]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
KVM: x86: hyper-v: Allocate 'struct kvm_vcpu_hv' dynamically
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 1;
121 #else
122 2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139 randomize_va_space = 0;
140 return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
152 static int __init init_zero_pfn(void)
153 {
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156 }
157 core_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
174 }
175 }
176 current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
217 {
218 pgtable_t token = pmd_pgtable(*pmd);
219 pmd_clear(pmd);
220 pte_free_tlb(tlb, token, addr);
221 mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
227 {
228 pmd_t *pmd;
229 unsigned long next;
230 unsigned long start;
231
232 start = addr;
233 pmd = pmd_offset(pud, addr);
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
238 free_pte_range(tlb, pmd, addr);
239 } while (pmd++, addr = next, addr != end);
240
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
254 pmd_free_tlb(tlb, pmd, start);
255 mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
261 {
262 pud_t *pud;
263 unsigned long next;
264 unsigned long start;
265
266 start = addr;
267 pud = pud_offset(p4d, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 } while (pud++, addr = next, addr != end);
274
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
289 mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295 {
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
316 }
317 if (end - 1 > ceiling - 1)
318 return;
319
320 p4d = p4d_offset(pgd, start);
321 pgd_clear(pgd);
322 p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326 * This function frees user-level page tables of a process.
327 */
328 void free_pgd_range(struct mmu_gather *tlb,
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
331 {
332 pgd_t *pgd;
333 unsigned long next;
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
360
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
380 tlb_change_page_size(tlb, PAGE_SIZE);
381 pgd = pgd_offset(tlb->mm, addr);
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 unsigned long floor, unsigned long ceiling)
392 {
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
397 /*
398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
400 */
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403
404 if (is_vm_hugetlb_page(vma)) {
405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 && !is_vm_hugetlb_page(next)) {
413 vma = next;
414 next = vma->vm_next;
415 unlink_anon_vmas(vma);
416 unlink_file_vma(vma);
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
419 floor, next ? next->vm_start : ceiling);
420 }
421 vma = next;
422 }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 spinlock_t *ptl;
428 pgtable_t new = pte_alloc_one(mm);
429 if (!new)
430 return -ENOMEM;
431
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
443 * smp_rmb() barriers in page table walking code.
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447 ptl = pmd_lock(mm, pmd);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 mm_inc_nr_ptes(mm);
450 pmd_populate(mm, pmd, new);
451 new = NULL;
452 }
453 spin_unlock(ptl);
454 if (new)
455 pte_free(mm, new);
456 return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 pte_t *new = pte_alloc_one_kernel(&init_mm);
462 if (!new)
463 return -ENOMEM;
464
465 smp_wmb(); /* See comment in __pte_alloc */
466
467 spin_lock(&init_mm.page_table_lock);
468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
469 pmd_populate_kernel(&init_mm, pmd, new);
470 new = NULL;
471 }
472 spin_unlock(&init_mm.page_table_lock);
473 if (new)
474 pte_free_kernel(&init_mm, new);
475 return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 int i;
486
487 if (current->mm == mm)
488 sync_mm_rss(mm);
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
498 *
499 * The calling function must still handle the error.
500 */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
503 {
504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 if (page)
540 dump_page(page, "bad pte");
541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
548 dump_stack();
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 *
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 *
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
567 *
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
581 *
582 *
583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
593 */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
596 {
597 unsigned long pfn = pte_pfn(pte);
598
599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 if (likely(!pte_special(pte)))
601 goto check_pfn;
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
606 if (is_zero_pfn(pfn))
607 return NULL;
608 if (pte_devmap(pte))
609 return NULL;
610
611 print_bad_pte(vma, addr, pte, NULL);
612 return NULL;
613 }
614
615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
630 }
631
632 if (is_zero_pfn(pfn))
633 return NULL;
634
635 check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /*
642 * NOTE! We still have PageReserved() pages in the page tables.
643 * eg. VDSO mappings can cause them to exist.
644 */
645 out:
646 return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652 {
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
675 if (pmd_devmap(pmd))
676 return NULL;
677 if (is_huge_zero_pmd(pmd))
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686 out:
687 return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
695 */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 unsigned long addr, int *rss)
701 {
702 unsigned long vm_flags = vma->vm_flags;
703 pte_t pte = *src_pte;
704 struct page *page;
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
723 rss[mm_counter(page)]++;
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 set_pte_at(dst_mm, addr, dst_pte, pte);
772 return 0;
773 }
774
775 /*
776 * Copy a present and normal page if necessary.
777 *
778 * NOTE! The usual case is that this doesn't need to do
779 * anything, and can just return a positive value. That
780 * will let the caller know that it can just increase
781 * the page refcount and re-use the pte the traditional
782 * way.
783 *
784 * But _if_ we need to copy it because it needs to be
785 * pinned in the parent (and the child should get its own
786 * copy rather than just a reference to the same page),
787 * we'll do that here and return zero to let the caller
788 * know we're done.
789 *
790 * And if we need a pre-allocated page but don't yet have
791 * one, return a negative error to let the preallocation
792 * code know so that it can do so outside the page table
793 * lock.
794 */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 struct page **prealloc, pte_t pte, struct page *page)
799 {
800 struct mm_struct *src_mm = src_vma->vm_mm;
801 struct page *new_page;
802
803 if (!is_cow_mapping(src_vma->vm_flags))
804 return 1;
805
806 /*
807 * What we want to do is to check whether this page may
808 * have been pinned by the parent process. If so,
809 * instead of wrprotect the pte on both sides, we copy
810 * the page immediately so that we'll always guarantee
811 * the pinned page won't be randomly replaced in the
812 * future.
813 *
814 * The page pinning checks are just "has this mm ever
815 * seen pinning", along with the (inexact) check of
816 * the page count. That might give false positives for
817 * for pinning, but it will work correctly.
818 */
819 if (likely(!atomic_read(&src_mm->has_pinned)))
820 return 1;
821 if (likely(!page_maybe_dma_pinned(page)))
822 return 1;
823
824 new_page = *prealloc;
825 if (!new_page)
826 return -EAGAIN;
827
828 /*
829 * We have a prealloc page, all good! Take it
830 * over and copy the page & arm it.
831 */
832 *prealloc = NULL;
833 copy_user_highpage(new_page, page, addr, src_vma);
834 __SetPageUptodate(new_page);
835 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 rss[mm_counter(new_page)]++;
838
839 /* All done, just insert the new page copy in the child */
840 pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 return 0;
844 }
845
846 /*
847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
848 * is required to copy this pte.
849 */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 struct page **prealloc)
854 {
855 struct mm_struct *src_mm = src_vma->vm_mm;
856 unsigned long vm_flags = src_vma->vm_flags;
857 pte_t pte = *src_pte;
858 struct page *page;
859
860 page = vm_normal_page(src_vma, addr, pte);
861 if (page) {
862 int retval;
863
864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 addr, rss, prealloc, pte, page);
866 if (retval <= 0)
867 return retval;
868
869 get_page(page);
870 page_dup_rmap(page, false);
871 rss[mm_counter(page)]++;
872 }
873
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
878 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 ptep_set_wrprotect(src_mm, addr, src_pte);
880 pte = pte_wrprotect(pte);
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
890
891 /*
892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 * does not have the VM_UFFD_WP, which means that the uffd
894 * fork event is not enabled.
895 */
896 if (!(vm_flags & VM_UFFD_WP))
897 pte = pte_clear_uffd_wp(pte);
898
899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906 {
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
916 }
917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919 return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
926 {
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
929 pte_t *orig_src_pte, *orig_dst_pte;
930 pte_t *src_pte, *dst_pte;
931 spinlock_t *src_ptl, *dst_ptl;
932 int progress, ret = 0;
933 int rss[NR_MM_COUNTERS];
934 swp_entry_t entry = (swp_entry_t){0};
935 struct page *prealloc = NULL;
936
937 again:
938 progress = 0;
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
946 src_pte = pte_offset_map(src_pmd, addr);
947 src_ptl = pte_lockptr(src_mm, src_pmd);
948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
951 arch_enter_lazy_mmu_mode();
952
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 break;
963 }
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
971 src_vma, addr, rss);
972 if (entry.val)
973 break;
974 progress += 8;
975 continue;
976 }
977 /* copy_present_pte() will clear `*prealloc' if consumed */
978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 addr, rss, &prealloc);
980 /*
981 * If we need a pre-allocated page for this pte, drop the
982 * locks, allocate, and try again.
983 */
984 if (unlikely(ret == -EAGAIN))
985 break;
986 if (unlikely(prealloc)) {
987 /*
988 * pre-alloc page cannot be reused by next time so as
989 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 * will allocate page according to address). This
991 * could only happen if one pinned pte changed.
992 */
993 put_page(prealloc);
994 prealloc = NULL;
995 }
996 progress += 8;
997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999 arch_leave_lazy_mmu_mode();
1000 spin_unlock(src_ptl);
1001 pte_unmap(orig_src_pte);
1002 add_mm_rss_vec(dst_mm, rss);
1003 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 cond_resched();
1005
1006 if (entry.val) {
1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011 entry.val = 0;
1012 } else if (ret) {
1013 WARN_ON_ONCE(ret != -EAGAIN);
1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 if (!prealloc)
1016 return -ENOMEM;
1017 /* We've captured and resolved the error. Reset, try again. */
1018 ret = 0;
1019 }
1020 if (addr != end)
1021 goto again;
1022 out:
1023 if (unlikely(prealloc))
1024 put_page(prealloc);
1025 return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 unsigned long end)
1032 {
1033 struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 struct mm_struct *src_mm = src_vma->vm_mm;
1035 pmd_t *src_pmd, *dst_pmd;
1036 unsigned long next;
1037
1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 if (!dst_pmd)
1040 return -ENOMEM;
1041 src_pmd = pmd_offset(src_pud, addr);
1042 do {
1043 next = pmd_addr_end(addr, end);
1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 || pmd_devmap(*src_pmd)) {
1046 int err;
1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 err = copy_huge_pmd(dst_mm, src_mm,
1049 dst_pmd, src_pmd, addr, src_vma);
1050 if (err == -ENOMEM)
1051 return -ENOMEM;
1052 if (!err)
1053 continue;
1054 /* fall through */
1055 }
1056 if (pmd_none_or_clear_bad(src_pmd))
1057 continue;
1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 addr, next))
1060 return -ENOMEM;
1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 unsigned long end)
1069 {
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1072 pud_t *src_pud, *dst_pud;
1073 unsigned long next;
1074
1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 if (!dst_pud)
1077 return -ENOMEM;
1078 src_pud = pud_offset(src_p4d, addr);
1079 do {
1080 next = pud_addr_end(addr, end);
1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 int err;
1083
1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 err = copy_huge_pud(dst_mm, src_mm,
1086 dst_pud, src_pud, addr, src_vma);
1087 if (err == -ENOMEM)
1088 return -ENOMEM;
1089 if (!err)
1090 continue;
1091 /* fall through */
1092 }
1093 if (pud_none_or_clear_bad(src_pud))
1094 continue;
1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 addr, next))
1097 return -ENOMEM;
1098 } while (dst_pud++, src_pud++, addr = next, addr != end);
1099 return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 unsigned long end)
1106 {
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 p4d_t *src_p4d, *dst_p4d;
1109 unsigned long next;
1110
1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 if (!dst_p4d)
1113 return -ENOMEM;
1114 src_p4d = p4d_offset(src_pgd, addr);
1115 do {
1116 next = p4d_addr_end(addr, end);
1117 if (p4d_none_or_clear_bad(src_p4d))
1118 continue;
1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 addr, next))
1121 return -ENOMEM;
1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 pgd_t *src_pgd, *dst_pgd;
1130 unsigned long next;
1131 unsigned long addr = src_vma->vm_start;
1132 unsigned long end = src_vma->vm_end;
1133 struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 struct mm_struct *src_mm = src_vma->vm_mm;
1135 struct mmu_notifier_range range;
1136 bool is_cow;
1137 int ret;
1138
1139 /*
1140 * Don't copy ptes where a page fault will fill them correctly.
1141 * Fork becomes much lighter when there are big shared or private
1142 * readonly mappings. The tradeoff is that copy_page_range is more
1143 * efficient than faulting.
1144 */
1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 !src_vma->anon_vma)
1147 return 0;
1148
1149 if (is_vm_hugetlb_page(src_vma))
1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 /*
1154 * We do not free on error cases below as remove_vma
1155 * gets called on error from higher level routine
1156 */
1157 ret = track_pfn_copy(src_vma);
1158 if (ret)
1159 return ret;
1160 }
1161
1162 /*
1163 * We need to invalidate the secondary MMU mappings only when
1164 * there could be a permission downgrade on the ptes of the
1165 * parent mm. And a permission downgrade will only happen if
1166 * is_cow_mapping() returns true.
1167 */
1168 is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170 if (is_cow) {
1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 0, src_vma, src_mm, addr, end);
1173 mmu_notifier_invalidate_range_start(&range);
1174 /*
1175 * Disabling preemption is not needed for the write side, as
1176 * the read side doesn't spin, but goes to the mmap_lock.
1177 *
1178 * Use the raw variant of the seqcount_t write API to avoid
1179 * lockdep complaining about preemptibility.
1180 */
1181 mmap_assert_write_locked(src_mm);
1182 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1183 }
1184
1185 ret = 0;
1186 dst_pgd = pgd_offset(dst_mm, addr);
1187 src_pgd = pgd_offset(src_mm, addr);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 if (pgd_none_or_clear_bad(src_pgd))
1191 continue;
1192 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193 addr, next))) {
1194 ret = -ENOMEM;
1195 break;
1196 }
1197 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1198
1199 if (is_cow) {
1200 raw_write_seqcount_end(&src_mm->write_protect_seq);
1201 mmu_notifier_invalidate_range_end(&range);
1202 }
1203 return ret;
1204 }
1205
1206 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1207 struct vm_area_struct *vma, pmd_t *pmd,
1208 unsigned long addr, unsigned long end,
1209 struct zap_details *details)
1210 {
1211 struct mm_struct *mm = tlb->mm;
1212 int force_flush = 0;
1213 int rss[NR_MM_COUNTERS];
1214 spinlock_t *ptl;
1215 pte_t *start_pte;
1216 pte_t *pte;
1217 swp_entry_t entry;
1218
1219 tlb_change_page_size(tlb, PAGE_SIZE);
1220 again:
1221 init_rss_vec(rss);
1222 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223 pte = start_pte;
1224 flush_tlb_batched_pending(mm);
1225 arch_enter_lazy_mmu_mode();
1226 do {
1227 pte_t ptent = *pte;
1228 if (pte_none(ptent))
1229 continue;
1230
1231 if (need_resched())
1232 break;
1233
1234 if (pte_present(ptent)) {
1235 struct page *page;
1236
1237 page = vm_normal_page(vma, addr, ptent);
1238 if (unlikely(details) && page) {
1239 /*
1240 * unmap_shared_mapping_pages() wants to
1241 * invalidate cache without truncating:
1242 * unmap shared but keep private pages.
1243 */
1244 if (details->check_mapping &&
1245 details->check_mapping != page_rmapping(page))
1246 continue;
1247 }
1248 ptent = ptep_get_and_clear_full(mm, addr, pte,
1249 tlb->fullmm);
1250 tlb_remove_tlb_entry(tlb, pte, addr);
1251 if (unlikely(!page))
1252 continue;
1253
1254 if (!PageAnon(page)) {
1255 if (pte_dirty(ptent)) {
1256 force_flush = 1;
1257 set_page_dirty(page);
1258 }
1259 if (pte_young(ptent) &&
1260 likely(!(vma->vm_flags & VM_SEQ_READ)))
1261 mark_page_accessed(page);
1262 }
1263 rss[mm_counter(page)]--;
1264 page_remove_rmap(page, false);
1265 if (unlikely(page_mapcount(page) < 0))
1266 print_bad_pte(vma, addr, ptent, page);
1267 if (unlikely(__tlb_remove_page(tlb, page))) {
1268 force_flush = 1;
1269 addr += PAGE_SIZE;
1270 break;
1271 }
1272 continue;
1273 }
1274
1275 entry = pte_to_swp_entry(ptent);
1276 if (is_device_private_entry(entry)) {
1277 struct page *page = device_private_entry_to_page(entry);
1278
1279 if (unlikely(details && details->check_mapping)) {
1280 /*
1281 * unmap_shared_mapping_pages() wants to
1282 * invalidate cache without truncating:
1283 * unmap shared but keep private pages.
1284 */
1285 if (details->check_mapping !=
1286 page_rmapping(page))
1287 continue;
1288 }
1289
1290 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291 rss[mm_counter(page)]--;
1292 page_remove_rmap(page, false);
1293 put_page(page);
1294 continue;
1295 }
1296
1297 /* If details->check_mapping, we leave swap entries. */
1298 if (unlikely(details))
1299 continue;
1300
1301 if (!non_swap_entry(entry))
1302 rss[MM_SWAPENTS]--;
1303 else if (is_migration_entry(entry)) {
1304 struct page *page;
1305
1306 page = migration_entry_to_page(entry);
1307 rss[mm_counter(page)]--;
1308 }
1309 if (unlikely(!free_swap_and_cache(entry)))
1310 print_bad_pte(vma, addr, ptent, NULL);
1311 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1312 } while (pte++, addr += PAGE_SIZE, addr != end);
1313
1314 add_mm_rss_vec(mm, rss);
1315 arch_leave_lazy_mmu_mode();
1316
1317 /* Do the actual TLB flush before dropping ptl */
1318 if (force_flush)
1319 tlb_flush_mmu_tlbonly(tlb);
1320 pte_unmap_unlock(start_pte, ptl);
1321
1322 /*
1323 * If we forced a TLB flush (either due to running out of
1324 * batch buffers or because we needed to flush dirty TLB
1325 * entries before releasing the ptl), free the batched
1326 * memory too. Restart if we didn't do everything.
