]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79
80 #include "internal.h"
81
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94
95 /*
96 * A number of key systems in x86 including ioremap() rely on the assumption
97 * that high_memory defines the upper bound on direct map memory, then end
98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 * and ZONE_HIGHMEM.
101 */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104
105 /*
106 * Randomize the address space (stacks, mmaps, brk, etc.).
107 *
108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109 * as ancient (libc5 based) binaries can segfault. )
110 */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 1;
114 #else
115 2;
116 #endif
117
118 static int __init disable_randmaps(char *s)
119 {
120 randomize_va_space = 0;
121 return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127
128 unsigned long highest_memmap_pfn __read_mostly;
129
130 /*
131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132 */
133 static int __init init_zero_pfn(void)
134 {
135 zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 return 0;
137 }
138 core_initcall(init_zero_pfn);
139
140
141 #if defined(SPLIT_RSS_COUNTING)
142
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 int i;
146
147 for (i = 0; i < NR_MM_COUNTERS; i++) {
148 if (current->rss_stat.count[i]) {
149 add_mm_counter(mm, i, current->rss_stat.count[i]);
150 current->rss_stat.count[i] = 0;
151 }
152 }
153 current->rss_stat.events = 0;
154 }
155
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 struct task_struct *task = current;
159
160 if (likely(task->mm == mm))
161 task->rss_stat.count[member] += val;
162 else
163 add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH (64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 if (unlikely(task != current))
173 return;
174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185
186 #endif /* SPLIT_RSS_COUNTING */
187
188 #ifdef HAVE_GENERIC_MMU_GATHER
189
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 struct mmu_gather_batch *batch;
193
194 batch = tlb->active;
195 if (batch->next) {
196 tlb->active = batch->next;
197 return true;
198 }
199
200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 return false;
202
203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 if (!batch)
205 return false;
206
207 tlb->batch_count++;
208 batch->next = NULL;
209 batch->nr = 0;
210 batch->max = MAX_GATHER_BATCH;
211
212 tlb->active->next = batch;
213 tlb->active = batch;
214
215 return true;
216 }
217
218 /* tlb_gather_mmu
219 * Called to initialize an (on-stack) mmu_gather structure for page-table
220 * tear-down from @mm. The @fullmm argument is used when @mm is without
221 * users and we're going to destroy the full address space (exit/execve).
222 */
223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
224 {
225 tlb->mm = mm;
226
227 /* Is it from 0 to ~0? */
228 tlb->fullmm = !(start | (end+1));
229 tlb->need_flush_all = 0;
230 tlb->local.next = NULL;
231 tlb->local.nr = 0;
232 tlb->local.max = ARRAY_SIZE(tlb->__pages);
233 tlb->active = &tlb->local;
234 tlb->batch_count = 0;
235
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 tlb->batch = NULL;
238 #endif
239 tlb->page_size = 0;
240
241 __tlb_reset_range(tlb);
242 }
243
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
245 {
246 if (!tlb->end)
247 return;
248
249 tlb_flush(tlb);
250 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 tlb_table_flush(tlb);
253 #endif
254 __tlb_reset_range(tlb);
255 }
256
257 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258 {
259 struct mmu_gather_batch *batch;
260
261 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
262 free_pages_and_swap_cache(batch->pages, batch->nr);
263 batch->nr = 0;
264 }
265 tlb->active = &tlb->local;
266 }
267
268 void tlb_flush_mmu(struct mmu_gather *tlb)
269 {
270 tlb_flush_mmu_tlbonly(tlb);
271 tlb_flush_mmu_free(tlb);
272 }
273
274 /* tlb_finish_mmu
275 * Called at the end of the shootdown operation to free up any resources
276 * that were required.
277 */
278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279 {
280 struct mmu_gather_batch *batch, *next;
281
282 tlb_flush_mmu(tlb);
283
284 /* keep the page table cache within bounds */
285 check_pgt_cache();
286
287 for (batch = tlb->local.next; batch; batch = next) {
288 next = batch->next;
289 free_pages((unsigned long)batch, 0);
290 }
291 tlb->local.next = NULL;
292 }
293
294 /* __tlb_remove_page
295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296 * handling the additional races in SMP caused by other CPUs caching valid
297 * mappings in their TLBs. Returns the number of free page slots left.
298 * When out of page slots we must call tlb_flush_mmu().
299 *returns true if the caller should flush.
300 */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303 struct mmu_gather_batch *batch;
304
305 VM_BUG_ON(!tlb->end);
306 VM_WARN_ON(tlb->page_size != page_size);
307
308 batch = tlb->active;
309 /*
310 * Add the page and check if we are full. If so
311 * force a flush.
312 */
313 batch->pages[batch->nr++] = page;
314 if (batch->nr == batch->max) {
315 if (!tlb_next_batch(tlb))
316 return true;
317 batch = tlb->active;
318 }
319 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320
321 return false;
322 }
323
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327
328 /*
329 * See the comment near struct mmu_table_batch.
330 */
331
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334 /* Simply deliver the interrupt */
335 }
336
337 static void tlb_remove_table_one(void *table)
338 {
339 /*
340 * This isn't an RCU grace period and hence the page-tables cannot be
341 * assumed to be actually RCU-freed.
342 *
343 * It is however sufficient for software page-table walkers that rely on
344 * IRQ disabling. See the comment near struct mmu_table_batch.
345 */
346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 __tlb_remove_table(table);
348 }
349
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352 struct mmu_table_batch *batch;
353 int i;
354
355 batch = container_of(head, struct mmu_table_batch, rcu);
356
357 for (i = 0; i < batch->nr; i++)
358 __tlb_remove_table(batch->tables[i]);
359
360 free_page((unsigned long)batch);
361 }
362
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365 struct mmu_table_batch **batch = &tlb->batch;
366
367 if (*batch) {
368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 *batch = NULL;
370 }
371 }
372
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375 struct mmu_table_batch **batch = &tlb->batch;
376
377 /*
378 * When there's less then two users of this mm there cannot be a
379 * concurrent page-table walk.
380 */
381 if (atomic_read(&tlb->mm->mm_users) < 2) {
382 __tlb_remove_table(table);
383 return;
384 }
385
386 if (*batch == NULL) {
387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 if (*batch == NULL) {
389 tlb_remove_table_one(table);
390 return;
391 }
392 (*batch)->nr = 0;
393 }
394 (*batch)->tables[(*batch)->nr++] = table;
395 if ((*batch)->nr == MAX_TABLE_BATCH)
396 tlb_table_flush(tlb);
397 }
398
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400
401 /*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
407 {
408 pgtable_t token = pmd_pgtable(*pmd);
409 pmd_clear(pmd);
410 pte_free_tlb(tlb, token, addr);
411 atomic_long_dec(&tlb->mm->nr_ptes);
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
417 {
418 pmd_t *pmd;
419 unsigned long next;
420 unsigned long start;
421
422 start = addr;
423 pmd = pmd_offset(pud, addr);
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
428 free_pte_range(tlb, pmd, addr);
429 } while (pmd++, addr = next, addr != end);
430
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
438 }
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
444 pmd_free_tlb(tlb, pmd, start);
445 mm_dec_nr_pmds(tlb->mm);
446 }
447
448 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
449 unsigned long addr, unsigned long end,
450 unsigned long floor, unsigned long ceiling)
451 {
452 pud_t *pud;
453 unsigned long next;
454 unsigned long start;
455
456 start = addr;
457 pud = pud_offset(p4d, addr);
458 do {
459 next = pud_addr_end(addr, end);
460 if (pud_none_or_clear_bad(pud))
461 continue;
462 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 } while (pud++, addr = next, addr != end);
464
465 start &= P4D_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= P4D_MASK;
470 if (!ceiling)
471 return;
472 }
473 if (end - 1 > ceiling - 1)
474 return;
475
476 pud = pud_offset(p4d, start);
477 p4d_clear(p4d);
478 pud_free_tlb(tlb, pud, start);
479 }
480
481 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
484 {
485 p4d_t *p4d;
486 unsigned long next;
487 unsigned long start;
488
489 start = addr;
490 p4d = p4d_offset(pgd, addr);
491 do {
492 next = p4d_addr_end(addr, end);
493 if (p4d_none_or_clear_bad(p4d))
494 continue;
495 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
496 } while (p4d++, addr = next, addr != end);
497
498 start &= PGDIR_MASK;
499 if (start < floor)
500 return;
501 if (ceiling) {
502 ceiling &= PGDIR_MASK;
503 if (!ceiling)
504 return;
505 }
506 if (end - 1 > ceiling - 1)
507 return;
508
509 p4d = p4d_offset(pgd, start);
510 pgd_clear(pgd);
511 p4d_free_tlb(tlb, p4d, start);
512 }
513
514 /*
515 * This function frees user-level page tables of a process.
516 */
517 void free_pgd_range(struct mmu_gather *tlb,
518 unsigned long addr, unsigned long end,
519 unsigned long floor, unsigned long ceiling)
520 {
521 pgd_t *pgd;
522 unsigned long next;
523
524 /*
525 * The next few lines have given us lots of grief...
526 *
527 * Why are we testing PMD* at this top level? Because often
528 * there will be no work to do at all, and we'd prefer not to
529 * go all the way down to the bottom just to discover that.
530 *
531 * Why all these "- 1"s? Because 0 represents both the bottom
532 * of the address space and the top of it (using -1 for the
533 * top wouldn't help much: the masks would do the wrong thing).
534 * The rule is that addr 0 and floor 0 refer to the bottom of
535 * the address space, but end 0 and ceiling 0 refer to the top
536 * Comparisons need to use "end - 1" and "ceiling - 1" (though
537 * that end 0 case should be mythical).
538 *
539 * Wherever addr is brought up or ceiling brought down, we must
540 * be careful to reject "the opposite 0" before it confuses the
541 * subsequent tests. But what about where end is brought down
542 * by PMD_SIZE below? no, end can't go down to 0 there.
543 *
544 * Whereas we round start (addr) and ceiling down, by different
545 * masks at different levels, in order to test whether a table
546 * now has no other vmas using it, so can be freed, we don't
547 * bother to round floor or end up - the tests don't need that.
548 */
549
550 addr &= PMD_MASK;
551 if (addr < floor) {
552 addr += PMD_SIZE;
553 if (!addr)
554 return;
555 }
556 if (ceiling) {
557 ceiling &= PMD_MASK;
558 if (!ceiling)
559 return;
560 }
561 if (end - 1 > ceiling - 1)
562 end -= PMD_SIZE;
563 if (addr > end - 1)
564 return;
565 /*
566 * We add page table cache pages with PAGE_SIZE,
567 * (see pte_free_tlb()), flush the tlb if we need
568 */
569 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
570 pgd = pgd_offset(tlb->mm, addr);
571 do {
572 next = pgd_addr_end(addr, end);
573 if (pgd_none_or_clear_bad(pgd))
574 continue;
575 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
576 } while (pgd++, addr = next, addr != end);
577 }
578
579 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
580 unsigned long floor, unsigned long ceiling)
581 {
582 while (vma) {
583 struct vm_area_struct *next = vma->vm_next;
584 unsigned long addr = vma->vm_start;
585
586 /*
587 * Hide vma from rmap and truncate_pagecache before freeing
588 * pgtables
589 */
590 unlink_anon_vmas(vma);
591 unlink_file_vma(vma);
592
593 if (is_vm_hugetlb_page(vma)) {
594 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
595 floor, next ? next->vm_start : ceiling);
596 } else {
597 /*
598 * Optimization: gather nearby vmas into one call down
599 */
600 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
601 && !is_vm_hugetlb_page(next)) {
602 vma = next;
603 next = vma->vm_next;
604 unlink_anon_vmas(vma);
605 unlink_file_vma(vma);
606 }
607 free_pgd_range(tlb, addr, vma->vm_end,
608 floor, next ? next->vm_start : ceiling);
609 }
610 vma = next;
611 }
612 }
613
614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
615 {
616 spinlock_t *ptl;
617 pgtable_t new = pte_alloc_one(mm, address);
618 if (!new)
619 return -ENOMEM;
620
621 /*
622 * Ensure all pte setup (eg. pte page lock and page clearing) are
623 * visible before the pte is made visible to other CPUs by being
624 * put into page tables.
