]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memory.c
mm/page_alloc: speed up the iteration of max_order
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 1;
117 #else
118 2;
119 #endif
120
121 #ifndef arch_faults_on_old_pte
122 static inline bool arch_faults_on_old_pte(void)
123 {
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130 }
131 #endif
132
133 static int __init disable_randmaps(char *s)
134 {
135 randomize_va_space = 0;
136 return 1;
137 }
138 __setup("norandmaps", disable_randmaps);
139
140 unsigned long zero_pfn __read_mostly;
141 EXPORT_SYMBOL(zero_pfn);
142
143 unsigned long highest_memmap_pfn __read_mostly;
144
145 /*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148 static int __init init_zero_pfn(void)
149 {
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152 }
153 early_initcall(init_zero_pfn);
154
155
156 #if defined(SPLIT_RSS_COUNTING)
157
158 void sync_mm_rss(struct mm_struct *mm)
159 {
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
166 }
167 }
168 current->rss_stat.events = 0;
169 }
170
171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172 {
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179 }
180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183 /* sync counter once per 64 page faults */
184 #define TASK_RSS_EVENTS_THRESH (64)
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190 sync_mm_rss(task->mm);
191 }
192 #else /* SPLIT_RSS_COUNTING */
193
194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 }
200
201 #endif /* SPLIT_RSS_COUNTING */
202
203 /*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
209 {
210 pgtable_t token = pmd_pgtable(*pmd);
211 pmd_clear(pmd);
212 pte_free_tlb(tlb, token, addr);
213 mm_dec_nr_ptes(tlb->mm);
214 }
215
216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
219 {
220 pmd_t *pmd;
221 unsigned long next;
222 unsigned long start;
223
224 start = addr;
225 pmd = pmd_offset(pud, addr);
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
230 free_pte_range(tlb, pmd, addr);
231 } while (pmd++, addr = next, addr != end);
232
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
240 }
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
246 pmd_free_tlb(tlb, pmd, start);
247 mm_dec_nr_pmds(tlb->mm);
248 }
249
250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
253 {
254 pud_t *pud;
255 unsigned long next;
256 unsigned long start;
257
258 start = addr;
259 pud = pud_offset(p4d, addr);
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265 } while (pud++, addr = next, addr != end);
266
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
281 mm_dec_nr_puds(tlb->mm);
282 }
283
284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287 {
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
308 }
309 if (end - 1 > ceiling - 1)
310 return;
311
312 p4d = p4d_offset(pgd, start);
313 pgd_clear(pgd);
314 p4d_free_tlb(tlb, p4d, start);
315 }
316
317 /*
318 * This function frees user-level page tables of a process.
319 */
320 void free_pgd_range(struct mmu_gather *tlb,
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
323 {
324 pgd_t *pgd;
325 unsigned long next;
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
352
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
372 tlb_change_page_size(tlb, PAGE_SIZE);
373 pgd = pgd_offset(tlb->mm, addr);
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379 } while (pgd++, addr = next, addr != end);
380 }
381
382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383 unsigned long floor, unsigned long ceiling)
384 {
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
389 /*
390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
392 */
393 unlink_anon_vmas(vma);
394 unlink_file_vma(vma);
395
396 if (is_vm_hugetlb_page(vma)) {
397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398 floor, next ? next->vm_start : ceiling);
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404 && !is_vm_hugetlb_page(next)) {
405 vma = next;
406 next = vma->vm_next;
407 unlink_anon_vmas(vma);
408 unlink_file_vma(vma);
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
411 floor, next ? next->vm_start : ceiling);
412 }
413 vma = next;
414 }
415 }
416
417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
418 {
419 spinlock_t *ptl;
420 pgtable_t new = pte_alloc_one(mm);
421 if (!new)
422 return -ENOMEM;
423
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
439 ptl = pmd_lock(mm, pmd);
440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
441 mm_inc_nr_ptes(mm);
442 pmd_populate(mm, pmd, new);
443 new = NULL;
444 }
445 spin_unlock(ptl);
446 if (new)
447 pte_free(mm, new);
448 return 0;
449 }
450
451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453 pte_t *new = pte_alloc_one_kernel(&init_mm);
454 if (!new)
455 return -ENOMEM;
456
457 smp_wmb(); /* See comment in __pte_alloc */
458
459 spin_lock(&init_mm.page_table_lock);
460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
461 pmd_populate_kernel(&init_mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(&init_mm.page_table_lock);
465 if (new)
466 pte_free_kernel(&init_mm, new);
467 return 0;
468 }
469
470 static inline void init_rss_vec(int *rss)
471 {
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 int i;
478
479 if (current->mm == mm)
480 sync_mm_rss(mm);
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
484 }
485
486 /*
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
490 *
491 * The calling function must still handle the error.
492 */
493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
495 {
496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
531 if (page)
532 dump_page(page, "bad pte");
533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
540 dump_stack();
541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 }
543
544 /*
545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
546 *
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
550 *
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
559 *
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
573 *
574 *
575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
585 */
586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
588 {
589 unsigned long pfn = pte_pfn(pte);
590
591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592 if (likely(!pte_special(pte)))
593 goto check_pfn;
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
598 if (is_zero_pfn(pfn))
599 return NULL;
600 if (pte_devmap(pte))
601 return NULL;
602
603 print_bad_pte(vma, addr, pte, NULL);
604 return NULL;
605 }
606
607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
622 }
623
624 if (is_zero_pfn(pfn))
625 return NULL;
626
627 check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
632
633 /*
634 * NOTE! We still have PageReserved() pages in the page tables.
635 * eg. VDSO mappings can cause them to exist.
636 */
637 out:
638 return pfn_to_page(pfn);
639 }
640
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644 {
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
667 if (pmd_devmap(pmd))
668 return NULL;
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678 out:
679 return pfn_to_page(pfn);
680 }
681 #endif
682
683 /*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
687 */
688
689 static inline unsigned long
690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692 unsigned long addr, int *rss)
693 {
694 unsigned long vm_flags = vma->vm_flags;
695 pte_t pte = *src_pte;
696 struct page *page;
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
718 rss[mm_counter(page)]++;
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
731 }
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
761 }
762 goto out_set_pte;
763 }
764
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770 ptep_set_wrprotect(src_mm, addr, src_pte);
771 pte = pte_wrprotect(pte);
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
785 page_dup_rmap(page, false);
786 rss[mm_counter(page)]++;
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
789 }
790
791 out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
793 return 0;
794 }
795
796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
799 {
800 pte_t *orig_src_pte, *orig_dst_pte;
801 pte_t *src_pte, *dst_pte;
802 spinlock_t *src_ptl, *dst_ptl;
803 int progress = 0;
804 int rss[NR_MM_COUNTERS];
805 swp_entry_t entry = (swp_entry_t){0};
806
807 again:
808 init_rss_vec(rss);
809
810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811 if (!dst_pte)
812 return -ENOMEM;
813 src_pte = pte_offset_map(src_pmd, addr);
814 src_ptl = pte_lockptr(src_mm, src_pmd);
815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
818 arch_enter_lazy_mmu_mode();
819
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829 break;
830 }
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841
842 arch_leave_lazy_mmu_mode();
843 spin_unlock(src_ptl);
844 pte_unmap(orig_src_pte);
845 add_mm_rss_vec(dst_mm, rss);
846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
847 cond_resched();
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
854 if (addr != end)
855 goto again;
856 return 0;
857 }
858
859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862 {
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
874 int err;
875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891 }
892
893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895 unsigned long addr, unsigned long end)
896 {
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901 if (!dst_pud)
902 return -ENOMEM;
903 src_pud = pud_offset(src_p4d, addr);
904 do {
905 next = pud_addr_end(addr, end);
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925 }
926
927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930 {
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947 }
948
949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951 {
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
956 struct mmu_notifier_range range;
957 bool is_cow;
958 int ret;
959
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
969
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
978 ret = track_pfn_copy(vma);
979 if (ret)
980 return ret;
981 }
982
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
989 is_cow = is_cow_mapping(vma->vm_flags);
990
991 if (is_cow) {
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
994 mmu_notifier_invalidate_range_start(&range);
995 }
996
997 ret = 0;
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010
1011 if (is_cow)
1012 mmu_notifier_invalidate_range_end(&range);
1013 return ret;
1014 }
1015
1016 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1017 struct vm_area_struct *vma, pmd_t *pmd,
1018 unsigned long addr, unsigned long end,
1019 struct zap_details *details)
1020 {
1021 struct mm_struct *mm = tlb->mm;
1022 int force_flush = 0;
1023 int rss[NR_MM_COUNTERS];
1024 spinlock_t *ptl;
1025 pte_t *start_pte;
1026 pte_t *pte;
1027 swp_entry_t entry;
1028
1029 tlb_change_page_size(tlb, PAGE_SIZE);
1030 again:
1031 init_rss_vec(rss);
1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 pte = start_pte;
1034 flush_tlb_batched_pending(mm);
1035 arch_enter_lazy_mmu_mode();
1036 do {
1037 pte_t ptent = *pte;
1038 if (pte_none(ptent))
1039 continue;
1040
1041 if (need_resched())
1042 break;
1043
1044 if (pte_present(ptent)) {
1045 struct page *page;
1046
1047 page = vm_normal_page(vma, addr, ptent);
1048 if (unlikely(details) && page) {
1049 /*
1050 * unmap_shared_mapping_pages() wants to
1051 * invalidate cache without truncating:
1052 * unmap shared but keep private pages.
1053 */
1054 if (details->check_mapping &&
1055 details->check_mapping != page_rmapping(page))
1056 continue;
1057 }
1058 ptent = ptep_get_and_clear_full(mm, addr, pte,
1059 tlb->fullmm);
1060 tlb_remove_tlb_entry(tlb, pte, addr);
1061 if (unlikely(!page))
1062 continue;
1063
1064 if (!PageAnon(page)) {
1065 if (pte_dirty(ptent)) {
1066 force_flush = 1;
1067 set_page_dirty(page);
1068 }
1069 if (pte_young(ptent) &&
1070 likely(!(vma->vm_flags & VM_SEQ_READ)))
1071 mark_page_accessed(page);
1072 }
1073 rss[mm_counter(page)]--;
1074 page_remove_rmap(page, false);
1075 if (unlikely(page_mapcount(page) < 0))
1076 print_bad_pte(vma, addr, ptent, page);
1077 if (unlikely(__tlb_remove_page(tlb, page))) {
1078 force_flush = 1;
1079 addr += PAGE_SIZE;
1080 break;
1081 }
1082 continue;
1083 }
1084
1085 entry = pte_to_swp_entry(ptent);
1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 struct page *page = device_private_entry_to_page(entry);
1088
1089 if (unlikely(details && details->check_mapping)) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping !=
1096 page_rmapping(page))
1097 continue;
1098 }
1099
1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 rss[mm_counter(page)]--;
1102 page_remove_rmap(page, false);
1103 put_page(page);
1104 continue;
1105 }
1106
1107 /* If details->check_mapping, we leave swap entries. */
1108 if (unlikely(details))
1109 continue;
1110
1111 if (!non_swap_entry(entry))
1112 rss[MM_SWAPENTS]--;
1113 else if (is_migration_entry(entry)) {
1114 struct page *page;
1115
1116 page = migration_entry_to_page(entry);
1117 rss[mm_counter(page)]--;
1118 }
1119 if (unlikely(!free_swap_and_cache(entry)))
1120 print_bad_pte(vma, addr, ptent, NULL);
1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1122 } while (pte++, addr += PAGE_SIZE, addr != end);
1123
1124 add_mm_rss_vec(mm, rss);
1125 arch_leave_lazy_mmu_mode();
1126
1127 /* Do the actual TLB flush before dropping ptl */
1128 if (force_flush)
1129 tlb_flush_mmu_tlbonly(tlb);
1130 pte_unmap_unlock(start_pte, ptl);
1131
1132 /*
1133 * If we forced a TLB flush (either due to running out of
1134 * batch buffers or because we needed to flush dirty TLB
1135 * entries before releasing the ptl), free the batched
1136 * memory too. Restart if we didn't do everything.
1137 */
1138 if (force_flush) {
1139 force_flush = 0;
1140 tlb_flush_mmu(tlb);
1141 }
1142
1143 if (addr != end) {
1144 cond_resched();
1145 goto again;
1146 }
1147
1148 return addr;
1149 }
1150
1151 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1152 struct vm_area_struct *vma, pud_t *pud,
1153 unsigned long addr, unsigned long end,
1154 struct zap_details *details)
1155 {
1156 pmd_t *pmd;
1157 unsigned long next;
1158
1159 pmd = pmd_offset(pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1163 if (next - addr != HPAGE_PMD_SIZE)
1164 __split_huge_pmd(vma, pmd, addr, false, NULL);
1165 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1166 goto next;
1167 /* fall through */
1168 } else if (details && details->single_page &&
1169 PageTransCompound(details->single_page) &&
1170 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1171 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1172 /*
1173 * Take and drop THP pmd lock so that we cannot return
1174 * prematurely, while zap_huge_pmd() has cleared *pmd,
1175 * but not yet decremented compound_mapcount().
1176 */
1177 spin_unlock(ptl);
1178 }
1179
1180 /*
1181 * Here there can be other concurrent MADV_DONTNEED or
1182 * trans huge page faults running, and if the pmd is
1183 * none or trans huge it can change under us. This is
1184 * because MADV_DONTNEED holds the mmap_sem in read
1185 * mode.
1186 */
1187 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1188 goto next;
1189 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1190 next:
1191 cond_resched();
1192 } while (pmd++, addr = next, addr != end);
1193
1194 return addr;
1195 }
1196
1197 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1198 struct vm_area_struct *vma, p4d_t *p4d,
1199 unsigned long addr, unsigned long end,
1200 struct zap_details *details)
1201 {
1202 pud_t *pud;
1203 unsigned long next;
1204
1205 pud = pud_offset(p4d, addr);
1206 do {
1207 next = pud_addr_end(addr, end);
1208 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1209 if (next - addr != HPAGE_PUD_SIZE) {
1210 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1211 split_huge_pud(vma, pud, addr);
1212 } else if (zap_huge_pud(tlb, vma, pud, addr))
1213 goto next;
1214 /* fall through */
1215 }
1216 if (pud_none_or_clear_bad(pud))
1217 continue;
1218 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1219 next:
1220 cond_resched();
1221 } while (pud++, addr = next, addr != end);
1222
1223 return addr;
1224 }
1225
1226 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1227 struct vm_area_struct *vma, pgd_t *pgd,
1228 unsigned long addr, unsigned long end,
1229 struct zap_details *details)
1230 {
1231 p4d_t *p4d;
1232 unsigned long next;
1233
1234 p4d = p4d_offset(pgd, addr);
1235 do {
1236 next = p4d_addr_end(addr, end);
1237 if (p4d_none_or_clear_bad(p4d))
1238 continue;
1239 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1240 } while (p4d++, addr = next, addr != end);
1241
1242 return addr;
1243 }
1244
1245 void unmap_page_range(struct mmu_gather *tlb,
1246 struct vm_area_struct *vma,
1247 unsigned long addr, unsigned long end,
1248 struct zap_details *details)
1249 {
1250 pgd_t *pgd;
1251 unsigned long next;
1252
1253 BUG_ON(addr >= end);
1254 tlb_start_vma(tlb, vma);
1255 pgd = pgd_offset(vma->vm_mm, addr);
1256 do {
1257 next = pgd_addr_end(addr, end);
1258 if (pgd_none_or_clear_bad(pgd))
1259 continue;
1260 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1261 } while (pgd++, addr = next, addr != end);
1262 tlb_end_vma(tlb, vma);
1263 }
1264
1265
1266 static void unmap_single_vma(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma, unsigned long start_addr,
1268 unsigned long end_addr,
1269 struct zap_details *details)
1270 {
1271 unsigned long start = max(vma->vm_start, start_addr);
1272 unsigned long end;
1273
1274 if (start >= vma->vm_end)
1275 return;
1276 end = min(vma->vm_end, end_addr);
1277 if (end <= vma->vm_start)
1278 return;
1279
1280 if (vma->vm_file)
1281 uprobe_munmap(vma, start, end);
1282
1283 if (unlikely(vma->vm_flags & VM_PFNMAP))
1284 untrack_pfn(vma, 0, 0);
1285
1286 if (start != end) {
1287 if (unlikely(is_vm_hugetlb_page(vma))) {
1288 /*
1289 * It is undesirable to test vma->vm_file as it
1290 * should be non-null for valid hugetlb area.