1327 */
1328 if (force_flush) {
1329 force_flush = 0;
1330 tlb_flush_mmu(tlb);
1331 }
1332
1333 if (addr != end) {
1334 cond_resched();
1335 goto again;
1336 }
1337
1338 return addr;
1339 }
1340
1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1342 struct vm_area_struct *vma, pud_t *pud,
1343 unsigned long addr, unsigned long end,
1344 struct zap_details *details)
1345 {
1346 pmd_t *pmd;
1347 unsigned long next;
1348
1349 pmd = pmd_offset(pud, addr);
1350 do {
1351 next = pmd_addr_end(addr, end);
1352 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1353 if (next - addr != HPAGE_PMD_SIZE)
1354 __split_huge_pmd(vma, pmd, addr, false, NULL);
1355 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1356 goto next;
1357 /* fall through */
1358 }
1359 /*
1360 * Here there can be other concurrent MADV_DONTNEED or
1361 * trans huge page faults running, and if the pmd is
1362 * none or trans huge it can change under us. This is
1363 * because MADV_DONTNEED holds the mmap_lock in read
1364 * mode.
1365 */
1366 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1367 goto next;
1368 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1369 next:
1370 cond_resched();
1371 } while (pmd++, addr = next, addr != end);
1372
1373 return addr;
1374 }
1375
1376 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1377 struct vm_area_struct *vma, p4d_t *p4d,
1378 unsigned long addr, unsigned long end,
1379 struct zap_details *details)
1380 {
1381 pud_t *pud;
1382 unsigned long next;
1383
1384 pud = pud_offset(p4d, addr);
1385 do {
1386 next = pud_addr_end(addr, end);
1387 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1388 if (next - addr != HPAGE_PUD_SIZE) {
1389 mmap_assert_locked(tlb->mm);
1390 split_huge_pud(vma, pud, addr);
1391 } else if (zap_huge_pud(tlb, vma, pud, addr))
1392 goto next;
1393 /* fall through */
1394 }
1395 if (pud_none_or_clear_bad(pud))
1396 continue;
1397 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1398 next:
1399 cond_resched();
1400 } while (pud++, addr = next, addr != end);
1401
1402 return addr;
1403 }
1404
1405 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1406 struct vm_area_struct *vma, pgd_t *pgd,
1407 unsigned long addr, unsigned long end,
1408 struct zap_details *details)
1409 {
1410 p4d_t *p4d;
1411 unsigned long next;
1412
1413 p4d = p4d_offset(pgd, addr);
1414 do {
1415 next = p4d_addr_end(addr, end);
1416 if (p4d_none_or_clear_bad(p4d))
1417 continue;
1418 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1419 } while (p4d++, addr = next, addr != end);
1420
1421 return addr;
1422 }
1423
1424 void unmap_page_range(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma,
1426 unsigned long addr, unsigned long end,
1427 struct zap_details *details)
1428 {
1429 pgd_t *pgd;
1430 unsigned long next;
1431
1432 BUG_ON(addr >= end);
1433 tlb_start_vma(tlb, vma);
1434 pgd = pgd_offset(vma->vm_mm, addr);
1435 do {
1436 next = pgd_addr_end(addr, end);
1437 if (pgd_none_or_clear_bad(pgd))
1438 continue;
1439 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1440 } while (pgd++, addr = next, addr != end);
1441 tlb_end_vma(tlb, vma);
1442 }
1443
1444
1445 static void unmap_single_vma(struct mmu_gather *tlb,
1446 struct vm_area_struct *vma, unsigned long start_addr,
1447 unsigned long end_addr,
1448 struct zap_details *details)
1449 {
1450 unsigned long start = max(vma->vm_start, start_addr);
1451 unsigned long end;
1452
1453 if (start >= vma->vm_end)
1454 return;
1455 end = min(vma->vm_end, end_addr);
1456 if (end <= vma->vm_start)
1457 return;
1458
1459 if (vma->vm_file)
1460 uprobe_munmap(vma, start, end);
1461
1462 if (unlikely(vma->vm_flags & VM_PFNMAP))
1463 untrack_pfn(vma, 0, 0);
1464
1465 if (start != end) {
1466 if (unlikely(is_vm_hugetlb_page(vma))) {
1467 /*
1468 * It is undesirable to test vma->vm_file as it
1469 * should be non-null for valid hugetlb area.
1470 * However, vm_file will be NULL in the error
1471 * cleanup path of mmap_region. When
1472 * hugetlbfs ->mmap method fails,
1473 * mmap_region() nullifies vma->vm_file
1474 * before calling this function to clean up.
1475 * Since no pte has actually been setup, it is
1476 * safe to do nothing in this case.
1477 */
1478 if (vma->vm_file) {
1479 i_mmap_lock_write(vma->vm_file->f_mapping);
1480 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1481 i_mmap_unlock_write(vma->vm_file->f_mapping);
1482 }
1483 } else
1484 unmap_page_range(tlb, vma, start, end, details);
1485 }
1486 }
1487
1488 /**
1489 * unmap_vmas - unmap a range of memory covered by a list of vma's
1490 * @tlb: address of the caller's struct mmu_gather
1491 * @vma: the starting vma
1492 * @start_addr: virtual address at which to start unmapping
1493 * @end_addr: virtual address at which to end unmapping
1494 *
1495 * Unmap all pages in the vma list.
1496 *
1497 * Only addresses between `start' and `end' will be unmapped.
1498 *
1499 * The VMA list must be sorted in ascending virtual address order.
1500 *
1501 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1502 * range after unmap_vmas() returns. So the only responsibility here is to
1503 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1504 * drops the lock and schedules.
1505 */
1506 void unmap_vmas(struct mmu_gather *tlb,
1507 struct vm_area_struct *vma, unsigned long start_addr,
1508 unsigned long end_addr)
1509 {
1510 struct mmu_notifier_range range;
1511
1512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1513 start_addr, end_addr);
1514 mmu_notifier_invalidate_range_start(&range);
1515 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1516 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1517 mmu_notifier_invalidate_range_end(&range);
1518 }
1519
1520 /**
1521 * zap_page_range - remove user pages in a given range
1522 * @vma: vm_area_struct holding the applicable pages
1523 * @start: starting address of pages to zap
1524 * @size: number of bytes to zap
1525 *
1526 * Caller must protect the VMA list
1527 */
1528 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1529 unsigned long size)
1530 {
1531 struct mmu_notifier_range range;
1532 struct mmu_gather tlb;
1533
1534 lru_add_drain();
1535 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1536 start, start + size);
1537 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1538 update_hiwater_rss(vma->vm_mm);
1539 mmu_notifier_invalidate_range_start(&range);
1540 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1541 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1542 mmu_notifier_invalidate_range_end(&range);
1543 tlb_finish_mmu(&tlb, start, range.end);
1544 }
1545
1546 /**
1547 * zap_page_range_single - remove user pages in a given range
1548 * @vma: vm_area_struct holding the applicable pages
1549 * @address: starting address of pages to zap
1550 * @size: number of bytes to zap
1551 * @details: details of shared cache invalidation
1552 *
1553 * The range must fit into one VMA.
1554 */
1555 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1556 unsigned long size, struct zap_details *details)
1557 {
1558 struct mmu_notifier_range range;
1559 struct mmu_gather tlb;
1560
1561 lru_add_drain();
1562 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1563 address, address + size);
1564 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1565 update_hiwater_rss(vma->vm_mm);
1566 mmu_notifier_invalidate_range_start(&range);
1567 unmap_single_vma(&tlb, vma, address, range.end, details);
1568 mmu_notifier_invalidate_range_end(&range);
1569 tlb_finish_mmu(&tlb, address, range.end);
1570 }
1571
1572 /**
1573 * zap_vma_ptes - remove ptes mapping the vma
1574 * @vma: vm_area_struct holding ptes to be zapped
1575 * @address: starting address of pages to zap
1576 * @size: number of bytes to zap
1577 *
1578 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1579 *
1580 * The entire address range must be fully contained within the vma.
1581 *
1582 */
1583 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1584 unsigned long size)
1585 {
1586 if (address < vma->vm_start || address + size > vma->vm_end ||
1587 !(vma->vm_flags & VM_PFNMAP))
1588 return;
1589
1590 zap_page_range_single(vma, address, size, NULL);
1591 }
1592 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1593
1594 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1595 {
1596 pgd_t *pgd;
1597 p4d_t *p4d;
1598 pud_t *pud;
1599 pmd_t *pmd;
1600
1601 pgd = pgd_offset(mm, addr);
1602 p4d = p4d_alloc(mm, pgd, addr);
1603 if (!p4d)
1604 return NULL;
1605 pud = pud_alloc(mm, p4d, addr);
1606 if (!pud)
1607 return NULL;
1608 pmd = pmd_alloc(mm, pud, addr);
1609 if (!pmd)
1610 return NULL;
1611
1612 VM_BUG_ON(pmd_trans_huge(*pmd));
1613 return pmd;
1614 }
1615
1616 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1617 spinlock_t **ptl)
1618 {
1619 pmd_t *pmd = walk_to_pmd(mm, addr);
1620
1621 if (!pmd)
1622 return NULL;
1623 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1624 }
1625
1626 static int validate_page_before_insert(struct page *page)
1627 {
1628 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1629 return -EINVAL;
1630 flush_dcache_page(page);
1631 return 0;
1632 }
1633
1634 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1635 unsigned long addr, struct page *page, pgprot_t prot)
1636 {
1637 if (!pte_none(*pte))
1638 return -EBUSY;
1639 /* Ok, finally just insert the thing.. */
1640 get_page(page);
1641 inc_mm_counter_fast(mm, mm_counter_file(page));
1642 page_add_file_rmap(page, false);
1643 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1644 return 0;
1645 }
1646
1647 /*
1648 * This is the old fallback for page remapping.
1649 *
1650 * For historical reasons, it only allows reserved pages. Only
1651 * old drivers should use this, and they needed to mark their
1652 * pages reserved for the old functions anyway.
1653 */
1654 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1655 struct page *page, pgprot_t prot)
1656 {
1657 struct mm_struct *mm = vma->vm_mm;
1658 int retval;
1659 pte_t *pte;
1660 spinlock_t *ptl;
1661
1662 retval = validate_page_before_insert(page);
1663 if (retval)
1664 goto out;
1665 retval = -ENOMEM;
1666 pte = get_locked_pte(mm, addr, &ptl);
1667 if (!pte)
1668 goto out;
1669 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1670 pte_unmap_unlock(pte, ptl);
1671 out:
1672 return retval;
1673 }
1674
1675 #ifdef pte_index
1676 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1677 unsigned long addr, struct page *page, pgprot_t prot)
1678 {
1679 int err;
1680
1681 if (!page_count(page))
1682 return -EINVAL;
1683 err = validate_page_before_insert(page);
1684 if (err)
1685 return err;
1686 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687 }
1688
1689 /* insert_pages() amortizes the cost of spinlock operations
1690 * when inserting pages in a loop. Arch *must* define pte_index.
1691 */
1692 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1693 struct page **pages, unsigned long *num, pgprot_t prot)
1694 {
1695 pmd_t *pmd = NULL;
1696 pte_t *start_pte, *pte;
1697 spinlock_t *pte_lock;
1698 struct mm_struct *const mm = vma->vm_mm;
1699 unsigned long curr_page_idx = 0;
1700 unsigned long remaining_pages_total = *num;
1701 unsigned long pages_to_write_in_pmd;
1702 int ret;
1703 more:
1704 ret = -EFAULT;
1705 pmd = walk_to_pmd(mm, addr);
1706 if (!pmd)
1707 goto out;
1708
1709 pages_to_write_in_pmd = min_t(unsigned long,
1710 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1711
1712 /* Allocate the PTE if necessary; takes PMD lock once only. */
1713 ret = -ENOMEM;
1714 if (pte_alloc(mm, pmd))
1715 goto out;
1716
1717 while (pages_to_write_in_pmd) {
1718 int pte_idx = 0;
1719 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1720
1721 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1722 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1723 int err = insert_page_in_batch_locked(mm, pte,
1724 addr, pages[curr_page_idx], prot);
1725 if (unlikely(err)) {
1726 pte_unmap_unlock(start_pte, pte_lock);
1727 ret = err;
1728 remaining_pages_total -= pte_idx;
1729 goto out;
1730 }
1731 addr += PAGE_SIZE;
1732 ++curr_page_idx;
1733 }
1734 pte_unmap_unlock(start_pte, pte_lock);
1735 pages_to_write_in_pmd -= batch_size;
1736 remaining_pages_total -= batch_size;
1737 }
1738 if (remaining_pages_total)
1739 goto more;
1740 ret = 0;
1741 out:
1742 *num = remaining_pages_total;
1743 return ret;
1744 }
1745 #endif /* ifdef pte_index */
1746
1747 /**
1748 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1749 * @vma: user vma to map to
1750 * @addr: target start user address of these pages
1751 * @pages: source kernel pages
1752 * @num: in: number of pages to map. out: number of pages that were *not*
1753 * mapped. (0 means all pages were successfully mapped).
1754 *
1755 * Preferred over vm_insert_page() when inserting multiple pages.
1756 *
1757 * In case of error, we may have mapped a subset of the provided
1758 * pages. It is the caller's responsibility to account for this case.
1759 *
1760 * The same restrictions apply as in vm_insert_page().
1761 */
1762 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1763 struct page **pages, unsigned long *num)
1764 {
1765 #ifdef pte_index
1766 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1767
1768 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1769 return -EFAULT;
1770 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1771 BUG_ON(mmap_read_trylock(vma->vm_mm));
1772 BUG_ON(vma->vm_flags & VM_PFNMAP);
1773 vma->vm_flags |= VM_MIXEDMAP;
1774 }
1775 /* Defer page refcount checking till we're about to map that page. */
1776 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1777 #else
1778 unsigned long idx = 0, pgcount = *num;
1779 int err = -EINVAL;
1780
1781 for (; idx < pgcount; ++idx) {
1782 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1783 if (err)
1784 break;
1785 }
1786 *num = pgcount - idx;
1787 return err;
1788 #endif /* ifdef pte_index */
1789 }
1790 EXPORT_SYMBOL(vm_insert_pages);
1791
1792 /**
1793 * vm_insert_page - insert single page into user vma
1794 * @vma: user vma to map to
1795 * @addr: target user address of this page
1796 * @page: source kernel page
1797 *
1798 * This allows drivers to insert individual pages they've allocated
1799 * into a user vma.
1800 *
1801 * The page has to be a nice clean _individual_ kernel allocation.
1802 * If you allocate a compound page, you need to have marked it as
1803 * such (__GFP_COMP), or manually just split the page up yourself
1804 * (see split_page()).
1805 *
1806 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1807 * took an arbitrary page protection parameter. This doesn't allow
1808 * that. Your vma protection will have to be set up correctly, which
1809 * means that if you want a shared writable mapping, you'd better
1810 * ask for a shared writable mapping!
1811 *
1812 * The page does not need to be reserved.
1813 *
1814 * Usually this function is called from f_op->mmap() handler
1815 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1816 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1817 * function from other places, for example from page-fault handler.
1818 *
1819 * Return: %0 on success, negative error code otherwise.
1820 */
1821 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1822 struct page *page)
1823 {
1824 if (addr < vma->vm_start || addr >= vma->vm_end)
1825 return -EFAULT;
1826 if (!page_count(page))
1827 return -EINVAL;
1828 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1829 BUG_ON(mmap_read_trylock(vma->vm_mm));
1830 BUG_ON(vma->vm_flags & VM_PFNMAP);
1831 vma->vm_flags |= VM_MIXEDMAP;
1832 }
1833 return insert_page(vma, addr, page, vma->vm_page_prot);
1834 }
1835 EXPORT_SYMBOL(vm_insert_page);
1836
1837 /*
1838 * __vm_map_pages - maps range of kernel pages into user vma
1839 * @vma: user vma to map to
1840 * @pages: pointer to array of source kernel pages
1841 * @num: number of pages in page array
1842 * @offset: user's requested vm_pgoff
1843 *
1844 * This allows drivers to map range of kernel pages into a user vma.
1845 *
1846 * Return: 0 on success and error code otherwise.