625 *
626 * The other side of the story is the pointer chasing in the page
627 * table walking code (when walking the page table without locking;
628 * ie. most of the time). Fortunately, these data accesses consist
629 * of a chain of data-dependent loads, meaning most CPUs (alpha
630 * being the notable exception) will already guarantee loads are
631 * seen in-order. See the alpha page table accessors for the
632 * smp_read_barrier_depends() barriers in page table walking code.
633 */
634 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
635
636 ptl = pmd_lock(mm, pmd);
637 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
638 atomic_long_inc(&mm->nr_ptes);
639 pmd_populate(mm, pmd, new);
640 new = NULL;
641 }
642 spin_unlock(ptl);
643 if (new)
644 pte_free(mm, new);
645 return 0;
646 }
647
648 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
649 {
650 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
651 if (!new)
652 return -ENOMEM;
653
654 smp_wmb(); /* See comment in __pte_alloc */
655
656 spin_lock(&init_mm.page_table_lock);
657 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
658 pmd_populate_kernel(&init_mm, pmd, new);
659 new = NULL;
660 }
661 spin_unlock(&init_mm.page_table_lock);
662 if (new)
663 pte_free_kernel(&init_mm, new);
664 return 0;
665 }
666
667 static inline void init_rss_vec(int *rss)
668 {
669 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
670 }
671
672 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
673 {
674 int i;
675
676 if (current->mm == mm)
677 sync_mm_rss(mm);
678 for (i = 0; i < NR_MM_COUNTERS; i++)
679 if (rss[i])
680 add_mm_counter(mm, i, rss[i]);
681 }
682
683 /*
684 * This function is called to print an error when a bad pte
685 * is found. For example, we might have a PFN-mapped pte in
686 * a region that doesn't allow it.
687 *
688 * The calling function must still handle the error.
689 */
690 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
691 pte_t pte, struct page *page)
692 {
693 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
694 p4d_t *p4d = p4d_offset(pgd, addr);
695 pud_t *pud = pud_offset(p4d, addr);
696 pmd_t *pmd = pmd_offset(pud, addr);
697 struct address_space *mapping;
698 pgoff_t index;
699 static unsigned long resume;
700 static unsigned long nr_shown;
701 static unsigned long nr_unshown;
702
703 /*
704 * Allow a burst of 60 reports, then keep quiet for that minute;
705 * or allow a steady drip of one report per second.
706 */
707 if (nr_shown == 60) {
708 if (time_before(jiffies, resume)) {
709 nr_unshown++;
710 return;
711 }
712 if (nr_unshown) {
713 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
714 nr_unshown);
715 nr_unshown = 0;
716 }
717 nr_shown = 0;
718 }
719 if (nr_shown++ == 0)
720 resume = jiffies + 60 * HZ;
721
722 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
723 index = linear_page_index(vma, addr);
724
725 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
726 current->comm,
727 (long long)pte_val(pte), (long long)pmd_val(*pmd));
728 if (page)
729 dump_page(page, "bad pte");
730 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
731 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
732 /*
733 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
734 */
735 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
736 vma->vm_file,
737 vma->vm_ops ? vma->vm_ops->fault : NULL,
738 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
739 mapping ? mapping->a_ops->readpage : NULL);
740 dump_stack();
741 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
742 }
743
744 /*
745 * vm_normal_page -- This function gets the "struct page" associated with a pte.
746 *
747 * "Special" mappings do not wish to be associated with a "struct page" (either
748 * it doesn't exist, or it exists but they don't want to touch it). In this
749 * case, NULL is returned here. "Normal" mappings do have a struct page.
750 *
751 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
752 * pte bit, in which case this function is trivial. Secondly, an architecture
753 * may not have a spare pte bit, which requires a more complicated scheme,
754 * described below.
755 *
756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
757 * special mapping (even if there are underlying and valid "struct pages").
758 * COWed pages of a VM_PFNMAP are always normal.
759 *
760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
763 * mapping will always honor the rule
764 *
765 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
766 *
767 * And for normal mappings this is false.
768 *
769 * This restricts such mappings to be a linear translation from virtual address
770 * to pfn. To get around this restriction, we allow arbitrary mappings so long
771 * as the vma is not a COW mapping; in that case, we know that all ptes are
772 * special (because none can have been COWed).
773 *
774 *
775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
776 *
777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
778 * page" backing, however the difference is that _all_ pages with a struct
779 * page (that is, those where pfn_valid is true) are refcounted and considered
780 * normal pages by the VM. The disadvantage is that pages are refcounted
781 * (which can be slower and simply not an option for some PFNMAP users). The
782 * advantage is that we don't have to follow the strict linearity rule of
783 * PFNMAP mappings in order to support COWable mappings.
784 *
785 */
786 #ifdef __HAVE_ARCH_PTE_SPECIAL
787 # define HAVE_PTE_SPECIAL 1
788 #else
789 # define HAVE_PTE_SPECIAL 0
790 #endif
791 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
792 pte_t pte)
793 {
794 unsigned long pfn = pte_pfn(pte);
795
796 if (HAVE_PTE_SPECIAL) {
797 if (likely(!pte_special(pte)))
798 goto check_pfn;
799 if (vma->vm_ops && vma->vm_ops->find_special_page)
800 return vma->vm_ops->find_special_page(vma, addr);
801 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
802 return NULL;
803 if (!is_zero_pfn(pfn))
804 print_bad_pte(vma, addr, pte, NULL);
805 return NULL;
806 }
807
808 /* !HAVE_PTE_SPECIAL case follows: */
809
810 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
811 if (vma->vm_flags & VM_MIXEDMAP) {
812 if (!pfn_valid(pfn))
813 return NULL;
814 goto out;
815 } else {
816 unsigned long off;
817 off = (addr - vma->vm_start) >> PAGE_SHIFT;
818 if (pfn == vma->vm_pgoff + off)
819 return NULL;
820 if (!is_cow_mapping(vma->vm_flags))
821 return NULL;
822 }
823 }
824
825 if (is_zero_pfn(pfn))
826 return NULL;
827 check_pfn:
828 if (unlikely(pfn > highest_memmap_pfn)) {
829 print_bad_pte(vma, addr, pte, NULL);
830 return NULL;
831 }
832
833 /*
834 * NOTE! We still have PageReserved() pages in the page tables.
835 * eg. VDSO mappings can cause them to exist.
836 */
837 out:
838 return pfn_to_page(pfn);
839 }
840
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
843 pmd_t pmd)
844 {
845 unsigned long pfn = pmd_pfn(pmd);
846
847 /*
848 * There is no pmd_special() but there may be special pmds, e.g.
849 * in a direct-access (dax) mapping, so let's just replicate the
850 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
851 */
852 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
853 if (vma->vm_flags & VM_MIXEDMAP) {
854 if (!pfn_valid(pfn))
855 return NULL;
856 goto out;
857 } else {
858 unsigned long off;
859 off = (addr - vma->vm_start) >> PAGE_SHIFT;
860 if (pfn == vma->vm_pgoff + off)
861 return NULL;
862 if (!is_cow_mapping(vma->vm_flags))
863 return NULL;
864 }
865 }
866
867 if (is_zero_pfn(pfn))
868 return NULL;
869 if (unlikely(pfn > highest_memmap_pfn))
870 return NULL;
871
872 /*
873 * NOTE! We still have PageReserved() pages in the page tables.
874 * eg. VDSO mappings can cause them to exist.
875 */
876 out:
877 return pfn_to_page(pfn);
878 }
879 #endif
880
881 /*
882 * copy one vm_area from one task to the other. Assumes the page tables
883 * already present in the new task to be cleared in the whole range
884 * covered by this vma.
885 */
886
887 static inline unsigned long
888 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
890 unsigned long addr, int *rss)
891 {
892 unsigned long vm_flags = vma->vm_flags;
893 pte_t pte = *src_pte;
894 struct page *page;
895
896 /* pte contains position in swap or file, so copy. */
897 if (unlikely(!pte_present(pte))) {
898 swp_entry_t entry = pte_to_swp_entry(pte);
899
900 if (likely(!non_swap_entry(entry))) {
901 if (swap_duplicate(entry) < 0)
902 return entry.val;
903
904 /* make sure dst_mm is on swapoff's mmlist. */
905 if (unlikely(list_empty(&dst_mm->mmlist))) {
906 spin_lock(&mmlist_lock);
907 if (list_empty(&dst_mm->mmlist))
908 list_add(&dst_mm->mmlist,
909 &src_mm->mmlist);
910 spin_unlock(&mmlist_lock);
911 }
912 rss[MM_SWAPENTS]++;
913 } else if (is_migration_entry(entry)) {
914 page = migration_entry_to_page(entry);
915
916 rss[mm_counter(page)]++;
917
918 if (is_write_migration_entry(entry) &&
919 is_cow_mapping(vm_flags)) {
920 /*
921 * COW mappings require pages in both
922 * parent and child to be set to read.
923 */
924 make_migration_entry_read(&entry);
925 pte = swp_entry_to_pte(entry);
926 if (pte_swp_soft_dirty(*src_pte))
927 pte = pte_swp_mksoft_dirty(pte);
928 set_pte_at(src_mm, addr, src_pte, pte);
929 }
930 }
931 goto out_set_pte;
932 }
933
934 /*
935 * If it's a COW mapping, write protect it both
936 * in the parent and the child
937 */
938 if (is_cow_mapping(vm_flags)) {
939 ptep_set_wrprotect(src_mm, addr, src_pte);
940 pte = pte_wrprotect(pte);
941 }
942
943 /*
944 * If it's a shared mapping, mark it clean in
945 * the child
946 */
947 if (vm_flags & VM_SHARED)
948 pte = pte_mkclean(pte);
949 pte = pte_mkold(pte);
950
951 page = vm_normal_page(vma, addr, pte);
952 if (page) {
953 get_page(page);
954 page_dup_rmap(page, false);
955 rss[mm_counter(page)]++;
956 }
957
958 out_set_pte:
959 set_pte_at(dst_mm, addr, dst_pte, pte);
960 return 0;
961 }
962
963 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
964 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
965 unsigned long addr, unsigned long end)
966 {
967 pte_t *orig_src_pte, *orig_dst_pte;
968 pte_t *src_pte, *dst_pte;
969 spinlock_t *src_ptl, *dst_ptl;
970 int progress = 0;
971 int rss[NR_MM_COUNTERS];
972 swp_entry_t entry = (swp_entry_t){0};
973
974 again:
975 init_rss_vec(rss);
976
977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
978 if (!dst_pte)
979 return -ENOMEM;
980 src_pte = pte_offset_map(src_pmd, addr);
981 src_ptl = pte_lockptr(src_mm, src_pmd);
982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
983 orig_src_pte = src_pte;
984 orig_dst_pte = dst_pte;
985 arch_enter_lazy_mmu_mode();
986
987 do {
988 /*
989 * We are holding two locks at this point - either of them
990 * could generate latencies in another task on another CPU.
