]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
Merge tag 'omap-for-v5.11/defconfig-late-signed' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 1;
121 #else
122 2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139 randomize_va_space = 0;
140 return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
152 static int __init init_zero_pfn(void)
153 {
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156 }
157 core_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
174 }
175 }
176 current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
217 {
218 pgtable_t token = pmd_pgtable(*pmd);
219 pmd_clear(pmd);
220 pte_free_tlb(tlb, token, addr);
221 mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
227 {
228 pmd_t *pmd;
229 unsigned long next;
230 unsigned long start;
231
232 start = addr;
233 pmd = pmd_offset(pud, addr);
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
238 free_pte_range(tlb, pmd, addr);
239 } while (pmd++, addr = next, addr != end);
240
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
254 pmd_free_tlb(tlb, pmd, start);
255 mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
261 {
262 pud_t *pud;
263 unsigned long next;
264 unsigned long start;
265
266 start = addr;
267 pud = pud_offset(p4d, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 } while (pud++, addr = next, addr != end);
274
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
289 mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295 {
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
316 }
317 if (end - 1 > ceiling - 1)
318 return;
319
320 p4d = p4d_offset(pgd, start);
321 pgd_clear(pgd);
322 p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326 * This function frees user-level page tables of a process.
327 */
328 void free_pgd_range(struct mmu_gather *tlb,
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
331 {
332 pgd_t *pgd;
333 unsigned long next;
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
360
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
380 tlb_change_page_size(tlb, PAGE_SIZE);
381 pgd = pgd_offset(tlb->mm, addr);
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 unsigned long floor, unsigned long ceiling)
392 {
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
397 /*
398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
400 */
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403
404 if (is_vm_hugetlb_page(vma)) {
405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 && !is_vm_hugetlb_page(next)) {
413 vma = next;
414 next = vma->vm_next;
415 unlink_anon_vmas(vma);
416 unlink_file_vma(vma);
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
419 floor, next ? next->vm_start : ceiling);
420 }
421 vma = next;
422 }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 spinlock_t *ptl;
428 pgtable_t new = pte_alloc_one(mm);
429 if (!new)
430 return -ENOMEM;
431
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
443 * smp_rmb() barriers in page table walking code.
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447 ptl = pmd_lock(mm, pmd);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 mm_inc_nr_ptes(mm);
450 pmd_populate(mm, pmd, new);
451 new = NULL;
452 }
453 spin_unlock(ptl);
454 if (new)
455 pte_free(mm, new);
456 return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 pte_t *new = pte_alloc_one_kernel(&init_mm);
462 if (!new)
463 return -ENOMEM;
464
465 smp_wmb(); /* See comment in __pte_alloc */
466
467 spin_lock(&init_mm.page_table_lock);
468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
469 pmd_populate_kernel(&init_mm, pmd, new);
470 new = NULL;
471 }
472 spin_unlock(&init_mm.page_table_lock);
473 if (new)
474 pte_free_kernel(&init_mm, new);
475 return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 int i;
486
487 if (current->mm == mm)
488 sync_mm_rss(mm);
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
498 *
499 * The calling function must still handle the error.
500 */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
503 {
504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 if (page)
540 dump_page(page, "bad pte");
541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
548 dump_stack();
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 *
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 *
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
567 *
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
581 *
582 *
583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
593 */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
596 {
597 unsigned long pfn = pte_pfn(pte);
598
599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 if (likely(!pte_special(pte)))
601 goto check_pfn;
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
606 if (is_zero_pfn(pfn))
607 return NULL;
608 if (pte_devmap(pte))
609 return NULL;
610
611 print_bad_pte(vma, addr, pte, NULL);
612 return NULL;
613 }
614
615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
630 }
631
632 if (is_zero_pfn(pfn))
633 return NULL;
634
635 check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /*
642 * NOTE! We still have PageReserved() pages in the page tables.
643 * eg. VDSO mappings can cause them to exist.
644 */
645 out:
646 return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652 {
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
675 if (pmd_devmap(pmd))
676 return NULL;
677 if (is_huge_zero_pmd(pmd))
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686 out:
687 return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
695 */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 unsigned long addr, int *rss)
701 {
702 unsigned long vm_flags = vma->vm_flags;
703 pte_t pte = *src_pte;
704 struct page *page;
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
723 rss[mm_counter(page)]++;
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 set_pte_at(dst_mm, addr, dst_pte, pte);
772 return 0;
773 }
774
775 /*
776 * Copy a present and normal page if necessary.
777 *
778 * NOTE! The usual case is that this doesn't need to do
779 * anything, and can just return a positive value. That
780 * will let the caller know that it can just increase
781 * the page refcount and re-use the pte the traditional
782 * way.
783 *
784 * But _if_ we need to copy it because it needs to be
785 * pinned in the parent (and the child should get its own
786 * copy rather than just a reference to the same page),
787 * we'll do that here and return zero to let the caller
788 * know we're done.
789 *
790 * And if we need a pre-allocated page but don't yet have
791 * one, return a negative error to let the preallocation
792 * code know so that it can do so outside the page table
793 * lock.
794 */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 struct page **prealloc, pte_t pte, struct page *page)
799 {
800 struct mm_struct *src_mm = src_vma->vm_mm;
801 struct page *new_page;
802
803 if (!is_cow_mapping(src_vma->vm_flags))
804 return 1;
805
806 /*
807 * What we want to do is to check whether this page may
808 * have been pinned by the parent process. If so,
809 * instead of wrprotect the pte on both sides, we copy
810 * the page immediately so that we'll always guarantee
811 * the pinned page won't be randomly replaced in the
812 * future.
813 *
814 * The page pinning checks are just "has this mm ever
815 * seen pinning", along with the (inexact) check of
816 * the page count. That might give false positives for
817 * for pinning, but it will work correctly.
818 */
819 if (likely(!atomic_read(&src_mm->has_pinned)))
820 return 1;
821 if (likely(!page_maybe_dma_pinned(page)))
822 return 1;
823
824 new_page = *prealloc;
825 if (!new_page)
826 return -EAGAIN;
827
828 /*
829 * We have a prealloc page, all good! Take it
830 * over and copy the page & arm it.
831 */
832 *prealloc = NULL;
833 copy_user_highpage(new_page, page, addr, src_vma);
834 __SetPageUptodate(new_page);
835 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 rss[mm_counter(new_page)]++;
838
839 /* All done, just insert the new page copy in the child */
840 pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 return 0;
844 }
845
846 /*
847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
848 * is required to copy this pte.
849 */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 struct page **prealloc)
854 {
855 struct mm_struct *src_mm = src_vma->vm_mm;
856 unsigned long vm_flags = src_vma->vm_flags;
857 pte_t pte = *src_pte;
858 struct page *page;
859
860 page = vm_normal_page(src_vma, addr, pte);
861 if (page) {
862 int retval;
863
864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 addr, rss, prealloc, pte, page);
866 if (retval <= 0)
867 return retval;
868
869 get_page(page);
870 page_dup_rmap(page, false);
871 rss[mm_counter(page)]++;
872 }
873
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
878 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 ptep_set_wrprotect(src_mm, addr, src_pte);
880 pte = pte_wrprotect(pte);
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
890
891 /*
892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 * does not have the VM_UFFD_WP, which means that the uffd
894 * fork event is not enabled.
895 */
896 if (!(vm_flags & VM_UFFD_WP))
897 pte = pte_clear_uffd_wp(pte);
898
899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906 {
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
916 }
917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919 return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
926 {
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
929 pte_t *orig_src_pte, *orig_dst_pte;
930 pte_t *src_pte, *dst_pte;
931 spinlock_t *src_ptl, *dst_ptl;
932 int progress, ret = 0;
933 int rss[NR_MM_COUNTERS];
934 swp_entry_t entry = (swp_entry_t){0};
935 struct page *prealloc = NULL;
936
937 again:
938 progress = 0;
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
946 src_pte = pte_offset_map(src_pmd, addr);
947 src_ptl = pte_lockptr(src_mm, src_pmd);
948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
951 arch_enter_lazy_mmu_mode();
952
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 break;
963 }
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
971 src_vma, addr, rss);
972 if (entry.val)
973 break;
974 progress += 8;
975 continue;
976 }
977 /* copy_present_pte() will clear `*prealloc' if consumed */
978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 addr, rss, &prealloc);
980 /*
981 * If we need a pre-allocated page for this pte, drop the
982 * locks, allocate, and try again.
983 */
984 if (unlikely(ret == -EAGAIN))
985 break;
986 if (unlikely(prealloc)) {
987 /*
988 * pre-alloc page cannot be reused by next time so as
989 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 * will allocate page according to address). This
991 * could only happen if one pinned pte changed.
992 */
993 put_page(prealloc);
994 prealloc = NULL;
995 }
996 progress += 8;
997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999 arch_leave_lazy_mmu_mode();
1000 spin_unlock(src_ptl);
1001 pte_unmap(orig_src_pte);
1002 add_mm_rss_vec(dst_mm, rss);
1003 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 cond_resched();
1005
1006 if (entry.val) {
1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011 entry.val = 0;
1012 } else if (ret) {
1013 WARN_ON_ONCE(ret != -EAGAIN);
1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 if (!prealloc)
1016 return -ENOMEM;
1017 /* We've captured and resolved the error. Reset, try again. */
1018 ret = 0;
1019 }
1020 if (addr != end)
1021 goto again;
1022 out:
1023 if (unlikely(prealloc))
1024 put_page(prealloc);
1025 return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 unsigned long end)
1032 {
1033 struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 struct mm_struct *src_mm = src_vma->vm_mm;
1035 pmd_t *src_pmd, *dst_pmd;
1036 unsigned long next;
1037
1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 if (!dst_pmd)
1040 return -ENOMEM;
1041 src_pmd = pmd_offset(src_pud, addr);
1042 do {
1043 next = pmd_addr_end(addr, end);
1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 || pmd_devmap(*src_pmd)) {
1046 int err;
1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 err = copy_huge_pmd(dst_mm, src_mm,
1049 dst_pmd, src_pmd, addr, src_vma);
1050 if (err == -ENOMEM)
1051 return -ENOMEM;
1052 if (!err)
1053 continue;
1054 /* fall through */
1055 }
1056 if (pmd_none_or_clear_bad(src_pmd))
1057 continue;
1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 addr, next))
1060 return -ENOMEM;
1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 unsigned long end)
1069 {
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1072 pud_t *src_pud, *dst_pud;
1073 unsigned long next;
1074
1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 if (!dst_pud)
1077 return -ENOMEM;
1078 src_pud = pud_offset(src_p4d, addr);
1079 do {
1080 next = pud_addr_end(addr, end);
1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 int err;
1083
1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 err = copy_huge_pud(dst_mm, src_mm,
1086 dst_pud, src_pud, addr, src_vma);
1087 if (err == -ENOMEM)
1088 return -ENOMEM;
1089 if (!err)
1090 continue;
1091 /* fall through */
1092 }
1093 if (pud_none_or_clear_bad(src_pud))
1094 continue;
1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 addr, next))
1097 return -ENOMEM;
1098 } while (dst_pud++, src_pud++, addr = next, addr != end);
1099 return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 unsigned long end)
1106 {
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 p4d_t *src_p4d, *dst_p4d;
1109 unsigned long next;
1110
1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 if (!dst_p4d)
1113 return -ENOMEM;
1114 src_p4d = p4d_offset(src_pgd, addr);
1115 do {
1116 next = p4d_addr_end(addr, end);
1117 if (p4d_none_or_clear_bad(src_p4d))
1118 continue;
1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 addr, next))
1121 return -ENOMEM;
1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 pgd_t *src_pgd, *dst_pgd;
1130 unsigned long next;
1131 unsigned long addr = src_vma->vm_start;
1132 unsigned long end = src_vma->vm_end;
1133 struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 struct mm_struct *src_mm = src_vma->vm_mm;
1135 struct mmu_notifier_range range;
1136 bool is_cow;
1137 int ret;
1138
1139 /*
1140 * Don't copy ptes where a page fault will fill them correctly.
1141 * Fork becomes much lighter when there are big shared or private
1142 * readonly mappings. The tradeoff is that copy_page_range is more
1143 * efficient than faulting.
1144 */
1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 !src_vma->anon_vma)
1147 return 0;
1148
1149 if (is_vm_hugetlb_page(src_vma))
1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 /*
1154 * We do not free on error cases below as remove_vma
1155 * gets called on error from higher level routine
1156 */
1157 ret = track_pfn_copy(src_vma);
1158 if (ret)
1159 return ret;
1160 }
1161
1162 /*
1163 * We need to invalidate the secondary MMU mappings only when
1164 * there could be a permission downgrade on the ptes of the
1165 * parent mm. And a permission downgrade will only happen if
1166 * is_cow_mapping() returns true.
1167 */
1168 is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170 if (is_cow) {
1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 0, src_vma, src_mm, addr, end);
1173 mmu_notifier_invalidate_range_start(&range);
1174 }
1175
1176 ret = 0;
1177 dst_pgd = pgd_offset(dst_mm, addr);
1178 src_pgd = pgd_offset(src_mm, addr);
1179 do {
1180 next = pgd_addr_end(addr, end);
1181 if (pgd_none_or_clear_bad(src_pgd))
1182 continue;
1183 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184 addr, next))) {
1185 ret = -ENOMEM;
1186 break;
1187 }
1188 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1189
1190 if (is_cow)
1191 mmu_notifier_invalidate_range_end(&range);
1192 return ret;
1193 }
1194
1195 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1196 struct vm_area_struct *vma, pmd_t *pmd,
1197 unsigned long addr, unsigned long end,
1198 struct zap_details *details)
1199 {
1200 struct mm_struct *mm = tlb->mm;
1201 int force_flush = 0;
1202 int rss[NR_MM_COUNTERS];
1203 spinlock_t *ptl;
1204 pte_t *start_pte;
1205 pte_t *pte;
1206 swp_entry_t entry;
1207
1208 tlb_change_page_size(tlb, PAGE_SIZE);
1209 again:
1210 init_rss_vec(rss);
1211 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212 pte = start_pte;
1213 flush_tlb_batched_pending(mm);
1214 arch_enter_lazy_mmu_mode();
1215 do {
1216 pte_t ptent = *pte;
1217 if (pte_none(ptent))
1218 continue;
1219
1220 if (need_resched())
1221 break;
1222
1223 if (pte_present(ptent)) {
1224 struct page *page;
1225
1226 page = vm_normal_page(vma, addr, ptent);
1227 if (unlikely(details) && page) {
1228 /*
1229 * unmap_shared_mapping_pages() wants to
1230 * invalidate cache without truncating:
1231 * unmap shared but keep private pages.
1232 */
1233 if (details->check_mapping &&
1234 details->check_mapping != page_rmapping(page))
1235 continue;
1236 }
1237 ptent = ptep_get_and_clear_full(mm, addr, pte,
1238 tlb->fullmm);
1239 tlb_remove_tlb_entry(tlb, pte, addr);
1240 if (unlikely(!page))
1241 continue;
1242
1243 if (!PageAnon(page)) {
1244 if (pte_dirty(ptent)) {
1245 force_flush = 1;
1246 set_page_dirty(page);
1247 }
1248 if (pte_young(ptent) &&
1249 likely(!(vma->vm_flags & VM_SEQ_READ)))
1250 mark_page_accessed(page);
1251 }
1252 rss[mm_counter(page)]--;
1253 page_remove_rmap(page, false);
1254 if (unlikely(page_mapcount(page) < 0))
1255 print_bad_pte(vma, addr, ptent, page);
1256 if (unlikely(__tlb_remove_page(tlb, page))) {
1257 force_flush = 1;
1258 addr += PAGE_SIZE;
1259 break;
1260 }
1261 continue;
1262 }
1263
1264 entry = pte_to_swp_entry(ptent);
1265 if (is_device_private_entry(entry)) {
1266 struct page *page = device_private_entry_to_page(entry);
1267
1268 if (unlikely(details && details->check_mapping)) {
1269 /*
1270 * unmap_shared_mapping_pages() wants to
1271 * invalidate cache without truncating:
1272 * unmap shared but keep private pages.
1273 */
1274 if (details->check_mapping !=
1275 page_rmapping(page))
1276 continue;
1277 }
1278
1279 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280 rss[mm_counter(page)]--;
1281 page_remove_rmap(page, false);
1282 put_page(page);
1283 continue;
1284 }
1285
1286 /* If details->check_mapping, we leave swap entries. */
1287 if (unlikely(details))
1288 continue;
1289
1290 if (!non_swap_entry(entry))
1291 rss[MM_SWAPENTS]--;
1292 else if (is_migration_entry(entry)) {
1293 struct page *page;
1294
1295 page = migration_entry_to_page(entry);
1296 rss[mm_counter(page)]--;
1297 }
1298 if (unlikely(!free_swap_and_cache(entry)))
1299 print_bad_pte(vma, addr, ptent, NULL);
1300 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1301 } while (pte++, addr += PAGE_SIZE, addr != end);
1302
1303 add_mm_rss_vec(mm, rss);
1304 arch_leave_lazy_mmu_mode();
1305
1306 /* Do the actual TLB flush before dropping ptl */
1307 if (force_flush)
1308 tlb_flush_mmu_tlbonly(tlb);
1309 pte_unmap_unlock(start_pte, ptl);
1310
1311 /*
1312 * If we forced a TLB flush (either due to running out of
1313 * batch buffers or because we needed to flush dirty TLB
1314 * entries before releasing the ptl), free the batched
1315 * memory too. Restart if we didn't do everything.