1847 */
1848 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1849 unsigned long num, unsigned long offset)
1850 {
1851 unsigned long count = vma_pages(vma);
1852 unsigned long uaddr = vma->vm_start;
1853 int ret, i;
1854
1855 /* Fail if the user requested offset is beyond the end of the object */
1856 if (offset >= num)
1857 return -ENXIO;
1858
1859 /* Fail if the user requested size exceeds available object size */
1860 if (count > num - offset)
1861 return -ENXIO;
1862
1863 for (i = 0; i < count; i++) {
1864 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1865 if (ret < 0)
1866 return ret;
1867 uaddr += PAGE_SIZE;
1868 }
1869
1870 return 0;
1871 }
1872
1873 /**
1874 * vm_map_pages - maps range of kernel pages starts with non zero offset
1875 * @vma: user vma to map to
1876 * @pages: pointer to array of source kernel pages
1877 * @num: number of pages in page array
1878 *
1879 * Maps an object consisting of @num pages, catering for the user's
1880 * requested vm_pgoff
1881 *
1882 * If we fail to insert any page into the vma, the function will return
1883 * immediately leaving any previously inserted pages present. Callers
1884 * from the mmap handler may immediately return the error as their caller
1885 * will destroy the vma, removing any successfully inserted pages. Other
1886 * callers should make their own arrangements for calling unmap_region().
1887 *
1888 * Context: Process context. Called by mmap handlers.
1889 * Return: 0 on success and error code otherwise.
1890 */
1891 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1892 unsigned long num)
1893 {
1894 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1895 }
1896 EXPORT_SYMBOL(vm_map_pages);
1897
1898 /**
1899 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1900 * @vma: user vma to map to
1901 * @pages: pointer to array of source kernel pages
1902 * @num: number of pages in page array
1903 *
1904 * Similar to vm_map_pages(), except that it explicitly sets the offset
1905 * to 0. This function is intended for the drivers that did not consider
1906 * vm_pgoff.
1907 *
1908 * Context: Process context. Called by mmap handlers.
1909 * Return: 0 on success and error code otherwise.
1910 */
1911 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1912 unsigned long num)
1913 {
1914 return __vm_map_pages(vma, pages, num, 0);
1915 }
1916 EXPORT_SYMBOL(vm_map_pages_zero);
1917
1918 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919 pfn_t pfn, pgprot_t prot, bool mkwrite)
1920 {
1921 struct mm_struct *mm = vma->vm_mm;
1922 pte_t *pte, entry;
1923 spinlock_t *ptl;
1924
1925 pte = get_locked_pte(mm, addr, &ptl);
1926 if (!pte)
1927 return VM_FAULT_OOM;
1928 if (!pte_none(*pte)) {
1929 if (mkwrite) {
1930 /*
1931 * For read faults on private mappings the PFN passed
1932 * in may not match the PFN we have mapped if the
1933 * mapped PFN is a writeable COW page. In the mkwrite
1934 * case we are creating a writable PTE for a shared
1935 * mapping and we expect the PFNs to match. If they
1936 * don't match, we are likely racing with block
1937 * allocation and mapping invalidation so just skip the
1938 * update.
1939 */
1940 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1941 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1942 goto out_unlock;
1943 }
1944 entry = pte_mkyoung(*pte);
1945 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1947 update_mmu_cache(vma, addr, pte);
1948 }
1949 goto out_unlock;
1950 }
1951
1952 /* Ok, finally just insert the thing.. */
1953 if (pfn_t_devmap(pfn))
1954 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1955 else
1956 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1957
1958 if (mkwrite) {
1959 entry = pte_mkyoung(entry);
1960 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1961 }
1962
1963 set_pte_at(mm, addr, pte, entry);
1964 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1965
1966 out_unlock:
1967 pte_unmap_unlock(pte, ptl);
1968 return VM_FAULT_NOPAGE;
1969 }
1970
1971 /**
1972 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1973 * @vma: user vma to map to
1974 * @addr: target user address of this page
1975 * @pfn: source kernel pfn
1976 * @pgprot: pgprot flags for the inserted page
1977 *
1978 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1979 * to override pgprot on a per-page basis.
1980 *
1981 * This only makes sense for IO mappings, and it makes no sense for
1982 * COW mappings. In general, using multiple vmas is preferable;
1983 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1984 * impractical.
1985 *
1986 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1987 * a value of @pgprot different from that of @vma->vm_page_prot.
1988 *
1989 * Context: Process context. May allocate using %GFP_KERNEL.
1990 * Return: vm_fault_t value.
1991 */
1992 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1993 unsigned long pfn, pgprot_t pgprot)
1994 {
1995 /*
1996 * Technically, architectures with pte_special can avoid all these
1997 * restrictions (same for remap_pfn_range). However we would like
1998 * consistency in testing and feature parity among all, so we should
1999 * try to keep these invariants in place for everybody.
2000 */
2001 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2002 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2003 (VM_PFNMAP|VM_MIXEDMAP));
2004 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2005 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2006
2007 if (addr < vma->vm_start || addr >= vma->vm_end)
2008 return VM_FAULT_SIGBUS;
2009
2010 if (!pfn_modify_allowed(pfn, pgprot))
2011 return VM_FAULT_SIGBUS;
2012
2013 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2014
2015 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2016 false);
2017 }
2018 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2019
2020 /**
2021 * vmf_insert_pfn - insert single pfn into user vma
2022 * @vma: user vma to map to
2023 * @addr: target user address of this page
2024 * @pfn: source kernel pfn
2025 *
2026 * Similar to vm_insert_page, this allows drivers to insert individual pages
2027 * they've allocated into a user vma. Same comments apply.
2028 *
2029 * This function should only be called from a vm_ops->fault handler, and
2030 * in that case the handler should return the result of this function.
2031 *
2032 * vma cannot be a COW mapping.
2033 *
2034 * As this is called only for pages that do not currently exist, we
2035 * do not need to flush old virtual caches or the TLB.
2036 *
2037 * Context: Process context. May allocate using %GFP_KERNEL.
2038 * Return: vm_fault_t value.
2039 */
2040 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 unsigned long pfn)
2042 {
2043 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2044 }
2045 EXPORT_SYMBOL(vmf_insert_pfn);
2046
2047 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2048 {
2049 /* these checks mirror the abort conditions in vm_normal_page */
2050 if (vma->vm_flags & VM_MIXEDMAP)
2051 return true;
2052 if (pfn_t_devmap(pfn))
2053 return true;
2054 if (pfn_t_special(pfn))
2055 return true;
2056 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2057 return true;
2058 return false;
2059 }
2060
2061 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2062 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2063 bool mkwrite)
2064 {
2065 int err;
2066
2067 BUG_ON(!vm_mixed_ok(vma, pfn));
2068
2069 if (addr < vma->vm_start || addr >= vma->vm_end)
2070 return VM_FAULT_SIGBUS;
2071
2072 track_pfn_insert(vma, &pgprot, pfn);
2073
2074 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2075 return VM_FAULT_SIGBUS;
2076
2077 /*
2078 * If we don't have pte special, then we have to use the pfn_valid()
2079 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2080 * refcount the page if pfn_valid is true (hence insert_page rather
2081 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2082 * without pte special, it would there be refcounted as a normal page.
2083 */
2084 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2085 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2086 struct page *page;
2087
2088 /*
2089 * At this point we are committed to insert_page()
2090 * regardless of whether the caller specified flags that
2091 * result in pfn_t_has_page() == false.
2092 */
2093 page = pfn_to_page(pfn_t_to_pfn(pfn));
2094 err = insert_page(vma, addr, page, pgprot);
2095 } else {
2096 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2097 }
2098
2099 if (err == -ENOMEM)
2100 return VM_FAULT_OOM;
2101 if (err < 0 && err != -EBUSY)
2102 return VM_FAULT_SIGBUS;
2103
2104 return VM_FAULT_NOPAGE;
2105 }
2106
2107 /**
2108 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2109 * @vma: user vma to map to
2110 * @addr: target user address of this page
2111 * @pfn: source kernel pfn
2112 * @pgprot: pgprot flags for the inserted page
2113 *
2114 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2115 * to override pgprot on a per-page basis.
2116 *
2117 * Typically this function should be used by drivers to set caching- and
2118 * encryption bits different than those of @vma->vm_page_prot, because
2119 * the caching- or encryption mode may not be known at mmap() time.
2120 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2121 * to set caching and encryption bits for those vmas (except for COW pages).
2122 * This is ensured by core vm only modifying these page table entries using
2123 * functions that don't touch caching- or encryption bits, using pte_modify()
2124 * if needed. (See for example mprotect()).
2125 * Also when new page-table entries are created, this is only done using the
2126 * fault() callback, and never using the value of vma->vm_page_prot,
2127 * except for page-table entries that point to anonymous pages as the result
2128 * of COW.
2129 *
2130 * Context: Process context. May allocate using %GFP_KERNEL.
2131 * Return: vm_fault_t value.
2132 */
2133 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2134 pfn_t pfn, pgprot_t pgprot)
2135 {
2136 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2137 }
2138 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2139
2140 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 pfn_t pfn)
2142 {
2143 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2144 }
2145 EXPORT_SYMBOL(vmf_insert_mixed);
2146
2147 /*
2148 * If the insertion of PTE failed because someone else already added a
2149 * different entry in the mean time, we treat that as success as we assume
2150 * the same entry was actually inserted.
2151 */
2152 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2153 unsigned long addr, pfn_t pfn)
2154 {
2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2158
2159 /*
2160 * maps a range of physical memory into the requested pages. the old
2161 * mappings are removed. any references to nonexistent pages results
2162 * in null mappings (currently treated as "copy-on-access")
2163 */
2164 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2165 unsigned long addr, unsigned long end,
2166 unsigned long pfn, pgprot_t prot)
2167 {
2168 pte_t *pte;
2169 spinlock_t *ptl;
2170 int err = 0;
2171
2172 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2173 if (!pte)
2174 return -ENOMEM;
2175 arch_enter_lazy_mmu_mode();
2176 do {
2177 BUG_ON(!pte_none(*pte));
2178 if (!pfn_modify_allowed(pfn, prot)) {
2179 err = -EACCES;
2180 break;
2181 }
2182 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2183 pfn++;
2184 } while (pte++, addr += PAGE_SIZE, addr != end);
2185 arch_leave_lazy_mmu_mode();
2186 pte_unmap_unlock(pte - 1, ptl);
2187 return err;
2188 }
2189
2190 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2191 unsigned long addr, unsigned long end,
2192 unsigned long pfn, pgprot_t prot)
2193 {
2194 pmd_t *pmd;
2195 unsigned long next;
2196 int err;
2197
2198 pfn -= addr >> PAGE_SHIFT;
2199 pmd = pmd_alloc(mm, pud, addr);
2200 if (!pmd)
2201 return -ENOMEM;
2202 VM_BUG_ON(pmd_trans_huge(*pmd));
2203 do {
2204 next = pmd_addr_end(addr, end);
2205 err = remap_pte_range(mm, pmd, addr, next,
2206 pfn + (addr >> PAGE_SHIFT), prot);
2207 if (err)
2208 return err;
2209 } while (pmd++, addr = next, addr != end);
2210 return 0;
2211 }
2212
2213 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2214 unsigned long addr, unsigned long end,
2215 unsigned long pfn, pgprot_t prot)
2216 {
2217 pud_t *pud;
2218 unsigned long next;
2219 int err;
2220
2221 pfn -= addr >> PAGE_SHIFT;
2222 pud = pud_alloc(mm, p4d, addr);
2223 if (!pud)
2224 return -ENOMEM;
2225 do {
2226 next = pud_addr_end(addr, end);
2227 err = remap_pmd_range(mm, pud, addr, next,
2228 pfn + (addr >> PAGE_SHIFT), prot);
2229 if (err)
2230 return err;
2231 } while (pud++, addr = next, addr != end);
2232 return 0;
2233 }
2234
2235 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2236 unsigned long addr, unsigned long end,
2237 unsigned long pfn, pgprot_t prot)
2238 {
2239 p4d_t *p4d;
2240 unsigned long next;
2241 int err;
2242
2243 pfn -= addr >> PAGE_SHIFT;
2244 p4d = p4d_alloc(mm, pgd, addr);
2245 if (!p4d)
2246 return -ENOMEM;
2247 do {
2248 next = p4d_addr_end(addr, end);
2249 err = remap_pud_range(mm, p4d, addr, next,
2250 pfn + (addr >> PAGE_SHIFT), prot);
2251 if (err)
2252 return err;
2253 } while (p4d++, addr = next, addr != end);
2254 return 0;
2255 }
2256
2257 /**
2258 * remap_pfn_range - remap kernel memory to userspace
2259 * @vma: user vma to map to
2260 * @addr: target page aligned user address to start at
2261 * @pfn: page frame number of kernel physical memory address
2262 * @size: size of mapping area
2263 * @prot: page protection flags for this mapping
2264 *
2265 * Note: this is only safe if the mm semaphore is held when called.
2266 *
2267 * Return: %0 on success, negative error code otherwise.
2268 */
2269 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2270 unsigned long pfn, unsigned long size, pgprot_t prot)
2271 {
2272 pgd_t *pgd;
2273 unsigned long next;
2274 unsigned long end = addr + PAGE_ALIGN(size);
2275 struct mm_struct *mm = vma->vm_mm;
2276 unsigned long remap_pfn = pfn;
2277 int err;
2278
2279 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2280 return -EINVAL;
2281
2282 /*
2283 * Physically remapped pages are special. Tell the
2284 * rest of the world about it:
2285 * VM_IO tells people not to look at these pages
2286 * (accesses can have side effects).
2287 * VM_PFNMAP tells the core MM that the base pages are just
2288 * raw PFN mappings, and do not have a "struct page" associated
2289 * with them.
2290 * VM_DONTEXPAND
2291 * Disable vma merging and expanding with mremap().
2292 * VM_DONTDUMP
2293 * Omit vma from core dump, even when VM_IO turned off.
2294 *
2295 * There's a horrible special case to handle copy-on-write
2296 * behaviour that some programs depend on. We mark the "original"
2297 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2298 * See vm_normal_page() for details.
2299 */
2300 if (is_cow_mapping(vma->vm_flags)) {
2301 if (addr != vma->vm_start || end != vma->vm_end)
2302 return -EINVAL;
2303 vma->vm_pgoff = pfn;
2304 }
2305
2306 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2307 if (err)
2308 return -EINVAL;
2309
2310 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2311
2312 BUG_ON(addr >= end);
2313 pfn -= addr >> PAGE_SHIFT;
2314 pgd = pgd_offset(mm, addr);
2315 flush_cache_range(vma, addr, end);
2316 do {
2317 next = pgd_addr_end(addr, end);
2318 err = remap_p4d_range(mm, pgd, addr, next,
2319 pfn + (addr >> PAGE_SHIFT), prot);
2320 if (err)
2321 break;
2322 } while (pgd++, addr = next, addr != end);
2323
2324 if (err)
2325 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2326
2327 return err;
2328 }
2329 EXPORT_SYMBOL(remap_pfn_range);
2330
2331 /**
2332 * vm_iomap_memory - remap memory to userspace
2333 * @vma: user vma to map to
2334 * @start: start of the physical memory to be mapped
2335 * @len: size of area
2336 *
2337 * This is a simplified io_remap_pfn_range() for common driver use. The
2338 * driver just needs to give us the physical memory range to be mapped,
2339 * we'll figure out the rest from the vma information.
2340 *
2341 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2342 * whatever write-combining details or similar.
2343 *
2344 * Return: %0 on success, negative error code otherwise.
2345 */
2346 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2347 {
2348 unsigned long vm_len, pfn, pages;
2349
2350 /* Check that the physical memory area passed in looks valid */
2351 if (start + len < start)
2352 return -EINVAL;
2353 /*
2354 * You *really* shouldn't map things that aren't page-aligned,
2355 * but we've historically allowed it because IO memory might
2356 * just have smaller alignment.
2357 */
2358 len += start & ~PAGE_MASK;
2359 pfn = start >> PAGE_SHIFT;
2360 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2361 if (pfn + pages < pfn)
2362 return -EINVAL;
2363
2364 /* We start the mapping 'vm_pgoff' pages into the area */
2365 if (vma->vm_pgoff > pages)
2366 return -EINVAL;
2367 pfn += vma->vm_pgoff;
2368 pages -= vma->vm_pgoff;
2369
2370 /* Can we fit all of the mapping? */
2371 vm_len = vma->vm_end - vma->vm_start;
2372 if (vm_len >> PAGE_SHIFT > pages)
2373 return -EINVAL;
2374
2375 /* Ok, let it rip */
2376 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2377 }
2378 EXPORT_SYMBOL(vm_iomap_memory);
2379
2380 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381 unsigned long addr, unsigned long end,
2382 pte_fn_t fn, void *data, bool create,
2383 pgtbl_mod_mask *mask)
2384 {
2385 pte_t *pte;
2386 int err = 0;
2387 spinlock_t *ptl;
2388
2389 if (create) {
2390 pte = (mm == &init_mm) ?
2391 pte_alloc_kernel_track(pmd, addr, mask) :
2392 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393 if (!pte)
2394 return -ENOMEM;
2395 } else {
2396 pte = (mm == &init_mm) ?