991 */
992 if (progress >= 32) {
993 progress = 0;
994 if (need_resched() ||
995 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
996 break;
997 }
998 if (pte_none(*src_pte)) {
999 progress++;
1000 continue;
1001 }
1002 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1003 vma, addr, rss);
1004 if (entry.val)
1005 break;
1006 progress += 8;
1007 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1008
1009 arch_leave_lazy_mmu_mode();
1010 spin_unlock(src_ptl);
1011 pte_unmap(orig_src_pte);
1012 add_mm_rss_vec(dst_mm, rss);
1013 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1014 cond_resched();
1015
1016 if (entry.val) {
1017 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1018 return -ENOMEM;
1019 progress = 0;
1020 }
1021 if (addr != end)
1022 goto again;
1023 return 0;
1024 }
1025
1026 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1027 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1028 unsigned long addr, unsigned long end)
1029 {
1030 pmd_t *src_pmd, *dst_pmd;
1031 unsigned long next;
1032
1033 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1034 if (!dst_pmd)
1035 return -ENOMEM;
1036 src_pmd = pmd_offset(src_pud, addr);
1037 do {
1038 next = pmd_addr_end(addr, end);
1039 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1040 int err;
1041 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1042 err = copy_huge_pmd(dst_mm, src_mm,
1043 dst_pmd, src_pmd, addr, vma);
1044 if (err == -ENOMEM)
1045 return -ENOMEM;
1046 if (!err)
1047 continue;
1048 /* fall through */
1049 }
1050 if (pmd_none_or_clear_bad(src_pmd))
1051 continue;
1052 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1053 vma, addr, next))
1054 return -ENOMEM;
1055 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1056 return 0;
1057 }
1058
1059 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1061 unsigned long addr, unsigned long end)
1062 {
1063 pud_t *src_pud, *dst_pud;
1064 unsigned long next;
1065
1066 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1067 if (!dst_pud)
1068 return -ENOMEM;
1069 src_pud = pud_offset(src_p4d, addr);
1070 do {
1071 next = pud_addr_end(addr, end);
1072 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1073 int err;
1074
1075 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1076 err = copy_huge_pud(dst_mm, src_mm,
1077 dst_pud, src_pud, addr, vma);
1078 if (err == -ENOMEM)
1079 return -ENOMEM;
1080 if (!err)
1081 continue;
1082 /* fall through */
1083 }
1084 if (pud_none_or_clear_bad(src_pud))
1085 continue;
1086 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1087 vma, addr, next))
1088 return -ENOMEM;
1089 } while (dst_pud++, src_pud++, addr = next, addr != end);
1090 return 0;
1091 }
1092
1093 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1095 unsigned long addr, unsigned long end)
1096 {
1097 p4d_t *src_p4d, *dst_p4d;
1098 unsigned long next;
1099
1100 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1101 if (!dst_p4d)
1102 return -ENOMEM;
1103 src_p4d = p4d_offset(src_pgd, addr);
1104 do {
1105 next = p4d_addr_end(addr, end);
1106 if (p4d_none_or_clear_bad(src_p4d))
1107 continue;
1108 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1109 vma, addr, next))
1110 return -ENOMEM;
1111 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1112 return 0;
1113 }
1114
1115 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1116 struct vm_area_struct *vma)
1117 {
1118 pgd_t *src_pgd, *dst_pgd;
1119 unsigned long next;
1120 unsigned long addr = vma->vm_start;
1121 unsigned long end = vma->vm_end;
1122 unsigned long mmun_start; /* For mmu_notifiers */
1123 unsigned long mmun_end; /* For mmu_notifiers */
1124 bool is_cow;
1125 int ret;
1126
1127 /*
1128 * Don't copy ptes where a page fault will fill them correctly.
1129 * Fork becomes much lighter when there are big shared or private
1130 * readonly mappings. The tradeoff is that copy_page_range is more
1131 * efficient than faulting.
1132 */
1133 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1134 !vma->anon_vma)
1135 return 0;
1136
1137 if (is_vm_hugetlb_page(vma))
1138 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1139
1140 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1141 /*
1142 * We do not free on error cases below as remove_vma
1143 * gets called on error from higher level routine
1144 */
1145 ret = track_pfn_copy(vma);
1146 if (ret)
1147 return ret;
1148 }
1149
1150 /*
1151 * We need to invalidate the secondary MMU mappings only when
1152 * there could be a permission downgrade on the ptes of the
1153 * parent mm. And a permission downgrade will only happen if
1154 * is_cow_mapping() returns true.
1155 */
1156 is_cow = is_cow_mapping(vma->vm_flags);
1157 mmun_start = addr;
1158 mmun_end = end;
1159 if (is_cow)
1160 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1161 mmun_end);
1162
1163 ret = 0;
1164 dst_pgd = pgd_offset(dst_mm, addr);
1165 src_pgd = pgd_offset(src_mm, addr);
1166 do {
1167 next = pgd_addr_end(addr, end);
1168 if (pgd_none_or_clear_bad(src_pgd))
1169 continue;
1170 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1171 vma, addr, next))) {
1172 ret = -ENOMEM;
1173 break;
1174 }
1175 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1176
1177 if (is_cow)
1178 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1179 return ret;
1180 }
1181
1182 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1183 struct vm_area_struct *vma, pmd_t *pmd,
1184 unsigned long addr, unsigned long end,
1185 struct zap_details *details)
1186 {
1187 struct mm_struct *mm = tlb->mm;
1188 int force_flush = 0;
1189 int rss[NR_MM_COUNTERS];
1190 spinlock_t *ptl;
1191 pte_t *start_pte;
1192 pte_t *pte;
1193 swp_entry_t entry;
1194
1195 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1196 again:
1197 init_rss_vec(rss);
1198 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1199 pte = start_pte;
1200 arch_enter_lazy_mmu_mode();
1201 do {
1202 pte_t ptent = *pte;
1203 if (pte_none(ptent))
1204 continue;
1205
1206 if (pte_present(ptent)) {
1207 struct page *page;
1208
1209 page = vm_normal_page(vma, addr, ptent);
1210 if (unlikely(details) && page) {
1211 /*
1212 * unmap_shared_mapping_pages() wants to
1213 * invalidate cache without truncating:
1214 * unmap shared but keep private pages.
1215 */
1216 if (details->check_mapping &&
1217 details->check_mapping != page_rmapping(page))
1218 continue;
1219 }
1220 ptent = ptep_get_and_clear_full(mm, addr, pte,
1221 tlb->fullmm);
1222 tlb_remove_tlb_entry(tlb, pte, addr);
1223 if (unlikely(!page))
1224 continue;
1225
1226 if (!PageAnon(page)) {
1227 if (pte_dirty(ptent)) {
1228 force_flush = 1;
1229 set_page_dirty(page);
1230 }
1231 if (pte_young(ptent) &&
1232 likely(!(vma->vm_flags & VM_SEQ_READ)))
1233 mark_page_accessed(page);
1234 }
1235 rss[mm_counter(page)]--;
1236 page_remove_rmap(page, false);
1237 if (unlikely(page_mapcount(page) < 0))
1238 print_bad_pte(vma, addr, ptent, page);
1239 if (unlikely(__tlb_remove_page(tlb, page))) {
1240 force_flush = 1;
1241 addr += PAGE_SIZE;
1242 break;
1243 }
1244 continue;
1245 }
1246 /* If details->check_mapping, we leave swap entries. */
1247 if (unlikely(details))
1248 continue;
1249
1250 entry = pte_to_swp_entry(ptent);
1251 if (!non_swap_entry(entry))
1252 rss[MM_SWAPENTS]--;
1253 else if (is_migration_entry(entry)) {
1254 struct page *page;
1255
1256 page = migration_entry_to_page(entry);
1257 rss[mm_counter(page)]--;
1258 }
1259 if (unlikely(!free_swap_and_cache(entry)))
1260 print_bad_pte(vma, addr, ptent, NULL);
1261 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1262 } while (pte++, addr += PAGE_SIZE, addr != end);
1263
1264 add_mm_rss_vec(mm, rss);
1265 arch_leave_lazy_mmu_mode();
1266
1267 /* Do the actual TLB flush before dropping ptl */
1268 if (force_flush)
1269 tlb_flush_mmu_tlbonly(tlb);
1270 pte_unmap_unlock(start_pte, ptl);
1271
1272 /*
1273 * If we forced a TLB flush (either due to running out of
1274 * batch buffers or because we needed to flush dirty TLB
1275 * entries before releasing the ptl), free the batched
1276 * memory too. Restart if we didn't do everything.
1277 */
1278 if (force_flush) {
1279 force_flush = 0;
1280 tlb_flush_mmu_free(tlb);
1281 if (addr != end)
1282 goto again;
1283 }
1284
1285 return addr;
1286 }
1287
1288 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma, pud_t *pud,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 pmd_t *pmd;
1294 unsigned long next;
1295
1296 pmd = pmd_offset(pud, addr);
1297 do {
1298 next = pmd_addr_end(addr, end);
1299 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1300 if (next - addr != HPAGE_PMD_SIZE) {
1301 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1302 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1303 __split_huge_pmd(vma, pmd, addr, false, NULL);
1304 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1305 goto next;
1306 /* fall through */
1307 }
1308 /*
1309 * Here there can be other concurrent MADV_DONTNEED or
1310 * trans huge page faults running, and if the pmd is
1311 * none or trans huge it can change under us. This is
1312 * because MADV_DONTNEED holds the mmap_sem in read
1313 * mode.
1314 */
1315 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1316 goto next;
1317 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1318 next:
1319 cond_resched();
1320 } while (pmd++, addr = next, addr != end);
1321
1322 return addr;
1323 }
1324
1325 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1326 struct vm_area_struct *vma, p4d_t *p4d,
1327 unsigned long addr, unsigned long end,
1328 struct zap_details *details)
1329 {
1330 pud_t *pud;
1331 unsigned long next;
1332
1333 pud = pud_offset(p4d, addr);
1334 do {
1335 next = pud_addr_end(addr, end);
1336 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1337 if (next - addr != HPAGE_PUD_SIZE) {
1338 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1339 split_huge_pud(vma, pud, addr);
1340 } else if (zap_huge_pud(tlb, vma, pud, addr))
1341 goto next;
1342 /* fall through */
1343 }
1344 if (pud_none_or_clear_bad(pud))
1345 continue;
1346 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1347 next:
1348 cond_resched();
1349 } while (pud++, addr = next, addr != end);
1350
1351 return addr;
1352 }
1353
1354 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1355 struct vm_area_struct *vma, pgd_t *pgd,
1356 unsigned long addr, unsigned long end,
1357 struct zap_details *details)
1358 {
1359 p4d_t *p4d;
1360 unsigned long next;
1361
1362 p4d = p4d_offset(pgd, addr);
1363 do {
1364 next = p4d_addr_end(addr, end);
1365 if (p4d_none_or_clear_bad(p4d))
1366 continue;
1367 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1368 } while (p4d++, addr = next, addr != end);
1369
1370 return addr;
1371 }
1372
1373 void unmap_page_range(struct mmu_gather *tlb,
1374 struct vm_area_struct *vma,
1375 unsigned long addr, unsigned long end,
1376 struct zap_details *details)
1377 {
1378 pgd_t *pgd;
1379 unsigned long next;
1380
1381 BUG_ON(addr >= end);
1382 tlb_start_vma(tlb, vma);
1383 pgd = pgd_offset(vma->vm_mm, addr);
1384 do {
1385 next = pgd_addr_end(addr, end);
1386 if (pgd_none_or_clear_bad(pgd))
1387 continue;
1388 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1389 } while (pgd++, addr = next, addr != end);
1390 tlb_end_vma(tlb, vma);
1391 }
1392
1393
1394 static void unmap_single_vma(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, unsigned long start_addr,
1396 unsigned long end_addr,
1397 struct zap_details *details)
1398 {
1399 unsigned long start = max(vma->vm_start, start_addr);
1400 unsigned long end;
1401
1402 if (start >= vma->vm_end)
1403 return;
1404 end = min(vma->vm_end, end_addr);
1405 if (end <= vma->vm_start)
1406 return;
1407
1408 if (vma->vm_file)
1409 uprobe_munmap(vma, start, end);
1410
1411 if (unlikely(vma->vm_flags & VM_PFNMAP))
1412 untrack_pfn(vma, 0, 0);
1413
1414 if (start != end) {
1415 if (unlikely(is_vm_hugetlb_page(vma))) {
1416 /*
1417 * It is undesirable to test vma->vm_file as it
1418 * should be non-null for valid hugetlb area.
