]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
mm, swap: fix race between swapoff and some swap operations
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 1;
117 #else
118 2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123 randomize_va_space = 0;
124 return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136 static int __init init_zero_pfn(void)
137 {
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
154 }
155 }
156 current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
197 {
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
207 {
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
211
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
220
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
228 }
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
241 {
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
245
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
254
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275 {
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
296 }
297 if (end - 1 > ceiling - 1)
298 return;
299
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306 * This function frees user-level page tables of a process.
307 */
308 void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
311 {
312 pgd_t *pgd;
313 unsigned long next;
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
340
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
372 {
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
383
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
400 }
401 vma = next;
402 }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
411
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
432 }
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
444
445 smp_wmb(); /* See comment in __pte_alloc */
446
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 int i;
466
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
478 *
479 * The calling function must still handle the error.
480 */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
483 {
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
534 *
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
538 *
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
547 *
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
561 *
562 *
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
573 */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte, bool with_public_device)
576 {
577 unsigned long pfn = pte_pfn(pte);
578
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588
589 /*
590 * Device public pages are special pages (they are ZONE_DEVICE
591 * pages but different from persistent memory). They behave
592 * allmost like normal pages. The difference is that they are
593 * not on the lru and thus should never be involve with any-
594 * thing that involve lru manipulation (mlock, numa balancing,
595 * ...).
596 *
597 * This is why we still want to return NULL for such page from
598 * vm_normal_page() so that we do not have to special case all
599 * call site of vm_normal_page().
600 */
601 if (likely(pfn <= highest_memmap_pfn)) {
602 struct page *page = pfn_to_page(pfn);
603
604 if (is_device_public_page(page)) {
605 if (with_public_device)
606 return page;
607 return NULL;
608 }
609 }
610
611 if (pte_devmap(pte))
612 return NULL;
613
614 print_bad_pte(vma, addr, pte, NULL);
615 return NULL;
616 }
617
618 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619
620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 if (vma->vm_flags & VM_MIXEDMAP) {
622 if (!pfn_valid(pfn))
623 return NULL;
624 goto out;
625 } else {
626 unsigned long off;
627 off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 if (pfn == vma->vm_pgoff + off)
629 return NULL;
630 if (!is_cow_mapping(vma->vm_flags))
631 return NULL;
632 }
633 }
634
635 if (is_zero_pfn(pfn))
636 return NULL;
637
638 check_pfn:
639 if (unlikely(pfn > highest_memmap_pfn)) {
640 print_bad_pte(vma, addr, pte, NULL);
641 return NULL;
642 }
643
644 /*
645 * NOTE! We still have PageReserved() pages in the page tables.
646 * eg. VDSO mappings can cause them to exist.
647 */
648 out:
649 return pfn_to_page(pfn);
650 }
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654 pmd_t pmd)
655 {
656 unsigned long pfn = pmd_pfn(pmd);
657
658 /*
659 * There is no pmd_special() but there may be special pmds, e.g.
660 * in a direct-access (dax) mapping, so let's just replicate the
661 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662 */
663 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664 if (vma->vm_flags & VM_MIXEDMAP) {
665 if (!pfn_valid(pfn))
666 return NULL;
667 goto out;
668 } else {
669 unsigned long off;
670 off = (addr - vma->vm_start) >> PAGE_SHIFT;
671 if (pfn == vma->vm_pgoff + off)
672 return NULL;
673 if (!is_cow_mapping(vma->vm_flags))
674 return NULL;
675 }
676 }
677
678 if (pmd_devmap(pmd))
679 return NULL;
680 if (is_zero_pfn(pfn))
681 return NULL;
682 if (unlikely(pfn > highest_memmap_pfn))
683 return NULL;
684
685 /*
686 * NOTE! We still have PageReserved() pages in the page tables.
687 * eg. VDSO mappings can cause them to exist.
688 */
689 out:
690 return pfn_to_page(pfn);
691 }
692 #endif
693
694 /*
695 * copy one vm_area from one task to the other. Assumes the page tables
696 * already present in the new task to be cleared in the whole range
697 * covered by this vma.
698 */
699
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703 unsigned long addr, int *rss)
704 {
705 unsigned long vm_flags = vma->vm_flags;
706 pte_t pte = *src_pte;
707 struct page *page;
708
709 /* pte contains position in swap or file, so copy. */
710 if (unlikely(!pte_present(pte))) {
711 swp_entry_t entry = pte_to_swp_entry(pte);
712
713 if (likely(!non_swap_entry(entry))) {
714 if (swap_duplicate(entry) < 0)
715 return entry.val;
716
717 /* make sure dst_mm is on swapoff's mmlist. */
718 if (unlikely(list_empty(&dst_mm->mmlist))) {
719 spin_lock(&mmlist_lock);
720 if (list_empty(&dst_mm->mmlist))
721 list_add(&dst_mm->mmlist,
722 &src_mm->mmlist);
723 spin_unlock(&mmlist_lock);
724 }
725 rss[MM_SWAPENTS]++;
726 } else if (is_migration_entry(entry)) {
727 page = migration_entry_to_page(entry);
728
729 rss[mm_counter(page)]++;
730
731 if (is_write_migration_entry(entry) &&
732 is_cow_mapping(vm_flags)) {
733 /*
734 * COW mappings require pages in both
735 * parent and child to be set to read.
736 */
737 make_migration_entry_read(&entry);
738 pte = swp_entry_to_pte(entry);
739 if (pte_swp_soft_dirty(*src_pte))
740 pte = pte_swp_mksoft_dirty(pte);
741 set_pte_at(src_mm, addr, src_pte, pte);
742 }
743 } else if (is_device_private_entry(entry)) {
744 page = device_private_entry_to_page(entry);
745
746 /*
747 * Update rss count even for unaddressable pages, as
748 * they should treated just like normal pages in this
749 * respect.
750 *
751 * We will likely want to have some new rss counters
752 * for unaddressable pages, at some point. But for now
753 * keep things as they are.
754 */
755 get_page(page);
756 rss[mm_counter(page)]++;
757 page_dup_rmap(page, false);
758
759 /*
760 * We do not preserve soft-dirty information, because so
761 * far, checkpoint/restore is the only feature that
762 * requires that. And checkpoint/restore does not work
763 * when a device driver is involved (you cannot easily
764 * save and restore device driver state).
765 */
766 if (is_write_device_private_entry(entry) &&
767 is_cow_mapping(vm_flags)) {
768 make_device_private_entry_read(&entry);
769 pte = swp_entry_to_pte(entry);
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
772 }
773 goto out_set_pte;
774 }
775
776 /*
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
779 */
780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 ptep_set_wrprotect(src_mm, addr, src_pte);
782 pte = pte_wrprotect(pte);
783 }
784
785 /*
786 * If it's a shared mapping, mark it clean in
787 * the child
788 */
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
792
793 page = vm_normal_page(vma, addr, pte);
794 if (page) {
795 get_page(page);
796 page_dup_rmap(page, false);
797 rss[mm_counter(page)]++;
798 } else if (pte_devmap(pte)) {
799 page = pte_page(pte);
800
801 /*
802 * Cache coherent device memory behave like regular page and
803 * not like persistent memory page. For more informations see
804 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805 */
806 if (is_device_public_page(page)) {
807 get_page(page);
808 page_dup_rmap(page, false);
809 rss[mm_counter(page)]++;
810 }
811 }
812
813 out_set_pte:
814 set_pte_at(dst_mm, addr, dst_pte, pte);
815 return 0;
816 }
817
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820 unsigned long addr, unsigned long end)
821 {
822 pte_t *orig_src_pte, *orig_dst_pte;
823 pte_t *src_pte, *dst_pte;
824 spinlock_t *src_ptl, *dst_ptl;
825 int progress = 0;
826 int rss[NR_MM_COUNTERS];
827 swp_entry_t entry = (swp_entry_t){0};
828
829 again:
830 init_rss_vec(rss);
831
832 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833 if (!dst_pte)
834 return -ENOMEM;
835 src_pte = pte_offset_map(src_pmd, addr);
836 src_ptl = pte_lockptr(src_mm, src_pmd);
837 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838 orig_src_pte = src_pte;
839 orig_dst_pte = dst_pte;
840 arch_enter_lazy_mmu_mode();
841
842 do {
843 /*
844 * We are holding two locks at this point - either of them
845 * could generate latencies in another task on another CPU.
846 */
847 if (progress >= 32) {
848 progress = 0;
849 if (need_resched() ||
850 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851 break;
852 }
853 if (pte_none(*src_pte)) {
854 progress++;
855 continue;
856 }
857 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858 vma, addr, rss);
859 if (entry.val)
860 break;
861 progress += 8;
862 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863
864 arch_leave_lazy_mmu_mode();
865 spin_unlock(src_ptl);
866 pte_unmap(orig_src_pte);
867 add_mm_rss_vec(dst_mm, rss);
868 pte_unmap_unlock(orig_dst_pte, dst_ptl);
869 cond_resched();
870
871 if (entry.val) {
872 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873 return -ENOMEM;
874 progress = 0;
875 }
876 if (addr != end)
877 goto again;
878 return 0;
879 }
880
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
884 {
885 pmd_t *src_pmd, *dst_pmd;
886 unsigned long next;
887
888 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889 if (!dst_pmd)
890 return -ENOMEM;
891 src_pmd = pmd_offset(src_pud, addr);
892 do {
893 next = pmd_addr_end(addr, end);
894 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895 || pmd_devmap(*src_pmd)) {
896 int err;
897 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898 err = copy_huge_pmd(dst_mm, src_mm,
899 dst_pmd, src_pmd, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
906 if (pmd_none_or_clear_bad(src_pmd))
907 continue;
908 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
912 return 0;
913 }
914
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918 {
919 pud_t *src_pud, *dst_pud;
920 unsigned long next;
921
922 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923 if (!dst_pud)
924 return -ENOMEM;
925 src_pud = pud_offset(src_p4d, addr);
926 do {
927 next = pud_addr_end(addr, end);
928 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929 int err;
930
931 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932 err = copy_huge_pud(dst_mm, src_mm,
933 dst_pud, src_pud, addr, vma);
934 if (err == -ENOMEM)
935 return -ENOMEM;
936 if (!err)
937 continue;
938 /* fall through */
939 }
940 if (pud_none_or_clear_bad(src_pud))
941 continue;
942 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_pud++, src_pud++, addr = next, addr != end);
946 return 0;
947 }
948
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952 {
953 p4d_t *src_p4d, *dst_p4d;
954 unsigned long next;
955
956 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957 if (!dst_p4d)
958 return -ENOMEM;
959 src_p4d = p4d_offset(src_pgd, addr);
960 do {
961 next = p4d_addr_end(addr, end);
962 if (p4d_none_or_clear_bad(src_p4d))
963 continue;
964 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965 vma, addr, next))
966 return -ENOMEM;
967 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
968 return 0;
969 }
970
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 struct vm_area_struct *vma)
973 {
974 pgd_t *src_pgd, *dst_pgd;
975 unsigned long next;
976 unsigned long addr = vma->vm_start;
977 unsigned long end = vma->vm_end;
978 struct mmu_notifier_range range;
979 bool is_cow;
980 int ret;
981
982 /*
983 * Don't copy ptes where a page fault will fill them correctly.
984 * Fork becomes much lighter when there are big shared or private
985 * readonly mappings. The tradeoff is that copy_page_range is more
986 * efficient than faulting.
987 */
988 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989 !vma->anon_vma)
990 return 0;
991
992 if (is_vm_hugetlb_page(vma))
993 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994
995 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 /*
997 * We do not free on error cases below as remove_vma
998 * gets called on error from higher level routine
999 */
1000 ret = track_pfn_copy(vma);
1001 if (ret)
1002 return ret;
1003 }
1004
1005 /*
1006 * We need to invalidate the secondary MMU mappings only when
1007 * there could be a permission downgrade on the ptes of the
1008 * parent mm. And a permission downgrade will only happen if
1009 * is_cow_mapping() returns true.
1010 */
1011 is_cow = is_cow_mapping(vma->vm_flags);
1012
1013 if (is_cow) {
1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015 0, vma, src_mm, addr, end);
1016 mmu_notifier_invalidate_range_start(&range);
1017 }
1018
1019 ret = 0;
1020 dst_pgd = pgd_offset(dst_mm, addr);
1021 src_pgd = pgd_offset(src_mm, addr);
1022 do {
1023 next = pgd_addr_end(addr, end);
1024 if (pgd_none_or_clear_bad(src_pgd))
1025 continue;
1026 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027 vma, addr, next))) {
1028 ret = -ENOMEM;
1029 break;
1030 }
1031 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033 if (is_cow)
1034 mmu_notifier_invalidate_range_end(&range);
1035 return ret;
1036 }
1037
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039 struct vm_area_struct *vma, pmd_t *pmd,
1040 unsigned long addr, unsigned long end,
1041 struct zap_details *details)
1042 {
1043 struct mm_struct *mm = tlb->mm;
1044 int force_flush = 0;
1045 int rss[NR_MM_COUNTERS];
1046 spinlock_t *ptl;
1047 pte_t *start_pte;
1048 pte_t *pte;
1049 swp_entry_t entry;
1050
1051 tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053 init_rss_vec(rss);
1054 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055 pte = start_pte;
1056 flush_tlb_batched_pending(mm);
1057 arch_enter_lazy_mmu_mode();
1058 do {
1059 pte_t ptent = *pte;
1060 if (pte_none(ptent))
1061 continue;
1062
1063 if (pte_present(ptent)) {
1064 struct page *page;
1065
1066 page = _vm_normal_page(vma, addr, ptent, true);
1067 if (unlikely(details) && page) {
1068 /*
1069 * unmap_shared_mapping_pages() wants to
1070 * invalidate cache without truncating:
1071 * unmap shared but keep private pages.
1072 */
1073 if (details->check_mapping &&
1074 details->check_mapping != page_rmapping(page))
1075 continue;
1076 }
1077 ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 tlb->fullmm);
1079 tlb_remove_tlb_entry(tlb, pte, addr);
1080 if (unlikely(!page))
1081 continue;
1082
1083 if (!PageAnon(page)) {
1084 if (pte_dirty(ptent)) {
1085 force_flush = 1;
1086 set_page_dirty(page);
1087 }
1088 if (pte_young(ptent) &&
1089 likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 mark_page_accessed(page);
1091 }
1092 rss[mm_counter(page)]--;
1093 page_remove_rmap(page, false);
1094 if (unlikely(page_mapcount(page) < 0))
1095 print_bad_pte(vma, addr, ptent, page);
1096 if (unlikely(__tlb_remove_page(tlb, page))) {
1097 force_flush = 1;
1098 addr += PAGE_SIZE;
1099 break;
1100 }
1101 continue;
1102 }
1103
1104 entry = pte_to_swp_entry(ptent);
1105 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106 struct page *page = device_private_entry_to_page(entry);
1107
1108 if (unlikely(details && details->check_mapping)) {
1109 /*
1110 * unmap_shared_mapping_pages() wants to
1111 * invalidate cache without truncating:
1112 * unmap shared but keep private pages.
