]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
tuntap: correctly set SOCKWQ_ASYNC_NOSPACE
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258 #endif
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 /*
335 * If we want tlb_remove_table() to imply TLB invalidates.
336 */
337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338 {
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 /*
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
344 */
345 tlb_flush_mmu_tlbonly(tlb);
346 #endif
347 }
348
349 static void tlb_remove_table_smp_sync(void *arg)
350 {
351 /* Simply deliver the interrupt */
352 }
353
354 static void tlb_remove_table_one(void *table)
355 {
356 /*
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
359 *
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
362 */
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
365 }
366
367 static void tlb_remove_table_rcu(struct rcu_head *head)
368 {
369 struct mmu_table_batch *batch;
370 int i;
371
372 batch = container_of(head, struct mmu_table_batch, rcu);
373
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
376
377 free_page((unsigned long)batch);
378 }
379
380 void tlb_table_flush(struct mmu_gather *tlb)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 if (*batch) {
385 tlb_table_invalidate(tlb);
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
388 }
389 }
390
391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
392 {
393 struct mmu_table_batch **batch = &tlb->batch;
394
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
398 tlb_table_invalidate(tlb);
399 tlb_remove_table_one(table);
400 return;
401 }
402 (*batch)->nr = 0;
403 }
404
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
408 }
409
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
411
412 /* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
416 */
417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
419 {
420 arch_tlb_gather_mmu(tlb, mm, start, end);
421 inc_tlb_flush_pending(tlb->mm);
422 }
423
424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
426 {
427 /*
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
433 */
434 bool force = mm_tlb_flush_nested(tlb->mm);
435
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
438 }
439
440 /*
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
443 */
444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
446 {
447 pgtable_t token = pmd_pgtable(*pmd);
448 pmd_clear(pmd);
449 pte_free_tlb(tlb, token, addr);
450 mm_dec_nr_ptes(tlb->mm);
451 }
452
453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
456 {
457 pmd_t *pmd;
458 unsigned long next;
459 unsigned long start;
460
461 start = addr;
462 pmd = pmd_offset(pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
467 free_pte_range(tlb, pmd, addr);
468 } while (pmd++, addr = next, addr != end);
469
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
477 }
478 if (end - 1 > ceiling - 1)
479 return;
480
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
483 pmd_free_tlb(tlb, pmd, start);
484 mm_dec_nr_pmds(tlb->mm);
485 }
486
487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
490 {
491 pud_t *pud;
492 unsigned long next;
493 unsigned long start;
494
495 start = addr;
496 pud = pud_offset(p4d, addr);
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
503
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
518 mm_dec_nr_puds(tlb->mm);
519 }
520
521 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
522 unsigned long addr, unsigned long end,
523 unsigned long floor, unsigned long ceiling)
524 {
525 p4d_t *p4d;
526 unsigned long next;
527 unsigned long start;
528
529 start = addr;
530 p4d = p4d_offset(pgd, addr);
531 do {
532 next = p4d_addr_end(addr, end);
533 if (p4d_none_or_clear_bad(p4d))
534 continue;
535 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
536 } while (p4d++, addr = next, addr != end);
537
538 start &= PGDIR_MASK;
539 if (start < floor)
540 return;
541 if (ceiling) {
542 ceiling &= PGDIR_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 return;
548
549 p4d = p4d_offset(pgd, start);
550 pgd_clear(pgd);
551 p4d_free_tlb(tlb, p4d, start);
552 }
553
554 /*
555 * This function frees user-level page tables of a process.
556 */
557 void free_pgd_range(struct mmu_gather *tlb,
558 unsigned long addr, unsigned long end,
559 unsigned long floor, unsigned long ceiling)
560 {
561 pgd_t *pgd;
562 unsigned long next;
563
564 /*
565 * The next few lines have given us lots of grief...
566 *
567 * Why are we testing PMD* at this top level? Because often
568 * there will be no work to do at all, and we'd prefer not to
569 * go all the way down to the bottom just to discover that.
570 *
571 * Why all these "- 1"s? Because 0 represents both the bottom
572 * of the address space and the top of it (using -1 for the
573 * top wouldn't help much: the masks would do the wrong thing).
574 * The rule is that addr 0 and floor 0 refer to the bottom of
575 * the address space, but end 0 and ceiling 0 refer to the top
576 * Comparisons need to use "end - 1" and "ceiling - 1" (though
577 * that end 0 case should be mythical).
578 *
579 * Wherever addr is brought up or ceiling brought down, we must
580 * be careful to reject "the opposite 0" before it confuses the
581 * subsequent tests. But what about where end is brought down
582 * by PMD_SIZE below? no, end can't go down to 0 there.
583 *
584 * Whereas we round start (addr) and ceiling down, by different
585 * masks at different levels, in order to test whether a table
586 * now has no other vmas using it, so can be freed, we don't
587 * bother to round floor or end up - the tests don't need that.
588 */
589
590 addr &= PMD_MASK;
591 if (addr < floor) {
592 addr += PMD_SIZE;
593 if (!addr)
594 return;
595 }
596 if (ceiling) {
597 ceiling &= PMD_MASK;
598 if (!ceiling)
599 return;
600 }
601 if (end - 1 > ceiling - 1)
602 end -= PMD_SIZE;
603 if (addr > end - 1)
604 return;
605 /*
606 * We add page table cache pages with PAGE_SIZE,
607 * (see pte_free_tlb()), flush the tlb if we need
608 */
609 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
610 pgd = pgd_offset(tlb->mm, addr);
611 do {
612 next = pgd_addr_end(addr, end);
613 if (pgd_none_or_clear_bad(pgd))
614 continue;
615 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
616 } while (pgd++, addr = next, addr != end);
617 }
618
619 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
620 unsigned long floor, unsigned long ceiling)
621 {
622 while (vma) {
623 struct vm_area_struct *next = vma->vm_next;
624 unsigned long addr = vma->vm_start;
625
626 /*
627 * Hide vma from rmap and truncate_pagecache before freeing
628 * pgtables
629 */
630 unlink_anon_vmas(vma);
631 unlink_file_vma(vma);
632
633 if (is_vm_hugetlb_page(vma)) {
634 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
635 floor, next ? next->vm_start : ceiling);
636 } else {
637 /*
638 * Optimization: gather nearby vmas into one call down
639 */
640 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
641 && !is_vm_hugetlb_page(next)) {
642 vma = next;
643 next = vma->vm_next;
644 unlink_anon_vmas(vma);
645 unlink_file_vma(vma);
646 }
647 free_pgd_range(tlb, addr, vma->vm_end,
648 floor, next ? next->vm_start : ceiling);
649 }
650 vma = next;
651 }
652 }
653
654 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
655 {
656 spinlock_t *ptl;
657 pgtable_t new = pte_alloc_one(mm, address);
658 if (!new)
659 return -ENOMEM;
660
661 /*
662 * Ensure all pte setup (eg. pte page lock and page clearing) are
663 * visible before the pte is made visible to other CPUs by being
664 * put into page tables.
665 *
666 * The other side of the story is the pointer chasing in the page
667 * table walking code (when walking the page table without locking;
668 * ie. most of the time). Fortunately, these data accesses consist
669 * of a chain of data-dependent loads, meaning most CPUs (alpha
670 * being the notable exception) will already guarantee loads are
671 * seen in-order. See the alpha page table accessors for the
672 * smp_read_barrier_depends() barriers in page table walking code.
673 */
674 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675
676 ptl = pmd_lock(mm, pmd);
677 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
678 mm_inc_nr_ptes(mm);
679 pmd_populate(mm, pmd, new);
680 new = NULL;
681 }
682 spin_unlock(ptl);
683 if (new)
684 pte_free(mm, new);
685 return 0;
686 }
687
688 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
689 {
690 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
691 if (!new)
692 return -ENOMEM;
693
694 smp_wmb(); /* See comment in __pte_alloc */
695
696 spin_lock(&init_mm.page_table_lock);
697 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
698 pmd_populate_kernel(&init_mm, pmd, new);
699 new = NULL;
700 }
701 spin_unlock(&init_mm.page_table_lock);
702 if (new)
703 pte_free_kernel(&init_mm, new);
704 return 0;
705 }
706
707 static inline void init_rss_vec(int *rss)
708 {
709 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
710 }
711
712 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
713 {
714 int i;
715
716 if (current->mm == mm)
717 sync_mm_rss(mm);
718 for (i = 0; i < NR_MM_COUNTERS; i++)
719 if (rss[i])
720 add_mm_counter(mm, i, rss[i]);
721 }
722
723 /*
724 * This function is called to print an error when a bad pte
725 * is found. For example, we might have a PFN-mapped pte in
726 * a region that doesn't allow it.
727 *
728 * The calling function must still handle the error.
729 */
730 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
731 pte_t pte, struct page *page)
732 {
733 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
734 p4d_t *p4d = p4d_offset(pgd, addr);
735 pud_t *pud = pud_offset(p4d, addr);
736 pmd_t *pmd = pmd_offset(pud, addr);
737 struct address_space *mapping;
738 pgoff_t index;
739 static unsigned long resume;
740 static unsigned long nr_shown;
741 static unsigned long nr_unshown;
742
743 /*
744 * Allow a burst of 60 reports, then keep quiet for that minute;
745 * or allow a steady drip of one report per second.
746 */
747 if (nr_shown == 60) {
748 if (time_before(jiffies, resume)) {
749 nr_unshown++;
750 return;
751 }
752 if (nr_unshown) {
753 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
754 nr_unshown);
755 nr_unshown = 0;
756 }
757 nr_shown = 0;
758 }
759 if (nr_shown++ == 0)
760 resume = jiffies + 60 * HZ;
761
762 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
763 index = linear_page_index(vma, addr);
764
765 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
766 current->comm,
767 (long long)pte_val(pte), (long long)pmd_val(*pmd));
768 if (page)
769 dump_page(page, "bad pte");
770 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
771 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
772 /*
773 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 */
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
780 dump_stack();
781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 *
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 *
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
799 *
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
813 *
814 *
815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
825 */
826 #ifdef __HAVE_ARCH_PTE_SPECIAL
827 # define HAVE_PTE_SPECIAL 1
828 #else
829 # define HAVE_PTE_SPECIAL 0
830 #endif
831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 pte_t pte, bool with_public_device)
833 {
834 unsigned long pfn = pte_pfn(pte);
835
836 if (HAVE_PTE_SPECIAL) {
837 if (likely(!pte_special(pte)))
838 goto check_pfn;
839 if (vma->vm_ops && vma->vm_ops->find_special_page)
840 return vma->vm_ops->find_special_page(vma, addr);
841 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 return NULL;
843 if (is_zero_pfn(pfn))
844 return NULL;
845
846 /*
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
852 * ...).
853 *
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
857 */
858 if (likely(pfn <= highest_memmap_pfn)) {
859 struct page *page = pfn_to_page(pfn);
860
861 if (is_device_public_page(page)) {
862 if (with_public_device)
863 return page;
864 return NULL;
865 }
866 }
867 print_bad_pte(vma, addr, pte, NULL);
868 return NULL;
869 }
870
871 /* !HAVE_PTE_SPECIAL case follows: */
872
873 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
874 if (vma->vm_flags & VM_MIXEDMAP) {
875 if (!pfn_valid(pfn))
876 return NULL;
877 goto out;
878 } else {
879 unsigned long off;
880 off = (addr - vma->vm_start) >> PAGE_SHIFT;
881 if (pfn == vma->vm_pgoff + off)
882 return NULL;
883 if (!is_cow_mapping(vma->vm_flags))
884 return NULL;
885 }
886 }
887
888 if (is_zero_pfn(pfn))
889 return NULL;
890 check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
895
896 /*
897 * NOTE! We still have PageReserved() pages in the page tables.
898 * eg. VDSO mappings can cause them to exist.
899 */
900 out:
901 return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907 {
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (is_zero_pfn(pfn))
931 return NULL;
932 if (unlikely(pfn > highest_memmap_pfn))
933 return NULL;
934
935 /*
936 * NOTE! We still have PageReserved() pages in the page tables.
937 * eg. VDSO mappings can cause them to exist.
938 */
939 out:
940 return pfn_to_page(pfn);
941 }
942 #endif
943
944 /*
945 * copy one vm_area from one task to the other. Assumes the page tables
946 * already present in the new task to be cleared in the whole range
947 * covered by this vma.
948 */
949
950 static inline unsigned long
951 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
953 unsigned long addr, int *rss)
954 {
955 unsigned long vm_flags = vma->vm_flags;
956 pte_t pte = *src_pte;
957 struct page *page;
958
959 /* pte contains position in swap or file, so copy. */
960 if (unlikely(!pte_present(pte))) {
961 swp_entry_t entry = pte_to_swp_entry(pte);
962
963 if (likely(!non_swap_entry(entry))) {
964 if (swap_duplicate(entry) < 0)
965 return entry.val;
966
967 /* make sure dst_mm is on swapoff's mmlist. */
968 if (unlikely(list_empty(&dst_mm->mmlist))) {
969 spin_lock(&mmlist_lock);
970 if (list_empty(&dst_mm->mmlist))
971 list_add(&dst_mm->mmlist,
972 &src_mm->mmlist);
973 spin_unlock(&mmlist_lock);
974 }
975 rss[MM_SWAPENTS]++;
976 } else if (is_migration_entry(entry)) {
977 page = migration_entry_to_page(entry);
978
979 rss[mm_counter(page)]++;
980
981 if (is_write_migration_entry(entry) &&
982 is_cow_mapping(vm_flags)) {
983 /*
984 * COW mappings require pages in both
985 * parent and child to be set to read.
986 */
987 make_migration_entry_read(&entry);
988 pte = swp_entry_to_pte(entry);
989 if (pte_swp_soft_dirty(*src_pte))
990 pte = pte_swp_mksoft_dirty(pte);
991 set_pte_at(src_mm, addr, src_pte, pte);
992 }
993 } else if (is_device_private_entry(entry)) {
994 page = device_private_entry_to_page(entry);
995
996 /*
997 * Update rss count even for unaddressable pages, as
998 * they should treated just like normal pages in this
999 * respect.
1000 *
1001 * We will likely want to have some new rss counters
1002 * for unaddressable pages, at some point. But for now
1003 * keep things as they are.
1004 */
1005 get_page(page);
1006 rss[mm_counter(page)]++;
1007 page_dup_rmap(page, false);
1008
1009 /*
1010 * We do not preserve soft-dirty information, because so
1011 * far, checkpoint/restore is the only feature that
1012 * requires that. And checkpoint/restore does not work
1013 * when a device driver is involved (you cannot easily
1014 * save and restore device driver state).
1015 */
1016 if (is_write_device_private_entry(entry) &&
1017 is_cow_mapping(vm_flags)) {
1018 make_device_private_entry_read(&entry);
1019 pte = swp_entry_to_pte(entry);
1020 set_pte_at(src_mm, addr, src_pte, pte);
1021 }
1022 }
1023 goto out_set_pte;
1024 }
1025
1026 /*
1027 * If it's a COW mapping, write protect it both
1028 * in the parent and the child
1029 */
1030 if (is_cow_mapping(vm_flags)) {
1031 ptep_set_wrprotect(src_mm, addr, src_pte);
1032 pte = pte_wrprotect(pte);
1033 }
1034
1035 /*
1036 * If it's a shared mapping, mark it clean in
1037 * the child
1038 */
1039 if (vm_flags & VM_SHARED)
1040 pte = pte_mkclean(pte);
1041 pte = pte_mkold(pte);
1042
1043 page = vm_normal_page(vma, addr, pte);
1044 if (page) {
1045 get_page(page);
1046 page_dup_rmap(page, false);
1047 rss[mm_counter(page)]++;
1048 } else if (pte_devmap(pte)) {
1049 page = pte_page(pte);
1050
1051 /*
1052 * Cache coherent device memory behave like regular page and
1053 * not like persistent memory page. For more informations see
1054 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 */
1056 if (is_device_public_page(page)) {
1057 get_page(page);
1058 page_dup_rmap(page, false);
1059 rss[mm_counter(page)]++;
1060 }
1061 }
1062
1063 out_set_pte:
1064 set_pte_at(dst_mm, addr, dst_pte, pte);
1065 return 0;
1066 }
1067
1068 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1069 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1070 unsigned long addr, unsigned long end)
1071 {
1072 pte_t *orig_src_pte, *orig_dst_pte;
1073 pte_t *src_pte, *dst_pte;
1074 spinlock_t *src_ptl, *dst_ptl;
1075 int progress = 0;
1076 int rss[NR_MM_COUNTERS];
1077 swp_entry_t entry = (swp_entry_t){0};
1078
1079 again:
1080 init_rss_vec(rss);
1081
1082 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1083 if (!dst_pte)
1084 return -ENOMEM;
1085 src_pte = pte_offset_map(src_pmd, addr);
1086 src_ptl = pte_lockptr(src_mm, src_pmd);
1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088 orig_src_pte = src_pte;
1089 orig_dst_pte = dst_pte;
1090 arch_enter_lazy_mmu_mode();
1091
1092 do {
1093 /*
1094 * We are holding two locks at this point - either of them
1095 * could generate latencies in another task on another CPU.