1419 * However, vm_file will be NULL in the error
1420 * cleanup path of mmap_region. When
1421 * hugetlbfs ->mmap method fails,
1422 * mmap_region() nullifies vma->vm_file
1423 * before calling this function to clean up.
1424 * Since no pte has actually been setup, it is
1425 * safe to do nothing in this case.
1426 */
1427 if (vma->vm_file) {
1428 i_mmap_lock_write(vma->vm_file->f_mapping);
1429 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1430 i_mmap_unlock_write(vma->vm_file->f_mapping);
1431 }
1432 } else
1433 unmap_page_range(tlb, vma, start, end, details);
1434 }
1435 }
1436
1437 /**
1438 * unmap_vmas - unmap a range of memory covered by a list of vma's
1439 * @tlb: address of the caller's struct mmu_gather
1440 * @vma: the starting vma
1441 * @start_addr: virtual address at which to start unmapping
1442 * @end_addr: virtual address at which to end unmapping
1443 *
1444 * Unmap all pages in the vma list.
1445 *
1446 * Only addresses between `start' and `end' will be unmapped.
1447 *
1448 * The VMA list must be sorted in ascending virtual address order.
1449 *
1450 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1451 * range after unmap_vmas() returns. So the only responsibility here is to
1452 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1453 * drops the lock and schedules.
1454 */
1455 void unmap_vmas(struct mmu_gather *tlb,
1456 struct vm_area_struct *vma, unsigned long start_addr,
1457 unsigned long end_addr)
1458 {
1459 struct mm_struct *mm = vma->vm_mm;
1460
1461 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1462 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1463 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1464 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1465 }
1466
1467 /**
1468 * zap_page_range - remove user pages in a given range
1469 * @vma: vm_area_struct holding the applicable pages
1470 * @start: starting address of pages to zap
1471 * @size: number of bytes to zap
1472 *
1473 * Caller must protect the VMA list
1474 */
1475 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1476 unsigned long size)
1477 {
1478 struct mm_struct *mm = vma->vm_mm;
1479 struct mmu_gather tlb;
1480 unsigned long end = start + size;
1481
1482 lru_add_drain();
1483 tlb_gather_mmu(&tlb, mm, start, end);
1484 update_hiwater_rss(mm);
1485 mmu_notifier_invalidate_range_start(mm, start, end);
1486 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1487 unmap_single_vma(&tlb, vma, start, end, NULL);
1488 mmu_notifier_invalidate_range_end(mm, start, end);
1489 tlb_finish_mmu(&tlb, start, end);
1490 }
1491
1492 /**
1493 * zap_page_range_single - remove user pages in a given range
1494 * @vma: vm_area_struct holding the applicable pages
1495 * @address: starting address of pages to zap
1496 * @size: number of bytes to zap
1497 * @details: details of shared cache invalidation
1498 *
1499 * The range must fit into one VMA.
1500 */
1501 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1502 unsigned long size, struct zap_details *details)
1503 {
1504 struct mm_struct *mm = vma->vm_mm;
1505 struct mmu_gather tlb;
1506 unsigned long end = address + size;
1507
1508 lru_add_drain();
1509 tlb_gather_mmu(&tlb, mm, address, end);
1510 update_hiwater_rss(mm);
1511 mmu_notifier_invalidate_range_start(mm, address, end);
1512 unmap_single_vma(&tlb, vma, address, end, details);
1513 mmu_notifier_invalidate_range_end(mm, address, end);
1514 tlb_finish_mmu(&tlb, address, end);
1515 }
1516
1517 /**
1518 * zap_vma_ptes - remove ptes mapping the vma
1519 * @vma: vm_area_struct holding ptes to be zapped
1520 * @address: starting address of pages to zap
1521 * @size: number of bytes to zap
1522 *
1523 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1524 *
1525 * The entire address range must be fully contained within the vma.
1526 *
1527 * Returns 0 if successful.
1528 */
1529 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1530 unsigned long size)
1531 {
1532 if (address < vma->vm_start || address + size > vma->vm_end ||
1533 !(vma->vm_flags & VM_PFNMAP))
1534 return -1;
1535 zap_page_range_single(vma, address, size, NULL);
1536 return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1539
1540 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1541 spinlock_t **ptl)
1542 {
1543 pgd_t *pgd;
1544 p4d_t *p4d;
1545 pud_t *pud;
1546 pmd_t *pmd;
1547
1548 pgd = pgd_offset(mm, addr);
1549 p4d = p4d_alloc(mm, pgd, addr);
1550 if (!p4d)
1551 return NULL;
1552 pud = pud_alloc(mm, p4d, addr);
1553 if (!pud)
1554 return NULL;
1555 pmd = pmd_alloc(mm, pud, addr);
1556 if (!pmd)
1557 return NULL;
1558
1559 VM_BUG_ON(pmd_trans_huge(*pmd));
1560 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1561 }
1562
1563 /*
1564 * This is the old fallback for page remapping.
1565 *
1566 * For historical reasons, it only allows reserved pages. Only
1567 * old drivers should use this, and they needed to mark their
1568 * pages reserved for the old functions anyway.
1569 */
1570 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1571 struct page *page, pgprot_t prot)
1572 {
1573 struct mm_struct *mm = vma->vm_mm;
1574 int retval;
1575 pte_t *pte;
1576 spinlock_t *ptl;
1577
1578 retval = -EINVAL;
1579 if (PageAnon(page))
1580 goto out;
1581 retval = -ENOMEM;
1582 flush_dcache_page(page);
1583 pte = get_locked_pte(mm, addr, &ptl);
1584 if (!pte)
1585 goto out;
1586 retval = -EBUSY;
1587 if (!pte_none(*pte))
1588 goto out_unlock;
1589
1590 /* Ok, finally just insert the thing.. */
1591 get_page(page);
1592 inc_mm_counter_fast(mm, mm_counter_file(page));
1593 page_add_file_rmap(page, false);
1594 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1595
1596 retval = 0;
1597 pte_unmap_unlock(pte, ptl);
1598 return retval;
1599 out_unlock:
1600 pte_unmap_unlock(pte, ptl);
1601 out:
1602 return retval;
1603 }
1604
1605 /**
1606 * vm_insert_page - insert single page into user vma
1607 * @vma: user vma to map to
1608 * @addr: target user address of this page
1609 * @page: source kernel page
1610 *
1611 * This allows drivers to insert individual pages they've allocated
1612 * into a user vma.
1613 *
1614 * The page has to be a nice clean _individual_ kernel allocation.
1615 * If you allocate a compound page, you need to have marked it as
1616 * such (__GFP_COMP), or manually just split the page up yourself
1617 * (see split_page()).
1618 *
1619 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1620 * took an arbitrary page protection parameter. This doesn't allow
1621 * that. Your vma protection will have to be set up correctly, which
1622 * means that if you want a shared writable mapping, you'd better
1623 * ask for a shared writable mapping!
1624 *
1625 * The page does not need to be reserved.
1626 *
1627 * Usually this function is called from f_op->mmap() handler
1628 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1629 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1630 * function from other places, for example from page-fault handler.
1631 */
1632 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1633 struct page *page)
1634 {
1635 if (addr < vma->vm_start || addr >= vma->vm_end)
1636 return -EFAULT;
1637 if (!page_count(page))
1638 return -EINVAL;
1639 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1640 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1641 BUG_ON(vma->vm_flags & VM_PFNMAP);
1642 vma->vm_flags |= VM_MIXEDMAP;
1643 }
1644 return insert_page(vma, addr, page, vma->vm_page_prot);
1645 }
1646 EXPORT_SYMBOL(vm_insert_page);
1647
1648 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1649 pfn_t pfn, pgprot_t prot)
1650 {
1651 struct mm_struct *mm = vma->vm_mm;
1652 int retval;
1653 pte_t *pte, entry;
1654 spinlock_t *ptl;
1655
1656 retval = -ENOMEM;
1657 pte = get_locked_pte(mm, addr, &ptl);
1658 if (!pte)
1659 goto out;
1660 retval = -EBUSY;
1661 if (!pte_none(*pte))
1662 goto out_unlock;
1663
1664 /* Ok, finally just insert the thing.. */
1665 if (pfn_t_devmap(pfn))
1666 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1667 else
1668 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1669 set_pte_at(mm, addr, pte, entry);
1670 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1671
1672 retval = 0;
1673 out_unlock:
1674 pte_unmap_unlock(pte, ptl);
1675 out:
1676 return retval;
1677 }
1678
1679 /**
1680 * vm_insert_pfn - insert single pfn into user vma
1681 * @vma: user vma to map to
1682 * @addr: target user address of this page
1683 * @pfn: source kernel pfn
1684 *
1685 * Similar to vm_insert_page, this allows drivers to insert individual pages
1686 * they've allocated into a user vma. Same comments apply.
1687 *
1688 * This function should only be called from a vm_ops->fault handler, and
1689 * in that case the handler should return NULL.
1690 *
1691 * vma cannot be a COW mapping.
1692 *
1693 * As this is called only for pages that do not currently exist, we
1694 * do not need to flush old virtual caches or the TLB.
1695 */
1696 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1697 unsigned long pfn)
1698 {
1699 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1700 }
1701 EXPORT_SYMBOL(vm_insert_pfn);
1702
1703 /**
1704 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1705 * @vma: user vma to map to
1706 * @addr: target user address of this page
1707 * @pfn: source kernel pfn
1708 * @pgprot: pgprot flags for the inserted page
1709 *
1710 * This is exactly like vm_insert_pfn, except that it allows drivers to
1711 * to override pgprot on a per-page basis.
1712 *
1713 * This only makes sense for IO mappings, and it makes no sense for
1714 * cow mappings. In general, using multiple vmas is preferable;
1715 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1716 * impractical.
1717 */
1718 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1719 unsigned long pfn, pgprot_t pgprot)
1720 {
1721 int ret;
1722 /*
1723 * Technically, architectures with pte_special can avoid all these
1724 * restrictions (same for remap_pfn_range). However we would like
1725 * consistency in testing and feature parity among all, so we should
1726 * try to keep these invariants in place for everybody.
1727 */
1728 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1729 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1730 (VM_PFNMAP|VM_MIXEDMAP));
1731 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1732 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1733
1734 if (addr < vma->vm_start || addr >= vma->vm_end)
1735 return -EFAULT;
1736
1737 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1738
1739 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1740
1741 return ret;
1742 }
1743 EXPORT_SYMBOL(vm_insert_pfn_prot);
1744
1745 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1746 pfn_t pfn)
1747 {
1748 pgprot_t pgprot = vma->vm_page_prot;
1749
1750 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1751
1752 if (addr < vma->vm_start || addr >= vma->vm_end)
1753 return -EFAULT;
1754
1755 track_pfn_insert(vma, &pgprot, pfn);
1756
1757 /*
1758 * If we don't have pte special, then we have to use the pfn_valid()
1759 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1760 * refcount the page if pfn_valid is true (hence insert_page rather
1761 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1762 * without pte special, it would there be refcounted as a normal page.
1763 */
1764 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1765 struct page *page;
1766
1767 /*
1768 * At this point we are committed to insert_page()
1769 * regardless of whether the caller specified flags that
1770 * result in pfn_t_has_page() == false.