1113 */
1114 if (details->check_mapping !=
1115 page_rmapping(page))
1116 continue;
1117 }
1118
1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 rss[mm_counter(page)]--;
1121 page_remove_rmap(page, false);
1122 put_page(page);
1123 continue;
1124 }
1125
1126 /* If details->check_mapping, we leave swap entries. */
1127 if (unlikely(details))
1128 continue;
1129
1130 entry = pte_to_swp_entry(ptent);
1131 if (!non_swap_entry(entry))
1132 rss[MM_SWAPENTS]--;
1133 else if (is_migration_entry(entry)) {
1134 struct page *page;
1135
1136 page = migration_entry_to_page(entry);
1137 rss[mm_counter(page)]--;
1138 }
1139 if (unlikely(!free_swap_and_cache(entry)))
1140 print_bad_pte(vma, addr, ptent, NULL);
1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144 add_mm_rss_vec(mm, rss);
1145 arch_leave_lazy_mmu_mode();
1146
1147 /* Do the actual TLB flush before dropping ptl */
1148 if (force_flush)
1149 tlb_flush_mmu_tlbonly(tlb);
1150 pte_unmap_unlock(start_pte, ptl);
1151
1152 /*
1153 * If we forced a TLB flush (either due to running out of
1154 * batch buffers or because we needed to flush dirty TLB
1155 * entries before releasing the ptl), free the batched
1156 * memory too. Restart if we didn't do everything.
1157 */
1158 if (force_flush) {
1159 force_flush = 0;
1160 tlb_flush_mmu(tlb);
1161 if (addr != end)
1162 goto again;
1163 }
1164
1165 return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 struct vm_area_struct *vma, pud_t *pud,
1170 unsigned long addr, unsigned long end,
1171 struct zap_details *details)
1172 {
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 if (next - addr != HPAGE_PMD_SIZE)
1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 goto next;
1184 /* fall through */
1185 }
1186 /*
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_sem in read
1191 * mode.
1192 */
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 goto next;
1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 cond_resched();
1198 } while (pmd++, addr = next, addr != end);
1199
1200 return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, p4d_t *p4d,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207 {
1208 pud_t *pud;
1209 unsigned long next;
1210
1211 pud = pud_offset(p4d, addr);
1212 do {
1213 next = pud_addr_end(addr, end);
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
1216 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1219 goto next;
1220 /* fall through */
1221 }
1222 if (pud_none_or_clear_bad(pud))
1223 continue;
1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 cond_resched();
1227 } while (pud++, addr = next, addr != end);
1228
1229 return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236 {
1237 p4d_t *p4d;
1238 unsigned long next;
1239
1240 p4d = p4d_offset(pgd, addr);
1241 do {
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1244 continue;
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1247
1248 return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1255 {
1256 pgd_t *pgd;
1257 unsigned long next;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1276 {
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 }
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1313 }
1314
1315 /**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1336 {
1337 struct mmu_notifier_range range;
1338
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
1341 mmu_notifier_invalidate_range_start(&range);
1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1352 *
1353 * Caller must protect the VMA list
1354 */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 unsigned long size)
1357 {
1358 struct mmu_notifier_range range;
1359 struct mmu_gather tlb;
1360
1361 lru_add_drain();
1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 start, start + size);
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1379 *
1380 * The range must fit into one VMA.
1381 */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1384 {
1385 struct mmu_notifier_range range;
1386 struct mmu_gather tlb;
1387
1388 lru_add_drain();
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 address, address + size);
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
1409 */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size)
1412 {
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1415 return;
1416
1417 zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422 spinlock_t **ptl)
1423 {
1424 pgd_t *pgd;
1425 p4d_t *p4d;
1426 pud_t *pud;
1427 pmd_t *pmd;
1428
1429 pgd = pgd_offset(mm, addr);
1430 p4d = p4d_alloc(mm, pgd, addr);
1431 if (!p4d)
1432 return NULL;
1433 pud = pud_alloc(mm, p4d, addr);
1434 if (!pud)
1435 return NULL;
1436 pmd = pmd_alloc(mm, pud, addr);
1437 if (!pmd)
1438 return NULL;
1439
1440 VM_BUG_ON(pmd_trans_huge(*pmd));
1441 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443
1444 /*
1445 * This is the old fallback for page remapping.
1446 *
1447 * For historical reasons, it only allows reserved pages. Only
1448 * old drivers should use this, and they needed to mark their
1449 * pages reserved for the old functions anyway.
1450 */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452 struct page *page, pgprot_t prot)
1453 {
1454 struct mm_struct *mm = vma->vm_mm;
1455 int retval;
1456 pte_t *pte;
1457 spinlock_t *ptl;
1458
1459 retval = -EINVAL;
1460 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461 goto out;
1462 retval = -ENOMEM;
1463 flush_dcache_page(page);
1464 pte = get_locked_pte(mm, addr, &ptl);
1465 if (!pte)
1466 goto out;
1467 retval = -EBUSY;
1468 if (!pte_none(*pte))
1469 goto out_unlock;
1470
1471 /* Ok, finally just insert the thing.. */
1472 get_page(page);
1473 inc_mm_counter_fast(mm, mm_counter_file(page));
1474 page_add_file_rmap(page, false);
1475 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477 retval = 0;
1478 out_unlock:
1479 pte_unmap_unlock(pte, ptl);
1480 out:
1481 return retval;
1482 }
1483
1484 /**
1485 * vm_insert_page - insert single page into user vma
1486 * @vma: user vma to map to
1487 * @addr: target user address of this page
1488 * @page: source kernel page
1489 *
1490 * This allows drivers to insert individual pages they've allocated
1491 * into a user vma.
1492 *
1493 * The page has to be a nice clean _individual_ kernel allocation.
1494 * If you allocate a compound page, you need to have marked it as
1495 * such (__GFP_COMP), or manually just split the page up yourself
1496 * (see split_page()).
1497 *
1498 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1499 * took an arbitrary page protection parameter. This doesn't allow
1500 * that. Your vma protection will have to be set up correctly, which
1501 * means that if you want a shared writable mapping, you'd better
1502 * ask for a shared writable mapping!
1503 *
1504 * The page does not need to be reserved.
1505 *
1506 * Usually this function is called from f_op->mmap() handler
1507 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1508 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1509 * function from other places, for example from page-fault handler.
1510 *
1511 * Return: %0 on success, negative error code otherwise.
1512 */
1513 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1514 struct page *page)
1515 {
1516 if (addr < vma->vm_start || addr >= vma->vm_end)
1517 return -EFAULT;
1518 if (!page_count(page))
1519 return -EINVAL;
1520 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1521 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1522 BUG_ON(vma->vm_flags & VM_PFNMAP);
1523 vma->vm_flags |= VM_MIXEDMAP;
1524 }
1525 return insert_page(vma, addr, page, vma->vm_page_prot);
1526 }
1527 EXPORT_SYMBOL(vm_insert_page);
1528
1529 /*
1530 * __vm_map_pages - maps range of kernel pages into user vma
1531 * @vma: user vma to map to
1532 * @pages: pointer to array of source kernel pages
1533 * @num: number of pages in page array
1534 * @offset: user's requested vm_pgoff
1535 *
1536 * This allows drivers to map range of kernel pages into a user vma.
1537 *
1538 * Return: 0 on success and error code otherwise.
1539 */
1540 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1541 unsigned long num, unsigned long offset)
1542 {
1543 unsigned long count = vma_pages(vma);
1544 unsigned long uaddr = vma->vm_start;
1545 int ret, i;
1546
1547 /* Fail if the user requested offset is beyond the end of the object */
1548 if (offset > num)
1549 return -ENXIO;
1550
1551 /* Fail if the user requested size exceeds available object size */
1552 if (count > num - offset)
1553 return -ENXIO;
1554
1555 for (i = 0; i < count; i++) {
1556 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1557 if (ret < 0)
1558 return ret;
1559 uaddr += PAGE_SIZE;
1560 }
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * vm_map_pages - maps range of kernel pages starts with non zero offset
1567 * @vma: user vma to map to
1568 * @pages: pointer to array of source kernel pages
1569 * @num: number of pages in page array
1570 *
1571 * Maps an object consisting of @num pages, catering for the user's
1572 * requested vm_pgoff
1573 *
1574 * If we fail to insert any page into the vma, the function will return
1575 * immediately leaving any previously inserted pages present. Callers
1576 * from the mmap handler may immediately return the error as their caller
1577 * will destroy the vma, removing any successfully inserted pages. Other
1578 * callers should make their own arrangements for calling unmap_region().
1579 *
1580 * Context: Process context. Called by mmap handlers.
1581 * Return: 0 on success and error code otherwise.
1582 */
1583 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1584 unsigned long num)
1585 {
1586 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1587 }
1588 EXPORT_SYMBOL(vm_map_pages);
1589
1590 /**
1591 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1592 * @vma: user vma to map to
1593 * @pages: pointer to array of source kernel pages
1594 * @num: number of pages in page array
1595 *
1596 * Similar to vm_map_pages(), except that it explicitly sets the offset
1597 * to 0. This function is intended for the drivers that did not consider
1598 * vm_pgoff.
1599 *
1600 * Context: Process context. Called by mmap handlers.
1601 * Return: 0 on success and error code otherwise.
1602 */
1603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1604 unsigned long num)
1605 {
1606 return __vm_map_pages(vma, pages, num, 0);
1607 }
1608 EXPORT_SYMBOL(vm_map_pages_zero);
1609
1610 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 pfn_t pfn, pgprot_t prot, bool mkwrite)
1612 {
1613 struct mm_struct *mm = vma->vm_mm;
1614 pte_t *pte, entry;
1615 spinlock_t *ptl;
1616
1617 pte = get_locked_pte(mm, addr, &ptl);
1618 if (!pte)
1619 return VM_FAULT_OOM;
1620 if (!pte_none(*pte)) {
1621 if (mkwrite) {
1622 /*
1623 * For read faults on private mappings the PFN passed
1624 * in may not match the PFN we have mapped if the
1625 * mapped PFN is a writeable COW page. In the mkwrite
1626 * case we are creating a writable PTE for a shared
1627 * mapping and we expect the PFNs to match. If they
1628 * don't match, we are likely racing with block
1629 * allocation and mapping invalidation so just skip the
1630 * update.
1631 */
1632 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1633 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1634 goto out_unlock;
1635 }
1636 entry = pte_mkyoung(*pte);
1637 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1638 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1639 update_mmu_cache(vma, addr, pte);
1640 }
1641 goto out_unlock;
1642 }
1643
1644 /* Ok, finally just insert the thing.. */
1645 if (pfn_t_devmap(pfn))
1646 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1647 else
1648 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1649
1650 if (mkwrite) {
1651 entry = pte_mkyoung(entry);
1652 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1653 }
1654
1655 set_pte_at(mm, addr, pte, entry);
1656 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1657
1658 out_unlock:
1659 pte_unmap_unlock(pte, ptl);
1660 return VM_FAULT_NOPAGE;
1661 }
1662
1663 /**
1664 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1665 * @vma: user vma to map to
1666 * @addr: target user address of this page
1667 * @pfn: source kernel pfn
1668 * @pgprot: pgprot flags for the inserted page
1669 *
1670 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1671 * to override pgprot on a per-page basis.
1672 *
1673 * This only makes sense for IO mappings, and it makes no sense for
1674 * COW mappings. In general, using multiple vmas is preferable;
1675 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1676 * impractical.
1677 *
1678 * Context: Process context. May allocate using %GFP_KERNEL.
1679 * Return: vm_fault_t value.
1680 */
1681 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1682 unsigned long pfn, pgprot_t pgprot)
1683 {
1684 /*
1685 * Technically, architectures with pte_special can avoid all these
1686 * restrictions (same for remap_pfn_range). However we would like
1687 * consistency in testing and feature parity among all, so we should
1688 * try to keep these invariants in place for everybody.
1689 */
1690 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1691 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1692 (VM_PFNMAP|VM_MIXEDMAP));
1693 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1694 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1695
1696 if (addr < vma->vm_start || addr >= vma->vm_end)
1697 return VM_FAULT_SIGBUS;
1698
1699 if (!pfn_modify_allowed(pfn, pgprot))
1700 return VM_FAULT_SIGBUS;
1701
1702 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1703
1704 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1705 false);
1706 }
1707 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1708
1709 /**
1710 * vmf_insert_pfn - insert single pfn into user vma
1711 * @vma: user vma to map to
1712 * @addr: target user address of this page
1713 * @pfn: source kernel pfn
1714 *
1715 * Similar to vm_insert_page, this allows drivers to insert individual pages
1716 * they've allocated into a user vma. Same comments apply.
1717 *
1718 * This function should only be called from a vm_ops->fault handler, and
1719 * in that case the handler should return the result of this function.
1720 *
1721 * vma cannot be a COW mapping.
1722 *
1723 * As this is called only for pages that do not currently exist, we
1724 * do not need to flush old virtual caches or the TLB.
1725 *
1726 * Context: Process context. May allocate using %GFP_KERNEL.
1727 * Return: vm_fault_t value.
1728 */
1729 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1730 unsigned long pfn)
1731 {
1732 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1733 }
1734 EXPORT_SYMBOL(vmf_insert_pfn);
1735
1736 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1737 {
1738 /* these checks mirror the abort conditions in vm_normal_page */
1739 if (vma->vm_flags & VM_MIXEDMAP)
1740 return true;
1741 if (pfn_t_devmap(pfn))
1742 return true;
1743 if (pfn_t_special(pfn))
1744 return true;
1745 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1746 return true;
1747 return false;
1748 }
1749
1750 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1751 unsigned long addr, pfn_t pfn, bool mkwrite)
1752 {
1753 pgprot_t pgprot = vma->vm_page_prot;
1754 int err;
1755
1756 BUG_ON(!vm_mixed_ok(vma, pfn));
1757
1758 if (addr < vma->vm_start || addr >= vma->vm_end)
1759 return VM_FAULT_SIGBUS;
1760
1761 track_pfn_insert(vma, &pgprot, pfn);
1762
1763 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1764 return VM_FAULT_SIGBUS;
1765
1766 /*
1767 * If we don't have pte special, then we have to use the pfn_valid()
1768 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1769 * refcount the page if pfn_valid is true (hence insert_page rather
1770 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1771 * without pte special, it would there be refcounted as a normal page.
1772 */
1773 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1774 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1775 struct page *page;
1776
1777 /*
1778 * At this point we are committed to insert_page()
1779 * regardless of whether the caller specified flags that
1780 * result in pfn_t_has_page() == false.