1096 */
1097 if (progress >= 32) {
1098 progress = 0;
1099 if (need_resched() ||
1100 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1101 break;
1102 }
1103 if (pte_none(*src_pte)) {
1104 progress++;
1105 continue;
1106 }
1107 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1108 vma, addr, rss);
1109 if (entry.val)
1110 break;
1111 progress += 8;
1112 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1113
1114 arch_leave_lazy_mmu_mode();
1115 spin_unlock(src_ptl);
1116 pte_unmap(orig_src_pte);
1117 add_mm_rss_vec(dst_mm, rss);
1118 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1119 cond_resched();
1120
1121 if (entry.val) {
1122 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1123 return -ENOMEM;
1124 progress = 0;
1125 }
1126 if (addr != end)
1127 goto again;
1128 return 0;
1129 }
1130
1131 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1132 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1133 unsigned long addr, unsigned long end)
1134 {
1135 pmd_t *src_pmd, *dst_pmd;
1136 unsigned long next;
1137
1138 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1139 if (!dst_pmd)
1140 return -ENOMEM;
1141 src_pmd = pmd_offset(src_pud, addr);
1142 do {
1143 next = pmd_addr_end(addr, end);
1144 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1145 || pmd_devmap(*src_pmd)) {
1146 int err;
1147 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1148 err = copy_huge_pmd(dst_mm, src_mm,
1149 dst_pmd, src_pmd, addr, vma);
1150 if (err == -ENOMEM)
1151 return -ENOMEM;
1152 if (!err)
1153 continue;
1154 /* fall through */
1155 }
1156 if (pmd_none_or_clear_bad(src_pmd))
1157 continue;
1158 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1159 vma, addr, next))
1160 return -ENOMEM;
1161 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1162 return 0;
1163 }
1164
1165 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1167 unsigned long addr, unsigned long end)
1168 {
1169 pud_t *src_pud, *dst_pud;
1170 unsigned long next;
1171
1172 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1173 if (!dst_pud)
1174 return -ENOMEM;
1175 src_pud = pud_offset(src_p4d, addr);
1176 do {
1177 next = pud_addr_end(addr, end);
1178 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1179 int err;
1180
1181 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1182 err = copy_huge_pud(dst_mm, src_mm,
1183 dst_pud, src_pud, addr, vma);
1184 if (err == -ENOMEM)
1185 return -ENOMEM;
1186 if (!err)
1187 continue;
1188 /* fall through */
1189 }
1190 if (pud_none_or_clear_bad(src_pud))
1191 continue;
1192 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1193 vma, addr, next))
1194 return -ENOMEM;
1195 } while (dst_pud++, src_pud++, addr = next, addr != end);
1196 return 0;
1197 }
1198
1199 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1200 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1201 unsigned long addr, unsigned long end)
1202 {
1203 p4d_t *src_p4d, *dst_p4d;
1204 unsigned long next;
1205
1206 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1207 if (!dst_p4d)
1208 return -ENOMEM;
1209 src_p4d = p4d_offset(src_pgd, addr);
1210 do {
1211 next = p4d_addr_end(addr, end);
1212 if (p4d_none_or_clear_bad(src_p4d))
1213 continue;
1214 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1215 vma, addr, next))
1216 return -ENOMEM;
1217 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1218 return 0;
1219 }
1220
1221 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1222 struct vm_area_struct *vma)
1223 {
1224 pgd_t *src_pgd, *dst_pgd;
1225 unsigned long next;
1226 unsigned long addr = vma->vm_start;
1227 unsigned long end = vma->vm_end;
1228 unsigned long mmun_start; /* For mmu_notifiers */
1229 unsigned long mmun_end; /* For mmu_notifiers */
1230 bool is_cow;
1231 int ret;
1232
1233 /*
1234 * Don't copy ptes where a page fault will fill them correctly.
1235 * Fork becomes much lighter when there are big shared or private
1236 * readonly mappings. The tradeoff is that copy_page_range is more
1237 * efficient than faulting.
1238 */
1239 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1240 !vma->anon_vma)
1241 return 0;
1242
1243 if (is_vm_hugetlb_page(vma))
1244 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1245
1246 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1247 /*
1248 * We do not free on error cases below as remove_vma
1249 * gets called on error from higher level routine
1250 */
1251 ret = track_pfn_copy(vma);
1252 if (ret)
1253 return ret;
1254 }
1255
1256 /*
1257 * We need to invalidate the secondary MMU mappings only when
1258 * there could be a permission downgrade on the ptes of the
1259 * parent mm. And a permission downgrade will only happen if
1260 * is_cow_mapping() returns true.
1261 */
1262 is_cow = is_cow_mapping(vma->vm_flags);
1263 mmun_start = addr;
1264 mmun_end = end;
1265 if (is_cow)
1266 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1267 mmun_end);
1268
1269 ret = 0;
1270 dst_pgd = pgd_offset(dst_mm, addr);
1271 src_pgd = pgd_offset(src_mm, addr);
1272 do {
1273 next = pgd_addr_end(addr, end);
1274 if (pgd_none_or_clear_bad(src_pgd))
1275 continue;
1276 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1277 vma, addr, next))) {
1278 ret = -ENOMEM;
1279 break;
1280 }
1281 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1282
1283 if (is_cow)
1284 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1285 return ret;
1286 }
1287
1288 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma, pmd_t *pmd,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 struct mm_struct *mm = tlb->mm;
1294 int force_flush = 0;
1295 int rss[NR_MM_COUNTERS];
1296 spinlock_t *ptl;
1297 pte_t *start_pte;
1298 pte_t *pte;
1299 swp_entry_t entry;
1300
1301 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1302 again:
1303 init_rss_vec(rss);
1304 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1305 pte = start_pte;
1306 flush_tlb_batched_pending(mm);
1307 arch_enter_lazy_mmu_mode();
1308 do {
1309 pte_t ptent = *pte;
1310 if (pte_none(ptent))
1311 continue;
1312
1313 if (pte_present(ptent)) {
1314 struct page *page;
1315
1316 page = _vm_normal_page(vma, addr, ptent, true);
1317 if (unlikely(details) && page) {
1318 /*
1319 * unmap_shared_mapping_pages() wants to
1320 * invalidate cache without truncating:
1321 * unmap shared but keep private pages.
1322 */
1323 if (details->check_mapping &&
1324 details->check_mapping != page_rmapping(page))
1325 continue;
1326 }
1327 ptent = ptep_get_and_clear_full(mm, addr, pte,
1328 tlb->fullmm);
1329 tlb_remove_tlb_entry(tlb, pte, addr);
1330 if (unlikely(!page))
1331 continue;
1332
1333 if (!PageAnon(page)) {
1334 if (pte_dirty(ptent)) {
1335 force_flush = 1;
1336 set_page_dirty(page);
1337 }
1338 if (pte_young(ptent) &&
1339 likely(!(vma->vm_flags & VM_SEQ_READ)))
1340 mark_page_accessed(page);
1341 }
1342 rss[mm_counter(page)]--;
1343 page_remove_rmap(page, false);
1344 if (unlikely(page_mapcount(page) < 0))
1345 print_bad_pte(vma, addr, ptent, page);
1346 if (unlikely(__tlb_remove_page(tlb, page))) {
1347 force_flush = 1;
1348 addr += PAGE_SIZE;
1349 break;
1350 }
1351 continue;
1352 }
1353
1354 entry = pte_to_swp_entry(ptent);
1355 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1356 struct page *page = device_private_entry_to_page(entry);
1357
1358 if (unlikely(details && details->check_mapping)) {
1359 /*
1360 * unmap_shared_mapping_pages() wants to
1361 * invalidate cache without truncating:
1362 * unmap shared but keep private pages.
1363 */
1364 if (details->check_mapping !=
1365 page_rmapping(page))
1366 continue;
1367 }
1368
1369 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1370 rss[mm_counter(page)]--;
1371 page_remove_rmap(page, false);
1372 put_page(page);
1373 continue;
1374 }
1375
1376 /* If details->check_mapping, we leave swap entries. */
1377 if (unlikely(details))
1378 continue;
1379
1380 entry = pte_to_swp_entry(ptent);
1381 if (!non_swap_entry(entry))
1382 rss[MM_SWAPENTS]--;
1383 else if (is_migration_entry(entry)) {
1384 struct page *page;
1385
1386 page = migration_entry_to_page(entry);
1387 rss[mm_counter(page)]--;
1388 }
1389 if (unlikely(!free_swap_and_cache(entry)))
1390 print_bad_pte(vma, addr, ptent, NULL);
1391 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1392 } while (pte++, addr += PAGE_SIZE, addr != end);
1393
1394 add_mm_rss_vec(mm, rss);
1395 arch_leave_lazy_mmu_mode();
1396
1397 /* Do the actual TLB flush before dropping ptl */
1398 if (force_flush)
1399 tlb_flush_mmu_tlbonly(tlb);
1400 pte_unmap_unlock(start_pte, ptl);
1401
1402 /*
1403 * If we forced a TLB flush (either due to running out of
1404 * batch buffers or because we needed to flush dirty TLB
1405 * entries before releasing the ptl), free the batched
1406 * memory too. Restart if we didn't do everything.
1407 */
1408 if (force_flush) {
1409 force_flush = 0;
1410 tlb_flush_mmu_free(tlb);
1411 if (addr != end)
1412 goto again;
1413 }
1414
1415 return addr;
1416 }
1417
1418 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1419 struct vm_area_struct *vma, pud_t *pud,
1420 unsigned long addr, unsigned long end,
1421 struct zap_details *details)
1422 {
1423 pmd_t *pmd;
1424 unsigned long next;
1425
1426 pmd = pmd_offset(pud, addr);
1427 do {
1428 next = pmd_addr_end(addr, end);
1429 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1430 if (next - addr != HPAGE_PMD_SIZE)
1431 __split_huge_pmd(vma, pmd, addr, false, NULL);
1432 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1433 goto next;
1434 /* fall through */
1435 }
1436 /*
1437 * Here there can be other concurrent MADV_DONTNEED or
1438 * trans huge page faults running, and if the pmd is
1439 * none or trans huge it can change under us. This is
1440 * because MADV_DONTNEED holds the mmap_sem in read
1441 * mode.
1442 */
1443 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1444 goto next;
1445 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1446 next:
1447 cond_resched();
1448 } while (pmd++, addr = next, addr != end);
1449
1450 return addr;
1451 }
1452
1453 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1454 struct vm_area_struct *vma, p4d_t *p4d,
1455 unsigned long addr, unsigned long end,
1456 struct zap_details *details)
1457 {
1458 pud_t *pud;
1459 unsigned long next;
1460
1461 pud = pud_offset(p4d, addr);
1462 do {
1463 next = pud_addr_end(addr, end);
1464 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1465 if (next - addr != HPAGE_PUD_SIZE) {
1466 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1467 split_huge_pud(vma, pud, addr);
1468 } else if (zap_huge_pud(tlb, vma, pud, addr))
1469 goto next;
1470 /* fall through */
1471 }
1472 if (pud_none_or_clear_bad(pud))
1473 continue;
1474 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1475 next:
1476 cond_resched();
1477 } while (pud++, addr = next, addr != end);
1478
1479 return addr;
1480 }
1481
1482 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1483 struct vm_area_struct *vma, pgd_t *pgd,
1484 unsigned long addr, unsigned long end,
1485 struct zap_details *details)
1486 {
1487 p4d_t *p4d;
1488 unsigned long next;
1489
1490 p4d = p4d_offset(pgd, addr);
1491 do {
1492 next = p4d_addr_end(addr, end);
1493 if (p4d_none_or_clear_bad(p4d))
1494 continue;
1495 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1496 } while (p4d++, addr = next, addr != end);
1497
1498 return addr;
1499 }
1500
1501 void unmap_page_range(struct mmu_gather *tlb,
1502 struct vm_area_struct *vma,
1503 unsigned long addr, unsigned long end,
1504 struct zap_details *details)
1505 {
1506 pgd_t *pgd;
1507 unsigned long next;
1508
1509 BUG_ON(addr >= end);
1510 tlb_start_vma(tlb, vma);
1511 pgd = pgd_offset(vma->vm_mm, addr);
1512 do {
1513 next = pgd_addr_end(addr, end);
1514 if (pgd_none_or_clear_bad(pgd))
1515 continue;
1516 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1517 } while (pgd++, addr = next, addr != end);
1518 tlb_end_vma(tlb, vma);
1519 }
1520
1521
1522 static void unmap_single_vma(struct mmu_gather *tlb,
1523 struct vm_area_struct *vma, unsigned long start_addr,
1524 unsigned long end_addr,
1525 struct zap_details *details)
1526 {
1527 unsigned long start = max(vma->vm_start, start_addr);
1528 unsigned long end;
1529
1530 if (start >= vma->vm_end)
1531 return;
1532 end = min(vma->vm_end, end_addr);
1533 if (end <= vma->vm_start)
1534 return;
1535
1536 if (vma->vm_file)
1537 uprobe_munmap(vma, start, end);
1538
1539 if (unlikely(vma->vm_flags & VM_PFNMAP))
1540 untrack_pfn(vma, 0, 0);
1541
1542 if (start != end) {
1543 if (unlikely(is_vm_hugetlb_page(vma))) {
1544 /*
1545 * It is undesirable to test vma->vm_file as it
1546 * should be non-null for valid hugetlb area.
1547 * However, vm_file will be NULL in the error
1548 * cleanup path of mmap_region. When
1549 * hugetlbfs ->mmap method fails,
1550 * mmap_region() nullifies vma->vm_file
1551 * before calling this function to clean up.
1552 * Since no pte has actually been setup, it is
1553 * safe to do nothing in this case.
1554 */
1555 if (vma->vm_file) {
1556 i_mmap_lock_write(vma->vm_file->f_mapping);
1557 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1558 i_mmap_unlock_write(vma->vm_file->f_mapping);
1559 }
1560 } else
1561 unmap_page_range(tlb, vma, start, end, details);
1562 }
1563 }
1564
1565 /**
1566 * unmap_vmas - unmap a range of memory covered by a list of vma's
1567 * @tlb: address of the caller's struct mmu_gather
1568 * @vma: the starting vma
1569 * @start_addr: virtual address at which to start unmapping
1570 * @end_addr: virtual address at which to end unmapping
1571 *
1572 * Unmap all pages in the vma list.
1573 *
1574 * Only addresses between `start' and `end' will be unmapped.
1575 *
1576 * The VMA list must be sorted in ascending virtual address order.
1577 *
1578 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1579 * range after unmap_vmas() returns. So the only responsibility here is to
1580 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1581 * drops the lock and schedules.
1582 */
1583 void unmap_vmas(struct mmu_gather *tlb,
1584 struct vm_area_struct *vma, unsigned long start_addr,
1585 unsigned long end_addr)
1586 {
1587 struct mm_struct *mm = vma->vm_mm;
1588
1589 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1590 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1591 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1592 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1593 }
1594
1595 /**
1596 * zap_page_range - remove user pages in a given range
1597 * @vma: vm_area_struct holding the applicable pages
1598 * @start: starting address of pages to zap
1599 * @size: number of bytes to zap
1600 *
1601 * Caller must protect the VMA list
1602 */
1603 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1604 unsigned long size)
1605 {
1606 struct mm_struct *mm = vma->vm_mm;
1607 struct mmu_gather tlb;
1608 unsigned long end = start + size;
1609
1610 lru_add_drain();
1611 tlb_gather_mmu(&tlb, mm, start, end);
1612 update_hiwater_rss(mm);
1613 mmu_notifier_invalidate_range_start(mm, start, end);
1614 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1615 unmap_single_vma(&tlb, vma, start, end, NULL);
1616
1617 /*
1618 * zap_page_range does not specify whether mmap_sem should be
1619 * held for read or write. That allows parallel zap_page_range
1620 * operations to unmap a PTE and defer a flush meaning that
1621 * this call observes pte_none and fails to flush the TLB.