1316 */
1317 if (force_flush) {
1318 force_flush = 0;
1319 tlb_flush_mmu(tlb);
1320 }
1321
1322 if (addr != end) {
1323 cond_resched();
1324 goto again;
1325 }
1326
1327 return addr;
1328 }
1329
1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1331 struct vm_area_struct *vma, pud_t *pud,
1332 unsigned long addr, unsigned long end,
1333 struct zap_details *details)
1334 {
1335 pmd_t *pmd;
1336 unsigned long next;
1337
1338 pmd = pmd_offset(pud, addr);
1339 do {
1340 next = pmd_addr_end(addr, end);
1341 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1342 if (next - addr != HPAGE_PMD_SIZE)
1343 __split_huge_pmd(vma, pmd, addr, false, NULL);
1344 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1345 goto next;
1346 /* fall through */
1347 }
1348 /*
1349 * Here there can be other concurrent MADV_DONTNEED or
1350 * trans huge page faults running, and if the pmd is
1351 * none or trans huge it can change under us. This is
1352 * because MADV_DONTNEED holds the mmap_lock in read
1353 * mode.
1354 */
1355 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356 goto next;
1357 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1358 next:
1359 cond_resched();
1360 } while (pmd++, addr = next, addr != end);
1361
1362 return addr;
1363 }
1364
1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1366 struct vm_area_struct *vma, p4d_t *p4d,
1367 unsigned long addr, unsigned long end,
1368 struct zap_details *details)
1369 {
1370 pud_t *pud;
1371 unsigned long next;
1372
1373 pud = pud_offset(p4d, addr);
1374 do {
1375 next = pud_addr_end(addr, end);
1376 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377 if (next - addr != HPAGE_PUD_SIZE) {
1378 mmap_assert_locked(tlb->mm);
1379 split_huge_pud(vma, pud, addr);
1380 } else if (zap_huge_pud(tlb, vma, pud, addr))
1381 goto next;
1382 /* fall through */
1383 }
1384 if (pud_none_or_clear_bad(pud))
1385 continue;
1386 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1387 next:
1388 cond_resched();
1389 } while (pud++, addr = next, addr != end);
1390
1391 return addr;
1392 }
1393
1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pgd_t *pgd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1398 {
1399 p4d_t *p4d;
1400 unsigned long next;
1401
1402 p4d = p4d_offset(pgd, addr);
1403 do {
1404 next = p4d_addr_end(addr, end);
1405 if (p4d_none_or_clear_bad(p4d))
1406 continue;
1407 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408 } while (p4d++, addr = next, addr != end);
1409
1410 return addr;
1411 }
1412
1413 void unmap_page_range(struct mmu_gather *tlb,
1414 struct vm_area_struct *vma,
1415 unsigned long addr, unsigned long end,
1416 struct zap_details *details)
1417 {
1418 pgd_t *pgd;
1419 unsigned long next;
1420
1421 BUG_ON(addr >= end);
1422 tlb_start_vma(tlb, vma);
1423 pgd = pgd_offset(vma->vm_mm, addr);
1424 do {
1425 next = pgd_addr_end(addr, end);
1426 if (pgd_none_or_clear_bad(pgd))
1427 continue;
1428 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1429 } while (pgd++, addr = next, addr != end);
1430 tlb_end_vma(tlb, vma);
1431 }
1432
1433
1434 static void unmap_single_vma(struct mmu_gather *tlb,
1435 struct vm_area_struct *vma, unsigned long start_addr,
1436 unsigned long end_addr,
1437 struct zap_details *details)
1438 {
1439 unsigned long start = max(vma->vm_start, start_addr);
1440 unsigned long end;
1441
1442 if (start >= vma->vm_end)
1443 return;
1444 end = min(vma->vm_end, end_addr);
1445 if (end <= vma->vm_start)
1446 return;
1447
1448 if (vma->vm_file)
1449 uprobe_munmap(vma, start, end);
1450
1451 if (unlikely(vma->vm_flags & VM_PFNMAP))
1452 untrack_pfn(vma, 0, 0);
1453
1454 if (start != end) {
1455 if (unlikely(is_vm_hugetlb_page(vma))) {
1456 /*
1457 * It is undesirable to test vma->vm_file as it
1458 * should be non-null for valid hugetlb area.
1459 * However, vm_file will be NULL in the error
1460 * cleanup path of mmap_region. When
1461 * hugetlbfs ->mmap method fails,
1462 * mmap_region() nullifies vma->vm_file
1463 * before calling this function to clean up.
1464 * Since no pte has actually been setup, it is
1465 * safe to do nothing in this case.
1466 */
1467 if (vma->vm_file) {
1468 i_mmap_lock_write(vma->vm_file->f_mapping);
1469 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1470 i_mmap_unlock_write(vma->vm_file->f_mapping);
1471 }
1472 } else
1473 unmap_page_range(tlb, vma, start, end, details);
1474 }
1475 }
1476
1477 /**
1478 * unmap_vmas - unmap a range of memory covered by a list of vma's
1479 * @tlb: address of the caller's struct mmu_gather
1480 * @vma: the starting vma
1481 * @start_addr: virtual address at which to start unmapping
1482 * @end_addr: virtual address at which to end unmapping
1483 *
1484 * Unmap all pages in the vma list.
1485 *
1486 * Only addresses between `start' and `end' will be unmapped.
1487 *
1488 * The VMA list must be sorted in ascending virtual address order.
1489 *
1490 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491 * range after unmap_vmas() returns. So the only responsibility here is to
1492 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493 * drops the lock and schedules.
1494 */
1495 void unmap_vmas(struct mmu_gather *tlb,
1496 struct vm_area_struct *vma, unsigned long start_addr,
1497 unsigned long end_addr)
1498 {
1499 struct mmu_notifier_range range;
1500
1501 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502 start_addr, end_addr);
1503 mmu_notifier_invalidate_range_start(&range);
1504 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1505 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1506 mmu_notifier_invalidate_range_end(&range);
1507 }
1508
1509 /**
1510 * zap_page_range - remove user pages in a given range
1511 * @vma: vm_area_struct holding the applicable pages
1512 * @start: starting address of pages to zap
1513 * @size: number of bytes to zap
1514 *
1515 * Caller must protect the VMA list
1516 */
1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1518 unsigned long size)
1519 {
1520 struct mmu_notifier_range range;
1521 struct mmu_gather tlb;
1522
1523 lru_add_drain();
1524 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1525 start, start + size);
1526 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527 update_hiwater_rss(vma->vm_mm);
1528 mmu_notifier_invalidate_range_start(&range);
1529 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531 mmu_notifier_invalidate_range_end(&range);
1532 tlb_finish_mmu(&tlb, start, range.end);
1533 }
1534
1535 /**
1536 * zap_page_range_single - remove user pages in a given range
1537 * @vma: vm_area_struct holding the applicable pages
1538 * @address: starting address of pages to zap
1539 * @size: number of bytes to zap
1540 * @details: details of shared cache invalidation
1541 *
1542 * The range must fit into one VMA.
1543 */
1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1545 unsigned long size, struct zap_details *details)
1546 {
1547 struct mmu_notifier_range range;
1548 struct mmu_gather tlb;
1549
1550 lru_add_drain();
1551 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552 address, address + size);
1553 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554 update_hiwater_rss(vma->vm_mm);
1555 mmu_notifier_invalidate_range_start(&range);
1556 unmap_single_vma(&tlb, vma, address, range.end, details);
1557 mmu_notifier_invalidate_range_end(&range);
1558 tlb_finish_mmu(&tlb, address, range.end);
1559 }
1560
1561 /**
1562 * zap_vma_ptes - remove ptes mapping the vma
1563 * @vma: vm_area_struct holding ptes to be zapped
1564 * @address: starting address of pages to zap
1565 * @size: number of bytes to zap
1566 *
1567 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568 *
1569 * The entire address range must be fully contained within the vma.
1570 *
1571 */
1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1573 unsigned long size)
1574 {
1575 if (address < vma->vm_start || address + size > vma->vm_end ||
1576 !(vma->vm_flags & VM_PFNMAP))
1577 return;
1578
1579 zap_page_range_single(vma, address, size, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582
1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1584 {
1585 pgd_t *pgd;
1586 p4d_t *p4d;
1587 pud_t *pud;
1588 pmd_t *pmd;
1589
1590 pgd = pgd_offset(mm, addr);
1591 p4d = p4d_alloc(mm, pgd, addr);
1592 if (!p4d)
1593 return NULL;
1594 pud = pud_alloc(mm, p4d, addr);
1595 if (!pud)
1596 return NULL;
1597 pmd = pmd_alloc(mm, pud, addr);
1598 if (!pmd)
1599 return NULL;
1600
1601 VM_BUG_ON(pmd_trans_huge(*pmd));
1602 return pmd;
1603 }
1604
1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606 spinlock_t **ptl)
1607 {
1608 pmd_t *pmd = walk_to_pmd(mm, addr);
1609
1610 if (!pmd)
1611 return NULL;
1612 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1613 }
1614
1615 static int validate_page_before_insert(struct page *page)
1616 {
1617 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618 return -EINVAL;
1619 flush_dcache_page(page);
1620 return 0;
1621 }
1622
1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624 unsigned long addr, struct page *page, pgprot_t prot)
1625 {
1626 if (!pte_none(*pte))
1627 return -EBUSY;
1628 /* Ok, finally just insert the thing.. */
1629 get_page(page);
1630 inc_mm_counter_fast(mm, mm_counter_file(page));
1631 page_add_file_rmap(page, false);
1632 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633 return 0;
1634 }
1635
1636 /*
1637 * This is the old fallback for page remapping.
1638 *
1639 * For historical reasons, it only allows reserved pages. Only
1640 * old drivers should use this, and they needed to mark their
1641 * pages reserved for the old functions anyway.
1642 */
1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644 struct page *page, pgprot_t prot)
1645 {
1646 struct mm_struct *mm = vma->vm_mm;
1647 int retval;
1648 pte_t *pte;
1649 spinlock_t *ptl;
1650
1651 retval = validate_page_before_insert(page);
1652 if (retval)
1653 goto out;
1654 retval = -ENOMEM;
1655 pte = get_locked_pte(mm, addr, &ptl);
1656 if (!pte)
1657 goto out;
1658 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1659 pte_unmap_unlock(pte, ptl);
1660 out:
1661 return retval;
1662 }
1663
1664 #ifdef pte_index
1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1666 unsigned long addr, struct page *page, pgprot_t prot)
1667 {
1668 int err;
1669
1670 if (!page_count(page))
1671 return -EINVAL;
1672 err = validate_page_before_insert(page);
1673 if (err)
1674 return err;
1675 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 }
1677
1678 /* insert_pages() amortizes the cost of spinlock operations
1679 * when inserting pages in a loop. Arch *must* define pte_index.
1680 */
1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682 struct page **pages, unsigned long *num, pgprot_t prot)
1683 {
1684 pmd_t *pmd = NULL;
1685 pte_t *start_pte, *pte;
1686 spinlock_t *pte_lock;
1687 struct mm_struct *const mm = vma->vm_mm;
1688 unsigned long curr_page_idx = 0;
1689 unsigned long remaining_pages_total = *num;
1690 unsigned long pages_to_write_in_pmd;
1691 int ret;
1692 more:
1693 ret = -EFAULT;
1694 pmd = walk_to_pmd(mm, addr);
1695 if (!pmd)
1696 goto out;
1697
1698 pages_to_write_in_pmd = min_t(unsigned long,
1699 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700
1701 /* Allocate the PTE if necessary; takes PMD lock once only. */
1702 ret = -ENOMEM;
1703 if (pte_alloc(mm, pmd))
1704 goto out;
1705
1706 while (pages_to_write_in_pmd) {
1707 int pte_idx = 0;
1708 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709
1710 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712 int err = insert_page_in_batch_locked(mm, pte,
1713 addr, pages[curr_page_idx], prot);
1714 if (unlikely(err)) {
1715 pte_unmap_unlock(start_pte, pte_lock);
1716 ret = err;
1717 remaining_pages_total -= pte_idx;
1718 goto out;
1719 }
1720 addr += PAGE_SIZE;
1721 ++curr_page_idx;
1722 }
1723 pte_unmap_unlock(start_pte, pte_lock);
1724 pages_to_write_in_pmd -= batch_size;
1725 remaining_pages_total -= batch_size;
1726 }
1727 if (remaining_pages_total)
1728 goto more;
1729 ret = 0;
1730 out:
1731 *num = remaining_pages_total;
1732 return ret;
1733 }
1734 #endif /* ifdef pte_index */
1735
1736 /**
1737 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738 * @vma: user vma to map to
1739 * @addr: target start user address of these pages
1740 * @pages: source kernel pages
1741 * @num: in: number of pages to map. out: number of pages that were *not*
1742 * mapped. (0 means all pages were successfully mapped).
1743 *
1744 * Preferred over vm_insert_page() when inserting multiple pages.
1745 *
1746 * In case of error, we may have mapped a subset of the provided
1747 * pages. It is the caller's responsibility to account for this case.
1748 *
1749 * The same restrictions apply as in vm_insert_page().
1750 */
1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752 struct page **pages, unsigned long *num)
1753 {
1754 #ifdef pte_index
1755 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756
1757 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758 return -EFAULT;
1759 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1760 BUG_ON(mmap_read_trylock(vma->vm_mm));
1761 BUG_ON(vma->vm_flags & VM_PFNMAP);
1762 vma->vm_flags |= VM_MIXEDMAP;
1763 }
1764 /* Defer page refcount checking till we're about to map that page. */
1765 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766 #else
1767 unsigned long idx = 0, pgcount = *num;
1768 int err = -EINVAL;
1769
1770 for (; idx < pgcount; ++idx) {
1771 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772 if (err)
1773 break;
1774 }
1775 *num = pgcount - idx;
1776 return err;
1777 #endif /* ifdef pte_index */
1778 }
1779 EXPORT_SYMBOL(vm_insert_pages);
1780
1781 /**
1782 * vm_insert_page - insert single page into user vma
1783 * @vma: user vma to map to
1784 * @addr: target user address of this page
1785 * @page: source kernel page
1786 *
1787 * This allows drivers to insert individual pages they've allocated
1788 * into a user vma.
1789 *
1790 * The page has to be a nice clean _individual_ kernel allocation.
1791 * If you allocate a compound page, you need to have marked it as
1792 * such (__GFP_COMP), or manually just split the page up yourself
1793 * (see split_page()).
1794 *
1795 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796 * took an arbitrary page protection parameter. This doesn't allow
1797 * that. Your vma protection will have to be set up correctly, which
1798 * means that if you want a shared writable mapping, you'd better
1799 * ask for a shared writable mapping!
1800 *
1801 * The page does not need to be reserved.
1802 *
1803 * Usually this function is called from f_op->mmap() handler
1804 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1805 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806 * function from other places, for example from page-fault handler.
1807 *
1808 * Return: %0 on success, negative error code otherwise.
1809 */
1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811 struct page *page)
1812 {
1813 if (addr < vma->vm_start || addr >= vma->vm_end)
1814 return -EFAULT;
1815 if (!page_count(page))
1816 return -EINVAL;
1817 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1818 BUG_ON(mmap_read_trylock(vma->vm_mm));
1819 BUG_ON(vma->vm_flags & VM_PFNMAP);
1820 vma->vm_flags |= VM_MIXEDMAP;
1821 }
1822 return insert_page(vma, addr, page, vma->vm_page_prot);
1823 }
1824 EXPORT_SYMBOL(vm_insert_page);
1825
1826 /*
1827 * __vm_map_pages - maps range of kernel pages into user vma
1828 * @vma: user vma to map to
1829 * @pages: pointer to array of source kernel pages
1830 * @num: number of pages in page array
1831 * @offset: user's requested vm_pgoff
1832 *
1833 * This allows drivers to map range of kernel pages into a user vma.
1834 *
1835 * Return: 0 on success and error code otherwise.
