]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
ksm: let shared pages be swappable
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 1;
100 #else
101 2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106 randomize_va_space = 0;
107 return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113
114 /*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117 static int __init init_zero_pfn(void)
118 {
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121 }
122 core_initcall(init_zero_pfn);
123
124 /*
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
128 */
129
130 void pgd_clear_bad(pgd_t *pgd)
131 {
132 pgd_ERROR(*pgd);
133 pgd_clear(pgd);
134 }
135
136 void pud_clear_bad(pud_t *pud)
137 {
138 pud_ERROR(*pud);
139 pud_clear(pud);
140 }
141
142 void pmd_clear_bad(pmd_t *pmd)
143 {
144 pmd_ERROR(*pmd);
145 pmd_clear(pmd);
146 }
147
148 /*
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
151 */
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 unsigned long addr)
154 {
155 pgtable_t token = pmd_pgtable(*pmd);
156 pmd_clear(pmd);
157 pte_free_tlb(tlb, token, addr);
158 tlb->mm->nr_ptes--;
159 }
160
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 unsigned long addr, unsigned long end,
163 unsigned long floor, unsigned long ceiling)
164 {
165 pmd_t *pmd;
166 unsigned long next;
167 unsigned long start;
168
169 start = addr;
170 pmd = pmd_offset(pud, addr);
171 do {
172 next = pmd_addr_end(addr, end);
173 if (pmd_none_or_clear_bad(pmd))
174 continue;
175 free_pte_range(tlb, pmd, addr);
176 } while (pmd++, addr = next, addr != end);
177
178 start &= PUD_MASK;
179 if (start < floor)
180 return;
181 if (ceiling) {
182 ceiling &= PUD_MASK;
183 if (!ceiling)
184 return;
185 }
186 if (end - 1 > ceiling - 1)
187 return;
188
189 pmd = pmd_offset(pud, start);
190 pud_clear(pud);
191 pmd_free_tlb(tlb, pmd, start);
192 }
193
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
197 {
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
201
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 if (pud_none_or_clear_bad(pud))
207 continue;
208 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 } while (pud++, addr = next, addr != end);
210
211 start &= PGDIR_MASK;
212 if (start < floor)
213 return;
214 if (ceiling) {
215 ceiling &= PGDIR_MASK;
216 if (!ceiling)
217 return;
218 }
219 if (end - 1 > ceiling - 1)
220 return;
221
222 pud = pud_offset(pgd, start);
223 pgd_clear(pgd);
224 pud_free_tlb(tlb, pud, start);
225 }
226
227 /*
228 * This function frees user-level page tables of a process.
229 *
230 * Must be called with pagetable lock held.
231 */
232 void free_pgd_range(struct mmu_gather *tlb,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pgd_t *pgd;
237 unsigned long next;
238 unsigned long start;
239
240 /*
241 * The next few lines have given us lots of grief...
242 *
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
246 *
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
254 *
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
259 *
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
264 */
265
266 addr &= PMD_MASK;
267 if (addr < floor) {
268 addr += PMD_SIZE;
269 if (!addr)
270 return;
271 }
272 if (ceiling) {
273 ceiling &= PMD_MASK;
274 if (!ceiling)
275 return;
276 }
277 if (end - 1 > ceiling - 1)
278 end -= PMD_SIZE;
279 if (addr > end - 1)
280 return;
281
282 start = addr;
283 pgd = pgd_offset(tlb->mm, addr);
284 do {
285 next = pgd_addr_end(addr, end);
286 if (pgd_none_or_clear_bad(pgd))
287 continue;
288 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 } while (pgd++, addr = next, addr != end);
290 }
291
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 unsigned long floor, unsigned long ceiling)
294 {
295 while (vma) {
296 struct vm_area_struct *next = vma->vm_next;
297 unsigned long addr = vma->vm_start;
298
299 /*
300 * Hide vma from rmap and truncate_pagecache before freeing
301 * pgtables
302 */
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
305
306 if (is_vm_hugetlb_page(vma)) {
307 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
308 floor, next? next->vm_start: ceiling);
309 } else {
310 /*
311 * Optimization: gather nearby vmas into one call down
312 */
313 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
314 && !is_vm_hugetlb_page(next)) {
315 vma = next;
316 next = vma->vm_next;
317 anon_vma_unlink(vma);
318 unlink_file_vma(vma);
319 }
320 free_pgd_range(tlb, addr, vma->vm_end,
321 floor, next? next->vm_start: ceiling);
322 }
323 vma = next;
324 }
325 }
326
327 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
328 {
329 pgtable_t new = pte_alloc_one(mm, address);
330 if (!new)
331 return -ENOMEM;
332
333 /*
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
337 *
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
345 */
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
347
348 spin_lock(&mm->page_table_lock);
349 if (!pmd_present(*pmd)) { /* Has another populated it ? */
350 mm->nr_ptes++;
351 pmd_populate(mm, pmd, new);
352 new = NULL;
353 }
354 spin_unlock(&mm->page_table_lock);
355 if (new)
356 pte_free(mm, new);
357 return 0;
358 }
359
360 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
361 {
362 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
363 if (!new)
364 return -ENOMEM;
365
366 smp_wmb(); /* See comment in __pte_alloc */
367
368 spin_lock(&init_mm.page_table_lock);
369 if (!pmd_present(*pmd)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm, pmd, new);
371 new = NULL;
372 }
373 spin_unlock(&init_mm.page_table_lock);
374 if (new)
375 pte_free_kernel(&init_mm, new);
376 return 0;
377 }
378
379 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
380 {
381 if (file_rss)
382 add_mm_counter(mm, file_rss, file_rss);
383 if (anon_rss)
384 add_mm_counter(mm, anon_rss, anon_rss);
385 }
386
387 /*
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
391 *
392 * The calling function must still handle the error.
393 */
394 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
395 pte_t pte, struct page *page)
396 {
397 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
398 pud_t *pud = pud_offset(pgd, addr);
399 pmd_t *pmd = pmd_offset(pud, addr);
400 struct address_space *mapping;
401 pgoff_t index;
402 static unsigned long resume;
403 static unsigned long nr_shown;
404 static unsigned long nr_unshown;
405
406 /*
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
409 */
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 return;
414 }
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page map: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
420 }
421 nr_shown = 0;
422 }
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
425
426 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
427 index = linear_page_index(vma, addr);
428
429 printk(KERN_ALERT
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
431 current->comm,
432 (long long)pte_val(pte), (long long)pmd_val(*pmd));
433 if (page) {
434 printk(KERN_ALERT
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page, (void *)page->flags, page_count(page),
437 page_mapcount(page), page->mapping, page->index);
438 }
439 printk(KERN_ALERT
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
442 /*
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
444 */
445 if (vma->vm_ops)
446 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
447 (unsigned long)vma->vm_ops->fault);
448 if (vma->vm_file && vma->vm_file->f_op)
449 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma->vm_file->f_op->mmap);
451 dump_stack();
452 add_taint(TAINT_BAD_PAGE);
453 }
454
455 static inline int is_cow_mapping(unsigned int flags)
456 {
457 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
458 }
459
460 #ifndef is_zero_pfn
461 static inline int is_zero_pfn(unsigned long pfn)
462 {
463 return pfn == zero_pfn;
464 }
465 #endif
466
467 #ifndef my_zero_pfn
468 static inline unsigned long my_zero_pfn(unsigned long addr)
469 {
470 return zero_pfn;
471 }
472 #endif
473
474 /*
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
476 *
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
480 *
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
484 * described below.
485 *
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
489 *
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
494 *
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
496 *
497 * And for normal mappings this is false.
498 *
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
503 *
504 *
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
506 *
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
514 *
515 */
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
518 #else
519 # define HAVE_PTE_SPECIAL 0
520 #endif
521 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
522 pte_t pte)
523 {
524 unsigned long pfn = pte_pfn(pte);
525
526 if (HAVE_PTE_SPECIAL) {
527 if (likely(!pte_special(pte)))
528 goto check_pfn;
529 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
530 return NULL;
531 if (!is_zero_pfn(pfn))
532 print_bad_pte(vma, addr, pte, NULL);
533 return NULL;
534 }
535
536 /* !HAVE_PTE_SPECIAL case follows: */
537
538 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
539 if (vma->vm_flags & VM_MIXEDMAP) {
540 if (!pfn_valid(pfn))
541 return NULL;
542 goto out;
543 } else {
544 unsigned long off;
545 off = (addr - vma->vm_start) >> PAGE_SHIFT;
546 if (pfn == vma->vm_pgoff + off)
547 return NULL;
548 if (!is_cow_mapping(vma->vm_flags))
549 return NULL;
550 }
551 }
552
553 if (is_zero_pfn(pfn))
554 return NULL;
555 check_pfn:
556 if (unlikely(pfn > highest_memmap_pfn)) {
557 print_bad_pte(vma, addr, pte, NULL);
558 return NULL;
559 }
560
561 /*
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
564 */
565 out:
566 return pfn_to_page(pfn);
567 }
568
569 /*
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
573 */
574
575 static inline unsigned long
576 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578 unsigned long addr, int *rss)
579 {
580 unsigned long vm_flags = vma->vm_flags;
581 pte_t pte = *src_pte;
582 struct page *page;
583
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte))) {
586 if (!pte_file(pte)) {
587 swp_entry_t entry = pte_to_swp_entry(pte);
588
589 if (swap_duplicate(entry) < 0)
590 return entry.val;
591
592 /* make sure dst_mm is on swapoff's mmlist. */
593 if (unlikely(list_empty(&dst_mm->mmlist))) {
594 spin_lock(&mmlist_lock);
595 if (list_empty(&dst_mm->mmlist))
596 list_add(&dst_mm->mmlist,
597 &src_mm->mmlist);
598 spin_unlock(&mmlist_lock);
599 }
600 if (is_write_migration_entry(entry) &&
601 is_cow_mapping(vm_flags)) {
602 /*
603 * COW mappings require pages in both parent
604 * and child to be set to read.
605 */
606 make_migration_entry_read(&entry);
607 pte = swp_entry_to_pte(entry);
608 set_pte_at(src_mm, addr, src_pte, pte);
609 }
610 }
611 goto out_set_pte;
612 }
613
614 /*
615 * If it's a COW mapping, write protect it both
616 * in the parent and the child
617 */
618 if (is_cow_mapping(vm_flags)) {
619 ptep_set_wrprotect(src_mm, addr, src_pte);
620 pte = pte_wrprotect(pte);
621 }
622
623 /*
624 * If it's a shared mapping, mark it clean in
625 * the child
626 */
627 if (vm_flags & VM_SHARED)
628 pte = pte_mkclean(pte);
629 pte = pte_mkold(pte);
630
631 page = vm_normal_page(vma, addr, pte);
632 if (page) {
633 get_page(page);
634 page_dup_rmap(page);
635 rss[PageAnon(page)]++;
636 }
637
638 out_set_pte:
639 set_pte_at(dst_mm, addr, dst_pte, pte);
640 return 0;
641 }
642
643 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
644 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
645 unsigned long addr, unsigned long end)
646 {
647 pte_t *orig_src_pte, *orig_dst_pte;
648 pte_t *src_pte, *dst_pte;
649 spinlock_t *src_ptl, *dst_ptl;
650 int progress = 0;
651 int rss[2];
652 swp_entry_t entry = (swp_entry_t){0};
653
654 again:
655 rss[1] = rss[0] = 0;
656 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
657 if (!dst_pte)
658 return -ENOMEM;
659 src_pte = pte_offset_map_nested(src_pmd, addr);
660 src_ptl = pte_lockptr(src_mm, src_pmd);
661 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
662 orig_src_pte = src_pte;
663 orig_dst_pte = dst_pte;
664 arch_enter_lazy_mmu_mode();
665
666 do {
667 /*
668 * We are holding two locks at this point - either of them
669 * could generate latencies in another task on another CPU.