1622 * Rather than adding a complex API, ensure that no stale
1623 * TLB entries exist when this call returns.
1624 */
1625 flush_tlb_range(vma, start, end);
1626 }
1627
1628 mmu_notifier_invalidate_range_end(mm, start, end);
1629 tlb_finish_mmu(&tlb, start, end);
1630 }
1631
1632 /**
1633 * zap_page_range_single - remove user pages in a given range
1634 * @vma: vm_area_struct holding the applicable pages
1635 * @address: starting address of pages to zap
1636 * @size: number of bytes to zap
1637 * @details: details of shared cache invalidation
1638 *
1639 * The range must fit into one VMA.
1640 */
1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1642 unsigned long size, struct zap_details *details)
1643 {
1644 struct mm_struct *mm = vma->vm_mm;
1645 struct mmu_gather tlb;
1646 unsigned long end = address + size;
1647
1648 lru_add_drain();
1649 tlb_gather_mmu(&tlb, mm, address, end);
1650 update_hiwater_rss(mm);
1651 mmu_notifier_invalidate_range_start(mm, address, end);
1652 unmap_single_vma(&tlb, vma, address, end, details);
1653 mmu_notifier_invalidate_range_end(mm, address, end);
1654 tlb_finish_mmu(&tlb, address, end);
1655 }
1656
1657 /**
1658 * zap_vma_ptes - remove ptes mapping the vma
1659 * @vma: vm_area_struct holding ptes to be zapped
1660 * @address: starting address of pages to zap
1661 * @size: number of bytes to zap
1662 *
1663 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664 *
1665 * The entire address range must be fully contained within the vma.
1666 *
1667 * Returns 0 if successful.
1668 */
1669 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670 unsigned long size)
1671 {
1672 if (address < vma->vm_start || address + size > vma->vm_end ||
1673 !(vma->vm_flags & VM_PFNMAP))
1674 return -1;
1675 zap_page_range_single(vma, address, size, NULL);
1676 return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679
1680 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1681 spinlock_t **ptl)
1682 {
1683 pgd_t *pgd;
1684 p4d_t *p4d;
1685 pud_t *pud;
1686 pmd_t *pmd;
1687
1688 pgd = pgd_offset(mm, addr);
1689 p4d = p4d_alloc(mm, pgd, addr);
1690 if (!p4d)
1691 return NULL;
1692 pud = pud_alloc(mm, p4d, addr);
1693 if (!pud)
1694 return NULL;
1695 pmd = pmd_alloc(mm, pud, addr);
1696 if (!pmd)
1697 return NULL;
1698
1699 VM_BUG_ON(pmd_trans_huge(*pmd));
1700 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1701 }
1702
1703 /*
1704 * This is the old fallback for page remapping.
1705 *
1706 * For historical reasons, it only allows reserved pages. Only
1707 * old drivers should use this, and they needed to mark their
1708 * pages reserved for the old functions anyway.
1709 */
1710 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1711 struct page *page, pgprot_t prot)
1712 {
1713 struct mm_struct *mm = vma->vm_mm;
1714 int retval;
1715 pte_t *pte;
1716 spinlock_t *ptl;
1717
1718 retval = -EINVAL;
1719 if (PageAnon(page))
1720 goto out;
1721 retval = -ENOMEM;
1722 flush_dcache_page(page);
1723 pte = get_locked_pte(mm, addr, &ptl);
1724 if (!pte)
1725 goto out;
1726 retval = -EBUSY;
1727 if (!pte_none(*pte))
1728 goto out_unlock;
1729
1730 /* Ok, finally just insert the thing.. */
1731 get_page(page);
1732 inc_mm_counter_fast(mm, mm_counter_file(page));
1733 page_add_file_rmap(page, false);
1734 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735
1736 retval = 0;
1737 pte_unmap_unlock(pte, ptl);
1738 return retval;
1739 out_unlock:
1740 pte_unmap_unlock(pte, ptl);
1741 out:
1742 return retval;
1743 }
1744
1745 /**
1746 * vm_insert_page - insert single page into user vma
1747 * @vma: user vma to map to
1748 * @addr: target user address of this page
1749 * @page: source kernel page
1750 *
1751 * This allows drivers to insert individual pages they've allocated
1752 * into a user vma.
1753 *
1754 * The page has to be a nice clean _individual_ kernel allocation.
1755 * If you allocate a compound page, you need to have marked it as
1756 * such (__GFP_COMP), or manually just split the page up yourself
1757 * (see split_page()).
1758 *
1759 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1760 * took an arbitrary page protection parameter. This doesn't allow
1761 * that. Your vma protection will have to be set up correctly, which
1762 * means that if you want a shared writable mapping, you'd better
1763 * ask for a shared writable mapping!
1764 *
1765 * The page does not need to be reserved.
1766 *
1767 * Usually this function is called from f_op->mmap() handler
1768 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1769 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1770 * function from other places, for example from page-fault handler.
1771 */
1772 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1773 struct page *page)
1774 {
1775 if (addr < vma->vm_start || addr >= vma->vm_end)
1776 return -EFAULT;
1777 if (!page_count(page))
1778 return -EINVAL;
1779 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1780 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1781 BUG_ON(vma->vm_flags & VM_PFNMAP);
1782 vma->vm_flags |= VM_MIXEDMAP;
1783 }
1784 return insert_page(vma, addr, page, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_insert_page);
1787
1788 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1789 pfn_t pfn, pgprot_t prot, bool mkwrite)
1790 {
1791 struct mm_struct *mm = vma->vm_mm;
1792 int retval;
1793 pte_t *pte, entry;
1794 spinlock_t *ptl;
1795
1796 retval = -ENOMEM;
1797 pte = get_locked_pte(mm, addr, &ptl);
1798 if (!pte)
1799 goto out;
1800 retval = -EBUSY;
1801 if (!pte_none(*pte)) {
1802 if (mkwrite) {
1803 /*
1804 * For read faults on private mappings the PFN passed
1805 * in may not match the PFN we have mapped if the
1806 * mapped PFN is a writeable COW page. In the mkwrite
1807 * case we are creating a writable PTE for a shared
1808 * mapping and we expect the PFNs to match. If they
1809 * don't match, we are likely racing with block
1810 * allocation and mapping invalidation so just skip the
1811 * update.
1812 */
1813 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1814 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1815 goto out_unlock;
1816 }
1817 entry = pte_mkyoung(*pte);
1818 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1820 update_mmu_cache(vma, addr, pte);
1821 }
1822 goto out_unlock;
1823 }
1824
1825 /* Ok, finally just insert the thing.. */
1826 if (pfn_t_devmap(pfn))
1827 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1828 else
1829 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1830
1831 if (mkwrite) {
1832 entry = pte_mkyoung(entry);
1833 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1834 }
1835
1836 set_pte_at(mm, addr, pte, entry);
1837 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1838
1839 retval = 0;
1840 out_unlock:
1841 pte_unmap_unlock(pte, ptl);
1842 out:
1843 return retval;
1844 }
1845
1846 /**
1847 * vm_insert_pfn - insert single pfn into user vma
1848 * @vma: user vma to map to
1849 * @addr: target user address of this page
1850 * @pfn: source kernel pfn
1851 *
1852 * Similar to vm_insert_page, this allows drivers to insert individual pages
1853 * they've allocated into a user vma. Same comments apply.
1854 *
1855 * This function should only be called from a vm_ops->fault handler, and
1856 * in that case the handler should return NULL.
1857 *
1858 * vma cannot be a COW mapping.
1859 *
1860 * As this is called only for pages that do not currently exist, we
1861 * do not need to flush old virtual caches or the TLB.
1862 */
1863 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1864 unsigned long pfn)
1865 {
1866 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1867 }
1868 EXPORT_SYMBOL(vm_insert_pfn);
1869
1870 /**
1871 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1872 * @vma: user vma to map to
1873 * @addr: target user address of this page
1874 * @pfn: source kernel pfn
1875 * @pgprot: pgprot flags for the inserted page
1876 *
1877 * This is exactly like vm_insert_pfn, except that it allows drivers to
1878 * to override pgprot on a per-page basis.
1879 *
1880 * This only makes sense for IO mappings, and it makes no sense for
1881 * cow mappings. In general, using multiple vmas is preferable;
1882 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1883 * impractical.
1884 */
1885 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1886 unsigned long pfn, pgprot_t pgprot)
1887 {
1888 int ret;
1889 /*
1890 * Technically, architectures with pte_special can avoid all these
1891 * restrictions (same for remap_pfn_range). However we would like
1892 * consistency in testing and feature parity among all, so we should
1893 * try to keep these invariants in place for everybody.
1894 */
1895 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1896 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1897 (VM_PFNMAP|VM_MIXEDMAP));
1898 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1899 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1900
1901 if (addr < vma->vm_start || addr >= vma->vm_end)
1902 return -EFAULT;
1903
1904 if (!pfn_modify_allowed(pfn, pgprot))
1905 return -EACCES;
1906
1907 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1908
1909 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1910 false);
1911
1912 return ret;
1913 }
1914 EXPORT_SYMBOL(vm_insert_pfn_prot);
1915
1916 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1917 {
1918 /* these checks mirror the abort conditions in vm_normal_page */
1919 if (vma->vm_flags & VM_MIXEDMAP)
1920 return true;
1921 if (pfn_t_devmap(pfn))
1922 return true;
1923 if (pfn_t_special(pfn))
1924 return true;
1925 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1926 return true;
1927 return false;
1928 }
1929
1930 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1931 pfn_t pfn, bool mkwrite)
1932 {
1933 pgprot_t pgprot = vma->vm_page_prot;
1934
1935 BUG_ON(!vm_mixed_ok(vma, pfn));
1936
1937 if (addr < vma->vm_start || addr >= vma->vm_end)
1938 return -EFAULT;
1939
1940 track_pfn_insert(vma, &pgprot, pfn);
1941
1942 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1943 return -EACCES;
1944
1945 /*
1946 * If we don't have pte special, then we have to use the pfn_valid()
1947 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1948 * refcount the page if pfn_valid is true (hence insert_page rather
1949 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1950 * without pte special, it would there be refcounted as a normal page.
1951 */
1952 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1953 struct page *page;
1954
1955 /*
1956 * At this point we are committed to insert_page()
1957 * regardless of whether the caller specified flags that
1958 * result in pfn_t_has_page() == false.
1959 */
1960 page = pfn_to_page(pfn_t_to_pfn(pfn));
1961 return insert_page(vma, addr, page, pgprot);
1962 }
1963 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1964 }
1965
1966 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1967 pfn_t pfn)
1968 {
1969 return __vm_insert_mixed(vma, addr, pfn, false);
1970
1971 }
1972 EXPORT_SYMBOL(vm_insert_mixed);
1973
1974 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1975 pfn_t pfn)
1976 {
1977 return __vm_insert_mixed(vma, addr, pfn, true);
1978 }
1979 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1980
1981 /*
1982 * maps a range of physical memory into the requested pages. the old
1983 * mappings are removed. any references to nonexistent pages results
1984 * in null mappings (currently treated as "copy-on-access")
1985 */
1986 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1987 unsigned long addr, unsigned long end,
1988 unsigned long pfn, pgprot_t prot)
1989 {
1990 pte_t *pte;
1991 spinlock_t *ptl;
1992 int err = 0;
1993
1994 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1995 if (!pte)
1996 return -ENOMEM;
1997 arch_enter_lazy_mmu_mode();
1998 do {
1999 BUG_ON(!pte_none(*pte));
2000 if (!pfn_modify_allowed(pfn, prot)) {
2001 err = -EACCES;
2002 break;
2003 }
2004 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2005 pfn++;
2006 } while (pte++, addr += PAGE_SIZE, addr != end);
2007 arch_leave_lazy_mmu_mode();
2008 pte_unmap_unlock(pte - 1, ptl);
2009 return err;
2010 }
2011
2012 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2013 unsigned long addr, unsigned long end,
2014 unsigned long pfn, pgprot_t prot)
2015 {
2016 pmd_t *pmd;
2017 unsigned long next;
2018 int err;
2019
2020 pfn -= addr >> PAGE_SHIFT;
2021 pmd = pmd_alloc(mm, pud, addr);
2022 if (!pmd)
2023 return -ENOMEM;
2024 VM_BUG_ON(pmd_trans_huge(*pmd));
2025 do {
2026 next = pmd_addr_end(addr, end);
2027 err = remap_pte_range(mm, pmd, addr, next,
2028 pfn + (addr >> PAGE_SHIFT), prot);
2029 if (err)
2030 return err;
2031 } while (pmd++, addr = next, addr != end);
2032 return 0;
2033 }
2034
2035 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2036 unsigned long addr, unsigned long end,
2037 unsigned long pfn, pgprot_t prot)
2038 {
2039 pud_t *pud;
2040 unsigned long next;
2041 int err;
2042
2043 pfn -= addr >> PAGE_SHIFT;
2044 pud = pud_alloc(mm, p4d, addr);
2045 if (!pud)
2046 return -ENOMEM;
2047 do {
2048 next = pud_addr_end(addr, end);
2049 err = remap_pmd_range(mm, pud, addr, next,
2050 pfn + (addr >> PAGE_SHIFT), prot);
2051 if (err)
2052 return err;
2053 } while (pud++, addr = next, addr != end);
2054 return 0;
2055 }
2056
2057 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2058 unsigned long addr, unsigned long end,
2059 unsigned long pfn, pgprot_t prot)
2060 {
2061 p4d_t *p4d;
2062 unsigned long next;
2063 int err;
2064
2065 pfn -= addr >> PAGE_SHIFT;
2066 p4d = p4d_alloc(mm, pgd, addr);
2067 if (!p4d)
2068 return -ENOMEM;
2069 do {
2070 next = p4d_addr_end(addr, end);
2071 err = remap_pud_range(mm, p4d, addr, next,
2072 pfn + (addr >> PAGE_SHIFT), prot);
2073 if (err)
2074 return err;
2075 } while (p4d++, addr = next, addr != end);
2076 return 0;
2077 }
2078
2079 /**
2080 * remap_pfn_range - remap kernel memory to userspace
2081 * @vma: user vma to map to
2082 * @addr: target user address to start at
2083 * @pfn: physical address of kernel memory
2084 * @size: size of map area
2085 * @prot: page protection flags for this mapping
2086 *
2087 * Note: this is only safe if the mm semaphore is held when called.
2088 */
2089 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2090 unsigned long pfn, unsigned long size, pgprot_t prot)
2091 {
2092 pgd_t *pgd;
2093 unsigned long next;
2094 unsigned long end = addr + PAGE_ALIGN(size);
2095 struct mm_struct *mm = vma->vm_mm;
2096 unsigned long remap_pfn = pfn;
2097 int err;
2098
2099 /*
2100 * Physically remapped pages are special. Tell the
2101 * rest of the world about it:
2102 * VM_IO tells people not to look at these pages
2103 * (accesses can have side effects).
2104 * VM_PFNMAP tells the core MM that the base pages are just
2105 * raw PFN mappings, and do not have a "struct page" associated
2106 * with them.
2107 * VM_DONTEXPAND
2108 * Disable vma merging and expanding with mremap().
2109 * VM_DONTDUMP
2110 * Omit vma from core dump, even when VM_IO turned off.
2111 *
2112 * There's a horrible special case to handle copy-on-write
2113 * behaviour that some programs depend on. We mark the "original"
2114 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2115 * See vm_normal_page() for details.