1291 * However, vm_file will be NULL in the error
1292 * cleanup path of mmap_region. When
1293 * hugetlbfs ->mmap method fails,
1294 * mmap_region() nullifies vma->vm_file
1295 * before calling this function to clean up.
1296 * Since no pte has actually been setup, it is
1297 * safe to do nothing in this case.
1298 */
1299 if (vma->vm_file) {
1300 i_mmap_lock_write(vma->vm_file->f_mapping);
1301 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1302 i_mmap_unlock_write(vma->vm_file->f_mapping);
1303 }
1304 } else
1305 unmap_page_range(tlb, vma, start, end, details);
1306 }
1307 }
1308
1309 /**
1310 * unmap_vmas - unmap a range of memory covered by a list of vma's
1311 * @tlb: address of the caller's struct mmu_gather
1312 * @vma: the starting vma
1313 * @start_addr: virtual address at which to start unmapping
1314 * @end_addr: virtual address at which to end unmapping
1315 *
1316 * Unmap all pages in the vma list.
1317 *
1318 * Only addresses between `start' and `end' will be unmapped.
1319 *
1320 * The VMA list must be sorted in ascending virtual address order.
1321 *
1322 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1323 * range after unmap_vmas() returns. So the only responsibility here is to
1324 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1325 * drops the lock and schedules.
1326 */
1327 void unmap_vmas(struct mmu_gather *tlb,
1328 struct vm_area_struct *vma, unsigned long start_addr,
1329 unsigned long end_addr)
1330 {
1331 struct mmu_notifier_range range;
1332
1333 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1334 start_addr, end_addr);
1335 mmu_notifier_invalidate_range_start(&range);
1336 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1337 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1338 mmu_notifier_invalidate_range_end(&range);
1339 }
1340
1341 /**
1342 * zap_page_range - remove user pages in a given range
1343 * @vma: vm_area_struct holding the applicable pages
1344 * @start: starting address of pages to zap
1345 * @size: number of bytes to zap
1346 *
1347 * Caller must protect the VMA list
1348 */
1349 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1350 unsigned long size)
1351 {
1352 struct mmu_notifier_range range;
1353 struct mmu_gather tlb;
1354
1355 lru_add_drain();
1356 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1357 start, start + size);
1358 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1359 update_hiwater_rss(vma->vm_mm);
1360 mmu_notifier_invalidate_range_start(&range);
1361 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1362 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1363 mmu_notifier_invalidate_range_end(&range);
1364 tlb_finish_mmu(&tlb, start, range.end);
1365 }
1366 EXPORT_SYMBOL(zap_page_range);
1367
1368 /**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1374 *
1375 * The range must fit into one VMA.
1376 */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378 unsigned long size, struct zap_details *details)
1379 {
1380 struct mmu_notifier_range range;
1381 struct mmu_gather tlb;
1382
1383 lru_add_drain();
1384 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1385 address, address + size);
1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 update_hiwater_rss(vma->vm_mm);
1388 mmu_notifier_invalidate_range_start(&range);
1389 unmap_single_vma(&tlb, vma, address, range.end, details);
1390 mmu_notifier_invalidate_range_end(&range);
1391 tlb_finish_mmu(&tlb, address, range.end);
1392 }
1393
1394 /**
1395 * zap_vma_ptes - remove ptes mapping the vma
1396 * @vma: vm_area_struct holding ptes to be zapped
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 *
1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 *
1402 * The entire address range must be fully contained within the vma.
1403 *
1404 */
1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size)
1407 {
1408 if (address < vma->vm_start || address + size > vma->vm_end ||
1409 !(vma->vm_flags & VM_PFNMAP))
1410 return;
1411
1412 zap_page_range_single(vma, address, size, NULL);
1413 }
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417 spinlock_t **ptl)
1418 {
1419 pgd_t *pgd;
1420 p4d_t *p4d;
1421 pud_t *pud;
1422 pmd_t *pmd;
1423
1424 pgd = pgd_offset(mm, addr);
1425 p4d = p4d_alloc(mm, pgd, addr);
1426 if (!p4d)
1427 return NULL;
1428 pud = pud_alloc(mm, p4d, addr);
1429 if (!pud)
1430 return NULL;
1431 pmd = pmd_alloc(mm, pud, addr);
1432 if (!pmd)
1433 return NULL;
1434
1435 VM_BUG_ON(pmd_trans_huge(*pmd));
1436 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1437 }
1438
1439 /*
1440 * This is the old fallback for page remapping.
1441 *
1442 * For historical reasons, it only allows reserved pages. Only
1443 * old drivers should use this, and they needed to mark their
1444 * pages reserved for the old functions anyway.
1445 */
1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 struct page *page, pgprot_t prot)
1448 {
1449 struct mm_struct *mm = vma->vm_mm;
1450 int retval;
1451 pte_t *pte;
1452 spinlock_t *ptl;
1453
1454 retval = -EINVAL;
1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 goto out;
1457 retval = -ENOMEM;
1458 flush_dcache_page(page);
1459 pte = get_locked_pte(mm, addr, &ptl);
1460 if (!pte)
1461 goto out;
1462 retval = -EBUSY;
1463 if (!pte_none(*pte))
1464 goto out_unlock;
1465
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
1468 inc_mm_counter_fast(mm, mm_counter_file(page));
1469 page_add_file_rmap(page, false);
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471
1472 retval = 0;
1473 out_unlock:
1474 pte_unmap_unlock(pte, ptl);
1475 out:
1476 return retval;
1477 }
1478
1479 /**
1480 * vm_insert_page - insert single page into user vma
1481 * @vma: user vma to map to
1482 * @addr: target user address of this page
1483 * @page: source kernel page
1484 *
1485 * This allows drivers to insert individual pages they've allocated
1486 * into a user vma.
1487 *
1488 * The page has to be a nice clean _individual_ kernel allocation.
1489 * If you allocate a compound page, you need to have marked it as
1490 * such (__GFP_COMP), or manually just split the page up yourself
1491 * (see split_page()).
1492 *
1493 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1494 * took an arbitrary page protection parameter. This doesn't allow
1495 * that. Your vma protection will have to be set up correctly, which
1496 * means that if you want a shared writable mapping, you'd better
1497 * ask for a shared writable mapping!
1498 *
1499 * The page does not need to be reserved.
1500 *
1501 * Usually this function is called from f_op->mmap() handler
1502 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1503 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1504 * function from other places, for example from page-fault handler.
1505 *
1506 * Return: %0 on success, negative error code otherwise.
1507 */
1508 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1509 struct page *page)
1510 {
1511 if (addr < vma->vm_start || addr >= vma->vm_end)
1512 return -EFAULT;
1513 if (!page_count(page))
1514 return -EINVAL;
1515 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1516 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1517 BUG_ON(vma->vm_flags & VM_PFNMAP);
1518 vma->vm_flags |= VM_MIXEDMAP;
1519 }
1520 return insert_page(vma, addr, page, vma->vm_page_prot);
1521 }
1522 EXPORT_SYMBOL(vm_insert_page);
1523
1524 /*
1525 * __vm_map_pages - maps range of kernel pages into user vma
1526 * @vma: user vma to map to
1527 * @pages: pointer to array of source kernel pages
1528 * @num: number of pages in page array
1529 * @offset: user's requested vm_pgoff
1530 *
1531 * This allows drivers to map range of kernel pages into a user vma.
1532 *
1533 * Return: 0 on success and error code otherwise.
1534 */
1535 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1536 unsigned long num, unsigned long offset)
1537 {
1538 unsigned long count = vma_pages(vma);
1539 unsigned long uaddr = vma->vm_start;
1540 int ret, i;
1541
1542 /* Fail if the user requested offset is beyond the end of the object */
1543 if (offset >= num)
1544 return -ENXIO;
1545
1546 /* Fail if the user requested size exceeds available object size */
1547 if (count > num - offset)
1548 return -ENXIO;
1549
1550 for (i = 0; i < count; i++) {
1551 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1552 if (ret < 0)
1553 return ret;
1554 uaddr += PAGE_SIZE;
1555 }
1556
1557 return 0;
1558 }
1559
1560 /**
1561 * vm_map_pages - maps range of kernel pages starts with non zero offset
1562 * @vma: user vma to map to
1563 * @pages: pointer to array of source kernel pages
1564 * @num: number of pages in page array
1565 *
1566 * Maps an object consisting of @num pages, catering for the user's
1567 * requested vm_pgoff
1568 *
1569 * If we fail to insert any page into the vma, the function will return
1570 * immediately leaving any previously inserted pages present. Callers
1571 * from the mmap handler may immediately return the error as their caller
1572 * will destroy the vma, removing any successfully inserted pages. Other
1573 * callers should make their own arrangements for calling unmap_region().
1574 *
1575 * Context: Process context. Called by mmap handlers.
1576 * Return: 0 on success and error code otherwise.
1577 */
1578 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1579 unsigned long num)
1580 {
1581 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1582 }
1583 EXPORT_SYMBOL(vm_map_pages);
1584
1585 /**
1586 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1587 * @vma: user vma to map to
1588 * @pages: pointer to array of source kernel pages
1589 * @num: number of pages in page array
1590 *
1591 * Similar to vm_map_pages(), except that it explicitly sets the offset
1592 * to 0. This function is intended for the drivers that did not consider
1593 * vm_pgoff.
1594 *
1595 * Context: Process context. Called by mmap handlers.
1596 * Return: 0 on success and error code otherwise.
1597 */
1598 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1599 unsigned long num)
1600 {
1601 return __vm_map_pages(vma, pages, num, 0);
1602 }
1603 EXPORT_SYMBOL(vm_map_pages_zero);
1604
1605 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1606 pfn_t pfn, pgprot_t prot, bool mkwrite)
1607 {
1608 struct mm_struct *mm = vma->vm_mm;
1609 pte_t *pte, entry;
1610 spinlock_t *ptl;
1611
1612 pte = get_locked_pte(mm, addr, &ptl);
1613 if (!pte)
1614 return VM_FAULT_OOM;
1615 if (!pte_none(*pte)) {
1616 if (mkwrite) {
1617 /*
1618 * For read faults on private mappings the PFN passed
1619 * in may not match the PFN we have mapped if the
1620 * mapped PFN is a writeable COW page. In the mkwrite
1621 * case we are creating a writable PTE for a shared
1622 * mapping and we expect the PFNs to match. If they
1623 * don't match, we are likely racing with block
1624 * allocation and mapping invalidation so just skip the
1625 * update.
1626 */
1627 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1628 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1629 goto out_unlock;
1630 }
1631 entry = pte_mkyoung(*pte);
1632 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1633 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1634 update_mmu_cache(vma, addr, pte);
1635 }
1636 goto out_unlock;
1637 }
1638
1639 /* Ok, finally just insert the thing.. */
1640 if (pfn_t_devmap(pfn))
1641 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1642 else
1643 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1644
1645 if (mkwrite) {
1646 entry = pte_mkyoung(entry);
1647 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648 }
1649
1650 set_pte_at(mm, addr, pte, entry);
1651 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1652
1653 out_unlock:
1654 pte_unmap_unlock(pte, ptl);
1655 return VM_FAULT_NOPAGE;
1656 }
1657
1658 /**
1659 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1660 * @vma: user vma to map to
1661 * @addr: target user address of this page
1662 * @pfn: source kernel pfn
1663 * @pgprot: pgprot flags for the inserted page
1664 *
1665 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1666 * to override pgprot on a per-page basis.
1667 *
1668 * This only makes sense for IO mappings, and it makes no sense for
1669 * COW mappings. In general, using multiple vmas is preferable;
1670 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1671 * impractical.
1672 *
1673 * Context: Process context. May allocate using %GFP_KERNEL.
1674 * Return: vm_fault_t value.
1675 */
1676 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1677 unsigned long pfn, pgprot_t pgprot)
1678 {
1679 /*
1680 * Technically, architectures with pte_special can avoid all these
1681 * restrictions (same for remap_pfn_range). However we would like
1682 * consistency in testing and feature parity among all, so we should
1683 * try to keep these invariants in place for everybody.
1684 */
1685 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1686 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1687 (VM_PFNMAP|VM_MIXEDMAP));
1688 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1689 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1690
1691 if (addr < vma->vm_start || addr >= vma->vm_end)
1692 return VM_FAULT_SIGBUS;
1693
1694 if (!pfn_modify_allowed(pfn, pgprot))
1695 return VM_FAULT_SIGBUS;
1696
1697 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1698
1699 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1700 false);
1701 }
1702 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1703
1704 /**
1705 * vmf_insert_pfn - insert single pfn into user vma
1706 * @vma: user vma to map to
1707 * @addr: target user address of this page
1708 * @pfn: source kernel pfn
1709 *
1710 * Similar to vm_insert_page, this allows drivers to insert individual pages
1711 * they've allocated into a user vma. Same comments apply.
1712 *
1713 * This function should only be called from a vm_ops->fault handler, and
1714 * in that case the handler should return the result of this function.
1715 *
1716 * vma cannot be a COW mapping.
1717 *
1718 * As this is called only for pages that do not currently exist, we
1719 * do not need to flush old virtual caches or the TLB.
1720 *
1721 * Context: Process context. May allocate using %GFP_KERNEL.
1722 * Return: vm_fault_t value.
1723 */
1724 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1725 unsigned long pfn)
1726 {
1727 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1728 }
1729 EXPORT_SYMBOL(vmf_insert_pfn);
1730
1731 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1732 {
1733 /* these checks mirror the abort conditions in vm_normal_page */
1734 if (vma->vm_flags & VM_MIXEDMAP)
1735 return true;
1736 if (pfn_t_devmap(pfn))
1737 return true;
1738 if (pfn_t_special(pfn))
1739 return true;
1740 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1741 return true;
1742 return false;
1743 }
1744
1745 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1746 unsigned long addr, pfn_t pfn, bool mkwrite)
1747 {
1748 pgprot_t pgprot = vma->vm_page_prot;
1749 int err;
1750
1751 BUG_ON(!vm_mixed_ok(vma, pfn));
1752
1753 if (addr < vma->vm_start || addr >= vma->vm_end)
1754 return VM_FAULT_SIGBUS;
1755
1756 track_pfn_insert(vma, &pgprot, pfn);
1757
1758 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1759 return VM_FAULT_SIGBUS;
1760
1761 /*
1762 * If we don't have pte special, then we have to use the pfn_valid()
1763 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1764 * refcount the page if pfn_valid is true (hence insert_page rather
1765 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1766 * without pte special, it would there be refcounted as a normal page.