1836 */
1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838 unsigned long num, unsigned long offset)
1839 {
1840 unsigned long count = vma_pages(vma);
1841 unsigned long uaddr = vma->vm_start;
1842 int ret, i;
1843
1844 /* Fail if the user requested offset is beyond the end of the object */
1845 if (offset >= num)
1846 return -ENXIO;
1847
1848 /* Fail if the user requested size exceeds available object size */
1849 if (count > num - offset)
1850 return -ENXIO;
1851
1852 for (i = 0; i < count; i++) {
1853 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854 if (ret < 0)
1855 return ret;
1856 uaddr += PAGE_SIZE;
1857 }
1858
1859 return 0;
1860 }
1861
1862 /**
1863 * vm_map_pages - maps range of kernel pages starts with non zero offset
1864 * @vma: user vma to map to
1865 * @pages: pointer to array of source kernel pages
1866 * @num: number of pages in page array
1867 *
1868 * Maps an object consisting of @num pages, catering for the user's
1869 * requested vm_pgoff
1870 *
1871 * If we fail to insert any page into the vma, the function will return
1872 * immediately leaving any previously inserted pages present. Callers
1873 * from the mmap handler may immediately return the error as their caller
1874 * will destroy the vma, removing any successfully inserted pages. Other
1875 * callers should make their own arrangements for calling unmap_region().
1876 *
1877 * Context: Process context. Called by mmap handlers.
1878 * Return: 0 on success and error code otherwise.
1879 */
1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881 unsigned long num)
1882 {
1883 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884 }
1885 EXPORT_SYMBOL(vm_map_pages);
1886
1887 /**
1888 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889 * @vma: user vma to map to
1890 * @pages: pointer to array of source kernel pages
1891 * @num: number of pages in page array
1892 *
1893 * Similar to vm_map_pages(), except that it explicitly sets the offset
1894 * to 0. This function is intended for the drivers that did not consider
1895 * vm_pgoff.
1896 *
1897 * Context: Process context. Called by mmap handlers.
1898 * Return: 0 on success and error code otherwise.
1899 */
1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901 unsigned long num)
1902 {
1903 return __vm_map_pages(vma, pages, num, 0);
1904 }
1905 EXPORT_SYMBOL(vm_map_pages_zero);
1906
1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908 pfn_t pfn, pgprot_t prot, bool mkwrite)
1909 {
1910 struct mm_struct *mm = vma->vm_mm;
1911 pte_t *pte, entry;
1912 spinlock_t *ptl;
1913
1914 pte = get_locked_pte(mm, addr, &ptl);
1915 if (!pte)
1916 return VM_FAULT_OOM;
1917 if (!pte_none(*pte)) {
1918 if (mkwrite) {
1919 /*
1920 * For read faults on private mappings the PFN passed
1921 * in may not match the PFN we have mapped if the
1922 * mapped PFN is a writeable COW page. In the mkwrite
1923 * case we are creating a writable PTE for a shared
1924 * mapping and we expect the PFNs to match. If they
1925 * don't match, we are likely racing with block
1926 * allocation and mapping invalidation so just skip the
1927 * update.
1928 */
1929 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1931 goto out_unlock;
1932 }
1933 entry = pte_mkyoung(*pte);
1934 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936 update_mmu_cache(vma, addr, pte);
1937 }
1938 goto out_unlock;
1939 }
1940
1941 /* Ok, finally just insert the thing.. */
1942 if (pfn_t_devmap(pfn))
1943 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944 else
1945 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1946
1947 if (mkwrite) {
1948 entry = pte_mkyoung(entry);
1949 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950 }
1951
1952 set_pte_at(mm, addr, pte, entry);
1953 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1954
1955 out_unlock:
1956 pte_unmap_unlock(pte, ptl);
1957 return VM_FAULT_NOPAGE;
1958 }
1959
1960 /**
1961 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962 * @vma: user vma to map to
1963 * @addr: target user address of this page
1964 * @pfn: source kernel pfn
1965 * @pgprot: pgprot flags for the inserted page
1966 *
1967 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1968 * to override pgprot on a per-page basis.
1969 *
1970 * This only makes sense for IO mappings, and it makes no sense for
1971 * COW mappings. In general, using multiple vmas is preferable;
1972 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1973 * impractical.
1974 *
1975 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976 * a value of @pgprot different from that of @vma->vm_page_prot.
1977 *
1978 * Context: Process context. May allocate using %GFP_KERNEL.
1979 * Return: vm_fault_t value.
1980 */
1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982 unsigned long pfn, pgprot_t pgprot)
1983 {
1984 /*
1985 * Technically, architectures with pte_special can avoid all these
1986 * restrictions (same for remap_pfn_range). However we would like
1987 * consistency in testing and feature parity among all, so we should
1988 * try to keep these invariants in place for everybody.
1989 */
1990 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992 (VM_PFNMAP|VM_MIXEDMAP));
1993 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995
1996 if (addr < vma->vm_start || addr >= vma->vm_end)
1997 return VM_FAULT_SIGBUS;
1998
1999 if (!pfn_modify_allowed(pfn, pgprot))
2000 return VM_FAULT_SIGBUS;
2001
2002 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003
2004 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2005 false);
2006 }
2007 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2008
2009 /**
2010 * vmf_insert_pfn - insert single pfn into user vma
2011 * @vma: user vma to map to
2012 * @addr: target user address of this page
2013 * @pfn: source kernel pfn
2014 *
2015 * Similar to vm_insert_page, this allows drivers to insert individual pages
2016 * they've allocated into a user vma. Same comments apply.
2017 *
2018 * This function should only be called from a vm_ops->fault handler, and
2019 * in that case the handler should return the result of this function.
2020 *
2021 * vma cannot be a COW mapping.
2022 *
2023 * As this is called only for pages that do not currently exist, we
2024 * do not need to flush old virtual caches or the TLB.
2025 *
2026 * Context: Process context. May allocate using %GFP_KERNEL.
2027 * Return: vm_fault_t value.
2028 */
2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030 unsigned long pfn)
2031 {
2032 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn);
2035
2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037 {
2038 /* these checks mirror the abort conditions in vm_normal_page */
2039 if (vma->vm_flags & VM_MIXEDMAP)
2040 return true;
2041 if (pfn_t_devmap(pfn))
2042 return true;
2043 if (pfn_t_special(pfn))
2044 return true;
2045 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046 return true;
2047 return false;
2048 }
2049
2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2051 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052 bool mkwrite)
2053 {
2054 int err;
2055
2056 BUG_ON(!vm_mixed_ok(vma, pfn));
2057
2058 if (addr < vma->vm_start || addr >= vma->vm_end)
2059 return VM_FAULT_SIGBUS;
2060
2061 track_pfn_insert(vma, &pgprot, pfn);
2062
2063 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2064 return VM_FAULT_SIGBUS;
2065
2066 /*
2067 * If we don't have pte special, then we have to use the pfn_valid()
2068 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069 * refcount the page if pfn_valid is true (hence insert_page rather
2070 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2071 * without pte special, it would there be refcounted as a normal page.
2072 */
2073 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2075 struct page *page;
2076
2077 /*
2078 * At this point we are committed to insert_page()
2079 * regardless of whether the caller specified flags that
2080 * result in pfn_t_has_page() == false.
2081 */
2082 page = pfn_to_page(pfn_t_to_pfn(pfn));
2083 err = insert_page(vma, addr, page, pgprot);
2084 } else {
2085 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2086 }
2087
2088 if (err == -ENOMEM)
2089 return VM_FAULT_OOM;
2090 if (err < 0 && err != -EBUSY)
2091 return VM_FAULT_SIGBUS;
2092
2093 return VM_FAULT_NOPAGE;
2094 }
2095
2096 /**
2097 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098 * @vma: user vma to map to
2099 * @addr: target user address of this page
2100 * @pfn: source kernel pfn
2101 * @pgprot: pgprot flags for the inserted page
2102 *
2103 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2104 * to override pgprot on a per-page basis.
2105 *
2106 * Typically this function should be used by drivers to set caching- and
2107 * encryption bits different than those of @vma->vm_page_prot, because
2108 * the caching- or encryption mode may not be known at mmap() time.
2109 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110 * to set caching and encryption bits for those vmas (except for COW pages).
2111 * This is ensured by core vm only modifying these page table entries using
2112 * functions that don't touch caching- or encryption bits, using pte_modify()
2113 * if needed. (See for example mprotect()).
2114 * Also when new page-table entries are created, this is only done using the
2115 * fault() callback, and never using the value of vma->vm_page_prot,
2116 * except for page-table entries that point to anonymous pages as the result
2117 * of COW.
2118 *
2119 * Context: Process context. May allocate using %GFP_KERNEL.
2120 * Return: vm_fault_t value.
2121 */
2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123 pfn_t pfn, pgprot_t pgprot)
2124 {
2125 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126 }
2127 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2128
2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 pfn_t pfn)
2131 {
2132 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_mixed);
2135
2136 /*
2137 * If the insertion of PTE failed because someone else already added a
2138 * different entry in the mean time, we treat that as success as we assume
2139 * the same entry was actually inserted.
2140 */
2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142 unsigned long addr, pfn_t pfn)
2143 {
2144 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2147
2148 /*
2149 * maps a range of physical memory into the requested pages. the old
2150 * mappings are removed. any references to nonexistent pages results
2151 * in null mappings (currently treated as "copy-on-access")
2152 */
2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154 unsigned long addr, unsigned long end,
2155 unsigned long pfn, pgprot_t prot)
2156 {
2157 pte_t *pte;
2158 spinlock_t *ptl;
2159 int err = 0;
2160
2161 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162 if (!pte)
2163 return -ENOMEM;
2164 arch_enter_lazy_mmu_mode();
2165 do {
2166 BUG_ON(!pte_none(*pte));
2167 if (!pfn_modify_allowed(pfn, prot)) {
2168 err = -EACCES;
2169 break;
2170 }
2171 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2172 pfn++;
2173 } while (pte++, addr += PAGE_SIZE, addr != end);
2174 arch_leave_lazy_mmu_mode();
2175 pte_unmap_unlock(pte - 1, ptl);
2176 return err;
2177 }
2178
2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180 unsigned long addr, unsigned long end,
2181 unsigned long pfn, pgprot_t prot)
2182 {
2183 pmd_t *pmd;
2184 unsigned long next;
2185 int err;
2186
2187 pfn -= addr >> PAGE_SHIFT;
2188 pmd = pmd_alloc(mm, pud, addr);
2189 if (!pmd)
2190 return -ENOMEM;
2191 VM_BUG_ON(pmd_trans_huge(*pmd));
2192 do {
2193 next = pmd_addr_end(addr, end);
2194 err = remap_pte_range(mm, pmd, addr, next,
2195 pfn + (addr >> PAGE_SHIFT), prot);
2196 if (err)
2197 return err;
2198 } while (pmd++, addr = next, addr != end);
2199 return 0;
2200 }
2201
2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205 {
2206 pud_t *pud;
2207 unsigned long next;
2208 int err;
2209
2210 pfn -= addr >> PAGE_SHIFT;
2211 pud = pud_alloc(mm, p4d, addr);
2212 if (!pud)
2213 return -ENOMEM;
2214 do {
2215 next = pud_addr_end(addr, end);
2216 err = remap_pmd_range(mm, pud, addr, next,
2217 pfn + (addr >> PAGE_SHIFT), prot);
2218 if (err)
2219 return err;
2220 } while (pud++, addr = next, addr != end);
2221 return 0;
2222 }
2223
2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225 unsigned long addr, unsigned long end,
2226 unsigned long pfn, pgprot_t prot)
2227 {
2228 p4d_t *p4d;
2229 unsigned long next;
2230 int err;
2231
2232 pfn -= addr >> PAGE_SHIFT;
2233 p4d = p4d_alloc(mm, pgd, addr);
2234 if (!p4d)
2235 return -ENOMEM;
2236 do {
2237 next = p4d_addr_end(addr, end);
2238 err = remap_pud_range(mm, p4d, addr, next,
2239 pfn + (addr >> PAGE_SHIFT), prot);
2240 if (err)
2241 return err;
2242 } while (p4d++, addr = next, addr != end);
2243 return 0;
2244 }
2245
2246 /**
2247 * remap_pfn_range - remap kernel memory to userspace
2248 * @vma: user vma to map to
2249 * @addr: target page aligned user address to start at
2250 * @pfn: page frame number of kernel physical memory address
2251 * @size: size of mapping area
2252 * @prot: page protection flags for this mapping
2253 *
2254 * Note: this is only safe if the mm semaphore is held when called.
2255 *
2256 * Return: %0 on success, negative error code otherwise.
2257 */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259 unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261 pgd_t *pgd;
2262 unsigned long next;
2263 unsigned long end = addr + PAGE_ALIGN(size);
2264 struct mm_struct *mm = vma->vm_mm;
2265 unsigned long remap_pfn = pfn;
2266 int err;
2267
2268 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269 return -EINVAL;
2270
2271 /*
2272 * Physically remapped pages are special. Tell the
2273 * rest of the world about it:
2274 * VM_IO tells people not to look at these pages
2275 * (accesses can have side effects).
2276 * VM_PFNMAP tells the core MM that the base pages are just
2277 * raw PFN mappings, and do not have a "struct page" associated
2278 * with them.
2279 * VM_DONTEXPAND
2280 * Disable vma merging and expanding with mremap().
2281 * VM_DONTDUMP
2282 * Omit vma from core dump, even when VM_IO turned off.
2283 *
2284 * There's a horrible special case to handle copy-on-write
2285 * behaviour that some programs depend on. We mark the "original"
2286 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287 * See vm_normal_page() for details.
2288 */
2289 if (is_cow_mapping(vma->vm_flags)) {
2290 if (addr != vma->vm_start || end != vma->vm_end)
2291 return -EINVAL;
2292 vma->vm_pgoff = pfn;
2293 }
2294
2295 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2296 if (err)
2297 return -EINVAL;
2298
2299 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2300
2301 BUG_ON(addr >= end);
2302 pfn -= addr >> PAGE_SHIFT;
2303 pgd = pgd_offset(mm, addr);
2304 flush_cache_range(vma, addr, end);
2305 do {
2306 next = pgd_addr_end(addr, end);
2307 err = remap_p4d_range(mm, pgd, addr, next,
2308 pfn + (addr >> PAGE_SHIFT), prot);
2309 if (err)
2310 break;
2311 } while (pgd++, addr = next, addr != end);
2312
2313 if (err)
2314 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2315
2316 return err;
2317 }
2318 EXPORT_SYMBOL(remap_pfn_range);
2319
2320 /**
2321 * vm_iomap_memory - remap memory to userspace
2322 * @vma: user vma to map to
2323 * @start: start of the physical memory to be mapped
2324 * @len: size of area
2325 *
2326 * This is a simplified io_remap_pfn_range() for common driver use. The
2327 * driver just needs to give us the physical memory range to be mapped,
2328 * we'll figure out the rest from the vma information.
2329 *
2330 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331 * whatever write-combining details or similar.
2332 *
2333 * Return: %0 on success, negative error code otherwise.
2334 */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337 unsigned long vm_len, pfn, pages;
2338
2339 /* Check that the physical memory area passed in looks valid */
2340 if (start + len < start)
2341 return -EINVAL;
2342 /*
2343 * You *really* shouldn't map things that aren't page-aligned,
2344 * but we've historically allowed it because IO memory might
2345 * just have smaller alignment.
2346 */
2347 len += start & ~PAGE_MASK;
2348 pfn = start >> PAGE_SHIFT;
2349 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350 if (pfn + pages < pfn)
2351 return -EINVAL;
2352
2353 /* We start the mapping 'vm_pgoff' pages into the area */
2354 if (vma->vm_pgoff > pages)
2355 return -EINVAL;
2356 pfn += vma->vm_pgoff;
2357 pages -= vma->vm_pgoff;
2358
2359 /* Can we fit all of the mapping? */
2360 vm_len = vma->vm_end - vma->vm_start;
2361 if (vm_len >> PAGE_SHIFT > pages)
2362 return -EINVAL;
2363
2364 /* Ok, let it rip */
2365 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370 unsigned long addr, unsigned long end,
2371 pte_fn_t fn, void *data, bool create,
2372 pgtbl_mod_mask *mask)
2373 {
2374 pte_t *pte;
2375 int err = 0;
2376 spinlock_t *ptl;
2377
2378 if (create) {
2379 pte = (mm == &init_mm) ?
2380 pte_alloc_kernel_track(pmd, addr, mask) :
2381 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382 if (!pte)
2383 return -ENOMEM;
2384 } else {
2385 pte = (mm == &init_mm) ?