1781 */
1782 page = pfn_to_page(pfn_t_to_pfn(pfn));
1783 err = insert_page(vma, addr, page, pgprot);
1784 } else {
1785 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1786 }
1787
1788 if (err == -ENOMEM)
1789 return VM_FAULT_OOM;
1790 if (err < 0 && err != -EBUSY)
1791 return VM_FAULT_SIGBUS;
1792
1793 return VM_FAULT_NOPAGE;
1794 }
1795
1796 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1797 pfn_t pfn)
1798 {
1799 return __vm_insert_mixed(vma, addr, pfn, false);
1800 }
1801 EXPORT_SYMBOL(vmf_insert_mixed);
1802
1803 /*
1804 * If the insertion of PTE failed because someone else already added a
1805 * different entry in the mean time, we treat that as success as we assume
1806 * the same entry was actually inserted.
1807 */
1808 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1809 unsigned long addr, pfn_t pfn)
1810 {
1811 return __vm_insert_mixed(vma, addr, pfn, true);
1812 }
1813 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1814
1815 /*
1816 * maps a range of physical memory into the requested pages. the old
1817 * mappings are removed. any references to nonexistent pages results
1818 * in null mappings (currently treated as "copy-on-access")
1819 */
1820 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1821 unsigned long addr, unsigned long end,
1822 unsigned long pfn, pgprot_t prot)
1823 {
1824 pte_t *pte;
1825 spinlock_t *ptl;
1826 int err = 0;
1827
1828 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1829 if (!pte)
1830 return -ENOMEM;
1831 arch_enter_lazy_mmu_mode();
1832 do {
1833 BUG_ON(!pte_none(*pte));
1834 if (!pfn_modify_allowed(pfn, prot)) {
1835 err = -EACCES;
1836 break;
1837 }
1838 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1839 pfn++;
1840 } while (pte++, addr += PAGE_SIZE, addr != end);
1841 arch_leave_lazy_mmu_mode();
1842 pte_unmap_unlock(pte - 1, ptl);
1843 return err;
1844 }
1845
1846 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1847 unsigned long addr, unsigned long end,
1848 unsigned long pfn, pgprot_t prot)
1849 {
1850 pmd_t *pmd;
1851 unsigned long next;
1852 int err;
1853
1854 pfn -= addr >> PAGE_SHIFT;
1855 pmd = pmd_alloc(mm, pud, addr);
1856 if (!pmd)
1857 return -ENOMEM;
1858 VM_BUG_ON(pmd_trans_huge(*pmd));
1859 do {
1860 next = pmd_addr_end(addr, end);
1861 err = remap_pte_range(mm, pmd, addr, next,
1862 pfn + (addr >> PAGE_SHIFT), prot);
1863 if (err)
1864 return err;
1865 } while (pmd++, addr = next, addr != end);
1866 return 0;
1867 }
1868
1869 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1870 unsigned long addr, unsigned long end,
1871 unsigned long pfn, pgprot_t prot)
1872 {
1873 pud_t *pud;
1874 unsigned long next;
1875 int err;
1876
1877 pfn -= addr >> PAGE_SHIFT;
1878 pud = pud_alloc(mm, p4d, addr);
1879 if (!pud)
1880 return -ENOMEM;
1881 do {
1882 next = pud_addr_end(addr, end);
1883 err = remap_pmd_range(mm, pud, addr, next,
1884 pfn + (addr >> PAGE_SHIFT), prot);
1885 if (err)
1886 return err;
1887 } while (pud++, addr = next, addr != end);
1888 return 0;
1889 }
1890
1891 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1892 unsigned long addr, unsigned long end,
1893 unsigned long pfn, pgprot_t prot)
1894 {
1895 p4d_t *p4d;
1896 unsigned long next;
1897 int err;
1898
1899 pfn -= addr >> PAGE_SHIFT;
1900 p4d = p4d_alloc(mm, pgd, addr);
1901 if (!p4d)
1902 return -ENOMEM;
1903 do {
1904 next = p4d_addr_end(addr, end);
1905 err = remap_pud_range(mm, p4d, addr, next,
1906 pfn + (addr >> PAGE_SHIFT), prot);
1907 if (err)
1908 return err;
1909 } while (p4d++, addr = next, addr != end);
1910 return 0;
1911 }
1912
1913 /**
1914 * remap_pfn_range - remap kernel memory to userspace
1915 * @vma: user vma to map to
1916 * @addr: target user address to start at
1917 * @pfn: physical address of kernel memory
1918 * @size: size of map area
1919 * @prot: page protection flags for this mapping
1920 *
1921 * Note: this is only safe if the mm semaphore is held when called.
1922 *
1923 * Return: %0 on success, negative error code otherwise.
1924 */
1925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1926 unsigned long pfn, unsigned long size, pgprot_t prot)
1927 {
1928 pgd_t *pgd;
1929 unsigned long next;
1930 unsigned long end = addr + PAGE_ALIGN(size);
1931 struct mm_struct *mm = vma->vm_mm;
1932 unsigned long remap_pfn = pfn;
1933 int err;
1934
1935 /*
1936 * Physically remapped pages are special. Tell the
1937 * rest of the world about it:
1938 * VM_IO tells people not to look at these pages
1939 * (accesses can have side effects).
1940 * VM_PFNMAP tells the core MM that the base pages are just
1941 * raw PFN mappings, and do not have a "struct page" associated
1942 * with them.
1943 * VM_DONTEXPAND
1944 * Disable vma merging and expanding with mremap().
1945 * VM_DONTDUMP
1946 * Omit vma from core dump, even when VM_IO turned off.
1947 *
1948 * There's a horrible special case to handle copy-on-write
1949 * behaviour that some programs depend on. We mark the "original"
1950 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1951 * See vm_normal_page() for details.
1952 */
1953 if (is_cow_mapping(vma->vm_flags)) {
1954 if (addr != vma->vm_start || end != vma->vm_end)
1955 return -EINVAL;
1956 vma->vm_pgoff = pfn;
1957 }
1958
1959 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1960 if (err)
1961 return -EINVAL;
1962
1963 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1964
1965 BUG_ON(addr >= end);
1966 pfn -= addr >> PAGE_SHIFT;
1967 pgd = pgd_offset(mm, addr);
1968 flush_cache_range(vma, addr, end);
1969 do {
1970 next = pgd_addr_end(addr, end);
1971 err = remap_p4d_range(mm, pgd, addr, next,
1972 pfn + (addr >> PAGE_SHIFT), prot);
1973 if (err)
1974 break;
1975 } while (pgd++, addr = next, addr != end);
1976
1977 if (err)
1978 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1979
1980 return err;
1981 }
1982 EXPORT_SYMBOL(remap_pfn_range);
1983
1984 /**
1985 * vm_iomap_memory - remap memory to userspace
1986 * @vma: user vma to map to
1987 * @start: start of area
1988 * @len: size of area
1989 *
1990 * This is a simplified io_remap_pfn_range() for common driver use. The
1991 * driver just needs to give us the physical memory range to be mapped,
1992 * we'll figure out the rest from the vma information.
1993 *
1994 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1995 * whatever write-combining details or similar.
1996 *
1997 * Return: %0 on success, negative error code otherwise.
1998 */
1999 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2000 {
2001 unsigned long vm_len, pfn, pages;
2002
2003 /* Check that the physical memory area passed in looks valid */
2004 if (start + len < start)
2005 return -EINVAL;
2006 /*
2007 * You *really* shouldn't map things that aren't page-aligned,
2008 * but we've historically allowed it because IO memory might
2009 * just have smaller alignment.
2010 */
2011 len += start & ~PAGE_MASK;
2012 pfn = start >> PAGE_SHIFT;
2013 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2014 if (pfn + pages < pfn)
2015 return -EINVAL;
2016
2017 /* We start the mapping 'vm_pgoff' pages into the area */
2018 if (vma->vm_pgoff > pages)
2019 return -EINVAL;
2020 pfn += vma->vm_pgoff;
2021 pages -= vma->vm_pgoff;
2022
2023 /* Can we fit all of the mapping? */
2024 vm_len = vma->vm_end - vma->vm_start;
2025 if (vm_len >> PAGE_SHIFT > pages)
2026 return -EINVAL;
2027
2028 /* Ok, let it rip */
2029 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_iomap_memory);
2032
2033 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2034 unsigned long addr, unsigned long end,
2035 pte_fn_t fn, void *data)
2036 {
2037 pte_t *pte;
2038 int err;
2039 pgtable_t token;
2040 spinlock_t *uninitialized_var(ptl);
2041
2042 pte = (mm == &init_mm) ?
2043 pte_alloc_kernel(pmd, addr) :
2044 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2045 if (!pte)
2046 return -ENOMEM;
2047
2048 BUG_ON(pmd_huge(*pmd));
2049
2050 arch_enter_lazy_mmu_mode();
2051
2052 token = pmd_pgtable(*pmd);
2053
2054 do {
2055 err = fn(pte++, token, addr, data);
2056 if (err)
2057 break;
2058 } while (addr += PAGE_SIZE, addr != end);
2059
2060 arch_leave_lazy_mmu_mode();
2061
2062 if (mm != &init_mm)
2063 pte_unmap_unlock(pte-1, ptl);
2064 return err;
2065 }
2066
2067 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2068 unsigned long addr, unsigned long end,
2069 pte_fn_t fn, void *data)
2070 {
2071 pmd_t *pmd;
2072 unsigned long next;
2073 int err;
2074
2075 BUG_ON(pud_huge(*pud));
2076
2077 pmd = pmd_alloc(mm, pud, addr);
2078 if (!pmd)
2079 return -ENOMEM;
2080 do {
2081 next = pmd_addr_end(addr, end);
2082 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2083 if (err)
2084 break;
2085 } while (pmd++, addr = next, addr != end);
2086 return err;
2087 }
2088
2089 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2090 unsigned long addr, unsigned long end,
2091 pte_fn_t fn, void *data)
2092 {
2093 pud_t *pud;
2094 unsigned long next;
2095 int err;
2096
2097 pud = pud_alloc(mm, p4d, addr);
2098 if (!pud)
2099 return -ENOMEM;
2100 do {
2101 next = pud_addr_end(addr, end);
2102 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2103 if (err)
2104 break;
2105 } while (pud++, addr = next, addr != end);
2106 return err;
2107 }
2108
2109 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2110 unsigned long addr, unsigned long end,
2111 pte_fn_t fn, void *data)
2112 {
2113 p4d_t *p4d;
2114 unsigned long next;
2115 int err;
2116
2117 p4d = p4d_alloc(mm, pgd, addr);
2118 if (!p4d)
2119 return -ENOMEM;
2120 do {
2121 next = p4d_addr_end(addr, end);
2122 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2123 if (err)
2124 break;
2125 } while (p4d++, addr = next, addr != end);
2126 return err;
2127 }
2128
2129 /*
2130 * Scan a region of virtual memory, filling in page tables as necessary
2131 * and calling a provided function on each leaf page table.
2132 */
2133 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2134 unsigned long size, pte_fn_t fn, void *data)
2135 {
2136 pgd_t *pgd;
2137 unsigned long next;
2138 unsigned long end = addr + size;
2139 int err;
2140
2141 if (WARN_ON(addr >= end))
2142 return -EINVAL;
2143
2144 pgd = pgd_offset(mm, addr);
2145 do {
2146 next = pgd_addr_end(addr, end);
2147 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2148 if (err)
2149 break;
2150 } while (pgd++, addr = next, addr != end);
2151
2152 return err;
2153 }
2154 EXPORT_SYMBOL_GPL(apply_to_page_range);
2155
2156 /*
2157 * handle_pte_fault chooses page fault handler according to an entry which was
2158 * read non-atomically. Before making any commitment, on those architectures
2159 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2160 * parts, do_swap_page must check under lock before unmapping the pte and
2161 * proceeding (but do_wp_page is only called after already making such a check;
2162 * and do_anonymous_page can safely check later on).
2163 */
2164 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2165 pte_t *page_table, pte_t orig_pte)
2166 {
2167 int same = 1;
2168 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2169 if (sizeof(pte_t) > sizeof(unsigned long)) {
2170 spinlock_t *ptl = pte_lockptr(mm, pmd);
2171 spin_lock(ptl);
2172 same = pte_same(*page_table, orig_pte);
2173 spin_unlock(ptl);
2174 }
2175 #endif
2176 pte_unmap(page_table);
2177 return same;
2178 }
2179
2180 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2181 {
2182 debug_dma_assert_idle(src);
2183
2184 /*
2185 * If the source page was a PFN mapping, we don't have
2186 * a "struct page" for it. We do a best-effort copy by
2187 * just copying from the original user address. If that
2188 * fails, we just zero-fill it. Live with it.
2189 */
2190 if (unlikely(!src)) {
2191 void *kaddr = kmap_atomic(dst);
2192 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2193
2194 /*
2195 * This really shouldn't fail, because the page is there
2196 * in the page tables. But it might just be unreadable,
2197 * in which case we just give up and fill the result with
2198 * zeroes.
2199 */
2200 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2201 clear_page(kaddr);
2202 kunmap_atomic(kaddr);
2203 flush_dcache_page(dst);
2204 } else
2205 copy_user_highpage(dst, src, va, vma);
2206 }
2207
2208 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2209 {
2210 struct file *vm_file = vma->vm_file;
2211
2212 if (vm_file)
2213 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2214
2215 /*
2216 * Special mappings (e.g. VDSO) do not have any file so fake
2217 * a default GFP_KERNEL for them.
2218 */
2219 return GFP_KERNEL;
2220 }
2221
2222 /*
2223 * Notify the address space that the page is about to become writable so that
2224 * it can prohibit this or wait for the page to get into an appropriate state.
2225 *
2226 * We do this without the lock held, so that it can sleep if it needs to.
2227 */
2228 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2229 {
2230 vm_fault_t ret;
2231 struct page *page = vmf->page;
2232 unsigned int old_flags = vmf->flags;
2233
2234 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2235
2236 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2237 /* Restore original flags so that caller is not surprised */
2238 vmf->flags = old_flags;
2239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2240 return ret;
2241 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2242 lock_page(page);
2243 if (!page->mapping) {
2244 unlock_page(page);
2245 return 0; /* retry */
2246 }
2247 ret |= VM_FAULT_LOCKED;
2248 } else
2249 VM_BUG_ON_PAGE(!PageLocked(page), page);
2250 return ret;
2251 }
2252
2253 /*
2254 * Handle dirtying of a page in shared file mapping on a write fault.
2255 *
2256 * The function expects the page to be locked and unlocks it.
2257 */
2258 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2259 struct page *page)
2260 {
2261 struct address_space *mapping;
2262 bool dirtied;
2263 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2264
2265 dirtied = set_page_dirty(page);
2266 VM_BUG_ON_PAGE(PageAnon(page), page);
2267 /*
2268 * Take a local copy of the address_space - page.mapping may be zeroed
2269 * by truncate after unlock_page(). The address_space itself remains
2270 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2271 * release semantics to prevent the compiler from undoing this copying.
