3151 goto unlock;
3152 ret = check_stable_address_space(vma->vm_mm);
3153 if (ret)
3154 goto unlock;
3155 /* Deliver the page fault to userland, check inside PT lock */
3156 if (userfaultfd_missing(vma)) {
3157 pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 return handle_userfault(vmf, VM_UFFD_MISSING);
3159 }
3160 goto setpte;
3161 }
3162
3163 /* Allocate our own private page. */
3164 if (unlikely(anon_vma_prepare(vma)))
3165 goto oom;
3166 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3167 if (!page)
3168 goto oom;
3169
3170 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3171 false))
3172 goto oom_free_page;
3173
3174 /*
3175 * The memory barrier inside __SetPageUptodate makes sure that
3176 * preceeding stores to the page contents become visible before
3177 * the set_pte_at() write.
3178 */
3179 __SetPageUptodate(page);
3180
3181 entry = mk_pte(page, vma->vm_page_prot);
3182 if (vma->vm_flags & VM_WRITE)
3183 entry = pte_mkwrite(pte_mkdirty(entry));
3184
3185 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3186 &vmf->ptl);
3187 if (!pte_none(*vmf->pte))
3188 goto release;
3189
3190 ret = check_stable_address_space(vma->vm_mm);
3191 if (ret)
3192 goto release;
3193
3194 /* Deliver the page fault to userland, check inside PT lock */
3195 if (userfaultfd_missing(vma)) {
3196 pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 mem_cgroup_cancel_charge(page, memcg, false);
3198 put_page(page);
3199 return handle_userfault(vmf, VM_UFFD_MISSING);
3200 }
3201
3202 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3203 page_add_new_anon_rmap(page, vma, vmf->address, false);
3204 mem_cgroup_commit_charge(page, memcg, false, false);
3205 lru_cache_add_active_or_unevictable(page, vma);
3206 setpte:
3207 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3208
3209 /* No need to invalidate - it was non-present before */
3210 update_mmu_cache(vma, vmf->address, vmf->pte);
3211 unlock:
3212 pte_unmap_unlock(vmf->pte, vmf->ptl);
3213 return ret;
3214 release:
3215 mem_cgroup_cancel_charge(page, memcg, false);
3216 put_page(page);
3217 goto unlock;
3218 oom_free_page:
3219 put_page(page);
3220 oom:
3221 return VM_FAULT_OOM;
3222 }
3223
3224 /*
3225 * The mmap_sem must have been held on entry, and may have been
3226 * released depending on flags and vma->vm_ops->fault() return value.
3227 * See filemap_fault() and __lock_page_retry().
3228 */
3229 static vm_fault_t __do_fault(struct vm_fault *vmf)
3230 {
3231 struct vm_area_struct *vma = vmf->vma;
3232 vm_fault_t ret;
3233
3234 /*
3235 * Preallocate pte before we take page_lock because this might lead to
3236 * deadlocks for memcg reclaim which waits for pages under writeback:
3237 * lock_page(A)
3238 * SetPageWriteback(A)
3239 * unlock_page(A)
3240 * lock_page(B)
3241 * lock_page(B)
3242 * pte_alloc_pne
3243 * shrink_page_list
3244 * wait_on_page_writeback(A)
3245 * SetPageWriteback(B)
3246 * unlock_page(B)
3247 * # flush A, B to clear the writeback
3248 */
3249 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3250 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3251 if (!vmf->prealloc_pte)
3252 return VM_FAULT_OOM;
3253 smp_wmb(); /* See comment in __pte_alloc() */
3254 }
3255
3256 ret = vma->vm_ops->fault(vmf);
3257 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3258 VM_FAULT_DONE_COW)))
3259 return ret;
3260
3261 if (unlikely(PageHWPoison(vmf->page))) {
3262 struct page *page = vmf->page;
3263 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3264 if (ret & VM_FAULT_LOCKED) {
3265 if (page_mapped(page))
3266 unmap_mapping_pages(page_mapping(page),
3267 page->index, 1, false);
3268 /* Retry if a clean page was removed from the cache. */
3269 if (invalidate_inode_page(page))
3270 poisonret = VM_FAULT_NOPAGE;
3271 unlock_page(page);
3272 }
3273 put_page(page);
3274 vmf->page = NULL;
3275 return poisonret;
3276 }
3277
3278 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3279 lock_page(vmf->page);
3280 else
3281 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3282
3283 return ret;
3284 }
3285
3286 /*
3287 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3288 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3289 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3290 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3291 */
3292 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3293 {
3294 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3295 }
3296
3297 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3298 {
3299 struct vm_area_struct *vma = vmf->vma;
3300
3301 if (!pmd_none(*vmf->pmd))
3302 goto map_pte;
3303 if (vmf->prealloc_pte) {
3304 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3305 if (unlikely(!pmd_none(*vmf->pmd))) {
3306 spin_unlock(vmf->ptl);
3307 goto map_pte;
3308 }
3309
3310 mm_inc_nr_ptes(vma->vm_mm);
3311 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3312 spin_unlock(vmf->ptl);
3313 vmf->prealloc_pte = NULL;
3314 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3315 return VM_FAULT_OOM;
3316 }
3317 map_pte:
3318 /*
3319 * If a huge pmd materialized under us just retry later. Use
3320 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3321 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3322 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3323 * running immediately after a huge pmd fault in a different thread of
3324 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3325 * All we have to ensure is that it is a regular pmd that we can walk
3326 * with pte_offset_map() and we can do that through an atomic read in
3327 * C, which is what pmd_trans_unstable() provides.
3328 */
3329 if (pmd_devmap_trans_unstable(vmf->pmd))
3330 return VM_FAULT_NOPAGE;
3331
3332 /*
3333 * At this point we know that our vmf->pmd points to a page of ptes
3334 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3335 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3336 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3337 * be valid and we will re-check to make sure the vmf->pte isn't
3338 * pte_none() under vmf->ptl protection when we return to
3339 * alloc_set_pte().
3340 */
3341 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3342 &vmf->ptl);
3343 return 0;
3344 }
3345
3346 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3347 static void deposit_prealloc_pte(struct vm_fault *vmf)
3348 {
3349 struct vm_area_struct *vma = vmf->vma;
3350
3351 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3352 /*
3353 * We are going to consume the prealloc table,
3354 * count that as nr_ptes.