1767 */
1768 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1769 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1770 struct page *page;
1771
1772 /*
1773 * At this point we are committed to insert_page()
1774 * regardless of whether the caller specified flags that
1775 * result in pfn_t_has_page() == false.
1776 */
1777 page = pfn_to_page(pfn_t_to_pfn(pfn));
1778 err = insert_page(vma, addr, page, pgprot);
1779 } else {
1780 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1781 }
1782
1783 if (err == -ENOMEM)
1784 return VM_FAULT_OOM;
1785 if (err < 0 && err != -EBUSY)
1786 return VM_FAULT_SIGBUS;
1787
1788 return VM_FAULT_NOPAGE;
1789 }
1790
1791 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1792 pfn_t pfn)
1793 {
1794 return __vm_insert_mixed(vma, addr, pfn, false);
1795 }
1796 EXPORT_SYMBOL(vmf_insert_mixed);
1797
1798 /*
1799 * If the insertion of PTE failed because someone else already added a
1800 * different entry in the mean time, we treat that as success as we assume
1801 * the same entry was actually inserted.
1802 */
1803 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1804 unsigned long addr, pfn_t pfn)
1805 {
1806 return __vm_insert_mixed(vma, addr, pfn, true);
1807 }
1808 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1809
1810 /*
1811 * maps a range of physical memory into the requested pages. the old
1812 * mappings are removed. any references to nonexistent pages results
1813 * in null mappings (currently treated as "copy-on-access")
1814 */
1815 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1816 unsigned long addr, unsigned long end,
1817 unsigned long pfn, pgprot_t prot)
1818 {
1819 pte_t *pte, *mapped_pte;
1820 spinlock_t *ptl;
1821 int err = 0;
1822
1823 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1824 if (!pte)
1825 return -ENOMEM;
1826 arch_enter_lazy_mmu_mode();
1827 do {
1828 BUG_ON(!pte_none(*pte));
1829 if (!pfn_modify_allowed(pfn, prot)) {
1830 err = -EACCES;
1831 break;
1832 }
1833 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1834 pfn++;
1835 } while (pte++, addr += PAGE_SIZE, addr != end);
1836 arch_leave_lazy_mmu_mode();
1837 pte_unmap_unlock(mapped_pte, ptl);
1838 return err;
1839 }
1840
1841 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1842 unsigned long addr, unsigned long end,
1843 unsigned long pfn, pgprot_t prot)
1844 {
1845 pmd_t *pmd;
1846 unsigned long next;
1847 int err;
1848
1849 pfn -= addr >> PAGE_SHIFT;
1850 pmd = pmd_alloc(mm, pud, addr);
1851 if (!pmd)
1852 return -ENOMEM;
1853 VM_BUG_ON(pmd_trans_huge(*pmd));
1854 do {
1855 next = pmd_addr_end(addr, end);
1856 err = remap_pte_range(mm, pmd, addr, next,
1857 pfn + (addr >> PAGE_SHIFT), prot);
1858 if (err)
1859 return err;
1860 } while (pmd++, addr = next, addr != end);
1861 return 0;
1862 }
1863
1864 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1865 unsigned long addr, unsigned long end,
1866 unsigned long pfn, pgprot_t prot)
1867 {
1868 pud_t *pud;
1869 unsigned long next;
1870 int err;
1871
1872 pfn -= addr >> PAGE_SHIFT;
1873 pud = pud_alloc(mm, p4d, addr);
1874 if (!pud)
1875 return -ENOMEM;
1876 do {
1877 next = pud_addr_end(addr, end);
1878 err = remap_pmd_range(mm, pud, addr, next,
1879 pfn + (addr >> PAGE_SHIFT), prot);
1880 if (err)
1881 return err;
1882 } while (pud++, addr = next, addr != end);
1883 return 0;
1884 }
1885
1886 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1887 unsigned long addr, unsigned long end,
1888 unsigned long pfn, pgprot_t prot)
1889 {
1890 p4d_t *p4d;
1891 unsigned long next;
1892 int err;
1893
1894 pfn -= addr >> PAGE_SHIFT;
1895 p4d = p4d_alloc(mm, pgd, addr);
1896 if (!p4d)
1897 return -ENOMEM;
1898 do {
1899 next = p4d_addr_end(addr, end);
1900 err = remap_pud_range(mm, p4d, addr, next,
1901 pfn + (addr >> PAGE_SHIFT), prot);
1902 if (err)
1903 return err;
1904 } while (p4d++, addr = next, addr != end);
1905 return 0;
1906 }
1907
1908 /**
1909 * remap_pfn_range - remap kernel memory to userspace
1910 * @vma: user vma to map to
1911 * @addr: target user address to start at
1912 * @pfn: physical address of kernel memory
1913 * @size: size of map area
1914 * @prot: page protection flags for this mapping
1915 *
1916 * Note: this is only safe if the mm semaphore is held when called.
1917 *
1918 * Return: %0 on success, negative error code otherwise.
1919 */
1920 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1921 unsigned long pfn, unsigned long size, pgprot_t prot)
1922 {
1923 pgd_t *pgd;
1924 unsigned long next;
1925 unsigned long end = addr + PAGE_ALIGN(size);
1926 struct mm_struct *mm = vma->vm_mm;
1927 unsigned long remap_pfn = pfn;
1928 int err;
1929
1930 /*
1931 * Physically remapped pages are special. Tell the
1932 * rest of the world about it:
1933 * VM_IO tells people not to look at these pages
1934 * (accesses can have side effects).
1935 * VM_PFNMAP tells the core MM that the base pages are just
1936 * raw PFN mappings, and do not have a "struct page" associated
1937 * with them.
1938 * VM_DONTEXPAND
1939 * Disable vma merging and expanding with mremap().
1940 * VM_DONTDUMP
1941 * Omit vma from core dump, even when VM_IO turned off.
1942 *
1943 * There's a horrible special case to handle copy-on-write
1944 * behaviour that some programs depend on. We mark the "original"
1945 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1946 * See vm_normal_page() for details.
1947 */
1948 if (is_cow_mapping(vma->vm_flags)) {
1949 if (addr != vma->vm_start || end != vma->vm_end)
1950 return -EINVAL;
1951 vma->vm_pgoff = pfn;
1952 }
1953
1954 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1955 if (err)
1956 return -EINVAL;
1957
1958 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1959
1960 BUG_ON(addr >= end);
1961 pfn -= addr >> PAGE_SHIFT;
1962 pgd = pgd_offset(mm, addr);
1963 flush_cache_range(vma, addr, end);
1964 do {
1965 next = pgd_addr_end(addr, end);
1966 err = remap_p4d_range(mm, pgd, addr, next,
1967 pfn + (addr >> PAGE_SHIFT), prot);
1968 if (err)
1969 break;
1970 } while (pgd++, addr = next, addr != end);
1971
1972 if (err)
1973 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1974
1975 return err;
1976 }
1977 EXPORT_SYMBOL(remap_pfn_range);
1978
1979 /**
1980 * vm_iomap_memory - remap memory to userspace
1981 * @vma: user vma to map to
1982 * @start: start of area
1983 * @len: size of area
1984 *
1985 * This is a simplified io_remap_pfn_range() for common driver use. The
1986 * driver just needs to give us the physical memory range to be mapped,
1987 * we'll figure out the rest from the vma information.
1988 *
1989 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1990 * whatever write-combining details or similar.
1991 *
1992 * Return: %0 on success, negative error code otherwise.
1993 */
1994 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1995 {
1996 unsigned long vm_len, pfn, pages;
1997
1998 /* Check that the physical memory area passed in looks valid */
1999 if (start + len < start)
2000 return -EINVAL;
2001 /*
2002 * You *really* shouldn't map things that aren't page-aligned,
2003 * but we've historically allowed it because IO memory might
2004 * just have smaller alignment.
2005 */
2006 len += start & ~PAGE_MASK;
2007 pfn = start >> PAGE_SHIFT;
2008 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2009 if (pfn + pages < pfn)
2010 return -EINVAL;
2011
2012 /* We start the mapping 'vm_pgoff' pages into the area */
2013 if (vma->vm_pgoff > pages)
2014 return -EINVAL;
2015 pfn += vma->vm_pgoff;
2016 pages -= vma->vm_pgoff;
2017
2018 /* Can we fit all of the mapping? */
2019 vm_len = vma->vm_end - vma->vm_start;
2020 if (vm_len >> PAGE_SHIFT > pages)
2021 return -EINVAL;
2022
2023 /* Ok, let it rip */
2024 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2025 }
2026 EXPORT_SYMBOL(vm_iomap_memory);
2027
2028 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2029 unsigned long addr, unsigned long end,
2030 pte_fn_t fn, void *data)
2031 {
2032 pte_t *pte;
2033 int err;
2034 spinlock_t *uninitialized_var(ptl);
2035
2036 pte = (mm == &init_mm) ?
2037 pte_alloc_kernel(pmd, addr) :
2038 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2039 if (!pte)
2040 return -ENOMEM;
2041
2042 BUG_ON(pmd_huge(*pmd));
2043
2044 arch_enter_lazy_mmu_mode();
2045
2046 do {
2047 err = fn(pte++, addr, data);
2048 if (err)
2049 break;
2050 } while (addr += PAGE_SIZE, addr != end);
2051
2052 arch_leave_lazy_mmu_mode();
2053
2054 if (mm != &init_mm)
2055 pte_unmap_unlock(pte-1, ptl);
2056 return err;
2057 }
2058
2059 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2060 unsigned long addr, unsigned long end,
2061 pte_fn_t fn, void *data)
2062 {
2063 pmd_t *pmd;
2064 unsigned long next;
2065 int err;
2066
2067 BUG_ON(pud_huge(*pud));
2068
2069 pmd = pmd_alloc(mm, pud, addr);
2070 if (!pmd)
2071 return -ENOMEM;
2072 do {
2073 next = pmd_addr_end(addr, end);
2074 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2075 if (err)
2076 break;
2077 } while (pmd++, addr = next, addr != end);
2078 return err;
2079 }
2080
2081 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2082 unsigned long addr, unsigned long end,
2083 pte_fn_t fn, void *data)
2084 {
2085 pud_t *pud;
2086 unsigned long next;
2087 int err;
2088
2089 pud = pud_alloc(mm, p4d, addr);
2090 if (!pud)
2091 return -ENOMEM;
2092 do {
2093 next = pud_addr_end(addr, end);
2094 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2095 if (err)
2096 break;
2097 } while (pud++, addr = next, addr != end);
2098 return err;
2099 }
2100
2101 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2102 unsigned long addr, unsigned long end,
2103 pte_fn_t fn, void *data)
2104 {
2105 p4d_t *p4d;
2106 unsigned long next;
2107 int err;
2108
2109 p4d = p4d_alloc(mm, pgd, addr);
2110 if (!p4d)
2111 return -ENOMEM;
2112 do {
2113 next = p4d_addr_end(addr, end);
2114 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2115 if (err)
2116 break;
2117 } while (p4d++, addr = next, addr != end);
2118 return err;
2119 }
2120
2121 /*
2122 * Scan a region of virtual memory, filling in page tables as necessary
2123 * and calling a provided function on each leaf page table.
2124 */
2125 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2126 unsigned long size, pte_fn_t fn, void *data)
2127 {
2128 pgd_t *pgd;
2129 unsigned long next;
2130 unsigned long end = addr + size;
2131 int err;
2132
2133 if (WARN_ON(addr >= end))
2134 return -EINVAL;
2135
2136 pgd = pgd_offset(mm, addr);
2137 do {
2138 next = pgd_addr_end(addr, end);
2139 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2140 if (err)
2141 break;
2142 } while (pgd++, addr = next, addr != end);
2143
2144 return err;
2145 }
2146 EXPORT_SYMBOL_GPL(apply_to_page_range);
2147
2148 /*
2149 * handle_pte_fault chooses page fault handler according to an entry which was
2150 * read non-atomically. Before making any commitment, on those architectures
2151 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2152 * parts, do_swap_page must check under lock before unmapping the pte and
2153 * proceeding (but do_wp_page is only called after already making such a check;
2154 * and do_anonymous_page can safely check later on).
2155 */
2156 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2157 pte_t *page_table, pte_t orig_pte)
2158 {
2159 int same = 1;
2160 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2161 if (sizeof(pte_t) > sizeof(unsigned long)) {
2162 spinlock_t *ptl = pte_lockptr(mm, pmd);
2163 spin_lock(ptl);
2164 same = pte_same(*page_table, orig_pte);
2165 spin_unlock(ptl);
2166 }
2167 #endif
2168 pte_unmap(page_table);
2169 return same;
2170 }
2171
2172 static inline bool cow_user_page(struct page *dst, struct page *src,
2173 struct vm_fault *vmf)
2174 {
2175 bool ret;
2176 void *kaddr;
2177 void __user *uaddr;
2178 bool locked = false;
2179 struct vm_area_struct *vma = vmf->vma;
2180 struct mm_struct *mm = vma->vm_mm;
2181 unsigned long addr = vmf->address;
2182
2183 debug_dma_assert_idle(src);
2184
2185 if (likely(src)) {
2186 copy_user_highpage(dst, src, addr, vma);
2187 return true;
2188 }
2189
2190 /*
2191 * If the source page was a PFN mapping, we don't have
2192 * a "struct page" for it. We do a best-effort copy by
2193 * just copying from the original user address. If that
2194 * fails, we just zero-fill it. Live with it.
2195 */
2196 kaddr = kmap_atomic(dst);
2197 uaddr = (void __user *)(addr & PAGE_MASK);
2198
2199 /*
2200 * On architectures with software "accessed" bits, we would
2201 * take a double page fault, so mark it accessed here.
2202 */
2203 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2204 pte_t entry;
2205
2206 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2207 locked = true;
2208 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2209 /*
2210 * Other thread has already handled the fault
2211 * and we don't need to do anything. If it's
2212 * not the case, the fault will be triggered
2213 * again on the same address.
2214 */
2215 ret = false;
2216 goto pte_unlock;
2217 }
2218
2219 entry = pte_mkyoung(vmf->orig_pte);
2220 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2221 update_mmu_cache(vma, addr, vmf->pte);
2222 }
2223
2224 /*
2225 * This really shouldn't fail, because the page is there
2226 * in the page tables. But it might just be unreadable,
2227 * in which case we just give up and fill the result with
2228 * zeroes.
2229 */
2230 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2231 if (locked)
2232 goto warn;
2233
2234 /* Re-validate under PTL if the page is still mapped */
2235 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2236 locked = true;
2237 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2238 /* The PTE changed under us. Retry page fault. */
2239 ret = false;
2240 goto pte_unlock;
2241 }
2242
2243 /*
2244 * The same page can be mapped back since last copy attampt.
2245 * Try to copy again under PTL.
2246 */
2247 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2248 /*
2249 * Give a warn in case there can be some obscure
2250 * use-case
2251 */
2252 warn:
2253 WARN_ON_ONCE(1);
2254 clear_page(kaddr);
2255 }
2256 }
2257
2258 ret = true;
2259
2260 pte_unlock:
2261 if (locked)
2262 pte_unmap_unlock(vmf->pte, vmf->ptl);
2263 kunmap_atomic(kaddr);
2264 flush_dcache_page(dst);
2265
2266 return ret;
2267 }
2268
2269 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2270 {
2271 struct file *vm_file = vma->vm_file;
2272
2273 if (vm_file)
2274 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2275
2276 /*
2277 * Special mappings (e.g. VDSO) do not have any file so fake
2278 * a default GFP_KERNEL for them.