2272 */
2273 mapping = page_rmapping(page);
2274 unlock_page(page);
2275
2276 if ((dirtied || page_mkwrite) && mapping) {
2277 /*
2278 * Some device drivers do not set page.mapping
2279 * but still dirty their pages
2280 */
2281 balance_dirty_pages_ratelimited(mapping);
2282 }
2283
2284 if (!page_mkwrite)
2285 file_update_time(vma->vm_file);
2286 }
2287
2288 /*
2289 * Handle write page faults for pages that can be reused in the current vma
2290 *
2291 * This can happen either due to the mapping being with the VM_SHARED flag,
2292 * or due to us being the last reference standing to the page. In either
2293 * case, all we need to do here is to mark the page as writable and update
2294 * any related book-keeping.
2295 */
2296 static inline void wp_page_reuse(struct vm_fault *vmf)
2297 __releases(vmf->ptl)
2298 {
2299 struct vm_area_struct *vma = vmf->vma;
2300 struct page *page = vmf->page;
2301 pte_t entry;
2302 /*
2303 * Clear the pages cpupid information as the existing
2304 * information potentially belongs to a now completely
2305 * unrelated process.
2306 */
2307 if (page)
2308 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2309
2310 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2311 entry = pte_mkyoung(vmf->orig_pte);
2312 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2314 update_mmu_cache(vma, vmf->address, vmf->pte);
2315 pte_unmap_unlock(vmf->pte, vmf->ptl);
2316 }
2317
2318 /*
2319 * Handle the case of a page which we actually need to copy to a new page.
2320 *
2321 * Called with mmap_sem locked and the old page referenced, but
2322 * without the ptl held.
2323 *
2324 * High level logic flow:
2325 *
2326 * - Allocate a page, copy the content of the old page to the new one.
2327 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2328 * - Take the PTL. If the pte changed, bail out and release the allocated page
2329 * - If the pte is still the way we remember it, update the page table and all
2330 * relevant references. This includes dropping the reference the page-table
2331 * held to the old page, as well as updating the rmap.
2332 * - In any case, unlock the PTL and drop the reference we took to the old page.
2333 */
2334 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2335 {
2336 struct vm_area_struct *vma = vmf->vma;
2337 struct mm_struct *mm = vma->vm_mm;
2338 struct page *old_page = vmf->page;
2339 struct page *new_page = NULL;
2340 pte_t entry;
2341 int page_copied = 0;
2342 struct mem_cgroup *memcg;
2343 struct mmu_notifier_range range;
2344
2345 if (unlikely(anon_vma_prepare(vma)))
2346 goto oom;
2347
2348 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2349 new_page = alloc_zeroed_user_highpage_movable(vma,
2350 vmf->address);
2351 if (!new_page)
2352 goto oom;
2353 } else {
2354 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2355 vmf->address);
2356 if (!new_page)
2357 goto oom;
2358 cow_user_page(new_page, old_page, vmf->address, vma);
2359 }
2360
2361 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2362 goto oom_free_new;
2363
2364 __SetPageUptodate(new_page);
2365
2366 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2367 vmf->address & PAGE_MASK,
2368 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2369 mmu_notifier_invalidate_range_start(&range);
2370
2371 /*
2372 * Re-check the pte - we dropped the lock
2373 */
2374 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2375 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2376 if (old_page) {
2377 if (!PageAnon(old_page)) {
2378 dec_mm_counter_fast(mm,
2379 mm_counter_file(old_page));
2380 inc_mm_counter_fast(mm, MM_ANONPAGES);
2381 }
2382 } else {
2383 inc_mm_counter_fast(mm, MM_ANONPAGES);
2384 }
2385 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2386 entry = mk_pte(new_page, vma->vm_page_prot);
2387 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2388 /*
2389 * Clear the pte entry and flush it first, before updating the
2390 * pte with the new entry. This will avoid a race condition
2391 * seen in the presence of one thread doing SMC and another
2392 * thread doing COW.
2393 */
2394 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2395 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2396 mem_cgroup_commit_charge(new_page, memcg, false, false);
2397 lru_cache_add_active_or_unevictable(new_page, vma);
2398 /*
2399 * We call the notify macro here because, when using secondary
2400 * mmu page tables (such as kvm shadow page tables), we want the
2401 * new page to be mapped directly into the secondary page table.
2402 */
2403 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2404 update_mmu_cache(vma, vmf->address, vmf->pte);
2405 if (old_page) {
2406 /*
2407 * Only after switching the pte to the new page may
2408 * we remove the mapcount here. Otherwise another
2409 * process may come and find the rmap count decremented
2410 * before the pte is switched to the new page, and
2411 * "reuse" the old page writing into it while our pte
2412 * here still points into it and can be read by other
2413 * threads.
2414 *
2415 * The critical issue is to order this
2416 * page_remove_rmap with the ptp_clear_flush above.
2417 * Those stores are ordered by (if nothing else,)
2418 * the barrier present in the atomic_add_negative
2419 * in page_remove_rmap.
2420 *
2421 * Then the TLB flush in ptep_clear_flush ensures that
2422 * no process can access the old page before the
2423 * decremented mapcount is visible. And the old page
2424 * cannot be reused until after the decremented
2425 * mapcount is visible. So transitively, TLBs to
2426 * old page will be flushed before it can be reused.
2427 */
2428 page_remove_rmap(old_page, false);
2429 }
2430
2431 /* Free the old page.. */
2432 new_page = old_page;
2433 page_copied = 1;
2434 } else {
2435 mem_cgroup_cancel_charge(new_page, memcg, false);
2436 }
2437
2438 if (new_page)
2439 put_page(new_page);
2440
2441 pte_unmap_unlock(vmf->pte, vmf->ptl);
2442 /*
2443 * No need to double call mmu_notifier->invalidate_range() callback as
2444 * the above ptep_clear_flush_notify() did already call it.
2445 */
2446 mmu_notifier_invalidate_range_only_end(&range);
2447 if (old_page) {
2448 /*
2449 * Don't let another task, with possibly unlocked vma,
2450 * keep the mlocked page.
2451 */
2452 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2453 lock_page(old_page); /* LRU manipulation */
2454 if (PageMlocked(old_page))
2455 munlock_vma_page(old_page);
2456 unlock_page(old_page);
2457 }
2458 put_page(old_page);
2459 }
2460 return page_copied ? VM_FAULT_WRITE : 0;
2461 oom_free_new:
2462 put_page(new_page);
2463 oom:
2464 if (old_page)
2465 put_page(old_page);
2466 return VM_FAULT_OOM;
2467 }
2468
2469 /**
2470 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2471 * writeable once the page is prepared
2472 *
2473 * @vmf: structure describing the fault
2474 *
2475 * This function handles all that is needed to finish a write page fault in a
2476 * shared mapping due to PTE being read-only once the mapped page is prepared.
2477 * It handles locking of PTE and modifying it.
2478 *
2479 * The function expects the page to be locked or other protection against
2480 * concurrent faults / writeback (such as DAX radix tree locks).
2481 *
2482 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2483 * we acquired PTE lock.
2484 */
2485 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2486 {
2487 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2488 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2489 &vmf->ptl);
2490 /*
2491 * We might have raced with another page fault while we released the
2492 * pte_offset_map_lock.
2493 */
2494 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2495 pte_unmap_unlock(vmf->pte, vmf->ptl);
2496 return VM_FAULT_NOPAGE;
2497 }
2498 wp_page_reuse(vmf);
2499 return 0;
2500 }
2501
2502 /*
2503 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2504 * mapping
2505 */
2506 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2507 {
2508 struct vm_area_struct *vma = vmf->vma;
2509
2510 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2511 vm_fault_t ret;
2512
2513 pte_unmap_unlock(vmf->pte, vmf->ptl);
2514 vmf->flags |= FAULT_FLAG_MKWRITE;
2515 ret = vma->vm_ops->pfn_mkwrite(vmf);
2516 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2517 return ret;
2518 return finish_mkwrite_fault(vmf);
2519 }
2520 wp_page_reuse(vmf);
2521 return VM_FAULT_WRITE;
2522 }
2523
2524 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2525 __releases(vmf->ptl)
2526 {
2527 struct vm_area_struct *vma = vmf->vma;
2528
2529 get_page(vmf->page);
2530
2531 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2532 vm_fault_t tmp;
2533
2534 pte_unmap_unlock(vmf->pte, vmf->ptl);
2535 tmp = do_page_mkwrite(vmf);
2536 if (unlikely(!tmp || (tmp &
2537 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2538 put_page(vmf->page);
2539 return tmp;
2540 }
2541 tmp = finish_mkwrite_fault(vmf);
2542 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2543 unlock_page(vmf->page);
2544 put_page(vmf->page);
2545 return tmp;
2546 }
2547 } else {
2548 wp_page_reuse(vmf);
2549 lock_page(vmf->page);
2550 }
2551 fault_dirty_shared_page(vma, vmf->page);
2552 put_page(vmf->page);
2553
2554 return VM_FAULT_WRITE;
2555 }
2556
2557 /*
2558 * This routine handles present pages, when users try to write
2559 * to a shared page. It is done by copying the page to a new address
2560 * and decrementing the shared-page counter for the old page.
2561 *
2562 * Note that this routine assumes that the protection checks have been
2563 * done by the caller (the low-level page fault routine in most cases).
2564 * Thus we can safely just mark it writable once we've done any necessary
2565 * COW.
2566 *
2567 * We also mark the page dirty at this point even though the page will
2568 * change only once the write actually happens. This avoids a few races,
2569 * and potentially makes it more efficient.
2570 *
2571 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2572 * but allow concurrent faults), with pte both mapped and locked.
2573 * We return with mmap_sem still held, but pte unmapped and unlocked.
2574 */
2575 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2576 __releases(vmf->ptl)
2577 {
2578 struct vm_area_struct *vma = vmf->vma;
2579
2580 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2581 if (!vmf->page) {
2582 /*
2583 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2584 * VM_PFNMAP VMA.
2585 *
2586 * We should not cow pages in a shared writeable mapping.
2587 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2588 */
2589 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2590 (VM_WRITE|VM_SHARED))
2591 return wp_pfn_shared(vmf);
2592
2593 pte_unmap_unlock(vmf->pte, vmf->ptl);
2594 return wp_page_copy(vmf);
2595 }
2596
2597 /*
2598 * Take out anonymous pages first, anonymous shared vmas are
2599 * not dirty accountable.
2600 */
2601 if (PageAnon(vmf->page)) {
2602 int total_map_swapcount;
2603 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2604 page_count(vmf->page) != 1))
2605 goto copy;
2606 if (!trylock_page(vmf->page)) {
2607 get_page(vmf->page);
2608 pte_unmap_unlock(vmf->pte, vmf->ptl);
2609 lock_page(vmf->page);
2610 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2611 vmf->address, &vmf->ptl);
2612 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2613 unlock_page(vmf->page);
2614 pte_unmap_unlock(vmf->pte, vmf->ptl);
2615 put_page(vmf->page);
2616 return 0;
2617 }
2618 put_page(vmf->page);
2619 }
2620 if (PageKsm(vmf->page)) {
2621 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2622 vmf->address);
2623 unlock_page(vmf->page);
2624 if (!reused)
2625 goto copy;
2626 wp_page_reuse(vmf);
2627 return VM_FAULT_WRITE;
2628 }
2629 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2630 if (total_map_swapcount == 1) {
2631 /*
2632 * The page is all ours. Move it to
2633 * our anon_vma so the rmap code will
2634 * not search our parent or siblings.
2635 * Protected against the rmap code by
2636 * the page lock.
2637 */
2638 page_move_anon_rmap(vmf->page, vma);
2639 }
2640 unlock_page(vmf->page);
2641 wp_page_reuse(vmf);
2642 return VM_FAULT_WRITE;
2643 }
2644 unlock_page(vmf->page);
2645 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2646 (VM_WRITE|VM_SHARED))) {
2647 return wp_page_shared(vmf);
2648 }
2649 copy:
2650 /*
2651 * Ok, we need to copy. Oh, well..
2652 */
2653 get_page(vmf->page);
2654
2655 pte_unmap_unlock(vmf->pte, vmf->ptl);
2656 return wp_page_copy(vmf);
2657 }
2658
2659 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2660 unsigned long start_addr, unsigned long end_addr,
2661 struct zap_details *details)
2662 {
2663 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2664 }
2665
2666 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2667 struct zap_details *details)
2668 {
2669 struct vm_area_struct *vma;
2670 pgoff_t vba, vea, zba, zea;
2671
2672 vma_interval_tree_foreach(vma, root,
2673 details->first_index, details->last_index) {
2674
2675 vba = vma->vm_pgoff;
2676 vea = vba + vma_pages(vma) - 1;
2677 zba = details->first_index;
2678 if (zba < vba)
2679 zba = vba;
2680 zea = details->last_index;
2681 if (zea > vea)
2682 zea = vea;
2683
2684 unmap_mapping_range_vma(vma,
2685 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2686 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2687 details);
2688 }
2689 }
2690
2691 /**
2692 * unmap_mapping_pages() - Unmap pages from processes.
2693 * @mapping: The address space containing pages to be unmapped.
2694 * @start: Index of first page to be unmapped.
2695 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2696 * @even_cows: Whether to unmap even private COWed pages.
2697 *
2698 * Unmap the pages in this address space from any userspace process which
2699 * has them mmaped. Generally, you want to remove COWed pages as well when
2700 * a file is being truncated, but not when invalidating pages from the page
2701 * cache.
2702 */
2703 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2704 pgoff_t nr, bool even_cows)
2705 {
2706 struct zap_details details = { };
2707
2708 details.check_mapping = even_cows ? NULL : mapping;
2709 details.first_index = start;
2710 details.last_index = start + nr - 1;
2711 if (details.last_index < details.first_index)
2712 details.last_index = ULONG_MAX;
2713
2714 i_mmap_lock_write(mapping);
2715 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2716 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2717 i_mmap_unlock_write(mapping);
2718 }
2719
2720 /**
2721 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2722 * address_space corresponding to the specified byte range in the underlying
2723 * file.
2724 *
2725 * @mapping: the address space containing mmaps to be unmapped.
2726 * @holebegin: byte in first page to unmap, relative to the start of
2727 * the underlying file. This will be rounded down to a PAGE_SIZE
2728 * boundary. Note that this is different from truncate_pagecache(), which
2729 * must keep the partial page. In contrast, we must get rid of
2730 * partial pages.
2731 * @holelen: size of prospective hole in bytes. This will be rounded
2732 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2733 * end of the file.
2734 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2735 * but 0 when invalidating pagecache, don't throw away private data.