2116 */
2117 if (is_cow_mapping(vma->vm_flags)) {
2118 if (addr != vma->vm_start || end != vma->vm_end)
2119 return -EINVAL;
2120 vma->vm_pgoff = pfn;
2121 }
2122
2123 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2124 if (err)
2125 return -EINVAL;
2126
2127 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2128
2129 BUG_ON(addr >= end);
2130 pfn -= addr >> PAGE_SHIFT;
2131 pgd = pgd_offset(mm, addr);
2132 flush_cache_range(vma, addr, end);
2133 do {
2134 next = pgd_addr_end(addr, end);
2135 err = remap_p4d_range(mm, pgd, addr, next,
2136 pfn + (addr >> PAGE_SHIFT), prot);
2137 if (err)
2138 break;
2139 } while (pgd++, addr = next, addr != end);
2140
2141 if (err)
2142 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2143
2144 return err;
2145 }
2146 EXPORT_SYMBOL(remap_pfn_range);
2147
2148 /**
2149 * vm_iomap_memory - remap memory to userspace
2150 * @vma: user vma to map to
2151 * @start: start of area
2152 * @len: size of area
2153 *
2154 * This is a simplified io_remap_pfn_range() for common driver use. The
2155 * driver just needs to give us the physical memory range to be mapped,
2156 * we'll figure out the rest from the vma information.
2157 *
2158 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2159 * whatever write-combining details or similar.
2160 */
2161 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2162 {
2163 unsigned long vm_len, pfn, pages;
2164
2165 /* Check that the physical memory area passed in looks valid */
2166 if (start + len < start)
2167 return -EINVAL;
2168 /*
2169 * You *really* shouldn't map things that aren't page-aligned,
2170 * but we've historically allowed it because IO memory might
2171 * just have smaller alignment.
2172 */
2173 len += start & ~PAGE_MASK;
2174 pfn = start >> PAGE_SHIFT;
2175 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2176 if (pfn + pages < pfn)
2177 return -EINVAL;
2178
2179 /* We start the mapping 'vm_pgoff' pages into the area */
2180 if (vma->vm_pgoff > pages)
2181 return -EINVAL;
2182 pfn += vma->vm_pgoff;
2183 pages -= vma->vm_pgoff;
2184
2185 /* Can we fit all of the mapping? */
2186 vm_len = vma->vm_end - vma->vm_start;
2187 if (vm_len >> PAGE_SHIFT > pages)
2188 return -EINVAL;
2189
2190 /* Ok, let it rip */
2191 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2192 }
2193 EXPORT_SYMBOL(vm_iomap_memory);
2194
2195 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196 unsigned long addr, unsigned long end,
2197 pte_fn_t fn, void *data)
2198 {
2199 pte_t *pte;
2200 int err;
2201 pgtable_t token;
2202 spinlock_t *uninitialized_var(ptl);
2203
2204 pte = (mm == &init_mm) ?
2205 pte_alloc_kernel(pmd, addr) :
2206 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2207 if (!pte)
2208 return -ENOMEM;
2209
2210 BUG_ON(pmd_huge(*pmd));
2211
2212 arch_enter_lazy_mmu_mode();
2213
2214 token = pmd_pgtable(*pmd);
2215
2216 do {
2217 err = fn(pte++, token, addr, data);
2218 if (err)
2219 break;
2220 } while (addr += PAGE_SIZE, addr != end);
2221
2222 arch_leave_lazy_mmu_mode();
2223
2224 if (mm != &init_mm)
2225 pte_unmap_unlock(pte-1, ptl);
2226 return err;
2227 }
2228
2229 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2230 unsigned long addr, unsigned long end,
2231 pte_fn_t fn, void *data)
2232 {
2233 pmd_t *pmd;
2234 unsigned long next;
2235 int err;
2236
2237 BUG_ON(pud_huge(*pud));
2238
2239 pmd = pmd_alloc(mm, pud, addr);
2240 if (!pmd)
2241 return -ENOMEM;
2242 do {
2243 next = pmd_addr_end(addr, end);
2244 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2245 if (err)
2246 break;
2247 } while (pmd++, addr = next, addr != end);
2248 return err;
2249 }
2250
2251 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2252 unsigned long addr, unsigned long end,
2253 pte_fn_t fn, void *data)
2254 {
2255 pud_t *pud;
2256 unsigned long next;
2257 int err;
2258
2259 pud = pud_alloc(mm, p4d, addr);
2260 if (!pud)
2261 return -ENOMEM;
2262 do {
2263 next = pud_addr_end(addr, end);
2264 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2265 if (err)
2266 break;
2267 } while (pud++, addr = next, addr != end);
2268 return err;
2269 }
2270
2271 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2272 unsigned long addr, unsigned long end,
2273 pte_fn_t fn, void *data)
2274 {
2275 p4d_t *p4d;
2276 unsigned long next;
2277 int err;
2278
2279 p4d = p4d_alloc(mm, pgd, addr);
2280 if (!p4d)
2281 return -ENOMEM;
2282 do {
2283 next = p4d_addr_end(addr, end);
2284 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2285 if (err)
2286 break;
2287 } while (p4d++, addr = next, addr != end);
2288 return err;
2289 }
2290
2291 /*
2292 * Scan a region of virtual memory, filling in page tables as necessary
2293 * and calling a provided function on each leaf page table.
2294 */
2295 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2296 unsigned long size, pte_fn_t fn, void *data)
2297 {
2298 pgd_t *pgd;
2299 unsigned long next;
2300 unsigned long end = addr + size;
2301 int err;
2302
2303 if (WARN_ON(addr >= end))
2304 return -EINVAL;
2305
2306 pgd = pgd_offset(mm, addr);
2307 do {
2308 next = pgd_addr_end(addr, end);
2309 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2310 if (err)
2311 break;
2312 } while (pgd++, addr = next, addr != end);
2313
2314 return err;
2315 }
2316 EXPORT_SYMBOL_GPL(apply_to_page_range);
2317
2318 /*
2319 * handle_pte_fault chooses page fault handler according to an entry which was
2320 * read non-atomically. Before making any commitment, on those architectures
2321 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2322 * parts, do_swap_page must check under lock before unmapping the pte and
2323 * proceeding (but do_wp_page is only called after already making such a check;
2324 * and do_anonymous_page can safely check later on).
2325 */
2326 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2327 pte_t *page_table, pte_t orig_pte)
2328 {
2329 int same = 1;
2330 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2331 if (sizeof(pte_t) > sizeof(unsigned long)) {
2332 spinlock_t *ptl = pte_lockptr(mm, pmd);
2333 spin_lock(ptl);
2334 same = pte_same(*page_table, orig_pte);
2335 spin_unlock(ptl);
2336 }
2337 #endif
2338 pte_unmap(page_table);
2339 return same;
2340 }
2341
2342 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2343 {
2344 debug_dma_assert_idle(src);
2345
2346 /*
2347 * If the source page was a PFN mapping, we don't have
2348 * a "struct page" for it. We do a best-effort copy by
2349 * just copying from the original user address. If that
2350 * fails, we just zero-fill it. Live with it.
2351 */
2352 if (unlikely(!src)) {
2353 void *kaddr = kmap_atomic(dst);
2354 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2355
2356 /*
2357 * This really shouldn't fail, because the page is there
2358 * in the page tables. But it might just be unreadable,
2359 * in which case we just give up and fill the result with
2360 * zeroes.
2361 */
2362 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2363 clear_page(kaddr);
2364 kunmap_atomic(kaddr);
2365 flush_dcache_page(dst);
2366 } else
2367 copy_user_highpage(dst, src, va, vma);
2368 }
2369
2370 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2371 {
2372 struct file *vm_file = vma->vm_file;
2373
2374 if (vm_file)
2375 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2376
2377 /*
2378 * Special mappings (e.g. VDSO) do not have any file so fake
2379 * a default GFP_KERNEL for them.
2380 */
2381 return GFP_KERNEL;
2382 }
2383
2384 /*
2385 * Notify the address space that the page is about to become writable so that
2386 * it can prohibit this or wait for the page to get into an appropriate state.
2387 *
2388 * We do this without the lock held, so that it can sleep if it needs to.
2389 */
2390 static int do_page_mkwrite(struct vm_fault *vmf)
2391 {
2392 int ret;
2393 struct page *page = vmf->page;
2394 unsigned int old_flags = vmf->flags;
2395
2396 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2397
2398 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2399 /* Restore original flags so that caller is not surprised */
2400 vmf->flags = old_flags;
2401 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2402 return ret;
2403 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2404 lock_page(page);
2405 if (!page->mapping) {
2406 unlock_page(page);
2407 return 0; /* retry */
2408 }
2409 ret |= VM_FAULT_LOCKED;
2410 } else
2411 VM_BUG_ON_PAGE(!PageLocked(page), page);
2412 return ret;
2413 }
2414
2415 /*
2416 * Handle dirtying of a page in shared file mapping on a write fault.
2417 *
2418 * The function expects the page to be locked and unlocks it.
2419 */
2420 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2421 struct page *page)
2422 {
2423 struct address_space *mapping;
2424 bool dirtied;
2425 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2426
2427 dirtied = set_page_dirty(page);
2428 VM_BUG_ON_PAGE(PageAnon(page), page);
2429 /*
2430 * Take a local copy of the address_space - page.mapping may be zeroed
2431 * by truncate after unlock_page(). The address_space itself remains
2432 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2433 * release semantics to prevent the compiler from undoing this copying.
2434 */
2435 mapping = page_rmapping(page);
2436 unlock_page(page);
2437
2438 if ((dirtied || page_mkwrite) && mapping) {
2439 /*
2440 * Some device drivers do not set page.mapping
2441 * but still dirty their pages
2442 */
2443 balance_dirty_pages_ratelimited(mapping);
2444 }
2445
2446 if (!page_mkwrite)
2447 file_update_time(vma->vm_file);
2448 }
2449
2450 /*
2451 * Handle write page faults for pages that can be reused in the current vma
2452 *
2453 * This can happen either due to the mapping being with the VM_SHARED flag,
2454 * or due to us being the last reference standing to the page. In either
2455 * case, all we need to do here is to mark the page as writable and update
2456 * any related book-keeping.
2457 */
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459 __releases(vmf->ptl)
2460 {
2461 struct vm_area_struct *vma = vmf->vma;
2462 struct page *page = vmf->page;
2463 pte_t entry;
2464 /*
2465 * Clear the pages cpupid information as the existing
2466 * information potentially belongs to a now completely
2467 * unrelated process.
2468 */
2469 if (page)
2470 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471
2472 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473 entry = pte_mkyoung(vmf->orig_pte);
2474 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476 update_mmu_cache(vma, vmf->address, vmf->pte);
2477 pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 }
2479
2480 /*
2481 * Handle the case of a page which we actually need to copy to a new page.
2482 *
2483 * Called with mmap_sem locked and the old page referenced, but
2484 * without the ptl held.
2485 *
2486 * High level logic flow:
2487 *
2488 * - Allocate a page, copy the content of the old page to the new one.
2489 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490 * - Take the PTL. If the pte changed, bail out and release the allocated page
2491 * - If the pte is still the way we remember it, update the page table and all
2492 * relevant references. This includes dropping the reference the page-table
2493 * held to the old page, as well as updating the rmap.
2494 * - In any case, unlock the PTL and drop the reference we took to the old page.
2495 */
2496 static int wp_page_copy(struct vm_fault *vmf)
2497 {
2498 struct vm_area_struct *vma = vmf->vma;
2499 struct mm_struct *mm = vma->vm_mm;
2500 struct page *old_page = vmf->page;
2501 struct page *new_page = NULL;
2502 pte_t entry;
2503 int page_copied = 0;
2504 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2505 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2506 struct mem_cgroup *memcg;
2507
2508 if (unlikely(anon_vma_prepare(vma)))
2509 goto oom;
2510
2511 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2512 new_page = alloc_zeroed_user_highpage_movable(vma,
2513 vmf->address);
2514 if (!new_page)
2515 goto oom;
2516 } else {
2517 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2518 vmf->address);
2519 if (!new_page)
2520 goto oom;
2521 cow_user_page(new_page, old_page, vmf->address, vma);
2522 }
2523
2524 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2525 goto oom_free_new;
2526
2527 __SetPageUptodate(new_page);
2528
2529 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2530
2531 /*
2532 * Re-check the pte - we dropped the lock
2533 */
2534 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2535 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2536 if (old_page) {
2537 if (!PageAnon(old_page)) {
2538 dec_mm_counter_fast(mm,
2539 mm_counter_file(old_page));
2540 inc_mm_counter_fast(mm, MM_ANONPAGES);
2541 }
2542 } else {
2543 inc_mm_counter_fast(mm, MM_ANONPAGES);
2544 }
2545 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2546 entry = mk_pte(new_page, vma->vm_page_prot);
2547 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2548 /*
2549 * Clear the pte entry and flush it first, before updating the
2550 * pte with the new entry. This will avoid a race condition
2551 * seen in the presence of one thread doing SMC and another
2552 * thread doing COW.
2553 */
2554 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2555 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2556 mem_cgroup_commit_charge(new_page, memcg, false, false);
2557 lru_cache_add_active_or_unevictable(new_page, vma);
2558 /*
2559 * We call the notify macro here because, when using secondary
2560 * mmu page tables (such as kvm shadow page tables), we want the
2561 * new page to be mapped directly into the secondary page table.
2562 */
2563 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2564 update_mmu_cache(vma, vmf->address, vmf->pte);
2565 if (old_page) {
2566 /*
2567 * Only after switching the pte to the new page may
2568 * we remove the mapcount here. Otherwise another
2569 * process may come and find the rmap count decremented
2570 * before the pte is switched to the new page, and
2571 * "reuse" the old page writing into it while our pte
2572 * here still points into it and can be read by other
2573 * threads.
2574 *
2575 * The critical issue is to order this
2576 * page_remove_rmap with the ptp_clear_flush above.
2577 * Those stores are ordered by (if nothing else,)
2578 * the barrier present in the atomic_add_negative
2579 * in page_remove_rmap.
2580 *
2581 * Then the TLB flush in ptep_clear_flush ensures that
2582 * no process can access the old page before the
2583 * decremented mapcount is visible. And the old page
2584 * cannot be reused until after the decremented
2585 * mapcount is visible. So transitively, TLBs to
2586 * old page will be flushed before it can be reused.
2587 */
2588 page_remove_rmap(old_page, false);
2589 }
2590
2591 /* Free the old page.. */
2592 new_page = old_page;
2593 page_copied = 1;
2594 } else {
2595 mem_cgroup_cancel_charge(new_page, memcg, false);
2596 }
2597
2598 if (new_page)
2599 put_page(new_page);
2600
2601 pte_unmap_unlock(vmf->pte, vmf->ptl);
2602 /*
2603 * No need to double call mmu_notifier->invalidate_range() callback as
2604 * the above ptep_clear_flush_notify() did already call it.
2605 */
2606 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2607 if (old_page) {
2608 /*
2609 * Don't let another task, with possibly unlocked vma,
2610 * keep the mlocked page.
2611 */
2612 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2613 lock_page(old_page); /* LRU manipulation */
2614 if (PageMlocked(old_page))
2615 munlock_vma_page(old_page);
2616 unlock_page(old_page);
2617 }
2618 put_page(old_page);
2619 }
2620 return page_copied ? VM_FAULT_WRITE : 0;
2621 oom_free_new:
2622 put_page(new_page);
2623 oom:
2624 if (old_page)
2625 put_page(old_page);
2626 return VM_FAULT_OOM;
2627 }
2628
2629 /**
2630 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2631 * writeable once the page is prepared
2632 *
2633 * @vmf: structure describing the fault
2634 *
2635 * This function handles all that is needed to finish a write page fault in a
2636 * shared mapping due to PTE being read-only once the mapped page is prepared.
2637 * It handles locking of PTE and modifying it. The function returns
2638 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2639 * lock.
2640 *
2641 * The function expects the page to be locked or other protection against
2642 * concurrent faults / writeback (such as DAX radix tree locks).
2643 */
2644 int finish_mkwrite_fault(struct vm_fault *vmf)
2645 {
2646 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2647 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2648 &vmf->ptl);
2649 /*
2650 * We might have raced with another page fault while we released the
2651 * pte_offset_map_lock.