2386 pte_offset_kernel(pmd, addr) :
2387 pte_offset_map_lock(mm, pmd, addr, &ptl);
2388 }
2389
2390 BUG_ON(pmd_huge(*pmd));
2391
2392 arch_enter_lazy_mmu_mode();
2393
2394 if (fn) {
2395 do {
2396 if (create || !pte_none(*pte)) {
2397 err = fn(pte++, addr, data);
2398 if (err)
2399 break;
2400 }
2401 } while (addr += PAGE_SIZE, addr != end);
2402 }
2403 *mask |= PGTBL_PTE_MODIFIED;
2404
2405 arch_leave_lazy_mmu_mode();
2406
2407 if (mm != &init_mm)
2408 pte_unmap_unlock(pte-1, ptl);
2409 return err;
2410 }
2411
2412 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2413 unsigned long addr, unsigned long end,
2414 pte_fn_t fn, void *data, bool create,
2415 pgtbl_mod_mask *mask)
2416 {
2417 pmd_t *pmd;
2418 unsigned long next;
2419 int err = 0;
2420
2421 BUG_ON(pud_huge(*pud));
2422
2423 if (create) {
2424 pmd = pmd_alloc_track(mm, pud, addr, mask);
2425 if (!pmd)
2426 return -ENOMEM;
2427 } else {
2428 pmd = pmd_offset(pud, addr);
2429 }
2430 do {
2431 next = pmd_addr_end(addr, end);
2432 if (create || !pmd_none_or_clear_bad(pmd)) {
2433 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2434 create, mask);
2435 if (err)
2436 break;
2437 }
2438 } while (pmd++, addr = next, addr != end);
2439 return err;
2440 }
2441
2442 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2443 unsigned long addr, unsigned long end,
2444 pte_fn_t fn, void *data, bool create,
2445 pgtbl_mod_mask *mask)
2446 {
2447 pud_t *pud;
2448 unsigned long next;
2449 int err = 0;
2450
2451 if (create) {
2452 pud = pud_alloc_track(mm, p4d, addr, mask);
2453 if (!pud)
2454 return -ENOMEM;
2455 } else {
2456 pud = pud_offset(p4d, addr);
2457 }
2458 do {
2459 next = pud_addr_end(addr, end);
2460 if (create || !pud_none_or_clear_bad(pud)) {
2461 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2462 create, mask);
2463 if (err)
2464 break;
2465 }
2466 } while (pud++, addr = next, addr != end);
2467 return err;
2468 }
2469
2470 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2471 unsigned long addr, unsigned long end,
2472 pte_fn_t fn, void *data, bool create,
2473 pgtbl_mod_mask *mask)
2474 {
2475 p4d_t *p4d;
2476 unsigned long next;
2477 int err = 0;
2478
2479 if (create) {
2480 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2481 if (!p4d)
2482 return -ENOMEM;
2483 } else {
2484 p4d = p4d_offset(pgd, addr);
2485 }
2486 do {
2487 next = p4d_addr_end(addr, end);
2488 if (create || !p4d_none_or_clear_bad(p4d)) {
2489 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2490 create, mask);
2491 if (err)
2492 break;
2493 }
2494 } while (p4d++, addr = next, addr != end);
2495 return err;
2496 }
2497
2498 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2499 unsigned long size, pte_fn_t fn,
2500 void *data, bool create)
2501 {
2502 pgd_t *pgd;
2503 unsigned long start = addr, next;
2504 unsigned long end = addr + size;
2505 pgtbl_mod_mask mask = 0;
2506 int err = 0;
2507
2508 if (WARN_ON(addr >= end))
2509 return -EINVAL;
2510
2511 pgd = pgd_offset(mm, addr);
2512 do {
2513 next = pgd_addr_end(addr, end);
2514 if (!create && pgd_none_or_clear_bad(pgd))
2515 continue;
2516 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2517 if (err)
2518 break;
2519 } while (pgd++, addr = next, addr != end);
2520
2521 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2522 arch_sync_kernel_mappings(start, start + size);
2523
2524 return err;
2525 }
2526
2527 /*
2528 * Scan a region of virtual memory, filling in page tables as necessary
2529 * and calling a provided function on each leaf page table.
2530 */
2531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2532 unsigned long size, pte_fn_t fn, void *data)
2533 {
2534 return __apply_to_page_range(mm, addr, size, fn, data, true);
2535 }
2536 EXPORT_SYMBOL_GPL(apply_to_page_range);
2537
2538 /*
2539 * Scan a region of virtual memory, calling a provided function on
2540 * each leaf page table where it exists.
2541 *
2542 * Unlike apply_to_page_range, this does _not_ fill in page tables
2543 * where they are absent.
2544 */
2545 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2546 unsigned long size, pte_fn_t fn, void *data)
2547 {
2548 return __apply_to_page_range(mm, addr, size, fn, data, false);
2549 }
2550 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2551
2552 /*
2553 * handle_pte_fault chooses page fault handler according to an entry which was
2554 * read non-atomically. Before making any commitment, on those architectures
2555 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2556 * parts, do_swap_page must check under lock before unmapping the pte and
2557 * proceeding (but do_wp_page is only called after already making such a check;
2558 * and do_anonymous_page can safely check later on).
2559 */
2560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2561 pte_t *page_table, pte_t orig_pte)
2562 {
2563 int same = 1;
2564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2565 if (sizeof(pte_t) > sizeof(unsigned long)) {
2566 spinlock_t *ptl = pte_lockptr(mm, pmd);
2567 spin_lock(ptl);
2568 same = pte_same(*page_table, orig_pte);
2569 spin_unlock(ptl);
2570 }
2571 #endif
2572 pte_unmap(page_table);
2573 return same;
2574 }
2575
2576 static inline bool cow_user_page(struct page *dst, struct page *src,
2577 struct vm_fault *vmf)
2578 {
2579 bool ret;
2580 void *kaddr;
2581 void __user *uaddr;
2582 bool locked = false;
2583 struct vm_area_struct *vma = vmf->vma;
2584 struct mm_struct *mm = vma->vm_mm;
2585 unsigned long addr = vmf->address;
2586
2587 if (likely(src)) {
2588 copy_user_highpage(dst, src, addr, vma);
2589 return true;
2590 }
2591
2592 /*
2593 * If the source page was a PFN mapping, we don't have
2594 * a "struct page" for it. We do a best-effort copy by
2595 * just copying from the original user address. If that
2596 * fails, we just zero-fill it. Live with it.
2597 */
2598 kaddr = kmap_atomic(dst);
2599 uaddr = (void __user *)(addr & PAGE_MASK);
2600
2601 /*
2602 * On architectures with software "accessed" bits, we would
2603 * take a double page fault, so mark it accessed here.
2604 */
2605 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2606 pte_t entry;
2607
2608 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2609 locked = true;
2610 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2611 /*
2612 * Other thread has already handled the fault
2613 * and update local tlb only
2614 */
2615 update_mmu_tlb(vma, addr, vmf->pte);
2616 ret = false;
2617 goto pte_unlock;
2618 }
2619
2620 entry = pte_mkyoung(vmf->orig_pte);
2621 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2622 update_mmu_cache(vma, addr, vmf->pte);
2623 }
2624
2625 /*
2626 * This really shouldn't fail, because the page is there
2627 * in the page tables. But it might just be unreadable,
2628 * in which case we just give up and fill the result with
2629 * zeroes.
2630 */
2631 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2632 if (locked)
2633 goto warn;
2634
2635 /* Re-validate under PTL if the page is still mapped */
2636 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2637 locked = true;
2638 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2639 /* The PTE changed under us, update local tlb */
2640 update_mmu_tlb(vma, addr, vmf->pte);
2641 ret = false;
2642 goto pte_unlock;
2643 }
2644
2645 /*
2646 * The same page can be mapped back since last copy attempt.
2647 * Try to copy again under PTL.
2648 */
2649 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2650 /*
2651 * Give a warn in case there can be some obscure
2652 * use-case
2653 */
2654 warn:
2655 WARN_ON_ONCE(1);
2656 clear_page(kaddr);
2657 }
2658 }
2659
2660 ret = true;
2661
2662 pte_unlock:
2663 if (locked)
2664 pte_unmap_unlock(vmf->pte, vmf->ptl);
2665 kunmap_atomic(kaddr);
2666 flush_dcache_page(dst);
2667
2668 return ret;
2669 }
2670
2671 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2672 {
2673 struct file *vm_file = vma->vm_file;
2674
2675 if (vm_file)
2676 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2677
2678 /*
2679 * Special mappings (e.g. VDSO) do not have any file so fake
2680 * a default GFP_KERNEL for them.
2681 */
2682 return GFP_KERNEL;
2683 }
2684
2685 /*
2686 * Notify the address space that the page is about to become writable so that
2687 * it can prohibit this or wait for the page to get into an appropriate state.
2688 *
2689 * We do this without the lock held, so that it can sleep if it needs to.
2690 */
2691 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2692 {
2693 vm_fault_t ret;
2694 struct page *page = vmf->page;
2695 unsigned int old_flags = vmf->flags;
2696
2697 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2698
2699 if (vmf->vma->vm_file &&
2700 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2701 return VM_FAULT_SIGBUS;
2702
2703 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2704 /* Restore original flags so that caller is not surprised */
2705 vmf->flags = old_flags;
2706 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2707 return ret;
2708 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2709 lock_page(page);
2710 if (!page->mapping) {
2711 unlock_page(page);
2712 return 0; /* retry */
2713 }
2714 ret |= VM_FAULT_LOCKED;
2715 } else
2716 VM_BUG_ON_PAGE(!PageLocked(page), page);
2717 return ret;
2718 }
2719
2720 /*
2721 * Handle dirtying of a page in shared file mapping on a write fault.
2722 *
2723 * The function expects the page to be locked and unlocks it.
2724 */
2725 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2726 {
2727 struct vm_area_struct *vma = vmf->vma;
2728 struct address_space *mapping;
2729 struct page *page = vmf->page;
2730 bool dirtied;
2731 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2732
2733 dirtied = set_page_dirty(page);
2734 VM_BUG_ON_PAGE(PageAnon(page), page);
2735 /*
2736 * Take a local copy of the address_space - page.mapping may be zeroed
2737 * by truncate after unlock_page(). The address_space itself remains
2738 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2739 * release semantics to prevent the compiler from undoing this copying.
2740 */
2741 mapping = page_rmapping(page);
2742 unlock_page(page);
2743
2744 if (!page_mkwrite)
2745 file_update_time(vma->vm_file);
2746
2747 /*
2748 * Throttle page dirtying rate down to writeback speed.
2749 *
2750 * mapping may be NULL here because some device drivers do not
2751 * set page.mapping but still dirty their pages
2752 *
2753 * Drop the mmap_lock before waiting on IO, if we can. The file
2754 * is pinning the mapping, as per above.
2755 */
2756 if ((dirtied || page_mkwrite) && mapping) {
2757 struct file *fpin;
2758
2759 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2760 balance_dirty_pages_ratelimited(mapping);
2761 if (fpin) {
2762 fput(fpin);
2763 return VM_FAULT_RETRY;
2764 }
2765 }
2766
2767 return 0;
2768 }
2769
2770 /*
2771 * Handle write page faults for pages that can be reused in the current vma
2772 *
2773 * This can happen either due to the mapping being with the VM_SHARED flag,
2774 * or due to us being the last reference standing to the page. In either
2775 * case, all we need to do here is to mark the page as writable and update
2776 * any related book-keeping.
2777 */
2778 static inline void wp_page_reuse(struct vm_fault *vmf)
2779 __releases(vmf->ptl)
2780 {
2781 struct vm_area_struct *vma = vmf->vma;
2782 struct page *page = vmf->page;
2783 pte_t entry;
2784 /*
2785 * Clear the pages cpupid information as the existing
2786 * information potentially belongs to a now completely
2787 * unrelated process.
2788 */
2789 if (page)
2790 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2791
2792 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2793 entry = pte_mkyoung(vmf->orig_pte);
2794 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2795 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2796 update_mmu_cache(vma, vmf->address, vmf->pte);
2797 pte_unmap_unlock(vmf->pte, vmf->ptl);
2798 count_vm_event(PGREUSE);
2799 }
2800
2801 /*
2802 * Handle the case of a page which we actually need to copy to a new page.
2803 *
2804 * Called with mmap_lock locked and the old page referenced, but
2805 * without the ptl held.
2806 *
2807 * High level logic flow:
2808 *
2809 * - Allocate a page, copy the content of the old page to the new one.
2810 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2811 * - Take the PTL. If the pte changed, bail out and release the allocated page
2812 * - If the pte is still the way we remember it, update the page table and all
2813 * relevant references. This includes dropping the reference the page-table
2814 * held to the old page, as well as updating the rmap.
2815 * - In any case, unlock the PTL and drop the reference we took to the old page.
2816 */
2817 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2818 {
2819 struct vm_area_struct *vma = vmf->vma;
2820 struct mm_struct *mm = vma->vm_mm;
2821 struct page *old_page = vmf->page;
2822 struct page *new_page = NULL;
2823 pte_t entry;
2824 int page_copied = 0;
2825 struct mmu_notifier_range range;
2826
2827 if (unlikely(anon_vma_prepare(vma)))
2828 goto oom;
2829
2830 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2831 new_page = alloc_zeroed_user_highpage_movable(vma,
2832 vmf->address);
2833 if (!new_page)
2834 goto oom;
2835 } else {
2836 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2837 vmf->address);
2838 if (!new_page)
2839 goto oom;
2840
2841 if (!cow_user_page(new_page, old_page, vmf)) {
2842 /*
2843 * COW failed, if the fault was solved by other,
2844 * it's fine. If not, userspace would re-fault on
2845 * the same address and we will handle the fault
2846 * from the second attempt.
2847 */
2848 put_page(new_page);
2849 if (old_page)
2850 put_page(old_page);
2851 return 0;
2852 }
2853 }
2854
2855 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2856 goto oom_free_new;
2857 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2858
2859 __SetPageUptodate(new_page);
2860
2861 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2862 vmf->address & PAGE_MASK,
2863 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2864 mmu_notifier_invalidate_range_start(&range);
2865
2866 /*
2867 * Re-check the pte - we dropped the lock
2868 */
2869 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2870 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871 if (old_page) {
2872 if (!PageAnon(old_page)) {
2873 dec_mm_counter_fast(mm,
2874 mm_counter_file(old_page));
2875 inc_mm_counter_fast(mm, MM_ANONPAGES);
2876 }
2877 } else {
2878 inc_mm_counter_fast(mm, MM_ANONPAGES);
2879 }
2880 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2881 entry = mk_pte(new_page, vma->vm_page_prot);
2882 entry = pte_sw_mkyoung(entry);
2883 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2884 /*
2885 * Clear the pte entry and flush it first, before updating the
2886 * pte with the new entry. This will avoid a race condition
2887 * seen in the presence of one thread doing SMC and another
2888 * thread doing COW.
2889 */
2890 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2891 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2892 lru_cache_add_inactive_or_unevictable(new_page, vma);
2893 /*
2894 * We call the notify macro here because, when using secondary
2895 * mmu page tables (such as kvm shadow page tables), we want the
2896 * new page to be mapped directly into the secondary page table.
2897 */
2898 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2899 update_mmu_cache(vma, vmf->address, vmf->pte);
2900 if (old_page) {
2901 /*
2902 * Only after switching the pte to the new page may
2903 * we remove the mapcount here. Otherwise another
2904 * process may come and find the rmap count decremented
2905 * before the pte is switched to the new page, and
2906 * "reuse" the old page writing into it while our pte
2907 * here still points into it and can be read by other
2908 * threads.
2909 *
2910 * The critical issue is to order this
2911 * page_remove_rmap with the ptp_clear_flush above.
2912 * Those stores are ordered by (if nothing else,)
2913 * the barrier present in the atomic_add_negative
2914 * in page_remove_rmap.
2915 *
2916 * Then the TLB flush in ptep_clear_flush ensures that
2917 * no process can access the old page before the
2918 * decremented mapcount is visible. And the old page
2919 * cannot be reused until after the decremented
2920 * mapcount is visible. So transitively, TLBs to
2921 * old page will be flushed before it can be reused.
2922 */
2923 page_remove_rmap(old_page, false);
2924 }
2925
2926 /* Free the old page.. */
2927 new_page = old_page;
2928 page_copied = 1;
2929 } else {
2930 update_mmu_tlb(vma, vmf->address, vmf->pte);
2931 }
2932
2933 if (new_page)
2934 put_page(new_page);
2935
2936 pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 /*
2938 * No need to double call mmu_notifier->invalidate_range() callback as
2939 * the above ptep_clear_flush_notify() did already call it.
2940 */
2941 mmu_notifier_invalidate_range_only_end(&range);
2942 if (old_page) {
2943 /*
2944 * Don't let another task, with possibly unlocked vma,
2945 * keep the mlocked page.
2946 */
2947 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2948 lock_page(old_page); /* LRU manipulation */
2949 if (PageMlocked(old_page))
2950 munlock_vma_page(old_page);
2951 unlock_page(old_page);
2952 }
2953 put_page(old_page);
2954 }
2955 return page_copied ? VM_FAULT_WRITE : 0;
2956 oom_free_new:
2957 put_page(new_page);
2958 oom:
2959 if (old_page)
2960 put_page(old_page);
2961 return VM_FAULT_OOM;
2962 }
2963
2964 /**
2965 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2966 * writeable once the page is prepared
2967 *
2968 * @vmf: structure describing the fault
2969 *
2970 * This function handles all that is needed to finish a write page fault in a
2971 * shared mapping due to PTE being read-only once the mapped page is prepared.
2972 * It handles locking of PTE and modifying it.
2973 *
2974 * The function expects the page to be locked or other protection against
2975 * concurrent faults / writeback (such as DAX radix tree locks).
2976 *
2977 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2978 * we acquired PTE lock.