2736 */
2737 void unmap_mapping_range(struct address_space *mapping,
2738 loff_t const holebegin, loff_t const holelen, int even_cows)
2739 {
2740 pgoff_t hba = holebegin >> PAGE_SHIFT;
2741 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2742
2743 /* Check for overflow. */
2744 if (sizeof(holelen) > sizeof(hlen)) {
2745 long long holeend =
2746 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2747 if (holeend & ~(long long)ULONG_MAX)
2748 hlen = ULONG_MAX - hba + 1;
2749 }
2750
2751 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2752 }
2753 EXPORT_SYMBOL(unmap_mapping_range);
2754
2755 /*
2756 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2757 * but allow concurrent faults), and pte mapped but not yet locked.
2758 * We return with pte unmapped and unlocked.
2759 *
2760 * We return with the mmap_sem locked or unlocked in the same cases
2761 * as does filemap_fault().
2762 */
2763 vm_fault_t do_swap_page(struct vm_fault *vmf)
2764 {
2765 struct vm_area_struct *vma = vmf->vma;
2766 struct page *page = NULL, *swapcache;
2767 struct mem_cgroup *memcg;
2768 swp_entry_t entry;
2769 pte_t pte;
2770 int locked;
2771 int exclusive = 0;
2772 vm_fault_t ret = 0;
2773
2774 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2775 goto out;
2776
2777 entry = pte_to_swp_entry(vmf->orig_pte);
2778 if (unlikely(non_swap_entry(entry))) {
2779 if (is_migration_entry(entry)) {
2780 migration_entry_wait(vma->vm_mm, vmf->pmd,
2781 vmf->address);
2782 } else if (is_device_private_entry(entry)) {
2783 /*
2784 * For un-addressable device memory we call the pgmap
2785 * fault handler callback. The callback must migrate
2786 * the page back to some CPU accessible page.
2787 */
2788 ret = device_private_entry_fault(vma, vmf->address, entry,
2789 vmf->flags, vmf->pmd);
2790 } else if (is_hwpoison_entry(entry)) {
2791 ret = VM_FAULT_HWPOISON;
2792 } else {
2793 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2794 ret = VM_FAULT_SIGBUS;
2795 }
2796 goto out;
2797 }
2798
2799
2800 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2801 page = lookup_swap_cache(entry, vma, vmf->address);
2802 swapcache = page;
2803
2804 if (!page) {
2805 struct swap_info_struct *si = swp_swap_info(entry);
2806
2807 if (si->flags & SWP_SYNCHRONOUS_IO &&
2808 __swap_count(entry) == 1) {
2809 /* skip swapcache */
2810 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2811 vmf->address);
2812 if (page) {
2813 __SetPageLocked(page);
2814 __SetPageSwapBacked(page);
2815 set_page_private(page, entry.val);
2816 lru_cache_add_anon(page);
2817 swap_readpage(page, true);
2818 }
2819 } else {
2820 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2821 vmf);
2822 swapcache = page;
2823 }
2824
2825 if (!page) {
2826 /*
2827 * Back out if somebody else faulted in this pte
2828 * while we released the pte lock.
2829 */
2830 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2831 vmf->address, &vmf->ptl);
2832 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2833 ret = VM_FAULT_OOM;
2834 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2835 goto unlock;
2836 }
2837
2838 /* Had to read the page from swap area: Major fault */
2839 ret = VM_FAULT_MAJOR;
2840 count_vm_event(PGMAJFAULT);
2841 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2842 } else if (PageHWPoison(page)) {
2843 /*
2844 * hwpoisoned dirty swapcache pages are kept for killing
2845 * owner processes (which may be unknown at hwpoison time)
2846 */
2847 ret = VM_FAULT_HWPOISON;
2848 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2849 goto out_release;
2850 }
2851
2852 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2853
2854 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2855 if (!locked) {
2856 ret |= VM_FAULT_RETRY;
2857 goto out_release;
2858 }
2859
2860 /*
2861 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2862 * release the swapcache from under us. The page pin, and pte_same
2863 * test below, are not enough to exclude that. Even if it is still
2864 * swapcache, we need to check that the page's swap has not changed.
2865 */
2866 if (unlikely((!PageSwapCache(page) ||
2867 page_private(page) != entry.val)) && swapcache)
2868 goto out_page;
2869
2870 page = ksm_might_need_to_copy(page, vma, vmf->address);
2871 if (unlikely(!page)) {
2872 ret = VM_FAULT_OOM;
2873 page = swapcache;
2874 goto out_page;
2875 }
2876
2877 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2878 &memcg, false)) {
2879 ret = VM_FAULT_OOM;
2880 goto out_page;
2881 }
2882
2883 /*
2884 * Back out if somebody else already faulted in this pte.
2885 */
2886 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2887 &vmf->ptl);
2888 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2889 goto out_nomap;
2890
2891 if (unlikely(!PageUptodate(page))) {
2892 ret = VM_FAULT_SIGBUS;
2893 goto out_nomap;
2894 }
2895
2896 /*
2897 * The page isn't present yet, go ahead with the fault.
2898 *
2899 * Be careful about the sequence of operations here.
2900 * To get its accounting right, reuse_swap_page() must be called
2901 * while the page is counted on swap but not yet in mapcount i.e.
2902 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2903 * must be called after the swap_free(), or it will never succeed.
2904 */
2905
2906 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2907 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2908 pte = mk_pte(page, vma->vm_page_prot);
2909 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2910 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2911 vmf->flags &= ~FAULT_FLAG_WRITE;
2912 ret |= VM_FAULT_WRITE;
2913 exclusive = RMAP_EXCLUSIVE;
2914 }
2915 flush_icache_page(vma, page);
2916 if (pte_swp_soft_dirty(vmf->orig_pte))
2917 pte = pte_mksoft_dirty(pte);
2918 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2919 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2920 vmf->orig_pte = pte;
2921
2922 /* ksm created a completely new copy */
2923 if (unlikely(page != swapcache && swapcache)) {
2924 page_add_new_anon_rmap(page, vma, vmf->address, false);
2925 mem_cgroup_commit_charge(page, memcg, false, false);
2926 lru_cache_add_active_or_unevictable(page, vma);
2927 } else {
2928 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2929 mem_cgroup_commit_charge(page, memcg, true, false);
2930 activate_page(page);
2931 }
2932
2933 swap_free(entry);
2934 if (mem_cgroup_swap_full(page) ||
2935 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2936 try_to_free_swap(page);
2937 unlock_page(page);
2938 if (page != swapcache && swapcache) {
2939 /*
2940 * Hold the lock to avoid the swap entry to be reused
2941 * until we take the PT lock for the pte_same() check
2942 * (to avoid false positives from pte_same). For
2943 * further safety release the lock after the swap_free
2944 * so that the swap count won't change under a
2945 * parallel locked swapcache.
2946 */
2947 unlock_page(swapcache);
2948 put_page(swapcache);
2949 }
2950
2951 if (vmf->flags & FAULT_FLAG_WRITE) {
2952 ret |= do_wp_page(vmf);
2953 if (ret & VM_FAULT_ERROR)
2954 ret &= VM_FAULT_ERROR;
2955 goto out;
2956 }
2957
2958 /* No need to invalidate - it was non-present before */
2959 update_mmu_cache(vma, vmf->address, vmf->pte);
2960 unlock:
2961 pte_unmap_unlock(vmf->pte, vmf->ptl);
2962 out:
2963 return ret;
2964 out_nomap:
2965 mem_cgroup_cancel_charge(page, memcg, false);
2966 pte_unmap_unlock(vmf->pte, vmf->ptl);
2967 out_page:
2968 unlock_page(page);
2969 out_release:
2970 put_page(page);
2971 if (page != swapcache && swapcache) {
2972 unlock_page(swapcache);
2973 put_page(swapcache);
2974 }
2975 return ret;
2976 }
2977
2978 /*
2979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2980 * but allow concurrent faults), and pte mapped but not yet locked.
2981 * We return with mmap_sem still held, but pte unmapped and unlocked.
2982 */
2983 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2984 {
2985 struct vm_area_struct *vma = vmf->vma;
2986 struct mem_cgroup *memcg;
2987 struct page *page;
2988 vm_fault_t ret = 0;
2989 pte_t entry;
2990
2991 /* File mapping without ->vm_ops ? */
2992 if (vma->vm_flags & VM_SHARED)
2993 return VM_FAULT_SIGBUS;
2994
2995 /*
2996 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2997 * pte_offset_map() on pmds where a huge pmd might be created
2998 * from a different thread.
2999 *
3000 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3001 * parallel threads are excluded by other means.
3002 *
3003 * Here we only have down_read(mmap_sem).
3004 */
3005 if (pte_alloc(vma->vm_mm, vmf->pmd))
3006 return VM_FAULT_OOM;
3007
3008 /* See the comment in pte_alloc_one_map() */
3009 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3010 return 0;
3011
3012 /* Use the zero-page for reads */
3013 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3014 !mm_forbids_zeropage(vma->vm_mm)) {
3015 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3016 vma->vm_page_prot));
3017 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3018 vmf->address, &vmf->ptl);
3019 if (!pte_none(*vmf->pte))
3020 goto unlock;
3021 ret = check_stable_address_space(vma->vm_mm);
3022 if (ret)
3023 goto unlock;
3024 /* Deliver the page fault to userland, check inside PT lock */
3025 if (userfaultfd_missing(vma)) {
3026 pte_unmap_unlock(vmf->pte, vmf->ptl);
3027 return handle_userfault(vmf, VM_UFFD_MISSING);
3028 }
3029 goto setpte;
3030 }
3031
3032 /* Allocate our own private page. */
3033 if (unlikely(anon_vma_prepare(vma)))
3034 goto oom;
3035 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3036 if (!page)
3037 goto oom;
3038
3039 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3040 false))
3041 goto oom_free_page;
3042
3043 /*
3044 * The memory barrier inside __SetPageUptodate makes sure that
3045 * preceeding stores to the page contents become visible before
3046 * the set_pte_at() write.
3047 */
3048 __SetPageUptodate(page);
3049
3050 entry = mk_pte(page, vma->vm_page_prot);
3051 if (vma->vm_flags & VM_WRITE)
3052 entry = pte_mkwrite(pte_mkdirty(entry));
3053
3054 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3055 &vmf->ptl);
3056 if (!pte_none(*vmf->pte))
3057 goto release;
3058
3059 ret = check_stable_address_space(vma->vm_mm);
3060 if (ret)
3061 goto release;
3062
3063 /* Deliver the page fault to userland, check inside PT lock */
3064 if (userfaultfd_missing(vma)) {
3065 pte_unmap_unlock(vmf->pte, vmf->ptl);
3066 mem_cgroup_cancel_charge(page, memcg, false);
3067 put_page(page);
3068 return handle_userfault(vmf, VM_UFFD_MISSING);
3069 }
3070
3071 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3072 page_add_new_anon_rmap(page, vma, vmf->address, false);
3073 mem_cgroup_commit_charge(page, memcg, false, false);
3074 lru_cache_add_active_or_unevictable(page, vma);
3075 setpte:
3076 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3077
3078 /* No need to invalidate - it was non-present before */
3079 update_mmu_cache(vma, vmf->address, vmf->pte);
3080 unlock:
3081 pte_unmap_unlock(vmf->pte, vmf->ptl);
3082 return ret;
3083 release:
3084 mem_cgroup_cancel_charge(page, memcg, false);
3085 put_page(page);
3086 goto unlock;
3087 oom_free_page:
3088 put_page(page);
3089 oom:
3090 return VM_FAULT_OOM;
3091 }
3092
3093 /*
3094 * The mmap_sem must have been held on entry, and may have been
3095 * released depending on flags and vma->vm_ops->fault() return value.
3096 * See filemap_fault() and __lock_page_retry().
3097 */
3098 static vm_fault_t __do_fault(struct vm_fault *vmf)
3099 {
3100 struct vm_area_struct *vma = vmf->vma;
3101 vm_fault_t ret;
3102
3103 /*
3104 * Preallocate pte before we take page_lock because this might lead to
3105 * deadlocks for memcg reclaim which waits for pages under writeback:
3106 * lock_page(A)
3107 * SetPageWriteback(A)
3108 * unlock_page(A)
3109 * lock_page(B)
3110 * lock_page(B)
3111 * pte_alloc_pne
3112 * shrink_page_list
3113 * wait_on_page_writeback(A)
3114 * SetPageWriteback(B)
3115 * unlock_page(B)
3116 * # flush A, B to clear the writeback
3117 */
3118 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3119 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3120 if (!vmf->prealloc_pte)
3121 return VM_FAULT_OOM;
3122 smp_wmb(); /* See comment in __pte_alloc() */
3123 }
3124
3125 ret = vma->vm_ops->fault(vmf);
3126 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3127 VM_FAULT_DONE_COW)))
3128 return ret;
3129
3130 if (unlikely(PageHWPoison(vmf->page))) {
3131 if (ret & VM_FAULT_LOCKED)
3132 unlock_page(vmf->page);
3133 put_page(vmf->page);
3134 vmf->page = NULL;
3135 return VM_FAULT_HWPOISON;
3136 }
3137
3138 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3139 lock_page(vmf->page);
3140 else
3141 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3142
3143 return ret;
3144 }
3145
3146 /*
3147 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3148 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3149 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3150 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3151 */
3152 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3153 {
3154 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3155 }
3156
3157 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3158 {
3159 struct vm_area_struct *vma = vmf->vma;
3160
3161 if (!pmd_none(*vmf->pmd))
3162 goto map_pte;
3163 if (vmf->prealloc_pte) {
3164 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3165 if (unlikely(!pmd_none(*vmf->pmd))) {
3166 spin_unlock(vmf->ptl);
3167 goto map_pte;
3168 }
3169
3170 mm_inc_nr_ptes(vma->vm_mm);
3171 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3172 spin_unlock(vmf->ptl);
3173 vmf->prealloc_pte = NULL;
3174 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3175 return VM_FAULT_OOM;
3176 }
3177 map_pte:
3178 /*
3179 * If a huge pmd materialized under us just retry later. Use
3180 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3181 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3182 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3183 * running immediately after a huge pmd fault in a different thread of
3184 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3185 * All we have to ensure is that it is a regular pmd that we can walk
3186 * with pte_offset_map() and we can do that through an atomic read in
3187 * C, which is what pmd_trans_unstable() provides.
3188 */
3189 if (pmd_devmap_trans_unstable(vmf->pmd))
3190 return VM_FAULT_NOPAGE;
3191
3192 /*
3193 * At this point we know that our vmf->pmd points to a page of ptes
3194 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3195 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3196 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3197 * be valid and we will re-check to make sure the vmf->pte isn't
3198 * pte_none() under vmf->ptl protection when we return to
3199 * alloc_set_pte().
3200 */
3201 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3202 &vmf->ptl);
3203 return 0;
3204 }
3205
3206 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3207
3208 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3209 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3210 unsigned long haddr)
3211 {
3212 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3213 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3214 return false;
3215 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3216 return false;
3217 return true;
3218 }
3219
3220 static void deposit_prealloc_pte(struct vm_fault *vmf)
3221 {
3222 struct vm_area_struct *vma = vmf->vma;
3223
3224 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3225 /*
3226 * We are going to consume the prealloc table,
3227 * count that as nr_ptes.