3355 */
3356 mm_inc_nr_ptes(vma->vm_mm);
3357 vmf->prealloc_pte = NULL;
3358 }
3359
3360 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3361 {
3362 struct vm_area_struct *vma = vmf->vma;
3363 bool write = vmf->flags & FAULT_FLAG_WRITE;
3364 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3365 pmd_t entry;
3366 int i;
3367 vm_fault_t ret;
3368
3369 if (!transhuge_vma_suitable(vma, haddr))
3370 return VM_FAULT_FALLBACK;
3371
3372 ret = VM_FAULT_FALLBACK;
3373 page = compound_head(page);
3374
3375 /*
3376 * Archs like ppc64 need additonal space to store information
3377 * related to pte entry. Use the preallocated table for that.
3378 */
3379 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3380 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3381 if (!vmf->prealloc_pte)
3382 return VM_FAULT_OOM;
3383 smp_wmb(); /* See comment in __pte_alloc() */
3384 }
3385
3386 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3387 if (unlikely(!pmd_none(*vmf->pmd)))
3388 goto out;
3389
3390 for (i = 0; i < HPAGE_PMD_NR; i++)
3391 flush_icache_page(vma, page + i);
3392
3393 entry = mk_huge_pmd(page, vma->vm_page_prot);
3394 if (write)
3395 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3396
3397 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3398 page_add_file_rmap(page, true);
3399 /*
3400 * deposit and withdraw with pmd lock held
3401 */
3402 if (arch_needs_pgtable_deposit())
3403 deposit_prealloc_pte(vmf);
3404
3405 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3406
3407 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3408
3409 /* fault is handled */
3410 ret = 0;
3411 count_vm_event(THP_FILE_MAPPED);
3412 out:
3413 spin_unlock(vmf->ptl);
3414 return ret;
3415 }
3416 #else
3417 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3418 {
3419 BUILD_BUG();
3420 return 0;
3421 }
3422 #endif
3423
3424 /**
3425 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3426 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3427 *
3428 * @vmf: fault environment
3429 * @memcg: memcg to charge page (only for private mappings)
3430 * @page: page to map
3431 *
3432 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3433 * return.
3434 *
3435 * Target users are page handler itself and implementations of
3436 * vm_ops->map_pages.
3437 *
3438 * Return: %0 on success, %VM_FAULT_ code in case of error.
3439 */
3440 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3441 struct page *page)
3442 {
3443 struct vm_area_struct *vma = vmf->vma;
3444 bool write = vmf->flags & FAULT_FLAG_WRITE;
3445 pte_t entry;
3446 vm_fault_t ret;
3447
3448 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3449 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3450 /* THP on COW? */
3451 VM_BUG_ON_PAGE(memcg, page);
3452
3453 ret = do_set_pmd(vmf, page);
3454 if (ret != VM_FAULT_FALLBACK)
3455 return ret;
3456 }
3457
3458 if (!vmf->pte) {
3459 ret = pte_alloc_one_map(vmf);
3460 if (ret)
3461 return ret;
3462 }
3463
3464 /* Re-check under ptl */
3465 if (unlikely(!pte_none(*vmf->pte)))
3466 return VM_FAULT_NOPAGE;
3467
3468 flush_icache_page(vma, page);
3469 entry = mk_pte(page, vma->vm_page_prot);
3470 if (write)
3471 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3472 /* copy-on-write page */
3473 if (write && !(vma->vm_flags & VM_SHARED)) {
3474 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3475 page_add_new_anon_rmap(page, vma, vmf->address, false);
3476 mem_cgroup_commit_charge(page, memcg, false, false);
3477 lru_cache_add_active_or_unevictable(page, vma);
3478 } else {
3479 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3480 page_add_file_rmap(page, false);
3481 }
3482 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3483
3484 /* no need to invalidate: a not-present page won't be cached */
3485 update_mmu_cache(vma, vmf->address, vmf->pte);
3486
3487 return 0;
3488 }
3489
3490
3491 /**
3492 * finish_fault - finish page fault once we have prepared the page to fault
3493 *
3494 * @vmf: structure describing the fault
3495 *
3496 * This function handles all that is needed to finish a page fault once the
3497 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3498 * given page, adds reverse page mapping, handles memcg charges and LRU
3499 * addition.
3500 *
3501 * The function expects the page to be locked and on success it consumes a
3502 * reference of a page being mapped (for the PTE which maps it).
3503 *
3504 * Return: %0 on success, %VM_FAULT_ code in case of error.
3505 */
3506 vm_fault_t finish_fault(struct vm_fault *vmf)
3507 {
3508 struct page *page;
3509 vm_fault_t ret = 0;
3510
3511 /* Did we COW the page? */
3512 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3513 !(vmf->vma->vm_flags & VM_SHARED))
3514 page = vmf->cow_page;
3515 else
3516 page = vmf->page;
3517
3518 /*
3519 * check even for read faults because we might have lost our CoWed
3520 * page
3521 */
3522 if (!(vmf->vma->vm_flags & VM_SHARED))
3523 ret = check_stable_address_space(vmf->vma->vm_mm);
3524 if (!ret)
3525 ret = alloc_set_pte(vmf, vmf->memcg, page);
3526 if (vmf->pte)
3527 pte_unmap_unlock(vmf->pte, vmf->ptl);
3528 return ret;
3529 }
3530
3531 static unsigned long fault_around_bytes __read_mostly =
3532 rounddown_pow_of_two(65536);
3533
3534 #ifdef CONFIG_DEBUG_FS
3535 static int fault_around_bytes_get(void *data, u64 *val)
3536 {
3537 *val = fault_around_bytes;
3538 return 0;
3539 }
3540
3541 /*
3542 * fault_around_bytes must be rounded down to the nearest page order as it's
3543 * what do_fault_around() expects to see.
3544 */
3545 static int fault_around_bytes_set(void *data, u64 val)
3546 {
3547 if (val / PAGE_SIZE > PTRS_PER_PTE)
3548 return -EINVAL;
3549 if (val > PAGE_SIZE)
3550 fault_around_bytes = rounddown_pow_of_two(val);
3551 else
3552 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3553 return 0;
3554 }
3555 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3556 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3557
3558 static int __init fault_around_debugfs(void)
3559 {
3560 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3561 &fault_around_bytes_fops);
3562 return 0;
3563 }
3564 late_initcall(fault_around_debugfs);
3565 #endif
3566
3567 /*
3568 * do_fault_around() tries to map few pages around the fault address. The hope
3569 * is that the pages will be needed soon and this will lower the number of
3570 * faults to handle.
3571 *
3572 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3573 * not ready to be mapped: not up-to-date, locked, etc.