2652 */
2653 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2654 pte_unmap_unlock(vmf->pte, vmf->ptl);
2655 return VM_FAULT_NOPAGE;
2656 }
2657 wp_page_reuse(vmf);
2658 return 0;
2659 }
2660
2661 /*
2662 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2663 * mapping
2664 */
2665 static int wp_pfn_shared(struct vm_fault *vmf)
2666 {
2667 struct vm_area_struct *vma = vmf->vma;
2668
2669 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2670 int ret;
2671
2672 pte_unmap_unlock(vmf->pte, vmf->ptl);
2673 vmf->flags |= FAULT_FLAG_MKWRITE;
2674 ret = vma->vm_ops->pfn_mkwrite(vmf);
2675 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2676 return ret;
2677 return finish_mkwrite_fault(vmf);
2678 }
2679 wp_page_reuse(vmf);
2680 return VM_FAULT_WRITE;
2681 }
2682
2683 static int wp_page_shared(struct vm_fault *vmf)
2684 __releases(vmf->ptl)
2685 {
2686 struct vm_area_struct *vma = vmf->vma;
2687
2688 get_page(vmf->page);
2689
2690 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2691 int tmp;
2692
2693 pte_unmap_unlock(vmf->pte, vmf->ptl);
2694 tmp = do_page_mkwrite(vmf);
2695 if (unlikely(!tmp || (tmp &
2696 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2697 put_page(vmf->page);
2698 return tmp;
2699 }
2700 tmp = finish_mkwrite_fault(vmf);
2701 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2702 unlock_page(vmf->page);
2703 put_page(vmf->page);
2704 return tmp;
2705 }
2706 } else {
2707 wp_page_reuse(vmf);
2708 lock_page(vmf->page);
2709 }
2710 fault_dirty_shared_page(vma, vmf->page);
2711 put_page(vmf->page);
2712
2713 return VM_FAULT_WRITE;
2714 }
2715
2716 /*
2717 * This routine handles present pages, when users try to write
2718 * to a shared page. It is done by copying the page to a new address
2719 * and decrementing the shared-page counter for the old page.
2720 *
2721 * Note that this routine assumes that the protection checks have been
2722 * done by the caller (the low-level page fault routine in most cases).
2723 * Thus we can safely just mark it writable once we've done any necessary
2724 * COW.
2725 *
2726 * We also mark the page dirty at this point even though the page will
2727 * change only once the write actually happens. This avoids a few races,
2728 * and potentially makes it more efficient.
2729 *
2730 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2731 * but allow concurrent faults), with pte both mapped and locked.
2732 * We return with mmap_sem still held, but pte unmapped and unlocked.
2733 */
2734 static int do_wp_page(struct vm_fault *vmf)
2735 __releases(vmf->ptl)
2736 {
2737 struct vm_area_struct *vma = vmf->vma;
2738
2739 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2740 if (!vmf->page) {
2741 /*
2742 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2743 * VM_PFNMAP VMA.
2744 *
2745 * We should not cow pages in a shared writeable mapping.
2746 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2747 */
2748 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749 (VM_WRITE|VM_SHARED))
2750 return wp_pfn_shared(vmf);
2751
2752 pte_unmap_unlock(vmf->pte, vmf->ptl);
2753 return wp_page_copy(vmf);
2754 }
2755
2756 /*
2757 * Take out anonymous pages first, anonymous shared vmas are
2758 * not dirty accountable.
2759 */
2760 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2761 int total_map_swapcount;
2762 if (!trylock_page(vmf->page)) {
2763 get_page(vmf->page);
2764 pte_unmap_unlock(vmf->pte, vmf->ptl);
2765 lock_page(vmf->page);
2766 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2767 vmf->address, &vmf->ptl);
2768 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2769 unlock_page(vmf->page);
2770 pte_unmap_unlock(vmf->pte, vmf->ptl);
2771 put_page(vmf->page);
2772 return 0;
2773 }
2774 put_page(vmf->page);
2775 }
2776 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2777 if (total_map_swapcount == 1) {
2778 /*
2779 * The page is all ours. Move it to
2780 * our anon_vma so the rmap code will
2781 * not search our parent or siblings.
2782 * Protected against the rmap code by
2783 * the page lock.
2784 */
2785 page_move_anon_rmap(vmf->page, vma);
2786 }
2787 unlock_page(vmf->page);
2788 wp_page_reuse(vmf);
2789 return VM_FAULT_WRITE;
2790 }
2791 unlock_page(vmf->page);
2792 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2793 (VM_WRITE|VM_SHARED))) {
2794 return wp_page_shared(vmf);
2795 }
2796
2797 /*
2798 * Ok, we need to copy. Oh, well..
2799 */
2800 get_page(vmf->page);
2801
2802 pte_unmap_unlock(vmf->pte, vmf->ptl);
2803 return wp_page_copy(vmf);
2804 }
2805
2806 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2807 unsigned long start_addr, unsigned long end_addr,
2808 struct zap_details *details)
2809 {
2810 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2811 }
2812
2813 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2814 struct zap_details *details)
2815 {
2816 struct vm_area_struct *vma;
2817 pgoff_t vba, vea, zba, zea;
2818
2819 vma_interval_tree_foreach(vma, root,
2820 details->first_index, details->last_index) {
2821
2822 vba = vma->vm_pgoff;
2823 vea = vba + vma_pages(vma) - 1;
2824 zba = details->first_index;
2825 if (zba < vba)
2826 zba = vba;
2827 zea = details->last_index;
2828 if (zea > vea)
2829 zea = vea;
2830
2831 unmap_mapping_range_vma(vma,
2832 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2833 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2834 details);
2835 }
2836 }
2837
2838 /**
2839 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2840 * address_space corresponding to the specified page range in the underlying
2841 * file.
2842 *
2843 * @mapping: the address space containing mmaps to be unmapped.
2844 * @holebegin: byte in first page to unmap, relative to the start of
2845 * the underlying file. This will be rounded down to a PAGE_SIZE
2846 * boundary. Note that this is different from truncate_pagecache(), which
2847 * must keep the partial page. In contrast, we must get rid of
2848 * partial pages.
2849 * @holelen: size of prospective hole in bytes. This will be rounded
2850 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2851 * end of the file.
2852 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2853 * but 0 when invalidating pagecache, don't throw away private data.
2854 */
2855 void unmap_mapping_range(struct address_space *mapping,
2856 loff_t const holebegin, loff_t const holelen, int even_cows)
2857 {
2858 struct zap_details details = { };
2859 pgoff_t hba = holebegin >> PAGE_SHIFT;
2860 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2861
2862 /* Check for overflow. */
2863 if (sizeof(holelen) > sizeof(hlen)) {
2864 long long holeend =
2865 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2866 if (holeend & ~(long long)ULONG_MAX)
2867 hlen = ULONG_MAX - hba + 1;
2868 }
2869
2870 details.check_mapping = even_cows ? NULL : mapping;
2871 details.first_index = hba;
2872 details.last_index = hba + hlen - 1;
2873 if (details.last_index < details.first_index)
2874 details.last_index = ULONG_MAX;
2875
2876 i_mmap_lock_write(mapping);
2877 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2878 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2879 i_mmap_unlock_write(mapping);
2880 }
2881 EXPORT_SYMBOL(unmap_mapping_range);
2882
2883 /*
2884 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885 * but allow concurrent faults), and pte mapped but not yet locked.
2886 * We return with pte unmapped and unlocked.
2887 *
2888 * We return with the mmap_sem locked or unlocked in the same cases
2889 * as does filemap_fault().
2890 */
2891 int do_swap_page(struct vm_fault *vmf)
2892 {
2893 struct vm_area_struct *vma = vmf->vma;
2894 struct page *page = NULL, *swapcache = NULL;
2895 struct mem_cgroup *memcg;
2896 struct vma_swap_readahead swap_ra;
2897 swp_entry_t entry;
2898 pte_t pte;
2899 int locked;
2900 int exclusive = 0;
2901 int ret = 0;
2902 bool vma_readahead = swap_use_vma_readahead();
2903
2904 if (vma_readahead) {
2905 page = swap_readahead_detect(vmf, &swap_ra);
2906 swapcache = page;
2907 }
2908
2909 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2910 if (page)
2911 put_page(page);
2912 goto out;
2913 }
2914
2915 entry = pte_to_swp_entry(vmf->orig_pte);
2916 if (unlikely(non_swap_entry(entry))) {
2917 if (is_migration_entry(entry)) {
2918 migration_entry_wait(vma->vm_mm, vmf->pmd,
2919 vmf->address);
2920 } else if (is_device_private_entry(entry)) {
2921 /*
2922 * For un-addressable device memory we call the pgmap
2923 * fault handler callback. The callback must migrate
2924 * the page back to some CPU accessible page.
2925 */
2926 ret = device_private_entry_fault(vma, vmf->address, entry,
2927 vmf->flags, vmf->pmd);
2928 } else if (is_hwpoison_entry(entry)) {
2929 ret = VM_FAULT_HWPOISON;
2930 } else {
2931 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2932 ret = VM_FAULT_SIGBUS;
2933 }
2934 goto out;
2935 }
2936
2937
2938 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2939 if (!page) {
2940 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2941 vmf->address);
2942 swapcache = page;
2943 }
2944
2945 if (!page) {
2946 struct swap_info_struct *si = swp_swap_info(entry);
2947
2948 if (si->flags & SWP_SYNCHRONOUS_IO &&
2949 __swap_count(si, entry) == 1) {
2950 /* skip swapcache */
2951 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2952 if (page) {
2953 __SetPageLocked(page);
2954 __SetPageSwapBacked(page);
2955 set_page_private(page, entry.val);
2956 lru_cache_add_anon(page);
2957 swap_readpage(page, true);
2958 }
2959 } else {
2960 if (vma_readahead)
2961 page = do_swap_page_readahead(entry,
2962 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2963 else
2964 page = swapin_readahead(entry,
2965 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2966 swapcache = page;
2967 }
2968
2969 if (!page) {
2970 /*
2971 * Back out if somebody else faulted in this pte
2972 * while we released the pte lock.
2973 */
2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975 vmf->address, &vmf->ptl);
2976 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2977 ret = VM_FAULT_OOM;
2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979 goto unlock;
2980 }
2981
2982 /* Had to read the page from swap area: Major fault */
2983 ret = VM_FAULT_MAJOR;
2984 count_vm_event(PGMAJFAULT);
2985 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2986 } else if (PageHWPoison(page)) {
2987 /*
2988 * hwpoisoned dirty swapcache pages are kept for killing
2989 * owner processes (which may be unknown at hwpoison time)
2990 */
2991 ret = VM_FAULT_HWPOISON;
2992 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993 swapcache = page;
2994 goto out_release;
2995 }
2996
2997 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2998
2999 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3000 if (!locked) {
3001 ret |= VM_FAULT_RETRY;
3002 goto out_release;
3003 }
3004
3005 /*
3006 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3007 * release the swapcache from under us. The page pin, and pte_same
3008 * test below, are not enough to exclude that. Even if it is still
3009 * swapcache, we need to check that the page's swap has not changed.
3010 */
3011 if (unlikely((!PageSwapCache(page) ||
3012 page_private(page) != entry.val)) && swapcache)
3013 goto out_page;
3014
3015 page = ksm_might_need_to_copy(page, vma, vmf->address);
3016 if (unlikely(!page)) {
3017 ret = VM_FAULT_OOM;
3018 page = swapcache;
3019 goto out_page;
3020 }
3021
3022 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3023 &memcg, false)) {
3024 ret = VM_FAULT_OOM;
3025 goto out_page;
3026 }
3027
3028 /*
3029 * Back out if somebody else already faulted in this pte.
3030 */
3031 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3032 &vmf->ptl);
3033 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3034 goto out_nomap;
3035
3036 if (unlikely(!PageUptodate(page))) {
3037 ret = VM_FAULT_SIGBUS;
3038 goto out_nomap;
3039 }
3040
3041 /*
3042 * The page isn't present yet, go ahead with the fault.
3043 *
3044 * Be careful about the sequence of operations here.
3045 * To get its accounting right, reuse_swap_page() must be called
3046 * while the page is counted on swap but not yet in mapcount i.e.
3047 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3048 * must be called after the swap_free(), or it will never succeed.
3049 */
3050
3051 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3052 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3053 pte = mk_pte(page, vma->vm_page_prot);
3054 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3055 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3056 vmf->flags &= ~FAULT_FLAG_WRITE;
3057 ret |= VM_FAULT_WRITE;
3058 exclusive = RMAP_EXCLUSIVE;
3059 }
3060 flush_icache_page(vma, page);
3061 if (pte_swp_soft_dirty(vmf->orig_pte))
3062 pte = pte_mksoft_dirty(pte);
3063 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3064 vmf->orig_pte = pte;
3065
3066 /* ksm created a completely new copy */
3067 if (unlikely(page != swapcache && swapcache)) {
3068 page_add_new_anon_rmap(page, vma, vmf->address, false);
3069 mem_cgroup_commit_charge(page, memcg, false, false);
3070 lru_cache_add_active_or_unevictable(page, vma);
3071 } else {
3072 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3073 mem_cgroup_commit_charge(page, memcg, true, false);
3074 activate_page(page);
3075 }
3076
3077 swap_free(entry);
3078 if (mem_cgroup_swap_full(page) ||
3079 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3080 try_to_free_swap(page);
3081 unlock_page(page);
3082 if (page != swapcache && swapcache) {
3083 /*
3084 * Hold the lock to avoid the swap entry to be reused
3085 * until we take the PT lock for the pte_same() check
3086 * (to avoid false positives from pte_same). For
3087 * further safety release the lock after the swap_free
3088 * so that the swap count won't change under a
3089 * parallel locked swapcache.
3090 */
3091 unlock_page(swapcache);
3092 put_page(swapcache);
3093 }
3094
3095 if (vmf->flags & FAULT_FLAG_WRITE) {
3096 ret |= do_wp_page(vmf);
3097 if (ret & VM_FAULT_ERROR)
3098 ret &= VM_FAULT_ERROR;
3099 goto out;
3100 }
3101
3102 /* No need to invalidate - it was non-present before */
3103 update_mmu_cache(vma, vmf->address, vmf->pte);
3104 unlock:
3105 pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 out:
3107 return ret;
3108 out_nomap:
3109 mem_cgroup_cancel_charge(page, memcg, false);
3110 pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 out_page:
3112 unlock_page(page);
3113 out_release:
3114 put_page(page);
3115 if (page != swapcache && swapcache) {
3116 unlock_page(swapcache);
3117 put_page(swapcache);
3118 }
3119 return ret;
3120 }
3121
3122 /*
3123 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3124 * but allow concurrent faults), and pte mapped but not yet locked.
3125 * We return with mmap_sem still held, but pte unmapped and unlocked.
3126 */
3127 static int do_anonymous_page(struct vm_fault *vmf)
3128 {
3129 struct vm_area_struct *vma = vmf->vma;
3130 struct mem_cgroup *memcg;
3131 struct page *page;
3132 int ret = 0;
3133 pte_t entry;
3134
3135 /* File mapping without ->vm_ops ? */
3136 if (vma->vm_flags & VM_SHARED)
3137 return VM_FAULT_SIGBUS;
3138
3139 /*
3140 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3141 * pte_offset_map() on pmds where a huge pmd might be created
3142 * from a different thread.
3143 *
3144 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3145 * parallel threads are excluded by other means.
3146 *
3147 * Here we only have down_read(mmap_sem).
3148 */
3149 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3150 return VM_FAULT_OOM;
3151
3152 /* See the comment in pte_alloc_one_map() */
3153 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3154 return 0;
3155
3156 /* Use the zero-page for reads */
3157 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3158 !mm_forbids_zeropage(vma->vm_mm)) {
3159 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3160 vma->vm_page_prot));
3161 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162 vmf->address, &vmf->ptl);
3163 if (!pte_none(*vmf->pte))
3164 goto unlock;
3165 ret = check_stable_address_space(vma->vm_mm);
3166 if (ret)
3167 goto unlock;
3168 /* Deliver the page fault to userland, check inside PT lock */
3169 if (userfaultfd_missing(vma)) {
3170 pte_unmap_unlock(vmf->pte, vmf->ptl);
3171 return handle_userfault(vmf, VM_UFFD_MISSING);
3172 }
3173 goto setpte;
3174 }
3175
3176 /* Allocate our own private page. */
3177 if (unlikely(anon_vma_prepare(vma)))
3178 goto oom;
3179 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3180 if (!page)
3181 goto oom;
3182
3183 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3184 goto oom_free_page;
3185
3186 /*
3187 * The memory barrier inside __SetPageUptodate makes sure that
3188 * preceeding stores to the page contents become visible before
3189 * the set_pte_at() write.