3228 */
3229 mm_inc_nr_ptes(vma->vm_mm);
3230 vmf->prealloc_pte = NULL;
3231 }
3232
3233 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3234 {
3235 struct vm_area_struct *vma = vmf->vma;
3236 bool write = vmf->flags & FAULT_FLAG_WRITE;
3237 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3238 pmd_t entry;
3239 int i;
3240 vm_fault_t ret;
3241
3242 if (!transhuge_vma_suitable(vma, haddr))
3243 return VM_FAULT_FALLBACK;
3244
3245 ret = VM_FAULT_FALLBACK;
3246 page = compound_head(page);
3247
3248 /*
3249 * Archs like ppc64 need additonal space to store information
3250 * related to pte entry. Use the preallocated table for that.
3251 */
3252 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3253 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3254 if (!vmf->prealloc_pte)
3255 return VM_FAULT_OOM;
3256 smp_wmb(); /* See comment in __pte_alloc() */
3257 }
3258
3259 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3260 if (unlikely(!pmd_none(*vmf->pmd)))
3261 goto out;
3262
3263 for (i = 0; i < HPAGE_PMD_NR; i++)
3264 flush_icache_page(vma, page + i);
3265
3266 entry = mk_huge_pmd(page, vma->vm_page_prot);
3267 if (write)
3268 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3269
3270 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3271 page_add_file_rmap(page, true);
3272 /*
3273 * deposit and withdraw with pmd lock held
3274 */
3275 if (arch_needs_pgtable_deposit())
3276 deposit_prealloc_pte(vmf);
3277
3278 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3279
3280 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3281
3282 /* fault is handled */
3283 ret = 0;
3284 count_vm_event(THP_FILE_MAPPED);
3285 out:
3286 spin_unlock(vmf->ptl);
3287 return ret;
3288 }
3289 #else
3290 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3291 {
3292 BUILD_BUG();
3293 return 0;
3294 }
3295 #endif
3296
3297 /**
3298 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3299 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3300 *
3301 * @vmf: fault environment
3302 * @memcg: memcg to charge page (only for private mappings)
3303 * @page: page to map
3304 *
3305 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3306 * return.
3307 *
3308 * Target users are page handler itself and implementations of
3309 * vm_ops->map_pages.
3310 *
3311 * Return: %0 on success, %VM_FAULT_ code in case of error.
3312 */
3313 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3314 struct page *page)
3315 {
3316 struct vm_area_struct *vma = vmf->vma;
3317 bool write = vmf->flags & FAULT_FLAG_WRITE;
3318 pte_t entry;
3319 vm_fault_t ret;
3320
3321 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3322 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3323 /* THP on COW? */
3324 VM_BUG_ON_PAGE(memcg, page);
3325
3326 ret = do_set_pmd(vmf, page);
3327 if (ret != VM_FAULT_FALLBACK)
3328 return ret;
3329 }
3330
3331 if (!vmf->pte) {
3332 ret = pte_alloc_one_map(vmf);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 /* Re-check under ptl */
3338 if (unlikely(!pte_none(*vmf->pte)))
3339 return VM_FAULT_NOPAGE;
3340
3341 flush_icache_page(vma, page);
3342 entry = mk_pte(page, vma->vm_page_prot);
3343 if (write)
3344 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3345 /* copy-on-write page */
3346 if (write && !(vma->vm_flags & VM_SHARED)) {
3347 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3348 page_add_new_anon_rmap(page, vma, vmf->address, false);
3349 mem_cgroup_commit_charge(page, memcg, false, false);
3350 lru_cache_add_active_or_unevictable(page, vma);
3351 } else {
3352 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3353 page_add_file_rmap(page, false);
3354 }
3355 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3356
3357 /* no need to invalidate: a not-present page won't be cached */
3358 update_mmu_cache(vma, vmf->address, vmf->pte);
3359
3360 return 0;
3361 }
3362
3363
3364 /**
3365 * finish_fault - finish page fault once we have prepared the page to fault
3366 *
3367 * @vmf: structure describing the fault
3368 *
3369 * This function handles all that is needed to finish a page fault once the
3370 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3371 * given page, adds reverse page mapping, handles memcg charges and LRU
3372 * addition.
3373 *
3374 * The function expects the page to be locked and on success it consumes a
3375 * reference of a page being mapped (for the PTE which maps it).
3376 *
3377 * Return: %0 on success, %VM_FAULT_ code in case of error.
3378 */
3379 vm_fault_t finish_fault(struct vm_fault *vmf)
3380 {
3381 struct page *page;
3382 vm_fault_t ret = 0;
3383
3384 /* Did we COW the page? */
3385 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3386 !(vmf->vma->vm_flags & VM_SHARED))
3387 page = vmf->cow_page;
3388 else
3389 page = vmf->page;
3390
3391 /*
3392 * check even for read faults because we might have lost our CoWed
3393 * page
3394 */
3395 if (!(vmf->vma->vm_flags & VM_SHARED))
3396 ret = check_stable_address_space(vmf->vma->vm_mm);
3397 if (!ret)
3398 ret = alloc_set_pte(vmf, vmf->memcg, page);
3399 if (vmf->pte)
3400 pte_unmap_unlock(vmf->pte, vmf->ptl);
3401 return ret;
3402 }
3403
3404 static unsigned long fault_around_bytes __read_mostly =
3405 rounddown_pow_of_two(65536);
3406
3407 #ifdef CONFIG_DEBUG_FS
3408 static int fault_around_bytes_get(void *data, u64 *val)
3409 {
3410 *val = fault_around_bytes;
3411 return 0;
3412 }
3413
3414 /*
3415 * fault_around_bytes must be rounded down to the nearest page order as it's
3416 * what do_fault_around() expects to see.
3417 */
3418 static int fault_around_bytes_set(void *data, u64 val)
3419 {
3420 if (val / PAGE_SIZE > PTRS_PER_PTE)
3421 return -EINVAL;
3422 if (val > PAGE_SIZE)
3423 fault_around_bytes = rounddown_pow_of_two(val);
3424 else
3425 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3426 return 0;
3427 }
3428 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3429 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3430
3431 static int __init fault_around_debugfs(void)
3432 {
3433 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3434 &fault_around_bytes_fops);
3435 return 0;
3436 }
3437 late_initcall(fault_around_debugfs);
3438 #endif
3439
3440 /*
3441 * do_fault_around() tries to map few pages around the fault address. The hope
3442 * is that the pages will be needed soon and this will lower the number of
3443 * faults to handle.
3444 *
3445 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3446 * not ready to be mapped: not up-to-date, locked, etc.
3447 *
3448 * This function is called with the page table lock taken. In the split ptlock
3449 * case the page table lock only protects only those entries which belong to
3450 * the page table corresponding to the fault address.
3451 *
3452 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3453 * only once.
3454 *
3455 * fault_around_bytes defines how many bytes we'll try to map.
3456 * do_fault_around() expects it to be set to a power of two less than or equal
3457 * to PTRS_PER_PTE.
3458 *
3459 * The virtual address of the area that we map is naturally aligned to
3460 * fault_around_bytes rounded down to the machine page size
3461 * (and therefore to page order). This way it's easier to guarantee
3462 * that we don't cross page table boundaries.
3463 */
3464 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3465 {
3466 unsigned long address = vmf->address, nr_pages, mask;
3467 pgoff_t start_pgoff = vmf->pgoff;
3468 pgoff_t end_pgoff;
3469 int off;
3470 vm_fault_t ret = 0;
3471
3472 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3473 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3474
3475 vmf->address = max(address & mask, vmf->vma->vm_start);
3476 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3477 start_pgoff -= off;
3478
3479 /*
3480 * end_pgoff is either the end of the page table, the end of
3481 * the vma or nr_pages from start_pgoff, depending what is nearest.
3482 */
3483 end_pgoff = start_pgoff -
3484 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3485 PTRS_PER_PTE - 1;
3486 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3487 start_pgoff + nr_pages - 1);
3488
3489 if (pmd_none(*vmf->pmd)) {
3490 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3491 if (!vmf->prealloc_pte)
3492 goto out;
3493 smp_wmb(); /* See comment in __pte_alloc() */
3494 }
3495
3496 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3497
3498 /* Huge page is mapped? Page fault is solved */
3499 if (pmd_trans_huge(*vmf->pmd)) {
3500 ret = VM_FAULT_NOPAGE;
3501 goto out;
3502 }
3503
3504 /* ->map_pages() haven't done anything useful. Cold page cache? */
3505 if (!vmf->pte)
3506 goto out;
3507
3508 /* check if the page fault is solved */
3509 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3510 if (!pte_none(*vmf->pte))
3511 ret = VM_FAULT_NOPAGE;
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 out:
3514 vmf->address = address;
3515 vmf->pte = NULL;
3516 return ret;
3517 }
3518
3519 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3520 {
3521 struct vm_area_struct *vma = vmf->vma;
3522 vm_fault_t ret = 0;
3523
3524 /*
3525 * Let's call ->map_pages() first and use ->fault() as fallback
3526 * if page by the offset is not ready to be mapped (cold cache or
3527 * something).
3528 */
3529 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3530 ret = do_fault_around(vmf);
3531 if (ret)
3532 return ret;
3533 }
3534
3535 ret = __do_fault(vmf);
3536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3537 return ret;
3538
3539 ret |= finish_fault(vmf);
3540 unlock_page(vmf->page);
3541 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3542 put_page(vmf->page);
3543 return ret;
3544 }
3545
3546 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3547 {
3548 struct vm_area_struct *vma = vmf->vma;
3549 vm_fault_t ret;
3550
3551 if (unlikely(anon_vma_prepare(vma)))
3552 return VM_FAULT_OOM;
3553
3554 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3555 if (!vmf->cow_page)
3556 return VM_FAULT_OOM;
3557
3558 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3559 &vmf->memcg, false)) {
3560 put_page(vmf->cow_page);
3561 return VM_FAULT_OOM;
3562 }
3563
3564 ret = __do_fault(vmf);
3565 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3566 goto uncharge_out;
3567 if (ret & VM_FAULT_DONE_COW)
3568 return ret;
3569
3570 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3571 __SetPageUptodate(vmf->cow_page);
3572
3573 ret |= finish_fault(vmf);
3574 unlock_page(vmf->page);
3575 put_page(vmf->page);
3576 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3577 goto uncharge_out;
3578 return ret;
3579 uncharge_out:
3580 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3581 put_page(vmf->cow_page);
3582 return ret;
3583 }
3584
3585 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3586 {
3587 struct vm_area_struct *vma = vmf->vma;
3588 vm_fault_t ret, tmp;
3589
3590 ret = __do_fault(vmf);
3591 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3592 return ret;
3593
3594 /*
3595 * Check if the backing address space wants to know that the page is
3596 * about to become writable
3597 */
3598 if (vma->vm_ops->page_mkwrite) {
3599 unlock_page(vmf->page);
3600 tmp = do_page_mkwrite(vmf);
3601 if (unlikely(!tmp ||
3602 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3603 put_page(vmf->page);
3604 return tmp;
3605 }
3606 }
3607
3608 ret |= finish_fault(vmf);
3609 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3610 VM_FAULT_RETRY))) {
3611 unlock_page(vmf->page);
3612 put_page(vmf->page);
3613 return ret;
3614 }
3615
3616 fault_dirty_shared_page(vma, vmf->page);
3617 return ret;
3618 }
3619
3620 /*
3621 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3622 * but allow concurrent faults).
3623 * The mmap_sem may have been released depending on flags and our
3624 * return value. See filemap_fault() and __lock_page_or_retry().
3625 * If mmap_sem is released, vma may become invalid (for example
3626 * by other thread calling munmap()).
3627 */
3628 static vm_fault_t do_fault(struct vm_fault *vmf)
3629 {
3630 struct vm_area_struct *vma = vmf->vma;
3631 struct mm_struct *vm_mm = vma->vm_mm;
3632 vm_fault_t ret;
3633
3634 /*
3635 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3636 */
3637 if (!vma->vm_ops->fault) {
3638 /*
3639 * If we find a migration pmd entry or a none pmd entry, which
3640 * should never happen, return SIGBUS
3641 */
3642 if (unlikely(!pmd_present(*vmf->pmd)))
3643 ret = VM_FAULT_SIGBUS;
3644 else {
3645 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3646 vmf->pmd,
3647 vmf->address,
3648 &vmf->ptl);
3649 /*
3650 * Make sure this is not a temporary clearing of pte
3651 * by holding ptl and checking again. A R/M/W update
3652 * of pte involves: take ptl, clearing the pte so that
3653 * we don't have concurrent modification by hardware
3654 * followed by an update.
3655 */
3656 if (unlikely(pte_none(*vmf->pte)))
3657 ret = VM_FAULT_SIGBUS;
3658 else
3659 ret = VM_FAULT_NOPAGE;
3660
3661 pte_unmap_unlock(vmf->pte, vmf->ptl);
3662 }
3663 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3664 ret = do_read_fault(vmf);
3665 else if (!(vma->vm_flags & VM_SHARED))
3666 ret = do_cow_fault(vmf);
3667 else
3668 ret = do_shared_fault(vmf);
3669
3670 /* preallocated pagetable is unused: free it */
3671 if (vmf->prealloc_pte) {
3672 pte_free(vm_mm, vmf->prealloc_pte);
3673 vmf->prealloc_pte = NULL;
3674 }
3675 return ret;
3676 }
3677
3678 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3679 unsigned long addr, int page_nid,
3680 int *flags)
3681 {
3682 get_page(page);
3683
3684 count_vm_numa_event(NUMA_HINT_FAULTS);
3685 if (page_nid == numa_node_id()) {
3686 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3687 *flags |= TNF_FAULT_LOCAL;
3688 }
3689
3690 return mpol_misplaced(page, vma, addr);
3691 }
3692
3693 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3694 {
3695 struct vm_area_struct *vma = vmf->vma;
3696 struct page *page = NULL;
3697 int page_nid = NUMA_NO_NODE;
3698 int last_cpupid;
3699 int target_nid;
3700 bool migrated = false;
3701 pte_t pte, old_pte;
3702 bool was_writable = pte_savedwrite(vmf->orig_pte);
3703 int flags = 0;
3704
3705 /*
3706 * The "pte" at this point cannot be used safely without
3707 * validation through pte_unmap_same(). It's of NUMA type but
3708 * the pfn may be screwed if the read is non atomic.
3709 */
3710 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3711 spin_lock(vmf->ptl);
3712 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3713 pte_unmap_unlock(vmf->pte, vmf->ptl);
3714 goto out;
3715 }
3716
3717 /*
3718 * Make it present again, Depending on how arch implementes non
3719 * accessible ptes, some can allow access by kernel mode.