2979 */
2980 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2981 {
2982 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2983 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2984 &vmf->ptl);
2985 /*
2986 * We might have raced with another page fault while we released the
2987 * pte_offset_map_lock.
2988 */
2989 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2990 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2991 pte_unmap_unlock(vmf->pte, vmf->ptl);
2992 return VM_FAULT_NOPAGE;
2993 }
2994 wp_page_reuse(vmf);
2995 return 0;
2996 }
2997
2998 /*
2999 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3000 * mapping
3001 */
3002 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3003 {
3004 struct vm_area_struct *vma = vmf->vma;
3005
3006 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3007 vm_fault_t ret;
3008
3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 vmf->flags |= FAULT_FLAG_MKWRITE;
3011 ret = vma->vm_ops->pfn_mkwrite(vmf);
3012 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3013 return ret;
3014 return finish_mkwrite_fault(vmf);
3015 }
3016 wp_page_reuse(vmf);
3017 return VM_FAULT_WRITE;
3018 }
3019
3020 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3021 __releases(vmf->ptl)
3022 {
3023 struct vm_area_struct *vma = vmf->vma;
3024 vm_fault_t ret = VM_FAULT_WRITE;
3025
3026 get_page(vmf->page);
3027
3028 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3029 vm_fault_t tmp;
3030
3031 pte_unmap_unlock(vmf->pte, vmf->ptl);
3032 tmp = do_page_mkwrite(vmf);
3033 if (unlikely(!tmp || (tmp &
3034 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3035 put_page(vmf->page);
3036 return tmp;
3037 }
3038 tmp = finish_mkwrite_fault(vmf);
3039 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3040 unlock_page(vmf->page);
3041 put_page(vmf->page);
3042 return tmp;
3043 }
3044 } else {
3045 wp_page_reuse(vmf);
3046 lock_page(vmf->page);
3047 }
3048 ret |= fault_dirty_shared_page(vmf);
3049 put_page(vmf->page);
3050
3051 return ret;
3052 }
3053
3054 /*
3055 * This routine handles present pages, when users try to write
3056 * to a shared page. It is done by copying the page to a new address
3057 * and decrementing the shared-page counter for the old page.
3058 *
3059 * Note that this routine assumes that the protection checks have been
3060 * done by the caller (the low-level page fault routine in most cases).
3061 * Thus we can safely just mark it writable once we've done any necessary
3062 * COW.
3063 *
3064 * We also mark the page dirty at this point even though the page will
3065 * change only once the write actually happens. This avoids a few races,
3066 * and potentially makes it more efficient.
3067 *
3068 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3069 * but allow concurrent faults), with pte both mapped and locked.
3070 * We return with mmap_lock still held, but pte unmapped and unlocked.
3071 */
3072 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3073 __releases(vmf->ptl)
3074 {
3075 struct vm_area_struct *vma = vmf->vma;
3076
3077 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3078 pte_unmap_unlock(vmf->pte, vmf->ptl);
3079 return handle_userfault(vmf, VM_UFFD_WP);
3080 }
3081
3082 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3083 if (!vmf->page) {
3084 /*
3085 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3086 * VM_PFNMAP VMA.
3087 *
3088 * We should not cow pages in a shared writeable mapping.
3089 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3090 */
3091 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3092 (VM_WRITE|VM_SHARED))
3093 return wp_pfn_shared(vmf);
3094
3095 pte_unmap_unlock(vmf->pte, vmf->ptl);
3096 return wp_page_copy(vmf);
3097 }
3098
3099 /*
3100 * Take out anonymous pages first, anonymous shared vmas are
3101 * not dirty accountable.
3102 */
3103 if (PageAnon(vmf->page)) {
3104 struct page *page = vmf->page;
3105
3106 /* PageKsm() doesn't necessarily raise the page refcount */
3107 if (PageKsm(page) || page_count(page) != 1)
3108 goto copy;
3109 if (!trylock_page(page))
3110 goto copy;
3111 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3112 unlock_page(page);
3113 goto copy;
3114 }
3115 /*
3116 * Ok, we've got the only map reference, and the only
3117 * page count reference, and the page is locked,
3118 * it's dark out, and we're wearing sunglasses. Hit it.
3119 */
3120 unlock_page(page);
3121 wp_page_reuse(vmf);
3122 return VM_FAULT_WRITE;
3123 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3124 (VM_WRITE|VM_SHARED))) {
3125 return wp_page_shared(vmf);
3126 }
3127 copy:
3128 /*
3129 * Ok, we need to copy. Oh, well..
3130 */
3131 get_page(vmf->page);
3132
3133 pte_unmap_unlock(vmf->pte, vmf->ptl);
3134 return wp_page_copy(vmf);
3135 }
3136
3137 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3138 unsigned long start_addr, unsigned long end_addr,
3139 struct zap_details *details)
3140 {
3141 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3142 }
3143
3144 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3145 struct zap_details *details)
3146 {
3147 struct vm_area_struct *vma;
3148 pgoff_t vba, vea, zba, zea;
3149
3150 vma_interval_tree_foreach(vma, root,
3151 details->first_index, details->last_index) {
3152
3153 vba = vma->vm_pgoff;
3154 vea = vba + vma_pages(vma) - 1;
3155 zba = details->first_index;
3156 if (zba < vba)
3157 zba = vba;
3158 zea = details->last_index;
3159 if (zea > vea)
3160 zea = vea;
3161
3162 unmap_mapping_range_vma(vma,
3163 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3164 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3165 details);
3166 }
3167 }
3168
3169 /**
3170 * unmap_mapping_pages() - Unmap pages from processes.
3171 * @mapping: The address space containing pages to be unmapped.
3172 * @start: Index of first page to be unmapped.
3173 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3174 * @even_cows: Whether to unmap even private COWed pages.
3175 *
3176 * Unmap the pages in this address space from any userspace process which
3177 * has them mmaped. Generally, you want to remove COWed pages as well when
3178 * a file is being truncated, but not when invalidating pages from the page
3179 * cache.
3180 */
3181 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3182 pgoff_t nr, bool even_cows)
3183 {
3184 struct zap_details details = { };
3185
3186 details.check_mapping = even_cows ? NULL : mapping;
3187 details.first_index = start;
3188 details.last_index = start + nr - 1;
3189 if (details.last_index < details.first_index)
3190 details.last_index = ULONG_MAX;
3191
3192 i_mmap_lock_write(mapping);
3193 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3194 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3195 i_mmap_unlock_write(mapping);
3196 }
3197
3198 /**
3199 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3200 * address_space corresponding to the specified byte range in the underlying
3201 * file.
3202 *
3203 * @mapping: the address space containing mmaps to be unmapped.
3204 * @holebegin: byte in first page to unmap, relative to the start of
3205 * the underlying file. This will be rounded down to a PAGE_SIZE
3206 * boundary. Note that this is different from truncate_pagecache(), which
3207 * must keep the partial page. In contrast, we must get rid of
3208 * partial pages.
3209 * @holelen: size of prospective hole in bytes. This will be rounded
3210 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3211 * end of the file.
3212 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3213 * but 0 when invalidating pagecache, don't throw away private data.
3214 */
3215 void unmap_mapping_range(struct address_space *mapping,
3216 loff_t const holebegin, loff_t const holelen, int even_cows)
3217 {
3218 pgoff_t hba = holebegin >> PAGE_SHIFT;
3219 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3220
3221 /* Check for overflow. */
3222 if (sizeof(holelen) > sizeof(hlen)) {
3223 long long holeend =
3224 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3225 if (holeend & ~(long long)ULONG_MAX)
3226 hlen = ULONG_MAX - hba + 1;
3227 }
3228
3229 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3230 }
3231 EXPORT_SYMBOL(unmap_mapping_range);
3232
3233 /*
3234 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3235 * but allow concurrent faults), and pte mapped but not yet locked.
3236 * We return with pte unmapped and unlocked.
3237 *
3238 * We return with the mmap_lock locked or unlocked in the same cases
3239 * as does filemap_fault().
3240 */
3241 vm_fault_t do_swap_page(struct vm_fault *vmf)
3242 {
3243 struct vm_area_struct *vma = vmf->vma;
3244 struct page *page = NULL, *swapcache;
3245 swp_entry_t entry;
3246 pte_t pte;
3247 int locked;
3248 int exclusive = 0;
3249 vm_fault_t ret = 0;
3250 void *shadow = NULL;
3251
3252 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3253 goto out;
3254
3255 entry = pte_to_swp_entry(vmf->orig_pte);
3256 if (unlikely(non_swap_entry(entry))) {
3257 if (is_migration_entry(entry)) {
3258 migration_entry_wait(vma->vm_mm, vmf->pmd,
3259 vmf->address);
3260 } else if (is_device_private_entry(entry)) {
3261 vmf->page = device_private_entry_to_page(entry);
3262 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3263 } else if (is_hwpoison_entry(entry)) {
3264 ret = VM_FAULT_HWPOISON;
3265 } else {
3266 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3267 ret = VM_FAULT_SIGBUS;
3268 }
3269 goto out;
3270 }
3271
3272
3273 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3274 page = lookup_swap_cache(entry, vma, vmf->address);
3275 swapcache = page;
3276
3277 if (!page) {
3278 struct swap_info_struct *si = swp_swap_info(entry);
3279
3280 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3281 __swap_count(entry) == 1) {
3282 /* skip swapcache */
3283 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3284 vmf->address);
3285 if (page) {
3286 int err;
3287
3288 __SetPageLocked(page);
3289 __SetPageSwapBacked(page);
3290 set_page_private(page, entry.val);
3291
3292 /* Tell memcg to use swap ownership records */
3293 SetPageSwapCache(page);
3294 err = mem_cgroup_charge(page, vma->vm_mm,
3295 GFP_KERNEL);
3296 ClearPageSwapCache(page);
3297 if (err) {
3298 ret = VM_FAULT_OOM;
3299 goto out_page;
3300 }
3301
3302 shadow = get_shadow_from_swap_cache(entry);
3303 if (shadow)
3304 workingset_refault(page, shadow);
3305
3306 lru_cache_add(page);
3307 swap_readpage(page, true);
3308 }
3309 } else {
3310 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3311 vmf);
3312 swapcache = page;
3313 }
3314
3315 if (!page) {
3316 /*
3317 * Back out if somebody else faulted in this pte
3318 * while we released the pte lock.
3319 */
3320 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3321 vmf->address, &vmf->ptl);
3322 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3323 ret = VM_FAULT_OOM;
3324 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3325 goto unlock;
3326 }
3327
3328 /* Had to read the page from swap area: Major fault */
3329 ret = VM_FAULT_MAJOR;
3330 count_vm_event(PGMAJFAULT);
3331 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3332 } else if (PageHWPoison(page)) {
3333 /*
3334 * hwpoisoned dirty swapcache pages are kept for killing
3335 * owner processes (which may be unknown at hwpoison time)
3336 */
3337 ret = VM_FAULT_HWPOISON;
3338 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339 goto out_release;
3340 }
3341
3342 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3343
3344 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3345 if (!locked) {
3346 ret |= VM_FAULT_RETRY;
3347 goto out_release;
3348 }
3349
3350 /*
3351 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3352 * release the swapcache from under us. The page pin, and pte_same
3353 * test below, are not enough to exclude that. Even if it is still
3354 * swapcache, we need to check that the page's swap has not changed.
3355 */
3356 if (unlikely((!PageSwapCache(page) ||
3357 page_private(page) != entry.val)) && swapcache)
3358 goto out_page;
3359
3360 page = ksm_might_need_to_copy(page, vma, vmf->address);
3361 if (unlikely(!page)) {
3362 ret = VM_FAULT_OOM;
3363 page = swapcache;
3364 goto out_page;
3365 }
3366
3367 cgroup_throttle_swaprate(page, GFP_KERNEL);
3368
3369 /*
3370 * Back out if somebody else already faulted in this pte.
3371 */
3372 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3373 &vmf->ptl);
3374 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3375 goto out_nomap;
3376
3377 if (unlikely(!PageUptodate(page))) {
3378 ret = VM_FAULT_SIGBUS;
3379 goto out_nomap;
3380 }
3381
3382 /*
3383 * The page isn't present yet, go ahead with the fault.
3384 *
3385 * Be careful about the sequence of operations here.
3386 * To get its accounting right, reuse_swap_page() must be called
3387 * while the page is counted on swap but not yet in mapcount i.e.
3388 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3389 * must be called after the swap_free(), or it will never succeed.
3390 */
3391
3392 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3393 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3394 pte = mk_pte(page, vma->vm_page_prot);
3395 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3396 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3397 vmf->flags &= ~FAULT_FLAG_WRITE;
3398 ret |= VM_FAULT_WRITE;
3399 exclusive = RMAP_EXCLUSIVE;
3400 }
3401 flush_icache_page(vma, page);
3402 if (pte_swp_soft_dirty(vmf->orig_pte))
3403 pte = pte_mksoft_dirty(pte);
3404 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3405 pte = pte_mkuffd_wp(pte);
3406 pte = pte_wrprotect(pte);
3407 }
3408 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3409 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3410 vmf->orig_pte = pte;
3411
3412 /* ksm created a completely new copy */
3413 if (unlikely(page != swapcache && swapcache)) {
3414 page_add_new_anon_rmap(page, vma, vmf->address, false);
3415 lru_cache_add_inactive_or_unevictable(page, vma);
3416 } else {
3417 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3418 }
3419
3420 swap_free(entry);
3421 if (mem_cgroup_swap_full(page) ||
3422 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3423 try_to_free_swap(page);
3424 unlock_page(page);
3425 if (page != swapcache && swapcache) {
3426 /*
3427 * Hold the lock to avoid the swap entry to be reused
3428 * until we take the PT lock for the pte_same() check
3429 * (to avoid false positives from pte_same). For
3430 * further safety release the lock after the swap_free
3431 * so that the swap count won't change under a
3432 * parallel locked swapcache.
3433 */
3434 unlock_page(swapcache);
3435 put_page(swapcache);
3436 }
3437
3438 if (vmf->flags & FAULT_FLAG_WRITE) {
3439 ret |= do_wp_page(vmf);
3440 if (ret & VM_FAULT_ERROR)
3441 ret &= VM_FAULT_ERROR;
3442 goto out;
3443 }
3444
3445 /* No need to invalidate - it was non-present before */
3446 update_mmu_cache(vma, vmf->address, vmf->pte);
3447 unlock:
3448 pte_unmap_unlock(vmf->pte, vmf->ptl);
3449 out:
3450 return ret;
3451 out_nomap:
3452 pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 out_page:
3454 unlock_page(page);
3455 out_release:
3456 put_page(page);
3457 if (page != swapcache && swapcache) {
3458 unlock_page(swapcache);
3459 put_page(swapcache);
3460 }
3461 return ret;
3462 }
3463
3464 /*
3465 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3466 * but allow concurrent faults), and pte mapped but not yet locked.
3467 * We return with mmap_lock still held, but pte unmapped and unlocked.
3468 */
3469 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3470 {
3471 struct vm_area_struct *vma = vmf->vma;
3472 struct page *page;
3473 vm_fault_t ret = 0;
3474 pte_t entry;
3475
3476 /* File mapping without ->vm_ops ? */
3477 if (vma->vm_flags & VM_SHARED)
3478 return VM_FAULT_SIGBUS;
3479
3480 /*
3481 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3482 * pte_offset_map() on pmds where a huge pmd might be created
3483 * from a different thread.
3484 *
3485 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3486 * parallel threads are excluded by other means.
3487 *
3488 * Here we only have mmap_read_lock(mm).
3489 */
3490 if (pte_alloc(vma->vm_mm, vmf->pmd))
3491 return VM_FAULT_OOM;
3492
3493 /* See the comment in pte_alloc_one_map() */
3494 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3495 return 0;
3496
3497 /* Use the zero-page for reads */
3498 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3499 !mm_forbids_zeropage(vma->vm_mm)) {
3500 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3501 vma->vm_page_prot));
3502 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3503 vmf->address, &vmf->ptl);
3504 if (!pte_none(*vmf->pte)) {
3505 update_mmu_tlb(vma, vmf->address, vmf->pte);
3506 goto unlock;
3507 }
3508 ret = check_stable_address_space(vma->vm_mm);
3509 if (ret)
3510 goto unlock;
3511 /* Deliver the page fault to userland, check inside PT lock */
3512 if (userfaultfd_missing(vma)) {
3513 pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 return handle_userfault(vmf, VM_UFFD_MISSING);
3515 }
3516 goto setpte;
3517 }
3518
3519 /* Allocate our own private page. */
3520 if (unlikely(anon_vma_prepare(vma)))
3521 goto oom;
3522 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3523 if (!page)
3524 goto oom;
3525
3526 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3527 goto oom_free_page;
3528 cgroup_throttle_swaprate(page, GFP_KERNEL);
3529
3530 /*
3531 * The memory barrier inside __SetPageUptodate makes sure that
3532 * preceding stores to the page contents become visible before
3533 * the set_pte_at() write.