2279 */
2280 return GFP_KERNEL;
2281 }
2282
2283 /*
2284 * Notify the address space that the page is about to become writable so that
2285 * it can prohibit this or wait for the page to get into an appropriate state.
2286 *
2287 * We do this without the lock held, so that it can sleep if it needs to.
2288 */
2289 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2290 {
2291 vm_fault_t ret;
2292 struct page *page = vmf->page;
2293 unsigned int old_flags = vmf->flags;
2294
2295 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2296
2297 if (vmf->vma->vm_file &&
2298 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2299 return VM_FAULT_SIGBUS;
2300
2301 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2302 /* Restore original flags so that caller is not surprised */
2303 vmf->flags = old_flags;
2304 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2305 return ret;
2306 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2307 lock_page(page);
2308 if (!page->mapping) {
2309 unlock_page(page);
2310 return 0; /* retry */
2311 }
2312 ret |= VM_FAULT_LOCKED;
2313 } else
2314 VM_BUG_ON_PAGE(!PageLocked(page), page);
2315 return ret;
2316 }
2317
2318 /*
2319 * Handle dirtying of a page in shared file mapping on a write fault.
2320 *
2321 * The function expects the page to be locked and unlocks it.
2322 */
2323 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2324 {
2325 struct vm_area_struct *vma = vmf->vma;
2326 struct address_space *mapping;
2327 struct page *page = vmf->page;
2328 bool dirtied;
2329 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2330
2331 dirtied = set_page_dirty(page);
2332 VM_BUG_ON_PAGE(PageAnon(page), page);
2333 /*
2334 * Take a local copy of the address_space - page.mapping may be zeroed
2335 * by truncate after unlock_page(). The address_space itself remains
2336 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2337 * release semantics to prevent the compiler from undoing this copying.
2338 */
2339 mapping = page_rmapping(page);
2340 unlock_page(page);
2341
2342 if (!page_mkwrite)
2343 file_update_time(vma->vm_file);
2344
2345 /*
2346 * Throttle page dirtying rate down to writeback speed.
2347 *
2348 * mapping may be NULL here because some device drivers do not
2349 * set page.mapping but still dirty their pages
2350 *
2351 * Drop the mmap_sem before waiting on IO, if we can. The file
2352 * is pinning the mapping, as per above.
2353 */
2354 if ((dirtied || page_mkwrite) && mapping) {
2355 struct file *fpin;
2356
2357 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2358 balance_dirty_pages_ratelimited(mapping);
2359 if (fpin) {
2360 fput(fpin);
2361 return VM_FAULT_RETRY;
2362 }
2363 }
2364
2365 return 0;
2366 }
2367
2368 /*
2369 * Handle write page faults for pages that can be reused in the current vma
2370 *
2371 * This can happen either due to the mapping being with the VM_SHARED flag,
2372 * or due to us being the last reference standing to the page. In either
2373 * case, all we need to do here is to mark the page as writable and update
2374 * any related book-keeping.
2375 */
2376 static inline void wp_page_reuse(struct vm_fault *vmf)
2377 __releases(vmf->ptl)
2378 {
2379 struct vm_area_struct *vma = vmf->vma;
2380 struct page *page = vmf->page;
2381 pte_t entry;
2382 /*
2383 * Clear the pages cpupid information as the existing
2384 * information potentially belongs to a now completely
2385 * unrelated process.
2386 */
2387 if (page)
2388 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2389
2390 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2391 entry = pte_mkyoung(vmf->orig_pte);
2392 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2393 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2394 update_mmu_cache(vma, vmf->address, vmf->pte);
2395 pte_unmap_unlock(vmf->pte, vmf->ptl);
2396 }
2397
2398 /*
2399 * Handle the case of a page which we actually need to copy to a new page.
2400 *
2401 * Called with mmap_sem locked and the old page referenced, but
2402 * without the ptl held.
2403 *
2404 * High level logic flow:
2405 *
2406 * - Allocate a page, copy the content of the old page to the new one.
2407 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2408 * - Take the PTL. If the pte changed, bail out and release the allocated page
2409 * - If the pte is still the way we remember it, update the page table and all
2410 * relevant references. This includes dropping the reference the page-table
2411 * held to the old page, as well as updating the rmap.
2412 * - In any case, unlock the PTL and drop the reference we took to the old page.
2413 */
2414 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2415 {
2416 struct vm_area_struct *vma = vmf->vma;
2417 struct mm_struct *mm = vma->vm_mm;
2418 struct page *old_page = vmf->page;
2419 struct page *new_page = NULL;
2420 pte_t entry;
2421 int page_copied = 0;
2422 struct mem_cgroup *memcg;
2423 struct mmu_notifier_range range;
2424
2425 if (unlikely(anon_vma_prepare(vma)))
2426 goto oom;
2427
2428 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2429 new_page = alloc_zeroed_user_highpage_movable(vma,
2430 vmf->address);
2431 if (!new_page)
2432 goto oom;
2433 } else {
2434 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2435 vmf->address);
2436 if (!new_page)
2437 goto oom;
2438
2439 if (!cow_user_page(new_page, old_page, vmf)) {
2440 /*
2441 * COW failed, if the fault was solved by other,
2442 * it's fine. If not, userspace would re-fault on
2443 * the same address and we will handle the fault
2444 * from the second attempt.
2445 */
2446 put_page(new_page);
2447 if (old_page)
2448 put_page(old_page);
2449 return 0;
2450 }
2451 }
2452
2453 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2454 goto oom_free_new;
2455
2456 __SetPageUptodate(new_page);
2457
2458 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2459 vmf->address & PAGE_MASK,
2460 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2461 mmu_notifier_invalidate_range_start(&range);
2462
2463 /*
2464 * Re-check the pte - we dropped the lock
2465 */
2466 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2467 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2468 if (old_page) {
2469 if (!PageAnon(old_page)) {
2470 dec_mm_counter_fast(mm,
2471 mm_counter_file(old_page));
2472 inc_mm_counter_fast(mm, MM_ANONPAGES);
2473 }
2474 } else {
2475 inc_mm_counter_fast(mm, MM_ANONPAGES);
2476 }
2477 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2478 entry = mk_pte(new_page, vma->vm_page_prot);
2479 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2480 /*
2481 * Clear the pte entry and flush it first, before updating the
2482 * pte with the new entry. This will avoid a race condition
2483 * seen in the presence of one thread doing SMC and another
2484 * thread doing COW.
2485 */
2486 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2487 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2488 mem_cgroup_commit_charge(new_page, memcg, false, false);
2489 lru_cache_add_active_or_unevictable(new_page, vma);
2490 /*
2491 * We call the notify macro here because, when using secondary
2492 * mmu page tables (such as kvm shadow page tables), we want the
2493 * new page to be mapped directly into the secondary page table.
2494 */
2495 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2496 update_mmu_cache(vma, vmf->address, vmf->pte);
2497 if (old_page) {
2498 /*
2499 * Only after switching the pte to the new page may
2500 * we remove the mapcount here. Otherwise another
2501 * process may come and find the rmap count decremented
2502 * before the pte is switched to the new page, and
2503 * "reuse" the old page writing into it while our pte
2504 * here still points into it and can be read by other
2505 * threads.
2506 *
2507 * The critical issue is to order this
2508 * page_remove_rmap with the ptp_clear_flush above.
2509 * Those stores are ordered by (if nothing else,)
2510 * the barrier present in the atomic_add_negative
2511 * in page_remove_rmap.
2512 *
2513 * Then the TLB flush in ptep_clear_flush ensures that
2514 * no process can access the old page before the
2515 * decremented mapcount is visible. And the old page
2516 * cannot be reused until after the decremented
2517 * mapcount is visible. So transitively, TLBs to
2518 * old page will be flushed before it can be reused.
2519 */
2520 page_remove_rmap(old_page, false);
2521 }
2522
2523 /* Free the old page.. */
2524 new_page = old_page;
2525 page_copied = 1;
2526 } else {
2527 mem_cgroup_cancel_charge(new_page, memcg, false);
2528 }
2529
2530 if (new_page)
2531 put_page(new_page);
2532
2533 pte_unmap_unlock(vmf->pte, vmf->ptl);
2534 /*
2535 * No need to double call mmu_notifier->invalidate_range() callback as
2536 * the above ptep_clear_flush_notify() did already call it.
2537 */
2538 mmu_notifier_invalidate_range_only_end(&range);
2539 if (old_page) {
2540 /*
2541 * Don't let another task, with possibly unlocked vma,
2542 * keep the mlocked page.
2543 */
2544 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2545 lock_page(old_page); /* LRU manipulation */
2546 if (PageMlocked(old_page))
2547 munlock_vma_page(old_page);
2548 unlock_page(old_page);
2549 }
2550 put_page(old_page);
2551 }
2552 return page_copied ? VM_FAULT_WRITE : 0;
2553 oom_free_new:
2554 put_page(new_page);
2555 oom:
2556 if (old_page)
2557 put_page(old_page);
2558 return VM_FAULT_OOM;
2559 }
2560
2561 /**
2562 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2563 * writeable once the page is prepared
2564 *
2565 * @vmf: structure describing the fault
2566 *
2567 * This function handles all that is needed to finish a write page fault in a
2568 * shared mapping due to PTE being read-only once the mapped page is prepared.
2569 * It handles locking of PTE and modifying it.
2570 *
2571 * The function expects the page to be locked or other protection against
2572 * concurrent faults / writeback (such as DAX radix tree locks).
2573 *
2574 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2575 * we acquired PTE lock.
2576 */
2577 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2578 {
2579 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2580 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2581 &vmf->ptl);
2582 /*
2583 * We might have raced with another page fault while we released the
2584 * pte_offset_map_lock.
2585 */
2586 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2587 pte_unmap_unlock(vmf->pte, vmf->ptl);
2588 return VM_FAULT_NOPAGE;
2589 }
2590 wp_page_reuse(vmf);
2591 return 0;
2592 }
2593
2594 /*
2595 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2596 * mapping
2597 */
2598 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2599 {
2600 struct vm_area_struct *vma = vmf->vma;
2601
2602 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2603 vm_fault_t ret;
2604
2605 pte_unmap_unlock(vmf->pte, vmf->ptl);
2606 vmf->flags |= FAULT_FLAG_MKWRITE;
2607 ret = vma->vm_ops->pfn_mkwrite(vmf);
2608 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2609 return ret;
2610 return finish_mkwrite_fault(vmf);
2611 }
2612 wp_page_reuse(vmf);
2613 return VM_FAULT_WRITE;
2614 }
2615
2616 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2617 __releases(vmf->ptl)
2618 {
2619 struct vm_area_struct *vma = vmf->vma;
2620 vm_fault_t ret = VM_FAULT_WRITE;
2621
2622 get_page(vmf->page);
2623
2624 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2625 vm_fault_t tmp;
2626
2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 tmp = do_page_mkwrite(vmf);
2629 if (unlikely(!tmp || (tmp &
2630 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2631 put_page(vmf->page);
2632 return tmp;
2633 }
2634 tmp = finish_mkwrite_fault(vmf);
2635 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2636 unlock_page(vmf->page);
2637 put_page(vmf->page);
2638 return tmp;
2639 }
2640 } else {
2641 wp_page_reuse(vmf);
2642 lock_page(vmf->page);
2643 }
2644 ret |= fault_dirty_shared_page(vmf);
2645 put_page(vmf->page);
2646
2647 return ret;
2648 }
2649
2650 /*
2651 * This routine handles present pages, when users try to write
2652 * to a shared page. It is done by copying the page to a new address
2653 * and decrementing the shared-page counter for the old page.
2654 *
2655 * Note that this routine assumes that the protection checks have been
2656 * done by the caller (the low-level page fault routine in most cases).
2657 * Thus we can safely just mark it writable once we've done any necessary
2658 * COW.
2659 *
2660 * We also mark the page dirty at this point even though the page will
2661 * change only once the write actually happens. This avoids a few races,
2662 * and potentially makes it more efficient.
2663 *
2664 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665 * but allow concurrent faults), with pte both mapped and locked.
2666 * We return with mmap_sem still held, but pte unmapped and unlocked.
2667 */
2668 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2669 __releases(vmf->ptl)
2670 {
2671 struct vm_area_struct *vma = vmf->vma;
2672
2673 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2674 if (!vmf->page) {
2675 /*
2676 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2677 * VM_PFNMAP VMA.
2678 *
2679 * We should not cow pages in a shared writeable mapping.
2680 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2681 */
2682 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2683 (VM_WRITE|VM_SHARED))
2684 return wp_pfn_shared(vmf);
2685
2686 pte_unmap_unlock(vmf->pte, vmf->ptl);
2687 return wp_page_copy(vmf);
2688 }
2689
2690 /*
2691 * Take out anonymous pages first, anonymous shared vmas are
2692 * not dirty accountable.
2693 */
2694 if (PageAnon(vmf->page)) {
2695 int total_map_swapcount;
2696 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2697 page_count(vmf->page) != 1))
2698 goto copy;
2699 if (!trylock_page(vmf->page)) {
2700 get_page(vmf->page);
2701 pte_unmap_unlock(vmf->pte, vmf->ptl);
2702 lock_page(vmf->page);
2703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2704 vmf->address, &vmf->ptl);
2705 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2706 unlock_page(vmf->page);
2707 pte_unmap_unlock(vmf->pte, vmf->ptl);
2708 put_page(vmf->page);
2709 return 0;
2710 }
2711 put_page(vmf->page);
2712 }
2713 if (PageKsm(vmf->page)) {
2714 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2715 vmf->address);
2716 unlock_page(vmf->page);
2717 if (!reused)
2718 goto copy;
2719 wp_page_reuse(vmf);
2720 return VM_FAULT_WRITE;
2721 }
2722 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2723 if (total_map_swapcount == 1) {
2724 /*
2725 * The page is all ours. Move it to
2726 * our anon_vma so the rmap code will
2727 * not search our parent or siblings.
2728 * Protected against the rmap code by
2729 * the page lock.
2730 */
2731 page_move_anon_rmap(vmf->page, vma);
2732 }
2733 unlock_page(vmf->page);
2734 wp_page_reuse(vmf);
2735 return VM_FAULT_WRITE;
2736 }
2737 unlock_page(vmf->page);
2738 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2739 (VM_WRITE|VM_SHARED))) {
2740 return wp_page_shared(vmf);
2741 }
2742 copy:
2743 /*
2744 * Ok, we need to copy. Oh, well..
2745 */
2746 get_page(vmf->page);
2747
2748 pte_unmap_unlock(vmf->pte, vmf->ptl);
2749 return wp_page_copy(vmf);
2750 }
2751
2752 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2753 unsigned long start_addr, unsigned long end_addr,
2754 struct zap_details *details)
2755 {
2756 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2757 }
2758
2759 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2760 struct zap_details *details)
2761 {
2762 struct vm_area_struct *vma;
2763 pgoff_t vba, vea, zba, zea;
2764
2765 vma_interval_tree_foreach(vma, root,
2766 details->first_index, details->last_index) {
2767
2768 vba = vma->vm_pgoff;
2769 vea = vba + vma_pages(vma) - 1;
2770 zba = details->first_index;
2771 if (zba < vba)
2772 zba = vba;
2773 zea = details->last_index;
2774 if (zea > vea)
2775 zea = vea;
2776
2777 unmap_mapping_range_vma(vma,
2778 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2780 details);
2781 }
2782 }
2783
2784 /**
2785 * unmap_mapping_page() - Unmap single page from processes.