3574 *
3575 * This function is called with the page table lock taken. In the split ptlock
3576 * case the page table lock only protects only those entries which belong to
3577 * the page table corresponding to the fault address.
3578 *
3579 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3580 * only once.
3581 *
3582 * fault_around_bytes defines how many bytes we'll try to map.
3583 * do_fault_around() expects it to be set to a power of two less than or equal
3584 * to PTRS_PER_PTE.
3585 *
3586 * The virtual address of the area that we map is naturally aligned to
3587 * fault_around_bytes rounded down to the machine page size
3588 * (and therefore to page order). This way it's easier to guarantee
3589 * that we don't cross page table boundaries.
3590 */
3591 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3592 {
3593 unsigned long address = vmf->address, nr_pages, mask;
3594 pgoff_t start_pgoff = vmf->pgoff;
3595 pgoff_t end_pgoff;
3596 int off;
3597 vm_fault_t ret = 0;
3598
3599 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3600 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3601
3602 vmf->address = max(address & mask, vmf->vma->vm_start);
3603 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3604 start_pgoff -= off;
3605
3606 /*
3607 * end_pgoff is either the end of the page table, the end of
3608 * the vma or nr_pages from start_pgoff, depending what is nearest.
3609 */
3610 end_pgoff = start_pgoff -
3611 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3612 PTRS_PER_PTE - 1;
3613 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3614 start_pgoff + nr_pages - 1);
3615
3616 if (pmd_none(*vmf->pmd)) {
3617 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3618 if (!vmf->prealloc_pte)
3619 goto out;
3620 smp_wmb(); /* See comment in __pte_alloc() */
3621 }
3622
3623 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3624
3625 /* Huge page is mapped? Page fault is solved */
3626 if (pmd_trans_huge(*vmf->pmd)) {
3627 ret = VM_FAULT_NOPAGE;
3628 goto out;
3629 }
3630
3631 /* ->map_pages() haven't done anything useful. Cold page cache? */
3632 if (!vmf->pte)
3633 goto out;
3634
3635 /* check if the page fault is solved */
3636 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3637 if (!pte_none(*vmf->pte))
3638 ret = VM_FAULT_NOPAGE;
3639 pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 out:
3641 vmf->address = address;
3642 vmf->pte = NULL;
3643 return ret;
3644 }
3645
3646 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3647 {
3648 struct vm_area_struct *vma = vmf->vma;
3649 vm_fault_t ret = 0;
3650
3651 /*
3652 * Let's call ->map_pages() first and use ->fault() as fallback
3653 * if page by the offset is not ready to be mapped (cold cache or
3654 * something).
3655 */
3656 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3657 ret = do_fault_around(vmf);
3658 if (ret)
3659 return ret;
3660 }
3661
3662 ret = __do_fault(vmf);
3663 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664 return ret;
3665
3666 ret |= finish_fault(vmf);
3667 unlock_page(vmf->page);
3668 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3669 put_page(vmf->page);
3670 return ret;
3671 }
3672
3673 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3674 {
3675 struct vm_area_struct *vma = vmf->vma;
3676 vm_fault_t ret;
3677
3678 if (unlikely(anon_vma_prepare(vma)))
3679 return VM_FAULT_OOM;
3680
3681 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3682 if (!vmf->cow_page)
3683 return VM_FAULT_OOM;
3684
3685 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3686 &vmf->memcg, false)) {
3687 put_page(vmf->cow_page);
3688 return VM_FAULT_OOM;
3689 }
3690
3691 ret = __do_fault(vmf);
3692 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3693 goto uncharge_out;
3694 if (ret & VM_FAULT_DONE_COW)
3695 return ret;
3696
3697 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3698 __SetPageUptodate(vmf->cow_page);
3699
3700 ret |= finish_fault(vmf);
3701 unlock_page(vmf->page);
3702 put_page(vmf->page);
3703 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3704 goto uncharge_out;
3705 return ret;
3706 uncharge_out:
3707 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3708 put_page(vmf->cow_page);
3709 return ret;
3710 }
3711
3712 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3713 {
3714 struct vm_area_struct *vma = vmf->vma;
3715 vm_fault_t ret, tmp;
3716
3717 ret = __do_fault(vmf);
3718 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3719 return ret;
3720
3721 /*
3722 * Check if the backing address space wants to know that the page is
3723 * about to become writable
3724 */
3725 if (vma->vm_ops->page_mkwrite) {
3726 unlock_page(vmf->page);
3727 tmp = do_page_mkwrite(vmf);
3728 if (unlikely(!tmp ||
3729 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3730 put_page(vmf->page);
3731 return tmp;
3732 }
3733 }
3734
3735 ret |= finish_fault(vmf);
3736 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3737 VM_FAULT_RETRY))) {
3738 unlock_page(vmf->page);
3739 put_page(vmf->page);
3740 return ret;
3741 }
3742
3743 ret |= fault_dirty_shared_page(vmf);
3744 return ret;
3745 }
3746
3747 /*
3748 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3749 * but allow concurrent faults).
3750 * The mmap_sem may have been released depending on flags and our
3751 * return value. See filemap_fault() and __lock_page_or_retry().
3752 * If mmap_sem is released, vma may become invalid (for example
3753 * by other thread calling munmap()).
3754 */
3755 static vm_fault_t do_fault(struct vm_fault *vmf)
3756 {
3757 struct vm_area_struct *vma = vmf->vma;
3758 struct mm_struct *vm_mm = vma->vm_mm;
3759 vm_fault_t ret;
3760
3761 /*
3762 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3763 */
3764 if (!vma->vm_ops->fault) {
3765 /*
3766 * If we find a migration pmd entry or a none pmd entry, which
3767 * should never happen, return SIGBUS
3768 */
3769 if (unlikely(!pmd_present(*vmf->pmd)))
3770 ret = VM_FAULT_SIGBUS;
3771 else {
3772 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3773 vmf->pmd,
3774 vmf->address,
3775 &vmf->ptl);
3776 /*
3777 * Make sure this is not a temporary clearing of pte
3778 * by holding ptl and checking again. A R/M/W update
3779 * of pte involves: take ptl, clearing the pte so that
3780 * we don't have concurrent modification by hardware
3781 * followed by an update.