3534 */
3535 __SetPageUptodate(page);
3536
3537 entry = mk_pte(page, vma->vm_page_prot);
3538 entry = pte_sw_mkyoung(entry);
3539 if (vma->vm_flags & VM_WRITE)
3540 entry = pte_mkwrite(pte_mkdirty(entry));
3541
3542 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3543 &vmf->ptl);
3544 if (!pte_none(*vmf->pte)) {
3545 update_mmu_cache(vma, vmf->address, vmf->pte);
3546 goto release;
3547 }
3548
3549 ret = check_stable_address_space(vma->vm_mm);
3550 if (ret)
3551 goto release;
3552
3553 /* Deliver the page fault to userland, check inside PT lock */
3554 if (userfaultfd_missing(vma)) {
3555 pte_unmap_unlock(vmf->pte, vmf->ptl);
3556 put_page(page);
3557 return handle_userfault(vmf, VM_UFFD_MISSING);
3558 }
3559
3560 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3561 page_add_new_anon_rmap(page, vma, vmf->address, false);
3562 lru_cache_add_inactive_or_unevictable(page, vma);
3563 setpte:
3564 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3565
3566 /* No need to invalidate - it was non-present before */
3567 update_mmu_cache(vma, vmf->address, vmf->pte);
3568 unlock:
3569 pte_unmap_unlock(vmf->pte, vmf->ptl);
3570 return ret;
3571 release:
3572 put_page(page);
3573 goto unlock;
3574 oom_free_page:
3575 put_page(page);
3576 oom:
3577 return VM_FAULT_OOM;
3578 }
3579
3580 /*
3581 * The mmap_lock must have been held on entry, and may have been
3582 * released depending on flags and vma->vm_ops->fault() return value.
3583 * See filemap_fault() and __lock_page_retry().
3584 */
3585 static vm_fault_t __do_fault(struct vm_fault *vmf)
3586 {
3587 struct vm_area_struct *vma = vmf->vma;
3588 vm_fault_t ret;
3589
3590 /*
3591 * Preallocate pte before we take page_lock because this might lead to
3592 * deadlocks for memcg reclaim which waits for pages under writeback:
3593 * lock_page(A)
3594 * SetPageWriteback(A)
3595 * unlock_page(A)
3596 * lock_page(B)
3597 * lock_page(B)
3598 * pte_alloc_one
3599 * shrink_page_list
3600 * wait_on_page_writeback(A)
3601 * SetPageWriteback(B)
3602 * unlock_page(B)
3603 * # flush A, B to clear the writeback
3604 */
3605 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3606 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3607 if (!vmf->prealloc_pte)
3608 return VM_FAULT_OOM;
3609 smp_wmb(); /* See comment in __pte_alloc() */
3610 }
3611
3612 ret = vma->vm_ops->fault(vmf);
3613 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3614 VM_FAULT_DONE_COW)))
3615 return ret;
3616
3617 if (unlikely(PageHWPoison(vmf->page))) {
3618 if (ret & VM_FAULT_LOCKED)
3619 unlock_page(vmf->page);
3620 put_page(vmf->page);
3621 vmf->page = NULL;
3622 return VM_FAULT_HWPOISON;
3623 }
3624
3625 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3626 lock_page(vmf->page);
3627 else
3628 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3629
3630 return ret;
3631 }
3632
3633 /*
3634 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3635 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3636 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3637 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3638 */
3639 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3640 {
3641 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3642 }
3643
3644 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3645 {
3646 struct vm_area_struct *vma = vmf->vma;
3647
3648 if (!pmd_none(*vmf->pmd))
3649 goto map_pte;
3650 if (vmf->prealloc_pte) {
3651 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3652 if (unlikely(!pmd_none(*vmf->pmd))) {
3653 spin_unlock(vmf->ptl);
3654 goto map_pte;
3655 }
3656
3657 mm_inc_nr_ptes(vma->vm_mm);
3658 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3659 spin_unlock(vmf->ptl);
3660 vmf->prealloc_pte = NULL;
3661 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3662 return VM_FAULT_OOM;
3663 }
3664 map_pte:
3665 /*
3666 * If a huge pmd materialized under us just retry later. Use
3667 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3668 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3669 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3670 * running immediately after a huge pmd fault in a different thread of
3671 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3672 * All we have to ensure is that it is a regular pmd that we can walk
3673 * with pte_offset_map() and we can do that through an atomic read in
3674 * C, which is what pmd_trans_unstable() provides.
3675 */
3676 if (pmd_devmap_trans_unstable(vmf->pmd))
3677 return VM_FAULT_NOPAGE;
3678
3679 /*
3680 * At this point we know that our vmf->pmd points to a page of ptes
3681 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3682 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3683 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3684 * be valid and we will re-check to make sure the vmf->pte isn't
3685 * pte_none() under vmf->ptl protection when we return to
3686 * alloc_set_pte().
3687 */
3688 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3689 &vmf->ptl);
3690 return 0;
3691 }
3692
3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3694 static void deposit_prealloc_pte(struct vm_fault *vmf)
3695 {
3696 struct vm_area_struct *vma = vmf->vma;
3697
3698 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3699 /*
3700 * We are going to consume the prealloc table,
3701 * count that as nr_ptes.
3702 */
3703 mm_inc_nr_ptes(vma->vm_mm);
3704 vmf->prealloc_pte = NULL;
3705 }
3706
3707 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3708 {
3709 struct vm_area_struct *vma = vmf->vma;
3710 bool write = vmf->flags & FAULT_FLAG_WRITE;
3711 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3712 pmd_t entry;
3713 int i;
3714 vm_fault_t ret = VM_FAULT_FALLBACK;
3715
3716 if (!transhuge_vma_suitable(vma, haddr))
3717 return ret;
3718
3719 page = compound_head(page);
3720 if (compound_order(page) != HPAGE_PMD_ORDER)
3721 return ret;
3722
3723 /*
3724 * Archs like ppc64 need additonal space to store information
3725 * related to pte entry. Use the preallocated table for that.
3726 */
3727 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3728 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3729 if (!vmf->prealloc_pte)
3730 return VM_FAULT_OOM;
3731 smp_wmb(); /* See comment in __pte_alloc() */
3732 }
3733
3734 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3735 if (unlikely(!pmd_none(*vmf->pmd)))
3736 goto out;
3737
3738 for (i = 0; i < HPAGE_PMD_NR; i++)
3739 flush_icache_page(vma, page + i);
3740
3741 entry = mk_huge_pmd(page, vma->vm_page_prot);
3742 if (write)
3743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3744
3745 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3746 page_add_file_rmap(page, true);
3747 /*
3748 * deposit and withdraw with pmd lock held
3749 */
3750 if (arch_needs_pgtable_deposit())
3751 deposit_prealloc_pte(vmf);
3752
3753 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3754
3755 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3756
3757 /* fault is handled */
3758 ret = 0;
3759 count_vm_event(THP_FILE_MAPPED);
3760 out:
3761 spin_unlock(vmf->ptl);
3762 return ret;
3763 }
3764 #else
3765 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3766 {
3767 BUILD_BUG();
3768 return 0;
3769 }
3770 #endif
3771
3772 /**
3773 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3774 * mapping. If needed, the function allocates page table or use pre-allocated.
3775 *
3776 * @vmf: fault environment
3777 * @page: page to map
3778 *
3779 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3780 * return.
3781 *
3782 * Target users are page handler itself and implementations of
3783 * vm_ops->map_pages.
3784 *
3785 * Return: %0 on success, %VM_FAULT_ code in case of error.
3786 */
3787 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3788 {
3789 struct vm_area_struct *vma = vmf->vma;
3790 bool write = vmf->flags & FAULT_FLAG_WRITE;
3791 pte_t entry;
3792 vm_fault_t ret;
3793
3794 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3795 ret = do_set_pmd(vmf, page);
3796 if (ret != VM_FAULT_FALLBACK)
3797 return ret;
3798 }
3799
3800 if (!vmf->pte) {
3801 ret = pte_alloc_one_map(vmf);
3802 if (ret)
3803 return ret;
3804 }
3805
3806 /* Re-check under ptl */
3807 if (unlikely(!pte_none(*vmf->pte))) {
3808 update_mmu_tlb(vma, vmf->address, vmf->pte);
3809 return VM_FAULT_NOPAGE;
3810 }
3811
3812 flush_icache_page(vma, page);
3813 entry = mk_pte(page, vma->vm_page_prot);
3814 entry = pte_sw_mkyoung(entry);
3815 if (write)
3816 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3817 /* copy-on-write page */
3818 if (write && !(vma->vm_flags & VM_SHARED)) {
3819 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3820 page_add_new_anon_rmap(page, vma, vmf->address, false);
3821 lru_cache_add_inactive_or_unevictable(page, vma);
3822 } else {
3823 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3824 page_add_file_rmap(page, false);
3825 }
3826 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3827
3828 /* no need to invalidate: a not-present page won't be cached */
3829 update_mmu_cache(vma, vmf->address, vmf->pte);
3830
3831 return 0;
3832 }
3833
3834
3835 /**
3836 * finish_fault - finish page fault once we have prepared the page to fault
3837 *
3838 * @vmf: structure describing the fault
3839 *
3840 * This function handles all that is needed to finish a page fault once the
3841 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3842 * given page, adds reverse page mapping, handles memcg charges and LRU
3843 * addition.
3844 *
3845 * The function expects the page to be locked and on success it consumes a
3846 * reference of a page being mapped (for the PTE which maps it).
3847 *
3848 * Return: %0 on success, %VM_FAULT_ code in case of error.
3849 */
3850 vm_fault_t finish_fault(struct vm_fault *vmf)
3851 {
3852 struct page *page;
3853 vm_fault_t ret = 0;
3854
3855 /* Did we COW the page? */
3856 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3857 !(vmf->vma->vm_flags & VM_SHARED))
3858 page = vmf->cow_page;
3859 else
3860 page = vmf->page;
3861
3862 /*
3863 * check even for read faults because we might have lost our CoWed
3864 * page
3865 */
3866 if (!(vmf->vma->vm_flags & VM_SHARED))
3867 ret = check_stable_address_space(vmf->vma->vm_mm);
3868 if (!ret)
3869 ret = alloc_set_pte(vmf, page);
3870 if (vmf->pte)
3871 pte_unmap_unlock(vmf->pte, vmf->ptl);
3872 return ret;
3873 }
3874
3875 static unsigned long fault_around_bytes __read_mostly =
3876 rounddown_pow_of_two(65536);
3877
3878 #ifdef CONFIG_DEBUG_FS
3879 static int fault_around_bytes_get(void *data, u64 *val)
3880 {
3881 *val = fault_around_bytes;
3882 return 0;
3883 }
3884
3885 /*
3886 * fault_around_bytes must be rounded down to the nearest page order as it's
3887 * what do_fault_around() expects to see.
3888 */
3889 static int fault_around_bytes_set(void *data, u64 val)
3890 {
3891 if (val / PAGE_SIZE > PTRS_PER_PTE)
3892 return -EINVAL;
3893 if (val > PAGE_SIZE)
3894 fault_around_bytes = rounddown_pow_of_two(val);
3895 else
3896 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3897 return 0;
3898 }
3899 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3900 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3901
3902 static int __init fault_around_debugfs(void)
3903 {
3904 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3905 &fault_around_bytes_fops);
3906 return 0;
3907 }
3908 late_initcall(fault_around_debugfs);
3909 #endif
3910
3911 /*
3912 * do_fault_around() tries to map few pages around the fault address. The hope
3913 * is that the pages will be needed soon and this will lower the number of
3914 * faults to handle.
3915 *
3916 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3917 * not ready to be mapped: not up-to-date, locked, etc.
3918 *
3919 * This function is called with the page table lock taken. In the split ptlock
3920 * case the page table lock only protects only those entries which belong to
3921 * the page table corresponding to the fault address.
3922 *
3923 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3924 * only once.
3925 *
3926 * fault_around_bytes defines how many bytes we'll try to map.
3927 * do_fault_around() expects it to be set to a power of two less than or equal
3928 * to PTRS_PER_PTE.
3929 *
3930 * The virtual address of the area that we map is naturally aligned to
3931 * fault_around_bytes rounded down to the machine page size
3932 * (and therefore to page order). This way it's easier to guarantee
3933 * that we don't cross page table boundaries.
3934 */
3935 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3936 {
3937 unsigned long address = vmf->address, nr_pages, mask;
3938 pgoff_t start_pgoff = vmf->pgoff;
3939 pgoff_t end_pgoff;
3940 int off;
3941 vm_fault_t ret = 0;
3942
3943 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3944 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3945
3946 vmf->address = max(address & mask, vmf->vma->vm_start);
3947 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3948 start_pgoff -= off;
3949
3950 /*
3951 * end_pgoff is either the end of the page table, the end of
3952 * the vma or nr_pages from start_pgoff, depending what is nearest.
3953 */
3954 end_pgoff = start_pgoff -
3955 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3956 PTRS_PER_PTE - 1;
3957 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3958 start_pgoff + nr_pages - 1);
3959
3960 if (pmd_none(*vmf->pmd)) {
3961 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3962 if (!vmf->prealloc_pte)
3963 goto out;
3964 smp_wmb(); /* See comment in __pte_alloc() */
3965 }
3966
3967 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3968
3969 /* Huge page is mapped? Page fault is solved */
3970 if (pmd_trans_huge(*vmf->pmd)) {
3971 ret = VM_FAULT_NOPAGE;
3972 goto out;
3973 }
3974
3975 /* ->map_pages() haven't done anything useful. Cold page cache? */
3976 if (!vmf->pte)
3977 goto out;
3978
3979 /* check if the page fault is solved */
3980 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3981 if (!pte_none(*vmf->pte))
3982 ret = VM_FAULT_NOPAGE;
3983 pte_unmap_unlock(vmf->pte, vmf->ptl);
3984 out:
3985 vmf->address = address;
3986 vmf->pte = NULL;
3987 return ret;
3988 }
3989
3990 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3991 {
3992 struct vm_area_struct *vma = vmf->vma;
3993 vm_fault_t ret = 0;
3994
3995 /*
3996 * Let's call ->map_pages() first and use ->fault() as fallback
3997 * if page by the offset is not ready to be mapped (cold cache or
3998 * something).
3999 */
4000 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4001 ret = do_fault_around(vmf);
4002 if (ret)
4003 return ret;
4004 }
4005
4006 ret = __do_fault(vmf);
4007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4008 return ret;
4009
4010 ret |= finish_fault(vmf);
4011 unlock_page(vmf->page);
4012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4013 put_page(vmf->page);
4014 return ret;
4015 }
4016
4017 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4018 {
4019 struct vm_area_struct *vma = vmf->vma;
4020 vm_fault_t ret;
4021
4022 if (unlikely(anon_vma_prepare(vma)))
4023 return VM_FAULT_OOM;
4024
4025 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4026 if (!vmf->cow_page)
4027 return VM_FAULT_OOM;
4028
4029 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4030 put_page(vmf->cow_page);
4031 return VM_FAULT_OOM;
4032 }
4033 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4034
4035 ret = __do_fault(vmf);
4036 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4037 goto uncharge_out;
4038 if (ret & VM_FAULT_DONE_COW)
4039 return ret;
4040
4041 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4042 __SetPageUptodate(vmf->cow_page);
4043
4044 ret |= finish_fault(vmf);
4045 unlock_page(vmf->page);
4046 put_page(vmf->page);
4047 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4048 goto uncharge_out;
4049 return ret;
4050 uncharge_out:
4051 put_page(vmf->cow_page);
4052 return ret;
4053 }
4054
4055 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4056 {
4057 struct vm_area_struct *vma = vmf->vma;
4058 vm_fault_t ret, tmp;
4059
4060 ret = __do_fault(vmf);
4061 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4062 return ret;
4063
4064 /*
4065 * Check if the backing address space wants to know that the page is
4066 * about to become writable
4067 */
4068 if (vma->vm_ops->page_mkwrite) {
4069 unlock_page(vmf->page);
4070 tmp = do_page_mkwrite(vmf);
4071 if (unlikely(!tmp ||
4072 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4073 put_page(vmf->page);
4074 return tmp;
4075 }
4076 }
4077
4078 ret |= finish_fault(vmf);
4079 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4080 VM_FAULT_RETRY))) {
4081 unlock_page(vmf->page);
4082 put_page(vmf->page);
4083 return ret;
4084 }
4085
4086 ret |= fault_dirty_shared_page(vmf);
4087 return ret;
4088 }
4089
4090 /*
4091 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4092 * but allow concurrent faults).
4093 * The mmap_lock may have been released depending on flags and our
4094 * return value. See filemap_fault() and __lock_page_or_retry().
4095 * If mmap_lock is released, vma may become invalid (for example
4096 * by other thread calling munmap()).