2786 * @page: The locked page to be unmapped.
2787 *
2788 * Unmap this page from any userspace process which still has it mmaped.
2789 * Typically, for efficiency, the range of nearby pages has already been
2790 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
2791 * truncation or invalidation holds the lock on a page, it may find that
2792 * the page has been remapped again: and then uses unmap_mapping_page()
2793 * to unmap it finally.
2794 */
2795 void unmap_mapping_page(struct page *page)
2796 {
2797 struct address_space *mapping = page->mapping;
2798 struct zap_details details = { };
2799
2800 VM_BUG_ON(!PageLocked(page));
2801 VM_BUG_ON(PageTail(page));
2802
2803 details.check_mapping = mapping;
2804 details.first_index = page->index;
2805 details.last_index = page->index + hpage_nr_pages(page) - 1;
2806 details.single_page = page;
2807
2808 i_mmap_lock_write(mapping);
2809 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2810 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2811 i_mmap_unlock_write(mapping);
2812 }
2813
2814 /**
2815 * unmap_mapping_pages() - Unmap pages from processes.
2816 * @mapping: The address space containing pages to be unmapped.
2817 * @start: Index of first page to be unmapped.
2818 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2819 * @even_cows: Whether to unmap even private COWed pages.
2820 *
2821 * Unmap the pages in this address space from any userspace process which
2822 * has them mmaped. Generally, you want to remove COWed pages as well when
2823 * a file is being truncated, but not when invalidating pages from the page
2824 * cache.
2825 */
2826 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2827 pgoff_t nr, bool even_cows)
2828 {
2829 struct zap_details details = { };
2830
2831 details.check_mapping = even_cows ? NULL : mapping;
2832 details.first_index = start;
2833 details.last_index = start + nr - 1;
2834 if (details.last_index < details.first_index)
2835 details.last_index = ULONG_MAX;
2836
2837 i_mmap_lock_write(mapping);
2838 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2839 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2840 i_mmap_unlock_write(mapping);
2841 }
2842
2843 /**
2844 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2845 * address_space corresponding to the specified byte range in the underlying
2846 * file.
2847 *
2848 * @mapping: the address space containing mmaps to be unmapped.
2849 * @holebegin: byte in first page to unmap, relative to the start of
2850 * the underlying file. This will be rounded down to a PAGE_SIZE
2851 * boundary. Note that this is different from truncate_pagecache(), which
2852 * must keep the partial page. In contrast, we must get rid of
2853 * partial pages.
2854 * @holelen: size of prospective hole in bytes. This will be rounded
2855 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2856 * end of the file.
2857 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2858 * but 0 when invalidating pagecache, don't throw away private data.
2859 */
2860 void unmap_mapping_range(struct address_space *mapping,
2861 loff_t const holebegin, loff_t const holelen, int even_cows)
2862 {
2863 pgoff_t hba = holebegin >> PAGE_SHIFT;
2864 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2865
2866 /* Check for overflow. */
2867 if (sizeof(holelen) > sizeof(hlen)) {
2868 long long holeend =
2869 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2870 if (holeend & ~(long long)ULONG_MAX)
2871 hlen = ULONG_MAX - hba + 1;
2872 }
2873
2874 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2875 }
2876 EXPORT_SYMBOL(unmap_mapping_range);
2877
2878 /*
2879 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2880 * but allow concurrent faults), and pte mapped but not yet locked.
2881 * We return with pte unmapped and unlocked.
2882 *
2883 * We return with the mmap_sem locked or unlocked in the same cases
2884 * as does filemap_fault().
2885 */
2886 vm_fault_t do_swap_page(struct vm_fault *vmf)
2887 {
2888 struct vm_area_struct *vma = vmf->vma;
2889 struct page *page = NULL, *swapcache;
2890 struct mem_cgroup *memcg;
2891 swp_entry_t entry;
2892 pte_t pte;
2893 int locked;
2894 int exclusive = 0;
2895 vm_fault_t ret = 0;
2896
2897 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2898 goto out;
2899
2900 entry = pte_to_swp_entry(vmf->orig_pte);
2901 if (unlikely(non_swap_entry(entry))) {
2902 if (is_migration_entry(entry)) {
2903 migration_entry_wait(vma->vm_mm, vmf->pmd,
2904 vmf->address);
2905 } else if (is_device_private_entry(entry)) {
2906 vmf->page = device_private_entry_to_page(entry);
2907 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2908 } else if (is_hwpoison_entry(entry)) {
2909 ret = VM_FAULT_HWPOISON;
2910 } else {
2911 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2912 ret = VM_FAULT_SIGBUS;
2913 }
2914 goto out;
2915 }
2916
2917
2918 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2919 page = lookup_swap_cache(entry, vma, vmf->address);
2920 swapcache = page;
2921
2922 if (!page) {
2923 struct swap_info_struct *si = swp_swap_info(entry);
2924
2925 if (si->flags & SWP_SYNCHRONOUS_IO &&
2926 __swap_count(entry) == 1) {
2927 /* skip swapcache */
2928 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2929 vmf->address);
2930 if (page) {
2931 __SetPageLocked(page);
2932 __SetPageSwapBacked(page);
2933 set_page_private(page, entry.val);
2934 lru_cache_add_anon(page);
2935 swap_readpage(page, true);
2936 }
2937 } else {
2938 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2939 vmf);
2940 swapcache = page;
2941 }
2942
2943 if (!page) {
2944 /*
2945 * Back out if somebody else faulted in this pte
2946 * while we released the pte lock.
2947 */
2948 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2949 vmf->address, &vmf->ptl);
2950 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2951 ret = VM_FAULT_OOM;
2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2953 goto unlock;
2954 }
2955
2956 /* Had to read the page from swap area: Major fault */
2957 ret = VM_FAULT_MAJOR;
2958 count_vm_event(PGMAJFAULT);
2959 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2960 } else if (PageHWPoison(page)) {
2961 /*
2962 * hwpoisoned dirty swapcache pages are kept for killing
2963 * owner processes (which may be unknown at hwpoison time)
2964 */
2965 ret = VM_FAULT_HWPOISON;
2966 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2967 goto out_release;
2968 }
2969
2970 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2971
2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973 if (!locked) {
2974 ret |= VM_FAULT_RETRY;
2975 goto out_release;
2976 }
2977
2978 /*
2979 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2980 * release the swapcache from under us. The page pin, and pte_same
2981 * test below, are not enough to exclude that. Even if it is still
2982 * swapcache, we need to check that the page's swap has not changed.
2983 */
2984 if (unlikely((!PageSwapCache(page) ||
2985 page_private(page) != entry.val)) && swapcache)
2986 goto out_page;
2987
2988 page = ksm_might_need_to_copy(page, vma, vmf->address);
2989 if (unlikely(!page)) {
2990 ret = VM_FAULT_OOM;
2991 page = swapcache;
2992 goto out_page;
2993 }
2994
2995 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2996 &memcg, false)) {
2997 ret = VM_FAULT_OOM;
2998 goto out_page;
2999 }
3000
3001 /*
3002 * Back out if somebody else already faulted in this pte.
3003 */
3004 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3005 &vmf->ptl);
3006 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3007 goto out_nomap;
3008
3009 if (unlikely(!PageUptodate(page))) {
3010 ret = VM_FAULT_SIGBUS;
3011 goto out_nomap;
3012 }
3013
3014 /*
3015 * The page isn't present yet, go ahead with the fault.
3016 *
3017 * Be careful about the sequence of operations here.
3018 * To get its accounting right, reuse_swap_page() must be called
3019 * while the page is counted on swap but not yet in mapcount i.e.
3020 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3021 * must be called after the swap_free(), or it will never succeed.
3022 */
3023
3024 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3025 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3026 pte = mk_pte(page, vma->vm_page_prot);
3027 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3028 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3029 vmf->flags &= ~FAULT_FLAG_WRITE;
3030 ret |= VM_FAULT_WRITE;
3031 exclusive = RMAP_EXCLUSIVE;
3032 }
3033 flush_icache_page(vma, page);
3034 if (pte_swp_soft_dirty(vmf->orig_pte))
3035 pte = pte_mksoft_dirty(pte);
3036 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3037 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3038 vmf->orig_pte = pte;
3039
3040 /* ksm created a completely new copy */
3041 if (unlikely(page != swapcache && swapcache)) {
3042 page_add_new_anon_rmap(page, vma, vmf->address, false);
3043 mem_cgroup_commit_charge(page, memcg, false, false);
3044 lru_cache_add_active_or_unevictable(page, vma);
3045 } else {
3046 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3047 mem_cgroup_commit_charge(page, memcg, true, false);
3048 activate_page(page);
3049 }
3050
3051 swap_free(entry);
3052 if (mem_cgroup_swap_full(page) ||
3053 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3054 try_to_free_swap(page);
3055 unlock_page(page);
3056 if (page != swapcache && swapcache) {
3057 /*
3058 * Hold the lock to avoid the swap entry to be reused
3059 * until we take the PT lock for the pte_same() check
3060 * (to avoid false positives from pte_same). For
3061 * further safety release the lock after the swap_free
3062 * so that the swap count won't change under a
3063 * parallel locked swapcache.
3064 */
3065 unlock_page(swapcache);
3066 put_page(swapcache);
3067 }
3068
3069 if (vmf->flags & FAULT_FLAG_WRITE) {
3070 ret |= do_wp_page(vmf);
3071 if (ret & VM_FAULT_ERROR)
3072 ret &= VM_FAULT_ERROR;
3073 goto out;
3074 }
3075
3076 /* No need to invalidate - it was non-present before */
3077 update_mmu_cache(vma, vmf->address, vmf->pte);
3078 unlock:
3079 pte_unmap_unlock(vmf->pte, vmf->ptl);
3080 out:
3081 return ret;
3082 out_nomap:
3083 mem_cgroup_cancel_charge(page, memcg, false);
3084 pte_unmap_unlock(vmf->pte, vmf->ptl);
3085 out_page:
3086 unlock_page(page);
3087 out_release:
3088 put_page(page);
3089 if (page != swapcache && swapcache) {
3090 unlock_page(swapcache);
3091 put_page(swapcache);
3092 }
3093 return ret;
3094 }
3095
3096 /*
3097 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3098 * but allow concurrent faults), and pte mapped but not yet locked.
3099 * We return with mmap_sem still held, but pte unmapped and unlocked.
3100 */
3101 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3102 {
3103 struct vm_area_struct *vma = vmf->vma;
3104 struct mem_cgroup *memcg;
3105 struct page *page;
3106 vm_fault_t ret = 0;
3107 pte_t entry;
3108
3109 /* File mapping without ->vm_ops ? */
3110 if (vma->vm_flags & VM_SHARED)
3111 return VM_FAULT_SIGBUS;
3112
3113 /*
3114 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3115 * pte_offset_map() on pmds where a huge pmd might be created
3116 * from a different thread.
3117 *
3118 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3119 * parallel threads are excluded by other means.
3120 *
3121 * Here we only have down_read(mmap_sem).
3122 */
3123 if (pte_alloc(vma->vm_mm, vmf->pmd))
3124 return VM_FAULT_OOM;
3125
3126 /* See the comment in pte_alloc_one_map() */
3127 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3128 return 0;
3129
3130 /* Use the zero-page for reads */
3131 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3132 !mm_forbids_zeropage(vma->vm_mm)) {
3133 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3134 vma->vm_page_prot));
3135 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3136 vmf->address, &vmf->ptl);
3137 if (!pte_none(*vmf->pte))
3138 goto unlock;
3139 ret = check_stable_address_space(vma->vm_mm);
3140 if (ret)
3141 goto unlock;
3142 /* Deliver the page fault to userland, check inside PT lock */
3143 if (userfaultfd_missing(vma)) {
3144 pte_unmap_unlock(vmf->pte, vmf->ptl);
3145 return handle_userfault(vmf, VM_UFFD_MISSING);
3146 }
3147 goto setpte;
3148 }
3149
3150 /* Allocate our own private page. */
3151 if (unlikely(anon_vma_prepare(vma)))
3152 goto oom;
3153 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3154 if (!page)
3155 goto oom;
3156
3157 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3158 false))
3159 goto oom_free_page;
3160
3161 /*
3162 * The memory barrier inside __SetPageUptodate makes sure that
3163 * preceeding stores to the page contents become visible before
3164 * the set_pte_at() write.
3165 */
3166 __SetPageUptodate(page);
3167
3168 entry = mk_pte(page, vma->vm_page_prot);
3169 if (vma->vm_flags & VM_WRITE)
3170 entry = pte_mkwrite(pte_mkdirty(entry));
3171
3172 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3173 &vmf->ptl);
3174 if (!pte_none(*vmf->pte))
3175 goto release;
3176
3177 ret = check_stable_address_space(vma->vm_mm);
3178 if (ret)
3179 goto release;
3180
3181 /* Deliver the page fault to userland, check inside PT lock */
3182 if (userfaultfd_missing(vma)) {
3183 pte_unmap_unlock(vmf->pte, vmf->ptl);
3184 mem_cgroup_cancel_charge(page, memcg, false);
3185 put_page(page);
3186 return handle_userfault(vmf, VM_UFFD_MISSING);
3187 }
3188
3189 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3190 page_add_new_anon_rmap(page, vma, vmf->address, false);
3191 mem_cgroup_commit_charge(page, memcg, false, false);
3192 lru_cache_add_active_or_unevictable(page, vma);
3193 setpte:
3194 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3195
3196 /* No need to invalidate - it was non-present before */
3197 update_mmu_cache(vma, vmf->address, vmf->pte);
3198 unlock:
3199 pte_unmap_unlock(vmf->pte, vmf->ptl);
3200 return ret;
3201 release:
3202 mem_cgroup_cancel_charge(page, memcg, false);
3203 put_page(page);
3204 goto unlock;
3205 oom_free_page:
3206 put_page(page);
3207 oom:
3208 return VM_FAULT_OOM;
3209 }
3210
3211 /*
3212 * The mmap_sem must have been held on entry, and may have been
3213 * released depending on flags and vma->vm_ops->fault() return value.
3214 * See filemap_fault() and __lock_page_retry().
3215 */
3216 static vm_fault_t __do_fault(struct vm_fault *vmf)
3217 {
3218 struct vm_area_struct *vma = vmf->vma;
3219 vm_fault_t ret;
3220
3221 /*
3222 * Preallocate pte before we take page_lock because this might lead to
3223 * deadlocks for memcg reclaim which waits for pages under writeback:
3224 * lock_page(A)
3225 * SetPageWriteback(A)
3226 * unlock_page(A)
3227 * lock_page(B)
3228 * lock_page(B)
3229 * pte_alloc_pne
3230 * shrink_page_list
3231 * wait_on_page_writeback(A)
3232 * SetPageWriteback(B)
3233 * unlock_page(B)
3234 * # flush A, B to clear the writeback
3235 */
3236 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3237 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3238 if (!vmf->prealloc_pte)
3239 return VM_FAULT_OOM;
3240 smp_wmb(); /* See comment in __pte_alloc() */
3241 }
3242
3243 ret = vma->vm_ops->fault(vmf);
3244 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3245 VM_FAULT_DONE_COW)))
3246 return ret;
3247
3248 if (unlikely(PageHWPoison(vmf->page))) {
3249 if (ret & VM_FAULT_LOCKED)
3250 unlock_page(vmf->page);
3251 put_page(vmf->page);
3252 vmf->page = NULL;
3253 return VM_FAULT_HWPOISON;
3254 }
3255
3256 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3257 lock_page(vmf->page);
3258 else
3259 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3260
3261 return ret;
3262 }
3263
3264 /*
3265 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3266 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3267 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3268 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3269 */
3270 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3271 {
3272 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3273 }
3274
3275 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3276 {
3277 struct vm_area_struct *vma = vmf->vma;
3278
3279 if (!pmd_none(*vmf->pmd))
3280 goto map_pte;
3281 if (vmf->prealloc_pte) {
3282 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3283 if (unlikely(!pmd_none(*vmf->pmd))) {
3284 spin_unlock(vmf->ptl);
3285 goto map_pte;
3286 }
3287
3288 mm_inc_nr_ptes(vma->vm_mm);
3289 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3290 spin_unlock(vmf->ptl);
3291 vmf->prealloc_pte = NULL;
3292 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3293 return VM_FAULT_OOM;
3294 }
3295 map_pte:
3296 /*
3297 * If a huge pmd materialized under us just retry later. Use
3298 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3299 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3300 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3301 * running immediately after a huge pmd fault in a different thread of
3302 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3303 * All we have to ensure is that it is a regular pmd that we can walk
3304 * with pte_offset_map() and we can do that through an atomic read in
3305 * C, which is what pmd_trans_unstable() provides.