670 */
671 if (progress >= 32) {
672 progress = 0;
673 if (need_resched() ||
674 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
675 break;
676 }
677 if (pte_none(*src_pte)) {
678 progress++;
679 continue;
680 }
681 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
682 vma, addr, rss);
683 if (entry.val)
684 break;
685 progress += 8;
686 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
687
688 arch_leave_lazy_mmu_mode();
689 spin_unlock(src_ptl);
690 pte_unmap_nested(orig_src_pte);
691 add_mm_rss(dst_mm, rss[0], rss[1]);
692 pte_unmap_unlock(orig_dst_pte, dst_ptl);
693 cond_resched();
694
695 if (entry.val) {
696 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
697 return -ENOMEM;
698 progress = 0;
699 }
700 if (addr != end)
701 goto again;
702 return 0;
703 }
704
705 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
706 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
707 unsigned long addr, unsigned long end)
708 {
709 pmd_t *src_pmd, *dst_pmd;
710 unsigned long next;
711
712 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
713 if (!dst_pmd)
714 return -ENOMEM;
715 src_pmd = pmd_offset(src_pud, addr);
716 do {
717 next = pmd_addr_end(addr, end);
718 if (pmd_none_or_clear_bad(src_pmd))
719 continue;
720 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
721 vma, addr, next))
722 return -ENOMEM;
723 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
724 return 0;
725 }
726
727 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
729 unsigned long addr, unsigned long end)
730 {
731 pud_t *src_pud, *dst_pud;
732 unsigned long next;
733
734 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
735 if (!dst_pud)
736 return -ENOMEM;
737 src_pud = pud_offset(src_pgd, addr);
738 do {
739 next = pud_addr_end(addr, end);
740 if (pud_none_or_clear_bad(src_pud))
741 continue;
742 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
743 vma, addr, next))
744 return -ENOMEM;
745 } while (dst_pud++, src_pud++, addr = next, addr != end);
746 return 0;
747 }
748
749 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
750 struct vm_area_struct *vma)
751 {
752 pgd_t *src_pgd, *dst_pgd;
753 unsigned long next;
754 unsigned long addr = vma->vm_start;
755 unsigned long end = vma->vm_end;
756 int ret;
757
758 /*
759 * Don't copy ptes where a page fault will fill them correctly.
760 * Fork becomes much lighter when there are big shared or private
761 * readonly mappings. The tradeoff is that copy_page_range is more
762 * efficient than faulting.
763 */
764 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
765 if (!vma->anon_vma)
766 return 0;
767 }
768
769 if (is_vm_hugetlb_page(vma))
770 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
771
772 if (unlikely(is_pfn_mapping(vma))) {
773 /*
774 * We do not free on error cases below as remove_vma
775 * gets called on error from higher level routine
776 */
777 ret = track_pfn_vma_copy(vma);
778 if (ret)
779 return ret;
780 }
781
782 /*
783 * We need to invalidate the secondary MMU mappings only when
784 * there could be a permission downgrade on the ptes of the
785 * parent mm. And a permission downgrade will only happen if
786 * is_cow_mapping() returns true.
787 */
788 if (is_cow_mapping(vma->vm_flags))
789 mmu_notifier_invalidate_range_start(src_mm, addr, end);
790
791 ret = 0;
792 dst_pgd = pgd_offset(dst_mm, addr);
793 src_pgd = pgd_offset(src_mm, addr);
794 do {
795 next = pgd_addr_end(addr, end);
796 if (pgd_none_or_clear_bad(src_pgd))
797 continue;
798 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
799 vma, addr, next))) {
800 ret = -ENOMEM;
801 break;
802 }
803 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
804
805 if (is_cow_mapping(vma->vm_flags))
806 mmu_notifier_invalidate_range_end(src_mm,
807 vma->vm_start, end);
808 return ret;
809 }
810
811 static unsigned long zap_pte_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma, pmd_t *pmd,
813 unsigned long addr, unsigned long end,
814 long *zap_work, struct zap_details *details)
815 {
816 struct mm_struct *mm = tlb->mm;
817 pte_t *pte;
818 spinlock_t *ptl;
819 int file_rss = 0;
820 int anon_rss = 0;
821
822 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
823 arch_enter_lazy_mmu_mode();
824 do {
825 pte_t ptent = *pte;
826 if (pte_none(ptent)) {
827 (*zap_work)--;
828 continue;
829 }
830
831 (*zap_work) -= PAGE_SIZE;
832
833 if (pte_present(ptent)) {
834 struct page *page;
835
836 page = vm_normal_page(vma, addr, ptent);
837 if (unlikely(details) && page) {
838 /*
839 * unmap_shared_mapping_pages() wants to
840 * invalidate cache without truncating:
841 * unmap shared but keep private pages.
842 */
843 if (details->check_mapping &&
844 details->check_mapping != page->mapping)
845 continue;
846 /*
847 * Each page->index must be checked when
848 * invalidating or truncating nonlinear.
849 */
850 if (details->nonlinear_vma &&
851 (page->index < details->first_index ||
852 page->index > details->last_index))
853 continue;
854 }
855 ptent = ptep_get_and_clear_full(mm, addr, pte,
856 tlb->fullmm);
857 tlb_remove_tlb_entry(tlb, pte, addr);
858 if (unlikely(!page))
859 continue;
860 if (unlikely(details) && details->nonlinear_vma
861 && linear_page_index(details->nonlinear_vma,
862 addr) != page->index)
863 set_pte_at(mm, addr, pte,
864 pgoff_to_pte(page->index));
865 if (PageAnon(page))
866 anon_rss--;
867 else {
868 if (pte_dirty(ptent))
869 set_page_dirty(page);
870 if (pte_young(ptent) &&
871 likely(!VM_SequentialReadHint(vma)))
872 mark_page_accessed(page);
873 file_rss--;
874 }
875 page_remove_rmap(page);
876 if (unlikely(page_mapcount(page) < 0))
877 print_bad_pte(vma, addr, ptent, page);
878 tlb_remove_page(tlb, page);
879 continue;
880 }
881 /*
882 * If details->check_mapping, we leave swap entries;
883 * if details->nonlinear_vma, we leave file entries.
884 */
885 if (unlikely(details))
886 continue;
887 if (pte_file(ptent)) {
888 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
889 print_bad_pte(vma, addr, ptent, NULL);
890 } else if
891 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
892 print_bad_pte(vma, addr, ptent, NULL);
893 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
894 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
895
896 add_mm_rss(mm, file_rss, anon_rss);
897 arch_leave_lazy_mmu_mode();
898 pte_unmap_unlock(pte - 1, ptl);
899
900 return addr;
901 }
902
903 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
904 struct vm_area_struct *vma, pud_t *pud,
905 unsigned long addr, unsigned long end,
906 long *zap_work, struct zap_details *details)
907 {
908 pmd_t *pmd;
909 unsigned long next;
910
911 pmd = pmd_offset(pud, addr);
912 do {
913 next = pmd_addr_end(addr, end);
914 if (pmd_none_or_clear_bad(pmd)) {
915 (*zap_work)--;
916 continue;
917 }
918 next = zap_pte_range(tlb, vma, pmd, addr, next,
919 zap_work, details);
920 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
921
922 return addr;
923 }
924
925 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
926 struct vm_area_struct *vma, pgd_t *pgd,
927 unsigned long addr, unsigned long end,
928 long *zap_work, struct zap_details *details)
929 {
930 pud_t *pud;
931 unsigned long next;
932
933 pud = pud_offset(pgd, addr);
934 do {
935 next = pud_addr_end(addr, end);
936 if (pud_none_or_clear_bad(pud)) {
937 (*zap_work)--;
938 continue;
939 }
940 next = zap_pmd_range(tlb, vma, pud, addr, next,
941 zap_work, details);
942 } while (pud++, addr = next, (addr != end && *zap_work > 0));
943
944 return addr;
945 }
946
947 static unsigned long unmap_page_range(struct mmu_gather *tlb,
948 struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end,
950 long *zap_work, struct zap_details *details)
951 {
952 pgd_t *pgd;
953 unsigned long next;
954
955 if (details && !details->check_mapping && !details->nonlinear_vma)
956 details = NULL;
957
958 BUG_ON(addr >= end);
959 tlb_start_vma(tlb, vma);
960 pgd = pgd_offset(vma->vm_mm, addr);
961 do {
962 next = pgd_addr_end(addr, end);
963 if (pgd_none_or_clear_bad(pgd)) {
964 (*zap_work)--;
965 continue;
966 }
967 next = zap_pud_range(tlb, vma, pgd, addr, next,
968 zap_work, details);
969 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
970 tlb_end_vma(tlb, vma);
971
972 return addr;
973 }
974
975 #ifdef CONFIG_PREEMPT
976 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
977 #else
978 /* No preempt: go for improved straight-line efficiency */
979 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
980 #endif
981
982 /**
983 * unmap_vmas - unmap a range of memory covered by a list of vma's
984 * @tlbp: address of the caller's struct mmu_gather
985 * @vma: the starting vma
986 * @start_addr: virtual address at which to start unmapping
987 * @end_addr: virtual address at which to end unmapping
988 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
989 * @details: details of nonlinear truncation or shared cache invalidation
990 *
991 * Returns the end address of the unmapping (restart addr if interrupted).
992 *
993 * Unmap all pages in the vma list.
994 *
995 * We aim to not hold locks for too long (for scheduling latency reasons).
996 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
997 * return the ending mmu_gather to the caller.
998 *
999 * Only addresses between `start' and `end' will be unmapped.
1000 *
1001 * The VMA list must be sorted in ascending virtual address order.
1002 *
1003 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1004 * range after unmap_vmas() returns. So the only responsibility here is to
1005 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1006 * drops the lock and schedules.
1007 */
1008 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1009 struct vm_area_struct *vma, unsigned long start_addr,
1010 unsigned long end_addr, unsigned long *nr_accounted,
1011 struct zap_details *details)
1012 {
1013 long zap_work = ZAP_BLOCK_SIZE;
1014 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1015 int tlb_start_valid = 0;
1016 unsigned long start = start_addr;
1017 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1018 int fullmm = (*tlbp)->fullmm;
1019 struct mm_struct *mm = vma->vm_mm;
1020
1021 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1022 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1023 unsigned long end;
1024
1025 start = max(vma->vm_start, start_addr);
1026 if (start >= vma->vm_end)
1027 continue;
1028 end = min(vma->vm_end, end_addr);
1029 if (end <= vma->vm_start)
1030 continue;
1031
1032 if (vma->vm_flags & VM_ACCOUNT)
1033 *nr_accounted += (end - start) >> PAGE_SHIFT;
1034
1035 if (unlikely(is_pfn_mapping(vma)))
1036 untrack_pfn_vma(vma, 0, 0);
1037
1038 while (start != end) {
1039 if (!tlb_start_valid) {
1040 tlb_start = start;
1041 tlb_start_valid = 1;
1042 }
1043
1044 if (unlikely(is_vm_hugetlb_page(vma))) {
1045 /*
1046 * It is undesirable to test vma->vm_file as it
1047 * should be non-null for valid hugetlb area.
1048 * However, vm_file will be NULL in the error
1049 * cleanup path of do_mmap_pgoff. When
1050 * hugetlbfs ->mmap method fails,
1051 * do_mmap_pgoff() nullifies vma->vm_file
1052 * before calling this function to clean up.
1053 * Since no pte has actually been setup, it is
1054 * safe to do nothing in this case.
1055 */
1056 if (vma->vm_file) {
1057 unmap_hugepage_range(vma, start, end, NULL);
1058 zap_work -= (end - start) /
1059 pages_per_huge_page(hstate_vma(vma));
1060 }
1061
1062 start = end;
1063 } else
1064 start = unmap_page_range(*tlbp, vma,
1065 start, end, &zap_work, details);
1066
1067 if (zap_work > 0) {
1068 BUG_ON(start != end);
1069 break;
1070 }
1071
1072 tlb_finish_mmu(*tlbp, tlb_start, start);
1073
1074 if (need_resched() ||
1075 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1076 if (i_mmap_lock) {
1077 *tlbp = NULL;
1078 goto out;
1079 }
1080 cond_resched();
1081 }
1082
1083 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1084 tlb_start_valid = 0;
1085 zap_work = ZAP_BLOCK_SIZE;
1086 }
1087 }
1088 out:
1089 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1090 return start; /* which is now the end (or restart) address */
1091 }
1092
1093 /**
1094 * zap_page_range - remove user pages in a given range
1095 * @vma: vm_area_struct holding the applicable pages
1096 * @address: starting address of pages to zap
1097 * @size: number of bytes to zap
1098 * @details: details of nonlinear truncation or shared cache invalidation
1099 */
1100 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1101 unsigned long size, struct zap_details *details)
1102 {
1103 struct mm_struct *mm = vma->vm_mm;
1104 struct mmu_gather *tlb;
1105 unsigned long end = address + size;
1106 unsigned long nr_accounted = 0;
1107
1108 lru_add_drain();
1109 tlb = tlb_gather_mmu(mm, 0);
1110 update_hiwater_rss(mm);
1111 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1112 if (tlb)
1113 tlb_finish_mmu(tlb, address, end);
1114 return end;
1115 }
1116
1117 /**
1118 * zap_vma_ptes - remove ptes mapping the vma
1119 * @vma: vm_area_struct holding ptes to be zapped
1120 * @address: starting address of pages to zap
1121 * @size: number of bytes to zap
1122 *
1123 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1124 *
1125 * The entire address range must be fully contained within the vma.