3782 */
3783 if (unlikely(pte_none(*vmf->pte)))
3784 ret = VM_FAULT_SIGBUS;
3785 else
3786 ret = VM_FAULT_NOPAGE;
3787
3788 pte_unmap_unlock(vmf->pte, vmf->ptl);
3789 }
3790 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3791 ret = do_read_fault(vmf);
3792 else if (!(vma->vm_flags & VM_SHARED))
3793 ret = do_cow_fault(vmf);
3794 else
3795 ret = do_shared_fault(vmf);
3796
3797 /* preallocated pagetable is unused: free it */
3798 if (vmf->prealloc_pte) {
3799 pte_free(vm_mm, vmf->prealloc_pte);
3800 vmf->prealloc_pte = NULL;
3801 }
3802 return ret;
3803 }
3804
3805 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3806 unsigned long addr, int page_nid,
3807 int *flags)
3808 {
3809 get_page(page);
3810
3811 count_vm_numa_event(NUMA_HINT_FAULTS);
3812 if (page_nid == numa_node_id()) {
3813 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3814 *flags |= TNF_FAULT_LOCAL;
3815 }
3816
3817 return mpol_misplaced(page, vma, addr);
3818 }
3819
3820 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3821 {
3822 struct vm_area_struct *vma = vmf->vma;
3823 struct page *page = NULL;
3824 int page_nid = NUMA_NO_NODE;
3825 int last_cpupid;
3826 int target_nid;
3827 bool migrated = false;
3828 pte_t pte, old_pte;
3829 bool was_writable = pte_savedwrite(vmf->orig_pte);
3830 int flags = 0;
3831
3832 /*
3833 * The "pte" at this point cannot be used safely without
3834 * validation through pte_unmap_same(). It's of NUMA type but
3835 * the pfn may be screwed if the read is non atomic.
3836 */
3837 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3838 spin_lock(vmf->ptl);
3839 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3840 pte_unmap_unlock(vmf->pte, vmf->ptl);
3841 goto out;
3842 }
3843
3844 /*
3845 * Make it present again, Depending on how arch implementes non
3846 * accessible ptes, some can allow access by kernel mode.
3847 */
3848 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3849 pte = pte_modify(old_pte, vma->vm_page_prot);
3850 pte = pte_mkyoung(pte);
3851 if (was_writable)
3852 pte = pte_mkwrite(pte);
3853 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3854 update_mmu_cache(vma, vmf->address, vmf->pte);
3855
3856 page = vm_normal_page(vma, vmf->address, pte);
3857 if (!page) {
3858 pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 return 0;
3860 }
3861
3862 /* TODO: handle PTE-mapped THP */
3863 if (PageCompound(page)) {
3864 pte_unmap_unlock(vmf->pte, vmf->ptl);
3865 return 0;
3866 }
3867
3868 /*
3869 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3870 * much anyway since they can be in shared cache state. This misses
3871 * the case where a mapping is writable but the process never writes
3872 * to it but pte_write gets cleared during protection updates and
3873 * pte_dirty has unpredictable behaviour between PTE scan updates,
3874 * background writeback, dirty balancing and application behaviour.
3875 */
3876 if (!pte_write(pte))
3877 flags |= TNF_NO_GROUP;
3878
3879 /*
3880 * Flag if the page is shared between multiple address spaces. This
3881 * is later used when determining whether to group tasks together
3882 */
3883 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3884 flags |= TNF_SHARED;
3885
3886 last_cpupid = page_cpupid_last(page);
3887 page_nid = page_to_nid(page);
3888 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3889 &flags);
3890 pte_unmap_unlock(vmf->pte, vmf->ptl);
3891 if (target_nid == NUMA_NO_NODE) {
3892 put_page(page);
3893 goto out;
3894 }
3895
3896 /* Migrate to the requested node */
3897 migrated = migrate_misplaced_page(page, vma, target_nid);
3898 if (migrated) {
3899 page_nid = target_nid;
3900 flags |= TNF_MIGRATED;
3901 } else
3902 flags |= TNF_MIGRATE_FAIL;
3903
3904 out:
3905 if (page_nid != NUMA_NO_NODE)
3906 task_numa_fault(last_cpupid, page_nid, 1, flags);
3907 return 0;
3908 }
3909
3910 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3911 {
3912 if (vma_is_anonymous(vmf->vma))
3913 return do_huge_pmd_anonymous_page(vmf);
3914 if (vmf->vma->vm_ops->huge_fault)
3915 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3916 return VM_FAULT_FALLBACK;
3917 }
3918
3919 /* `inline' is required to avoid gcc 4.1.2 build error */
3920 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3921 {
3922 if (vma_is_anonymous(vmf->vma))
3923 return do_huge_pmd_wp_page(vmf, orig_pmd);
3924 if (vmf->vma->vm_ops->huge_fault)
3925 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3926
3927 /* COW handled on pte level: split pmd */
3928 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3929 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3930
3931 return VM_FAULT_FALLBACK;
3932 }
3933
3934 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3935 {
3936 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3937 }
3938
3939 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3940 {
3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3942 /* No support for anonymous transparent PUD pages yet */
3943 if (vma_is_anonymous(vmf->vma))
3944 return VM_FAULT_FALLBACK;
3945 if (vmf->vma->vm_ops->huge_fault)
3946 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3948 return VM_FAULT_FALLBACK;
3949 }
3950
3951 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3952 {
3953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3954 /* No support for anonymous transparent PUD pages yet */
3955 if (vma_is_anonymous(vmf->vma))
3956 return VM_FAULT_FALLBACK;
3957 if (vmf->vma->vm_ops->huge_fault)
3958 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3959 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3960 return VM_FAULT_FALLBACK;
3961 }
3962
3963 /*
3964 * These routines also need to handle stuff like marking pages dirty
3965 * and/or accessed for architectures that don't do it in hardware (most
3966 * RISC architectures). The early dirtying is also good on the i386.
3967 *
3968 * There is also a hook called "update_mmu_cache()" that architectures
3969 * with external mmu caches can use to update those (ie the Sparc or
3970 * PowerPC hashed page tables that act as extended TLBs).
3971 *
3972 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3973 * concurrent faults).
3974 *
3975 * The mmap_sem may have been released depending on flags and our return value.
3976 * See filemap_fault() and __lock_page_or_retry().
3977 */
3978 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3979 {
3980 pte_t entry;
3981
3982 if (unlikely(pmd_none(*vmf->pmd))) {
3983 /*
3984 * Leave __pte_alloc() until later: because vm_ops->fault may
3985 * want to allocate huge page, and if we expose page table
3986 * for an instant, it will be difficult to retract from
3987 * concurrent faults and from rmap lookups.