3190 */
3191 __SetPageUptodate(page);
3192
3193 entry = mk_pte(page, vma->vm_page_prot);
3194 if (vma->vm_flags & VM_WRITE)
3195 entry = pte_mkwrite(pte_mkdirty(entry));
3196
3197 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3198 &vmf->ptl);
3199 if (!pte_none(*vmf->pte))
3200 goto release;
3201
3202 ret = check_stable_address_space(vma->vm_mm);
3203 if (ret)
3204 goto release;
3205
3206 /* Deliver the page fault to userland, check inside PT lock */
3207 if (userfaultfd_missing(vma)) {
3208 pte_unmap_unlock(vmf->pte, vmf->ptl);
3209 mem_cgroup_cancel_charge(page, memcg, false);
3210 put_page(page);
3211 return handle_userfault(vmf, VM_UFFD_MISSING);
3212 }
3213
3214 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3215 page_add_new_anon_rmap(page, vma, vmf->address, false);
3216 mem_cgroup_commit_charge(page, memcg, false, false);
3217 lru_cache_add_active_or_unevictable(page, vma);
3218 setpte:
3219 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3220
3221 /* No need to invalidate - it was non-present before */
3222 update_mmu_cache(vma, vmf->address, vmf->pte);
3223 unlock:
3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
3225 return ret;
3226 release:
3227 mem_cgroup_cancel_charge(page, memcg, false);
3228 put_page(page);
3229 goto unlock;
3230 oom_free_page:
3231 put_page(page);
3232 oom:
3233 return VM_FAULT_OOM;
3234 }
3235
3236 /*
3237 * The mmap_sem must have been held on entry, and may have been
3238 * released depending on flags and vma->vm_ops->fault() return value.
3239 * See filemap_fault() and __lock_page_retry().
3240 */
3241 static int __do_fault(struct vm_fault *vmf)
3242 {
3243 struct vm_area_struct *vma = vmf->vma;
3244 int ret;
3245
3246 /*
3247 * Preallocate pte before we take page_lock because this might lead to
3248 * deadlocks for memcg reclaim which waits for pages under writeback:
3249 * lock_page(A)
3250 * SetPageWriteback(A)
3251 * unlock_page(A)
3252 * lock_page(B)
3253 * lock_page(B)
3254 * pte_alloc_pne
3255 * shrink_page_list
3256 * wait_on_page_writeback(A)
3257 * SetPageWriteback(B)
3258 * unlock_page(B)
3259 * # flush A, B to clear the writeback
3260 */
3261 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3262 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3263 vmf->address);
3264 if (!vmf->prealloc_pte)
3265 return VM_FAULT_OOM;
3266 smp_wmb(); /* See comment in __pte_alloc() */
3267 }
3268
3269 ret = vma->vm_ops->fault(vmf);
3270 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3271 VM_FAULT_DONE_COW)))
3272 return ret;
3273
3274 if (unlikely(PageHWPoison(vmf->page))) {
3275 if (ret & VM_FAULT_LOCKED)
3276 unlock_page(vmf->page);
3277 put_page(vmf->page);
3278 vmf->page = NULL;
3279 return VM_FAULT_HWPOISON;
3280 }
3281
3282 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3283 lock_page(vmf->page);
3284 else
3285 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3286
3287 return ret;
3288 }
3289
3290 /*
3291 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3292 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3293 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3294 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3295 */
3296 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3297 {
3298 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3299 }
3300
3301 static int pte_alloc_one_map(struct vm_fault *vmf)
3302 {
3303 struct vm_area_struct *vma = vmf->vma;
3304
3305 if (!pmd_none(*vmf->pmd))
3306 goto map_pte;
3307 if (vmf->prealloc_pte) {
3308 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3309 if (unlikely(!pmd_none(*vmf->pmd))) {
3310 spin_unlock(vmf->ptl);
3311 goto map_pte;
3312 }
3313
3314 mm_inc_nr_ptes(vma->vm_mm);
3315 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3316 spin_unlock(vmf->ptl);
3317 vmf->prealloc_pte = NULL;
3318 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3319 return VM_FAULT_OOM;
3320 }
3321 map_pte:
3322 /*
3323 * If a huge pmd materialized under us just retry later. Use
3324 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3325 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3326 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3327 * running immediately after a huge pmd fault in a different thread of
3328 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3329 * All we have to ensure is that it is a regular pmd that we can walk
3330 * with pte_offset_map() and we can do that through an atomic read in
3331 * C, which is what pmd_trans_unstable() provides.
3332 */
3333 if (pmd_devmap_trans_unstable(vmf->pmd))
3334 return VM_FAULT_NOPAGE;
3335
3336 /*
3337 * At this point we know that our vmf->pmd points to a page of ptes
3338 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3339 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3340 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3341 * be valid and we will re-check to make sure the vmf->pte isn't
3342 * pte_none() under vmf->ptl protection when we return to
3343 * alloc_set_pte().
3344 */
3345 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3346 &vmf->ptl);
3347 return 0;
3348 }
3349
3350 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3351
3352 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3353 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3354 unsigned long haddr)
3355 {
3356 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3357 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3358 return false;
3359 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3360 return false;
3361 return true;
3362 }
3363
3364 static void deposit_prealloc_pte(struct vm_fault *vmf)
3365 {
3366 struct vm_area_struct *vma = vmf->vma;
3367
3368 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3369 /*
3370 * We are going to consume the prealloc table,
3371 * count that as nr_ptes.
3372 */
3373 mm_inc_nr_ptes(vma->vm_mm);
3374 vmf->prealloc_pte = NULL;
3375 }
3376
3377 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3378 {
3379 struct vm_area_struct *vma = vmf->vma;
3380 bool write = vmf->flags & FAULT_FLAG_WRITE;
3381 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3382 pmd_t entry;
3383 int i, ret;
3384
3385 if (!transhuge_vma_suitable(vma, haddr))
3386 return VM_FAULT_FALLBACK;
3387
3388 ret = VM_FAULT_FALLBACK;
3389 page = compound_head(page);
3390
3391 /*
3392 * Archs like ppc64 need additonal space to store information
3393 * related to pte entry. Use the preallocated table for that.
3394 */
3395 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3396 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3397 if (!vmf->prealloc_pte)
3398 return VM_FAULT_OOM;
3399 smp_wmb(); /* See comment in __pte_alloc() */
3400 }
3401
3402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3403 if (unlikely(!pmd_none(*vmf->pmd)))
3404 goto out;
3405
3406 for (i = 0; i < HPAGE_PMD_NR; i++)
3407 flush_icache_page(vma, page + i);
3408
3409 entry = mk_huge_pmd(page, vma->vm_page_prot);
3410 if (write)
3411 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3412
3413 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3414 page_add_file_rmap(page, true);
3415 /*
3416 * deposit and withdraw with pmd lock held
3417 */
3418 if (arch_needs_pgtable_deposit())
3419 deposit_prealloc_pte(vmf);
3420
3421 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3422
3423 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3424
3425 /* fault is handled */
3426 ret = 0;
3427 count_vm_event(THP_FILE_MAPPED);
3428 out:
3429 spin_unlock(vmf->ptl);
3430 return ret;
3431 }
3432 #else
3433 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3434 {
3435 BUILD_BUG();
3436 return 0;
3437 }
3438 #endif
3439
3440 /**
3441 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3442 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3443 *
3444 * @vmf: fault environment
3445 * @memcg: memcg to charge page (only for private mappings)
3446 * @page: page to map
3447 *
3448 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3449 * return.
3450 *
3451 * Target users are page handler itself and implementations of
3452 * vm_ops->map_pages.
3453 */
3454 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3455 struct page *page)
3456 {
3457 struct vm_area_struct *vma = vmf->vma;
3458 bool write = vmf->flags & FAULT_FLAG_WRITE;
3459 pte_t entry;
3460 int ret;
3461
3462 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3463 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3464 /* THP on COW? */
3465 VM_BUG_ON_PAGE(memcg, page);
3466
3467 ret = do_set_pmd(vmf, page);
3468 if (ret != VM_FAULT_FALLBACK)
3469 return ret;
3470 }
3471
3472 if (!vmf->pte) {
3473 ret = pte_alloc_one_map(vmf);
3474 if (ret)
3475 return ret;
3476 }
3477
3478 /* Re-check under ptl */
3479 if (unlikely(!pte_none(*vmf->pte)))
3480 return VM_FAULT_NOPAGE;
3481
3482 flush_icache_page(vma, page);
3483 entry = mk_pte(page, vma->vm_page_prot);
3484 if (write)
3485 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3486 /* copy-on-write page */
3487 if (write && !(vma->vm_flags & VM_SHARED)) {
3488 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3489 page_add_new_anon_rmap(page, vma, vmf->address, false);
3490 mem_cgroup_commit_charge(page, memcg, false, false);
3491 lru_cache_add_active_or_unevictable(page, vma);
3492 } else {
3493 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3494 page_add_file_rmap(page, false);
3495 }
3496 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3497
3498 /* no need to invalidate: a not-present page won't be cached */
3499 update_mmu_cache(vma, vmf->address, vmf->pte);
3500
3501 return 0;
3502 }
3503
3504
3505 /**
3506 * finish_fault - finish page fault once we have prepared the page to fault
3507 *
3508 * @vmf: structure describing the fault
3509 *
3510 * This function handles all that is needed to finish a page fault once the
3511 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3512 * given page, adds reverse page mapping, handles memcg charges and LRU
3513 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3514 * error.
3515 *
3516 * The function expects the page to be locked and on success it consumes a
3517 * reference of a page being mapped (for the PTE which maps it).
3518 */
3519 int finish_fault(struct vm_fault *vmf)
3520 {
3521 struct page *page;
3522 int ret = 0;
3523
3524 /* Did we COW the page? */
3525 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3526 !(vmf->vma->vm_flags & VM_SHARED))
3527 page = vmf->cow_page;
3528 else
3529 page = vmf->page;
3530
3531 /*
3532 * check even for read faults because we might have lost our CoWed
3533 * page
3534 */
3535 if (!(vmf->vma->vm_flags & VM_SHARED))
3536 ret = check_stable_address_space(vmf->vma->vm_mm);
3537 if (!ret)
3538 ret = alloc_set_pte(vmf, vmf->memcg, page);
3539 if (vmf->pte)
3540 pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 return ret;
3542 }
3543
3544 static unsigned long fault_around_bytes __read_mostly =
3545 rounddown_pow_of_two(65536);
3546
3547 #ifdef CONFIG_DEBUG_FS
3548 static int fault_around_bytes_get(void *data, u64 *val)
3549 {
3550 *val = fault_around_bytes;
3551 return 0;
3552 }
3553
3554 /*
3555 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3556 * rounded down to nearest page order. It's what do_fault_around() expects to
3557 * see.
3558 */
3559 static int fault_around_bytes_set(void *data, u64 val)
3560 {
3561 if (val / PAGE_SIZE > PTRS_PER_PTE)
3562 return -EINVAL;
3563 if (val > PAGE_SIZE)
3564 fault_around_bytes = rounddown_pow_of_two(val);
3565 else
3566 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3567 return 0;
3568 }
3569 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3570 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3571
3572 static int __init fault_around_debugfs(void)
3573 {
3574 void *ret;
3575
3576 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3577 &fault_around_bytes_fops);
3578 if (!ret)
3579 pr_warn("Failed to create fault_around_bytes in debugfs");
3580 return 0;
3581 }
3582 late_initcall(fault_around_debugfs);
3583 #endif
3584
3585 /*
3586 * do_fault_around() tries to map few pages around the fault address. The hope
3587 * is that the pages will be needed soon and this will lower the number of
3588 * faults to handle.
3589 *
3590 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3591 * not ready to be mapped: not up-to-date, locked, etc.
3592 *
3593 * This function is called with the page table lock taken. In the split ptlock
3594 * case the page table lock only protects only those entries which belong to
3595 * the page table corresponding to the fault address.
3596 *
3597 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3598 * only once.
3599 *
3600 * fault_around_pages() defines how many pages we'll try to map.
3601 * do_fault_around() expects it to return a power of two less than or equal to
3602 * PTRS_PER_PTE.
3603 *
3604 * The virtual address of the area that we map is naturally aligned to the
3605 * fault_around_pages() value (and therefore to page order). This way it's
3606 * easier to guarantee that we don't cross page table boundaries.
3607 */
3608 static int do_fault_around(struct vm_fault *vmf)
3609 {
3610 unsigned long address = vmf->address, nr_pages, mask;
3611 pgoff_t start_pgoff = vmf->pgoff;
3612 pgoff_t end_pgoff;
3613 int off, ret = 0;
3614
3615 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3616 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3617
3618 vmf->address = max(address & mask, vmf->vma->vm_start);
3619 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3620 start_pgoff -= off;
3621
3622 /*
3623 * end_pgoff is either end of page table or end of vma
3624 * or fault_around_pages() from start_pgoff, depending what is nearest.
3625 */
3626 end_pgoff = start_pgoff -
3627 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3628 PTRS_PER_PTE - 1;
3629 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3630 start_pgoff + nr_pages - 1);
3631
3632 if (pmd_none(*vmf->pmd)) {
3633 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3634 vmf->address);
3635 if (!vmf->prealloc_pte)
3636 goto out;
3637 smp_wmb(); /* See comment in __pte_alloc() */
3638 }
3639
3640 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3641
3642 /* Huge page is mapped? Page fault is solved */
3643 if (pmd_trans_huge(*vmf->pmd)) {
3644 ret = VM_FAULT_NOPAGE;
3645 goto out;
3646 }
3647
3648 /* ->map_pages() haven't done anything useful. Cold page cache? */
3649 if (!vmf->pte)
3650 goto out;
3651
3652 /* check if the page fault is solved */
3653 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3654 if (!pte_none(*vmf->pte))
3655 ret = VM_FAULT_NOPAGE;
3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
3657 out:
3658 vmf->address = address;
3659 vmf->pte = NULL;
3660 return ret;
3661 }
3662
3663 static int do_read_fault(struct vm_fault *vmf)
3664 {
3665 struct vm_area_struct *vma = vmf->vma;
3666 int ret = 0;
3667
3668 /*
3669 * Let's call ->map_pages() first and use ->fault() as fallback
3670 * if page by the offset is not ready to be mapped (cold cache or
3671 * something).
3672 */
3673 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3674 ret = do_fault_around(vmf);
3675 if (ret)
3676 return ret;
3677 }
3678
3679 ret = __do_fault(vmf);
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 return ret;
3682
3683 ret |= finish_fault(vmf);
3684 unlock_page(vmf->page);
3685 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3686 put_page(vmf->page);
3687 return ret;
3688 }
3689
3690 static int do_cow_fault(struct vm_fault *vmf)
3691 {
3692 struct vm_area_struct *vma = vmf->vma;
3693 int ret;
3694
3695 if (unlikely(anon_vma_prepare(vma)))
3696 return VM_FAULT_OOM;
3697
3698 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3699 if (!vmf->cow_page)
3700 return VM_FAULT_OOM;
3701
3702 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3703 &vmf->memcg, false)) {
3704 put_page(vmf->cow_page);
3705 return VM_FAULT_OOM;
3706 }
3707
3708 ret = __do_fault(vmf);
3709 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3710 goto uncharge_out;
3711 if (ret & VM_FAULT_DONE_COW)
3712 return ret;
3713
3714 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3715 __SetPageUptodate(vmf->cow_page);
3716
3717 ret |= finish_fault(vmf);
3718 unlock_page(vmf->page);
3719 put_page(vmf->page);
3720 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3721 goto uncharge_out;
3722 return ret;
3723 uncharge_out:
3724 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3725 put_page(vmf->cow_page);
3726 return ret;
3727 }
3728
3729 static int do_shared_fault(struct vm_fault *vmf)
3730 {
3731 struct vm_area_struct *vma = vmf->vma;
3732 int ret, tmp;
3733
3734 ret = __do_fault(vmf);
3735 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3736 return ret;
3737
3738 /*
3739 * Check if the backing address space wants to know that the page is
3740 * about to become writable
3741 */
3742 if (vma->vm_ops->page_mkwrite) {
3743 unlock_page(vmf->page);
3744 tmp = do_page_mkwrite(vmf);
3745 if (unlikely(!tmp ||
3746 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3747 put_page(vmf->page);
3748 return tmp;
3749 }
3750 }
3751
3752 ret |= finish_fault(vmf);
3753 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3754 VM_FAULT_RETRY))) {
3755 unlock_page(vmf->page);
3756 put_page(vmf->page);
3757 return ret;
3758 }
3759
3760 fault_dirty_shared_page(vma, vmf->page);
3761 return ret;
3762 }
3763
3764 /*
3765 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3766 * but allow concurrent faults).