1126 *
1127 * Returns 0 if successful.
1128 */
1129 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1130 unsigned long size)
1131 {
1132 if (address < vma->vm_start || address + size > vma->vm_end ||
1133 !(vma->vm_flags & VM_PFNMAP))
1134 return -1;
1135 zap_page_range(vma, address, size, NULL);
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1139
1140 /*
1141 * Do a quick page-table lookup for a single page.
1142 */
1143 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1144 unsigned int flags)
1145 {
1146 pgd_t *pgd;
1147 pud_t *pud;
1148 pmd_t *pmd;
1149 pte_t *ptep, pte;
1150 spinlock_t *ptl;
1151 struct page *page;
1152 struct mm_struct *mm = vma->vm_mm;
1153
1154 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1155 if (!IS_ERR(page)) {
1156 BUG_ON(flags & FOLL_GET);
1157 goto out;
1158 }
1159
1160 page = NULL;
1161 pgd = pgd_offset(mm, address);
1162 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1163 goto no_page_table;
1164
1165 pud = pud_offset(pgd, address);
1166 if (pud_none(*pud))
1167 goto no_page_table;
1168 if (pud_huge(*pud)) {
1169 BUG_ON(flags & FOLL_GET);
1170 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1171 goto out;
1172 }
1173 if (unlikely(pud_bad(*pud)))
1174 goto no_page_table;
1175
1176 pmd = pmd_offset(pud, address);
1177 if (pmd_none(*pmd))
1178 goto no_page_table;
1179 if (pmd_huge(*pmd)) {
1180 BUG_ON(flags & FOLL_GET);
1181 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1182 goto out;
1183 }
1184 if (unlikely(pmd_bad(*pmd)))
1185 goto no_page_table;
1186
1187 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1188
1189 pte = *ptep;
1190 if (!pte_present(pte))
1191 goto no_page;
1192 if ((flags & FOLL_WRITE) && !pte_write(pte))
1193 goto unlock;
1194
1195 page = vm_normal_page(vma, address, pte);
1196 if (unlikely(!page)) {
1197 if ((flags & FOLL_DUMP) ||
1198 !is_zero_pfn(pte_pfn(pte)))
1199 goto bad_page;
1200 page = pte_page(pte);
1201 }
1202
1203 if (flags & FOLL_GET)
1204 get_page(page);
1205 if (flags & FOLL_TOUCH) {
1206 if ((flags & FOLL_WRITE) &&
1207 !pte_dirty(pte) && !PageDirty(page))
1208 set_page_dirty(page);
1209 /*
1210 * pte_mkyoung() would be more correct here, but atomic care
1211 * is needed to avoid losing the dirty bit: it is easier to use
1212 * mark_page_accessed().
1213 */
1214 mark_page_accessed(page);
1215 }
1216 unlock:
1217 pte_unmap_unlock(ptep, ptl);
1218 out:
1219 return page;
1220
1221 bad_page:
1222 pte_unmap_unlock(ptep, ptl);
1223 return ERR_PTR(-EFAULT);
1224
1225 no_page:
1226 pte_unmap_unlock(ptep, ptl);
1227 if (!pte_none(pte))
1228 return page;
1229
1230 no_page_table:
1231 /*
1232 * When core dumping an enormous anonymous area that nobody
1233 * has touched so far, we don't want to allocate unnecessary pages or
1234 * page tables. Return error instead of NULL to skip handle_mm_fault,
1235 * then get_dump_page() will return NULL to leave a hole in the dump.
1236 * But we can only make this optimization where a hole would surely
1237 * be zero-filled if handle_mm_fault() actually did handle it.
1238 */
1239 if ((flags & FOLL_DUMP) &&
1240 (!vma->vm_ops || !vma->vm_ops->fault))
1241 return ERR_PTR(-EFAULT);
1242 return page;
1243 }
1244
1245 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1246 unsigned long start, int nr_pages, unsigned int gup_flags,
1247 struct page **pages, struct vm_area_struct **vmas)
1248 {
1249 int i;
1250 unsigned long vm_flags;
1251
1252 if (nr_pages <= 0)
1253 return 0;
1254
1255 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1256
1257 /*
1258 * Require read or write permissions.
1259 * If FOLL_FORCE is set, we only require the "MAY" flags.
1260 */
1261 vm_flags = (gup_flags & FOLL_WRITE) ?
1262 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1263 vm_flags &= (gup_flags & FOLL_FORCE) ?
1264 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1265 i = 0;
1266
1267 do {
1268 struct vm_area_struct *vma;
1269
1270 vma = find_extend_vma(mm, start);
1271 if (!vma && in_gate_area(tsk, start)) {
1272 unsigned long pg = start & PAGE_MASK;
1273 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1274 pgd_t *pgd;
1275 pud_t *pud;
1276 pmd_t *pmd;
1277 pte_t *pte;
1278
1279 /* user gate pages are read-only */
1280 if (gup_flags & FOLL_WRITE)
1281 return i ? : -EFAULT;
1282 if (pg > TASK_SIZE)
1283 pgd = pgd_offset_k(pg);
1284 else
1285 pgd = pgd_offset_gate(mm, pg);
1286 BUG_ON(pgd_none(*pgd));
1287 pud = pud_offset(pgd, pg);
1288 BUG_ON(pud_none(*pud));
1289 pmd = pmd_offset(pud, pg);
1290 if (pmd_none(*pmd))
1291 return i ? : -EFAULT;
1292 pte = pte_offset_map(pmd, pg);
1293 if (pte_none(*pte)) {
1294 pte_unmap(pte);
1295 return i ? : -EFAULT;
1296 }
1297 if (pages) {
1298 struct page *page = vm_normal_page(gate_vma, start, *pte);
1299 pages[i] = page;
1300 if (page)
1301 get_page(page);
1302 }
1303 pte_unmap(pte);
1304 if (vmas)
1305 vmas[i] = gate_vma;
1306 i++;
1307 start += PAGE_SIZE;
1308 nr_pages--;
1309 continue;
1310 }
1311
1312 if (!vma ||
1313 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1314 !(vm_flags & vma->vm_flags))
1315 return i ? : -EFAULT;
1316
1317 if (is_vm_hugetlb_page(vma)) {
1318 i = follow_hugetlb_page(mm, vma, pages, vmas,
1319 &start, &nr_pages, i, gup_flags);
1320 continue;
1321 }
1322
1323 do {
1324 struct page *page;
1325 unsigned int foll_flags = gup_flags;
1326
1327 /*
1328 * If we have a pending SIGKILL, don't keep faulting
1329 * pages and potentially allocating memory.
1330 */
1331 if (unlikely(fatal_signal_pending(current)))
1332 return i ? i : -ERESTARTSYS;
1333
1334 cond_resched();
1335 while (!(page = follow_page(vma, start, foll_flags))) {
1336 int ret;
1337
1338 ret = handle_mm_fault(mm, vma, start,
1339 (foll_flags & FOLL_WRITE) ?
1340 FAULT_FLAG_WRITE : 0);
1341
1342 if (ret & VM_FAULT_ERROR) {
1343 if (ret & VM_FAULT_OOM)
1344 return i ? i : -ENOMEM;
1345 if (ret &
1346 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1347 return i ? i : -EFAULT;
1348 BUG();
1349 }
1350 if (ret & VM_FAULT_MAJOR)
1351 tsk->maj_flt++;
1352 else
1353 tsk->min_flt++;
1354
1355 /*
1356 * The VM_FAULT_WRITE bit tells us that
1357 * do_wp_page has broken COW when necessary,
1358 * even if maybe_mkwrite decided not to set
1359 * pte_write. We can thus safely do subsequent
1360 * page lookups as if they were reads. But only
1361 * do so when looping for pte_write is futile:
1362 * in some cases userspace may also be wanting
1363 * to write to the gotten user page, which a
1364 * read fault here might prevent (a readonly
1365 * page might get reCOWed by userspace write).
1366 */
1367 if ((ret & VM_FAULT_WRITE) &&
1368 !(vma->vm_flags & VM_WRITE))
1369 foll_flags &= ~FOLL_WRITE;
1370
1371 cond_resched();
1372 }
1373 if (IS_ERR(page))
1374 return i ? i : PTR_ERR(page);
1375 if (pages) {
1376 pages[i] = page;
1377
1378 flush_anon_page(vma, page, start);
1379 flush_dcache_page(page);
1380 }
1381 if (vmas)
1382 vmas[i] = vma;
1383 i++;
1384 start += PAGE_SIZE;
1385 nr_pages--;
1386 } while (nr_pages && start < vma->vm_end);
1387 } while (nr_pages);
1388 return i;
1389 }
1390
1391 /**
1392 * get_user_pages() - pin user pages in memory
1393 * @tsk: task_struct of target task
1394 * @mm: mm_struct of target mm
1395 * @start: starting user address
1396 * @nr_pages: number of pages from start to pin
1397 * @write: whether pages will be written to by the caller
1398 * @force: whether to force write access even if user mapping is
1399 * readonly. This will result in the page being COWed even
1400 * in MAP_SHARED mappings. You do not want this.
1401 * @pages: array that receives pointers to the pages pinned.
1402 * Should be at least nr_pages long. Or NULL, if caller
1403 * only intends to ensure the pages are faulted in.
1404 * @vmas: array of pointers to vmas corresponding to each page.
1405 * Or NULL if the caller does not require them.
1406 *
1407 * Returns number of pages pinned. This may be fewer than the number
1408 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1409 * were pinned, returns -errno. Each page returned must be released
1410 * with a put_page() call when it is finished with. vmas will only
1411 * remain valid while mmap_sem is held.
1412 *
1413 * Must be called with mmap_sem held for read or write.
1414 *
1415 * get_user_pages walks a process's page tables and takes a reference to
1416 * each struct page that each user address corresponds to at a given
1417 * instant. That is, it takes the page that would be accessed if a user
1418 * thread accesses the given user virtual address at that instant.
1419 *
1420 * This does not guarantee that the page exists in the user mappings when
1421 * get_user_pages returns, and there may even be a completely different
1422 * page there in some cases (eg. if mmapped pagecache has been invalidated
1423 * and subsequently re faulted). However it does guarantee that the page
1424 * won't be freed completely. And mostly callers simply care that the page
1425 * contains data that was valid *at some point in time*. Typically, an IO
1426 * or similar operation cannot guarantee anything stronger anyway because
1427 * locks can't be held over the syscall boundary.
1428 *
1429 * If write=0, the page must not be written to. If the page is written to,
1430 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1431 * after the page is finished with, and before put_page is called.
1432 *
1433 * get_user_pages is typically used for fewer-copy IO operations, to get a
1434 * handle on the memory by some means other than accesses via the user virtual
1435 * addresses. The pages may be submitted for DMA to devices or accessed via
1436 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1437 * use the correct cache flushing APIs.
1438 *
1439 * See also get_user_pages_fast, for performance critical applications.
1440 */
1441 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1442 unsigned long start, int nr_pages, int write, int force,
1443 struct page **pages, struct vm_area_struct **vmas)
1444 {
1445 int flags = FOLL_TOUCH;
1446
1447 if (pages)
1448 flags |= FOLL_GET;
1449 if (write)
1450 flags |= FOLL_WRITE;
1451 if (force)
1452 flags |= FOLL_FORCE;
1453
1454 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1455 }
1456 EXPORT_SYMBOL(get_user_pages);
1457
1458 /**
1459 * get_dump_page() - pin user page in memory while writing it to core dump
1460 * @addr: user address
1461 *
1462 * Returns struct page pointer of user page pinned for dump,
1463 * to be freed afterwards by page_cache_release() or put_page().
1464 *
1465 * Returns NULL on any kind of failure - a hole must then be inserted into
1466 * the corefile, to preserve alignment with its headers; and also returns
1467 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1468 * allowing a hole to be left in the corefile to save diskspace.