2397 pte_offset_kernel(pmd, addr) :
2398 pte_offset_map_lock(mm, pmd, addr, &ptl);
2399 }
2400
2401 BUG_ON(pmd_huge(*pmd));
2402
2403 arch_enter_lazy_mmu_mode();
2404
2405 if (fn) {
2406 do {
2407 if (create || !pte_none(*pte)) {
2408 err = fn(pte++, addr, data);
2409 if (err)
2410 break;
2411 }
2412 } while (addr += PAGE_SIZE, addr != end);
2413 }
2414 *mask |= PGTBL_PTE_MODIFIED;
2415
2416 arch_leave_lazy_mmu_mode();
2417
2418 if (mm != &init_mm)
2419 pte_unmap_unlock(pte-1, ptl);
2420 return err;
2421 }
2422
2423 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2424 unsigned long addr, unsigned long end,
2425 pte_fn_t fn, void *data, bool create,
2426 pgtbl_mod_mask *mask)
2427 {
2428 pmd_t *pmd;
2429 unsigned long next;
2430 int err = 0;
2431
2432 BUG_ON(pud_huge(*pud));
2433
2434 if (create) {
2435 pmd = pmd_alloc_track(mm, pud, addr, mask);
2436 if (!pmd)
2437 return -ENOMEM;
2438 } else {
2439 pmd = pmd_offset(pud, addr);
2440 }
2441 do {
2442 next = pmd_addr_end(addr, end);
2443 if (create || !pmd_none_or_clear_bad(pmd)) {
2444 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2445 create, mask);
2446 if (err)
2447 break;
2448 }
2449 } while (pmd++, addr = next, addr != end);
2450 return err;
2451 }
2452
2453 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2454 unsigned long addr, unsigned long end,
2455 pte_fn_t fn, void *data, bool create,
2456 pgtbl_mod_mask *mask)
2457 {
2458 pud_t *pud;
2459 unsigned long next;
2460 int err = 0;
2461
2462 if (create) {
2463 pud = pud_alloc_track(mm, p4d, addr, mask);
2464 if (!pud)
2465 return -ENOMEM;
2466 } else {
2467 pud = pud_offset(p4d, addr);
2468 }
2469 do {
2470 next = pud_addr_end(addr, end);
2471 if (create || !pud_none_or_clear_bad(pud)) {
2472 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2473 create, mask);
2474 if (err)
2475 break;
2476 }
2477 } while (pud++, addr = next, addr != end);
2478 return err;
2479 }
2480
2481 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2482 unsigned long addr, unsigned long end,
2483 pte_fn_t fn, void *data, bool create,
2484 pgtbl_mod_mask *mask)
2485 {
2486 p4d_t *p4d;
2487 unsigned long next;
2488 int err = 0;
2489
2490 if (create) {
2491 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2492 if (!p4d)
2493 return -ENOMEM;
2494 } else {
2495 p4d = p4d_offset(pgd, addr);
2496 }
2497 do {
2498 next = p4d_addr_end(addr, end);
2499 if (create || !p4d_none_or_clear_bad(p4d)) {
2500 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2501 create, mask);
2502 if (err)
2503 break;
2504 }
2505 } while (p4d++, addr = next, addr != end);
2506 return err;
2507 }
2508
2509 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2510 unsigned long size, pte_fn_t fn,
2511 void *data, bool create)
2512 {
2513 pgd_t *pgd;
2514 unsigned long start = addr, next;
2515 unsigned long end = addr + size;
2516 pgtbl_mod_mask mask = 0;
2517 int err = 0;
2518
2519 if (WARN_ON(addr >= end))
2520 return -EINVAL;
2521
2522 pgd = pgd_offset(mm, addr);
2523 do {
2524 next = pgd_addr_end(addr, end);
2525 if (!create && pgd_none_or_clear_bad(pgd))
2526 continue;
2527 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2528 if (err)
2529 break;
2530 } while (pgd++, addr = next, addr != end);
2531
2532 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2533 arch_sync_kernel_mappings(start, start + size);
2534
2535 return err;
2536 }
2537
2538 /*
2539 * Scan a region of virtual memory, filling in page tables as necessary
2540 * and calling a provided function on each leaf page table.
2541 */
2542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2543 unsigned long size, pte_fn_t fn, void *data)
2544 {
2545 return __apply_to_page_range(mm, addr, size, fn, data, true);
2546 }
2547 EXPORT_SYMBOL_GPL(apply_to_page_range);
2548
2549 /*
2550 * Scan a region of virtual memory, calling a provided function on
2551 * each leaf page table where it exists.
2552 *
2553 * Unlike apply_to_page_range, this does _not_ fill in page tables
2554 * where they are absent.
2555 */
2556 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2557 unsigned long size, pte_fn_t fn, void *data)
2558 {
2559 return __apply_to_page_range(mm, addr, size, fn, data, false);
2560 }
2561 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2562
2563 /*
2564 * handle_pte_fault chooses page fault handler according to an entry which was
2565 * read non-atomically. Before making any commitment, on those architectures
2566 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2567 * parts, do_swap_page must check under lock before unmapping the pte and
2568 * proceeding (but do_wp_page is only called after already making such a check;
2569 * and do_anonymous_page can safely check later on).
2570 */
2571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2572 pte_t *page_table, pte_t orig_pte)
2573 {
2574 int same = 1;
2575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2576 if (sizeof(pte_t) > sizeof(unsigned long)) {
2577 spinlock_t *ptl = pte_lockptr(mm, pmd);
2578 spin_lock(ptl);
2579 same = pte_same(*page_table, orig_pte);
2580 spin_unlock(ptl);
2581 }
2582 #endif
2583 pte_unmap(page_table);
2584 return same;
2585 }
2586
2587 static inline bool cow_user_page(struct page *dst, struct page *src,
2588 struct vm_fault *vmf)
2589 {
2590 bool ret;
2591 void *kaddr;
2592 void __user *uaddr;
2593 bool locked = false;
2594 struct vm_area_struct *vma = vmf->vma;
2595 struct mm_struct *mm = vma->vm_mm;
2596 unsigned long addr = vmf->address;
2597
2598 if (likely(src)) {
2599 copy_user_highpage(dst, src, addr, vma);
2600 return true;
2601 }
2602
2603 /*
2604 * If the source page was a PFN mapping, we don't have
2605 * a "struct page" for it. We do a best-effort copy by
2606 * just copying from the original user address. If that
2607 * fails, we just zero-fill it. Live with it.
2608 */
2609 kaddr = kmap_atomic(dst);
2610 uaddr = (void __user *)(addr & PAGE_MASK);
2611
2612 /*
2613 * On architectures with software "accessed" bits, we would
2614 * take a double page fault, so mark it accessed here.
2615 */
2616 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2617 pte_t entry;
2618
2619 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2620 locked = true;
2621 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2622 /*
2623 * Other thread has already handled the fault
2624 * and update local tlb only
2625 */
2626 update_mmu_tlb(vma, addr, vmf->pte);
2627 ret = false;
2628 goto pte_unlock;
2629 }
2630
2631 entry = pte_mkyoung(vmf->orig_pte);
2632 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2633 update_mmu_cache(vma, addr, vmf->pte);
2634 }
2635
2636 /*
2637 * This really shouldn't fail, because the page is there
2638 * in the page tables. But it might just be unreadable,
2639 * in which case we just give up and fill the result with
2640 * zeroes.
2641 */
2642 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2643 if (locked)
2644 goto warn;
2645
2646 /* Re-validate under PTL if the page is still mapped */
2647 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2648 locked = true;
2649 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2650 /* The PTE changed under us, update local tlb */
2651 update_mmu_tlb(vma, addr, vmf->pte);
2652 ret = false;
2653 goto pte_unlock;
2654 }
2655
2656 /*
2657 * The same page can be mapped back since last copy attempt.
2658 * Try to copy again under PTL.
2659 */
2660 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2661 /*
2662 * Give a warn in case there can be some obscure
2663 * use-case
2664 */
2665 warn:
2666 WARN_ON_ONCE(1);
2667 clear_page(kaddr);
2668 }
2669 }
2670
2671 ret = true;
2672
2673 pte_unlock:
2674 if (locked)
2675 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676 kunmap_atomic(kaddr);
2677 flush_dcache_page(dst);
2678
2679 return ret;
2680 }
2681
2682 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2683 {
2684 struct file *vm_file = vma->vm_file;
2685
2686 if (vm_file)
2687 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2688
2689 /*
2690 * Special mappings (e.g. VDSO) do not have any file so fake
2691 * a default GFP_KERNEL for them.
2692 */
2693 return GFP_KERNEL;
2694 }
2695
2696 /*
2697 * Notify the address space that the page is about to become writable so that
2698 * it can prohibit this or wait for the page to get into an appropriate state.
2699 *
2700 * We do this without the lock held, so that it can sleep if it needs to.
2701 */
2702 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2703 {
2704 vm_fault_t ret;
2705 struct page *page = vmf->page;
2706 unsigned int old_flags = vmf->flags;
2707
2708 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2709
2710 if (vmf->vma->vm_file &&
2711 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2712 return VM_FAULT_SIGBUS;
2713
2714 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2715 /* Restore original flags so that caller is not surprised */
2716 vmf->flags = old_flags;
2717 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2718 return ret;
2719 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2720 lock_page(page);
2721 if (!page->mapping) {
2722 unlock_page(page);
2723 return 0; /* retry */
2724 }
2725 ret |= VM_FAULT_LOCKED;
2726 } else
2727 VM_BUG_ON_PAGE(!PageLocked(page), page);
2728 return ret;
2729 }
2730
2731 /*
2732 * Handle dirtying of a page in shared file mapping on a write fault.
2733 *
2734 * The function expects the page to be locked and unlocks it.
2735 */
2736 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2737 {
2738 struct vm_area_struct *vma = vmf->vma;
2739 struct address_space *mapping;
2740 struct page *page = vmf->page;
2741 bool dirtied;
2742 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2743
2744 dirtied = set_page_dirty(page);
2745 VM_BUG_ON_PAGE(PageAnon(page), page);
2746 /*
2747 * Take a local copy of the address_space - page.mapping may be zeroed
2748 * by truncate after unlock_page(). The address_space itself remains
2749 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2750 * release semantics to prevent the compiler from undoing this copying.
2751 */
2752 mapping = page_rmapping(page);
2753 unlock_page(page);
2754
2755 if (!page_mkwrite)
2756 file_update_time(vma->vm_file);
2757
2758 /*
2759 * Throttle page dirtying rate down to writeback speed.
2760 *
2761 * mapping may be NULL here because some device drivers do not
2762 * set page.mapping but still dirty their pages
2763 *
2764 * Drop the mmap_lock before waiting on IO, if we can. The file
2765 * is pinning the mapping, as per above.
2766 */
2767 if ((dirtied || page_mkwrite) && mapping) {
2768 struct file *fpin;
2769
2770 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2771 balance_dirty_pages_ratelimited(mapping);
2772 if (fpin) {
2773 fput(fpin);
2774 return VM_FAULT_RETRY;
2775 }
2776 }
2777
2778 return 0;
2779 }
2780
2781 /*
2782 * Handle write page faults for pages that can be reused in the current vma
2783 *
2784 * This can happen either due to the mapping being with the VM_SHARED flag,
2785 * or due to us being the last reference standing to the page. In either
2786 * case, all we need to do here is to mark the page as writable and update
2787 * any related book-keeping.
2788 */
2789 static inline void wp_page_reuse(struct vm_fault *vmf)
2790 __releases(vmf->ptl)
2791 {
2792 struct vm_area_struct *vma = vmf->vma;
2793 struct page *page = vmf->page;
2794 pte_t entry;
2795 /*
2796 * Clear the pages cpupid information as the existing
2797 * information potentially belongs to a now completely
2798 * unrelated process.
2799 */
2800 if (page)
2801 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2802
2803 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2804 entry = pte_mkyoung(vmf->orig_pte);
2805 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2806 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2807 update_mmu_cache(vma, vmf->address, vmf->pte);
2808 pte_unmap_unlock(vmf->pte, vmf->ptl);
2809 count_vm_event(PGREUSE);
2810 }
2811
2812 /*
2813 * Handle the case of a page which we actually need to copy to a new page.
2814 *
2815 * Called with mmap_lock locked and the old page referenced, but
2816 * without the ptl held.
2817 *
2818 * High level logic flow:
2819 *
2820 * - Allocate a page, copy the content of the old page to the new one.
2821 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2822 * - Take the PTL. If the pte changed, bail out and release the allocated page
2823 * - If the pte is still the way we remember it, update the page table and all
2824 * relevant references. This includes dropping the reference the page-table
2825 * held to the old page, as well as updating the rmap.
2826 * - In any case, unlock the PTL and drop the reference we took to the old page.
2827 */
2828 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2829 {
2830 struct vm_area_struct *vma = vmf->vma;
2831 struct mm_struct *mm = vma->vm_mm;
2832 struct page *old_page = vmf->page;
2833 struct page *new_page = NULL;
2834 pte_t entry;
2835 int page_copied = 0;
2836 struct mmu_notifier_range range;
2837
2838 if (unlikely(anon_vma_prepare(vma)))
2839 goto oom;
2840
2841 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2842 new_page = alloc_zeroed_user_highpage_movable(vma,
2843 vmf->address);
2844 if (!new_page)
2845 goto oom;
2846 } else {
2847 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2848 vmf->address);
2849 if (!new_page)
2850 goto oom;
2851
2852 if (!cow_user_page(new_page, old_page, vmf)) {
2853 /*
2854 * COW failed, if the fault was solved by other,
2855 * it's fine. If not, userspace would re-fault on
2856 * the same address and we will handle the fault
2857 * from the second attempt.
2858 */
2859 put_page(new_page);
2860 if (old_page)
2861 put_page(old_page);
2862 return 0;
2863 }
2864 }
2865
2866 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2867 goto oom_free_new;
2868 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2869
2870 __SetPageUptodate(new_page);
2871
2872 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2873 vmf->address & PAGE_MASK,
2874 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2875 mmu_notifier_invalidate_range_start(&range);
2876
2877 /*
2878 * Re-check the pte - we dropped the lock
2879 */
2880 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2881 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2882 if (old_page) {
2883 if (!PageAnon(old_page)) {
2884 dec_mm_counter_fast(mm,
2885 mm_counter_file(old_page));
2886 inc_mm_counter_fast(mm, MM_ANONPAGES);
2887 }
2888 } else {
2889 inc_mm_counter_fast(mm, MM_ANONPAGES);
2890 }
2891 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2892 entry = mk_pte(new_page, vma->vm_page_prot);
2893 entry = pte_sw_mkyoung(entry);
2894 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2895
2896 /*
2897 * Clear the pte entry and flush it first, before updating the
2898 * pte with the new entry, to keep TLBs on different CPUs in
2899 * sync. This code used to set the new PTE then flush TLBs, but
2900 * that left a window where the new PTE could be loaded into
2901 * some TLBs while the old PTE remains in others.
2902 */
2903 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2904 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2905 lru_cache_add_inactive_or_unevictable(new_page, vma);
2906 /*
2907 * We call the notify macro here because, when using secondary
2908 * mmu page tables (such as kvm shadow page tables), we want the
2909 * new page to be mapped directly into the secondary page table.
2910 */
2911 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2912 update_mmu_cache(vma, vmf->address, vmf->pte);
2913 if (old_page) {
2914 /*
2915 * Only after switching the pte to the new page may
2916 * we remove the mapcount here. Otherwise another
2917 * process may come and find the rmap count decremented
2918 * before the pte is switched to the new page, and
2919 * "reuse" the old page writing into it while our pte
2920 * here still points into it and can be read by other
2921 * threads.
2922 *
2923 * The critical issue is to order this
2924 * page_remove_rmap with the ptp_clear_flush above.
2925 * Those stores are ordered by (if nothing else,)
2926 * the barrier present in the atomic_add_negative
2927 * in page_remove_rmap.
2928 *
2929 * Then the TLB flush in ptep_clear_flush ensures that
2930 * no process can access the old page before the
2931 * decremented mapcount is visible. And the old page
2932 * cannot be reused until after the decremented
2933 * mapcount is visible. So transitively, TLBs to
2934 * old page will be flushed before it can be reused.
2935 */
2936 page_remove_rmap(old_page, false);
2937 }
2938
2939 /* Free the old page.. */
2940 new_page = old_page;
2941 page_copied = 1;
2942 } else {
2943 update_mmu_tlb(vma, vmf->address, vmf->pte);
2944 }
2945
2946 if (new_page)
2947 put_page(new_page);
2948
2949 pte_unmap_unlock(vmf->pte, vmf->ptl);
2950 /*
2951 * No need to double call mmu_notifier->invalidate_range() callback as
2952 * the above ptep_clear_flush_notify() did already call it.
2953 */
2954 mmu_notifier_invalidate_range_only_end(&range);
2955 if (old_page) {
2956 /*
2957 * Don't let another task, with possibly unlocked vma,
2958 * keep the mlocked page.
2959 */
2960 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2961 lock_page(old_page); /* LRU manipulation */
2962 if (PageMlocked(old_page))
2963 munlock_vma_page(old_page);
2964 unlock_page(old_page);
2965 }
2966 put_page(old_page);
2967 }
2968 return page_copied ? VM_FAULT_WRITE : 0;
2969 oom_free_new:
2970 put_page(new_page);
2971 oom:
2972 if (old_page)
2973 put_page(old_page);
2974 return VM_FAULT_OOM;
2975 }
2976
2977 /**
2978 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2979 * writeable once the page is prepared
2980 *
2981 * @vmf: structure describing the fault
2982 *
2983 * This function handles all that is needed to finish a write page fault in a
2984 * shared mapping due to PTE being read-only once the mapped page is prepared.