3720 */
3721 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3722 pte = pte_modify(old_pte, vma->vm_page_prot);
3723 pte = pte_mkyoung(pte);
3724 if (was_writable)
3725 pte = pte_mkwrite(pte);
3726 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3727 update_mmu_cache(vma, vmf->address, vmf->pte);
3728
3729 page = vm_normal_page(vma, vmf->address, pte);
3730 if (!page) {
3731 pte_unmap_unlock(vmf->pte, vmf->ptl);
3732 return 0;
3733 }
3734
3735 /* TODO: handle PTE-mapped THP */
3736 if (PageCompound(page)) {
3737 pte_unmap_unlock(vmf->pte, vmf->ptl);
3738 return 0;
3739 }
3740
3741 /*
3742 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3743 * much anyway since they can be in shared cache state. This misses
3744 * the case where a mapping is writable but the process never writes
3745 * to it but pte_write gets cleared during protection updates and
3746 * pte_dirty has unpredictable behaviour between PTE scan updates,
3747 * background writeback, dirty balancing and application behaviour.
3748 */
3749 if (!pte_write(pte))
3750 flags |= TNF_NO_GROUP;
3751
3752 /*
3753 * Flag if the page is shared between multiple address spaces. This
3754 * is later used when determining whether to group tasks together
3755 */
3756 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3757 flags |= TNF_SHARED;
3758
3759 last_cpupid = page_cpupid_last(page);
3760 page_nid = page_to_nid(page);
3761 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3762 &flags);
3763 pte_unmap_unlock(vmf->pte, vmf->ptl);
3764 if (target_nid == NUMA_NO_NODE) {
3765 put_page(page);
3766 goto out;
3767 }
3768
3769 /* Migrate to the requested node */
3770 migrated = migrate_misplaced_page(page, vma, target_nid);
3771 if (migrated) {
3772 page_nid = target_nid;
3773 flags |= TNF_MIGRATED;
3774 } else
3775 flags |= TNF_MIGRATE_FAIL;
3776
3777 out:
3778 if (page_nid != NUMA_NO_NODE)
3779 task_numa_fault(last_cpupid, page_nid, 1, flags);
3780 return 0;
3781 }
3782
3783 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3784 {
3785 if (vma_is_anonymous(vmf->vma))
3786 return do_huge_pmd_anonymous_page(vmf);
3787 if (vmf->vma->vm_ops->huge_fault)
3788 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3789 return VM_FAULT_FALLBACK;
3790 }
3791
3792 /* `inline' is required to avoid gcc 4.1.2 build error */
3793 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3794 {
3795 if (vma_is_anonymous(vmf->vma))
3796 return do_huge_pmd_wp_page(vmf, orig_pmd);
3797 if (vmf->vma->vm_ops->huge_fault)
3798 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3799
3800 /* COW handled on pte level: split pmd */
3801 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3802 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3803
3804 return VM_FAULT_FALLBACK;
3805 }
3806
3807 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3808 {
3809 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3810 }
3811
3812 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3813 {
3814 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3815 /* No support for anonymous transparent PUD pages yet */
3816 if (vma_is_anonymous(vmf->vma))
3817 return VM_FAULT_FALLBACK;
3818 if (vmf->vma->vm_ops->huge_fault)
3819 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3820 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3821 return VM_FAULT_FALLBACK;
3822 }
3823
3824 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3825 {
3826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3827 /* No support for anonymous transparent PUD pages yet */
3828 if (vma_is_anonymous(vmf->vma))
3829 return VM_FAULT_FALLBACK;
3830 if (vmf->vma->vm_ops->huge_fault)
3831 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3833 return VM_FAULT_FALLBACK;
3834 }
3835
3836 /*
3837 * These routines also need to handle stuff like marking pages dirty
3838 * and/or accessed for architectures that don't do it in hardware (most
3839 * RISC architectures). The early dirtying is also good on the i386.
3840 *
3841 * There is also a hook called "update_mmu_cache()" that architectures
3842 * with external mmu caches can use to update those (ie the Sparc or
3843 * PowerPC hashed page tables that act as extended TLBs).
3844 *
3845 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3846 * concurrent faults).
3847 *
3848 * The mmap_sem may have been released depending on flags and our return value.
3849 * See filemap_fault() and __lock_page_or_retry().
3850 */
3851 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3852 {
3853 pte_t entry;
3854
3855 if (unlikely(pmd_none(*vmf->pmd))) {
3856 /*
3857 * Leave __pte_alloc() until later: because vm_ops->fault may
3858 * want to allocate huge page, and if we expose page table
3859 * for an instant, it will be difficult to retract from
3860 * concurrent faults and from rmap lookups.
3861 */
3862 vmf->pte = NULL;
3863 } else {
3864 /* See comment in pte_alloc_one_map() */
3865 if (pmd_devmap_trans_unstable(vmf->pmd))
3866 return 0;
3867 /*
3868 * A regular pmd is established and it can't morph into a huge
3869 * pmd from under us anymore at this point because we hold the
3870 * mmap_sem read mode and khugepaged takes it in write mode.
3871 * So now it's safe to run pte_offset_map().
3872 */
3873 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3874 vmf->orig_pte = *vmf->pte;
3875
3876 /*
3877 * some architectures can have larger ptes than wordsize,
3878 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3879 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3880 * accesses. The code below just needs a consistent view
3881 * for the ifs and we later double check anyway with the
3882 * ptl lock held. So here a barrier will do.
3883 */
3884 barrier();
3885 if (pte_none(vmf->orig_pte)) {
3886 pte_unmap(vmf->pte);
3887 vmf->pte = NULL;
3888 }
3889 }
3890
3891 if (!vmf->pte) {
3892 if (vma_is_anonymous(vmf->vma))
3893 return do_anonymous_page(vmf);
3894 else
3895 return do_fault(vmf);
3896 }
3897
3898 if (!pte_present(vmf->orig_pte))
3899 return do_swap_page(vmf);
3900
3901 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3902 return do_numa_page(vmf);
3903
3904 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3905 spin_lock(vmf->ptl);
3906 entry = vmf->orig_pte;
3907 if (unlikely(!pte_same(*vmf->pte, entry)))
3908 goto unlock;
3909 if (vmf->flags & FAULT_FLAG_WRITE) {
3910 if (!pte_write(entry))
3911 return do_wp_page(vmf);
3912 entry = pte_mkdirty(entry);
3913 }
3914 entry = pte_mkyoung(entry);
3915 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3916 vmf->flags & FAULT_FLAG_WRITE)) {
3917 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3918 } else {
3919 /*
3920 * This is needed only for protection faults but the arch code
3921 * is not yet telling us if this is a protection fault or not.
3922 * This still avoids useless tlb flushes for .text page faults
3923 * with threads.
3924 */
3925 if (vmf->flags & FAULT_FLAG_WRITE)
3926 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3927 }
3928 unlock:
3929 pte_unmap_unlock(vmf->pte, vmf->ptl);
3930 return 0;
3931 }
3932
3933 /*
3934 * By the time we get here, we already hold the mm semaphore
3935 *
3936 * The mmap_sem may have been released depending on flags and our
3937 * return value. See filemap_fault() and __lock_page_or_retry().
3938 */
3939 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3940 unsigned long address, unsigned int flags)
3941 {
3942 struct vm_fault vmf = {
3943 .vma = vma,
3944 .address = address & PAGE_MASK,
3945 .flags = flags,
3946 .pgoff = linear_page_index(vma, address),
3947 .gfp_mask = __get_fault_gfp_mask(vma),
3948 };
3949 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3950 struct mm_struct *mm = vma->vm_mm;
3951 pgd_t *pgd;
3952 p4d_t *p4d;
3953 vm_fault_t ret;
3954
3955 pgd = pgd_offset(mm, address);
3956 p4d = p4d_alloc(mm, pgd, address);
3957 if (!p4d)
3958 return VM_FAULT_OOM;
3959
3960 vmf.pud = pud_alloc(mm, p4d, address);
3961 if (!vmf.pud)
3962 return VM_FAULT_OOM;
3963 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3964 ret = create_huge_pud(&vmf);
3965 if (!(ret & VM_FAULT_FALLBACK))
3966 return ret;
3967 } else {
3968 pud_t orig_pud = *vmf.pud;
3969
3970 barrier();
3971 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3972
3973 /* NUMA case for anonymous PUDs would go here */
3974
3975 if (dirty && !pud_write(orig_pud)) {
3976 ret = wp_huge_pud(&vmf, orig_pud);
3977 if (!(ret & VM_FAULT_FALLBACK))
3978 return ret;
3979 } else {
3980 huge_pud_set_accessed(&vmf, orig_pud);
3981 return 0;
3982 }
3983 }
3984 }
3985
3986 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3987 if (!vmf.pmd)
3988 return VM_FAULT_OOM;
3989 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3990 ret = create_huge_pmd(&vmf);
3991 if (!(ret & VM_FAULT_FALLBACK))
3992 return ret;
3993 } else {
3994 pmd_t orig_pmd = *vmf.pmd;
3995
3996 barrier();
3997 if (unlikely(is_swap_pmd(orig_pmd))) {
3998 VM_BUG_ON(thp_migration_supported() &&
3999 !is_pmd_migration_entry(orig_pmd));
4000 if (is_pmd_migration_entry(orig_pmd))
4001 pmd_migration_entry_wait(mm, vmf.pmd);
4002 return 0;
4003 }
4004 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4005 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4006 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4007
4008 if (dirty && !pmd_write(orig_pmd)) {
4009 ret = wp_huge_pmd(&vmf, orig_pmd);
4010 if (!(ret & VM_FAULT_FALLBACK))
4011 return ret;
4012 } else {
4013 huge_pmd_set_accessed(&vmf, orig_pmd);
4014 return 0;
4015 }
4016 }
4017 }
4018
4019 return handle_pte_fault(&vmf);
4020 }
4021
4022 /*
4023 * By the time we get here, we already hold the mm semaphore
4024 *
4025 * The mmap_sem may have been released depending on flags and our
4026 * return value. See filemap_fault() and __lock_page_or_retry().
4027 */
4028 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4029 unsigned int flags)
4030 {
4031 vm_fault_t ret;
4032
4033 __set_current_state(TASK_RUNNING);
4034
4035 count_vm_event(PGFAULT);
4036 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4037
4038 /* do counter updates before entering really critical section. */
4039 check_sync_rss_stat(current);
4040
4041 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4042 flags & FAULT_FLAG_INSTRUCTION,
4043 flags & FAULT_FLAG_REMOTE))
4044 return VM_FAULT_SIGSEGV;
4045
4046 /*
4047 * Enable the memcg OOM handling for faults triggered in user
4048 * space. Kernel faults are handled more gracefully.
4049 */
4050 if (flags & FAULT_FLAG_USER)
4051 mem_cgroup_enter_user_fault();
4052
4053 if (unlikely(is_vm_hugetlb_page(vma)))
4054 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4055 else
4056 ret = __handle_mm_fault(vma, address, flags);
4057
4058 if (flags & FAULT_FLAG_USER) {
4059 mem_cgroup_exit_user_fault();
4060 /*
4061 * The task may have entered a memcg OOM situation but
4062 * if the allocation error was handled gracefully (no
4063 * VM_FAULT_OOM), there is no need to kill anything.
4064 * Just clean up the OOM state peacefully.
4065 */
4066 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4067 mem_cgroup_oom_synchronize(false);
4068 }
4069
4070 return ret;
4071 }
4072 EXPORT_SYMBOL_GPL(handle_mm_fault);
4073
4074 #ifndef __PAGETABLE_P4D_FOLDED
4075 /*
4076 * Allocate p4d page table.
4077 * We've already handled the fast-path in-line.
4078 */
4079 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4080 {
4081 p4d_t *new = p4d_alloc_one(mm, address);
4082 if (!new)
4083 return -ENOMEM;
4084
4085 smp_wmb(); /* See comment in __pte_alloc */
4086
4087 spin_lock(&mm->page_table_lock);
4088 if (pgd_present(*pgd)) /* Another has populated it */
4089 p4d_free(mm, new);
4090 else
4091 pgd_populate(mm, pgd, new);
4092 spin_unlock(&mm->page_table_lock);
4093 return 0;
4094 }
4095 #endif /* __PAGETABLE_P4D_FOLDED */
4096
4097 #ifndef __PAGETABLE_PUD_FOLDED
4098 /*
4099 * Allocate page upper directory.
4100 * We've already handled the fast-path in-line.
4101 */
4102 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4103 {
4104 pud_t *new = pud_alloc_one(mm, address);
4105 if (!new)
4106 return -ENOMEM;
4107
4108 smp_wmb(); /* See comment in __pte_alloc */
4109
4110 spin_lock(&mm->page_table_lock);
4111 #ifndef __ARCH_HAS_5LEVEL_HACK
4112 if (!p4d_present(*p4d)) {
4113 mm_inc_nr_puds(mm);
4114 p4d_populate(mm, p4d, new);
4115 } else /* Another has populated it */
4116 pud_free(mm, new);
4117 #else
4118 if (!pgd_present(*p4d)) {
4119 mm_inc_nr_puds(mm);
4120 pgd_populate(mm, p4d, new);
4121 } else /* Another has populated it */
4122 pud_free(mm, new);
4123 #endif /* __ARCH_HAS_5LEVEL_HACK */
4124 spin_unlock(&mm->page_table_lock);
4125 return 0;
4126 }
4127 #endif /* __PAGETABLE_PUD_FOLDED */
4128
4129 #ifndef __PAGETABLE_PMD_FOLDED
4130 /*
4131 * Allocate page middle directory.
4132 * We've already handled the fast-path in-line.