1469 *
1470 * Called without mmap_sem, but after all other threads have been killed.
1471 */
1472 #ifdef CONFIG_ELF_CORE
1473 struct page *get_dump_page(unsigned long addr)
1474 {
1475 struct vm_area_struct *vma;
1476 struct page *page;
1477
1478 if (__get_user_pages(current, current->mm, addr, 1,
1479 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1480 return NULL;
1481 flush_cache_page(vma, addr, page_to_pfn(page));
1482 return page;
1483 }
1484 #endif /* CONFIG_ELF_CORE */
1485
1486 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1487 spinlock_t **ptl)
1488 {
1489 pgd_t * pgd = pgd_offset(mm, addr);
1490 pud_t * pud = pud_alloc(mm, pgd, addr);
1491 if (pud) {
1492 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1493 if (pmd)
1494 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1495 }
1496 return NULL;
1497 }
1498
1499 /*
1500 * This is the old fallback for page remapping.
1501 *
1502 * For historical reasons, it only allows reserved pages. Only
1503 * old drivers should use this, and they needed to mark their
1504 * pages reserved for the old functions anyway.
1505 */
1506 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1507 struct page *page, pgprot_t prot)
1508 {
1509 struct mm_struct *mm = vma->vm_mm;
1510 int retval;
1511 pte_t *pte;
1512 spinlock_t *ptl;
1513
1514 retval = -EINVAL;
1515 if (PageAnon(page))
1516 goto out;
1517 retval = -ENOMEM;
1518 flush_dcache_page(page);
1519 pte = get_locked_pte(mm, addr, &ptl);
1520 if (!pte)
1521 goto out;
1522 retval = -EBUSY;
1523 if (!pte_none(*pte))
1524 goto out_unlock;
1525
1526 /* Ok, finally just insert the thing.. */
1527 get_page(page);
1528 inc_mm_counter(mm, file_rss);
1529 page_add_file_rmap(page);
1530 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1531
1532 retval = 0;
1533 pte_unmap_unlock(pte, ptl);
1534 return retval;
1535 out_unlock:
1536 pte_unmap_unlock(pte, ptl);
1537 out:
1538 return retval;
1539 }
1540
1541 /**
1542 * vm_insert_page - insert single page into user vma
1543 * @vma: user vma to map to
1544 * @addr: target user address of this page
1545 * @page: source kernel page
1546 *
1547 * This allows drivers to insert individual pages they've allocated
1548 * into a user vma.
1549 *
1550 * The page has to be a nice clean _individual_ kernel allocation.
1551 * If you allocate a compound page, you need to have marked it as
1552 * such (__GFP_COMP), or manually just split the page up yourself
1553 * (see split_page()).
1554 *
1555 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1556 * took an arbitrary page protection parameter. This doesn't allow
1557 * that. Your vma protection will have to be set up correctly, which
1558 * means that if you want a shared writable mapping, you'd better
1559 * ask for a shared writable mapping!
1560 *
1561 * The page does not need to be reserved.
1562 */
1563 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1564 struct page *page)
1565 {
1566 if (addr < vma->vm_start || addr >= vma->vm_end)
1567 return -EFAULT;
1568 if (!page_count(page))
1569 return -EINVAL;
1570 vma->vm_flags |= VM_INSERTPAGE;
1571 return insert_page(vma, addr, page, vma->vm_page_prot);
1572 }
1573 EXPORT_SYMBOL(vm_insert_page);
1574
1575 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1576 unsigned long pfn, pgprot_t prot)
1577 {
1578 struct mm_struct *mm = vma->vm_mm;
1579 int retval;
1580 pte_t *pte, entry;
1581 spinlock_t *ptl;
1582
1583 retval = -ENOMEM;
1584 pte = get_locked_pte(mm, addr, &ptl);
1585 if (!pte)
1586 goto out;
1587 retval = -EBUSY;
1588 if (!pte_none(*pte))
1589 goto out_unlock;
1590
1591 /* Ok, finally just insert the thing.. */
1592 entry = pte_mkspecial(pfn_pte(pfn, prot));
1593 set_pte_at(mm, addr, pte, entry);
1594 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1595
1596 retval = 0;
1597 out_unlock:
1598 pte_unmap_unlock(pte, ptl);
1599 out:
1600 return retval;
1601 }
1602
1603 /**
1604 * vm_insert_pfn - insert single pfn into user vma
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 *
1609 * Similar to vm_inert_page, this allows drivers to insert individual pages
1610 * they've allocated into a user vma. Same comments apply.
1611 *
1612 * This function should only be called from a vm_ops->fault handler, and
1613 * in that case the handler should return NULL.
1614 *
1615 * vma cannot be a COW mapping.
1616 *
1617 * As this is called only for pages that do not currently exist, we
1618 * do not need to flush old virtual caches or the TLB.
1619 */
1620 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1621 unsigned long pfn)
1622 {
1623 int ret;
1624 pgprot_t pgprot = vma->vm_page_prot;
1625 /*
1626 * Technically, architectures with pte_special can avoid all these
1627 * restrictions (same for remap_pfn_range). However we would like
1628 * consistency in testing and feature parity among all, so we should
1629 * try to keep these invariants in place for everybody.
1630 */
1631 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1632 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1633 (VM_PFNMAP|VM_MIXEDMAP));
1634 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1635 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1636
1637 if (addr < vma->vm_start || addr >= vma->vm_end)
1638 return -EFAULT;
1639 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1640 return -EINVAL;
1641
1642 ret = insert_pfn(vma, addr, pfn, pgprot);
1643
1644 if (ret)
1645 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1646
1647 return ret;
1648 }
1649 EXPORT_SYMBOL(vm_insert_pfn);
1650
1651 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1652 unsigned long pfn)
1653 {
1654 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1655
1656 if (addr < vma->vm_start || addr >= vma->vm_end)
1657 return -EFAULT;
1658
1659 /*
1660 * If we don't have pte special, then we have to use the pfn_valid()
1661 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1662 * refcount the page if pfn_valid is true (hence insert_page rather
1663 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1664 * without pte special, it would there be refcounted as a normal page.
1665 */
1666 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1667 struct page *page;
1668
1669 page = pfn_to_page(pfn);
1670 return insert_page(vma, addr, page, vma->vm_page_prot);
1671 }
1672 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1673 }
1674 EXPORT_SYMBOL(vm_insert_mixed);
1675
1676 /*
1677 * maps a range of physical memory into the requested pages. the old
1678 * mappings are removed. any references to nonexistent pages results
1679 * in null mappings (currently treated as "copy-on-access")
1680 */
1681 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1682 unsigned long addr, unsigned long end,
1683 unsigned long pfn, pgprot_t prot)
1684 {
1685 pte_t *pte;
1686 spinlock_t *ptl;
1687
1688 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1689 if (!pte)
1690 return -ENOMEM;
1691 arch_enter_lazy_mmu_mode();
1692 do {
1693 BUG_ON(!pte_none(*pte));
1694 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1695 pfn++;
1696 } while (pte++, addr += PAGE_SIZE, addr != end);
1697 arch_leave_lazy_mmu_mode();
1698 pte_unmap_unlock(pte - 1, ptl);
1699 return 0;
1700 }
1701
1702 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1703 unsigned long addr, unsigned long end,
1704 unsigned long pfn, pgprot_t prot)
1705 {
1706 pmd_t *pmd;
1707 unsigned long next;
1708
1709 pfn -= addr >> PAGE_SHIFT;
1710 pmd = pmd_alloc(mm, pud, addr);
1711 if (!pmd)
1712 return -ENOMEM;
1713 do {
1714 next = pmd_addr_end(addr, end);
1715 if (remap_pte_range(mm, pmd, addr, next,
1716 pfn + (addr >> PAGE_SHIFT), prot))
1717 return -ENOMEM;
1718 } while (pmd++, addr = next, addr != end);
1719 return 0;
1720 }
1721
1722 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1723 unsigned long addr, unsigned long end,
1724 unsigned long pfn, pgprot_t prot)
1725 {
1726 pud_t *pud;
1727 unsigned long next;
1728
1729 pfn -= addr >> PAGE_SHIFT;
1730 pud = pud_alloc(mm, pgd, addr);
1731 if (!pud)
1732 return -ENOMEM;
1733 do {
1734 next = pud_addr_end(addr, end);
1735 if (remap_pmd_range(mm, pud, addr, next,
1736 pfn + (addr >> PAGE_SHIFT), prot))
1737 return -ENOMEM;
1738 } while (pud++, addr = next, addr != end);
1739 return 0;
1740 }
1741
1742 /**
1743 * remap_pfn_range - remap kernel memory to userspace
1744 * @vma: user vma to map to
1745 * @addr: target user address to start at
1746 * @pfn: physical address of kernel memory
1747 * @size: size of map area
1748 * @prot: page protection flags for this mapping
1749 *
1750 * Note: this is only safe if the mm semaphore is held when called.
1751 */
1752 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1753 unsigned long pfn, unsigned long size, pgprot_t prot)
1754 {
1755 pgd_t *pgd;
1756 unsigned long next;
1757 unsigned long end = addr + PAGE_ALIGN(size);
1758 struct mm_struct *mm = vma->vm_mm;
1759 int err;
1760
1761 /*
1762 * Physically remapped pages are special. Tell the
1763 * rest of the world about it:
1764 * VM_IO tells people not to look at these pages
1765 * (accesses can have side effects).
1766 * VM_RESERVED is specified all over the place, because
1767 * in 2.4 it kept swapout's vma scan off this vma; but
1768 * in 2.6 the LRU scan won't even find its pages, so this
1769 * flag means no more than count its pages in reserved_vm,
1770 * and omit it from core dump, even when VM_IO turned off.
1771 * VM_PFNMAP tells the core MM that the base pages are just
1772 * raw PFN mappings, and do not have a "struct page" associated
1773 * with them.
1774 *
1775 * There's a horrible special case to handle copy-on-write
1776 * behaviour that some programs depend on. We mark the "original"
1777 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1778 */
1779 if (addr == vma->vm_start && end == vma->vm_end) {
1780 vma->vm_pgoff = pfn;
1781 vma->vm_flags |= VM_PFN_AT_MMAP;
1782 } else if (is_cow_mapping(vma->vm_flags))
1783 return -EINVAL;
1784
1785 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1786
1787 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1788 if (err) {
1789 /*
1790 * To indicate that track_pfn related cleanup is not
1791 * needed from higher level routine calling unmap_vmas
1792 */
1793 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1794 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1795 return -EINVAL;
1796 }
1797
1798 BUG_ON(addr >= end);
1799 pfn -= addr >> PAGE_SHIFT;
1800 pgd = pgd_offset(mm, addr);
1801 flush_cache_range(vma, addr, end);
1802 do {
1803 next = pgd_addr_end(addr, end);
1804 err = remap_pud_range(mm, pgd, addr, next,
1805 pfn + (addr >> PAGE_SHIFT), prot);
1806 if (err)
1807 break;
1808 } while (pgd++, addr = next, addr != end);
1809
1810 if (err)
1811 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1812
1813 return err;
1814 }
1815 EXPORT_SYMBOL(remap_pfn_range);
1816
1817 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1818 unsigned long addr, unsigned long end,
1819 pte_fn_t fn, void *data)
1820 {
1821 pte_t *pte;
1822 int err;
1823 pgtable_t token;
1824 spinlock_t *uninitialized_var(ptl);
1825
1826 pte = (mm == &init_mm) ?