2985 * It handles locking of PTE and modifying it.
2986 *
2987 * The function expects the page to be locked or other protection against
2988 * concurrent faults / writeback (such as DAX radix tree locks).
2989 *
2990 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2991 * we acquired PTE lock.
2992 */
2993 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2994 {
2995 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2996 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2997 &vmf->ptl);
2998 /*
2999 * We might have raced with another page fault while we released the
3000 * pte_offset_map_lock.
3001 */
3002 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3003 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3004 pte_unmap_unlock(vmf->pte, vmf->ptl);
3005 return VM_FAULT_NOPAGE;
3006 }
3007 wp_page_reuse(vmf);
3008 return 0;
3009 }
3010
3011 /*
3012 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3013 * mapping
3014 */
3015 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3016 {
3017 struct vm_area_struct *vma = vmf->vma;
3018
3019 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3020 vm_fault_t ret;
3021
3022 pte_unmap_unlock(vmf->pte, vmf->ptl);
3023 vmf->flags |= FAULT_FLAG_MKWRITE;
3024 ret = vma->vm_ops->pfn_mkwrite(vmf);
3025 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3026 return ret;
3027 return finish_mkwrite_fault(vmf);
3028 }
3029 wp_page_reuse(vmf);
3030 return VM_FAULT_WRITE;
3031 }
3032
3033 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3034 __releases(vmf->ptl)
3035 {
3036 struct vm_area_struct *vma = vmf->vma;
3037 vm_fault_t ret = VM_FAULT_WRITE;
3038
3039 get_page(vmf->page);
3040
3041 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3042 vm_fault_t tmp;
3043
3044 pte_unmap_unlock(vmf->pte, vmf->ptl);
3045 tmp = do_page_mkwrite(vmf);
3046 if (unlikely(!tmp || (tmp &
3047 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3048 put_page(vmf->page);
3049 return tmp;
3050 }
3051 tmp = finish_mkwrite_fault(vmf);
3052 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3053 unlock_page(vmf->page);
3054 put_page(vmf->page);
3055 return tmp;
3056 }
3057 } else {
3058 wp_page_reuse(vmf);
3059 lock_page(vmf->page);
3060 }
3061 ret |= fault_dirty_shared_page(vmf);
3062 put_page(vmf->page);
3063
3064 return ret;
3065 }
3066
3067 /*
3068 * This routine handles present pages, when users try to write
3069 * to a shared page. It is done by copying the page to a new address
3070 * and decrementing the shared-page counter for the old page.
3071 *
3072 * Note that this routine assumes that the protection checks have been
3073 * done by the caller (the low-level page fault routine in most cases).
3074 * Thus we can safely just mark it writable once we've done any necessary
3075 * COW.
3076 *
3077 * We also mark the page dirty at this point even though the page will
3078 * change only once the write actually happens. This avoids a few races,
3079 * and potentially makes it more efficient.
3080 *
3081 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3082 * but allow concurrent faults), with pte both mapped and locked.
3083 * We return with mmap_lock still held, but pte unmapped and unlocked.
3084 */
3085 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3086 __releases(vmf->ptl)
3087 {
3088 struct vm_area_struct *vma = vmf->vma;
3089
3090 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 return handle_userfault(vmf, VM_UFFD_WP);
3093 }
3094
3095 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3096 if (!vmf->page) {
3097 /*
3098 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3099 * VM_PFNMAP VMA.
3100 *
3101 * We should not cow pages in a shared writeable mapping.
3102 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3103 */
3104 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3105 (VM_WRITE|VM_SHARED))
3106 return wp_pfn_shared(vmf);
3107
3108 pte_unmap_unlock(vmf->pte, vmf->ptl);
3109 return wp_page_copy(vmf);
3110 }
3111
3112 /*
3113 * Take out anonymous pages first, anonymous shared vmas are
3114 * not dirty accountable.
3115 */
3116 if (PageAnon(vmf->page)) {
3117 struct page *page = vmf->page;
3118
3119 /* PageKsm() doesn't necessarily raise the page refcount */
3120 if (PageKsm(page) || page_count(page) != 1)
3121 goto copy;
3122 if (!trylock_page(page))
3123 goto copy;
3124 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3125 unlock_page(page);
3126 goto copy;
3127 }
3128 /*
3129 * Ok, we've got the only map reference, and the only
3130 * page count reference, and the page is locked,
3131 * it's dark out, and we're wearing sunglasses. Hit it.
3132 */
3133 unlock_page(page);
3134 wp_page_reuse(vmf);
3135 return VM_FAULT_WRITE;
3136 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3137 (VM_WRITE|VM_SHARED))) {
3138 return wp_page_shared(vmf);
3139 }
3140 copy:
3141 /*
3142 * Ok, we need to copy. Oh, well..
3143 */
3144 get_page(vmf->page);
3145
3146 pte_unmap_unlock(vmf->pte, vmf->ptl);
3147 return wp_page_copy(vmf);
3148 }
3149
3150 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3151 unsigned long start_addr, unsigned long end_addr,
3152 struct zap_details *details)
3153 {
3154 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3155 }
3156
3157 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3158 struct zap_details *details)
3159 {
3160 struct vm_area_struct *vma;
3161 pgoff_t vba, vea, zba, zea;
3162
3163 vma_interval_tree_foreach(vma, root,
3164 details->first_index, details->last_index) {
3165
3166 vba = vma->vm_pgoff;
3167 vea = vba + vma_pages(vma) - 1;
3168 zba = details->first_index;
3169 if (zba < vba)
3170 zba = vba;
3171 zea = details->last_index;
3172 if (zea > vea)
3173 zea = vea;
3174
3175 unmap_mapping_range_vma(vma,
3176 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3177 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3178 details);
3179 }
3180 }
3181
3182 /**
3183 * unmap_mapping_pages() - Unmap pages from processes.
3184 * @mapping: The address space containing pages to be unmapped.
3185 * @start: Index of first page to be unmapped.
3186 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3187 * @even_cows: Whether to unmap even private COWed pages.
3188 *
3189 * Unmap the pages in this address space from any userspace process which
3190 * has them mmaped. Generally, you want to remove COWed pages as well when
3191 * a file is being truncated, but not when invalidating pages from the page
3192 * cache.
3193 */
3194 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3195 pgoff_t nr, bool even_cows)
3196 {
3197 struct zap_details details = { };
3198
3199 details.check_mapping = even_cows ? NULL : mapping;
3200 details.first_index = start;
3201 details.last_index = start + nr - 1;
3202 if (details.last_index < details.first_index)
3203 details.last_index = ULONG_MAX;
3204
3205 i_mmap_lock_write(mapping);
3206 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3207 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3208 i_mmap_unlock_write(mapping);
3209 }
3210
3211 /**
3212 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3213 * address_space corresponding to the specified byte range in the underlying
3214 * file.
3215 *
3216 * @mapping: the address space containing mmaps to be unmapped.
3217 * @holebegin: byte in first page to unmap, relative to the start of
3218 * the underlying file. This will be rounded down to a PAGE_SIZE
3219 * boundary. Note that this is different from truncate_pagecache(), which
3220 * must keep the partial page. In contrast, we must get rid of
3221 * partial pages.
3222 * @holelen: size of prospective hole in bytes. This will be rounded
3223 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3224 * end of the file.
3225 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3226 * but 0 when invalidating pagecache, don't throw away private data.
3227 */
3228 void unmap_mapping_range(struct address_space *mapping,
3229 loff_t const holebegin, loff_t const holelen, int even_cows)
3230 {
3231 pgoff_t hba = holebegin >> PAGE_SHIFT;
3232 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3233
3234 /* Check for overflow. */
3235 if (sizeof(holelen) > sizeof(hlen)) {
3236 long long holeend =
3237 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3238 if (holeend & ~(long long)ULONG_MAX)
3239 hlen = ULONG_MAX - hba + 1;
3240 }
3241
3242 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3243 }
3244 EXPORT_SYMBOL(unmap_mapping_range);
3245
3246 /*
3247 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3248 * but allow concurrent faults), and pte mapped but not yet locked.
3249 * We return with pte unmapped and unlocked.
3250 *
3251 * We return with the mmap_lock locked or unlocked in the same cases
3252 * as does filemap_fault().
3253 */
3254 vm_fault_t do_swap_page(struct vm_fault *vmf)
3255 {
3256 struct vm_area_struct *vma = vmf->vma;
3257 struct page *page = NULL, *swapcache;
3258 swp_entry_t entry;
3259 pte_t pte;
3260 int locked;
3261 int exclusive = 0;
3262 vm_fault_t ret = 0;
3263 void *shadow = NULL;
3264
3265 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3266 goto out;
3267
3268 entry = pte_to_swp_entry(vmf->orig_pte);
3269 if (unlikely(non_swap_entry(entry))) {
3270 if (is_migration_entry(entry)) {
3271 migration_entry_wait(vma->vm_mm, vmf->pmd,
3272 vmf->address);
3273 } else if (is_device_private_entry(entry)) {
3274 vmf->page = device_private_entry_to_page(entry);
3275 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3276 } else if (is_hwpoison_entry(entry)) {
3277 ret = VM_FAULT_HWPOISON;
3278 } else {
3279 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3280 ret = VM_FAULT_SIGBUS;
3281 }
3282 goto out;
3283 }
3284
3285
3286 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3287 page = lookup_swap_cache(entry, vma, vmf->address);
3288 swapcache = page;
3289
3290 if (!page) {
3291 struct swap_info_struct *si = swp_swap_info(entry);
3292
3293 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3294 __swap_count(entry) == 1) {
3295 /* skip swapcache */
3296 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3297 vmf->address);
3298 if (page) {
3299 int err;
3300
3301 __SetPageLocked(page);
3302 __SetPageSwapBacked(page);
3303 set_page_private(page, entry.val);
3304
3305 /* Tell memcg to use swap ownership records */
3306 SetPageSwapCache(page);
3307 err = mem_cgroup_charge(page, vma->vm_mm,
3308 GFP_KERNEL);
3309 ClearPageSwapCache(page);
3310 if (err) {
3311 ret = VM_FAULT_OOM;
3312 goto out_page;
3313 }
3314
3315 shadow = get_shadow_from_swap_cache(entry);
3316 if (shadow)
3317 workingset_refault(page, shadow);
3318
3319 lru_cache_add(page);
3320 swap_readpage(page, true);
3321 }
3322 } else {
3323 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3324 vmf);
3325 swapcache = page;
3326 }
3327
3328 if (!page) {
3329 /*
3330 * Back out if somebody else faulted in this pte
3331 * while we released the pte lock.
3332 */
3333 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3334 vmf->address, &vmf->ptl);
3335 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3336 ret = VM_FAULT_OOM;
3337 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3338 goto unlock;
3339 }
3340
3341 /* Had to read the page from swap area: Major fault */
3342 ret = VM_FAULT_MAJOR;
3343 count_vm_event(PGMAJFAULT);
3344 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3345 } else if (PageHWPoison(page)) {
3346 /*
3347 * hwpoisoned dirty swapcache pages are kept for killing
3348 * owner processes (which may be unknown at hwpoison time)
3349 */
3350 ret = VM_FAULT_HWPOISON;
3351 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3352 goto out_release;
3353 }
3354
3355 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3356
3357 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3358 if (!locked) {
3359 ret |= VM_FAULT_RETRY;
3360 goto out_release;
3361 }
3362
3363 /*
3364 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3365 * release the swapcache from under us. The page pin, and pte_same
3366 * test below, are not enough to exclude that. Even if it is still
3367 * swapcache, we need to check that the page's swap has not changed.
3368 */
3369 if (unlikely((!PageSwapCache(page) ||
3370 page_private(page) != entry.val)) && swapcache)
3371 goto out_page;
3372
3373 page = ksm_might_need_to_copy(page, vma, vmf->address);
3374 if (unlikely(!page)) {
3375 ret = VM_FAULT_OOM;
3376 page = swapcache;
3377 goto out_page;
3378 }
3379
3380 cgroup_throttle_swaprate(page, GFP_KERNEL);
3381
3382 /*
3383 * Back out if somebody else already faulted in this pte.
3384 */
3385 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3386 &vmf->ptl);
3387 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3388 goto out_nomap;
3389
3390 if (unlikely(!PageUptodate(page))) {
3391 ret = VM_FAULT_SIGBUS;
3392 goto out_nomap;
3393 }
3394
3395 /*
3396 * The page isn't present yet, go ahead with the fault.
3397 *
3398 * Be careful about the sequence of operations here.
3399 * To get its accounting right, reuse_swap_page() must be called
3400 * while the page is counted on swap but not yet in mapcount i.e.
3401 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3402 * must be called after the swap_free(), or it will never succeed.
3403 */
3404
3405 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3406 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3407 pte = mk_pte(page, vma->vm_page_prot);
3408 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3409 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3410 vmf->flags &= ~FAULT_FLAG_WRITE;
3411 ret |= VM_FAULT_WRITE;
3412 exclusive = RMAP_EXCLUSIVE;
3413 }
3414 flush_icache_page(vma, page);
3415 if (pte_swp_soft_dirty(vmf->orig_pte))
3416 pte = pte_mksoft_dirty(pte);
3417 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3418 pte = pte_mkuffd_wp(pte);
3419 pte = pte_wrprotect(pte);
3420 }
3421 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3422 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3423 vmf->orig_pte = pte;
3424
3425 /* ksm created a completely new copy */
3426 if (unlikely(page != swapcache && swapcache)) {
3427 page_add_new_anon_rmap(page, vma, vmf->address, false);
3428 lru_cache_add_inactive_or_unevictable(page, vma);
3429 } else {
3430 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3431 }
3432
3433 swap_free(entry);
3434 if (mem_cgroup_swap_full(page) ||
3435 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3436 try_to_free_swap(page);
3437 unlock_page(page);
3438 if (page != swapcache && swapcache) {
3439 /*
3440 * Hold the lock to avoid the swap entry to be reused
3441 * until we take the PT lock for the pte_same() check
3442 * (to avoid false positives from pte_same). For
3443 * further safety release the lock after the swap_free
3444 * so that the swap count won't change under a
3445 * parallel locked swapcache.
3446 */
3447 unlock_page(swapcache);
3448 put_page(swapcache);
3449 }
3450
3451 if (vmf->flags & FAULT_FLAG_WRITE) {
3452 ret |= do_wp_page(vmf);
3453 if (ret & VM_FAULT_ERROR)
3454 ret &= VM_FAULT_ERROR;
3455 goto out;
3456 }
3457
3458 /* No need to invalidate - it was non-present before */
3459 update_mmu_cache(vma, vmf->address, vmf->pte);
3460 unlock:
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 out:
3463 return ret;
3464 out_nomap:
3465 pte_unmap_unlock(vmf->pte, vmf->ptl);
3466 out_page:
3467 unlock_page(page);
3468 out_release:
3469 put_page(page);
3470 if (page != swapcache && swapcache) {
3471 unlock_page(swapcache);
3472 put_page(swapcache);
3473 }
3474 return ret;
3475 }
3476
3477 /*
3478 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3479 * but allow concurrent faults), and pte mapped but not yet locked.
3480 * We return with mmap_lock still held, but pte unmapped and unlocked.
3481 */
3482 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3483 {
3484 struct vm_area_struct *vma = vmf->vma;
3485 struct page *page;
3486 vm_fault_t ret = 0;
3487 pte_t entry;
3488
3489 /* File mapping without ->vm_ops ? */
3490 if (vma->vm_flags & VM_SHARED)
3491 return VM_FAULT_SIGBUS;
3492
3493 /*
3494 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3495 * pte_offset_map() on pmds where a huge pmd might be created
3496 * from a different thread.
3497 *
3498 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3499 * parallel threads are excluded by other means.
3500 *
3501 * Here we only have mmap_read_lock(mm).
3502 */
3503 if (pte_alloc(vma->vm_mm, vmf->pmd))
3504 return VM_FAULT_OOM;
3505
3506 /* See the comment in pte_alloc_one_map() */
3507 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3508 return 0;
3509
3510 /* Use the zero-page for reads */
3511 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3512 !mm_forbids_zeropage(vma->vm_mm)) {
3513 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3514 vma->vm_page_prot));
3515 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3516 vmf->address, &vmf->ptl);
3517 if (!pte_none(*vmf->pte)) {
3518 update_mmu_tlb(vma, vmf->address, vmf->pte);
3519 goto unlock;
3520 }
3521 ret = check_stable_address_space(vma->vm_mm);
3522 if (ret)
3523 goto unlock;
3524 /* Deliver the page fault to userland, check inside PT lock */
3525 if (userfaultfd_missing(vma)) {
3526 pte_unmap_unlock(vmf->pte, vmf->ptl);
3527 return handle_userfault(vmf, VM_UFFD_MISSING);
3528 }
3529 goto setpte;
3530 }
3531
3532 /* Allocate our own private page. */
3533 if (unlikely(anon_vma_prepare(vma)))
3534 goto oom;
3535 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3536 if (!page)
3537 goto oom;
3538
3539 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3540 goto oom_free_page;
3541 cgroup_throttle_swaprate(page, GFP_KERNEL);
3542
3543 /*
3544 * The memory barrier inside __SetPageUptodate makes sure that
3545 * preceding stores to the page contents become visible before
3546 * the set_pte_at() write.