3306 */
3307 if (pmd_devmap_trans_unstable(vmf->pmd))
3308 return VM_FAULT_NOPAGE;
3309
3310 /*
3311 * At this point we know that our vmf->pmd points to a page of ptes
3312 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3313 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3314 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3315 * be valid and we will re-check to make sure the vmf->pte isn't
3316 * pte_none() under vmf->ptl protection when we return to
3317 * alloc_set_pte().
3318 */
3319 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3320 &vmf->ptl);
3321 return 0;
3322 }
3323
3324 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3325 static void deposit_prealloc_pte(struct vm_fault *vmf)
3326 {
3327 struct vm_area_struct *vma = vmf->vma;
3328
3329 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3330 /*
3331 * We are going to consume the prealloc table,
3332 * count that as nr_ptes.
3333 */
3334 mm_inc_nr_ptes(vma->vm_mm);
3335 vmf->prealloc_pte = NULL;
3336 }
3337
3338 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3339 {
3340 struct vm_area_struct *vma = vmf->vma;
3341 bool write = vmf->flags & FAULT_FLAG_WRITE;
3342 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3343 pmd_t entry;
3344 int i;
3345 vm_fault_t ret;
3346
3347 if (!transhuge_vma_suitable(vma, haddr))
3348 return VM_FAULT_FALLBACK;
3349
3350 ret = VM_FAULT_FALLBACK;
3351 page = compound_head(page);
3352
3353 /*
3354 * Archs like ppc64 need additonal space to store information
3355 * related to pte entry. Use the preallocated table for that.
3356 */
3357 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3358 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3359 if (!vmf->prealloc_pte)
3360 return VM_FAULT_OOM;
3361 smp_wmb(); /* See comment in __pte_alloc() */
3362 }
3363
3364 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3365 if (unlikely(!pmd_none(*vmf->pmd)))
3366 goto out;
3367
3368 for (i = 0; i < HPAGE_PMD_NR; i++)
3369 flush_icache_page(vma, page + i);
3370
3371 entry = mk_huge_pmd(page, vma->vm_page_prot);
3372 if (write)
3373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3374
3375 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3376 page_add_file_rmap(page, true);
3377 /*
3378 * deposit and withdraw with pmd lock held
3379 */
3380 if (arch_needs_pgtable_deposit())
3381 deposit_prealloc_pte(vmf);
3382
3383 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3384
3385 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3386
3387 /* fault is handled */
3388 ret = 0;
3389 count_vm_event(THP_FILE_MAPPED);
3390 out:
3391 spin_unlock(vmf->ptl);
3392 return ret;
3393 }
3394 #else
3395 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3396 {
3397 BUILD_BUG();
3398 return 0;
3399 }
3400 #endif
3401
3402 /**
3403 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3404 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3405 *
3406 * @vmf: fault environment
3407 * @memcg: memcg to charge page (only for private mappings)
3408 * @page: page to map
3409 *
3410 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3411 * return.
3412 *
3413 * Target users are page handler itself and implementations of
3414 * vm_ops->map_pages.
3415 *
3416 * Return: %0 on success, %VM_FAULT_ code in case of error.
3417 */
3418 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3419 struct page *page)
3420 {
3421 struct vm_area_struct *vma = vmf->vma;
3422 bool write = vmf->flags & FAULT_FLAG_WRITE;
3423 pte_t entry;
3424 vm_fault_t ret;
3425
3426 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3427 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3428 /* THP on COW? */
3429 VM_BUG_ON_PAGE(memcg, page);
3430
3431 ret = do_set_pmd(vmf, page);
3432 if (ret != VM_FAULT_FALLBACK)
3433 return ret;
3434 }
3435
3436 if (!vmf->pte) {
3437 ret = pte_alloc_one_map(vmf);
3438 if (ret)
3439 return ret;
3440 }
3441
3442 /* Re-check under ptl */
3443 if (unlikely(!pte_none(*vmf->pte)))
3444 return VM_FAULT_NOPAGE;
3445
3446 flush_icache_page(vma, page);
3447 entry = mk_pte(page, vma->vm_page_prot);
3448 if (write)
3449 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3450 /* copy-on-write page */
3451 if (write && !(vma->vm_flags & VM_SHARED)) {
3452 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3453 page_add_new_anon_rmap(page, vma, vmf->address, false);
3454 mem_cgroup_commit_charge(page, memcg, false, false);
3455 lru_cache_add_active_or_unevictable(page, vma);
3456 } else {
3457 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3458 page_add_file_rmap(page, false);
3459 }
3460 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3461
3462 /* no need to invalidate: a not-present page won't be cached */
3463 update_mmu_cache(vma, vmf->address, vmf->pte);
3464
3465 return 0;
3466 }
3467
3468
3469 /**
3470 * finish_fault - finish page fault once we have prepared the page to fault
3471 *
3472 * @vmf: structure describing the fault
3473 *
3474 * This function handles all that is needed to finish a page fault once the
3475 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3476 * given page, adds reverse page mapping, handles memcg charges and LRU
3477 * addition.
3478 *
3479 * The function expects the page to be locked and on success it consumes a
3480 * reference of a page being mapped (for the PTE which maps it).
3481 *
3482 * Return: %0 on success, %VM_FAULT_ code in case of error.
3483 */
3484 vm_fault_t finish_fault(struct vm_fault *vmf)
3485 {
3486 struct page *page;
3487 vm_fault_t ret = 0;
3488
3489 /* Did we COW the page? */
3490 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3491 !(vmf->vma->vm_flags & VM_SHARED))
3492 page = vmf->cow_page;
3493 else
3494 page = vmf->page;
3495
3496 /*
3497 * check even for read faults because we might have lost our CoWed
3498 * page
3499 */
3500 if (!(vmf->vma->vm_flags & VM_SHARED))
3501 ret = check_stable_address_space(vmf->vma->vm_mm);
3502 if (!ret)
3503 ret = alloc_set_pte(vmf, vmf->memcg, page);
3504 if (vmf->pte)
3505 pte_unmap_unlock(vmf->pte, vmf->ptl);
3506 return ret;
3507 }
3508
3509 static unsigned long fault_around_bytes __read_mostly =
3510 rounddown_pow_of_two(65536);
3511
3512 #ifdef CONFIG_DEBUG_FS
3513 static int fault_around_bytes_get(void *data, u64 *val)
3514 {
3515 *val = fault_around_bytes;
3516 return 0;
3517 }
3518
3519 /*
3520 * fault_around_bytes must be rounded down to the nearest page order as it's
3521 * what do_fault_around() expects to see.
3522 */
3523 static int fault_around_bytes_set(void *data, u64 val)
3524 {
3525 if (val / PAGE_SIZE > PTRS_PER_PTE)
3526 return -EINVAL;
3527 if (val > PAGE_SIZE)
3528 fault_around_bytes = rounddown_pow_of_two(val);
3529 else
3530 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3531 return 0;
3532 }
3533 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3534 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3535
3536 static int __init fault_around_debugfs(void)
3537 {
3538 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3539 &fault_around_bytes_fops);
3540 return 0;
3541 }
3542 late_initcall(fault_around_debugfs);
3543 #endif
3544
3545 /*
3546 * do_fault_around() tries to map few pages around the fault address. The hope
3547 * is that the pages will be needed soon and this will lower the number of
3548 * faults to handle.
3549 *
3550 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3551 * not ready to be mapped: not up-to-date, locked, etc.
3552 *
3553 * This function is called with the page table lock taken. In the split ptlock
3554 * case the page table lock only protects only those entries which belong to
3555 * the page table corresponding to the fault address.
3556 *
3557 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3558 * only once.
3559 *
3560 * fault_around_bytes defines how many bytes we'll try to map.
3561 * do_fault_around() expects it to be set to a power of two less than or equal
3562 * to PTRS_PER_PTE.
3563 *
3564 * The virtual address of the area that we map is naturally aligned to
3565 * fault_around_bytes rounded down to the machine page size
3566 * (and therefore to page order). This way it's easier to guarantee
3567 * that we don't cross page table boundaries.
3568 */
3569 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3570 {
3571 unsigned long address = vmf->address, nr_pages, mask;
3572 pgoff_t start_pgoff = vmf->pgoff;
3573 pgoff_t end_pgoff;
3574 int off;
3575 vm_fault_t ret = 0;
3576
3577 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3578 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3579
3580 vmf->address = max(address & mask, vmf->vma->vm_start);
3581 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3582 start_pgoff -= off;
3583
3584 /*
3585 * end_pgoff is either the end of the page table, the end of
3586 * the vma or nr_pages from start_pgoff, depending what is nearest.
3587 */
3588 end_pgoff = start_pgoff -
3589 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3590 PTRS_PER_PTE - 1;
3591 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3592 start_pgoff + nr_pages - 1);
3593
3594 if (pmd_none(*vmf->pmd)) {
3595 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3596 if (!vmf->prealloc_pte)
3597 goto out;
3598 smp_wmb(); /* See comment in __pte_alloc() */
3599 }
3600
3601 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3602
3603 /* Huge page is mapped? Page fault is solved */
3604 if (pmd_trans_huge(*vmf->pmd)) {
3605 ret = VM_FAULT_NOPAGE;
3606 goto out;
3607 }
3608
3609 /* ->map_pages() haven't done anything useful. Cold page cache? */
3610 if (!vmf->pte)
3611 goto out;
3612
3613 /* check if the page fault is solved */
3614 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3615 if (!pte_none(*vmf->pte))
3616 ret = VM_FAULT_NOPAGE;
3617 pte_unmap_unlock(vmf->pte, vmf->ptl);
3618 out:
3619 vmf->address = address;
3620 vmf->pte = NULL;
3621 return ret;
3622 }
3623
3624 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3625 {
3626 struct vm_area_struct *vma = vmf->vma;
3627 vm_fault_t ret = 0;
3628
3629 /*
3630 * Let's call ->map_pages() first and use ->fault() as fallback
3631 * if page by the offset is not ready to be mapped (cold cache or
3632 * something).
3633 */
3634 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3635 ret = do_fault_around(vmf);
3636 if (ret)
3637 return ret;
3638 }
3639
3640 ret = __do_fault(vmf);
3641 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3642 return ret;
3643
3644 ret |= finish_fault(vmf);
3645 unlock_page(vmf->page);
3646 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3647 put_page(vmf->page);
3648 return ret;
3649 }
3650
3651 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3652 {
3653 struct vm_area_struct *vma = vmf->vma;
3654 vm_fault_t ret;
3655
3656 if (unlikely(anon_vma_prepare(vma)))
3657 return VM_FAULT_OOM;
3658
3659 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3660 if (!vmf->cow_page)
3661 return VM_FAULT_OOM;
3662
3663 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3664 &vmf->memcg, false)) {
3665 put_page(vmf->cow_page);
3666 return VM_FAULT_OOM;
3667 }
3668
3669 ret = __do_fault(vmf);
3670 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3671 goto uncharge_out;
3672 if (ret & VM_FAULT_DONE_COW)
3673 return ret;
3674
3675 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3676 __SetPageUptodate(vmf->cow_page);
3677
3678 ret |= finish_fault(vmf);
3679 unlock_page(vmf->page);
3680 put_page(vmf->page);
3681 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3682 goto uncharge_out;
3683 return ret;
3684 uncharge_out:
3685 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3686 put_page(vmf->cow_page);
3687 return ret;
3688 }
3689
3690 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3691 {
3692 struct vm_area_struct *vma = vmf->vma;
3693 vm_fault_t ret, tmp;
3694
3695 ret = __do_fault(vmf);
3696 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3697 return ret;
3698
3699 /*
3700 * Check if the backing address space wants to know that the page is
3701 * about to become writable
3702 */
3703 if (vma->vm_ops->page_mkwrite) {
3704 unlock_page(vmf->page);
3705 tmp = do_page_mkwrite(vmf);
3706 if (unlikely(!tmp ||
3707 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3708 put_page(vmf->page);
3709 return tmp;
3710 }
3711 }
3712
3713 ret |= finish_fault(vmf);
3714 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3715 VM_FAULT_RETRY))) {
3716 unlock_page(vmf->page);
3717 put_page(vmf->page);
3718 return ret;
3719 }
3720
3721 ret |= fault_dirty_shared_page(vmf);
3722 return ret;
3723 }
3724
3725 /*
3726 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3727 * but allow concurrent faults).
3728 * The mmap_sem may have been released depending on flags and our
3729 * return value. See filemap_fault() and __lock_page_or_retry().
3730 * If mmap_sem is released, vma may become invalid (for example
3731 * by other thread calling munmap()).
3732 */
3733 static vm_fault_t do_fault(struct vm_fault *vmf)
3734 {
3735 struct vm_area_struct *vma = vmf->vma;
3736 struct mm_struct *vm_mm = vma->vm_mm;
3737 vm_fault_t ret;
3738
3739 /*
3740 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3741 */
3742 if (!vma->vm_ops->fault) {
3743 /*
3744 * If we find a migration pmd entry or a none pmd entry, which
3745 * should never happen, return SIGBUS
3746 */
3747 if (unlikely(!pmd_present(*vmf->pmd)))
3748 ret = VM_FAULT_SIGBUS;
3749 else {
3750 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3751 vmf->pmd,
3752 vmf->address,
3753 &vmf->ptl);
3754 /*
3755 * Make sure this is not a temporary clearing of pte
3756 * by holding ptl and checking again. A R/M/W update
3757 * of pte involves: take ptl, clearing the pte so that
3758 * we don't have concurrent modification by hardware
3759 * followed by an update.