3767 * The mmap_sem may have been released depending on flags and our
3768 * return value. See filemap_fault() and __lock_page_or_retry().
3769 * If mmap_sem is released, vma may become invalid (for example
3770 * by other thread calling munmap()).
3771 */
3772 static int do_fault(struct vm_fault *vmf)
3773 {
3774 struct vm_area_struct *vma = vmf->vma;
3775 struct mm_struct *vm_mm = vma->vm_mm;
3776 int ret;
3777
3778 /*
3779 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3780 */
3781 if (!vma->vm_ops->fault) {
3782 /*
3783 * If we find a migration pmd entry or a none pmd entry, which
3784 * should never happen, return SIGBUS
3785 */
3786 if (unlikely(!pmd_present(*vmf->pmd)))
3787 ret = VM_FAULT_SIGBUS;
3788 else {
3789 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3790 vmf->pmd,
3791 vmf->address,
3792 &vmf->ptl);
3793 /*
3794 * Make sure this is not a temporary clearing of pte
3795 * by holding ptl and checking again. A R/M/W update
3796 * of pte involves: take ptl, clearing the pte so that
3797 * we don't have concurrent modification by hardware
3798 * followed by an update.
3799 */
3800 if (unlikely(pte_none(*vmf->pte)))
3801 ret = VM_FAULT_SIGBUS;
3802 else
3803 ret = VM_FAULT_NOPAGE;
3804
3805 pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 }
3807 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3808 ret = do_read_fault(vmf);
3809 else if (!(vma->vm_flags & VM_SHARED))
3810 ret = do_cow_fault(vmf);
3811 else
3812 ret = do_shared_fault(vmf);
3813
3814 /* preallocated pagetable is unused: free it */
3815 if (vmf->prealloc_pte) {
3816 pte_free(vm_mm, vmf->prealloc_pte);
3817 vmf->prealloc_pte = NULL;
3818 }
3819 return ret;
3820 }
3821
3822 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3823 unsigned long addr, int page_nid,
3824 int *flags)
3825 {
3826 get_page(page);
3827
3828 count_vm_numa_event(NUMA_HINT_FAULTS);
3829 if (page_nid == numa_node_id()) {
3830 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3831 *flags |= TNF_FAULT_LOCAL;
3832 }
3833
3834 return mpol_misplaced(page, vma, addr);
3835 }
3836
3837 static int do_numa_page(struct vm_fault *vmf)
3838 {
3839 struct vm_area_struct *vma = vmf->vma;
3840 struct page *page = NULL;
3841 int page_nid = -1;
3842 int last_cpupid;
3843 int target_nid;
3844 bool migrated = false;
3845 pte_t pte;
3846 bool was_writable = pte_savedwrite(vmf->orig_pte);
3847 int flags = 0;
3848
3849 /*
3850 * The "pte" at this point cannot be used safely without
3851 * validation through pte_unmap_same(). It's of NUMA type but
3852 * the pfn may be screwed if the read is non atomic.
3853 */
3854 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3855 spin_lock(vmf->ptl);
3856 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3857 pte_unmap_unlock(vmf->pte, vmf->ptl);
3858 goto out;
3859 }
3860
3861 /*
3862 * Make it present again, Depending on how arch implementes non
3863 * accessible ptes, some can allow access by kernel mode.
3864 */
3865 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3866 pte = pte_modify(pte, vma->vm_page_prot);
3867 pte = pte_mkyoung(pte);
3868 if (was_writable)
3869 pte = pte_mkwrite(pte);
3870 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3871 update_mmu_cache(vma, vmf->address, vmf->pte);
3872
3873 page = vm_normal_page(vma, vmf->address, pte);
3874 if (!page) {
3875 pte_unmap_unlock(vmf->pte, vmf->ptl);
3876 return 0;
3877 }
3878
3879 /* TODO: handle PTE-mapped THP */
3880 if (PageCompound(page)) {
3881 pte_unmap_unlock(vmf->pte, vmf->ptl);
3882 return 0;
3883 }
3884
3885 /*
3886 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3887 * much anyway since they can be in shared cache state. This misses
3888 * the case where a mapping is writable but the process never writes
3889 * to it but pte_write gets cleared during protection updates and
3890 * pte_dirty has unpredictable behaviour between PTE scan updates,
3891 * background writeback, dirty balancing and application behaviour.
3892 */
3893 if (!pte_write(pte))
3894 flags |= TNF_NO_GROUP;
3895
3896 /*
3897 * Flag if the page is shared between multiple address spaces. This
3898 * is later used when determining whether to group tasks together
3899 */
3900 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3901 flags |= TNF_SHARED;
3902
3903 last_cpupid = page_cpupid_last(page);
3904 page_nid = page_to_nid(page);
3905 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3906 &flags);
3907 pte_unmap_unlock(vmf->pte, vmf->ptl);
3908 if (target_nid == -1) {
3909 put_page(page);
3910 goto out;
3911 }
3912
3913 /* Migrate to the requested node */
3914 migrated = migrate_misplaced_page(page, vma, target_nid);
3915 if (migrated) {
3916 page_nid = target_nid;
3917 flags |= TNF_MIGRATED;
3918 } else
3919 flags |= TNF_MIGRATE_FAIL;
3920
3921 out:
3922 if (page_nid != -1)
3923 task_numa_fault(last_cpupid, page_nid, 1, flags);
3924 return 0;
3925 }
3926
3927 static inline int create_huge_pmd(struct vm_fault *vmf)
3928 {
3929 if (vma_is_anonymous(vmf->vma))
3930 return do_huge_pmd_anonymous_page(vmf);
3931 if (vmf->vma->vm_ops->huge_fault)
3932 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3933 return VM_FAULT_FALLBACK;
3934 }
3935
3936 /* `inline' is required to avoid gcc 4.1.2 build error */
3937 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3938 {
3939 if (vma_is_anonymous(vmf->vma))
3940 return do_huge_pmd_wp_page(vmf, orig_pmd);
3941 if (vmf->vma->vm_ops->huge_fault)
3942 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3943
3944 /* COW handled on pte level: split pmd */
3945 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3946 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3947
3948 return VM_FAULT_FALLBACK;
3949 }
3950
3951 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3952 {
3953 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3954 }
3955
3956 static int create_huge_pud(struct vm_fault *vmf)
3957 {
3958 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3959 /* No support for anonymous transparent PUD pages yet */
3960 if (vma_is_anonymous(vmf->vma))
3961 return VM_FAULT_FALLBACK;
3962 if (vmf->vma->vm_ops->huge_fault)
3963 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3964 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3965 return VM_FAULT_FALLBACK;
3966 }
3967
3968 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3969 {
3970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3971 /* No support for anonymous transparent PUD pages yet */
3972 if (vma_is_anonymous(vmf->vma))
3973 return VM_FAULT_FALLBACK;
3974 if (vmf->vma->vm_ops->huge_fault)
3975 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3976 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3977 return VM_FAULT_FALLBACK;
3978 }
3979
3980 /*
3981 * These routines also need to handle stuff like marking pages dirty
3982 * and/or accessed for architectures that don't do it in hardware (most
3983 * RISC architectures). The early dirtying is also good on the i386.
3984 *
3985 * There is also a hook called "update_mmu_cache()" that architectures
3986 * with external mmu caches can use to update those (ie the Sparc or
3987 * PowerPC hashed page tables that act as extended TLBs).
3988 *
3989 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3990 * concurrent faults).
3991 *
3992 * The mmap_sem may have been released depending on flags and our return value.
3993 * See filemap_fault() and __lock_page_or_retry().
3994 */
3995 static int handle_pte_fault(struct vm_fault *vmf)
3996 {
3997 pte_t entry;
3998
3999 if (unlikely(pmd_none(*vmf->pmd))) {
4000 /*
4001 * Leave __pte_alloc() until later: because vm_ops->fault may
4002 * want to allocate huge page, and if we expose page table
4003 * for an instant, it will be difficult to retract from
4004 * concurrent faults and from rmap lookups.
4005 */
4006 vmf->pte = NULL;
4007 } else {
4008 /* See comment in pte_alloc_one_map() */
4009 if (pmd_devmap_trans_unstable(vmf->pmd))
4010 return 0;
4011 /*
4012 * A regular pmd is established and it can't morph into a huge
4013 * pmd from under us anymore at this point because we hold the
4014 * mmap_sem read mode and khugepaged takes it in write mode.
4015 * So now it's safe to run pte_offset_map().
4016 */
4017 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4018 vmf->orig_pte = *vmf->pte;
4019
4020 /*
4021 * some architectures can have larger ptes than wordsize,
4022 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4023 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4024 * accesses. The code below just needs a consistent view
4025 * for the ifs and we later double check anyway with the
4026 * ptl lock held. So here a barrier will do.
4027 */
4028 barrier();
4029 if (pte_none(vmf->orig_pte)) {
4030 pte_unmap(vmf->pte);
4031 vmf->pte = NULL;
4032 }
4033 }
4034
4035 if (!vmf->pte) {
4036 if (vma_is_anonymous(vmf->vma))
4037 return do_anonymous_page(vmf);
4038 else
4039 return do_fault(vmf);
4040 }
4041
4042 if (!pte_present(vmf->orig_pte))
4043 return do_swap_page(vmf);
4044
4045 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4046 return do_numa_page(vmf);
4047
4048 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4049 spin_lock(vmf->ptl);
4050 entry = vmf->orig_pte;
4051 if (unlikely(!pte_same(*vmf->pte, entry)))
4052 goto unlock;
4053 if (vmf->flags & FAULT_FLAG_WRITE) {
4054 if (!pte_write(entry))
4055 return do_wp_page(vmf);
4056 entry = pte_mkdirty(entry);
4057 }
4058 entry = pte_mkyoung(entry);
4059 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4060 vmf->flags & FAULT_FLAG_WRITE)) {
4061 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4062 } else {
4063 /*
4064 * This is needed only for protection faults but the arch code
4065 * is not yet telling us if this is a protection fault or not.
4066 * This still avoids useless tlb flushes for .text page faults
4067 * with threads.
4068 */
4069 if (vmf->flags & FAULT_FLAG_WRITE)
4070 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4071 }
4072 unlock:
4073 pte_unmap_unlock(vmf->pte, vmf->ptl);
4074 return 0;
4075 }
4076
4077 /*
4078 * By the time we get here, we already hold the mm semaphore
4079 *
4080 * The mmap_sem may have been released depending on flags and our
4081 * return value. See filemap_fault() and __lock_page_or_retry().
4082 */
4083 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4084 unsigned int flags)
4085 {
4086 struct vm_fault vmf = {
4087 .vma = vma,
4088 .address = address & PAGE_MASK,
4089 .flags = flags,
4090 .pgoff = linear_page_index(vma, address),
4091 .gfp_mask = __get_fault_gfp_mask(vma),
4092 };
4093 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4094 struct mm_struct *mm = vma->vm_mm;
4095 pgd_t *pgd;
4096 p4d_t *p4d;
4097 int ret;
4098
4099 pgd = pgd_offset(mm, address);
4100 p4d = p4d_alloc(mm, pgd, address);
4101 if (!p4d)
4102 return VM_FAULT_OOM;
4103
4104 vmf.pud = pud_alloc(mm, p4d, address);
4105 if (!vmf.pud)
4106 return VM_FAULT_OOM;
4107 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4108 ret = create_huge_pud(&vmf);
4109 if (!(ret & VM_FAULT_FALLBACK))
4110 return ret;
4111 } else {
4112 pud_t orig_pud = *vmf.pud;
4113
4114 barrier();
4115 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4116
4117 /* NUMA case for anonymous PUDs would go here */
4118
4119 if (dirty && !pud_write(orig_pud)) {
4120 ret = wp_huge_pud(&vmf, orig_pud);
4121 if (!(ret & VM_FAULT_FALLBACK))
4122 return ret;
4123 } else {
4124 huge_pud_set_accessed(&vmf, orig_pud);
4125 return 0;
4126 }
4127 }
4128 }
4129
4130 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4131 if (!vmf.pmd)
4132 return VM_FAULT_OOM;
4133 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4134 ret = create_huge_pmd(&vmf);
4135 if (!(ret & VM_FAULT_FALLBACK))
4136 return ret;
4137 } else {
4138 pmd_t orig_pmd = *vmf.pmd;
4139
4140 barrier();
4141 if (unlikely(is_swap_pmd(orig_pmd))) {
4142 VM_BUG_ON(thp_migration_supported() &&
4143 !is_pmd_migration_entry(orig_pmd));
4144 if (is_pmd_migration_entry(orig_pmd))
4145 pmd_migration_entry_wait(mm, vmf.pmd);
4146 return 0;
4147 }
4148 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4149 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4150 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4151
4152 if (dirty && !pmd_write(orig_pmd)) {
4153 ret = wp_huge_pmd(&vmf, orig_pmd);
4154 if (!(ret & VM_FAULT_FALLBACK))
4155 return ret;
4156 } else {
4157 huge_pmd_set_accessed(&vmf, orig_pmd);
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 return handle_pte_fault(&vmf);
4164 }
4165
4166 /*
4167 * By the time we get here, we already hold the mm semaphore
4168 *
4169 * The mmap_sem may have been released depending on flags and our
4170 * return value. See filemap_fault() and __lock_page_or_retry().
4171 */
4172 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4173 unsigned int flags)
4174 {
4175 int ret;
4176
4177 __set_current_state(TASK_RUNNING);
4178
4179 count_vm_event(PGFAULT);
4180 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4181
4182 /* do counter updates before entering really critical section. */
4183 check_sync_rss_stat(current);
4184
4185 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4186 flags & FAULT_FLAG_INSTRUCTION,
4187 flags & FAULT_FLAG_REMOTE))
4188 return VM_FAULT_SIGSEGV;
4189
4190 /*
4191 * Enable the memcg OOM handling for faults triggered in user
4192 * space. Kernel faults are handled more gracefully.
4193 */
4194 if (flags & FAULT_FLAG_USER)
4195 mem_cgroup_oom_enable();
4196
4197 if (unlikely(is_vm_hugetlb_page(vma)))
4198 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4199 else
4200 ret = __handle_mm_fault(vma, address, flags);
4201
4202 if (flags & FAULT_FLAG_USER) {
4203 mem_cgroup_oom_disable();
4204 /*
4205 * The task may have entered a memcg OOM situation but
4206 * if the allocation error was handled gracefully (no
4207 * VM_FAULT_OOM), there is no need to kill anything.
4208 * Just clean up the OOM state peacefully.
4209 */
4210 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4211 mem_cgroup_oom_synchronize(false);
4212 }
4213
4214 return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(handle_mm_fault);
4217
4218 #ifndef __PAGETABLE_P4D_FOLDED
4219 /*
4220 * Allocate p4d page table.
4221 * We've already handled the fast-path in-line.
4222 */
4223 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4224 {
4225 p4d_t *new = p4d_alloc_one(mm, address);
4226 if (!new)
4227 return -ENOMEM;
4228
4229 smp_wmb(); /* See comment in __pte_alloc */
4230
4231 spin_lock(&mm->page_table_lock);
4232 if (pgd_present(*pgd)) /* Another has populated it */
4233 p4d_free(mm, new);
4234 else
4235 pgd_populate(mm, pgd, new);
4236 spin_unlock(&mm->page_table_lock);
4237 return 0;
4238 }
4239 #endif /* __PAGETABLE_P4D_FOLDED */
4240
4241 #ifndef __PAGETABLE_PUD_FOLDED
4242 /*
4243 * Allocate page upper directory.
4244 * We've already handled the fast-path in-line.