3547 */
3548 __SetPageUptodate(page);
3549
3550 entry = mk_pte(page, vma->vm_page_prot);
3551 entry = pte_sw_mkyoung(entry);
3552 if (vma->vm_flags & VM_WRITE)
3553 entry = pte_mkwrite(pte_mkdirty(entry));
3554
3555 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3556 &vmf->ptl);
3557 if (!pte_none(*vmf->pte)) {
3558 update_mmu_cache(vma, vmf->address, vmf->pte);
3559 goto release;
3560 }
3561
3562 ret = check_stable_address_space(vma->vm_mm);
3563 if (ret)
3564 goto release;
3565
3566 /* Deliver the page fault to userland, check inside PT lock */
3567 if (userfaultfd_missing(vma)) {
3568 pte_unmap_unlock(vmf->pte, vmf->ptl);
3569 put_page(page);
3570 return handle_userfault(vmf, VM_UFFD_MISSING);
3571 }
3572
3573 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3574 page_add_new_anon_rmap(page, vma, vmf->address, false);
3575 lru_cache_add_inactive_or_unevictable(page, vma);
3576 setpte:
3577 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3578
3579 /* No need to invalidate - it was non-present before */
3580 update_mmu_cache(vma, vmf->address, vmf->pte);
3581 unlock:
3582 pte_unmap_unlock(vmf->pte, vmf->ptl);
3583 return ret;
3584 release:
3585 put_page(page);
3586 goto unlock;
3587 oom_free_page:
3588 put_page(page);
3589 oom:
3590 return VM_FAULT_OOM;
3591 }
3592
3593 /*
3594 * The mmap_lock must have been held on entry, and may have been
3595 * released depending on flags and vma->vm_ops->fault() return value.
3596 * See filemap_fault() and __lock_page_retry().
3597 */
3598 static vm_fault_t __do_fault(struct vm_fault *vmf)
3599 {
3600 struct vm_area_struct *vma = vmf->vma;
3601 vm_fault_t ret;
3602
3603 /*
3604 * Preallocate pte before we take page_lock because this might lead to
3605 * deadlocks for memcg reclaim which waits for pages under writeback:
3606 * lock_page(A)
3607 * SetPageWriteback(A)
3608 * unlock_page(A)
3609 * lock_page(B)
3610 * lock_page(B)
3611 * pte_alloc_one
3612 * shrink_page_list
3613 * wait_on_page_writeback(A)
3614 * SetPageWriteback(B)
3615 * unlock_page(B)
3616 * # flush A, B to clear the writeback
3617 */
3618 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3619 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3620 if (!vmf->prealloc_pte)
3621 return VM_FAULT_OOM;
3622 smp_wmb(); /* See comment in __pte_alloc() */
3623 }
3624
3625 ret = vma->vm_ops->fault(vmf);
3626 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3627 VM_FAULT_DONE_COW)))
3628 return ret;
3629
3630 if (unlikely(PageHWPoison(vmf->page))) {
3631 if (ret & VM_FAULT_LOCKED)
3632 unlock_page(vmf->page);
3633 put_page(vmf->page);
3634 vmf->page = NULL;
3635 return VM_FAULT_HWPOISON;
3636 }
3637
3638 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3639 lock_page(vmf->page);
3640 else
3641 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3642
3643 return ret;
3644 }
3645
3646 /*
3647 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3648 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3649 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3650 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3651 */
3652 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3653 {
3654 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3655 }
3656
3657 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3658 {
3659 struct vm_area_struct *vma = vmf->vma;
3660
3661 if (!pmd_none(*vmf->pmd))
3662 goto map_pte;
3663 if (vmf->prealloc_pte) {
3664 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3665 if (unlikely(!pmd_none(*vmf->pmd))) {
3666 spin_unlock(vmf->ptl);
3667 goto map_pte;
3668 }
3669
3670 mm_inc_nr_ptes(vma->vm_mm);
3671 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3672 spin_unlock(vmf->ptl);
3673 vmf->prealloc_pte = NULL;
3674 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3675 return VM_FAULT_OOM;
3676 }
3677 map_pte:
3678 /*
3679 * If a huge pmd materialized under us just retry later. Use
3680 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3681 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3682 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3683 * running immediately after a huge pmd fault in a different thread of
3684 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3685 * All we have to ensure is that it is a regular pmd that we can walk
3686 * with pte_offset_map() and we can do that through an atomic read in
3687 * C, which is what pmd_trans_unstable() provides.
3688 */
3689 if (pmd_devmap_trans_unstable(vmf->pmd))
3690 return VM_FAULT_NOPAGE;
3691
3692 /*
3693 * At this point we know that our vmf->pmd points to a page of ptes
3694 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3695 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3696 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3697 * be valid and we will re-check to make sure the vmf->pte isn't
3698 * pte_none() under vmf->ptl protection when we return to
3699 * alloc_set_pte().
3700 */
3701 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3702 &vmf->ptl);
3703 return 0;
3704 }
3705
3706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 static void deposit_prealloc_pte(struct vm_fault *vmf)
3708 {
3709 struct vm_area_struct *vma = vmf->vma;
3710
3711 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3712 /*
3713 * We are going to consume the prealloc table,
3714 * count that as nr_ptes.
3715 */
3716 mm_inc_nr_ptes(vma->vm_mm);
3717 vmf->prealloc_pte = NULL;
3718 }
3719
3720 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3721 {
3722 struct vm_area_struct *vma = vmf->vma;
3723 bool write = vmf->flags & FAULT_FLAG_WRITE;
3724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3725 pmd_t entry;
3726 int i;
3727 vm_fault_t ret = VM_FAULT_FALLBACK;
3728
3729 if (!transhuge_vma_suitable(vma, haddr))
3730 return ret;
3731
3732 page = compound_head(page);
3733 if (compound_order(page) != HPAGE_PMD_ORDER)
3734 return ret;
3735
3736 /*
3737 * Archs like ppc64 need additonal space to store information
3738 * related to pte entry. Use the preallocated table for that.
3739 */
3740 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3741 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3742 if (!vmf->prealloc_pte)
3743 return VM_FAULT_OOM;
3744 smp_wmb(); /* See comment in __pte_alloc() */
3745 }
3746
3747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3748 if (unlikely(!pmd_none(*vmf->pmd)))
3749 goto out;
3750
3751 for (i = 0; i < HPAGE_PMD_NR; i++)
3752 flush_icache_page(vma, page + i);
3753
3754 entry = mk_huge_pmd(page, vma->vm_page_prot);
3755 if (write)
3756 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3757
3758 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3759 page_add_file_rmap(page, true);
3760 /*
3761 * deposit and withdraw with pmd lock held
3762 */
3763 if (arch_needs_pgtable_deposit())
3764 deposit_prealloc_pte(vmf);
3765
3766 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3767
3768 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3769
3770 /* fault is handled */
3771 ret = 0;
3772 count_vm_event(THP_FILE_MAPPED);
3773 out:
3774 spin_unlock(vmf->ptl);
3775 return ret;
3776 }
3777 #else
3778 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3779 {
3780 BUILD_BUG();
3781 return 0;
3782 }
3783 #endif
3784
3785 /**
3786 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3787 * mapping. If needed, the function allocates page table or use pre-allocated.
3788 *
3789 * @vmf: fault environment
3790 * @page: page to map
3791 *
3792 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3793 * return.
3794 *
3795 * Target users are page handler itself and implementations of
3796 * vm_ops->map_pages.
3797 *
3798 * Return: %0 on success, %VM_FAULT_ code in case of error.
3799 */
3800 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3801 {
3802 struct vm_area_struct *vma = vmf->vma;
3803 bool write = vmf->flags & FAULT_FLAG_WRITE;
3804 pte_t entry;
3805 vm_fault_t ret;
3806
3807 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3808 ret = do_set_pmd(vmf, page);
3809 if (ret != VM_FAULT_FALLBACK)
3810 return ret;
3811 }
3812
3813 if (!vmf->pte) {
3814 ret = pte_alloc_one_map(vmf);
3815 if (ret)
3816 return ret;
3817 }
3818
3819 /* Re-check under ptl */
3820 if (unlikely(!pte_none(*vmf->pte))) {
3821 update_mmu_tlb(vma, vmf->address, vmf->pte);
3822 return VM_FAULT_NOPAGE;
3823 }
3824
3825 flush_icache_page(vma, page);
3826 entry = mk_pte(page, vma->vm_page_prot);
3827 entry = pte_sw_mkyoung(entry);
3828 if (write)
3829 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3830 /* copy-on-write page */
3831 if (write && !(vma->vm_flags & VM_SHARED)) {
3832 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3833 page_add_new_anon_rmap(page, vma, vmf->address, false);
3834 lru_cache_add_inactive_or_unevictable(page, vma);
3835 } else {
3836 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3837 page_add_file_rmap(page, false);
3838 }
3839 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3840
3841 /* no need to invalidate: a not-present page won't be cached */
3842 update_mmu_cache(vma, vmf->address, vmf->pte);
3843
3844 return 0;
3845 }
3846
3847
3848 /**
3849 * finish_fault - finish page fault once we have prepared the page to fault
3850 *
3851 * @vmf: structure describing the fault
3852 *
3853 * This function handles all that is needed to finish a page fault once the
3854 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3855 * given page, adds reverse page mapping, handles memcg charges and LRU
3856 * addition.
3857 *
3858 * The function expects the page to be locked and on success it consumes a
3859 * reference of a page being mapped (for the PTE which maps it).
3860 *
3861 * Return: %0 on success, %VM_FAULT_ code in case of error.
3862 */
3863 vm_fault_t finish_fault(struct vm_fault *vmf)
3864 {
3865 struct page *page;
3866 vm_fault_t ret = 0;
3867
3868 /* Did we COW the page? */
3869 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3870 !(vmf->vma->vm_flags & VM_SHARED))
3871 page = vmf->cow_page;
3872 else
3873 page = vmf->page;
3874
3875 /*
3876 * check even for read faults because we might have lost our CoWed
3877 * page
3878 */
3879 if (!(vmf->vma->vm_flags & VM_SHARED))
3880 ret = check_stable_address_space(vmf->vma->vm_mm);
3881 if (!ret)
3882 ret = alloc_set_pte(vmf, page);
3883 if (vmf->pte)
3884 pte_unmap_unlock(vmf->pte, vmf->ptl);
3885 return ret;
3886 }
3887
3888 static unsigned long fault_around_bytes __read_mostly =
3889 rounddown_pow_of_two(65536);
3890
3891 #ifdef CONFIG_DEBUG_FS
3892 static int fault_around_bytes_get(void *data, u64 *val)
3893 {
3894 *val = fault_around_bytes;
3895 return 0;
3896 }
3897
3898 /*
3899 * fault_around_bytes must be rounded down to the nearest page order as it's
3900 * what do_fault_around() expects to see.
3901 */
3902 static int fault_around_bytes_set(void *data, u64 val)
3903 {
3904 if (val / PAGE_SIZE > PTRS_PER_PTE)
3905 return -EINVAL;
3906 if (val > PAGE_SIZE)
3907 fault_around_bytes = rounddown_pow_of_two(val);
3908 else
3909 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3910 return 0;
3911 }
3912 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3913 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3914
3915 static int __init fault_around_debugfs(void)
3916 {
3917 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3918 &fault_around_bytes_fops);
3919 return 0;
3920 }
3921 late_initcall(fault_around_debugfs);
3922 #endif
3923
3924 /*
3925 * do_fault_around() tries to map few pages around the fault address. The hope
3926 * is that the pages will be needed soon and this will lower the number of
3927 * faults to handle.
3928 *
3929 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3930 * not ready to be mapped: not up-to-date, locked, etc.
3931 *
3932 * This function is called with the page table lock taken. In the split ptlock
3933 * case the page table lock only protects only those entries which belong to
3934 * the page table corresponding to the fault address.
3935 *
3936 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3937 * only once.
3938 *
3939 * fault_around_bytes defines how many bytes we'll try to map.
3940 * do_fault_around() expects it to be set to a power of two less than or equal
3941 * to PTRS_PER_PTE.
3942 *
3943 * The virtual address of the area that we map is naturally aligned to
3944 * fault_around_bytes rounded down to the machine page size
3945 * (and therefore to page order). This way it's easier to guarantee
3946 * that we don't cross page table boundaries.
3947 */
3948 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3949 {
3950 unsigned long address = vmf->address, nr_pages, mask;
3951 pgoff_t start_pgoff = vmf->pgoff;
3952 pgoff_t end_pgoff;
3953 int off;
3954 vm_fault_t ret = 0;
3955
3956 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3957 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3958
3959 vmf->address = max(address & mask, vmf->vma->vm_start);
3960 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3961 start_pgoff -= off;
3962
3963 /*
3964 * end_pgoff is either the end of the page table, the end of
3965 * the vma or nr_pages from start_pgoff, depending what is nearest.
3966 */
3967 end_pgoff = start_pgoff -
3968 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3969 PTRS_PER_PTE - 1;
3970 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3971 start_pgoff + nr_pages - 1);
3972
3973 if (pmd_none(*vmf->pmd)) {
3974 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3975 if (!vmf->prealloc_pte)
3976 goto out;
3977 smp_wmb(); /* See comment in __pte_alloc() */
3978 }
3979
3980 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3981
3982 /* Huge page is mapped? Page fault is solved */
3983 if (pmd_trans_huge(*vmf->pmd)) {
3984 ret = VM_FAULT_NOPAGE;
3985 goto out;
3986 }
3987
3988 /* ->map_pages() haven't done anything useful. Cold page cache? */
3989 if (!vmf->pte)
3990 goto out;
3991
3992 /* check if the page fault is solved */
3993 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3994 if (!pte_none(*vmf->pte))
3995 ret = VM_FAULT_NOPAGE;
3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 out:
3998 vmf->address = address;
3999 vmf->pte = NULL;
4000 return ret;
4001 }
4002
4003 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4004 {
4005 struct vm_area_struct *vma = vmf->vma;
4006 vm_fault_t ret = 0;
4007
4008 /*
4009 * Let's call ->map_pages() first and use ->fault() as fallback
4010 * if page by the offset is not ready to be mapped (cold cache or
4011 * something).
4012 */
4013 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4014 ret = do_fault_around(vmf);
4015 if (ret)
4016 return ret;
4017 }
4018
4019 ret = __do_fault(vmf);
4020 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4021 return ret;
4022
4023 ret |= finish_fault(vmf);
4024 unlock_page(vmf->page);
4025 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4026 put_page(vmf->page);
4027 return ret;
4028 }
4029
4030 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4031 {
4032 struct vm_area_struct *vma = vmf->vma;
4033 vm_fault_t ret;
4034
4035 if (unlikely(anon_vma_prepare(vma)))
4036 return VM_FAULT_OOM;
4037
4038 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4039 if (!vmf->cow_page)
4040 return VM_FAULT_OOM;
4041
4042 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4043 put_page(vmf->cow_page);
4044 return VM_FAULT_OOM;
4045 }
4046 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4047
4048 ret = __do_fault(vmf);
4049 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4050 goto uncharge_out;
4051 if (ret & VM_FAULT_DONE_COW)
4052 return ret;
4053
4054 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4055 __SetPageUptodate(vmf->cow_page);
4056
4057 ret |= finish_fault(vmf);
4058 unlock_page(vmf->page);
4059 put_page(vmf->page);
4060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4061 goto uncharge_out;
4062 return ret;
4063 uncharge_out:
4064 put_page(vmf->cow_page);
4065 return ret;
4066 }
4067
4068 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4069 {
4070 struct vm_area_struct *vma = vmf->vma;
4071 vm_fault_t ret, tmp;
4072
4073 ret = __do_fault(vmf);
4074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4075 return ret;
4076
4077 /*
4078 * Check if the backing address space wants to know that the page is
4079 * about to become writable
4080 */
4081 if (vma->vm_ops->page_mkwrite) {
4082 unlock_page(vmf->page);
4083 tmp = do_page_mkwrite(vmf);
4084 if (unlikely(!tmp ||
4085 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4086 put_page(vmf->page);
4087 return tmp;
4088 }
4089 }
4090
4091 ret |= finish_fault(vmf);
4092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4093 VM_FAULT_RETRY))) {
4094 unlock_page(vmf->page);
4095 put_page(vmf->page);
4096 return ret;
4097 }
4098
4099 ret |= fault_dirty_shared_page(vmf);
4100 return ret;
4101 }
4102
4103 /*
4104 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4105 * but allow concurrent faults).
4106 * The mmap_lock may have been released depending on flags and our
4107 * return value. See filemap_fault() and __lock_page_or_retry().
4108 * If mmap_lock is released, vma may become invalid (for example
4109 * by other thread calling munmap()).