3760 */
3761 if (unlikely(pte_none(*vmf->pte)))
3762 ret = VM_FAULT_SIGBUS;
3763 else
3764 ret = VM_FAULT_NOPAGE;
3765
3766 pte_unmap_unlock(vmf->pte, vmf->ptl);
3767 }
3768 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3769 ret = do_read_fault(vmf);
3770 else if (!(vma->vm_flags & VM_SHARED))
3771 ret = do_cow_fault(vmf);
3772 else
3773 ret = do_shared_fault(vmf);
3774
3775 /* preallocated pagetable is unused: free it */
3776 if (vmf->prealloc_pte) {
3777 pte_free(vm_mm, vmf->prealloc_pte);
3778 vmf->prealloc_pte = NULL;
3779 }
3780 return ret;
3781 }
3782
3783 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3784 unsigned long addr, int page_nid,
3785 int *flags)
3786 {
3787 get_page(page);
3788
3789 count_vm_numa_event(NUMA_HINT_FAULTS);
3790 if (page_nid == numa_node_id()) {
3791 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3792 *flags |= TNF_FAULT_LOCAL;
3793 }
3794
3795 return mpol_misplaced(page, vma, addr);
3796 }
3797
3798 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3799 {
3800 struct vm_area_struct *vma = vmf->vma;
3801 struct page *page = NULL;
3802 int page_nid = NUMA_NO_NODE;
3803 int last_cpupid;
3804 int target_nid;
3805 bool migrated = false;
3806 pte_t pte, old_pte;
3807 bool was_writable = pte_savedwrite(vmf->orig_pte);
3808 int flags = 0;
3809
3810 /*
3811 * The "pte" at this point cannot be used safely without
3812 * validation through pte_unmap_same(). It's of NUMA type but
3813 * the pfn may be screwed if the read is non atomic.
3814 */
3815 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3816 spin_lock(vmf->ptl);
3817 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3818 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 goto out;
3820 }
3821
3822 /*
3823 * Make it present again, Depending on how arch implementes non
3824 * accessible ptes, some can allow access by kernel mode.
3825 */
3826 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3827 pte = pte_modify(old_pte, vma->vm_page_prot);
3828 pte = pte_mkyoung(pte);
3829 if (was_writable)
3830 pte = pte_mkwrite(pte);
3831 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3832 update_mmu_cache(vma, vmf->address, vmf->pte);
3833
3834 page = vm_normal_page(vma, vmf->address, pte);
3835 if (!page) {
3836 pte_unmap_unlock(vmf->pte, vmf->ptl);
3837 return 0;
3838 }
3839
3840 /* TODO: handle PTE-mapped THP */
3841 if (PageCompound(page)) {
3842 pte_unmap_unlock(vmf->pte, vmf->ptl);
3843 return 0;
3844 }
3845
3846 /*
3847 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3848 * much anyway since they can be in shared cache state. This misses
3849 * the case where a mapping is writable but the process never writes
3850 * to it but pte_write gets cleared during protection updates and
3851 * pte_dirty has unpredictable behaviour between PTE scan updates,
3852 * background writeback, dirty balancing and application behaviour.
3853 */
3854 if (!pte_write(pte))
3855 flags |= TNF_NO_GROUP;
3856
3857 /*
3858 * Flag if the page is shared between multiple address spaces. This
3859 * is later used when determining whether to group tasks together
3860 */
3861 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3862 flags |= TNF_SHARED;
3863
3864 last_cpupid = page_cpupid_last(page);
3865 page_nid = page_to_nid(page);
3866 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3867 &flags);
3868 pte_unmap_unlock(vmf->pte, vmf->ptl);
3869 if (target_nid == NUMA_NO_NODE) {
3870 put_page(page);
3871 goto out;
3872 }
3873
3874 /* Migrate to the requested node */
3875 migrated = migrate_misplaced_page(page, vma, target_nid);
3876 if (migrated) {
3877 page_nid = target_nid;
3878 flags |= TNF_MIGRATED;
3879 } else
3880 flags |= TNF_MIGRATE_FAIL;
3881
3882 out:
3883 if (page_nid != NUMA_NO_NODE)
3884 task_numa_fault(last_cpupid, page_nid, 1, flags);
3885 return 0;
3886 }
3887
3888 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3889 {
3890 if (vma_is_anonymous(vmf->vma))
3891 return do_huge_pmd_anonymous_page(vmf);
3892 if (vmf->vma->vm_ops->huge_fault)
3893 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3894 return VM_FAULT_FALLBACK;
3895 }
3896
3897 /* `inline' is required to avoid gcc 4.1.2 build error */
3898 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3899 {
3900 if (vma_is_anonymous(vmf->vma))
3901 return do_huge_pmd_wp_page(vmf, orig_pmd);
3902 if (vmf->vma->vm_ops->huge_fault)
3903 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3904
3905 /* COW handled on pte level: split pmd */
3906 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3907 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3908
3909 return VM_FAULT_FALLBACK;
3910 }
3911
3912 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3913 {
3914 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3915 }
3916
3917 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3927 }
3928
3929 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3930 {
3931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932 /* No support for anonymous transparent PUD pages yet */
3933 if (vma_is_anonymous(vmf->vma))
3934 return VM_FAULT_FALLBACK;
3935 if (vmf->vma->vm_ops->huge_fault)
3936 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3938 return VM_FAULT_FALLBACK;
3939 }
3940
3941 /*
3942 * These routines also need to handle stuff like marking pages dirty
3943 * and/or accessed for architectures that don't do it in hardware (most
3944 * RISC architectures). The early dirtying is also good on the i386.
3945 *
3946 * There is also a hook called "update_mmu_cache()" that architectures
3947 * with external mmu caches can use to update those (ie the Sparc or
3948 * PowerPC hashed page tables that act as extended TLBs).
3949 *
3950 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3951 * concurrent faults).
3952 *
3953 * The mmap_sem may have been released depending on flags and our return value.
3954 * See filemap_fault() and __lock_page_or_retry().
3955 */
3956 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3957 {
3958 pte_t entry;
3959
3960 if (unlikely(pmd_none(*vmf->pmd))) {
3961 /*
3962 * Leave __pte_alloc() until later: because vm_ops->fault may
3963 * want to allocate huge page, and if we expose page table
3964 * for an instant, it will be difficult to retract from
3965 * concurrent faults and from rmap lookups.
3966 */
3967 vmf->pte = NULL;
3968 } else {
3969 /* See comment in pte_alloc_one_map() */
3970 if (pmd_devmap_trans_unstable(vmf->pmd))
3971 return 0;
3972 /*
3973 * A regular pmd is established and it can't morph into a huge
3974 * pmd from under us anymore at this point because we hold the
3975 * mmap_sem read mode and khugepaged takes it in write mode.
3976 * So now it's safe to run pte_offset_map().
3977 */
3978 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3979 vmf->orig_pte = *vmf->pte;
3980
3981 /*
3982 * some architectures can have larger ptes than wordsize,
3983 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3984 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3985 * accesses. The code below just needs a consistent view
3986 * for the ifs and we later double check anyway with the
3987 * ptl lock held. So here a barrier will do.
3988 */
3989 barrier();
3990 if (pte_none(vmf->orig_pte)) {
3991 pte_unmap(vmf->pte);
3992 vmf->pte = NULL;
3993 }
3994 }
3995
3996 if (!vmf->pte) {
3997 if (vma_is_anonymous(vmf->vma))
3998 return do_anonymous_page(vmf);
3999 else
4000 return do_fault(vmf);
4001 }
4002
4003 if (!pte_present(vmf->orig_pte))
4004 return do_swap_page(vmf);
4005
4006 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4007 return do_numa_page(vmf);
4008
4009 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4010 spin_lock(vmf->ptl);
4011 entry = vmf->orig_pte;
4012 if (unlikely(!pte_same(*vmf->pte, entry)))
4013 goto unlock;
4014 if (vmf->flags & FAULT_FLAG_WRITE) {
4015 if (!pte_write(entry))
4016 return do_wp_page(vmf);
4017 entry = pte_mkdirty(entry);
4018 }
4019 entry = pte_mkyoung(entry);
4020 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4021 vmf->flags & FAULT_FLAG_WRITE)) {
4022 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4023 } else {
4024 /*
4025 * This is needed only for protection faults but the arch code
4026 * is not yet telling us if this is a protection fault or not.
4027 * This still avoids useless tlb flushes for .text page faults
4028 * with threads.
4029 */
4030 if (vmf->flags & FAULT_FLAG_WRITE)
4031 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4032 }
4033 unlock:
4034 pte_unmap_unlock(vmf->pte, vmf->ptl);
4035 return 0;
4036 }
4037
4038 /*
4039 * By the time we get here, we already hold the mm semaphore
4040 *
4041 * The mmap_sem may have been released depending on flags and our
4042 * return value. See filemap_fault() and __lock_page_or_retry().
4043 */
4044 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4045 unsigned long address, unsigned int flags)
4046 {
4047 struct vm_fault vmf = {
4048 .vma = vma,
4049 .address = address & PAGE_MASK,
4050 .flags = flags,
4051 .pgoff = linear_page_index(vma, address),
4052 .gfp_mask = __get_fault_gfp_mask(vma),
4053 };
4054 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4055 struct mm_struct *mm = vma->vm_mm;
4056 pgd_t *pgd;
4057 p4d_t *p4d;
4058 vm_fault_t ret;
4059
4060 pgd = pgd_offset(mm, address);
4061 p4d = p4d_alloc(mm, pgd, address);
4062 if (!p4d)
4063 return VM_FAULT_OOM;
4064
4065 vmf.pud = pud_alloc(mm, p4d, address);
4066 if (!vmf.pud)
4067 return VM_FAULT_OOM;
4068 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4069 ret = create_huge_pud(&vmf);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 pud_t orig_pud = *vmf.pud;
4074
4075 barrier();
4076 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4077
4078 /* NUMA case for anonymous PUDs would go here */
4079
4080 if (dirty && !pud_write(orig_pud)) {
4081 ret = wp_huge_pud(&vmf, orig_pud);
4082 if (!(ret & VM_FAULT_FALLBACK))
4083 return ret;
4084 } else {
4085 huge_pud_set_accessed(&vmf, orig_pud);
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4092 if (!vmf.pmd)
4093 return VM_FAULT_OOM;
4094 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4095 ret = create_huge_pmd(&vmf);
4096 if (!(ret & VM_FAULT_FALLBACK))
4097 return ret;
4098 } else {
4099 pmd_t orig_pmd = *vmf.pmd;
4100
4101 barrier();
4102 if (unlikely(is_swap_pmd(orig_pmd))) {
4103 VM_BUG_ON(thp_migration_supported() &&
4104 !is_pmd_migration_entry(orig_pmd));
4105 if (is_pmd_migration_entry(orig_pmd))
4106 pmd_migration_entry_wait(mm, vmf.pmd);
4107 return 0;
4108 }
4109 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4110 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4111 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4112
4113 if (dirty && !pmd_write(orig_pmd)) {
4114 ret = wp_huge_pmd(&vmf, orig_pmd);
4115 if (!(ret & VM_FAULT_FALLBACK))
4116 return ret;
4117 } else {
4118 huge_pmd_set_accessed(&vmf, orig_pmd);
4119 return 0;
4120 }
4121 }
4122 }
4123
4124 return handle_pte_fault(&vmf);
4125 }
4126
4127 /*
4128 * By the time we get here, we already hold the mm semaphore
4129 *
4130 * The mmap_sem may have been released depending on flags and our
4131 * return value. See filemap_fault() and __lock_page_or_retry().
4132 */
4133 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4134 unsigned int flags)
4135 {
4136 vm_fault_t ret;
4137
4138 __set_current_state(TASK_RUNNING);
4139
4140 count_vm_event(PGFAULT);
4141 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4142
4143 /* do counter updates before entering really critical section. */
4144 check_sync_rss_stat(current);
4145
4146 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4147 flags & FAULT_FLAG_INSTRUCTION,
4148 flags & FAULT_FLAG_REMOTE))
4149 return VM_FAULT_SIGSEGV;
4150
4151 /*
4152 * Enable the memcg OOM handling for faults triggered in user
4153 * space. Kernel faults are handled more gracefully.
4154 */
4155 if (flags & FAULT_FLAG_USER)
4156 mem_cgroup_enter_user_fault();
4157
4158 if (unlikely(is_vm_hugetlb_page(vma)))
4159 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4160 else
4161 ret = __handle_mm_fault(vma, address, flags);
4162
4163 if (flags & FAULT_FLAG_USER) {
4164 mem_cgroup_exit_user_fault();
4165 /*
4166 * The task may have entered a memcg OOM situation but
4167 * if the allocation error was handled gracefully (no
4168 * VM_FAULT_OOM), there is no need to kill anything.
4169 * Just clean up the OOM state peacefully.
4170 */
4171 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4172 mem_cgroup_oom_synchronize(false);
4173 }
4174
4175 return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(handle_mm_fault);
4178
4179 #ifndef __PAGETABLE_P4D_FOLDED
4180 /*
4181 * Allocate p4d page table.
4182 * We've already handled the fast-path in-line.
4183 */
4184 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4185 {
4186 p4d_t *new = p4d_alloc_one(mm, address);
4187 if (!new)
4188 return -ENOMEM;
4189
4190 smp_wmb(); /* See comment in __pte_alloc */
4191
4192 spin_lock(&mm->page_table_lock);
4193 if (pgd_present(*pgd)) /* Another has populated it */
4194 p4d_free(mm, new);
4195 else
4196 pgd_populate(mm, pgd, new);
4197 spin_unlock(&mm->page_table_lock);
4198 return 0;
4199 }
4200 #endif /* __PAGETABLE_P4D_FOLDED */
4201
4202 #ifndef __PAGETABLE_PUD_FOLDED
4203 /*
4204 * Allocate page upper directory.
4205 * We've already handled the fast-path in-line.
4206 */
4207 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4208 {
4209 pud_t *new = pud_alloc_one(mm, address);
4210 if (!new)
4211 return -ENOMEM;
4212
4213 smp_wmb(); /* See comment in __pte_alloc */
4214
4215 spin_lock(&mm->page_table_lock);
4216 #ifndef __ARCH_HAS_5LEVEL_HACK
4217 if (!p4d_present(*p4d)) {
4218 mm_inc_nr_puds(mm);
4219 p4d_populate(mm, p4d, new);
4220 } else /* Another has populated it */
4221 pud_free(mm, new);
4222 #else
4223 if (!pgd_present(*p4d)) {
4224 mm_inc_nr_puds(mm);
4225 pgd_populate(mm, p4d, new);
4226 } else /* Another has populated it */
4227 pud_free(mm, new);
4228 #endif /* __ARCH_HAS_5LEVEL_HACK */
4229 spin_unlock(&mm->page_table_lock);
4230 return 0;
4231 }
4232 #endif /* __PAGETABLE_PUD_FOLDED */
4233
4234 #ifndef __PAGETABLE_PMD_FOLDED
4235 /*
4236 * Allocate page middle directory.
4237 * We've already handled the fast-path in-line.