4097 */
4098 static vm_fault_t do_fault(struct vm_fault *vmf)
4099 {
4100 struct vm_area_struct *vma = vmf->vma;
4101 struct mm_struct *vm_mm = vma->vm_mm;
4102 vm_fault_t ret;
4103
4104 /*
4105 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4106 */
4107 if (!vma->vm_ops->fault) {
4108 /*
4109 * If we find a migration pmd entry or a none pmd entry, which
4110 * should never happen, return SIGBUS
4111 */
4112 if (unlikely(!pmd_present(*vmf->pmd)))
4113 ret = VM_FAULT_SIGBUS;
4114 else {
4115 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4116 vmf->pmd,
4117 vmf->address,
4118 &vmf->ptl);
4119 /*
4120 * Make sure this is not a temporary clearing of pte
4121 * by holding ptl and checking again. A R/M/W update
4122 * of pte involves: take ptl, clearing the pte so that
4123 * we don't have concurrent modification by hardware
4124 * followed by an update.
4125 */
4126 if (unlikely(pte_none(*vmf->pte)))
4127 ret = VM_FAULT_SIGBUS;
4128 else
4129 ret = VM_FAULT_NOPAGE;
4130
4131 pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 }
4133 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4134 ret = do_read_fault(vmf);
4135 else if (!(vma->vm_flags & VM_SHARED))
4136 ret = do_cow_fault(vmf);
4137 else
4138 ret = do_shared_fault(vmf);
4139
4140 /* preallocated pagetable is unused: free it */
4141 if (vmf->prealloc_pte) {
4142 pte_free(vm_mm, vmf->prealloc_pte);
4143 vmf->prealloc_pte = NULL;
4144 }
4145 return ret;
4146 }
4147
4148 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4149 unsigned long addr, int page_nid,
4150 int *flags)
4151 {
4152 get_page(page);
4153
4154 count_vm_numa_event(NUMA_HINT_FAULTS);
4155 if (page_nid == numa_node_id()) {
4156 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4157 *flags |= TNF_FAULT_LOCAL;
4158 }
4159
4160 return mpol_misplaced(page, vma, addr);
4161 }
4162
4163 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4164 {
4165 struct vm_area_struct *vma = vmf->vma;
4166 struct page *page = NULL;
4167 int page_nid = NUMA_NO_NODE;
4168 int last_cpupid;
4169 int target_nid;
4170 bool migrated = false;
4171 pte_t pte, old_pte;
4172 bool was_writable = pte_savedwrite(vmf->orig_pte);
4173 int flags = 0;
4174
4175 /*
4176 * The "pte" at this point cannot be used safely without
4177 * validation through pte_unmap_same(). It's of NUMA type but
4178 * the pfn may be screwed if the read is non atomic.
4179 */
4180 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4181 spin_lock(vmf->ptl);
4182 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4183 pte_unmap_unlock(vmf->pte, vmf->ptl);
4184 goto out;
4185 }
4186
4187 /*
4188 * Make it present again, Depending on how arch implementes non
4189 * accessible ptes, some can allow access by kernel mode.
4190 */
4191 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4192 pte = pte_modify(old_pte, vma->vm_page_prot);
4193 pte = pte_mkyoung(pte);
4194 if (was_writable)
4195 pte = pte_mkwrite(pte);
4196 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4197 update_mmu_cache(vma, vmf->address, vmf->pte);
4198
4199 page = vm_normal_page(vma, vmf->address, pte);
4200 if (!page) {
4201 pte_unmap_unlock(vmf->pte, vmf->ptl);
4202 return 0;
4203 }
4204
4205 /* TODO: handle PTE-mapped THP */
4206 if (PageCompound(page)) {
4207 pte_unmap_unlock(vmf->pte, vmf->ptl);
4208 return 0;
4209 }
4210
4211 /*
4212 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4213 * much anyway since they can be in shared cache state. This misses
4214 * the case where a mapping is writable but the process never writes
4215 * to it but pte_write gets cleared during protection updates and
4216 * pte_dirty has unpredictable behaviour between PTE scan updates,
4217 * background writeback, dirty balancing and application behaviour.
4218 */
4219 if (!pte_write(pte))
4220 flags |= TNF_NO_GROUP;
4221
4222 /*
4223 * Flag if the page is shared between multiple address spaces. This
4224 * is later used when determining whether to group tasks together
4225 */
4226 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4227 flags |= TNF_SHARED;
4228
4229 last_cpupid = page_cpupid_last(page);
4230 page_nid = page_to_nid(page);
4231 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4232 &flags);
4233 pte_unmap_unlock(vmf->pte, vmf->ptl);
4234 if (target_nid == NUMA_NO_NODE) {
4235 put_page(page);
4236 goto out;
4237 }
4238
4239 /* Migrate to the requested node */
4240 migrated = migrate_misplaced_page(page, vma, target_nid);
4241 if (migrated) {
4242 page_nid = target_nid;
4243 flags |= TNF_MIGRATED;
4244 } else
4245 flags |= TNF_MIGRATE_FAIL;
4246
4247 out:
4248 if (page_nid != NUMA_NO_NODE)
4249 task_numa_fault(last_cpupid, page_nid, 1, flags);
4250 return 0;
4251 }
4252
4253 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4254 {
4255 if (vma_is_anonymous(vmf->vma))
4256 return do_huge_pmd_anonymous_page(vmf);
4257 if (vmf->vma->vm_ops->huge_fault)
4258 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4259 return VM_FAULT_FALLBACK;
4260 }
4261
4262 /* `inline' is required to avoid gcc 4.1.2 build error */
4263 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4264 {
4265 if (vma_is_anonymous(vmf->vma)) {
4266 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4267 return handle_userfault(vmf, VM_UFFD_WP);
4268 return do_huge_pmd_wp_page(vmf, orig_pmd);
4269 }
4270 if (vmf->vma->vm_ops->huge_fault) {
4271 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4272
4273 if (!(ret & VM_FAULT_FALLBACK))
4274 return ret;
4275 }
4276
4277 /* COW or write-notify handled on pte level: split pmd. */
4278 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4279
4280 return VM_FAULT_FALLBACK;
4281 }
4282
4283 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4284 {
4285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4286 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4287 /* No support for anonymous transparent PUD pages yet */
4288 if (vma_is_anonymous(vmf->vma))
4289 goto split;
4290 if (vmf->vma->vm_ops->huge_fault) {
4291 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4292
4293 if (!(ret & VM_FAULT_FALLBACK))
4294 return ret;
4295 }
4296 split:
4297 /* COW or write-notify not handled on PUD level: split pud.*/
4298 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4300 return VM_FAULT_FALLBACK;
4301 }
4302
4303 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4304 {
4305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4306 /* No support for anonymous transparent PUD pages yet */
4307 if (vma_is_anonymous(vmf->vma))
4308 return VM_FAULT_FALLBACK;
4309 if (vmf->vma->vm_ops->huge_fault)
4310 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4312 return VM_FAULT_FALLBACK;
4313 }
4314
4315 /*
4316 * These routines also need to handle stuff like marking pages dirty
4317 * and/or accessed for architectures that don't do it in hardware (most
4318 * RISC architectures). The early dirtying is also good on the i386.
4319 *
4320 * There is also a hook called "update_mmu_cache()" that architectures
4321 * with external mmu caches can use to update those (ie the Sparc or
4322 * PowerPC hashed page tables that act as extended TLBs).
4323 *
4324 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4325 * concurrent faults).
4326 *
4327 * The mmap_lock may have been released depending on flags and our return value.
4328 * See filemap_fault() and __lock_page_or_retry().
4329 */
4330 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4331 {
4332 pte_t entry;
4333
4334 if (unlikely(pmd_none(*vmf->pmd))) {
4335 /*
4336 * Leave __pte_alloc() until later: because vm_ops->fault may
4337 * want to allocate huge page, and if we expose page table
4338 * for an instant, it will be difficult to retract from
4339 * concurrent faults and from rmap lookups.
4340 */
4341 vmf->pte = NULL;
4342 } else {
4343 /* See comment in pte_alloc_one_map() */
4344 if (pmd_devmap_trans_unstable(vmf->pmd))
4345 return 0;
4346 /*
4347 * A regular pmd is established and it can't morph into a huge
4348 * pmd from under us anymore at this point because we hold the
4349 * mmap_lock read mode and khugepaged takes it in write mode.
4350 * So now it's safe to run pte_offset_map().
4351 */
4352 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4353 vmf->orig_pte = *vmf->pte;
4354
4355 /*
4356 * some architectures can have larger ptes than wordsize,
4357 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4358 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4359 * accesses. The code below just needs a consistent view
4360 * for the ifs and we later double check anyway with the
4361 * ptl lock held. So here a barrier will do.
4362 */
4363 barrier();
4364 if (pte_none(vmf->orig_pte)) {
4365 pte_unmap(vmf->pte);
4366 vmf->pte = NULL;
4367 }
4368 }
4369
4370 if (!vmf->pte) {
4371 if (vma_is_anonymous(vmf->vma))
4372 return do_anonymous_page(vmf);
4373 else
4374 return do_fault(vmf);
4375 }
4376
4377 if (!pte_present(vmf->orig_pte))
4378 return do_swap_page(vmf);
4379
4380 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4381 return do_numa_page(vmf);
4382
4383 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4384 spin_lock(vmf->ptl);
4385 entry = vmf->orig_pte;
4386 if (unlikely(!pte_same(*vmf->pte, entry))) {
4387 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4388 goto unlock;
4389 }
4390 if (vmf->flags & FAULT_FLAG_WRITE) {
4391 if (!pte_write(entry))
4392 return do_wp_page(vmf);
4393 entry = pte_mkdirty(entry);
4394 }
4395 entry = pte_mkyoung(entry);
4396 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4397 vmf->flags & FAULT_FLAG_WRITE)) {
4398 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4399 } else {
4400 /* Skip spurious TLB flush for retried page fault */
4401 if (vmf->flags & FAULT_FLAG_TRIED)
4402 goto unlock;
4403 /*
4404 * This is needed only for protection faults but the arch code
4405 * is not yet telling us if this is a protection fault or not.
4406 * This still avoids useless tlb flushes for .text page faults
4407 * with threads.
4408 */
4409 if (vmf->flags & FAULT_FLAG_WRITE)
4410 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4411 }
4412 unlock:
4413 pte_unmap_unlock(vmf->pte, vmf->ptl);
4414 return 0;
4415 }
4416
4417 /*
4418 * By the time we get here, we already hold the mm semaphore
4419 *
4420 * The mmap_lock may have been released depending on flags and our
4421 * return value. See filemap_fault() and __lock_page_or_retry().
4422 */
4423 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4424 unsigned long address, unsigned int flags)
4425 {
4426 struct vm_fault vmf = {
4427 .vma = vma,
4428 .address = address & PAGE_MASK,
4429 .flags = flags,
4430 .pgoff = linear_page_index(vma, address),
4431 .gfp_mask = __get_fault_gfp_mask(vma),
4432 };
4433 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4434 struct mm_struct *mm = vma->vm_mm;
4435 pgd_t *pgd;
4436 p4d_t *p4d;
4437 vm_fault_t ret;
4438
4439 pgd = pgd_offset(mm, address);
4440 p4d = p4d_alloc(mm, pgd, address);
4441 if (!p4d)
4442 return VM_FAULT_OOM;
4443
4444 vmf.pud = pud_alloc(mm, p4d, address);
4445 if (!vmf.pud)
4446 return VM_FAULT_OOM;
4447 retry_pud:
4448 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4449 ret = create_huge_pud(&vmf);
4450 if (!(ret & VM_FAULT_FALLBACK))
4451 return ret;
4452 } else {
4453 pud_t orig_pud = *vmf.pud;
4454
4455 barrier();
4456 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4457
4458 /* NUMA case for anonymous PUDs would go here */
4459
4460 if (dirty && !pud_write(orig_pud)) {
4461 ret = wp_huge_pud(&vmf, orig_pud);
4462 if (!(ret & VM_FAULT_FALLBACK))
4463 return ret;
4464 } else {
4465 huge_pud_set_accessed(&vmf, orig_pud);
4466 return 0;
4467 }
4468 }
4469 }
4470
4471 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4472 if (!vmf.pmd)
4473 return VM_FAULT_OOM;
4474
4475 /* Huge pud page fault raced with pmd_alloc? */
4476 if (pud_trans_unstable(vmf.pud))
4477 goto retry_pud;
4478
4479 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4480 ret = create_huge_pmd(&vmf);
4481 if (!(ret & VM_FAULT_FALLBACK))
4482 return ret;
4483 } else {
4484 pmd_t orig_pmd = *vmf.pmd;
4485
4486 barrier();
4487 if (unlikely(is_swap_pmd(orig_pmd))) {
4488 VM_BUG_ON(thp_migration_supported() &&
4489 !is_pmd_migration_entry(orig_pmd));
4490 if (is_pmd_migration_entry(orig_pmd))
4491 pmd_migration_entry_wait(mm, vmf.pmd);
4492 return 0;
4493 }
4494 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4495 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4496 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4497
4498 if (dirty && !pmd_write(orig_pmd)) {
4499 ret = wp_huge_pmd(&vmf, orig_pmd);
4500 if (!(ret & VM_FAULT_FALLBACK))
4501 return ret;
4502 } else {
4503 huge_pmd_set_accessed(&vmf, orig_pmd);
4504 return 0;
4505 }
4506 }
4507 }
4508
4509 return handle_pte_fault(&vmf);
4510 }
4511
4512 /**
4513 * mm_account_fault - Do page fault accountings
4514 *
4515 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4516 * of perf event counters, but we'll still do the per-task accounting to
4517 * the task who triggered this page fault.
4518 * @address: the faulted address.
4519 * @flags: the fault flags.
4520 * @ret: the fault retcode.
4521 *
4522 * This will take care of most of the page fault accountings. Meanwhile, it
4523 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4524 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4525 * still be in per-arch page fault handlers at the entry of page fault.
4526 */
4527 static inline void mm_account_fault(struct pt_regs *regs,
4528 unsigned long address, unsigned int flags,
4529 vm_fault_t ret)
4530 {
4531 bool major;
4532
4533 /*
4534 * We don't do accounting for some specific faults:
4535 *
4536 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4537 * includes arch_vma_access_permitted() failing before reaching here.
4538 * So this is not a "this many hardware page faults" counter. We
4539 * should use the hw profiling for that.
4540 *
4541 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4542 * once they're completed.
4543 */
4544 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4545 return;
4546
4547 /*
4548 * We define the fault as a major fault when the final successful fault
4549 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4550 * handle it immediately previously).
4551 */
4552 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4553
4554 if (major)
4555 current->maj_flt++;
4556 else
4557 current->min_flt++;
4558
4559 /*
4560 * If the fault is done for GUP, regs will be NULL. We only do the
4561 * accounting for the per thread fault counters who triggered the
4562 * fault, and we skip the perf event updates.
4563 */
4564 if (!regs)
4565 return;
4566
4567 if (major)
4568 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4569 else
4570 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4571 }
4572
4573 /*
4574 * By the time we get here, we already hold the mm semaphore
4575 *
4576 * The mmap_lock may have been released depending on flags and our
4577 * return value. See filemap_fault() and __lock_page_or_retry().
4578 */
4579 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4580 unsigned int flags, struct pt_regs *regs)
4581 {
4582 vm_fault_t ret;
4583
4584 __set_current_state(TASK_RUNNING);
4585
4586 count_vm_event(PGFAULT);
4587 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4588
4589 /* do counter updates before entering really critical section. */
4590 check_sync_rss_stat(current);
4591
4592 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4593 flags & FAULT_FLAG_INSTRUCTION,
4594 flags & FAULT_FLAG_REMOTE))
4595 return VM_FAULT_SIGSEGV;
4596
4597 /*
4598 * Enable the memcg OOM handling for faults triggered in user
4599 * space. Kernel faults are handled more gracefully.
4600 */
4601 if (flags & FAULT_FLAG_USER)
4602 mem_cgroup_enter_user_fault();
4603
4604 if (unlikely(is_vm_hugetlb_page(vma)))
4605 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4606 else
4607 ret = __handle_mm_fault(vma, address, flags);
4608
4609 if (flags & FAULT_FLAG_USER) {
4610 mem_cgroup_exit_user_fault();
4611 /*
4612 * The task may have entered a memcg OOM situation but
4613 * if the allocation error was handled gracefully (no
4614 * VM_FAULT_OOM), there is no need to kill anything.
4615 * Just clean up the OOM state peacefully.
4616 */
4617 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4618 mem_cgroup_oom_synchronize(false);
4619 }
4620
4621 mm_account_fault(regs, address, flags, ret);
4622
4623 return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(handle_mm_fault);
4626
4627 #ifndef __PAGETABLE_P4D_FOLDED
4628 /*
4629 * Allocate p4d page table.
4630 * We've already handled the fast-path in-line.
4631 */
4632 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4633 {
4634 p4d_t *new = p4d_alloc_one(mm, address);
4635 if (!new)
4636 return -ENOMEM;
4637
4638 smp_wmb(); /* See comment in __pte_alloc */
4639
4640 spin_lock(&mm->page_table_lock);
4641 if (pgd_present(*pgd)) /* Another has populated it */
4642 p4d_free(mm, new);
4643 else
4644 pgd_populate(mm, pgd, new);
4645 spin_unlock(&mm->page_table_lock);
4646 return 0;
4647 }
4648 #endif /* __PAGETABLE_P4D_FOLDED */
4649
4650 #ifndef __PAGETABLE_PUD_FOLDED
4651 /*
4652 * Allocate page upper directory.