3988 */
3989 vmf->pte = NULL;
3990 } else {
3991 /* See comment in pte_alloc_one_map() */
3992 if (pmd_devmap_trans_unstable(vmf->pmd))
3993 return 0;
3994 /*
3995 * A regular pmd is established and it can't morph into a huge
3996 * pmd from under us anymore at this point because we hold the
3997 * mmap_sem read mode and khugepaged takes it in write mode.
3998 * So now it's safe to run pte_offset_map().
3999 */
4000 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4001 vmf->orig_pte = *vmf->pte;
4002
4003 /*
4004 * some architectures can have larger ptes than wordsize,
4005 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4006 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4007 * accesses. The code below just needs a consistent view
4008 * for the ifs and we later double check anyway with the
4009 * ptl lock held. So here a barrier will do.
4010 */
4011 barrier();
4012 if (pte_none(vmf->orig_pte)) {
4013 pte_unmap(vmf->pte);
4014 vmf->pte = NULL;
4015 }
4016 }
4017
4018 if (!vmf->pte) {
4019 if (vma_is_anonymous(vmf->vma))
4020 return do_anonymous_page(vmf);
4021 else
4022 return do_fault(vmf);
4023 }
4024
4025 if (!pte_present(vmf->orig_pte))
4026 return do_swap_page(vmf);
4027
4028 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4029 return do_numa_page(vmf);
4030
4031 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4032 spin_lock(vmf->ptl);
4033 entry = vmf->orig_pte;
4034 if (unlikely(!pte_same(*vmf->pte, entry)))
4035 goto unlock;
4036 if (vmf->flags & FAULT_FLAG_WRITE) {
4037 if (!pte_write(entry))
4038 return do_wp_page(vmf);
4039 entry = pte_mkdirty(entry);
4040 }
4041 entry = pte_mkyoung(entry);
4042 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4043 vmf->flags & FAULT_FLAG_WRITE)) {
4044 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4045 } else {
4046 /*
4047 * This is needed only for protection faults but the arch code
4048 * is not yet telling us if this is a protection fault or not.
4049 * This still avoids useless tlb flushes for .text page faults
4050 * with threads.
4051 */
4052 if (vmf->flags & FAULT_FLAG_WRITE)
4053 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4054 }
4055 unlock:
4056 pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 return 0;
4058 }
4059
4060 /*
4061 * By the time we get here, we already hold the mm semaphore
4062 *
4063 * The mmap_sem may have been released depending on flags and our
4064 * return value. See filemap_fault() and __lock_page_or_retry().
4065 */
4066 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4067 unsigned long address, unsigned int flags)
4068 {
4069 struct vm_fault vmf = {
4070 .vma = vma,
4071 .address = address & PAGE_MASK,
4072 .flags = flags,
4073 .pgoff = linear_page_index(vma, address),
4074 .gfp_mask = __get_fault_gfp_mask(vma),
4075 };
4076 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4077 struct mm_struct *mm = vma->vm_mm;
4078 pgd_t *pgd;
4079 p4d_t *p4d;
4080 vm_fault_t ret;
4081
4082 pgd = pgd_offset(mm, address);
4083 p4d = p4d_alloc(mm, pgd, address);
4084 if (!p4d)
4085 return VM_FAULT_OOM;
4086
4087 vmf.pud = pud_alloc(mm, p4d, address);
4088 if (!vmf.pud)
4089 return VM_FAULT_OOM;
4090 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4091 ret = create_huge_pud(&vmf);
4092 if (!(ret & VM_FAULT_FALLBACK))
4093 return ret;
4094 } else {
4095 pud_t orig_pud = *vmf.pud;
4096
4097 barrier();
4098 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4099
4100 /* NUMA case for anonymous PUDs would go here */
4101
4102 if (dirty && !pud_write(orig_pud)) {
4103 ret = wp_huge_pud(&vmf, orig_pud);
4104 if (!(ret & VM_FAULT_FALLBACK))
4105 return ret;
4106 } else {
4107 huge_pud_set_accessed(&vmf, orig_pud);
4108 return 0;
4109 }
4110 }
4111 }
4112
4113 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4114 if (!vmf.pmd)
4115 return VM_FAULT_OOM;
4116 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4117 ret = create_huge_pmd(&vmf);
4118 if (!(ret & VM_FAULT_FALLBACK))
4119 return ret;
4120 } else {
4121 pmd_t orig_pmd = *vmf.pmd;
4122
4123 barrier();
4124 if (unlikely(is_swap_pmd(orig_pmd))) {
4125 VM_BUG_ON(thp_migration_supported() &&
4126 !is_pmd_migration_entry(orig_pmd));
4127 if (is_pmd_migration_entry(orig_pmd))
4128 pmd_migration_entry_wait(mm, vmf.pmd);
4129 return 0;
4130 }
4131 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4132 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4133 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4134
4135 if (dirty && !pmd_write(orig_pmd)) {
4136 ret = wp_huge_pmd(&vmf, orig_pmd);
4137 if (!(ret & VM_FAULT_FALLBACK))
4138 return ret;
4139 } else {
4140 huge_pmd_set_accessed(&vmf, orig_pmd);
4141 return 0;
4142 }
4143 }
4144 }
4145
4146 return handle_pte_fault(&vmf);
4147 }
4148
4149 /*
4150 * By the time we get here, we already hold the mm semaphore
4151 *
4152 * The mmap_sem may have been released depending on flags and our
4153 * return value. See filemap_fault() and __lock_page_or_retry().
4154 */
4155 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4156 unsigned int flags)
4157 {
4158 vm_fault_t ret;
4159
4160 __set_current_state(TASK_RUNNING);
4161
4162 count_vm_event(PGFAULT);
4163 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4164
4165 /* do counter updates before entering really critical section. */
4166 check_sync_rss_stat(current);
4167
4168 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4169 flags & FAULT_FLAG_INSTRUCTION,
4170 flags & FAULT_FLAG_REMOTE))
4171 return VM_FAULT_SIGSEGV;
4172
4173 /*
4174 * Enable the memcg OOM handling for faults triggered in user
4175 * space. Kernel faults are handled more gracefully.
4176 */
4177 if (flags & FAULT_FLAG_USER)
4178 mem_cgroup_enter_user_fault();
4179
4180 if (unlikely(is_vm_hugetlb_page(vma)))
4181 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4182 else
4183 ret = __handle_mm_fault(vma, address, flags);
4184
4185 if (flags & FAULT_FLAG_USER) {
4186 mem_cgroup_exit_user_fault();
4187 /*
4188 * The task may have entered a memcg OOM situation but
4189 * if the allocation error was handled gracefully (no
4190 * VM_FAULT_OOM), there is no need to kill anything.