1827 pte_alloc_kernel(pmd, addr) :
1828 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1829 if (!pte)
1830 return -ENOMEM;
1831
1832 BUG_ON(pmd_huge(*pmd));
1833
1834 arch_enter_lazy_mmu_mode();
1835
1836 token = pmd_pgtable(*pmd);
1837
1838 do {
1839 err = fn(pte++, token, addr, data);
1840 if (err)
1841 break;
1842 } while (addr += PAGE_SIZE, addr != end);
1843
1844 arch_leave_lazy_mmu_mode();
1845
1846 if (mm != &init_mm)
1847 pte_unmap_unlock(pte-1, ptl);
1848 return err;
1849 }
1850
1851 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1852 unsigned long addr, unsigned long end,
1853 pte_fn_t fn, void *data)
1854 {
1855 pmd_t *pmd;
1856 unsigned long next;
1857 int err;
1858
1859 BUG_ON(pud_huge(*pud));
1860
1861 pmd = pmd_alloc(mm, pud, addr);
1862 if (!pmd)
1863 return -ENOMEM;
1864 do {
1865 next = pmd_addr_end(addr, end);
1866 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1867 if (err)
1868 break;
1869 } while (pmd++, addr = next, addr != end);
1870 return err;
1871 }
1872
1873 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1874 unsigned long addr, unsigned long end,
1875 pte_fn_t fn, void *data)
1876 {
1877 pud_t *pud;
1878 unsigned long next;
1879 int err;
1880
1881 pud = pud_alloc(mm, pgd, addr);
1882 if (!pud)
1883 return -ENOMEM;
1884 do {
1885 next = pud_addr_end(addr, end);
1886 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1887 if (err)
1888 break;
1889 } while (pud++, addr = next, addr != end);
1890 return err;
1891 }
1892
1893 /*
1894 * Scan a region of virtual memory, filling in page tables as necessary
1895 * and calling a provided function on each leaf page table.
1896 */
1897 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1898 unsigned long size, pte_fn_t fn, void *data)
1899 {
1900 pgd_t *pgd;
1901 unsigned long next;
1902 unsigned long start = addr, end = addr + size;
1903 int err;
1904
1905 BUG_ON(addr >= end);
1906 mmu_notifier_invalidate_range_start(mm, start, end);
1907 pgd = pgd_offset(mm, addr);
1908 do {
1909 next = pgd_addr_end(addr, end);
1910 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1911 if (err)
1912 break;
1913 } while (pgd++, addr = next, addr != end);
1914 mmu_notifier_invalidate_range_end(mm, start, end);
1915 return err;
1916 }
1917 EXPORT_SYMBOL_GPL(apply_to_page_range);
1918
1919 /*
1920 * handle_pte_fault chooses page fault handler according to an entry
1921 * which was read non-atomically. Before making any commitment, on
1922 * those architectures or configurations (e.g. i386 with PAE) which
1923 * might give a mix of unmatched parts, do_swap_page and do_file_page
1924 * must check under lock before unmapping the pte and proceeding
1925 * (but do_wp_page is only called after already making such a check;
1926 * and do_anonymous_page and do_no_page can safely check later on).
1927 */
1928 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1929 pte_t *page_table, pte_t orig_pte)
1930 {
1931 int same = 1;
1932 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1933 if (sizeof(pte_t) > sizeof(unsigned long)) {
1934 spinlock_t *ptl = pte_lockptr(mm, pmd);
1935 spin_lock(ptl);
1936 same = pte_same(*page_table, orig_pte);
1937 spin_unlock(ptl);
1938 }
1939 #endif
1940 pte_unmap(page_table);
1941 return same;
1942 }
1943
1944 /*
1945 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1946 * servicing faults for write access. In the normal case, do always want
1947 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1948 * that do not have writing enabled, when used by access_process_vm.
1949 */
1950 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1951 {
1952 if (likely(vma->vm_flags & VM_WRITE))
1953 pte = pte_mkwrite(pte);
1954 return pte;
1955 }
1956
1957 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1958 {
1959 /*
1960 * If the source page was a PFN mapping, we don't have
1961 * a "struct page" for it. We do a best-effort copy by
1962 * just copying from the original user address. If that
1963 * fails, we just zero-fill it. Live with it.
1964 */
1965 if (unlikely(!src)) {
1966 void *kaddr = kmap_atomic(dst, KM_USER0);
1967 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1968
1969 /*
1970 * This really shouldn't fail, because the page is there
1971 * in the page tables. But it might just be unreadable,
1972 * in which case we just give up and fill the result with
1973 * zeroes.
1974 */
1975 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1976 memset(kaddr, 0, PAGE_SIZE);
1977 kunmap_atomic(kaddr, KM_USER0);
1978 flush_dcache_page(dst);
1979 } else
1980 copy_user_highpage(dst, src, va, vma);
1981 }
1982
1983 /*
1984 * This routine handles present pages, when users try to write
1985 * to a shared page. It is done by copying the page to a new address
1986 * and decrementing the shared-page counter for the old page.
1987 *
1988 * Note that this routine assumes that the protection checks have been
1989 * done by the caller (the low-level page fault routine in most cases).
1990 * Thus we can safely just mark it writable once we've done any necessary
1991 * COW.
1992 *
1993 * We also mark the page dirty at this point even though the page will
1994 * change only once the write actually happens. This avoids a few races,
1995 * and potentially makes it more efficient.
1996 *
1997 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1998 * but allow concurrent faults), with pte both mapped and locked.
1999 * We return with mmap_sem still held, but pte unmapped and unlocked.
2000 */
2001 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2002 unsigned long address, pte_t *page_table, pmd_t *pmd,
2003 spinlock_t *ptl, pte_t orig_pte)
2004 {
2005 struct page *old_page, *new_page;
2006 pte_t entry;
2007 int reuse = 0, ret = 0;
2008 int page_mkwrite = 0;
2009 struct page *dirty_page = NULL;
2010
2011 old_page = vm_normal_page(vma, address, orig_pte);
2012 if (!old_page) {
2013 /*
2014 * VM_MIXEDMAP !pfn_valid() case
2015 *
2016 * We should not cow pages in a shared writeable mapping.
2017 * Just mark the pages writable as we can't do any dirty
2018 * accounting on raw pfn maps.
2019 */
2020 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2021 (VM_WRITE|VM_SHARED))
2022 goto reuse;
2023 goto gotten;
2024 }
2025
2026 /*
2027 * Take out anonymous pages first, anonymous shared vmas are
2028 * not dirty accountable.
2029 */
2030 if (PageAnon(old_page) && !PageKsm(old_page)) {
2031 if (!trylock_page(old_page)) {
2032 page_cache_get(old_page);
2033 pte_unmap_unlock(page_table, ptl);
2034 lock_page(old_page);
2035 page_table = pte_offset_map_lock(mm, pmd, address,
2036 &ptl);
2037 if (!pte_same(*page_table, orig_pte)) {
2038 unlock_page(old_page);
2039 page_cache_release(old_page);
2040 goto unlock;
2041 }
2042 page_cache_release(old_page);
2043 }
2044 reuse = reuse_swap_page(old_page);
2045 unlock_page(old_page);
2046 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2047 (VM_WRITE|VM_SHARED))) {
2048 /*
2049 * Only catch write-faults on shared writable pages,
2050 * read-only shared pages can get COWed by
2051 * get_user_pages(.write=1, .force=1).
2052 */
2053 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2054 struct vm_fault vmf;
2055 int tmp;
2056
2057 vmf.virtual_address = (void __user *)(address &
2058 PAGE_MASK);
2059 vmf.pgoff = old_page->index;
2060 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2061 vmf.page = old_page;
2062
2063 /*
2064 * Notify the address space that the page is about to
2065 * become writable so that it can prohibit this or wait
2066 * for the page to get into an appropriate state.
2067 *
2068 * We do this without the lock held, so that it can
2069 * sleep if it needs to.
2070 */
2071 page_cache_get(old_page);
2072 pte_unmap_unlock(page_table, ptl);
2073
2074 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2075 if (unlikely(tmp &
2076 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2077 ret = tmp;
2078 goto unwritable_page;
2079 }
2080 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2081 lock_page(old_page);
2082 if (!old_page->mapping) {
2083 ret = 0; /* retry the fault */
2084 unlock_page(old_page);
2085 goto unwritable_page;
2086 }
2087 } else
2088 VM_BUG_ON(!PageLocked(old_page));
2089
2090 /*
2091 * Since we dropped the lock we need to revalidate
2092 * the PTE as someone else may have changed it. If
2093 * they did, we just return, as we can count on the
2094 * MMU to tell us if they didn't also make it writable.
2095 */
2096 page_table = pte_offset_map_lock(mm, pmd, address,
2097 &ptl);
2098 if (!pte_same(*page_table, orig_pte)) {
2099 unlock_page(old_page);
2100 page_cache_release(old_page);
2101 goto unlock;
2102 }
2103
2104 page_mkwrite = 1;
2105 }
2106 dirty_page = old_page;
2107 get_page(dirty_page);
2108 reuse = 1;
2109 }
2110
2111 if (reuse) {
2112 reuse:
2113 flush_cache_page(vma, address, pte_pfn(orig_pte));
2114 entry = pte_mkyoung(orig_pte);
2115 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2116 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2117 update_mmu_cache(vma, address, entry);
2118 ret |= VM_FAULT_WRITE;
2119 goto unlock;
2120 }
2121
2122 /*
2123 * Ok, we need to copy. Oh, well..
2124 */
2125 page_cache_get(old_page);
2126 gotten:
2127 pte_unmap_unlock(page_table, ptl);
2128
2129 if (unlikely(anon_vma_prepare(vma)))
2130 goto oom;
2131
2132 if (is_zero_pfn(pte_pfn(orig_pte))) {
2133 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2134 if (!new_page)
2135 goto oom;
2136 } else {
2137 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2138 if (!new_page)
2139 goto oom;
2140 cow_user_page(new_page, old_page, address, vma);
2141 }
2142 __SetPageUptodate(new_page);
2143
2144 /*
2145 * Don't let another task, with possibly unlocked vma,
2146 * keep the mlocked page.
2147 */
2148 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2149 lock_page(old_page); /* for LRU manipulation */
2150 clear_page_mlock(old_page);
2151 unlock_page(old_page);
2152 }
2153
2154 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2155 goto oom_free_new;
2156
2157 /*
2158 * Re-check the pte - we dropped the lock
2159 */
2160 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2161 if (likely(pte_same(*page_table, orig_pte))) {
2162 if (old_page) {
2163 if (!PageAnon(old_page)) {
2164 dec_mm_counter(mm, file_rss);
2165 inc_mm_counter(mm, anon_rss);
2166 }
2167 } else
2168 inc_mm_counter(mm, anon_rss);
2169 flush_cache_page(vma, address, pte_pfn(orig_pte));
2170 entry = mk_pte(new_page, vma->vm_page_prot);
2171 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2172 /*
2173 * Clear the pte entry and flush it first, before updating the
2174 * pte with the new entry. This will avoid a race condition
2175 * seen in the presence of one thread doing SMC and another
2176 * thread doing COW.
2177 */
2178 ptep_clear_flush(vma, address, page_table);
2179 page_add_new_anon_rmap(new_page, vma, address);
2180 /*
2181 * We call the notify macro here because, when using secondary
2182 * mmu page tables (such as kvm shadow page tables), we want the
2183 * new page to be mapped directly into the secondary page table.
2184 */
2185 set_pte_at_notify(mm, address, page_table, entry);
2186 update_mmu_cache(vma, address, entry);
2187 if (old_page) {
2188 /*
2189 * Only after switching the pte to the new page may
2190 * we remove the mapcount here. Otherwise another
2191 * process may come and find the rmap count decremented
2192 * before the pte is switched to the new page, and
2193 * "reuse" the old page writing into it while our pte
2194 * here still points into it and can be read by other
2195 * threads.
2196 *
2197 * The critical issue is to order this
2198 * page_remove_rmap with the ptp_clear_flush above.
2199 * Those stores are ordered by (if nothing else,)
2200 * the barrier present in the atomic_add_negative
2201 * in page_remove_rmap.
2202 *
2203 * Then the TLB flush in ptep_clear_flush ensures that
2204 * no process can access the old page before the
2205 * decremented mapcount is visible. And the old page
2206 * cannot be reused until after the decremented
2207 * mapcount is visible. So transitively, TLBs to
2208 * old page will be flushed before it can be reused.
2209 */
2210 page_remove_rmap(old_page);
2211 }
2212
2213 /* Free the old page.. */
2214 new_page = old_page;
2215 ret |= VM_FAULT_WRITE;
2216 } else
2217 mem_cgroup_uncharge_page(new_page);
2218
2219 if (new_page)
2220 page_cache_release(new_page);
2221 if (old_page)
2222 page_cache_release(old_page);
2223 unlock:
2224 pte_unmap_unlock(page_table, ptl);
2225 if (dirty_page) {
2226 /*
2227 * Yes, Virginia, this is actually required to prevent a race
2228 * with clear_page_dirty_for_io() from clearing the page dirty
2229 * bit after it clear all dirty ptes, but before a racing
2230 * do_wp_page installs a dirty pte.
2231 *
2232 * do_no_page is protected similarly.