4245 */
4246 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4247 {
4248 pud_t *new = pud_alloc_one(mm, address);
4249 if (!new)
4250 return -ENOMEM;
4251
4252 smp_wmb(); /* See comment in __pte_alloc */
4253
4254 spin_lock(&mm->page_table_lock);
4255 #ifndef __ARCH_HAS_5LEVEL_HACK
4256 if (!p4d_present(*p4d)) {
4257 mm_inc_nr_puds(mm);
4258 p4d_populate(mm, p4d, new);
4259 } else /* Another has populated it */
4260 pud_free(mm, new);
4261 #else
4262 if (!pgd_present(*p4d)) {
4263 mm_inc_nr_puds(mm);
4264 pgd_populate(mm, p4d, new);
4265 } else /* Another has populated it */
4266 pud_free(mm, new);
4267 #endif /* __ARCH_HAS_5LEVEL_HACK */
4268 spin_unlock(&mm->page_table_lock);
4269 return 0;
4270 }
4271 #endif /* __PAGETABLE_PUD_FOLDED */
4272
4273 #ifndef __PAGETABLE_PMD_FOLDED
4274 /*
4275 * Allocate page middle directory.
4276 * We've already handled the fast-path in-line.
4277 */
4278 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4279 {
4280 spinlock_t *ptl;
4281 pmd_t *new = pmd_alloc_one(mm, address);
4282 if (!new)
4283 return -ENOMEM;
4284
4285 smp_wmb(); /* See comment in __pte_alloc */
4286
4287 ptl = pud_lock(mm, pud);
4288 #ifndef __ARCH_HAS_4LEVEL_HACK
4289 if (!pud_present(*pud)) {
4290 mm_inc_nr_pmds(mm);
4291 pud_populate(mm, pud, new);
4292 } else /* Another has populated it */
4293 pmd_free(mm, new);
4294 #else
4295 if (!pgd_present(*pud)) {
4296 mm_inc_nr_pmds(mm);
4297 pgd_populate(mm, pud, new);
4298 } else /* Another has populated it */
4299 pmd_free(mm, new);
4300 #endif /* __ARCH_HAS_4LEVEL_HACK */
4301 spin_unlock(ptl);
4302 return 0;
4303 }
4304 #endif /* __PAGETABLE_PMD_FOLDED */
4305
4306 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4307 unsigned long *start, unsigned long *end,
4308 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4309 {
4310 pgd_t *pgd;
4311 p4d_t *p4d;
4312 pud_t *pud;
4313 pmd_t *pmd;
4314 pte_t *ptep;
4315
4316 pgd = pgd_offset(mm, address);
4317 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4318 goto out;
4319
4320 p4d = p4d_offset(pgd, address);
4321 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4322 goto out;
4323
4324 pud = pud_offset(p4d, address);
4325 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4326 goto out;
4327
4328 pmd = pmd_offset(pud, address);
4329 VM_BUG_ON(pmd_trans_huge(*pmd));
4330
4331 if (pmd_huge(*pmd)) {
4332 if (!pmdpp)
4333 goto out;
4334
4335 if (start && end) {
4336 *start = address & PMD_MASK;
4337 *end = *start + PMD_SIZE;
4338 mmu_notifier_invalidate_range_start(mm, *start, *end);
4339 }
4340 *ptlp = pmd_lock(mm, pmd);
4341 if (pmd_huge(*pmd)) {
4342 *pmdpp = pmd;
4343 return 0;
4344 }
4345 spin_unlock(*ptlp);
4346 if (start && end)
4347 mmu_notifier_invalidate_range_end(mm, *start, *end);
4348 }
4349
4350 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4351 goto out;
4352
4353 if (start && end) {
4354 *start = address & PAGE_MASK;
4355 *end = *start + PAGE_SIZE;
4356 mmu_notifier_invalidate_range_start(mm, *start, *end);
4357 }
4358 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4359 if (!pte_present(*ptep))
4360 goto unlock;
4361 *ptepp = ptep;
4362 return 0;
4363 unlock:
4364 pte_unmap_unlock(ptep, *ptlp);
4365 if (start && end)
4366 mmu_notifier_invalidate_range_end(mm, *start, *end);
4367 out:
4368 return -EINVAL;
4369 }
4370
4371 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4372 pte_t **ptepp, spinlock_t **ptlp)
4373 {
4374 int res;
4375
4376 /* (void) is needed to make gcc happy */
4377 (void) __cond_lock(*ptlp,
4378 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4379 ptepp, NULL, ptlp)));
4380 return res;
4381 }
4382
4383 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4384 unsigned long *start, unsigned long *end,
4385 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4386 {
4387 int res;
4388
4389 /* (void) is needed to make gcc happy */
4390 (void) __cond_lock(*ptlp,
4391 !(res = __follow_pte_pmd(mm, address, start, end,
4392 ptepp, pmdpp, ptlp)));
4393 return res;
4394 }
4395 EXPORT_SYMBOL(follow_pte_pmd);
4396
4397 /**
4398 * follow_pfn - look up PFN at a user virtual address
4399 * @vma: memory mapping
4400 * @address: user virtual address
4401 * @pfn: location to store found PFN
4402 *
4403 * Only IO mappings and raw PFN mappings are allowed.
4404 *
4405 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4406 */
4407 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4408 unsigned long *pfn)
4409 {
4410 int ret = -EINVAL;
4411 spinlock_t *ptl;
4412 pte_t *ptep;
4413
4414 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4415 return ret;
4416
4417 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4418 if (ret)
4419 return ret;
4420 *pfn = pte_pfn(*ptep);
4421 pte_unmap_unlock(ptep, ptl);
4422 return 0;
4423 }
4424 EXPORT_SYMBOL(follow_pfn);
4425
4426 #ifdef CONFIG_HAVE_IOREMAP_PROT
4427 int follow_phys(struct vm_area_struct *vma,
4428 unsigned long address, unsigned int flags,
4429 unsigned long *prot, resource_size_t *phys)
4430 {
4431 int ret = -EINVAL;
4432 pte_t *ptep, pte;
4433 spinlock_t *ptl;
4434
4435 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4436 goto out;
4437
4438 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4439 goto out;
4440 pte = *ptep;
4441
4442 if ((flags & FOLL_WRITE) && !pte_write(pte))
4443 goto unlock;
4444
4445 *prot = pgprot_val(pte_pgprot(pte));
4446 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4447
4448 ret = 0;
4449 unlock:
4450 pte_unmap_unlock(ptep, ptl);
4451 out:
4452 return ret;
4453 }
4454
4455 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4456 void *buf, int len, int write)
4457 {
4458 resource_size_t phys_addr;
4459 unsigned long prot = 0;
4460 void __iomem *maddr;
4461 int offset = addr & (PAGE_SIZE-1);
4462
4463 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4464 return -EINVAL;
4465
4466 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4467 if (!maddr)
4468 return -ENOMEM;
4469
4470 if (write)
4471 memcpy_toio(maddr + offset, buf, len);
4472 else
4473 memcpy_fromio(buf, maddr + offset, len);
4474 iounmap(maddr);
4475
4476 return len;
4477 }
4478 EXPORT_SYMBOL_GPL(generic_access_phys);
4479 #endif
4480
4481 /*
4482 * Access another process' address space as given in mm. If non-NULL, use the
4483 * given task for page fault accounting.
4484 */
4485 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4486 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4487 {
4488 struct vm_area_struct *vma;
4489 void *old_buf = buf;
4490 int write = gup_flags & FOLL_WRITE;
4491
4492 if (down_read_killable(&mm->mmap_sem))
4493 return 0;
4494
4495 /* ignore errors, just check how much was successfully transferred */
4496 while (len) {
4497 int bytes, ret, offset;
4498 void *maddr;
4499 struct page *page = NULL;
4500
4501 ret = get_user_pages_remote(tsk, mm, addr, 1,
4502 gup_flags, &page, &vma, NULL);
4503 if (ret <= 0) {
4504 #ifndef CONFIG_HAVE_IOREMAP_PROT
4505 break;
4506 #else
4507 /*
4508 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4509 * we can access using slightly different code.
4510 */
4511 vma = find_vma(mm, addr);
4512 if (!vma || vma->vm_start > addr)
4513 break;
4514 if (vma->vm_ops && vma->vm_ops->access)
4515 ret = vma->vm_ops->access(vma, addr, buf,
4516 len, write);
4517 if (ret <= 0)
4518 break;
4519 bytes = ret;
4520 #endif
4521 } else {
4522 bytes = len;
4523 offset = addr & (PAGE_SIZE-1);
4524 if (bytes > PAGE_SIZE-offset)
4525 bytes = PAGE_SIZE-offset;
4526
4527 maddr = kmap(page);
4528 if (write) {
4529 copy_to_user_page(vma, page, addr,
4530 maddr + offset, buf, bytes);
4531 set_page_dirty_lock(page);
4532 } else {
4533 copy_from_user_page(vma, page, addr,
4534 buf, maddr + offset, bytes);
4535 }
4536 kunmap(page);
4537 put_page(page);
4538 }
4539 len -= bytes;
4540 buf += bytes;
4541 addr += bytes;
4542 }
4543 up_read(&mm->mmap_sem);
4544
4545 return buf - old_buf;
4546 }
4547
4548 /**
4549 * access_remote_vm - access another process' address space
4550 * @mm: the mm_struct of the target address space
4551 * @addr: start address to access
4552 * @buf: source or destination buffer
4553 * @len: number of bytes to transfer
4554 * @gup_flags: flags modifying lookup behaviour
4555 *
4556 * The caller must hold a reference on @mm.
4557 */
4558 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4559 void *buf, int len, unsigned int gup_flags)
4560 {
4561 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4562 }
4563
4564 /*
4565 * Access another process' address space.
4566 * Source/target buffer must be kernel space,
4567 * Do not walk the page table directly, use get_user_pages
4568 */
4569 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4570 void *buf, int len, unsigned int gup_flags)
4571 {
4572 struct mm_struct *mm;
4573 int ret;
4574
4575 mm = get_task_mm(tsk);
4576 if (!mm)
4577 return 0;
4578
4579 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4580
4581 mmput(mm);
4582
4583 return ret;
4584 }
4585 EXPORT_SYMBOL_GPL(access_process_vm);
4586
4587 /*
4588 * Print the name of a VMA.
4589 */
4590 void print_vma_addr(char *prefix, unsigned long ip)
4591 {
4592 struct mm_struct *mm = current->mm;
4593 struct vm_area_struct *vma;
4594
4595 /*
4596 * we might be running from an atomic context so we cannot sleep
4597 */
4598 if (!down_read_trylock(&mm->mmap_sem))
4599 return;
4600
4601 vma = find_vma(mm, ip);
4602 if (vma && vma->vm_file) {
4603 struct file *f = vma->vm_file;
4604 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4605 if (buf) {
4606 char *p;
4607
4608 p = file_path(f, buf, PAGE_SIZE);
4609 if (IS_ERR(p))
4610 p = "?";
4611 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4612 vma->vm_start,
4613 vma->vm_end - vma->vm_start);
4614 free_page((unsigned long)buf);
4615 }
4616 }
4617 up_read(&mm->mmap_sem);
4618 }
4619
4620 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4621 void __might_fault(const char *file, int line)
4622 {
4623 /*
4624 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4625 * holding the mmap_sem, this is safe because kernel memory doesn't
4626 * get paged out, therefore we'll never actually fault, and the
4627 * below annotations will generate false positives.
4628 */
4629 if (uaccess_kernel())
4630 return;
4631 if (pagefault_disabled())
4632 return;
4633 __might_sleep(file, line, 0);
4634 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4635 if (current->mm)
4636 might_lock_read(&current->mm->mmap_sem);
4637 #endif
4638 }
4639 EXPORT_SYMBOL(__might_fault);
4640 #endif
4641
4642 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4643 static void clear_gigantic_page(struct page *page,
4644 unsigned long addr,
4645 unsigned int pages_per_huge_page)
4646 {
4647 int i;
4648 struct page *p = page;
4649
4650 might_sleep();
4651 for (i = 0; i < pages_per_huge_page;
4652 i++, p = mem_map_next(p, page, i)) {
4653 cond_resched();
4654 clear_user_highpage(p, addr + i * PAGE_SIZE);
4655 }
4656 }
4657 void clear_huge_page(struct page *page,
4658 unsigned long addr_hint, unsigned int pages_per_huge_page)
4659 {
4660 int i, n, base, l;
4661 unsigned long addr = addr_hint &
4662 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4663
4664 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4665 clear_gigantic_page(page, addr, pages_per_huge_page);
4666 return;
4667 }
4668
4669 /* Clear sub-page to access last to keep its cache lines hot */
4670 might_sleep();
4671 n = (addr_hint - addr) / PAGE_SIZE;
4672 if (2 * n <= pages_per_huge_page) {
4673 /* If sub-page to access in first half of huge page */
4674 base = 0;
4675 l = n;
4676 /* Clear sub-pages at the end of huge page */
4677 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4678 cond_resched();
4679 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4680 }
4681 } else {
4682 /* If sub-page to access in second half of huge page */
4683 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4684 l = pages_per_huge_page - n;
4685 /* Clear sub-pages at the begin of huge page */
4686 for (i = 0; i < base; i++) {
4687 cond_resched();
4688 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4689 }
4690 }
4691 /*
4692 * Clear remaining sub-pages in left-right-left-right pattern
4693 * towards the sub-page to access
4694 */
4695 for (i = 0; i < l; i++) {
4696 int left_idx = base + i;
4697 int right_idx = base + 2 * l - 1 - i;
4698
4699 cond_resched();
4700 clear_user_highpage(page + left_idx,
4701 addr + left_idx * PAGE_SIZE);
4702 cond_resched();
4703 clear_user_highpage(page + right_idx,
4704 addr + right_idx * PAGE_SIZE);
4705 }
4706 }
4707
4708 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4709 unsigned long addr,
4710 struct vm_area_struct *vma,
4711 unsigned int pages_per_huge_page)
4712 {
4713 int i;
4714 struct page *dst_base = dst;
4715 struct page *src_base = src;
4716
4717 for (i = 0; i < pages_per_huge_page; ) {
4718 cond_resched();
4719 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4720
4721 i++;
4722 dst = mem_map_next(dst, dst_base, i);
4723 src = mem_map_next(src, src_base, i);
4724 }
4725 }
4726
4727 void copy_user_huge_page(struct page *dst, struct page *src,
4728 unsigned long addr, struct vm_area_struct *vma,
4729 unsigned int pages_per_huge_page)
4730 {
4731 int i;
4732
4733 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4734 copy_user_gigantic_page(dst, src, addr, vma,
4735 pages_per_huge_page);
4736 return;
4737 }
4738
4739 might_sleep();
4740 for (i = 0; i < pages_per_huge_page; i++) {
4741 cond_resched();
4742 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4743 }
4744 }
4745
4746 long copy_huge_page_from_user(struct page *dst_page,
4747 const void __user *usr_src,
4748 unsigned int pages_per_huge_page,
4749 bool allow_pagefault)
4750 {
4751 void *src = (void *)usr_src;
4752 void *page_kaddr;
4753 unsigned long i, rc = 0;
4754 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4755
4756 for (i = 0; i < pages_per_huge_page; i++) {
4757 if (allow_pagefault)
4758 page_kaddr = kmap(dst_page + i);
4759 else
4760 page_kaddr = kmap_atomic(dst_page + i);
4761 rc = copy_from_user(page_kaddr,
4762 (const void __user *)(src + i * PAGE_SIZE),
4763 PAGE_SIZE);
4764 if (allow_pagefault)
4765 kunmap(dst_page + i);
4766 else
4767 kunmap_atomic(page_kaddr);
4768
4769 ret_val -= (PAGE_SIZE - rc);
4770 if (rc)
4771 break;
4772
4773 cond_resched();
4774 }
4775 return ret_val;
4776 }
4777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4778
4779 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4780
4781 static struct kmem_cache *page_ptl_cachep;
4782
4783 void __init ptlock_cache_init(void)
4784 {
4785 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4786 SLAB_PANIC, NULL);
4787 }
4788
4789 bool ptlock_alloc(struct page *page)
4790 {
4791 spinlock_t *ptl;
4792
4793 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4794 if (!ptl)
4795 return false;
4796 page->ptl = ptl;
4797 return true;
4798 }
4799
4800 void ptlock_free(struct page *page)
4801 {
4802 kmem_cache_free(page_ptl_cachep, page->ptl);
4803 }
4804 #endif