4133 */
4134 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4135 {
4136 spinlock_t *ptl;
4137 pmd_t *new = pmd_alloc_one(mm, address);
4138 if (!new)
4139 return -ENOMEM;
4140
4141 smp_wmb(); /* See comment in __pte_alloc */
4142
4143 ptl = pud_lock(mm, pud);
4144 #ifndef __ARCH_HAS_4LEVEL_HACK
4145 if (!pud_present(*pud)) {
4146 mm_inc_nr_pmds(mm);
4147 pud_populate(mm, pud, new);
4148 } else /* Another has populated it */
4149 pmd_free(mm, new);
4150 #else
4151 if (!pgd_present(*pud)) {
4152 mm_inc_nr_pmds(mm);
4153 pgd_populate(mm, pud, new);
4154 } else /* Another has populated it */
4155 pmd_free(mm, new);
4156 #endif /* __ARCH_HAS_4LEVEL_HACK */
4157 spin_unlock(ptl);
4158 return 0;
4159 }
4160 #endif /* __PAGETABLE_PMD_FOLDED */
4161
4162 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4163 struct mmu_notifier_range *range,
4164 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4165 {
4166 pgd_t *pgd;
4167 p4d_t *p4d;
4168 pud_t *pud;
4169 pmd_t *pmd;
4170 pte_t *ptep;
4171
4172 pgd = pgd_offset(mm, address);
4173 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4174 goto out;
4175
4176 p4d = p4d_offset(pgd, address);
4177 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4178 goto out;
4179
4180 pud = pud_offset(p4d, address);
4181 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4182 goto out;
4183
4184 pmd = pmd_offset(pud, address);
4185 VM_BUG_ON(pmd_trans_huge(*pmd));
4186
4187 if (pmd_huge(*pmd)) {
4188 if (!pmdpp)
4189 goto out;
4190
4191 if (range) {
4192 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4193 NULL, mm, address & PMD_MASK,
4194 (address & PMD_MASK) + PMD_SIZE);
4195 mmu_notifier_invalidate_range_start(range);
4196 }
4197 *ptlp = pmd_lock(mm, pmd);
4198 if (pmd_huge(*pmd)) {
4199 *pmdpp = pmd;
4200 return 0;
4201 }
4202 spin_unlock(*ptlp);
4203 if (range)
4204 mmu_notifier_invalidate_range_end(range);
4205 }
4206
4207 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4208 goto out;
4209
4210 if (range) {
4211 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4212 address & PAGE_MASK,
4213 (address & PAGE_MASK) + PAGE_SIZE);
4214 mmu_notifier_invalidate_range_start(range);
4215 }
4216 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4217 if (!pte_present(*ptep))
4218 goto unlock;
4219 *ptepp = ptep;
4220 return 0;
4221 unlock:
4222 pte_unmap_unlock(ptep, *ptlp);
4223 if (range)
4224 mmu_notifier_invalidate_range_end(range);
4225 out:
4226 return -EINVAL;
4227 }
4228
4229 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4230 pte_t **ptepp, spinlock_t **ptlp)
4231 {
4232 int res;
4233
4234 /* (void) is needed to make gcc happy */
4235 (void) __cond_lock(*ptlp,
4236 !(res = __follow_pte_pmd(mm, address, NULL,
4237 ptepp, NULL, ptlp)));
4238 return res;
4239 }
4240
4241 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4242 struct mmu_notifier_range *range,
4243 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4244 {
4245 int res;
4246
4247 /* (void) is needed to make gcc happy */
4248 (void) __cond_lock(*ptlp,
4249 !(res = __follow_pte_pmd(mm, address, range,
4250 ptepp, pmdpp, ptlp)));
4251 return res;
4252 }
4253 EXPORT_SYMBOL(follow_pte_pmd);
4254
4255 /**
4256 * follow_pfn - look up PFN at a user virtual address
4257 * @vma: memory mapping
4258 * @address: user virtual address
4259 * @pfn: location to store found PFN
4260 *
4261 * Only IO mappings and raw PFN mappings are allowed.
4262 *
4263 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4264 */
4265 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4266 unsigned long *pfn)
4267 {
4268 int ret = -EINVAL;
4269 spinlock_t *ptl;
4270 pte_t *ptep;
4271
4272 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4273 return ret;
4274
4275 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4276 if (ret)
4277 return ret;
4278 *pfn = pte_pfn(*ptep);
4279 pte_unmap_unlock(ptep, ptl);
4280 return 0;
4281 }
4282 EXPORT_SYMBOL(follow_pfn);
4283
4284 #ifdef CONFIG_HAVE_IOREMAP_PROT
4285 int follow_phys(struct vm_area_struct *vma,
4286 unsigned long address, unsigned int flags,
4287 unsigned long *prot, resource_size_t *phys)
4288 {
4289 int ret = -EINVAL;
4290 pte_t *ptep, pte;
4291 spinlock_t *ptl;
4292
4293 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4294 goto out;
4295
4296 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4297 goto out;
4298 pte = *ptep;
4299
4300 if ((flags & FOLL_WRITE) && !pte_write(pte))
4301 goto unlock;
4302
4303 *prot = pgprot_val(pte_pgprot(pte));
4304 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4305
4306 ret = 0;
4307 unlock:
4308 pte_unmap_unlock(ptep, ptl);
4309 out:
4310 return ret;
4311 }
4312
4313 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4314 void *buf, int len, int write)
4315 {
4316 resource_size_t phys_addr;
4317 unsigned long prot = 0;
4318 void __iomem *maddr;
4319 int offset = addr & (PAGE_SIZE-1);
4320
4321 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4322 return -EINVAL;
4323
4324 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4325 if (!maddr)
4326 return -ENOMEM;
4327
4328 if (write)
4329 memcpy_toio(maddr + offset, buf, len);
4330 else
4331 memcpy_fromio(buf, maddr + offset, len);
4332 iounmap(maddr);
4333
4334 return len;
4335 }
4336 EXPORT_SYMBOL_GPL(generic_access_phys);
4337 #endif
4338
4339 /*
4340 * Access another process' address space as given in mm. If non-NULL, use the
4341 * given task for page fault accounting.
4342 */
4343 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4344 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4345 {
4346 struct vm_area_struct *vma;
4347 void *old_buf = buf;
4348 int write = gup_flags & FOLL_WRITE;
4349
4350 down_read(&mm->mmap_sem);
4351 /* ignore errors, just check how much was successfully transferred */
4352 while (len) {
4353 int bytes, ret, offset;
4354 void *maddr;
4355 struct page *page = NULL;
4356
4357 ret = get_user_pages_remote(tsk, mm, addr, 1,
4358 gup_flags, &page, &vma, NULL);
4359 if (ret <= 0) {
4360 #ifndef CONFIG_HAVE_IOREMAP_PROT
4361 break;
4362 #else
4363 /*
4364 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4365 * we can access using slightly different code.
4366 */
4367 vma = find_vma(mm, addr);
4368 if (!vma || vma->vm_start > addr)
4369 break;
4370 if (vma->vm_ops && vma->vm_ops->access)
4371 ret = vma->vm_ops->access(vma, addr, buf,
4372 len, write);
4373 if (ret <= 0)
4374 break;
4375 bytes = ret;
4376 #endif
4377 } else {
4378 bytes = len;
4379 offset = addr & (PAGE_SIZE-1);
4380 if (bytes > PAGE_SIZE-offset)
4381 bytes = PAGE_SIZE-offset;
4382
4383 maddr = kmap(page);
4384 if (write) {
4385 copy_to_user_page(vma, page, addr,
4386 maddr + offset, buf, bytes);
4387 set_page_dirty_lock(page);
4388 } else {
4389 copy_from_user_page(vma, page, addr,
4390 buf, maddr + offset, bytes);
4391 }
4392 kunmap(page);
4393 put_page(page);
4394 }
4395 len -= bytes;
4396 buf += bytes;
4397 addr += bytes;
4398 }
4399 up_read(&mm->mmap_sem);
4400
4401 return buf - old_buf;
4402 }
4403
4404 /**
4405 * access_remote_vm - access another process' address space
4406 * @mm: the mm_struct of the target address space
4407 * @addr: start address to access
4408 * @buf: source or destination buffer
4409 * @len: number of bytes to transfer
4410 * @gup_flags: flags modifying lookup behaviour
4411 *
4412 * The caller must hold a reference on @mm.
4413 *
4414 * Return: number of bytes copied from source to destination.
4415 */
4416 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4417 void *buf, int len, unsigned int gup_flags)
4418 {
4419 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4420 }
4421
4422 /*
4423 * Access another process' address space.
4424 * Source/target buffer must be kernel space,
4425 * Do not walk the page table directly, use get_user_pages
4426 */
4427 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4428 void *buf, int len, unsigned int gup_flags)
4429 {
4430 struct mm_struct *mm;
4431 int ret;
4432
4433 mm = get_task_mm(tsk);
4434 if (!mm)
4435 return 0;
4436
4437 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4438
4439 mmput(mm);
4440
4441 return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(access_process_vm);
4444
4445 /*
4446 * Print the name of a VMA.
4447 */
4448 void print_vma_addr(char *prefix, unsigned long ip)
4449 {
4450 struct mm_struct *mm = current->mm;
4451 struct vm_area_struct *vma;
4452
4453 /*
4454 * we might be running from an atomic context so we cannot sleep
4455 */
4456 if (!down_read_trylock(&mm->mmap_sem))
4457 return;
4458
4459 vma = find_vma(mm, ip);
4460 if (vma && vma->vm_file) {
4461 struct file *f = vma->vm_file;
4462 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4463 if (buf) {
4464 char *p;
4465
4466 p = file_path(f, buf, PAGE_SIZE);
4467 if (IS_ERR(p))
4468 p = "?";
4469 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4470 vma->vm_start,
4471 vma->vm_end - vma->vm_start);
4472 free_page((unsigned long)buf);
4473 }
4474 }
4475 up_read(&mm->mmap_sem);
4476 }
4477
4478 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4479 void __might_fault(const char *file, int line)
4480 {
4481 /*
4482 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4483 * holding the mmap_sem, this is safe because kernel memory doesn't
4484 * get paged out, therefore we'll never actually fault, and the
4485 * below annotations will generate false positives.
4486 */
4487 if (uaccess_kernel())
4488 return;
4489 if (pagefault_disabled())
4490 return;
4491 __might_sleep(file, line, 0);
4492 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4493 if (current->mm)
4494 might_lock_read(&current->mm->mmap_sem);
4495 #endif
4496 }
4497 EXPORT_SYMBOL(__might_fault);
4498 #endif
4499
4500 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4501 /*
4502 * Process all subpages of the specified huge page with the specified
4503 * operation. The target subpage will be processed last to keep its
4504 * cache lines hot.
4505 */
4506 static inline void process_huge_page(
4507 unsigned long addr_hint, unsigned int pages_per_huge_page,
4508 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4509 void *arg)
4510 {
4511 int i, n, base, l;
4512 unsigned long addr = addr_hint &
4513 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4514
4515 /* Process target subpage last to keep its cache lines hot */
4516 might_sleep();
4517 n = (addr_hint - addr) / PAGE_SIZE;
4518 if (2 * n <= pages_per_huge_page) {
4519 /* If target subpage in first half of huge page */
4520 base = 0;
4521 l = n;
4522 /* Process subpages at the end of huge page */
4523 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4524 cond_resched();
4525 process_subpage(addr + i * PAGE_SIZE, i, arg);
4526 }
4527 } else {
4528 /* If target subpage in second half of huge page */
4529 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4530 l = pages_per_huge_page - n;
4531 /* Process subpages at the begin of huge page */
4532 for (i = 0; i < base; i++) {
4533 cond_resched();
4534 process_subpage(addr + i * PAGE_SIZE, i, arg);
4535 }
4536 }
4537 /*
4538 * Process remaining subpages in left-right-left-right pattern
4539 * towards the target subpage
4540 */
4541 for (i = 0; i < l; i++) {
4542 int left_idx = base + i;
4543 int right_idx = base + 2 * l - 1 - i;
4544
4545 cond_resched();
4546 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4547 cond_resched();
4548 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4549 }
4550 }
4551
4552 static void clear_gigantic_page(struct page *page,
4553 unsigned long addr,
4554 unsigned int pages_per_huge_page)
4555 {
4556 int i;
4557 struct page *p = page;
4558
4559 might_sleep();
4560 for (i = 0; i < pages_per_huge_page;
4561 i++, p = mem_map_next(p, page, i)) {
4562 cond_resched();
4563 clear_user_highpage(p, addr + i * PAGE_SIZE);
4564 }
4565 }
4566
4567 static void clear_subpage(unsigned long addr, int idx, void *arg)
4568 {
4569 struct page *page = arg;
4570
4571 clear_user_highpage(page + idx, addr);
4572 }
4573
4574 void clear_huge_page(struct page *page,
4575 unsigned long addr_hint, unsigned int pages_per_huge_page)
4576 {
4577 unsigned long addr = addr_hint &
4578 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4579
4580 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4581 clear_gigantic_page(page, addr, pages_per_huge_page);
4582 return;
4583 }
4584
4585 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4586 }
4587
4588 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4589 unsigned long addr,
4590 struct vm_area_struct *vma,
4591 unsigned int pages_per_huge_page)
4592 {
4593 int i;
4594 struct page *dst_base = dst;
4595 struct page *src_base = src;
4596
4597 for (i = 0; i < pages_per_huge_page; ) {
4598 cond_resched();
4599 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4600
4601 i++;
4602 dst = mem_map_next(dst, dst_base, i);
4603 src = mem_map_next(src, src_base, i);
4604 }
4605 }
4606
4607 struct copy_subpage_arg {
4608 struct page *dst;
4609 struct page *src;
4610 struct vm_area_struct *vma;
4611 };
4612
4613 static void copy_subpage(unsigned long addr, int idx, void *arg)
4614 {
4615 struct copy_subpage_arg *copy_arg = arg;
4616
4617 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4618 addr, copy_arg->vma);
4619 }
4620
4621 void copy_user_huge_page(struct page *dst, struct page *src,
4622 unsigned long addr_hint, struct vm_area_struct *vma,
4623 unsigned int pages_per_huge_page)
4624 {
4625 unsigned long addr = addr_hint &
4626 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4627 struct copy_subpage_arg arg = {
4628 .dst = dst,
4629 .src = src,
4630 .vma = vma,
4631 };
4632
4633 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4634 copy_user_gigantic_page(dst, src, addr, vma,
4635 pages_per_huge_page);
4636 return;
4637 }
4638
4639 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4640 }
4641
4642 long copy_huge_page_from_user(struct page *dst_page,
4643 const void __user *usr_src,
4644 unsigned int pages_per_huge_page,
4645 bool allow_pagefault)
4646 {
4647 void *src = (void *)usr_src;
4648 void *page_kaddr;
4649 unsigned long i, rc = 0;
4650 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4651
4652 for (i = 0; i < pages_per_huge_page; i++) {
4653 if (allow_pagefault)
4654 page_kaddr = kmap(dst_page + i);
4655 else
4656 page_kaddr = kmap_atomic(dst_page + i);
4657 rc = copy_from_user(page_kaddr,
4658 (const void __user *)(src + i * PAGE_SIZE),
4659 PAGE_SIZE);
4660 if (allow_pagefault)
4661 kunmap(dst_page + i);
4662 else
4663 kunmap_atomic(page_kaddr);
4664
4665 ret_val -= (PAGE_SIZE - rc);
4666 if (rc)
4667 break;
4668
4669 cond_resched();
4670 }
4671 return ret_val;
4672 }
4673 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4674
4675 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4676
4677 static struct kmem_cache *page_ptl_cachep;
4678
4679 void __init ptlock_cache_init(void)
4680 {
4681 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4682 SLAB_PANIC, NULL);
4683 }
4684
4685 bool ptlock_alloc(struct page *page)
4686 {
4687 spinlock_t *ptl;
4688
4689 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4690 if (!ptl)
4691 return false;
4692 page->ptl = ptl;
4693 return true;
4694 }
4695
4696 void ptlock_free(struct page *page)
4697 {
4698 kmem_cache_free(page_ptl_cachep, page->ptl);
4699 }
4700 #endif