2233 */
2234 if (!page_mkwrite) {
2235 wait_on_page_locked(dirty_page);
2236 set_page_dirty_balance(dirty_page, page_mkwrite);
2237 }
2238 put_page(dirty_page);
2239 if (page_mkwrite) {
2240 struct address_space *mapping = dirty_page->mapping;
2241
2242 set_page_dirty(dirty_page);
2243 unlock_page(dirty_page);
2244 page_cache_release(dirty_page);
2245 if (mapping) {
2246 /*
2247 * Some device drivers do not set page.mapping
2248 * but still dirty their pages
2249 */
2250 balance_dirty_pages_ratelimited(mapping);
2251 }
2252 }
2253
2254 /* file_update_time outside page_lock */
2255 if (vma->vm_file)
2256 file_update_time(vma->vm_file);
2257 }
2258 return ret;
2259 oom_free_new:
2260 page_cache_release(new_page);
2261 oom:
2262 if (old_page) {
2263 if (page_mkwrite) {
2264 unlock_page(old_page);
2265 page_cache_release(old_page);
2266 }
2267 page_cache_release(old_page);
2268 }
2269 return VM_FAULT_OOM;
2270
2271 unwritable_page:
2272 page_cache_release(old_page);
2273 return ret;
2274 }
2275
2276 /*
2277 * Helper functions for unmap_mapping_range().
2278 *
2279 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2280 *
2281 * We have to restart searching the prio_tree whenever we drop the lock,
2282 * since the iterator is only valid while the lock is held, and anyway
2283 * a later vma might be split and reinserted earlier while lock dropped.
2284 *
2285 * The list of nonlinear vmas could be handled more efficiently, using
2286 * a placeholder, but handle it in the same way until a need is shown.
2287 * It is important to search the prio_tree before nonlinear list: a vma
2288 * may become nonlinear and be shifted from prio_tree to nonlinear list
2289 * while the lock is dropped; but never shifted from list to prio_tree.
2290 *
2291 * In order to make forward progress despite restarting the search,
2292 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2293 * quickly skip it next time around. Since the prio_tree search only
2294 * shows us those vmas affected by unmapping the range in question, we
2295 * can't efficiently keep all vmas in step with mapping->truncate_count:
2296 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2297 * mapping->truncate_count and vma->vm_truncate_count are protected by
2298 * i_mmap_lock.
2299 *
2300 * In order to make forward progress despite repeatedly restarting some
2301 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2302 * and restart from that address when we reach that vma again. It might
2303 * have been split or merged, shrunk or extended, but never shifted: so
2304 * restart_addr remains valid so long as it remains in the vma's range.
2305 * unmap_mapping_range forces truncate_count to leap over page-aligned
2306 * values so we can save vma's restart_addr in its truncate_count field.
2307 */
2308 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2309
2310 static void reset_vma_truncate_counts(struct address_space *mapping)
2311 {
2312 struct vm_area_struct *vma;
2313 struct prio_tree_iter iter;
2314
2315 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2316 vma->vm_truncate_count = 0;
2317 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2318 vma->vm_truncate_count = 0;
2319 }
2320
2321 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2322 unsigned long start_addr, unsigned long end_addr,
2323 struct zap_details *details)
2324 {
2325 unsigned long restart_addr;
2326 int need_break;
2327
2328 /*
2329 * files that support invalidating or truncating portions of the
2330 * file from under mmaped areas must have their ->fault function
2331 * return a locked page (and set VM_FAULT_LOCKED in the return).
2332 * This provides synchronisation against concurrent unmapping here.
2333 */
2334
2335 again:
2336 restart_addr = vma->vm_truncate_count;
2337 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2338 start_addr = restart_addr;
2339 if (start_addr >= end_addr) {
2340 /* Top of vma has been split off since last time */
2341 vma->vm_truncate_count = details->truncate_count;
2342 return 0;
2343 }
2344 }
2345
2346 restart_addr = zap_page_range(vma, start_addr,
2347 end_addr - start_addr, details);
2348 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2349
2350 if (restart_addr >= end_addr) {
2351 /* We have now completed this vma: mark it so */
2352 vma->vm_truncate_count = details->truncate_count;
2353 if (!need_break)
2354 return 0;
2355 } else {
2356 /* Note restart_addr in vma's truncate_count field */
2357 vma->vm_truncate_count = restart_addr;
2358 if (!need_break)
2359 goto again;
2360 }
2361
2362 spin_unlock(details->i_mmap_lock);
2363 cond_resched();
2364 spin_lock(details->i_mmap_lock);
2365 return -EINTR;
2366 }
2367
2368 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2369 struct zap_details *details)
2370 {
2371 struct vm_area_struct *vma;
2372 struct prio_tree_iter iter;
2373 pgoff_t vba, vea, zba, zea;
2374
2375 restart:
2376 vma_prio_tree_foreach(vma, &iter, root,
2377 details->first_index, details->last_index) {
2378 /* Skip quickly over those we have already dealt with */
2379 if (vma->vm_truncate_count == details->truncate_count)
2380 continue;
2381
2382 vba = vma->vm_pgoff;
2383 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2384 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2385 zba = details->first_index;
2386 if (zba < vba)
2387 zba = vba;
2388 zea = details->last_index;
2389 if (zea > vea)
2390 zea = vea;
2391
2392 if (unmap_mapping_range_vma(vma,
2393 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2394 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2395 details) < 0)
2396 goto restart;
2397 }
2398 }
2399
2400 static inline void unmap_mapping_range_list(struct list_head *head,
2401 struct zap_details *details)
2402 {
2403 struct vm_area_struct *vma;
2404
2405 /*
2406 * In nonlinear VMAs there is no correspondence between virtual address
2407 * offset and file offset. So we must perform an exhaustive search
2408 * across *all* the pages in each nonlinear VMA, not just the pages
2409 * whose virtual address lies outside the file truncation point.
2410 */
2411 restart:
2412 list_for_each_entry(vma, head, shared.vm_set.list) {
2413 /* Skip quickly over those we have already dealt with */
2414 if (vma->vm_truncate_count == details->truncate_count)
2415 continue;
2416 details->nonlinear_vma = vma;
2417 if (unmap_mapping_range_vma(vma, vma->vm_start,
2418 vma->vm_end, details) < 0)
2419 goto restart;
2420 }
2421 }
2422
2423 /**
2424 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2425 * @mapping: the address space containing mmaps to be unmapped.
2426 * @holebegin: byte in first page to unmap, relative to the start of
2427 * the underlying file. This will be rounded down to a PAGE_SIZE
2428 * boundary. Note that this is different from truncate_pagecache(), which
2429 * must keep the partial page. In contrast, we must get rid of
2430 * partial pages.
2431 * @holelen: size of prospective hole in bytes. This will be rounded
2432 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2433 * end of the file.
2434 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2435 * but 0 when invalidating pagecache, don't throw away private data.
2436 */
2437 void unmap_mapping_range(struct address_space *mapping,
2438 loff_t const holebegin, loff_t const holelen, int even_cows)
2439 {
2440 struct zap_details details;
2441 pgoff_t hba = holebegin >> PAGE_SHIFT;
2442 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2443
2444 /* Check for overflow. */
2445 if (sizeof(holelen) > sizeof(hlen)) {
2446 long long holeend =
2447 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2448 if (holeend & ~(long long)ULONG_MAX)
2449 hlen = ULONG_MAX - hba + 1;
2450 }
2451
2452 details.check_mapping = even_cows? NULL: mapping;
2453 details.nonlinear_vma = NULL;
2454 details.first_index = hba;
2455 details.last_index = hba + hlen - 1;
2456 if (details.last_index < details.first_index)
2457 details.last_index = ULONG_MAX;
2458 details.i_mmap_lock = &mapping->i_mmap_lock;
2459
2460 spin_lock(&mapping->i_mmap_lock);
2461
2462 /* Protect against endless unmapping loops */
2463 mapping->truncate_count++;
2464 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2465 if (mapping->truncate_count == 0)
2466 reset_vma_truncate_counts(mapping);
2467 mapping->truncate_count++;
2468 }
2469 details.truncate_count = mapping->truncate_count;
2470
2471 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2472 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2473 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2474 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2475 spin_unlock(&mapping->i_mmap_lock);
2476 }
2477 EXPORT_SYMBOL(unmap_mapping_range);
2478
2479 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2480 {
2481 struct address_space *mapping = inode->i_mapping;
2482
2483 /*
2484 * If the underlying filesystem is not going to provide
2485 * a way to truncate a range of blocks (punch a hole) -
2486 * we should return failure right now.
2487 */
2488 if (!inode->i_op->truncate_range)
2489 return -ENOSYS;
2490
2491 mutex_lock(&inode->i_mutex);
2492 down_write(&inode->i_alloc_sem);
2493 unmap_mapping_range(mapping, offset, (end - offset), 1);
2494 truncate_inode_pages_range(mapping, offset, end);
2495 unmap_mapping_range(mapping, offset, (end - offset), 1);
2496 inode->i_op->truncate_range(inode, offset, end);
2497 up_write(&inode->i_alloc_sem);
2498 mutex_unlock(&inode->i_mutex);
2499
2500 return 0;
2501 }
2502
2503 /*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with mmap_sem still held, but pte unmapped and unlocked.
2507 */
2508 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2509 unsigned long address, pte_t *page_table, pmd_t *pmd,
2510 unsigned int flags, pte_t orig_pte)
2511 {
2512 spinlock_t *ptl;
2513 struct page *page;
2514 swp_entry_t entry;
2515 pte_t pte;
2516 struct mem_cgroup *ptr = NULL;
2517 int ret = 0;
2518
2519 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2520 goto out;
2521
2522 entry = pte_to_swp_entry(orig_pte);
2523 if (unlikely(non_swap_entry(entry))) {
2524 if (is_migration_entry(entry)) {
2525 migration_entry_wait(mm, pmd, address);
2526 } else if (is_hwpoison_entry(entry)) {
2527 ret = VM_FAULT_HWPOISON;
2528 } else {
2529 print_bad_pte(vma, address, orig_pte, NULL);
2530 ret = VM_FAULT_SIGBUS;
2531 }
2532 goto out;
2533 }
2534 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2535 page = lookup_swap_cache(entry);
2536 if (!page) {
2537 grab_swap_token(mm); /* Contend for token _before_ read-in */
2538 page = swapin_readahead(entry,
2539 GFP_HIGHUSER_MOVABLE, vma, address);
2540 if (!page) {
2541 /*
2542 * Back out if somebody else faulted in this pte
2543 * while we released the pte lock.
2544 */
2545 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2546 if (likely(pte_same(*page_table, orig_pte)))
2547 ret = VM_FAULT_OOM;
2548 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2549 goto unlock;
2550 }
2551
2552 /* Had to read the page from swap area: Major fault */
2553 ret = VM_FAULT_MAJOR;
2554 count_vm_event(PGMAJFAULT);
2555 } else if (PageHWPoison(page)) {
2556 ret = VM_FAULT_HWPOISON;
2557 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2558 goto out_release;
2559 }
2560
2561 lock_page(page);
2562 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2563
2564 page = ksm_might_need_to_copy(page, vma, address);
2565 if (!page) {
2566 ret = VM_FAULT_OOM;
2567 goto out;
2568 }
2569
2570 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2571 ret = VM_FAULT_OOM;
2572 goto out_page;
2573 }
2574
2575 /*
2576 * Back out if somebody else already faulted in this pte.
2577 */
2578 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2579 if (unlikely(!pte_same(*page_table, orig_pte)))
2580 goto out_nomap;
2581
2582 if (unlikely(!PageUptodate(page))) {
2583 ret = VM_FAULT_SIGBUS;
2584 goto out_nomap;
2585 }
2586
2587 /*
2588 * The page isn't present yet, go ahead with the fault.
2589 *
2590 * Be careful about the sequence of operations here.
2591 * To get its accounting right, reuse_swap_page() must be called
2592 * while the page is counted on swap but not yet in mapcount i.e.
2593 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2594 * must be called after the swap_free(), or it will never succeed.
2595 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2596 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2597 * in page->private. In this case, a record in swap_cgroup is silently
2598 * discarded at swap_free().