4110 */
4111 static vm_fault_t do_fault(struct vm_fault *vmf)
4112 {
4113 struct vm_area_struct *vma = vmf->vma;
4114 struct mm_struct *vm_mm = vma->vm_mm;
4115 vm_fault_t ret;
4116
4117 /*
4118 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4119 */
4120 if (!vma->vm_ops->fault) {
4121 /*
4122 * If we find a migration pmd entry or a none pmd entry, which
4123 * should never happen, return SIGBUS
4124 */
4125 if (unlikely(!pmd_present(*vmf->pmd)))
4126 ret = VM_FAULT_SIGBUS;
4127 else {
4128 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4129 vmf->pmd,
4130 vmf->address,
4131 &vmf->ptl);
4132 /*
4133 * Make sure this is not a temporary clearing of pte
4134 * by holding ptl and checking again. A R/M/W update
4135 * of pte involves: take ptl, clearing the pte so that
4136 * we don't have concurrent modification by hardware
4137 * followed by an update.
4138 */
4139 if (unlikely(pte_none(*vmf->pte)))
4140 ret = VM_FAULT_SIGBUS;
4141 else
4142 ret = VM_FAULT_NOPAGE;
4143
4144 pte_unmap_unlock(vmf->pte, vmf->ptl);
4145 }
4146 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4147 ret = do_read_fault(vmf);
4148 else if (!(vma->vm_flags & VM_SHARED))
4149 ret = do_cow_fault(vmf);
4150 else
4151 ret = do_shared_fault(vmf);
4152
4153 /* preallocated pagetable is unused: free it */
4154 if (vmf->prealloc_pte) {
4155 pte_free(vm_mm, vmf->prealloc_pte);
4156 vmf->prealloc_pte = NULL;
4157 }
4158 return ret;
4159 }
4160
4161 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4162 unsigned long addr, int page_nid,
4163 int *flags)
4164 {
4165 get_page(page);
4166
4167 count_vm_numa_event(NUMA_HINT_FAULTS);
4168 if (page_nid == numa_node_id()) {
4169 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4170 *flags |= TNF_FAULT_LOCAL;
4171 }
4172
4173 return mpol_misplaced(page, vma, addr);
4174 }
4175
4176 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4177 {
4178 struct vm_area_struct *vma = vmf->vma;
4179 struct page *page = NULL;
4180 int page_nid = NUMA_NO_NODE;
4181 int last_cpupid;
4182 int target_nid;
4183 bool migrated = false;
4184 pte_t pte, old_pte;
4185 bool was_writable = pte_savedwrite(vmf->orig_pte);
4186 int flags = 0;
4187
4188 /*
4189 * The "pte" at this point cannot be used safely without
4190 * validation through pte_unmap_same(). It's of NUMA type but
4191 * the pfn may be screwed if the read is non atomic.
4192 */
4193 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4194 spin_lock(vmf->ptl);
4195 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4196 pte_unmap_unlock(vmf->pte, vmf->ptl);
4197 goto out;
4198 }
4199
4200 /*
4201 * Make it present again, Depending on how arch implementes non
4202 * accessible ptes, some can allow access by kernel mode.
4203 */
4204 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4205 pte = pte_modify(old_pte, vma->vm_page_prot);
4206 pte = pte_mkyoung(pte);
4207 if (was_writable)
4208 pte = pte_mkwrite(pte);
4209 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4210 update_mmu_cache(vma, vmf->address, vmf->pte);
4211
4212 page = vm_normal_page(vma, vmf->address, pte);
4213 if (!page) {
4214 pte_unmap_unlock(vmf->pte, vmf->ptl);
4215 return 0;
4216 }
4217
4218 /* TODO: handle PTE-mapped THP */
4219 if (PageCompound(page)) {
4220 pte_unmap_unlock(vmf->pte, vmf->ptl);
4221 return 0;
4222 }
4223
4224 /*
4225 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4226 * much anyway since they can be in shared cache state. This misses
4227 * the case where a mapping is writable but the process never writes
4228 * to it but pte_write gets cleared during protection updates and
4229 * pte_dirty has unpredictable behaviour between PTE scan updates,
4230 * background writeback, dirty balancing and application behaviour.
4231 */
4232 if (!pte_write(pte))
4233 flags |= TNF_NO_GROUP;
4234
4235 /*
4236 * Flag if the page is shared between multiple address spaces. This
4237 * is later used when determining whether to group tasks together
4238 */
4239 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4240 flags |= TNF_SHARED;
4241
4242 last_cpupid = page_cpupid_last(page);
4243 page_nid = page_to_nid(page);
4244 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4245 &flags);
4246 pte_unmap_unlock(vmf->pte, vmf->ptl);
4247 if (target_nid == NUMA_NO_NODE) {
4248 put_page(page);
4249 goto out;
4250 }
4251
4252 /* Migrate to the requested node */
4253 migrated = migrate_misplaced_page(page, vma, target_nid);
4254 if (migrated) {
4255 page_nid = target_nid;
4256 flags |= TNF_MIGRATED;
4257 } else
4258 flags |= TNF_MIGRATE_FAIL;
4259
4260 out:
4261 if (page_nid != NUMA_NO_NODE)
4262 task_numa_fault(last_cpupid, page_nid, 1, flags);
4263 return 0;
4264 }
4265
4266 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4267 {
4268 if (vma_is_anonymous(vmf->vma))
4269 return do_huge_pmd_anonymous_page(vmf);
4270 if (vmf->vma->vm_ops->huge_fault)
4271 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4272 return VM_FAULT_FALLBACK;
4273 }
4274
4275 /* `inline' is required to avoid gcc 4.1.2 build error */
4276 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4277 {
4278 if (vma_is_anonymous(vmf->vma)) {
4279 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4280 return handle_userfault(vmf, VM_UFFD_WP);
4281 return do_huge_pmd_wp_page(vmf, orig_pmd);
4282 }
4283 if (vmf->vma->vm_ops->huge_fault) {
4284 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4285
4286 if (!(ret & VM_FAULT_FALLBACK))
4287 return ret;
4288 }
4289
4290 /* COW or write-notify handled on pte level: split pmd. */
4291 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4292
4293 return VM_FAULT_FALLBACK;
4294 }
4295
4296 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4297 {
4298 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4299 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4300 /* No support for anonymous transparent PUD pages yet */
4301 if (vma_is_anonymous(vmf->vma))
4302 goto split;
4303 if (vmf->vma->vm_ops->huge_fault) {
4304 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4305
4306 if (!(ret & VM_FAULT_FALLBACK))
4307 return ret;
4308 }
4309 split:
4310 /* COW or write-notify not handled on PUD level: split pud.*/
4311 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4312 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4313 return VM_FAULT_FALLBACK;
4314 }
4315
4316 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4317 {
4318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4319 /* No support for anonymous transparent PUD pages yet */
4320 if (vma_is_anonymous(vmf->vma))
4321 return VM_FAULT_FALLBACK;
4322 if (vmf->vma->vm_ops->huge_fault)
4323 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4324 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4325 return VM_FAULT_FALLBACK;
4326 }
4327
4328 /*
4329 * These routines also need to handle stuff like marking pages dirty
4330 * and/or accessed for architectures that don't do it in hardware (most
4331 * RISC architectures). The early dirtying is also good on the i386.
4332 *
4333 * There is also a hook called "update_mmu_cache()" that architectures
4334 * with external mmu caches can use to update those (ie the Sparc or
4335 * PowerPC hashed page tables that act as extended TLBs).
4336 *
4337 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4338 * concurrent faults).
4339 *
4340 * The mmap_lock may have been released depending on flags and our return value.
4341 * See filemap_fault() and __lock_page_or_retry().
4342 */
4343 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4344 {
4345 pte_t entry;
4346
4347 if (unlikely(pmd_none(*vmf->pmd))) {
4348 /*
4349 * Leave __pte_alloc() until later: because vm_ops->fault may
4350 * want to allocate huge page, and if we expose page table
4351 * for an instant, it will be difficult to retract from
4352 * concurrent faults and from rmap lookups.
4353 */
4354 vmf->pte = NULL;
4355 } else {
4356 /* See comment in pte_alloc_one_map() */
4357 if (pmd_devmap_trans_unstable(vmf->pmd))
4358 return 0;
4359 /*
4360 * A regular pmd is established and it can't morph into a huge
4361 * pmd from under us anymore at this point because we hold the
4362 * mmap_lock read mode and khugepaged takes it in write mode.
4363 * So now it's safe to run pte_offset_map().
4364 */
4365 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4366 vmf->orig_pte = *vmf->pte;
4367
4368 /*
4369 * some architectures can have larger ptes than wordsize,
4370 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4371 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4372 * accesses. The code below just needs a consistent view
4373 * for the ifs and we later double check anyway with the
4374 * ptl lock held. So here a barrier will do.
4375 */
4376 barrier();
4377 if (pte_none(vmf->orig_pte)) {
4378 pte_unmap(vmf->pte);
4379 vmf->pte = NULL;
4380 }
4381 }
4382
4383 if (!vmf->pte) {
4384 if (vma_is_anonymous(vmf->vma))
4385 return do_anonymous_page(vmf);
4386 else
4387 return do_fault(vmf);
4388 }
4389
4390 if (!pte_present(vmf->orig_pte))
4391 return do_swap_page(vmf);
4392
4393 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4394 return do_numa_page(vmf);
4395
4396 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4397 spin_lock(vmf->ptl);
4398 entry = vmf->orig_pte;
4399 if (unlikely(!pte_same(*vmf->pte, entry))) {
4400 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4401 goto unlock;
4402 }
4403 if (vmf->flags & FAULT_FLAG_WRITE) {
4404 if (!pte_write(entry))
4405 return do_wp_page(vmf);
4406 entry = pte_mkdirty(entry);
4407 }
4408 entry = pte_mkyoung(entry);
4409 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4410 vmf->flags & FAULT_FLAG_WRITE)) {
4411 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4412 } else {
4413 /* Skip spurious TLB flush for retried page fault */
4414 if (vmf->flags & FAULT_FLAG_TRIED)
4415 goto unlock;
4416 /*
4417 * This is needed only for protection faults but the arch code
4418 * is not yet telling us if this is a protection fault or not.
4419 * This still avoids useless tlb flushes for .text page faults
4420 * with threads.
4421 */
4422 if (vmf->flags & FAULT_FLAG_WRITE)
4423 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4424 }
4425 unlock:
4426 pte_unmap_unlock(vmf->pte, vmf->ptl);
4427 return 0;
4428 }
4429
4430 /*
4431 * By the time we get here, we already hold the mm semaphore
4432 *
4433 * The mmap_lock may have been released depending on flags and our
4434 * return value. See filemap_fault() and __lock_page_or_retry().
4435 */
4436 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4437 unsigned long address, unsigned int flags)
4438 {
4439 struct vm_fault vmf = {
4440 .vma = vma,
4441 .address = address & PAGE_MASK,
4442 .flags = flags,
4443 .pgoff = linear_page_index(vma, address),
4444 .gfp_mask = __get_fault_gfp_mask(vma),
4445 };
4446 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4447 struct mm_struct *mm = vma->vm_mm;
4448 pgd_t *pgd;
4449 p4d_t *p4d;
4450 vm_fault_t ret;
4451
4452 pgd = pgd_offset(mm, address);
4453 p4d = p4d_alloc(mm, pgd, address);
4454 if (!p4d)
4455 return VM_FAULT_OOM;
4456
4457 vmf.pud = pud_alloc(mm, p4d, address);
4458 if (!vmf.pud)
4459 return VM_FAULT_OOM;
4460 retry_pud:
4461 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4462 ret = create_huge_pud(&vmf);
4463 if (!(ret & VM_FAULT_FALLBACK))
4464 return ret;
4465 } else {
4466 pud_t orig_pud = *vmf.pud;
4467
4468 barrier();
4469 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4470
4471 /* NUMA case for anonymous PUDs would go here */
4472
4473 if (dirty && !pud_write(orig_pud)) {
4474 ret = wp_huge_pud(&vmf, orig_pud);
4475 if (!(ret & VM_FAULT_FALLBACK))
4476 return ret;
4477 } else {
4478 huge_pud_set_accessed(&vmf, orig_pud);
4479 return 0;
4480 }
4481 }
4482 }
4483
4484 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4485 if (!vmf.pmd)
4486 return VM_FAULT_OOM;
4487
4488 /* Huge pud page fault raced with pmd_alloc? */
4489 if (pud_trans_unstable(vmf.pud))
4490 goto retry_pud;
4491
4492 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4493 ret = create_huge_pmd(&vmf);
4494 if (!(ret & VM_FAULT_FALLBACK))
4495 return ret;
4496 } else {
4497 pmd_t orig_pmd = *vmf.pmd;
4498
4499 barrier();
4500 if (unlikely(is_swap_pmd(orig_pmd))) {
4501 VM_BUG_ON(thp_migration_supported() &&
4502 !is_pmd_migration_entry(orig_pmd));
4503 if (is_pmd_migration_entry(orig_pmd))
4504 pmd_migration_entry_wait(mm, vmf.pmd);
4505 return 0;
4506 }
4507 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4508 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4509 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4510
4511 if (dirty && !pmd_write(orig_pmd)) {
4512 ret = wp_huge_pmd(&vmf, orig_pmd);
4513 if (!(ret & VM_FAULT_FALLBACK))
4514 return ret;
4515 } else {
4516 huge_pmd_set_accessed(&vmf, orig_pmd);
4517 return 0;
4518 }
4519 }
4520 }
4521
4522 return handle_pte_fault(&vmf);
4523 }
4524
4525 /**
4526 * mm_account_fault - Do page fault accountings
4527 *
4528 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4529 * of perf event counters, but we'll still do the per-task accounting to
4530 * the task who triggered this page fault.
4531 * @address: the faulted address.
4532 * @flags: the fault flags.
4533 * @ret: the fault retcode.
4534 *
4535 * This will take care of most of the page fault accountings. Meanwhile, it
4536 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4537 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4538 * still be in per-arch page fault handlers at the entry of page fault.
4539 */
4540 static inline void mm_account_fault(struct pt_regs *regs,
4541 unsigned long address, unsigned int flags,
4542 vm_fault_t ret)
4543 {
4544 bool major;
4545
4546 /*
4547 * We don't do accounting for some specific faults:
4548 *
4549 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4550 * includes arch_vma_access_permitted() failing before reaching here.
4551 * So this is not a "this many hardware page faults" counter. We
4552 * should use the hw profiling for that.
4553 *
4554 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4555 * once they're completed.
4556 */
4557 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4558 return;
4559
4560 /*
4561 * We define the fault as a major fault when the final successful fault
4562 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4563 * handle it immediately previously).
4564 */
4565 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4566
4567 if (major)
4568 current->maj_flt++;
4569 else
4570 current->min_flt++;
4571
4572 /*
4573 * If the fault is done for GUP, regs will be NULL. We only do the
4574 * accounting for the per thread fault counters who triggered the
4575 * fault, and we skip the perf event updates.
4576 */
4577 if (!regs)
4578 return;
4579
4580 if (major)
4581 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4582 else
4583 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4584 }
4585
4586 /*
4587 * By the time we get here, we already hold the mm semaphore
4588 *
4589 * The mmap_lock may have been released depending on flags and our
4590 * return value. See filemap_fault() and __lock_page_or_retry().
4591 */
4592 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4593 unsigned int flags, struct pt_regs *regs)
4594 {
4595 vm_fault_t ret;
4596
4597 __set_current_state(TASK_RUNNING);
4598
4599 count_vm_event(PGFAULT);
4600 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4601
4602 /* do counter updates before entering really critical section. */
4603 check_sync_rss_stat(current);
4604
4605 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4606 flags & FAULT_FLAG_INSTRUCTION,
4607 flags & FAULT_FLAG_REMOTE))
4608 return VM_FAULT_SIGSEGV;
4609
4610 /*
4611 * Enable the memcg OOM handling for faults triggered in user
4612 * space. Kernel faults are handled more gracefully.
4613 */
4614 if (flags & FAULT_FLAG_USER)
4615 mem_cgroup_enter_user_fault();
4616
4617 if (unlikely(is_vm_hugetlb_page(vma)))
4618 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4619 else
4620 ret = __handle_mm_fault(vma, address, flags);
4621
4622 if (flags & FAULT_FLAG_USER) {
4623 mem_cgroup_exit_user_fault();
4624 /*
4625 * The task may have entered a memcg OOM situation but
4626 * if the allocation error was handled gracefully (no
4627 * VM_FAULT_OOM), there is no need to kill anything.
4628 * Just clean up the OOM state peacefully.
4629 */
4630 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4631 mem_cgroup_oom_synchronize(false);
4632 }
4633
4634 mm_account_fault(regs, address, flags, ret);
4635
4636 return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(handle_mm_fault);
4639
4640 #ifndef __PAGETABLE_P4D_FOLDED
4641 /*
4642 * Allocate p4d page table.
4643 * We've already handled the fast-path in-line.
4644 */
4645 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4646 {
4647 p4d_t *new = p4d_alloc_one(mm, address);
4648 if (!new)
4649 return -ENOMEM;
4650
4651 smp_wmb(); /* See comment in __pte_alloc */
4652
4653 spin_lock(&mm->page_table_lock);
4654 if (pgd_present(*pgd)) /* Another has populated it */
4655 p4d_free(mm, new);
4656 else
4657 pgd_populate(mm, pgd, new);
4658 spin_unlock(&mm->page_table_lock);
4659 return 0;
4660 }
4661 #endif /* __PAGETABLE_P4D_FOLDED */
4662
4663 #ifndef __PAGETABLE_PUD_FOLDED
4664 /*
4665 * Allocate page upper directory.