1771 */
1772 page = pfn_to_page(pfn_t_to_pfn(pfn));
1773 return insert_page(vma, addr, page, pgprot);
1774 }
1775 return insert_pfn(vma, addr, pfn, pgprot);
1776 }
1777 EXPORT_SYMBOL(vm_insert_mixed);
1778
1779 /*
1780 * maps a range of physical memory into the requested pages. the old
1781 * mappings are removed. any references to nonexistent pages results
1782 * in null mappings (currently treated as "copy-on-access")
1783 */
1784 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1785 unsigned long addr, unsigned long end,
1786 unsigned long pfn, pgprot_t prot)
1787 {
1788 pte_t *pte;
1789 spinlock_t *ptl;
1790
1791 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1792 if (!pte)
1793 return -ENOMEM;
1794 arch_enter_lazy_mmu_mode();
1795 do {
1796 BUG_ON(!pte_none(*pte));
1797 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1798 pfn++;
1799 } while (pte++, addr += PAGE_SIZE, addr != end);
1800 arch_leave_lazy_mmu_mode();
1801 pte_unmap_unlock(pte - 1, ptl);
1802 return 0;
1803 }
1804
1805 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1806 unsigned long addr, unsigned long end,
1807 unsigned long pfn, pgprot_t prot)
1808 {
1809 pmd_t *pmd;
1810 unsigned long next;
1811
1812 pfn -= addr >> PAGE_SHIFT;
1813 pmd = pmd_alloc(mm, pud, addr);
1814 if (!pmd)
1815 return -ENOMEM;
1816 VM_BUG_ON(pmd_trans_huge(*pmd));
1817 do {
1818 next = pmd_addr_end(addr, end);
1819 if (remap_pte_range(mm, pmd, addr, next,
1820 pfn + (addr >> PAGE_SHIFT), prot))
1821 return -ENOMEM;
1822 } while (pmd++, addr = next, addr != end);
1823 return 0;
1824 }
1825
1826 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1827 unsigned long addr, unsigned long end,
1828 unsigned long pfn, pgprot_t prot)
1829 {
1830 pud_t *pud;
1831 unsigned long next;
1832
1833 pfn -= addr >> PAGE_SHIFT;
1834 pud = pud_alloc(mm, p4d, addr);
1835 if (!pud)
1836 return -ENOMEM;
1837 do {
1838 next = pud_addr_end(addr, end);
1839 if (remap_pmd_range(mm, pud, addr, next,
1840 pfn + (addr >> PAGE_SHIFT), prot))
1841 return -ENOMEM;
1842 } while (pud++, addr = next, addr != end);
1843 return 0;
1844 }
1845
1846 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1847 unsigned long addr, unsigned long end,
1848 unsigned long pfn, pgprot_t prot)
1849 {
1850 p4d_t *p4d;
1851 unsigned long next;
1852
1853 pfn -= addr >> PAGE_SHIFT;
1854 p4d = p4d_alloc(mm, pgd, addr);
1855 if (!p4d)
1856 return -ENOMEM;
1857 do {
1858 next = p4d_addr_end(addr, end);
1859 if (remap_pud_range(mm, p4d, addr, next,
1860 pfn + (addr >> PAGE_SHIFT), prot))
1861 return -ENOMEM;
1862 } while (p4d++, addr = next, addr != end);
1863 return 0;
1864 }
1865
1866 /**
1867 * remap_pfn_range - remap kernel memory to userspace
1868 * @vma: user vma to map to
1869 * @addr: target user address to start at
1870 * @pfn: physical address of kernel memory
1871 * @size: size of map area
1872 * @prot: page protection flags for this mapping
1873 *
1874 * Note: this is only safe if the mm semaphore is held when called.
1875 */
1876 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1877 unsigned long pfn, unsigned long size, pgprot_t prot)
1878 {
1879 pgd_t *pgd;
1880 unsigned long next;
1881 unsigned long end = addr + PAGE_ALIGN(size);
1882 struct mm_struct *mm = vma->vm_mm;
1883 unsigned long remap_pfn = pfn;
1884 int err;
1885
1886 /*
1887 * Physically remapped pages are special. Tell the
1888 * rest of the world about it:
1889 * VM_IO tells people not to look at these pages
1890 * (accesses can have side effects).
1891 * VM_PFNMAP tells the core MM that the base pages are just
1892 * raw PFN mappings, and do not have a "struct page" associated
1893 * with them.
1894 * VM_DONTEXPAND
1895 * Disable vma merging and expanding with mremap().
1896 * VM_DONTDUMP
1897 * Omit vma from core dump, even when VM_IO turned off.
1898 *
1899 * There's a horrible special case to handle copy-on-write
1900 * behaviour that some programs depend on. We mark the "original"
1901 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1902 * See vm_normal_page() for details.
1903 */
1904 if (is_cow_mapping(vma->vm_flags)) {
1905 if (addr != vma->vm_start || end != vma->vm_end)
1906 return -EINVAL;
1907 vma->vm_pgoff = pfn;
1908 }
1909
1910 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1911 if (err)
1912 return -EINVAL;
1913
1914 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1915
1916 BUG_ON(addr >= end);
1917 pfn -= addr >> PAGE_SHIFT;
1918 pgd = pgd_offset(mm, addr);
1919 flush_cache_range(vma, addr, end);
1920 do {
1921 next = pgd_addr_end(addr, end);
1922 err = remap_p4d_range(mm, pgd, addr, next,
1923 pfn + (addr >> PAGE_SHIFT), prot);
1924 if (err)
1925 break;
1926 } while (pgd++, addr = next, addr != end);
1927
1928 if (err)
1929 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1930
1931 return err;
1932 }
1933 EXPORT_SYMBOL(remap_pfn_range);
1934
1935 /**
1936 * vm_iomap_memory - remap memory to userspace
1937 * @vma: user vma to map to
1938 * @start: start of area
1939 * @len: size of area
1940 *
1941 * This is a simplified io_remap_pfn_range() for common driver use. The
1942 * driver just needs to give us the physical memory range to be mapped,
1943 * we'll figure out the rest from the vma information.
1944 *
1945 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1946 * whatever write-combining details or similar.
1947 */
1948 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1949 {
1950 unsigned long vm_len, pfn, pages;
1951
1952 /* Check that the physical memory area passed in looks valid */
1953 if (start + len < start)
1954 return -EINVAL;
1955 /*
1956 * You *really* shouldn't map things that aren't page-aligned,
1957 * but we've historically allowed it because IO memory might
1958 * just have smaller alignment.
1959 */
1960 len += start & ~PAGE_MASK;
1961 pfn = start >> PAGE_SHIFT;
1962 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1963 if (pfn + pages < pfn)
1964 return -EINVAL;
1965
1966 /* We start the mapping 'vm_pgoff' pages into the area */
1967 if (vma->vm_pgoff > pages)
1968 return -EINVAL;
1969 pfn += vma->vm_pgoff;
1970 pages -= vma->vm_pgoff;
1971
1972 /* Can we fit all of the mapping? */
1973 vm_len = vma->vm_end - vma->vm_start;
1974 if (vm_len >> PAGE_SHIFT > pages)
1975 return -EINVAL;
1976
1977 /* Ok, let it rip */
1978 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1979 }
1980 EXPORT_SYMBOL(vm_iomap_memory);
1981
1982 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983 unsigned long addr, unsigned long end,
1984 pte_fn_t fn, void *data)
1985 {
1986 pte_t *pte;
1987 int err;
1988 pgtable_t token;
1989 spinlock_t *uninitialized_var(ptl);
1990
1991 pte = (mm == &init_mm) ?
1992 pte_alloc_kernel(pmd, addr) :
1993 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1994 if (!pte)
1995 return -ENOMEM;
1996
1997 BUG_ON(pmd_huge(*pmd));
1998
1999 arch_enter_lazy_mmu_mode();
2000
2001 token = pmd_pgtable(*pmd);
2002
2003 do {
2004 err = fn(pte++, token, addr, data);
2005 if (err)
2006 break;
2007 } while (addr += PAGE_SIZE, addr != end);
2008
2009 arch_leave_lazy_mmu_mode();
2010
2011 if (mm != &init_mm)
2012 pte_unmap_unlock(pte-1, ptl);
2013 return err;
2014 }
2015
2016 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2017 unsigned long addr, unsigned long end,
2018 pte_fn_t fn, void *data)
2019 {
2020 pmd_t *pmd;
2021 unsigned long next;
2022 int err;
2023
2024 BUG_ON(pud_huge(*pud));
2025
2026 pmd = pmd_alloc(mm, pud, addr);
2027 if (!pmd)
2028 return -ENOMEM;
2029 do {
2030 next = pmd_addr_end(addr, end);
2031 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2032 if (err)
2033 break;
2034 } while (pmd++, addr = next, addr != end);
2035 return err;
2036 }
2037
2038 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 unsigned long addr, unsigned long end,
2040 pte_fn_t fn, void *data)
2041 {
2042 pud_t *pud;
2043 unsigned long next;
2044 int err;
2045
2046 pud = pud_alloc(mm, p4d, addr);
2047 if (!pud)
2048 return -ENOMEM;
2049 do {
2050 next = pud_addr_end(addr, end);
2051 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2052 if (err)
2053 break;
2054 } while (pud++, addr = next, addr != end);
2055 return err;
2056 }
2057
2058 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2059 unsigned long addr, unsigned long end,
2060 pte_fn_t fn, void *data)
2061 {
2062 p4d_t *p4d;
2063 unsigned long next;
2064 int err;
2065
2066 p4d = p4d_alloc(mm, pgd, addr);
2067 if (!p4d)
2068 return -ENOMEM;
2069 do {
2070 next = p4d_addr_end(addr, end);
2071 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2072 if (err)
2073 break;
2074 } while (p4d++, addr = next, addr != end);
2075 return err;
2076 }
2077
2078 /*
2079 * Scan a region of virtual memory, filling in page tables as necessary
2080 * and calling a provided function on each leaf page table.
2081 */
2082 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2083 unsigned long size, pte_fn_t fn, void *data)
2084 {
2085 pgd_t *pgd;
2086 unsigned long next;
2087 unsigned long end = addr + size;
2088 int err;
2089
2090 if (WARN_ON(addr >= end))
2091 return -EINVAL;
2092
2093 pgd = pgd_offset(mm, addr);
2094 do {
2095 next = pgd_addr_end(addr, end);
2096 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2097 if (err)
2098 break;
2099 } while (pgd++, addr = next, addr != end);
2100
2101 return err;
2102 }
2103 EXPORT_SYMBOL_GPL(apply_to_page_range);
2104
2105 /*
2106 * handle_pte_fault chooses page fault handler according to an entry which was
2107 * read non-atomically. Before making any commitment, on those architectures
2108 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2109 * parts, do_swap_page must check under lock before unmapping the pte and
2110 * proceeding (but do_wp_page is only called after already making such a check;
2111 * and do_anonymous_page can safely check later on).
2112 */
2113 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2114 pte_t *page_table, pte_t orig_pte)
2115 {
2116 int same = 1;
2117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2118 if (sizeof(pte_t) > sizeof(unsigned long)) {
2119 spinlock_t *ptl = pte_lockptr(mm, pmd);
2120 spin_lock(ptl);
2121 same = pte_same(*page_table, orig_pte);
2122 spin_unlock(ptl);
2123 }
2124 #endif
2125 pte_unmap(page_table);
2126 return same;
2127 }
2128
2129 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2130 {
2131 debug_dma_assert_idle(src);
2132
2133 /*
2134 * If the source page was a PFN mapping, we don't have
2135 * a "struct page" for it. We do a best-effort copy by
2136 * just copying from the original user address. If that
2137 * fails, we just zero-fill it. Live with it.
2138 */
2139 if (unlikely(!src)) {
2140 void *kaddr = kmap_atomic(dst);
2141 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2142
2143 /*
2144 * This really shouldn't fail, because the page is there
2145 * in the page tables. But it might just be unreadable,
2146 * in which case we just give up and fill the result with
2147 * zeroes.
2148 */
2149 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2150 clear_page(kaddr);
2151 kunmap_atomic(kaddr);
2152 flush_dcache_page(dst);
2153 } else
2154 copy_user_highpage(dst, src, va, vma);
2155 }
2156
2157 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2158 {
2159 struct file *vm_file = vma->vm_file;
2160
2161 if (vm_file)
2162 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2163
2164 /*
2165 * Special mappings (e.g. VDSO) do not have any file so fake
2166 * a default GFP_KERNEL for them.