2599 */
2600
2601 inc_mm_counter(mm, anon_rss);
2602 pte = mk_pte(page, vma->vm_page_prot);
2603 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2604 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2605 flags &= ~FAULT_FLAG_WRITE;
2606 }
2607 flush_icache_page(vma, page);
2608 set_pte_at(mm, address, page_table, pte);
2609 page_add_anon_rmap(page, vma, address);
2610 /* It's better to call commit-charge after rmap is established */
2611 mem_cgroup_commit_charge_swapin(page, ptr);
2612
2613 swap_free(entry);
2614 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2615 try_to_free_swap(page);
2616 unlock_page(page);
2617
2618 if (flags & FAULT_FLAG_WRITE) {
2619 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2620 if (ret & VM_FAULT_ERROR)
2621 ret &= VM_FAULT_ERROR;
2622 goto out;
2623 }
2624
2625 /* No need to invalidate - it was non-present before */
2626 update_mmu_cache(vma, address, pte);
2627 unlock:
2628 pte_unmap_unlock(page_table, ptl);
2629 out:
2630 return ret;
2631 out_nomap:
2632 mem_cgroup_cancel_charge_swapin(ptr);
2633 pte_unmap_unlock(page_table, ptl);
2634 out_page:
2635 unlock_page(page);
2636 out_release:
2637 page_cache_release(page);
2638 return ret;
2639 }
2640
2641 /*
2642 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2643 * but allow concurrent faults), and pte mapped but not yet locked.
2644 * We return with mmap_sem still held, but pte unmapped and unlocked.
2645 */
2646 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2647 unsigned long address, pte_t *page_table, pmd_t *pmd,
2648 unsigned int flags)
2649 {
2650 struct page *page;
2651 spinlock_t *ptl;
2652 pte_t entry;
2653
2654 if (!(flags & FAULT_FLAG_WRITE)) {
2655 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2656 vma->vm_page_prot));
2657 ptl = pte_lockptr(mm, pmd);
2658 spin_lock(ptl);
2659 if (!pte_none(*page_table))
2660 goto unlock;
2661 goto setpte;
2662 }
2663
2664 /* Allocate our own private page. */
2665 pte_unmap(page_table);
2666
2667 if (unlikely(anon_vma_prepare(vma)))
2668 goto oom;
2669 page = alloc_zeroed_user_highpage_movable(vma, address);
2670 if (!page)
2671 goto oom;
2672 __SetPageUptodate(page);
2673
2674 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2675 goto oom_free_page;
2676
2677 entry = mk_pte(page, vma->vm_page_prot);
2678 if (vma->vm_flags & VM_WRITE)
2679 entry = pte_mkwrite(pte_mkdirty(entry));
2680
2681 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2682 if (!pte_none(*page_table))
2683 goto release;
2684
2685 inc_mm_counter(mm, anon_rss);
2686 page_add_new_anon_rmap(page, vma, address);
2687 setpte:
2688 set_pte_at(mm, address, page_table, entry);
2689
2690 /* No need to invalidate - it was non-present before */
2691 update_mmu_cache(vma, address, entry);
2692 unlock:
2693 pte_unmap_unlock(page_table, ptl);
2694 return 0;
2695 release:
2696 mem_cgroup_uncharge_page(page);
2697 page_cache_release(page);
2698 goto unlock;
2699 oom_free_page:
2700 page_cache_release(page);
2701 oom:
2702 return VM_FAULT_OOM;
2703 }
2704
2705 /*
2706 * __do_fault() tries to create a new page mapping. It aggressively
2707 * tries to share with existing pages, but makes a separate copy if
2708 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2709 * the next page fault.
2710 *
2711 * As this is called only for pages that do not currently exist, we
2712 * do not need to flush old virtual caches or the TLB.
2713 *
2714 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2715 * but allow concurrent faults), and pte neither mapped nor locked.
2716 * We return with mmap_sem still held, but pte unmapped and unlocked.
2717 */
2718 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2719 unsigned long address, pmd_t *pmd,
2720 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2721 {
2722 pte_t *page_table;
2723 spinlock_t *ptl;
2724 struct page *page;
2725 pte_t entry;
2726 int anon = 0;
2727 int charged = 0;
2728 struct page *dirty_page = NULL;
2729 struct vm_fault vmf;
2730 int ret;
2731 int page_mkwrite = 0;
2732
2733 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2734 vmf.pgoff = pgoff;
2735 vmf.flags = flags;
2736 vmf.page = NULL;
2737
2738 ret = vma->vm_ops->fault(vma, &vmf);
2739 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2740 return ret;
2741
2742 if (unlikely(PageHWPoison(vmf.page))) {
2743 if (ret & VM_FAULT_LOCKED)
2744 unlock_page(vmf.page);
2745 return VM_FAULT_HWPOISON;
2746 }
2747
2748 /*
2749 * For consistency in subsequent calls, make the faulted page always
2750 * locked.
2751 */
2752 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2753 lock_page(vmf.page);
2754 else
2755 VM_BUG_ON(!PageLocked(vmf.page));
2756
2757 /*
2758 * Should we do an early C-O-W break?
2759 */
2760 page = vmf.page;
2761 if (flags & FAULT_FLAG_WRITE) {
2762 if (!(vma->vm_flags & VM_SHARED)) {
2763 anon = 1;
2764 if (unlikely(anon_vma_prepare(vma))) {
2765 ret = VM_FAULT_OOM;
2766 goto out;
2767 }
2768 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2769 vma, address);
2770 if (!page) {
2771 ret = VM_FAULT_OOM;
2772 goto out;
2773 }
2774 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2775 ret = VM_FAULT_OOM;
2776 page_cache_release(page);
2777 goto out;
2778 }
2779 charged = 1;
2780 /*
2781 * Don't let another task, with possibly unlocked vma,
2782 * keep the mlocked page.
2783 */
2784 if (vma->vm_flags & VM_LOCKED)
2785 clear_page_mlock(vmf.page);
2786 copy_user_highpage(page, vmf.page, address, vma);
2787 __SetPageUptodate(page);
2788 } else {
2789 /*
2790 * If the page will be shareable, see if the backing
2791 * address space wants to know that the page is about
2792 * to become writable
2793 */
2794 if (vma->vm_ops->page_mkwrite) {
2795 int tmp;
2796
2797 unlock_page(page);
2798 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2799 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2800 if (unlikely(tmp &
2801 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2802 ret = tmp;
2803 goto unwritable_page;
2804 }
2805 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2806 lock_page(page);
2807 if (!page->mapping) {
2808 ret = 0; /* retry the fault */
2809 unlock_page(page);
2810 goto unwritable_page;
2811 }
2812 } else
2813 VM_BUG_ON(!PageLocked(page));
2814 page_mkwrite = 1;
2815 }
2816 }
2817
2818 }
2819
2820 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2821
2822 /*
2823 * This silly early PAGE_DIRTY setting removes a race
2824 * due to the bad i386 page protection. But it's valid
2825 * for other architectures too.
2826 *
2827 * Note that if FAULT_FLAG_WRITE is set, we either now have
2828 * an exclusive copy of the page, or this is a shared mapping,
2829 * so we can make it writable and dirty to avoid having to
2830 * handle that later.
2831 */
2832 /* Only go through if we didn't race with anybody else... */
2833 if (likely(pte_same(*page_table, orig_pte))) {
2834 flush_icache_page(vma, page);
2835 entry = mk_pte(page, vma->vm_page_prot);
2836 if (flags & FAULT_FLAG_WRITE)
2837 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2838 if (anon) {
2839 inc_mm_counter(mm, anon_rss);
2840 page_add_new_anon_rmap(page, vma, address);
2841 } else {
2842 inc_mm_counter(mm, file_rss);
2843 page_add_file_rmap(page);
2844 if (flags & FAULT_FLAG_WRITE) {
2845 dirty_page = page;
2846 get_page(dirty_page);
2847 }
2848 }
2849 set_pte_at(mm, address, page_table, entry);
2850
2851 /* no need to invalidate: a not-present page won't be cached */
2852 update_mmu_cache(vma, address, entry);
2853 } else {
2854 if (charged)
2855 mem_cgroup_uncharge_page(page);
2856 if (anon)
2857 page_cache_release(page);
2858 else
2859 anon = 1; /* no anon but release faulted_page */
2860 }
2861
2862 pte_unmap_unlock(page_table, ptl);
2863
2864 out:
2865 if (dirty_page) {
2866 struct address_space *mapping = page->mapping;
2867
2868 if (set_page_dirty(dirty_page))
2869 page_mkwrite = 1;
2870 unlock_page(dirty_page);
2871 put_page(dirty_page);
2872 if (page_mkwrite && mapping) {
2873 /*
2874 * Some device drivers do not set page.mapping but still
2875 * dirty their pages
2876 */
2877 balance_dirty_pages_ratelimited(mapping);
2878 }
2879
2880 /* file_update_time outside page_lock */
2881 if (vma->vm_file)
2882 file_update_time(vma->vm_file);
2883 } else {
2884 unlock_page(vmf.page);
2885 if (anon)
2886 page_cache_release(vmf.page);
2887 }
2888
2889 return ret;
2890
2891 unwritable_page:
2892 page_cache_release(page);
2893 return ret;
2894 }
2895
2896 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2897 unsigned long address, pte_t *page_table, pmd_t *pmd,
2898 unsigned int flags, pte_t orig_pte)
2899 {
2900 pgoff_t pgoff = (((address & PAGE_MASK)
2901 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2902
2903 pte_unmap(page_table);
2904 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2905 }
2906
2907 /*
2908 * Fault of a previously existing named mapping. Repopulate the pte
2909 * from the encoded file_pte if possible. This enables swappable
2910 * nonlinear vmas.
2911 *
2912 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913 * but allow concurrent faults), and pte mapped but not yet locked.
2914 * We return with mmap_sem still held, but pte unmapped and unlocked.
2915 */
2916 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2917 unsigned long address, pte_t *page_table, pmd_t *pmd,
2918 unsigned int flags, pte_t orig_pte)
2919 {
2920 pgoff_t pgoff;
2921
2922 flags |= FAULT_FLAG_NONLINEAR;
2923
2924 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2925 return 0;
2926
2927 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2928 /*
2929 * Page table corrupted: show pte and kill process.
2930 */
2931 print_bad_pte(vma, address, orig_pte, NULL);
2932 return VM_FAULT_SIGBUS;
2933 }
2934
2935 pgoff = pte_to_pgoff(orig_pte);
2936 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2937 }
2938
2939 /*
2940 * These routines also need to handle stuff like marking pages dirty
2941 * and/or accessed for architectures that don't do it in hardware (most
2942 * RISC architectures). The early dirtying is also good on the i386.
2943 *
2944 * There is also a hook called "update_mmu_cache()" that architectures
2945 * with external mmu caches can use to update those (ie the Sparc or
2946 * PowerPC hashed page tables that act as extended TLBs).
2947 *
2948 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949 * but allow concurrent faults), and pte mapped but not yet locked.
2950 * We return with mmap_sem still held, but pte unmapped and unlocked.
2951 */
2952 static inline int handle_pte_fault(struct mm_struct *mm,
2953 struct vm_area_struct *vma, unsigned long address,
2954 pte_t *pte, pmd_t *pmd, unsigned int flags)
2955 {
2956 pte_t entry;
2957 spinlock_t *ptl;
2958
2959 entry = *pte;
2960 if (!pte_present(entry)) {
2961 if (pte_none(entry)) {
2962 if (vma->vm_ops) {
2963 if (likely(vma->vm_ops->fault))
2964 return do_linear_fault(mm, vma, address,
2965 pte, pmd, flags, entry);
2966 }
2967 return do_anonymous_page(mm, vma, address,
2968 pte, pmd, flags);
2969 }
2970 if (pte_file(entry))
2971 return do_nonlinear_fault(mm, vma, address,
2972 pte, pmd, flags, entry);
2973 return do_swap_page(mm, vma, address,
2974 pte, pmd, flags, entry);
2975 }
2976
2977 ptl = pte_lockptr(mm, pmd);
2978 spin_lock(ptl);
2979 if (unlikely(!pte_same(*pte, entry)))
2980 goto unlock;
2981 if (flags & FAULT_FLAG_WRITE) {
2982 if (!pte_write(entry))
2983 return do_wp_page(mm, vma, address,
2984 pte, pmd, ptl, entry);
2985 entry = pte_mkdirty(entry);
2986 }
2987 entry = pte_mkyoung(entry);
2988 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2989 update_mmu_cache(vma, address, entry);
2990 } else {
2991 /*
2992 * This is needed only for protection faults but the arch code
2993 * is not yet telling us if this is a protection fault or not.