4238 */
4239 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4240 {
4241 spinlock_t *ptl;
4242 pmd_t *new = pmd_alloc_one(mm, address);
4243 if (!new)
4244 return -ENOMEM;
4245
4246 smp_wmb(); /* See comment in __pte_alloc */
4247
4248 ptl = pud_lock(mm, pud);
4249 #ifndef __ARCH_HAS_4LEVEL_HACK
4250 if (!pud_present(*pud)) {
4251 mm_inc_nr_pmds(mm);
4252 pud_populate(mm, pud, new);
4253 } else /* Another has populated it */
4254 pmd_free(mm, new);
4255 #else
4256 if (!pgd_present(*pud)) {
4257 mm_inc_nr_pmds(mm);
4258 pgd_populate(mm, pud, new);
4259 } else /* Another has populated it */
4260 pmd_free(mm, new);
4261 #endif /* __ARCH_HAS_4LEVEL_HACK */
4262 spin_unlock(ptl);
4263 return 0;
4264 }
4265 #endif /* __PAGETABLE_PMD_FOLDED */
4266
4267 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4268 struct mmu_notifier_range *range, pte_t **ptepp,
4269 pmd_t **pmdpp, spinlock_t **ptlp)
4270 {
4271 pgd_t *pgd;
4272 p4d_t *p4d;
4273 pud_t *pud;
4274 pmd_t *pmd;
4275 pte_t *ptep;
4276
4277 pgd = pgd_offset(mm, address);
4278 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4279 goto out;
4280
4281 p4d = p4d_offset(pgd, address);
4282 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4283 goto out;
4284
4285 pud = pud_offset(p4d, address);
4286 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4287 goto out;
4288
4289 pmd = pmd_offset(pud, address);
4290 VM_BUG_ON(pmd_trans_huge(*pmd));
4291
4292 if (pmd_huge(*pmd)) {
4293 if (!pmdpp)
4294 goto out;
4295
4296 if (range) {
4297 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4298 NULL, mm, address & PMD_MASK,
4299 (address & PMD_MASK) + PMD_SIZE);
4300 mmu_notifier_invalidate_range_start(range);
4301 }
4302 *ptlp = pmd_lock(mm, pmd);
4303 if (pmd_huge(*pmd)) {
4304 *pmdpp = pmd;
4305 return 0;
4306 }
4307 spin_unlock(*ptlp);
4308 if (range)
4309 mmu_notifier_invalidate_range_end(range);
4310 }
4311
4312 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4313 goto out;
4314
4315 if (range) {
4316 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4317 address & PAGE_MASK,
4318 (address & PAGE_MASK) + PAGE_SIZE);
4319 mmu_notifier_invalidate_range_start(range);
4320 }
4321 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4322 if (!pte_present(*ptep))
4323 goto unlock;
4324 *ptepp = ptep;
4325 return 0;
4326 unlock:
4327 pte_unmap_unlock(ptep, *ptlp);
4328 if (range)
4329 mmu_notifier_invalidate_range_end(range);
4330 out:
4331 return -EINVAL;
4332 }
4333
4334 /**
4335 * follow_pte - look up PTE at a user virtual address
4336 * @mm: the mm_struct of the target address space
4337 * @address: user virtual address
4338 * @ptepp: location to store found PTE
4339 * @ptlp: location to store the lock for the PTE
4340 *
4341 * On a successful return, the pointer to the PTE is stored in @ptepp;
4342 * the corresponding lock is taken and its location is stored in @ptlp.
4343 * The contents of the PTE are only stable until @ptlp is released;
4344 * any further use, if any, must be protected against invalidation
4345 * with MMU notifiers.
4346 *
4347 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4348 * should be taken for read.
4349 *
4350 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4351 * it is not a good general-purpose API.
4352 *
4353 * Return: zero on success, -ve otherwise.
4354 */
4355 int follow_pte(struct mm_struct *mm, unsigned long address,
4356 pte_t **ptepp, spinlock_t **ptlp)
4357 {
4358 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4359 }
4360 EXPORT_SYMBOL_GPL(follow_pte);
4361
4362 /**
4363 * follow_pfn - look up PFN at a user virtual address
4364 * @vma: memory mapping
4365 * @address: user virtual address
4366 * @pfn: location to store found PFN
4367 *
4368 * Only IO mappings and raw PFN mappings are allowed.
4369 *
4370 * This function does not allow the caller to read the permissions
4371 * of the PTE. Do not use it.
4372 *
4373 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4374 */
4375 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4376 unsigned long *pfn)
4377 {
4378 int ret = -EINVAL;
4379 spinlock_t *ptl;
4380 pte_t *ptep;
4381
4382 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4383 return ret;
4384
4385 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4386 if (ret)
4387 return ret;
4388 *pfn = pte_pfn(*ptep);
4389 pte_unmap_unlock(ptep, ptl);
4390 return 0;
4391 }
4392 EXPORT_SYMBOL(follow_pfn);
4393
4394 #ifdef CONFIG_HAVE_IOREMAP_PROT
4395 int follow_phys(struct vm_area_struct *vma,
4396 unsigned long address, unsigned int flags,
4397 unsigned long *prot, resource_size_t *phys)
4398 {
4399 int ret = -EINVAL;
4400 pte_t *ptep, pte;
4401 spinlock_t *ptl;
4402
4403 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4404 goto out;
4405
4406 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4407 goto out;
4408 pte = *ptep;
4409
4410 if ((flags & FOLL_WRITE) && !pte_write(pte))
4411 goto unlock;
4412
4413 *prot = pgprot_val(pte_pgprot(pte));
4414 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4415
4416 ret = 0;
4417 unlock:
4418 pte_unmap_unlock(ptep, ptl);
4419 out:
4420 return ret;
4421 }
4422
4423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4424 void *buf, int len, int write)
4425 {
4426 resource_size_t phys_addr;
4427 unsigned long prot = 0;
4428 void __iomem *maddr;
4429 int offset = addr & (PAGE_SIZE-1);
4430
4431 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4432 return -EINVAL;
4433
4434 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4435 if (!maddr)
4436 return -ENOMEM;
4437
4438 if (write)
4439 memcpy_toio(maddr + offset, buf, len);
4440 else
4441 memcpy_fromio(buf, maddr + offset, len);
4442 iounmap(maddr);
4443
4444 return len;
4445 }
4446 EXPORT_SYMBOL_GPL(generic_access_phys);
4447 #endif
4448
4449 /*
4450 * Access another process' address space as given in mm. If non-NULL, use the
4451 * given task for page fault accounting.
4452 */
4453 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4454 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4455 {
4456 struct vm_area_struct *vma;
4457 void *old_buf = buf;
4458 int write = gup_flags & FOLL_WRITE;
4459
4460 if (down_read_killable(&mm->mmap_sem))
4461 return 0;
4462
4463 /* ignore errors, just check how much was successfully transferred */
4464 while (len) {
4465 int bytes, ret, offset;
4466 void *maddr;
4467 struct page *page = NULL;
4468
4469 ret = get_user_pages_remote(tsk, mm, addr, 1,
4470 gup_flags, &page, &vma, NULL);
4471 if (ret <= 0) {
4472 #ifndef CONFIG_HAVE_IOREMAP_PROT
4473 break;
4474 #else
4475 /*
4476 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4477 * we can access using slightly different code.
4478 */
4479 vma = find_vma(mm, addr);
4480 if (!vma || vma->vm_start > addr)
4481 break;
4482 if (vma->vm_ops && vma->vm_ops->access)
4483 ret = vma->vm_ops->access(vma, addr, buf,
4484 len, write);
4485 if (ret <= 0)
4486 break;
4487 bytes = ret;
4488 #endif
4489 } else {
4490 bytes = len;
4491 offset = addr & (PAGE_SIZE-1);
4492 if (bytes > PAGE_SIZE-offset)
4493 bytes = PAGE_SIZE-offset;
4494
4495 maddr = kmap(page);
4496 if (write) {
4497 copy_to_user_page(vma, page, addr,
4498 maddr + offset, buf, bytes);
4499 set_page_dirty_lock(page);
4500 } else {
4501 copy_from_user_page(vma, page, addr,
4502 buf, maddr + offset, bytes);
4503 }
4504 kunmap(page);
4505 put_page(page);
4506 }
4507 len -= bytes;
4508 buf += bytes;
4509 addr += bytes;
4510 }
4511 up_read(&mm->mmap_sem);
4512
4513 return buf - old_buf;
4514 }
4515
4516 /**
4517 * access_remote_vm - access another process' address space
4518 * @mm: the mm_struct of the target address space
4519 * @addr: start address to access
4520 * @buf: source or destination buffer
4521 * @len: number of bytes to transfer
4522 * @gup_flags: flags modifying lookup behaviour
4523 *
4524 * The caller must hold a reference on @mm.
4525 *
4526 * Return: number of bytes copied from source to destination.
4527 */
4528 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4529 void *buf, int len, unsigned int gup_flags)
4530 {
4531 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4532 }
4533
4534 /*
4535 * Access another process' address space.
4536 * Source/target buffer must be kernel space,
4537 * Do not walk the page table directly, use get_user_pages
4538 */
4539 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4540 void *buf, int len, unsigned int gup_flags)
4541 {
4542 struct mm_struct *mm;
4543 int ret;
4544
4545 mm = get_task_mm(tsk);
4546 if (!mm)
4547 return 0;
4548
4549 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4550
4551 mmput(mm);
4552
4553 return ret;
4554 }
4555 EXPORT_SYMBOL_GPL(access_process_vm);
4556
4557 /*
4558 * Print the name of a VMA.
4559 */
4560 void print_vma_addr(char *prefix, unsigned long ip)
4561 {
4562 struct mm_struct *mm = current->mm;
4563 struct vm_area_struct *vma;
4564
4565 /*
4566 * we might be running from an atomic context so we cannot sleep
4567 */
4568 if (!down_read_trylock(&mm->mmap_sem))
4569 return;
4570
4571 vma = find_vma(mm, ip);
4572 if (vma && vma->vm_file) {
4573 struct file *f = vma->vm_file;
4574 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4575 if (buf) {
4576 char *p;
4577
4578 p = file_path(f, buf, PAGE_SIZE);
4579 if (IS_ERR(p))
4580 p = "?";
4581 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4582 vma->vm_start,
4583 vma->vm_end - vma->vm_start);
4584 free_page((unsigned long)buf);
4585 }
4586 }
4587 up_read(&mm->mmap_sem);
4588 }
4589
4590 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4591 void __might_fault(const char *file, int line)
4592 {
4593 /*
4594 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4595 * holding the mmap_sem, this is safe because kernel memory doesn't
4596 * get paged out, therefore we'll never actually fault, and the
4597 * below annotations will generate false positives.
4598 */
4599 if (uaccess_kernel())
4600 return;
4601 if (pagefault_disabled())
4602 return;
4603 __might_sleep(file, line, 0);
4604 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4605 if (current->mm)
4606 might_lock_read(&current->mm->mmap_sem);
4607 #endif
4608 }
4609 EXPORT_SYMBOL(__might_fault);
4610 #endif
4611
4612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4613 /*
4614 * Process all subpages of the specified huge page with the specified
4615 * operation. The target subpage will be processed last to keep its
4616 * cache lines hot.
4617 */
4618 static inline void process_huge_page(
4619 unsigned long addr_hint, unsigned int pages_per_huge_page,
4620 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4621 void *arg)
4622 {
4623 int i, n, base, l;
4624 unsigned long addr = addr_hint &
4625 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4626
4627 /* Process target subpage last to keep its cache lines hot */
4628 might_sleep();
4629 n = (addr_hint - addr) / PAGE_SIZE;
4630 if (2 * n <= pages_per_huge_page) {
4631 /* If target subpage in first half of huge page */
4632 base = 0;
4633 l = n;
4634 /* Process subpages at the end of huge page */
4635 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4636 cond_resched();
4637 process_subpage(addr + i * PAGE_SIZE, i, arg);
4638 }
4639 } else {
4640 /* If target subpage in second half of huge page */
4641 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4642 l = pages_per_huge_page - n;
4643 /* Process subpages at the begin of huge page */
4644 for (i = 0; i < base; i++) {
4645 cond_resched();
4646 process_subpage(addr + i * PAGE_SIZE, i, arg);
4647 }
4648 }
4649 /*
4650 * Process remaining subpages in left-right-left-right pattern
4651 * towards the target subpage
4652 */
4653 for (i = 0; i < l; i++) {
4654 int left_idx = base + i;
4655 int right_idx = base + 2 * l - 1 - i;
4656
4657 cond_resched();
4658 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4659 cond_resched();
4660 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4661 }
4662 }
4663
4664 static void clear_gigantic_page(struct page *page,
4665 unsigned long addr,
4666 unsigned int pages_per_huge_page)
4667 {
4668 int i;
4669 struct page *p = page;
4670
4671 might_sleep();
4672 for (i = 0; i < pages_per_huge_page;
4673 i++, p = mem_map_next(p, page, i)) {
4674 cond_resched();
4675 clear_user_highpage(p, addr + i * PAGE_SIZE);
4676 }
4677 }
4678
4679 static void clear_subpage(unsigned long addr, int idx, void *arg)
4680 {
4681 struct page *page = arg;
4682
4683 clear_user_highpage(page + idx, addr);
4684 }
4685
4686 void clear_huge_page(struct page *page,
4687 unsigned long addr_hint, unsigned int pages_per_huge_page)
4688 {
4689 unsigned long addr = addr_hint &
4690 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4691
4692 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4693 clear_gigantic_page(page, addr, pages_per_huge_page);
4694 return;
4695 }
4696
4697 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4698 }
4699
4700 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4701 unsigned long addr,
4702 struct vm_area_struct *vma,
4703 unsigned int pages_per_huge_page)
4704 {
4705 int i;
4706 struct page *dst_base = dst;
4707 struct page *src_base = src;
4708
4709 for (i = 0; i < pages_per_huge_page; ) {
4710 cond_resched();
4711 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4712
4713 i++;
4714 dst = mem_map_next(dst, dst_base, i);
4715 src = mem_map_next(src, src_base, i);
4716 }
4717 }
4718
4719 struct copy_subpage_arg {
4720 struct page *dst;
4721 struct page *src;
4722 struct vm_area_struct *vma;
4723 };
4724
4725 static void copy_subpage(unsigned long addr, int idx, void *arg)
4726 {
4727 struct copy_subpage_arg *copy_arg = arg;
4728
4729 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4730 addr, copy_arg->vma);
4731 }
4732
4733 void copy_user_huge_page(struct page *dst, struct page *src,
4734 unsigned long addr_hint, struct vm_area_struct *vma,
4735 unsigned int pages_per_huge_page)
4736 {
4737 unsigned long addr = addr_hint &
4738 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4739 struct copy_subpage_arg arg = {
4740 .dst = dst,
4741 .src = src,
4742 .vma = vma,
4743 };
4744
4745 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4746 copy_user_gigantic_page(dst, src, addr, vma,
4747 pages_per_huge_page);
4748 return;
4749 }
4750
4751 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4752 }
4753
4754 long copy_huge_page_from_user(struct page *dst_page,
4755 const void __user *usr_src,
4756 unsigned int pages_per_huge_page,
4757 bool allow_pagefault)
4758 {
4759 void *src = (void *)usr_src;
4760 void *page_kaddr;
4761 unsigned long i, rc = 0;
4762 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4763 struct page *subpage = dst_page;
4764
4765 for (i = 0; i < pages_per_huge_page;
4766 i++, subpage = mem_map_next(subpage, dst_page, i)) {
4767 if (allow_pagefault)
4768 page_kaddr = kmap(subpage);
4769 else
4770 page_kaddr = kmap_atomic(subpage);
4771 rc = copy_from_user(page_kaddr,
4772 (const void __user *)(src + i * PAGE_SIZE),
4773 PAGE_SIZE);
4774 if (allow_pagefault)
4775 kunmap(subpage);
4776 else
4777 kunmap_atomic(page_kaddr);
4778
4779 ret_val -= (PAGE_SIZE - rc);
4780 if (rc)
4781 break;
4782
4783 cond_resched();
4784 }
4785 return ret_val;
4786 }
4787 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4788
4789 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4790
4791 static struct kmem_cache *page_ptl_cachep;
4792
4793 void __init ptlock_cache_init(void)
4794 {
4795 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4796 SLAB_PANIC, NULL);
4797 }
4798
4799 bool ptlock_alloc(struct page *page)
4800 {
4801 spinlock_t *ptl;
4802
4803 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4804 if (!ptl)
4805 return false;
4806 page->ptl = ptl;
4807 return true;
4808 }
4809
4810 void ptlock_free(struct page *page)
4811 {
4812 kmem_cache_free(page_ptl_cachep, page->ptl);
4813 }
4814 #endif