2167 */
2168 return GFP_KERNEL;
2169 }
2170
2171 /*
2172 * Notify the address space that the page is about to become writable so that
2173 * it can prohibit this or wait for the page to get into an appropriate state.
2174 *
2175 * We do this without the lock held, so that it can sleep if it needs to.
2176 */
2177 static int do_page_mkwrite(struct vm_fault *vmf)
2178 {
2179 int ret;
2180 struct page *page = vmf->page;
2181 unsigned int old_flags = vmf->flags;
2182
2183 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2184
2185 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2186 /* Restore original flags so that caller is not surprised */
2187 vmf->flags = old_flags;
2188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2189 return ret;
2190 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2191 lock_page(page);
2192 if (!page->mapping) {
2193 unlock_page(page);
2194 return 0; /* retry */
2195 }
2196 ret |= VM_FAULT_LOCKED;
2197 } else
2198 VM_BUG_ON_PAGE(!PageLocked(page), page);
2199 return ret;
2200 }
2201
2202 /*
2203 * Handle dirtying of a page in shared file mapping on a write fault.
2204 *
2205 * The function expects the page to be locked and unlocks it.
2206 */
2207 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2208 struct page *page)
2209 {
2210 struct address_space *mapping;
2211 bool dirtied;
2212 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2213
2214 dirtied = set_page_dirty(page);
2215 VM_BUG_ON_PAGE(PageAnon(page), page);
2216 /*
2217 * Take a local copy of the address_space - page.mapping may be zeroed
2218 * by truncate after unlock_page(). The address_space itself remains
2219 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2220 * release semantics to prevent the compiler from undoing this copying.
2221 */
2222 mapping = page_rmapping(page);
2223 unlock_page(page);
2224
2225 if ((dirtied || page_mkwrite) && mapping) {
2226 /*
2227 * Some device drivers do not set page.mapping
2228 * but still dirty their pages
2229 */
2230 balance_dirty_pages_ratelimited(mapping);
2231 }
2232
2233 if (!page_mkwrite)
2234 file_update_time(vma->vm_file);
2235 }
2236
2237 /*
2238 * Handle write page faults for pages that can be reused in the current vma
2239 *
2240 * This can happen either due to the mapping being with the VM_SHARED flag,
2241 * or due to us being the last reference standing to the page. In either
2242 * case, all we need to do here is to mark the page as writable and update
2243 * any related book-keeping.
2244 */
2245 static inline void wp_page_reuse(struct vm_fault *vmf)
2246 __releases(vmf->ptl)
2247 {
2248 struct vm_area_struct *vma = vmf->vma;
2249 struct page *page = vmf->page;
2250 pte_t entry;
2251 /*
2252 * Clear the pages cpupid information as the existing
2253 * information potentially belongs to a now completely
2254 * unrelated process.
2255 */
2256 if (page)
2257 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2258
2259 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2260 entry = pte_mkyoung(vmf->orig_pte);
2261 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2262 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2263 update_mmu_cache(vma, vmf->address, vmf->pte);
2264 pte_unmap_unlock(vmf->pte, vmf->ptl);
2265 }
2266
2267 /*
2268 * Handle the case of a page which we actually need to copy to a new page.
2269 *
2270 * Called with mmap_sem locked and the old page referenced, but
2271 * without the ptl held.
2272 *
2273 * High level logic flow:
2274 *
2275 * - Allocate a page, copy the content of the old page to the new one.
2276 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2277 * - Take the PTL. If the pte changed, bail out and release the allocated page
2278 * - If the pte is still the way we remember it, update the page table and all
2279 * relevant references. This includes dropping the reference the page-table
2280 * held to the old page, as well as updating the rmap.
2281 * - In any case, unlock the PTL and drop the reference we took to the old page.
2282 */
2283 static int wp_page_copy(struct vm_fault *vmf)
2284 {
2285 struct vm_area_struct *vma = vmf->vma;
2286 struct mm_struct *mm = vma->vm_mm;
2287 struct page *old_page = vmf->page;
2288 struct page *new_page = NULL;
2289 pte_t entry;
2290 int page_copied = 0;
2291 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2292 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2293 struct mem_cgroup *memcg;
2294
2295 if (unlikely(anon_vma_prepare(vma)))
2296 goto oom;
2297
2298 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2299 new_page = alloc_zeroed_user_highpage_movable(vma,
2300 vmf->address);
2301 if (!new_page)
2302 goto oom;
2303 } else {
2304 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2305 vmf->address);
2306 if (!new_page)
2307 goto oom;
2308 cow_user_page(new_page, old_page, vmf->address, vma);
2309 }
2310
2311 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2312 goto oom_free_new;
2313
2314 __SetPageUptodate(new_page);
2315
2316 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2317
2318 /*
2319 * Re-check the pte - we dropped the lock
2320 */
2321 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2322 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2323 if (old_page) {
2324 if (!PageAnon(old_page)) {
2325 dec_mm_counter_fast(mm,
2326 mm_counter_file(old_page));
2327 inc_mm_counter_fast(mm, MM_ANONPAGES);
2328 }
2329 } else {
2330 inc_mm_counter_fast(mm, MM_ANONPAGES);
2331 }
2332 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2333 entry = mk_pte(new_page, vma->vm_page_prot);
2334 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2335 /*
2336 * Clear the pte entry and flush it first, before updating the
2337 * pte with the new entry. This will avoid a race condition
2338 * seen in the presence of one thread doing SMC and another
2339 * thread doing COW.
2340 */
2341 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2342 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2343 mem_cgroup_commit_charge(new_page, memcg, false, false);
2344 lru_cache_add_active_or_unevictable(new_page, vma);
2345 /*
2346 * We call the notify macro here because, when using secondary
2347 * mmu page tables (such as kvm shadow page tables), we want the
2348 * new page to be mapped directly into the secondary page table.
2349 */
2350 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2351 update_mmu_cache(vma, vmf->address, vmf->pte);
2352 if (old_page) {
2353 /*
2354 * Only after switching the pte to the new page may
2355 * we remove the mapcount here. Otherwise another
2356 * process may come and find the rmap count decremented
2357 * before the pte is switched to the new page, and
2358 * "reuse" the old page writing into it while our pte
2359 * here still points into it and can be read by other
2360 * threads.
2361 *
2362 * The critical issue is to order this
2363 * page_remove_rmap with the ptp_clear_flush above.
2364 * Those stores are ordered by (if nothing else,)
2365 * the barrier present in the atomic_add_negative
2366 * in page_remove_rmap.
2367 *
2368 * Then the TLB flush in ptep_clear_flush ensures that
2369 * no process can access the old page before the
2370 * decremented mapcount is visible. And the old page
2371 * cannot be reused until after the decremented
2372 * mapcount is visible. So transitively, TLBs to
2373 * old page will be flushed before it can be reused.
2374 */
2375 page_remove_rmap(old_page, false);
2376 }
2377
2378 /* Free the old page.. */
2379 new_page = old_page;
2380 page_copied = 1;
2381 } else {
2382 mem_cgroup_cancel_charge(new_page, memcg, false);
2383 }
2384
2385 if (new_page)
2386 put_page(new_page);
2387
2388 pte_unmap_unlock(vmf->pte, vmf->ptl);
2389 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2390 if (old_page) {
2391 /*
2392 * Don't let another task, with possibly unlocked vma,
2393 * keep the mlocked page.
2394 */
2395 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2396 lock_page(old_page); /* LRU manipulation */
2397 if (PageMlocked(old_page))
2398 munlock_vma_page(old_page);
2399 unlock_page(old_page);
2400 }
2401 put_page(old_page);
2402 }
2403 return page_copied ? VM_FAULT_WRITE : 0;
2404 oom_free_new:
2405 put_page(new_page);
2406 oom:
2407 if (old_page)
2408 put_page(old_page);
2409 return VM_FAULT_OOM;
2410 }
2411
2412 /**
2413 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2414 * writeable once the page is prepared
2415 *
2416 * @vmf: structure describing the fault
2417 *
2418 * This function handles all that is needed to finish a write page fault in a
2419 * shared mapping due to PTE being read-only once the mapped page is prepared.
2420 * It handles locking of PTE and modifying it. The function returns
2421 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2422 * lock.
2423 *
2424 * The function expects the page to be locked or other protection against
2425 * concurrent faults / writeback (such as DAX radix tree locks).
2426 */
2427 int finish_mkwrite_fault(struct vm_fault *vmf)
2428 {
2429 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2430 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2431 &vmf->ptl);
2432 /*
2433 * We might have raced with another page fault while we released the
2434 * pte_offset_map_lock.
2435 */
2436 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2437 pte_unmap_unlock(vmf->pte, vmf->ptl);
2438 return VM_FAULT_NOPAGE;
2439 }
2440 wp_page_reuse(vmf);
2441 return 0;
2442 }
2443
2444 /*
2445 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2446 * mapping
2447 */
2448 static int wp_pfn_shared(struct vm_fault *vmf)
2449 {
2450 struct vm_area_struct *vma = vmf->vma;
2451
2452 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2453 int ret;
2454
2455 pte_unmap_unlock(vmf->pte, vmf->ptl);
2456 vmf->flags |= FAULT_FLAG_MKWRITE;
2457 ret = vma->vm_ops->pfn_mkwrite(vmf);
2458 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2459 return ret;
2460 return finish_mkwrite_fault(vmf);
2461 }
2462 wp_page_reuse(vmf);
2463 return VM_FAULT_WRITE;
2464 }
2465
2466 static int wp_page_shared(struct vm_fault *vmf)
2467 __releases(vmf->ptl)
2468 {
2469 struct vm_area_struct *vma = vmf->vma;
2470
2471 get_page(vmf->page);
2472
2473 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2474 int tmp;
2475
2476 pte_unmap_unlock(vmf->pte, vmf->ptl);
2477 tmp = do_page_mkwrite(vmf);
2478 if (unlikely(!tmp || (tmp &
2479 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2480 put_page(vmf->page);
2481 return tmp;
2482 }
2483 tmp = finish_mkwrite_fault(vmf);
2484 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2485 unlock_page(vmf->page);
2486 put_page(vmf->page);
2487 return tmp;
2488 }
2489 } else {
2490 wp_page_reuse(vmf);
2491 lock_page(vmf->page);
2492 }
2493 fault_dirty_shared_page(vma, vmf->page);
2494 put_page(vmf->page);
2495
2496 return VM_FAULT_WRITE;
2497 }
2498
2499 /*
2500 * This routine handles present pages, when users try to write
2501 * to a shared page. It is done by copying the page to a new address
2502 * and decrementing the shared-page counter for the old page.
2503 *
2504 * Note that this routine assumes that the protection checks have been
2505 * done by the caller (the low-level page fault routine in most cases).
2506 * Thus we can safely just mark it writable once we've done any necessary
2507 * COW.
2508 *
2509 * We also mark the page dirty at this point even though the page will
2510 * change only once the write actually happens. This avoids a few races,
2511 * and potentially makes it more efficient.
2512 *
2513 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514 * but allow concurrent faults), with pte both mapped and locked.
2515 * We return with mmap_sem still held, but pte unmapped and unlocked.
2516 */
2517 static int do_wp_page(struct vm_fault *vmf)
2518 __releases(vmf->ptl)
2519 {
2520 struct vm_area_struct *vma = vmf->vma;
2521
2522 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2523 if (!vmf->page) {
2524 /*
2525 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2526 * VM_PFNMAP VMA.
2527 *
2528 * We should not cow pages in a shared writeable mapping.