2994 * This still avoids useless tlb flushes for .text page faults
2995 * with threads.
2996 */
2997 if (flags & FAULT_FLAG_WRITE)
2998 flush_tlb_page(vma, address);
2999 }
3000 unlock:
3001 pte_unmap_unlock(pte, ptl);
3002 return 0;
3003 }
3004
3005 /*
3006 * By the time we get here, we already hold the mm semaphore
3007 */
3008 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, unsigned int flags)
3010 {
3011 pgd_t *pgd;
3012 pud_t *pud;
3013 pmd_t *pmd;
3014 pte_t *pte;
3015
3016 __set_current_state(TASK_RUNNING);
3017
3018 count_vm_event(PGFAULT);
3019
3020 if (unlikely(is_vm_hugetlb_page(vma)))
3021 return hugetlb_fault(mm, vma, address, flags);
3022
3023 pgd = pgd_offset(mm, address);
3024 pud = pud_alloc(mm, pgd, address);
3025 if (!pud)
3026 return VM_FAULT_OOM;
3027 pmd = pmd_alloc(mm, pud, address);
3028 if (!pmd)
3029 return VM_FAULT_OOM;
3030 pte = pte_alloc_map(mm, pmd, address);
3031 if (!pte)
3032 return VM_FAULT_OOM;
3033
3034 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3035 }
3036
3037 #ifndef __PAGETABLE_PUD_FOLDED
3038 /*
3039 * Allocate page upper directory.
3040 * We've already handled the fast-path in-line.
3041 */
3042 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3043 {
3044 pud_t *new = pud_alloc_one(mm, address);
3045 if (!new)
3046 return -ENOMEM;
3047
3048 smp_wmb(); /* See comment in __pte_alloc */
3049
3050 spin_lock(&mm->page_table_lock);
3051 if (pgd_present(*pgd)) /* Another has populated it */
3052 pud_free(mm, new);
3053 else
3054 pgd_populate(mm, pgd, new);
3055 spin_unlock(&mm->page_table_lock);
3056 return 0;
3057 }
3058 #endif /* __PAGETABLE_PUD_FOLDED */
3059
3060 #ifndef __PAGETABLE_PMD_FOLDED
3061 /*
3062 * Allocate page middle directory.
3063 * We've already handled the fast-path in-line.
3064 */
3065 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3066 {
3067 pmd_t *new = pmd_alloc_one(mm, address);
3068 if (!new)
3069 return -ENOMEM;
3070
3071 smp_wmb(); /* See comment in __pte_alloc */
3072
3073 spin_lock(&mm->page_table_lock);
3074 #ifndef __ARCH_HAS_4LEVEL_HACK
3075 if (pud_present(*pud)) /* Another has populated it */
3076 pmd_free(mm, new);
3077 else
3078 pud_populate(mm, pud, new);
3079 #else
3080 if (pgd_present(*pud)) /* Another has populated it */
3081 pmd_free(mm, new);
3082 else
3083 pgd_populate(mm, pud, new);
3084 #endif /* __ARCH_HAS_4LEVEL_HACK */
3085 spin_unlock(&mm->page_table_lock);
3086 return 0;
3087 }
3088 #endif /* __PAGETABLE_PMD_FOLDED */
3089
3090 int make_pages_present(unsigned long addr, unsigned long end)
3091 {
3092 int ret, len, write;
3093 struct vm_area_struct * vma;
3094
3095 vma = find_vma(current->mm, addr);
3096 if (!vma)
3097 return -ENOMEM;
3098 write = (vma->vm_flags & VM_WRITE) != 0;
3099 BUG_ON(addr >= end);
3100 BUG_ON(end > vma->vm_end);
3101 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3102 ret = get_user_pages(current, current->mm, addr,
3103 len, write, 0, NULL, NULL);
3104 if (ret < 0)
3105 return ret;
3106 return ret == len ? 0 : -EFAULT;
3107 }
3108
3109 #if !defined(__HAVE_ARCH_GATE_AREA)
3110
3111 #if defined(AT_SYSINFO_EHDR)
3112 static struct vm_area_struct gate_vma;
3113
3114 static int __init gate_vma_init(void)
3115 {
3116 gate_vma.vm_mm = NULL;
3117 gate_vma.vm_start = FIXADDR_USER_START;
3118 gate_vma.vm_end = FIXADDR_USER_END;
3119 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3120 gate_vma.vm_page_prot = __P101;
3121 /*
3122 * Make sure the vDSO gets into every core dump.
3123 * Dumping its contents makes post-mortem fully interpretable later
3124 * without matching up the same kernel and hardware config to see
3125 * what PC values meant.
3126 */
3127 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3128 return 0;
3129 }
3130 __initcall(gate_vma_init);
3131 #endif
3132
3133 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3134 {
3135 #ifdef AT_SYSINFO_EHDR
3136 return &gate_vma;
3137 #else
3138 return NULL;
3139 #endif
3140 }
3141
3142 int in_gate_area_no_task(unsigned long addr)
3143 {
3144 #ifdef AT_SYSINFO_EHDR
3145 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3146 return 1;
3147 #endif
3148 return 0;
3149 }
3150
3151 #endif /* __HAVE_ARCH_GATE_AREA */
3152
3153 static int follow_pte(struct mm_struct *mm, unsigned long address,
3154 pte_t **ptepp, spinlock_t **ptlp)
3155 {
3156 pgd_t *pgd;
3157 pud_t *pud;
3158 pmd_t *pmd;
3159 pte_t *ptep;
3160
3161 pgd = pgd_offset(mm, address);
3162 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3163 goto out;
3164
3165 pud = pud_offset(pgd, address);
3166 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3167 goto out;
3168
3169 pmd = pmd_offset(pud, address);
3170 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3171 goto out;
3172
3173 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3174 if (pmd_huge(*pmd))
3175 goto out;
3176
3177 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3178 if (!ptep)
3179 goto out;
3180 if (!pte_present(*ptep))
3181 goto unlock;
3182 *ptepp = ptep;
3183 return 0;
3184 unlock:
3185 pte_unmap_unlock(ptep, *ptlp);
3186 out:
3187 return -EINVAL;
3188 }
3189
3190 /**
3191 * follow_pfn - look up PFN at a user virtual address
3192 * @vma: memory mapping
3193 * @address: user virtual address
3194 * @pfn: location to store found PFN
3195 *
3196 * Only IO mappings and raw PFN mappings are allowed.
3197 *
3198 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3199 */
3200 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3201 unsigned long *pfn)
3202 {
3203 int ret = -EINVAL;
3204 spinlock_t *ptl;
3205 pte_t *ptep;
3206
3207 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3208 return ret;
3209
3210 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3211 if (ret)
3212 return ret;
3213 *pfn = pte_pfn(*ptep);
3214 pte_unmap_unlock(ptep, ptl);
3215 return 0;
3216 }
3217 EXPORT_SYMBOL(follow_pfn);
3218
3219 #ifdef CONFIG_HAVE_IOREMAP_PROT
3220 int follow_phys(struct vm_area_struct *vma,
3221 unsigned long address, unsigned int flags,
3222 unsigned long *prot, resource_size_t *phys)
3223 {
3224 int ret = -EINVAL;
3225 pte_t *ptep, pte;
3226 spinlock_t *ptl;
3227
3228 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3229 goto out;
3230
3231 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3232 goto out;
3233 pte = *ptep;
3234
3235 if ((flags & FOLL_WRITE) && !pte_write(pte))
3236 goto unlock;
3237
3238 *prot = pgprot_val(pte_pgprot(pte));
3239 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3240
3241 ret = 0;
3242 unlock:
3243 pte_unmap_unlock(ptep, ptl);
3244 out:
3245 return ret;
3246 }
3247
3248 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3249 void *buf, int len, int write)
3250 {
3251 resource_size_t phys_addr;
3252 unsigned long prot = 0;
3253 void __iomem *maddr;
3254 int offset = addr & (PAGE_SIZE-1);
3255
3256 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3257 return -EINVAL;
3258
3259 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3260 if (write)
3261 memcpy_toio(maddr + offset, buf, len);
3262 else
3263 memcpy_fromio(buf, maddr + offset, len);
3264 iounmap(maddr);
3265
3266 return len;
3267 }
3268 #endif
3269
3270 /*
3271 * Access another process' address space.
3272 * Source/target buffer must be kernel space,
3273 * Do not walk the page table directly, use get_user_pages
3274 */
3275 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3276 {
3277 struct mm_struct *mm;
3278 struct vm_area_struct *vma;
3279 void *old_buf = buf;
3280
3281 mm = get_task_mm(tsk);
3282 if (!mm)
3283 return 0;
3284
3285 down_read(&mm->mmap_sem);
3286 /* ignore errors, just check how much was successfully transferred */
3287 while (len) {
3288 int bytes, ret, offset;
3289 void *maddr;
3290 struct page *page = NULL;
3291
3292 ret = get_user_pages(tsk, mm, addr, 1,
3293 write, 1, &page, &vma);
3294 if (ret <= 0) {
3295 /*
3296 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3297 * we can access using slightly different code.
3298 */
3299 #ifdef CONFIG_HAVE_IOREMAP_PROT
3300 vma = find_vma(mm, addr);
3301 if (!vma)
3302 break;
3303 if (vma->vm_ops && vma->vm_ops->access)
3304 ret = vma->vm_ops->access(vma, addr, buf,
3305 len, write);
3306 if (ret <= 0)
3307 #endif
3308 break;
3309 bytes = ret;
3310 } else {
3311 bytes = len;
3312 offset = addr & (PAGE_SIZE-1);
3313 if (bytes > PAGE_SIZE-offset)
3314 bytes = PAGE_SIZE-offset;
3315
3316 maddr = kmap(page);
3317 if (write) {
3318 copy_to_user_page(vma, page, addr,
3319 maddr + offset, buf, bytes);
3320 set_page_dirty_lock(page);
3321 } else {
3322 copy_from_user_page(vma, page, addr,
3323 buf, maddr + offset, bytes);
3324 }
3325 kunmap(page);
3326 page_cache_release(page);
3327 }
3328 len -= bytes;
3329 buf += bytes;
3330 addr += bytes;
3331 }
3332 up_read(&mm->mmap_sem);
3333 mmput(mm);
3334
3335 return buf - old_buf;
3336 }
3337
3338 /*
3339 * Print the name of a VMA.
3340 */
3341 void print_vma_addr(char *prefix, unsigned long ip)
3342 {
3343 struct mm_struct *mm = current->mm;
3344 struct vm_area_struct *vma;
3345
3346 /*
3347 * Do not print if we are in atomic
3348 * contexts (in exception stacks, etc.):
3349 */
3350 if (preempt_count())
3351 return;
3352
3353 down_read(&mm->mmap_sem);
3354 vma = find_vma(mm, ip);
3355 if (vma && vma->vm_file) {
3356 struct file *f = vma->vm_file;
3357 char *buf = (char *)__get_free_page(GFP_KERNEL);
3358 if (buf) {
3359 char *p, *s;
3360
3361 p = d_path(&f->f_path, buf, PAGE_SIZE);
3362 if (IS_ERR(p))
3363 p = "?";
3364 s = strrchr(p, '/');
3365 if (s)
3366 p = s+1;
3367 printk("%s%s[%lx+%lx]", prefix, p,
3368 vma->vm_start,
3369 vma->vm_end - vma->vm_start);
3370 free_page((unsigned long)buf);
3371 }
3372 }
3373 up_read(&current->mm->mmap_sem);
3374 }
3375
3376 #ifdef CONFIG_PROVE_LOCKING
3377 void might_fault(void)
3378 {
3379 /*
3380 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3381 * holding the mmap_sem, this is safe because kernel memory doesn't
3382 * get paged out, therefore we'll never actually fault, and the
3383 * below annotations will generate false positives.
3384 */
3385 if (segment_eq(get_fs(), KERNEL_DS))
3386 return;
3387
3388 might_sleep();
3389 /*
3390 * it would be nicer only to annotate paths which are not under
3391 * pagefault_disable, however that requires a larger audit and
3392 * providing helpers like get_user_atomic.
3393 */
3394 if (!in_atomic() && current->mm)
3395 might_lock_read(&current->mm->mmap_sem);
3396 }
3397 EXPORT_SYMBOL(might_fault);
3398 #endif