4191 * Just clean up the OOM state peacefully.
4192 */
4193 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4194 mem_cgroup_oom_synchronize(false);
4195 }
4196
4197 return ret;
4198 }
4199 EXPORT_SYMBOL_GPL(handle_mm_fault);
4200
4201 #ifndef __PAGETABLE_P4D_FOLDED
4202 /*
4203 * Allocate p4d page table.
4204 * We've already handled the fast-path in-line.
4205 */
4206 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4207 {
4208 p4d_t *new = p4d_alloc_one(mm, address);
4209 if (!new)
4210 return -ENOMEM;
4211
4212 smp_wmb(); /* See comment in __pte_alloc */
4213
4214 spin_lock(&mm->page_table_lock);
4215 if (pgd_present(*pgd)) /* Another has populated it */
4216 p4d_free(mm, new);
4217 else
4218 pgd_populate(mm, pgd, new);
4219 spin_unlock(&mm->page_table_lock);
4220 return 0;
4221 }
4222 #endif /* __PAGETABLE_P4D_FOLDED */
4223
4224 #ifndef __PAGETABLE_PUD_FOLDED
4225 /*
4226 * Allocate page upper directory.
4227 * We've already handled the fast-path in-line.
4228 */
4229 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4230 {
4231 pud_t *new = pud_alloc_one(mm, address);
4232 if (!new)
4233 return -ENOMEM;
4234
4235 smp_wmb(); /* See comment in __pte_alloc */
4236
4237 spin_lock(&mm->page_table_lock);
4238 #ifndef __ARCH_HAS_5LEVEL_HACK
4239 if (!p4d_present(*p4d)) {
4240 mm_inc_nr_puds(mm);
4241 p4d_populate(mm, p4d, new);
4242 } else /* Another has populated it */
4243 pud_free(mm, new);
4244 #else
4245 if (!pgd_present(*p4d)) {
4246 mm_inc_nr_puds(mm);
4247 pgd_populate(mm, p4d, new);
4248 } else /* Another has populated it */
4249 pud_free(mm, new);
4250 #endif /* __ARCH_HAS_5LEVEL_HACK */
4251 spin_unlock(&mm->page_table_lock);
4252 return 0;
4253 }
4254 #endif /* __PAGETABLE_PUD_FOLDED */
4255
4256 #ifndef __PAGETABLE_PMD_FOLDED
4257 /*
4258 * Allocate page middle directory.
4259 * We've already handled the fast-path in-line.
4260 */
4261 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4262 {
4263 spinlock_t *ptl;
4264 pmd_t *new = pmd_alloc_one(mm, address);
4265 if (!new)
4266 return -ENOMEM;
4267
4268 smp_wmb(); /* See comment in __pte_alloc */
4269
4270 ptl = pud_lock(mm, pud);
4271 #ifndef __ARCH_HAS_4LEVEL_HACK
4272 if (!pud_present(*pud)) {
4273 mm_inc_nr_pmds(mm);
4274 pud_populate(mm, pud, new);
4275 } else /* Another has populated it */
4276 pmd_free(mm, new);
4277 #else
4278 if (!pgd_present(*pud)) {
4279 mm_inc_nr_pmds(mm);
4280 pgd_populate(mm, pud, new);
4281 } else /* Another has populated it */
4282 pmd_free(mm, new);
4283 #endif /* __ARCH_HAS_4LEVEL_HACK */
4284 spin_unlock(ptl);
4285 return 0;
4286 }
4287 #endif /* __PAGETABLE_PMD_FOLDED */
4288
4289 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4290 struct mmu_notifier_range *range, pte_t **ptepp,
4291 pmd_t **pmdpp, spinlock_t **ptlp)
4292 {
4293 pgd_t *pgd;
4294 p4d_t *p4d;
4295 pud_t *pud;
4296 pmd_t *pmd;
4297 pte_t *ptep;
4298
4299 pgd = pgd_offset(mm, address);
4300 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4301 goto out;
4302
4303 p4d = p4d_offset(pgd, address);
4304 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4305 goto out;
4306
4307 pud = pud_offset(p4d, address);
4308 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4309 goto out;
4310
4311 pmd = pmd_offset(pud, address);
4312 VM_BUG_ON(pmd_trans_huge(*pmd));
4313
4314 if (pmd_huge(*pmd)) {
4315 if (!pmdpp)
4316 goto out;
4317
4318 if (range) {
4319 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4320 NULL, mm, address & PMD_MASK,
4321 (address & PMD_MASK) + PMD_SIZE);
4322 mmu_notifier_invalidate_range_start(range);
4323 }
4324 *ptlp = pmd_lock(mm, pmd);
4325 if (pmd_huge(*pmd)) {
4326 *pmdpp = pmd;
4327 return 0;
4328 }
4329 spin_unlock(*ptlp);
4330 if (range)
4331 mmu_notifier_invalidate_range_end(range);
4332 }
4333
4334 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4335 goto out;
4336
4337 if (range) {
4338 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4339 address & PAGE_MASK,
4340 (address & PAGE_MASK) + PAGE_SIZE);
4341 mmu_notifier_invalidate_range_start(range);
4342 }
4343 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4344 if (!pte_present(*ptep))
4345 goto unlock;
4346 *ptepp = ptep;
4347 return 0;
4348 unlock:
4349 pte_unmap_unlock(ptep, *ptlp);
4350 if (range)
4351 mmu_notifier_invalidate_range_end(range);
4352 out:
4353 return -EINVAL;
4354 }
4355
4356 /**
4357 * follow_pte - look up PTE at a user virtual address
4358 * @mm: the mm_struct of the target address space
4359 * @address: user virtual address
4360 * @ptepp: location to store found PTE
4361 * @ptlp: location to store the lock for the PTE
4362 *
4363 * On a successful return, the pointer to the PTE is stored in @ptepp;
4364 * the corresponding lock is taken and its location is stored in @ptlp.
4365 * The contents of the PTE are only stable until @ptlp is released;
4366 * any further use, if any, must be protected against invalidation
4367 * with MMU notifiers.
4368 *
4369 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4370 * should be taken for read.
4371 *
4372 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4373 * it is not a good general-purpose API.
4374 *
4375 * Return: zero on success, -ve otherwise.