2529 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2530 */
2531 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2532 (VM_WRITE|VM_SHARED))
2533 return wp_pfn_shared(vmf);
2534
2535 pte_unmap_unlock(vmf->pte, vmf->ptl);
2536 return wp_page_copy(vmf);
2537 }
2538
2539 /*
2540 * Take out anonymous pages first, anonymous shared vmas are
2541 * not dirty accountable.
2542 */
2543 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2544 int total_mapcount;
2545 if (!trylock_page(vmf->page)) {
2546 get_page(vmf->page);
2547 pte_unmap_unlock(vmf->pte, vmf->ptl);
2548 lock_page(vmf->page);
2549 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2550 vmf->address, &vmf->ptl);
2551 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2552 unlock_page(vmf->page);
2553 pte_unmap_unlock(vmf->pte, vmf->ptl);
2554 put_page(vmf->page);
2555 return 0;
2556 }
2557 put_page(vmf->page);
2558 }
2559 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2560 if (total_mapcount == 1) {
2561 /*
2562 * The page is all ours. Move it to
2563 * our anon_vma so the rmap code will
2564 * not search our parent or siblings.
2565 * Protected against the rmap code by
2566 * the page lock.
2567 */
2568 page_move_anon_rmap(vmf->page, vma);
2569 }
2570 unlock_page(vmf->page);
2571 wp_page_reuse(vmf);
2572 return VM_FAULT_WRITE;
2573 }
2574 unlock_page(vmf->page);
2575 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2576 (VM_WRITE|VM_SHARED))) {
2577 return wp_page_shared(vmf);
2578 }
2579
2580 /*
2581 * Ok, we need to copy. Oh, well..
2582 */
2583 get_page(vmf->page);
2584
2585 pte_unmap_unlock(vmf->pte, vmf->ptl);
2586 return wp_page_copy(vmf);
2587 }
2588
2589 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2590 unsigned long start_addr, unsigned long end_addr,
2591 struct zap_details *details)
2592 {
2593 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2594 }
2595
2596 static inline void unmap_mapping_range_tree(struct rb_root *root,
2597 struct zap_details *details)
2598 {
2599 struct vm_area_struct *vma;
2600 pgoff_t vba, vea, zba, zea;
2601
2602 vma_interval_tree_foreach(vma, root,
2603 details->first_index, details->last_index) {
2604
2605 vba = vma->vm_pgoff;
2606 vea = vba + vma_pages(vma) - 1;
2607 zba = details->first_index;
2608 if (zba < vba)
2609 zba = vba;
2610 zea = details->last_index;
2611 if (zea > vea)
2612 zea = vea;
2613
2614 unmap_mapping_range_vma(vma,
2615 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2616 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2617 details);
2618 }
2619 }
2620
2621 /**
2622 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2623 * address_space corresponding to the specified page range in the underlying
2624 * file.
2625 *
2626 * @mapping: the address space containing mmaps to be unmapped.
2627 * @holebegin: byte in first page to unmap, relative to the start of
2628 * the underlying file. This will be rounded down to a PAGE_SIZE
2629 * boundary. Note that this is different from truncate_pagecache(), which
2630 * must keep the partial page. In contrast, we must get rid of
2631 * partial pages.
2632 * @holelen: size of prospective hole in bytes. This will be rounded
2633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2634 * end of the file.
2635 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2636 * but 0 when invalidating pagecache, don't throw away private data.
2637 */
2638 void unmap_mapping_range(struct address_space *mapping,
2639 loff_t const holebegin, loff_t const holelen, int even_cows)
2640 {
2641 struct zap_details details = { };
2642 pgoff_t hba = holebegin >> PAGE_SHIFT;
2643 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2644
2645 /* Check for overflow. */
2646 if (sizeof(holelen) > sizeof(hlen)) {
2647 long long holeend =
2648 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2649 if (holeend & ~(long long)ULONG_MAX)
2650 hlen = ULONG_MAX - hba + 1;
2651 }
2652
2653 details.check_mapping = even_cows ? NULL : mapping;
2654 details.first_index = hba;
2655 details.last_index = hba + hlen - 1;
2656 if (details.last_index < details.first_index)
2657 details.last_index = ULONG_MAX;
2658
2659 i_mmap_lock_write(mapping);
2660 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2661 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2662 i_mmap_unlock_write(mapping);
2663 }
2664 EXPORT_SYMBOL(unmap_mapping_range);
2665
2666 /*
2667 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2668 * but allow concurrent faults), and pte mapped but not yet locked.
2669 * We return with pte unmapped and unlocked.
2670 *
2671 * We return with the mmap_sem locked or unlocked in the same cases
2672 * as does filemap_fault().
2673 */
2674 int do_swap_page(struct vm_fault *vmf)
2675 {
2676 struct vm_area_struct *vma = vmf->vma;
2677 struct page *page, *swapcache;
2678 struct mem_cgroup *memcg;
2679 swp_entry_t entry;
2680 pte_t pte;
2681 int locked;
2682 int exclusive = 0;
2683 int ret = 0;
2684
2685 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2686 goto out;
2687
2688 entry = pte_to_swp_entry(vmf->orig_pte);
2689 if (unlikely(non_swap_entry(entry))) {
2690 if (is_migration_entry(entry)) {
2691 migration_entry_wait(vma->vm_mm, vmf->pmd,
2692 vmf->address);
2693 } else if (is_hwpoison_entry(entry)) {
2694 ret = VM_FAULT_HWPOISON;
2695 } else {
2696 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2697 ret = VM_FAULT_SIGBUS;
2698 }
2699 goto out;
2700 }
2701 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2702 page = lookup_swap_cache(entry);
2703 if (!page) {
2704 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2705 vmf->address);
2706 if (!page) {
2707 /*
2708 * Back out if somebody else faulted in this pte
2709 * while we released the pte lock.
2710 */
2711 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2712 vmf->address, &vmf->ptl);
2713 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2714 ret = VM_FAULT_OOM;
2715 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2716 goto unlock;
2717 }
2718
2719 /* Had to read the page from swap area: Major fault */
2720 ret = VM_FAULT_MAJOR;
2721 count_vm_event(PGMAJFAULT);
2722 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2723 } else if (PageHWPoison(page)) {
2724 /*
2725 * hwpoisoned dirty swapcache pages are kept for killing
2726 * owner processes (which may be unknown at hwpoison time)
2727 */
2728 ret = VM_FAULT_HWPOISON;
2729 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2730 swapcache = page;
2731 goto out_release;
2732 }
2733
2734 swapcache = page;
2735 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2736
2737 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2738 if (!locked) {
2739 ret |= VM_FAULT_RETRY;
2740 goto out_release;
2741 }
2742
2743 /*
2744 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2745 * release the swapcache from under us. The page pin, and pte_same
2746 * test below, are not enough to exclude that. Even if it is still
2747 * swapcache, we need to check that the page's swap has not changed.
2748 */
2749 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2750 goto out_page;
2751
2752 page = ksm_might_need_to_copy(page, vma, vmf->address);
2753 if (unlikely(!page)) {
2754 ret = VM_FAULT_OOM;
2755 page = swapcache;
2756 goto out_page;
2757 }
2758
2759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2760 &memcg, false)) {
2761 ret = VM_FAULT_OOM;
2762 goto out_page;
2763 }
2764
2765 /*
2766 * Back out if somebody else already faulted in this pte.
2767 */
2768 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2769 &vmf->ptl);
2770 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2771 goto out_nomap;
2772
2773 if (unlikely(!PageUptodate(page))) {
2774 ret = VM_FAULT_SIGBUS;
2775 goto out_nomap;
2776 }
2777
2778 /*
2779 * The page isn't present yet, go ahead with the fault.
2780 *
2781 * Be careful about the sequence of operations here.
2782 * To get its accounting right, reuse_swap_page() must be called
2783 * while the page is counted on swap but not yet in mapcount i.e.
2784 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2785 * must be called after the swap_free(), or it will never succeed.
2786 */
2787
2788 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2789 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2790 pte = mk_pte(page, vma->vm_page_prot);
2791 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2792 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2793 vmf->flags &= ~FAULT_FLAG_WRITE;
2794 ret |= VM_FAULT_WRITE;
2795 exclusive = RMAP_EXCLUSIVE;
2796 }
2797 flush_icache_page(vma, page);
2798 if (pte_swp_soft_dirty(vmf->orig_pte))
2799 pte = pte_mksoft_dirty(pte);
2800 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2801 vmf->orig_pte = pte;
2802 if (page == swapcache) {
2803 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2804 mem_cgroup_commit_charge(page, memcg, true, false);
2805 activate_page(page);
2806 } else { /* ksm created a completely new copy */
2807 page_add_new_anon_rmap(page, vma, vmf->address, false);
2808 mem_cgroup_commit_charge(page, memcg, false, false);
2809 lru_cache_add_active_or_unevictable(page, vma);
2810 }
2811
2812 swap_free(entry);
2813 if (mem_cgroup_swap_full(page) ||
2814 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2815 try_to_free_swap(page);
2816 unlock_page(page);
2817 if (page != swapcache) {
2818 /*
2819 * Hold the lock to avoid the swap entry to be reused
2820 * until we take the PT lock for the pte_same() check
2821 * (to avoid false positives from pte_same). For
2822 * further safety release the lock after the swap_free
2823 * so that the swap count won't change under a
2824 * parallel locked swapcache.
2825 */
2826 unlock_page(swapcache);
2827 put_page(swapcache);
2828 }
2829
2830 if (vmf->flags & FAULT_FLAG_WRITE) {
2831 ret |= do_wp_page(vmf);
2832 if (ret & VM_FAULT_ERROR)
2833 ret &= VM_FAULT_ERROR;
2834 goto out;
2835 }
2836
2837 /* No need to invalidate - it was non-present before */
2838 update_mmu_cache(vma, vmf->address, vmf->pte);
2839 unlock:
2840 pte_unmap_unlock(vmf->pte, vmf->ptl);
2841 out:
2842 return ret;
2843 out_nomap:
2844 mem_cgroup_cancel_charge(page, memcg, false);
2845 pte_unmap_unlock(vmf->pte, vmf->ptl);
2846 out_page:
2847 unlock_page(page);
2848 out_release:
2849 put_page(page);
2850 if (page != swapcache) {
2851 unlock_page(swapcache);
2852 put_page(swapcache);
2853 }
2854 return ret;
2855 }
2856
2857 /*
2858 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2859 * but allow concurrent faults), and pte mapped but not yet locked.
2860 * We return with mmap_sem still held, but pte unmapped and unlocked.
2861 */
2862 static int do_anonymous_page(struct vm_fault *vmf)
2863 {
2864 struct vm_area_struct *vma = vmf->vma;
2865 struct mem_cgroup *memcg;
2866 struct page *page;
2867 pte_t entry;
2868
2869 /* File mapping without ->vm_ops ? */
2870 if (vma->vm_flags & VM_SHARED)
2871 return VM_FAULT_SIGBUS;
2872
2873 /*
2874 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2875 * pte_offset_map() on pmds where a huge pmd might be created
2876 * from a different thread.
2877 *
2878 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2879 * parallel threads are excluded by other means.
2880 *
2881 * Here we only have down_read(mmap_sem).
2882 */
2883 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2884 return VM_FAULT_OOM;
2885
2886 /* See the comment in pte_alloc_one_map() */
2887 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2888 return 0;
2889
2890 /* Use the zero-page for reads */
2891 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2892 !mm_forbids_zeropage(vma->vm_mm)) {
2893 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2894 vma->vm_page_prot));
2895 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2896 vmf->address, &vmf->ptl);
2897 if (!pte_none(*vmf->pte))
2898 goto unlock;
2899 /* Deliver the page fault to userland, check inside PT lock */
2900 if (userfaultfd_missing(vma)) {
2901 pte_unmap_unlock(vmf->pte, vmf->ptl);
2902 return handle_userfault(vmf, VM_UFFD_MISSING);
2903 }
2904 goto setpte;
2905 }
2906
2907 /* Allocate our own private page. */
2908 if (unlikely(anon_vma_prepare(vma)))
2909 goto oom;
2910 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2911 if (!page)
2912 goto oom;
2913
2914 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2915 goto oom_free_page;
2916
2917 /*
2918 * The memory barrier inside __SetPageUptodate makes sure that
2919 * preceeding stores to the page contents become visible before
2920 * the set_pte_at() write.