4666 * We've already handled the fast-path in-line.
4667 */
4668 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4669 {
4670 pud_t *new = pud_alloc_one(mm, address);
4671 if (!new)
4672 return -ENOMEM;
4673
4674 smp_wmb(); /* See comment in __pte_alloc */
4675
4676 spin_lock(&mm->page_table_lock);
4677 if (!p4d_present(*p4d)) {
4678 mm_inc_nr_puds(mm);
4679 p4d_populate(mm, p4d, new);
4680 } else /* Another has populated it */
4681 pud_free(mm, new);
4682 spin_unlock(&mm->page_table_lock);
4683 return 0;
4684 }
4685 #endif /* __PAGETABLE_PUD_FOLDED */
4686
4687 #ifndef __PAGETABLE_PMD_FOLDED
4688 /*
4689 * Allocate page middle directory.
4690 * We've already handled the fast-path in-line.
4691 */
4692 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4693 {
4694 spinlock_t *ptl;
4695 pmd_t *new = pmd_alloc_one(mm, address);
4696 if (!new)
4697 return -ENOMEM;
4698
4699 smp_wmb(); /* See comment in __pte_alloc */
4700
4701 ptl = pud_lock(mm, pud);
4702 if (!pud_present(*pud)) {
4703 mm_inc_nr_pmds(mm);
4704 pud_populate(mm, pud, new);
4705 } else /* Another has populated it */
4706 pmd_free(mm, new);
4707 spin_unlock(ptl);
4708 return 0;
4709 }
4710 #endif /* __PAGETABLE_PMD_FOLDED */
4711
4712 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4713 struct mmu_notifier_range *range, pte_t **ptepp,
4714 pmd_t **pmdpp, spinlock_t **ptlp)
4715 {
4716 pgd_t *pgd;
4717 p4d_t *p4d;
4718 pud_t *pud;
4719 pmd_t *pmd;
4720 pte_t *ptep;
4721
4722 pgd = pgd_offset(mm, address);
4723 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4724 goto out;
4725
4726 p4d = p4d_offset(pgd, address);
4727 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4728 goto out;
4729
4730 pud = pud_offset(p4d, address);
4731 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4732 goto out;
4733
4734 pmd = pmd_offset(pud, address);
4735 VM_BUG_ON(pmd_trans_huge(*pmd));
4736
4737 if (pmd_huge(*pmd)) {
4738 if (!pmdpp)
4739 goto out;
4740
4741 if (range) {
4742 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4743 NULL, mm, address & PMD_MASK,
4744 (address & PMD_MASK) + PMD_SIZE);
4745 mmu_notifier_invalidate_range_start(range);
4746 }
4747 *ptlp = pmd_lock(mm, pmd);
4748 if (pmd_huge(*pmd)) {
4749 *pmdpp = pmd;
4750 return 0;
4751 }
4752 spin_unlock(*ptlp);
4753 if (range)
4754 mmu_notifier_invalidate_range_end(range);
4755 }
4756
4757 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4758 goto out;
4759
4760 if (range) {
4761 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4762 address & PAGE_MASK,
4763 (address & PAGE_MASK) + PAGE_SIZE);
4764 mmu_notifier_invalidate_range_start(range);
4765 }
4766 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4767 if (!pte_present(*ptep))
4768 goto unlock;
4769 *ptepp = ptep;
4770 return 0;
4771 unlock:
4772 pte_unmap_unlock(ptep, *ptlp);
4773 if (range)
4774 mmu_notifier_invalidate_range_end(range);
4775 out:
4776 return -EINVAL;
4777 }
4778
4779 /**
4780 * follow_pte - look up PTE at a user virtual address
4781 * @mm: the mm_struct of the target address space
4782 * @address: user virtual address
4783 * @ptepp: location to store found PTE
4784 * @ptlp: location to store the lock for the PTE
4785 *
4786 * On a successful return, the pointer to the PTE is stored in @ptepp;
4787 * the corresponding lock is taken and its location is stored in @ptlp.
4788 * The contents of the PTE are only stable until @ptlp is released;
4789 * any further use, if any, must be protected against invalidation
4790 * with MMU notifiers.
4791 *
4792 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4793 * should be taken for read.
4794 *
4795 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4796 * it is not a good general-purpose API.
4797 *
4798 * Return: zero on success, -ve otherwise.
4799 */
4800 int follow_pte(struct mm_struct *mm, unsigned long address,
4801 pte_t **ptepp, spinlock_t **ptlp)
4802 {
4803 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4804 }
4805 EXPORT_SYMBOL_GPL(follow_pte);
4806
4807 /**
4808 * follow_pfn - look up PFN at a user virtual address
4809 * @vma: memory mapping
4810 * @address: user virtual address
4811 * @pfn: location to store found PFN
4812 *
4813 * Only IO mappings and raw PFN mappings are allowed.
4814 *
4815 * This function does not allow the caller to read the permissions
4816 * of the PTE. Do not use it.
4817 *
4818 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4819 */
4820 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4821 unsigned long *pfn)
4822 {
4823 int ret = -EINVAL;
4824 spinlock_t *ptl;
4825 pte_t *ptep;
4826
4827 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4828 return ret;
4829
4830 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4831 if (ret)
4832 return ret;
4833 *pfn = pte_pfn(*ptep);
4834 pte_unmap_unlock(ptep, ptl);
4835 return 0;
4836 }
4837 EXPORT_SYMBOL(follow_pfn);
4838
4839 #ifdef CONFIG_HAVE_IOREMAP_PROT
4840 int follow_phys(struct vm_area_struct *vma,
4841 unsigned long address, unsigned int flags,
4842 unsigned long *prot, resource_size_t *phys)
4843 {
4844 int ret = -EINVAL;
4845 pte_t *ptep, pte;
4846 spinlock_t *ptl;
4847
4848 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4849 goto out;
4850
4851 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4852 goto out;
4853 pte = *ptep;
4854
4855 if ((flags & FOLL_WRITE) && !pte_write(pte))
4856 goto unlock;
4857
4858 *prot = pgprot_val(pte_pgprot(pte));
4859 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4860
4861 ret = 0;
4862 unlock:
4863 pte_unmap_unlock(ptep, ptl);
4864 out:
4865 return ret;
4866 }
4867
4868 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4869 void *buf, int len, int write)
4870 {
4871 resource_size_t phys_addr;
4872 unsigned long prot = 0;
4873 void __iomem *maddr;
4874 int offset = addr & (PAGE_SIZE-1);
4875
4876 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4877 return -EINVAL;
4878
4879 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4880 if (!maddr)
4881 return -ENOMEM;
4882
4883 if (write)
4884 memcpy_toio(maddr + offset, buf, len);
4885 else
4886 memcpy_fromio(buf, maddr + offset, len);
4887 iounmap(maddr);
4888
4889 return len;
4890 }
4891 EXPORT_SYMBOL_GPL(generic_access_phys);
4892 #endif
4893
4894 /*
4895 * Access another process' address space as given in mm.
4896 */
4897 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4898 int len, unsigned int gup_flags)
4899 {
4900 struct vm_area_struct *vma;
4901 void *old_buf = buf;
4902 int write = gup_flags & FOLL_WRITE;
4903
4904 if (mmap_read_lock_killable(mm))
4905 return 0;
4906
4907 /* ignore errors, just check how much was successfully transferred */
4908 while (len) {
4909 int bytes, ret, offset;
4910 void *maddr;
4911 struct page *page = NULL;
4912
4913 ret = get_user_pages_remote(mm, addr, 1,
4914 gup_flags, &page, &vma, NULL);
4915 if (ret <= 0) {
4916 #ifndef CONFIG_HAVE_IOREMAP_PROT
4917 break;
4918 #else
4919 /*
4920 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4921 * we can access using slightly different code.
4922 */
4923 vma = find_vma(mm, addr);
4924 if (!vma || vma->vm_start > addr)
4925 break;
4926 if (vma->vm_ops && vma->vm_ops->access)
4927 ret = vma->vm_ops->access(vma, addr, buf,
4928 len, write);
4929 if (ret <= 0)
4930 break;
4931 bytes = ret;
4932 #endif
4933 } else {
4934 bytes = len;
4935 offset = addr & (PAGE_SIZE-1);
4936 if (bytes > PAGE_SIZE-offset)
4937 bytes = PAGE_SIZE-offset;
4938
4939 maddr = kmap(page);
4940 if (write) {
4941 copy_to_user_page(vma, page, addr,
4942 maddr + offset, buf, bytes);
4943 set_page_dirty_lock(page);
4944 } else {
4945 copy_from_user_page(vma, page, addr,
4946 buf, maddr + offset, bytes);
4947 }
4948 kunmap(page);
4949 put_page(page);
4950 }
4951 len -= bytes;
4952 buf += bytes;
4953 addr += bytes;
4954 }
4955 mmap_read_unlock(mm);
4956
4957 return buf - old_buf;
4958 }
4959
4960 /**
4961 * access_remote_vm - access another process' address space
4962 * @mm: the mm_struct of the target address space
4963 * @addr: start address to access
4964 * @buf: source or destination buffer
4965 * @len: number of bytes to transfer
4966 * @gup_flags: flags modifying lookup behaviour
4967 *
4968 * The caller must hold a reference on @mm.
4969 *
4970 * Return: number of bytes copied from source to destination.
4971 */
4972 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4973 void *buf, int len, unsigned int gup_flags)
4974 {
4975 return __access_remote_vm(mm, addr, buf, len, gup_flags);
4976 }
4977
4978 /*
4979 * Access another process' address space.
4980 * Source/target buffer must be kernel space,
4981 * Do not walk the page table directly, use get_user_pages
4982 */
4983 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4984 void *buf, int len, unsigned int gup_flags)
4985 {
4986 struct mm_struct *mm;
4987 int ret;
4988
4989 mm = get_task_mm(tsk);
4990 if (!mm)
4991 return 0;
4992
4993 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4994
4995 mmput(mm);
4996
4997 return ret;
4998 }
4999 EXPORT_SYMBOL_GPL(access_process_vm);
5000
5001 /*
5002 * Print the name of a VMA.
5003 */
5004 void print_vma_addr(char *prefix, unsigned long ip)
5005 {
5006 struct mm_struct *mm = current->mm;
5007 struct vm_area_struct *vma;
5008
5009 /*
5010 * we might be running from an atomic context so we cannot sleep
5011 */
5012 if (!mmap_read_trylock(mm))
5013 return;
5014
5015 vma = find_vma(mm, ip);
5016 if (vma && vma->vm_file) {
5017 struct file *f = vma->vm_file;
5018 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5019 if (buf) {
5020 char *p;
5021
5022 p = file_path(f, buf, PAGE_SIZE);
5023 if (IS_ERR(p))
5024 p = "?";
5025 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5026 vma->vm_start,
5027 vma->vm_end - vma->vm_start);
5028 free_page((unsigned long)buf);
5029 }
5030 }
5031 mmap_read_unlock(mm);
5032 }
5033
5034 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5035 void __might_fault(const char *file, int line)
5036 {
5037 /*
5038 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5039 * holding the mmap_lock, this is safe because kernel memory doesn't
5040 * get paged out, therefore we'll never actually fault, and the
5041 * below annotations will generate false positives.
5042 */
5043 if (uaccess_kernel())
5044 return;
5045 if (pagefault_disabled())
5046 return;
5047 __might_sleep(file, line, 0);
5048 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5049 if (current->mm)
5050 might_lock_read(&current->mm->mmap_lock);
5051 #endif
5052 }
5053 EXPORT_SYMBOL(__might_fault);
5054 #endif
5055
5056 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5057 /*
5058 * Process all subpages of the specified huge page with the specified
5059 * operation. The target subpage will be processed last to keep its
5060 * cache lines hot.
5061 */
5062 static inline void process_huge_page(
5063 unsigned long addr_hint, unsigned int pages_per_huge_page,
5064 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5065 void *arg)
5066 {
5067 int i, n, base, l;
5068 unsigned long addr = addr_hint &
5069 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5070
5071 /* Process target subpage last to keep its cache lines hot */
5072 might_sleep();
5073 n = (addr_hint - addr) / PAGE_SIZE;
5074 if (2 * n <= pages_per_huge_page) {
5075 /* If target subpage in first half of huge page */
5076 base = 0;
5077 l = n;
5078 /* Process subpages at the end of huge page */
5079 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5080 cond_resched();
5081 process_subpage(addr + i * PAGE_SIZE, i, arg);
5082 }
5083 } else {
5084 /* If target subpage in second half of huge page */
5085 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5086 l = pages_per_huge_page - n;
5087 /* Process subpages at the begin of huge page */
5088 for (i = 0; i < base; i++) {
5089 cond_resched();
5090 process_subpage(addr + i * PAGE_SIZE, i, arg);
5091 }
5092 }
5093 /*
5094 * Process remaining subpages in left-right-left-right pattern
5095 * towards the target subpage
5096 */
5097 for (i = 0; i < l; i++) {
5098 int left_idx = base + i;
5099 int right_idx = base + 2 * l - 1 - i;
5100
5101 cond_resched();
5102 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5103 cond_resched();
5104 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5105 }
5106 }
5107
5108 static void clear_gigantic_page(struct page *page,
5109 unsigned long addr,
5110 unsigned int pages_per_huge_page)
5111 {
5112 int i;
5113 struct page *p = page;
5114
5115 might_sleep();
5116 for (i = 0; i < pages_per_huge_page;
5117 i++, p = mem_map_next(p, page, i)) {
5118 cond_resched();
5119 clear_user_highpage(p, addr + i * PAGE_SIZE);
5120 }
5121 }
5122
5123 static void clear_subpage(unsigned long addr, int idx, void *arg)
5124 {
5125 struct page *page = arg;
5126
5127 clear_user_highpage(page + idx, addr);
5128 }
5129
5130 void clear_huge_page(struct page *page,
5131 unsigned long addr_hint, unsigned int pages_per_huge_page)
5132 {
5133 unsigned long addr = addr_hint &
5134 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5135
5136 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5137 clear_gigantic_page(page, addr, pages_per_huge_page);
5138 return;
5139 }
5140
5141 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5142 }
5143
5144 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5145 unsigned long addr,
5146 struct vm_area_struct *vma,
5147 unsigned int pages_per_huge_page)
5148 {
5149 int i;
5150 struct page *dst_base = dst;
5151 struct page *src_base = src;
5152
5153 for (i = 0; i < pages_per_huge_page; ) {
5154 cond_resched();
5155 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5156
5157 i++;
5158 dst = mem_map_next(dst, dst_base, i);
5159 src = mem_map_next(src, src_base, i);
5160 }
5161 }
5162
5163 struct copy_subpage_arg {
5164 struct page *dst;
5165 struct page *src;
5166 struct vm_area_struct *vma;
5167 };
5168
5169 static void copy_subpage(unsigned long addr, int idx, void *arg)
5170 {
5171 struct copy_subpage_arg *copy_arg = arg;
5172
5173 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5174 addr, copy_arg->vma);
5175 }
5176
5177 void copy_user_huge_page(struct page *dst, struct page *src,
5178 unsigned long addr_hint, struct vm_area_struct *vma,
5179 unsigned int pages_per_huge_page)
5180 {
5181 unsigned long addr = addr_hint &
5182 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5183 struct copy_subpage_arg arg = {
5184 .dst = dst,
5185 .src = src,
5186 .vma = vma,
5187 };
5188
5189 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5190 copy_user_gigantic_page(dst, src, addr, vma,
5191 pages_per_huge_page);
5192 return;
5193 }
5194
5195 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5196 }
5197
5198 long copy_huge_page_from_user(struct page *dst_page,
5199 const void __user *usr_src,
5200 unsigned int pages_per_huge_page,
5201 bool allow_pagefault)
5202 {
5203 void *src = (void *)usr_src;
5204 void *page_kaddr;
5205 unsigned long i, rc = 0;
5206 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5207
5208 for (i = 0; i < pages_per_huge_page; i++) {
5209 if (allow_pagefault)
5210 page_kaddr = kmap(dst_page + i);
5211 else
5212 page_kaddr = kmap_atomic(dst_page + i);
5213 rc = copy_from_user(page_kaddr,
5214 (const void __user *)(src + i * PAGE_SIZE),
5215 PAGE_SIZE);
5216 if (allow_pagefault)
5217 kunmap(dst_page + i);
5218 else
5219 kunmap_atomic(page_kaddr);
5220
5221 ret_val -= (PAGE_SIZE - rc);
5222 if (rc)
5223 break;
5224
5225 cond_resched();
5226 }
5227 return ret_val;
5228 }
5229 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5230
5231 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5232
5233 static struct kmem_cache *page_ptl_cachep;
5234
5235 void __init ptlock_cache_init(void)
5236 {
5237 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5238 SLAB_PANIC, NULL);
5239 }
5240
5241 bool ptlock_alloc(struct page *page)
5242 {
5243 spinlock_t *ptl;
5244
5245 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5246 if (!ptl)
5247 return false;
5248 page->ptl = ptl;
5249 return true;
5250 }
5251
5252 void ptlock_free(struct page *page)
5253 {
5254 kmem_cache_free(page_ptl_cachep, page->ptl);
5255 }
5256 #endif