4376 */
4377 int follow_pte(struct mm_struct *mm, unsigned long address,
4378 pte_t **ptepp, spinlock_t **ptlp)
4379 {
4380 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4381 }
4382 EXPORT_SYMBOL_GPL(follow_pte);
4383
4384 /**
4385 * follow_pfn - look up PFN at a user virtual address
4386 * @vma: memory mapping
4387 * @address: user virtual address
4388 * @pfn: location to store found PFN
4389 *
4390 * Only IO mappings and raw PFN mappings are allowed.
4391 *
4392 * This function does not allow the caller to read the permissions
4393 * of the PTE. Do not use it.
4394 *
4395 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4396 */
4397 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4398 unsigned long *pfn)
4399 {
4400 int ret = -EINVAL;
4401 spinlock_t *ptl;
4402 pte_t *ptep;
4403
4404 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4405 return ret;
4406
4407 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4408 if (ret)
4409 return ret;
4410 *pfn = pte_pfn(*ptep);
4411 pte_unmap_unlock(ptep, ptl);
4412 return 0;
4413 }
4414 EXPORT_SYMBOL(follow_pfn);
4415
4416 #ifdef CONFIG_HAVE_IOREMAP_PROT
4417 int follow_phys(struct vm_area_struct *vma,
4418 unsigned long address, unsigned int flags,
4419 unsigned long *prot, resource_size_t *phys)
4420 {
4421 int ret = -EINVAL;
4422 pte_t *ptep, pte;
4423 spinlock_t *ptl;
4424
4425 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4426 goto out;
4427
4428 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4429 goto out;
4430 pte = *ptep;
4431
4432 if ((flags & FOLL_WRITE) && !pte_write(pte))
4433 goto unlock;
4434
4435 *prot = pgprot_val(pte_pgprot(pte));
4436 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4437
4438 ret = 0;
4439 unlock:
4440 pte_unmap_unlock(ptep, ptl);
4441 out:
4442 return ret;
4443 }
4444
4445 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4446 void *buf, int len, int write)
4447 {
4448 resource_size_t phys_addr;
4449 unsigned long prot = 0;
4450 void __iomem *maddr;
4451 int offset = addr & (PAGE_SIZE-1);
4452
4453 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4454 return -EINVAL;
4455
4456 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4457 if (!maddr)
4458 return -ENOMEM;
4459
4460 if (write)
4461 memcpy_toio(maddr + offset, buf, len);
4462 else
4463 memcpy_fromio(buf, maddr + offset, len);
4464 iounmap(maddr);
4465
4466 return len;
4467 }
4468 EXPORT_SYMBOL_GPL(generic_access_phys);
4469 #endif
4470
4471 /*
4472 * Access another process' address space as given in mm. If non-NULL, use the
4473 * given task for page fault accounting.
4474 */
4475 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4476 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4477 {
4478 struct vm_area_struct *vma;
4479 void *old_buf = buf;
4480 int write = gup_flags & FOLL_WRITE;
4481
4482 if (down_read_killable(&mm->mmap_sem))
4483 return 0;
4484
4485 /* ignore errors, just check how much was successfully transferred */
4486 while (len) {
4487 int bytes, ret, offset;
4488 void *maddr;
4489 struct page *page = NULL;
4490
4491 ret = get_user_pages_remote(tsk, mm, addr, 1,
4492 gup_flags, &page, &vma, NULL);
4493 if (ret <= 0) {
4494 #ifndef CONFIG_HAVE_IOREMAP_PROT
4495 break;
4496 #else
4497 /*
4498 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4499 * we can access using slightly different code.
4500 */
4501 vma = find_vma(mm, addr);
4502 if (!vma || vma->vm_start > addr)
4503 break;
4504 if (vma->vm_ops && vma->vm_ops->access)
4505 ret = vma->vm_ops->access(vma, addr, buf,
4506 len, write);
4507 if (ret <= 0)
4508 break;
4509 bytes = ret;
4510 #endif
4511 } else {
4512 bytes = len;
4513 offset = addr & (PAGE_SIZE-1);
4514 if (bytes > PAGE_SIZE-offset)
4515 bytes = PAGE_SIZE-offset;
4516
4517 maddr = kmap(page);
4518 if (write) {
4519 copy_to_user_page(vma, page, addr,
4520 maddr + offset, buf, bytes);
4521 set_page_dirty_lock(page);
4522 } else {
4523 copy_from_user_page(vma, page, addr,
4524 buf, maddr + offset, bytes);
4525 }
4526 kunmap(page);
4527 put_page(page);
4528 }
4529 len -= bytes;
4530 buf += bytes;
4531 addr += bytes;
4532 }
4533 up_read(&mm->mmap_sem);
4534
4535 return buf - old_buf;
4536 }
4537
4538 /**
4539 * access_remote_vm - access another process' address space
4540 * @mm: the mm_struct of the target address space
4541 * @addr: start address to access
4542 * @buf: source or destination buffer
4543 * @len: number of bytes to transfer
4544 * @gup_flags: flags modifying lookup behaviour
4545 *
4546 * The caller must hold a reference on @mm.
4547 *
4548 * Return: number of bytes copied from source to destination.
4549 */
4550 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4551 void *buf, int len, unsigned int gup_flags)
4552 {
4553 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4554 }
4555
4556 /*
4557 * Access another process' address space.
4558 * Source/target buffer must be kernel space,
4559 * Do not walk the page table directly, use get_user_pages
4560 */
4561 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4562 void *buf, int len, unsigned int gup_flags)
4563 {
4564 struct mm_struct *mm;
4565 int ret;
4566
4567 mm = get_task_mm(tsk);
4568 if (!mm)
4569 return 0;
4570
4571 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4572
4573 mmput(mm);
4574
4575 return ret;
4576 }
4577 EXPORT_SYMBOL_GPL(access_process_vm);
4578
4579 /*
4580 * Print the name of a VMA.
4581 */
4582 void print_vma_addr(char *prefix, unsigned long ip)
4583 {
4584 struct mm_struct *mm = current->mm;
4585 struct vm_area_struct *vma;
4586
4587 /*
4588 * we might be running from an atomic context so we cannot sleep
4589 */
4590 if (!down_read_trylock(&mm->mmap_sem))
4591 return;
4592
4593 vma = find_vma(mm, ip);
4594 if (vma && vma->vm_file) {
4595 struct file *f = vma->vm_file;
4596 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4597 if (buf) {
4598 char *p;
4599
4600 p = file_path(f, buf, PAGE_SIZE);
4601 if (IS_ERR(p))
4602 p = "?";
4603 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4604 vma->vm_start,
4605 vma->vm_end - vma->vm_start);
4606 free_page((unsigned long)buf);
4607 }
4608 }
4609 up_read(&mm->mmap_sem);
4610 }
4611
4612 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4613 void __might_fault(const char *file, int line)
4614 {
4615 /*
4616 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4617 * holding the mmap_sem, this is safe because kernel memory doesn't
4618 * get paged out, therefore we'll never actually fault, and the
4619 * below annotations will generate false positives.