4653 * We've already handled the fast-path in-line.
4654 */
4655 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4656 {
4657 pud_t *new = pud_alloc_one(mm, address);
4658 if (!new)
4659 return -ENOMEM;
4660
4661 smp_wmb(); /* See comment in __pte_alloc */
4662
4663 spin_lock(&mm->page_table_lock);
4664 if (!p4d_present(*p4d)) {
4665 mm_inc_nr_puds(mm);
4666 p4d_populate(mm, p4d, new);
4667 } else /* Another has populated it */
4668 pud_free(mm, new);
4669 spin_unlock(&mm->page_table_lock);
4670 return 0;
4671 }
4672 #endif /* __PAGETABLE_PUD_FOLDED */
4673
4674 #ifndef __PAGETABLE_PMD_FOLDED
4675 /*
4676 * Allocate page middle directory.
4677 * We've already handled the fast-path in-line.
4678 */
4679 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4680 {
4681 spinlock_t *ptl;
4682 pmd_t *new = pmd_alloc_one(mm, address);
4683 if (!new)
4684 return -ENOMEM;
4685
4686 smp_wmb(); /* See comment in __pte_alloc */
4687
4688 ptl = pud_lock(mm, pud);
4689 if (!pud_present(*pud)) {
4690 mm_inc_nr_pmds(mm);
4691 pud_populate(mm, pud, new);
4692 } else /* Another has populated it */
4693 pmd_free(mm, new);
4694 spin_unlock(ptl);
4695 return 0;
4696 }
4697 #endif /* __PAGETABLE_PMD_FOLDED */
4698
4699 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4700 struct mmu_notifier_range *range,
4701 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4702 {
4703 pgd_t *pgd;
4704 p4d_t *p4d;
4705 pud_t *pud;
4706 pmd_t *pmd;
4707 pte_t *ptep;
4708
4709 pgd = pgd_offset(mm, address);
4710 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4711 goto out;
4712
4713 p4d = p4d_offset(pgd, address);
4714 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4715 goto out;
4716
4717 pud = pud_offset(p4d, address);
4718 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4719 goto out;
4720
4721 pmd = pmd_offset(pud, address);
4722 VM_BUG_ON(pmd_trans_huge(*pmd));
4723
4724 if (pmd_huge(*pmd)) {
4725 if (!pmdpp)
4726 goto out;
4727
4728 if (range) {
4729 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4730 NULL, mm, address & PMD_MASK,
4731 (address & PMD_MASK) + PMD_SIZE);
4732 mmu_notifier_invalidate_range_start(range);
4733 }
4734 *ptlp = pmd_lock(mm, pmd);
4735 if (pmd_huge(*pmd)) {
4736 *pmdpp = pmd;
4737 return 0;
4738 }
4739 spin_unlock(*ptlp);
4740 if (range)
4741 mmu_notifier_invalidate_range_end(range);
4742 }
4743
4744 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4745 goto out;
4746
4747 if (range) {
4748 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4749 address & PAGE_MASK,
4750 (address & PAGE_MASK) + PAGE_SIZE);
4751 mmu_notifier_invalidate_range_start(range);
4752 }
4753 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4754 if (!pte_present(*ptep))
4755 goto unlock;
4756 *ptepp = ptep;
4757 return 0;
4758 unlock:
4759 pte_unmap_unlock(ptep, *ptlp);
4760 if (range)
4761 mmu_notifier_invalidate_range_end(range);
4762 out:
4763 return -EINVAL;
4764 }
4765
4766 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4767 pte_t **ptepp, spinlock_t **ptlp)
4768 {
4769 int res;
4770
4771 /* (void) is needed to make gcc happy */
4772 (void) __cond_lock(*ptlp,
4773 !(res = __follow_pte_pmd(mm, address, NULL,
4774 ptepp, NULL, ptlp)));
4775 return res;
4776 }
4777
4778 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4779 struct mmu_notifier_range *range,
4780 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4781 {
4782 int res;
4783
4784 /* (void) is needed to make gcc happy */
4785 (void) __cond_lock(*ptlp,
4786 !(res = __follow_pte_pmd(mm, address, range,
4787 ptepp, pmdpp, ptlp)));
4788 return res;
4789 }
4790 EXPORT_SYMBOL(follow_pte_pmd);
4791
4792 /**
4793 * follow_pfn - look up PFN at a user virtual address
4794 * @vma: memory mapping
4795 * @address: user virtual address
4796 * @pfn: location to store found PFN
4797 *
4798 * Only IO mappings and raw PFN mappings are allowed.
4799 *
4800 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4801 */
4802 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4803 unsigned long *pfn)
4804 {
4805 int ret = -EINVAL;
4806 spinlock_t *ptl;
4807 pte_t *ptep;
4808
4809 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4810 return ret;
4811
4812 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4813 if (ret)
4814 return ret;
4815 *pfn = pte_pfn(*ptep);
4816 pte_unmap_unlock(ptep, ptl);
4817 return 0;
4818 }
4819 EXPORT_SYMBOL(follow_pfn);
4820
4821 #ifdef CONFIG_HAVE_IOREMAP_PROT
4822 int follow_phys(struct vm_area_struct *vma,
4823 unsigned long address, unsigned int flags,
4824 unsigned long *prot, resource_size_t *phys)
4825 {
4826 int ret = -EINVAL;
4827 pte_t *ptep, pte;
4828 spinlock_t *ptl;
4829
4830 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4831 goto out;
4832
4833 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4834 goto out;
4835 pte = *ptep;
4836
4837 if ((flags & FOLL_WRITE) && !pte_write(pte))
4838 goto unlock;
4839
4840 *prot = pgprot_val(pte_pgprot(pte));
4841 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4842
4843 ret = 0;
4844 unlock:
4845 pte_unmap_unlock(ptep, ptl);
4846 out:
4847 return ret;
4848 }
4849
4850 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4851 void *buf, int len, int write)
4852 {
4853 resource_size_t phys_addr;
4854 unsigned long prot = 0;
4855 void __iomem *maddr;
4856 int offset = addr & (PAGE_SIZE-1);
4857
4858 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4859 return -EINVAL;
4860
4861 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4862 if (!maddr)
4863 return -ENOMEM;
4864
4865 if (write)
4866 memcpy_toio(maddr + offset, buf, len);
4867 else
4868 memcpy_fromio(buf, maddr + offset, len);
4869 iounmap(maddr);
4870
4871 return len;
4872 }
4873 EXPORT_SYMBOL_GPL(generic_access_phys);
4874 #endif
4875
4876 /*
4877 * Access another process' address space as given in mm. If non-NULL, use the
4878 * given task for page fault accounting.
4879 */
4880 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4881 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4882 {
4883 struct vm_area_struct *vma;
4884 void *old_buf = buf;
4885 int write = gup_flags & FOLL_WRITE;
4886
4887 if (mmap_read_lock_killable(mm))
4888 return 0;
4889
4890 /* ignore errors, just check how much was successfully transferred */
4891 while (len) {
4892 int bytes, ret, offset;
4893 void *maddr;
4894 struct page *page = NULL;
4895
4896 ret = get_user_pages_remote(mm, addr, 1,
4897 gup_flags, &page, &vma, NULL);
4898 if (ret <= 0) {
4899 #ifndef CONFIG_HAVE_IOREMAP_PROT
4900 break;
4901 #else
4902 /*
4903 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4904 * we can access using slightly different code.
4905 */
4906 vma = find_vma(mm, addr);
4907 if (!vma || vma->vm_start > addr)
4908 break;
4909 if (vma->vm_ops && vma->vm_ops->access)
4910 ret = vma->vm_ops->access(vma, addr, buf,
4911 len, write);
4912 if (ret <= 0)
4913 break;
4914 bytes = ret;
4915 #endif
4916 } else {
4917 bytes = len;
4918 offset = addr & (PAGE_SIZE-1);
4919 if (bytes > PAGE_SIZE-offset)
4920 bytes = PAGE_SIZE-offset;
4921
4922 maddr = kmap(page);
4923 if (write) {
4924 copy_to_user_page(vma, page, addr,
4925 maddr + offset, buf, bytes);
4926 set_page_dirty_lock(page);
4927 } else {
4928 copy_from_user_page(vma, page, addr,
4929 buf, maddr + offset, bytes);
4930 }
4931 kunmap(page);
4932 put_page(page);
4933 }
4934 len -= bytes;
4935 buf += bytes;
4936 addr += bytes;
4937 }
4938 mmap_read_unlock(mm);
4939
4940 return buf - old_buf;
4941 }
4942
4943 /**
4944 * access_remote_vm - access another process' address space
4945 * @mm: the mm_struct of the target address space
4946 * @addr: start address to access
4947 * @buf: source or destination buffer
4948 * @len: number of bytes to transfer
4949 * @gup_flags: flags modifying lookup behaviour
4950 *
4951 * The caller must hold a reference on @mm.
4952 *
4953 * Return: number of bytes copied from source to destination.
4954 */
4955 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4956 void *buf, int len, unsigned int gup_flags)
4957 {
4958 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4959 }
4960
4961 /*
4962 * Access another process' address space.
4963 * Source/target buffer must be kernel space,
4964 * Do not walk the page table directly, use get_user_pages
4965 */
4966 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4967 void *buf, int len, unsigned int gup_flags)
4968 {
4969 struct mm_struct *mm;
4970 int ret;
4971
4972 mm = get_task_mm(tsk);
4973 if (!mm)
4974 return 0;
4975
4976 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4977
4978 mmput(mm);
4979
4980 return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(access_process_vm);
4983
4984 /*
4985 * Print the name of a VMA.
4986 */
4987 void print_vma_addr(char *prefix, unsigned long ip)
4988 {
4989 struct mm_struct *mm = current->mm;
4990 struct vm_area_struct *vma;
4991
4992 /*
4993 * we might be running from an atomic context so we cannot sleep
4994 */
4995 if (!mmap_read_trylock(mm))
4996 return;
4997
4998 vma = find_vma(mm, ip);
4999 if (vma && vma->vm_file) {
5000 struct file *f = vma->vm_file;
5001 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5002 if (buf) {
5003 char *p;
5004
5005 p = file_path(f, buf, PAGE_SIZE);
5006 if (IS_ERR(p))
5007 p = "?";
5008 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5009 vma->vm_start,
5010 vma->vm_end - vma->vm_start);
5011 free_page((unsigned long)buf);
5012 }
5013 }
5014 mmap_read_unlock(mm);
5015 }
5016
5017 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5018 void __might_fault(const char *file, int line)
5019 {
5020 /*
5021 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5022 * holding the mmap_lock, this is safe because kernel memory doesn't
5023 * get paged out, therefore we'll never actually fault, and the
5024 * below annotations will generate false positives.
5025 */
5026 if (uaccess_kernel())
5027 return;
5028 if (pagefault_disabled())
5029 return;
5030 __might_sleep(file, line, 0);
5031 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5032 if (current->mm)
5033 might_lock_read(&current->mm->mmap_lock);
5034 #endif
5035 }
5036 EXPORT_SYMBOL(__might_fault);
5037 #endif
5038
5039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5040 /*
5041 * Process all subpages of the specified huge page with the specified
5042 * operation. The target subpage will be processed last to keep its
5043 * cache lines hot.
5044 */
5045 static inline void process_huge_page(
5046 unsigned long addr_hint, unsigned int pages_per_huge_page,
5047 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5048 void *arg)
5049 {
5050 int i, n, base, l;
5051 unsigned long addr = addr_hint &
5052 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5053
5054 /* Process target subpage last to keep its cache lines hot */
5055 might_sleep();
5056 n = (addr_hint - addr) / PAGE_SIZE;
5057 if (2 * n <= pages_per_huge_page) {
5058 /* If target subpage in first half of huge page */
5059 base = 0;
5060 l = n;
5061 /* Process subpages at the end of huge page */
5062 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5063 cond_resched();
5064 process_subpage(addr + i * PAGE_SIZE, i, arg);
5065 }
5066 } else {
5067 /* If target subpage in second half of huge page */
5068 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5069 l = pages_per_huge_page - n;
5070 /* Process subpages at the begin of huge page */
5071 for (i = 0; i < base; i++) {
5072 cond_resched();
5073 process_subpage(addr + i * PAGE_SIZE, i, arg);
5074 }
5075 }
5076 /*
5077 * Process remaining subpages in left-right-left-right pattern
5078 * towards the target subpage
5079 */
5080 for (i = 0; i < l; i++) {
5081 int left_idx = base + i;
5082 int right_idx = base + 2 * l - 1 - i;
5083
5084 cond_resched();
5085 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5086 cond_resched();
5087 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5088 }
5089 }
5090
5091 static void clear_gigantic_page(struct page *page,
5092 unsigned long addr,
5093 unsigned int pages_per_huge_page)
5094 {
5095 int i;
5096 struct page *p = page;
5097
5098 might_sleep();
5099 for (i = 0; i < pages_per_huge_page;
5100 i++, p = mem_map_next(p, page, i)) {
5101 cond_resched();
5102 clear_user_highpage(p, addr + i * PAGE_SIZE);
5103 }
5104 }
5105
5106 static void clear_subpage(unsigned long addr, int idx, void *arg)
5107 {
5108 struct page *page = arg;
5109
5110 clear_user_highpage(page + idx, addr);
5111 }
5112
5113 void clear_huge_page(struct page *page,
5114 unsigned long addr_hint, unsigned int pages_per_huge_page)
5115 {
5116 unsigned long addr = addr_hint &
5117 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5118
5119 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5120 clear_gigantic_page(page, addr, pages_per_huge_page);
5121 return;
5122 }
5123
5124 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5125 }
5126
5127 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5128 unsigned long addr,
5129 struct vm_area_struct *vma,
5130 unsigned int pages_per_huge_page)
5131 {
5132 int i;
5133 struct page *dst_base = dst;
5134 struct page *src_base = src;
5135
5136 for (i = 0; i < pages_per_huge_page; ) {
5137 cond_resched();
5138 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5139
5140 i++;
5141 dst = mem_map_next(dst, dst_base, i);
5142 src = mem_map_next(src, src_base, i);
5143 }
5144 }
5145
5146 struct copy_subpage_arg {
5147 struct page *dst;
5148 struct page *src;
5149 struct vm_area_struct *vma;
5150 };
5151
5152 static void copy_subpage(unsigned long addr, int idx, void *arg)
5153 {
5154 struct copy_subpage_arg *copy_arg = arg;
5155
5156 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5157 addr, copy_arg->vma);
5158 }
5159
5160 void copy_user_huge_page(struct page *dst, struct page *src,
5161 unsigned long addr_hint, struct vm_area_struct *vma,
5162 unsigned int pages_per_huge_page)
5163 {
5164 unsigned long addr = addr_hint &
5165 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5166 struct copy_subpage_arg arg = {
5167 .dst = dst,
5168 .src = src,
5169 .vma = vma,
5170 };
5171
5172 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5173 copy_user_gigantic_page(dst, src, addr, vma,
5174 pages_per_huge_page);
5175 return;
5176 }
5177
5178 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5179 }
5180
5181 long copy_huge_page_from_user(struct page *dst_page,
5182 const void __user *usr_src,
5183 unsigned int pages_per_huge_page,
5184 bool allow_pagefault)
5185 {
5186 void *src = (void *)usr_src;
5187 void *page_kaddr;
5188 unsigned long i, rc = 0;
5189 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5190
5191 for (i = 0; i < pages_per_huge_page; i++) {
5192 if (allow_pagefault)
5193 page_kaddr = kmap(dst_page + i);
5194 else
5195 page_kaddr = kmap_atomic(dst_page + i);
5196 rc = copy_from_user(page_kaddr,
5197 (const void __user *)(src + i * PAGE_SIZE),
5198 PAGE_SIZE);
5199 if (allow_pagefault)
5200 kunmap(dst_page + i);
5201 else
5202 kunmap_atomic(page_kaddr);
5203
5204 ret_val -= (PAGE_SIZE - rc);
5205 if (rc)
5206 break;
5207
5208 cond_resched();
5209 }
5210 return ret_val;
5211 }
5212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5213
5214 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5215
5216 static struct kmem_cache *page_ptl_cachep;
5217
5218 void __init ptlock_cache_init(void)
5219 {
5220 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5221 SLAB_PANIC, NULL);
5222 }
5223
5224 bool ptlock_alloc(struct page *page)
5225 {
5226 spinlock_t *ptl;
5227
5228 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5229 if (!ptl)
5230 return false;
5231 page->ptl = ptl;
5232 return true;
5233 }
5234
5235 void ptlock_free(struct page *page)
5236 {
5237 kmem_cache_free(page_ptl_cachep, page->ptl);
5238 }
5239 #endif