4620 */
4621 if (uaccess_kernel())
4622 return;
4623 if (pagefault_disabled())
4624 return;
4625 __might_sleep(file, line, 0);
4626 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4627 if (current->mm)
4628 might_lock_read(&current->mm->mmap_sem);
4629 #endif
4630 }
4631 EXPORT_SYMBOL(__might_fault);
4632 #endif
4633
4634 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4635 /*
4636 * Process all subpages of the specified huge page with the specified
4637 * operation. The target subpage will be processed last to keep its
4638 * cache lines hot.
4639 */
4640 static inline void process_huge_page(
4641 unsigned long addr_hint, unsigned int pages_per_huge_page,
4642 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4643 void *arg)
4644 {
4645 int i, n, base, l;
4646 unsigned long addr = addr_hint &
4647 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4648
4649 /* Process target subpage last to keep its cache lines hot */
4650 might_sleep();
4651 n = (addr_hint - addr) / PAGE_SIZE;
4652 if (2 * n <= pages_per_huge_page) {
4653 /* If target subpage in first half of huge page */
4654 base = 0;
4655 l = n;
4656 /* Process subpages at the end of huge page */
4657 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4658 cond_resched();
4659 process_subpage(addr + i * PAGE_SIZE, i, arg);
4660 }
4661 } else {
4662 /* If target subpage in second half of huge page */
4663 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4664 l = pages_per_huge_page - n;
4665 /* Process subpages at the begin of huge page */
4666 for (i = 0; i < base; i++) {
4667 cond_resched();
4668 process_subpage(addr + i * PAGE_SIZE, i, arg);
4669 }
4670 }
4671 /*
4672 * Process remaining subpages in left-right-left-right pattern
4673 * towards the target subpage
4674 */
4675 for (i = 0; i < l; i++) {
4676 int left_idx = base + i;
4677 int right_idx = base + 2 * l - 1 - i;
4678
4679 cond_resched();
4680 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4681 cond_resched();
4682 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4683 }
4684 }
4685
4686 static void clear_gigantic_page(struct page *page,
4687 unsigned long addr,
4688 unsigned int pages_per_huge_page)
4689 {
4690 int i;
4691 struct page *p = page;
4692
4693 might_sleep();
4694 for (i = 0; i < pages_per_huge_page;
4695 i++, p = mem_map_next(p, page, i)) {
4696 cond_resched();
4697 clear_user_highpage(p, addr + i * PAGE_SIZE);
4698 }
4699 }
4700
4701 static void clear_subpage(unsigned long addr, int idx, void *arg)
4702 {
4703 struct page *page = arg;
4704
4705 clear_user_highpage(page + idx, addr);
4706 }
4707
4708 void clear_huge_page(struct page *page,
4709 unsigned long addr_hint, unsigned int pages_per_huge_page)
4710 {
4711 unsigned long addr = addr_hint &
4712 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4713
4714 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4715 clear_gigantic_page(page, addr, pages_per_huge_page);
4716 return;
4717 }
4718
4719 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4720 }
4721
4722 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4723 unsigned long addr,
4724 struct vm_area_struct *vma,
4725 unsigned int pages_per_huge_page)
4726 {
4727 int i;
4728 struct page *dst_base = dst;
4729 struct page *src_base = src;
4730
4731 for (i = 0; i < pages_per_huge_page; ) {
4732 cond_resched();
4733 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4734
4735 i++;
4736 dst = mem_map_next(dst, dst_base, i);
4737 src = mem_map_next(src, src_base, i);
4738 }
4739 }
4740
4741 struct copy_subpage_arg {
4742 struct page *dst;
4743 struct page *src;
4744 struct vm_area_struct *vma;
4745 };
4746
4747 static void copy_subpage(unsigned long addr, int idx, void *arg)
4748 {
4749 struct copy_subpage_arg *copy_arg = arg;
4750
4751 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4752 addr, copy_arg->vma);
4753 }
4754
4755 void copy_user_huge_page(struct page *dst, struct page *src,
4756 unsigned long addr_hint, struct vm_area_struct *vma,
4757 unsigned int pages_per_huge_page)
4758 {
4759 unsigned long addr = addr_hint &
4760 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4761 struct copy_subpage_arg arg = {
4762 .dst = dst,
4763 .src = src,
4764 .vma = vma,
4765 };
4766
4767 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4768 copy_user_gigantic_page(dst, src, addr, vma,
4769 pages_per_huge_page);
4770 return;
4771 }
4772
4773 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4774 }
4775
4776 long copy_huge_page_from_user(struct page *dst_page,
4777 const void __user *usr_src,
4778 unsigned int pages_per_huge_page,
4779 bool allow_pagefault)
4780 {
4781 void *src = (void *)usr_src;
4782 void *page_kaddr;
4783 unsigned long i, rc = 0;
4784 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4785 struct page *subpage = dst_page;
4786
4787 for (i = 0; i < pages_per_huge_page;
4788 i++, subpage = mem_map_next(subpage, dst_page, i)) {
4789 if (allow_pagefault)
4790 page_kaddr = kmap(subpage);
4791 else
4792 page_kaddr = kmap_atomic(subpage);
4793 rc = copy_from_user(page_kaddr,
4794 (const void __user *)(src + i * PAGE_SIZE),
4795 PAGE_SIZE);
4796 if (allow_pagefault)
4797 kunmap(subpage);
4798 else
4799 kunmap_atomic(page_kaddr);
4800
4801 ret_val -= (PAGE_SIZE - rc);
4802 if (rc)
4803 break;
4804
4805 cond_resched();
4806 }
4807 return ret_val;
4808 }
4809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4810
4811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4812
4813 static struct kmem_cache *page_ptl_cachep;
4814
4815 void __init ptlock_cache_init(void)
4816 {
4817 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4818 SLAB_PANIC, NULL);
4819 }
4820
4821 bool ptlock_alloc(struct page *page)
4822 {
4823 spinlock_t *ptl;
4824
4825 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4826 if (!ptl)
4827 return false;
4828 page->ptl = ptl;
4829 return true;
4830 }
4831
4832 void ptlock_free(struct page *page)
4833 {
4834 kmem_cache_free(page_ptl_cachep, page->ptl);
4835 }
4836 #endif