2921 */
2922 __SetPageUptodate(page);
2923
2924 entry = mk_pte(page, vma->vm_page_prot);
2925 if (vma->vm_flags & VM_WRITE)
2926 entry = pte_mkwrite(pte_mkdirty(entry));
2927
2928 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2929 &vmf->ptl);
2930 if (!pte_none(*vmf->pte))
2931 goto release;
2932
2933 /* Deliver the page fault to userland, check inside PT lock */
2934 if (userfaultfd_missing(vma)) {
2935 pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 mem_cgroup_cancel_charge(page, memcg, false);
2937 put_page(page);
2938 return handle_userfault(vmf, VM_UFFD_MISSING);
2939 }
2940
2941 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2942 page_add_new_anon_rmap(page, vma, vmf->address, false);
2943 mem_cgroup_commit_charge(page, memcg, false, false);
2944 lru_cache_add_active_or_unevictable(page, vma);
2945 setpte:
2946 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2947
2948 /* No need to invalidate - it was non-present before */
2949 update_mmu_cache(vma, vmf->address, vmf->pte);
2950 unlock:
2951 pte_unmap_unlock(vmf->pte, vmf->ptl);
2952 return 0;
2953 release:
2954 mem_cgroup_cancel_charge(page, memcg, false);
2955 put_page(page);
2956 goto unlock;
2957 oom_free_page:
2958 put_page(page);
2959 oom:
2960 return VM_FAULT_OOM;
2961 }
2962
2963 /*
2964 * The mmap_sem must have been held on entry, and may have been
2965 * released depending on flags and vma->vm_ops->fault() return value.
2966 * See filemap_fault() and __lock_page_retry().
2967 */
2968 static int __do_fault(struct vm_fault *vmf)
2969 {
2970 struct vm_area_struct *vma = vmf->vma;
2971 int ret;
2972
2973 ret = vma->vm_ops->fault(vmf);
2974 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2975 VM_FAULT_DONE_COW)))
2976 return ret;
2977
2978 if (unlikely(PageHWPoison(vmf->page))) {
2979 if (ret & VM_FAULT_LOCKED)
2980 unlock_page(vmf->page);
2981 put_page(vmf->page);
2982 vmf->page = NULL;
2983 return VM_FAULT_HWPOISON;
2984 }
2985
2986 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2987 lock_page(vmf->page);
2988 else
2989 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2990
2991 return ret;
2992 }
2993
2994 /*
2995 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2996 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2997 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2998 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2999 */
3000 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3001 {
3002 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3003 }
3004
3005 static int pte_alloc_one_map(struct vm_fault *vmf)
3006 {
3007 struct vm_area_struct *vma = vmf->vma;
3008
3009 if (!pmd_none(*vmf->pmd))
3010 goto map_pte;
3011 if (vmf->prealloc_pte) {
3012 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3013 if (unlikely(!pmd_none(*vmf->pmd))) {
3014 spin_unlock(vmf->ptl);
3015 goto map_pte;
3016 }
3017
3018 atomic_long_inc(&vma->vm_mm->nr_ptes);
3019 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3020 spin_unlock(vmf->ptl);
3021 vmf->prealloc_pte = NULL;
3022 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3023 return VM_FAULT_OOM;
3024 }
3025 map_pte:
3026 /*
3027 * If a huge pmd materialized under us just retry later. Use
3028 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3029 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3030 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3031 * running immediately after a huge pmd fault in a different thread of
3032 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3033 * All we have to ensure is that it is a regular pmd that we can walk
3034 * with pte_offset_map() and we can do that through an atomic read in
3035 * C, which is what pmd_trans_unstable() provides.
3036 */
3037 if (pmd_devmap_trans_unstable(vmf->pmd))
3038 return VM_FAULT_NOPAGE;
3039
3040 /*
3041 * At this point we know that our vmf->pmd points to a page of ptes
3042 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3043 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3044 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3045 * be valid and we will re-check to make sure the vmf->pte isn't
3046 * pte_none() under vmf->ptl protection when we return to
3047 * alloc_set_pte().
3048 */
3049 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3050 &vmf->ptl);
3051 return 0;
3052 }
3053
3054 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3055
3056 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3057 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3058 unsigned long haddr)
3059 {
3060 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3061 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3062 return false;
3063 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3064 return false;
3065 return true;
3066 }
3067
3068 static void deposit_prealloc_pte(struct vm_fault *vmf)
3069 {
3070 struct vm_area_struct *vma = vmf->vma;
3071
3072 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3073 /*
3074 * We are going to consume the prealloc table,
3075 * count that as nr_ptes.
3076 */
3077 atomic_long_inc(&vma->vm_mm->nr_ptes);
3078 vmf->prealloc_pte = NULL;
3079 }
3080
3081 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3082 {
3083 struct vm_area_struct *vma = vmf->vma;
3084 bool write = vmf->flags & FAULT_FLAG_WRITE;
3085 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3086 pmd_t entry;
3087 int i, ret;
3088
3089 if (!transhuge_vma_suitable(vma, haddr))
3090 return VM_FAULT_FALLBACK;
3091
3092 ret = VM_FAULT_FALLBACK;
3093 page = compound_head(page);
3094
3095 /*
3096 * Archs like ppc64 need additonal space to store information
3097 * related to pte entry. Use the preallocated table for that.
3098 */
3099 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3100 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3101 if (!vmf->prealloc_pte)
3102 return VM_FAULT_OOM;
3103 smp_wmb(); /* See comment in __pte_alloc() */
3104 }
3105
3106 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3107 if (unlikely(!pmd_none(*vmf->pmd)))
3108 goto out;
3109
3110 for (i = 0; i < HPAGE_PMD_NR; i++)
3111 flush_icache_page(vma, page + i);
3112
3113 entry = mk_huge_pmd(page, vma->vm_page_prot);
3114 if (write)
3115 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3116
3117 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3118 page_add_file_rmap(page, true);
3119 /*
3120 * deposit and withdraw with pmd lock held
3121 */
3122 if (arch_needs_pgtable_deposit())
3123 deposit_prealloc_pte(vmf);
3124
3125 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3126
3127 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3128
3129 /* fault is handled */
3130 ret = 0;
3131 count_vm_event(THP_FILE_MAPPED);
3132 out:
3133 spin_unlock(vmf->ptl);
3134 return ret;
3135 }
3136 #else
3137 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3138 {
3139 BUILD_BUG();
3140 return 0;
3141 }
3142 #endif
3143
3144 /**
3145 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3146 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3147 *
3148 * @vmf: fault environment
3149 * @memcg: memcg to charge page (only for private mappings)
3150 * @page: page to map
3151 *
3152 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3153 * return.
3154 *
3155 * Target users are page handler itself and implementations of
3156 * vm_ops->map_pages.
3157 */
3158 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3159 struct page *page)
3160 {
3161 struct vm_area_struct *vma = vmf->vma;
3162 bool write = vmf->flags & FAULT_FLAG_WRITE;
3163 pte_t entry;
3164 int ret;
3165
3166 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3167 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3168 /* THP on COW? */
3169 VM_BUG_ON_PAGE(memcg, page);
3170
3171 ret = do_set_pmd(vmf, page);
3172 if (ret != VM_FAULT_FALLBACK)
3173 return ret;
3174 }
3175
3176 if (!vmf->pte) {
3177 ret = pte_alloc_one_map(vmf);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 /* Re-check under ptl */
3183 if (unlikely(!pte_none(*vmf->pte)))
3184 return VM_FAULT_NOPAGE;
3185
3186 flush_icache_page(vma, page);
3187 entry = mk_pte(page, vma->vm_page_prot);
3188 if (write)
3189 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3190 /* copy-on-write page */
3191 if (write && !(vma->vm_flags & VM_SHARED)) {
3192 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3193 page_add_new_anon_rmap(page, vma, vmf->address, false);
3194 mem_cgroup_commit_charge(page, memcg, false, false);
3195 lru_cache_add_active_or_unevictable(page, vma);
3196 } else {
3197 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3198 page_add_file_rmap(page, false);
3199 }
3200 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3201
3202 /* no need to invalidate: a not-present page won't be cached */
3203 update_mmu_cache(vma, vmf->address, vmf->pte);
3204
3205 return 0;
3206 }
3207
3208
3209 /**
3210 * finish_fault - finish page fault once we have prepared the page to fault
3211 *
3212 * @vmf: structure describing the fault
3213 *
3214 * This function handles all that is needed to finish a page fault once the
3215 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3216 * given page, adds reverse page mapping, handles memcg charges and LRU
3217 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3218 * error.
3219 *
3220 * The function expects the page to be locked and on success it consumes a
3221 * reference of a page being mapped (for the PTE which maps it).
3222 */
3223 int finish_fault(struct vm_fault *vmf)
3224 {
3225 struct page *page;
3226 int ret;
3227
3228 /* Did we COW the page? */
3229 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3230 !(vmf->vma->vm_flags & VM_SHARED))
3231 page = vmf->cow_page;
3232 else
3233 page = vmf->page;
3234 ret = alloc_set_pte(vmf, vmf->memcg, page);
3235 if (vmf->pte)
3236 pte_unmap_unlock(vmf->pte, vmf->ptl);
3237 return ret;
3238 }
3239
3240 static unsigned long fault_around_bytes __read_mostly =
3241 rounddown_pow_of_two(65536);
3242
3243 #ifdef CONFIG_DEBUG_FS
3244 static int fault_around_bytes_get(void *data, u64 *val)
3245 {
3246 *val = fault_around_bytes;
3247 return 0;
3248 }
3249
3250 /*
3251 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3252 * rounded down to nearest page order. It's what do_fault_around() expects to
3253 * see.
3254 */
3255 static int fault_around_bytes_set(void *data, u64 val)
3256 {
3257 if (val / PAGE_SIZE > PTRS_PER_PTE)
3258 return -EINVAL;
3259 if (val > PAGE_SIZE)
3260 fault_around_bytes = rounddown_pow_of_two(val);
3261 else
3262 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3263 return 0;
3264 }
3265 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3266 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3267
3268 static int __init fault_around_debugfs(void)
3269 {
3270 void *ret;
3271
3272 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3273 &fault_around_bytes_fops);
3274 if (!ret)
3275 pr_warn("Failed to create fault_around_bytes in debugfs");
3276 return 0;
3277 }
3278 late_initcall(fault_around_debugfs);
3279 #endif
3280
3281 /*
3282 * do_fault_around() tries to map few pages around the fault address. The hope
3283 * is that the pages will be needed soon and this will lower the number of
3284 * faults to handle.
3285 *
3286 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3287 * not ready to be mapped: not up-to-date, locked, etc.
3288 *
3289 * This function is called with the page table lock taken. In the split ptlock
3290 * case the page table lock only protects only those entries which belong to
3291 * the page table corresponding to the fault address.
3292 *
3293 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3294 * only once.
3295 *
3296 * fault_around_pages() defines how many pages we'll try to map.
3297 * do_fault_around() expects it to return a power of two less than or equal to
3298 * PTRS_PER_PTE.
3299 *
3300 * The virtual address of the area that we map is naturally aligned to the
3301 * fault_around_pages() value (and therefore to page order). This way it's
3302 * easier to guarantee that we don't cross page table boundaries.
3303 */
3304 static int do_fault_around(struct vm_fault *vmf)
3305 {
3306 unsigned long address = vmf->address, nr_pages, mask;
3307 pgoff_t start_pgoff = vmf->pgoff;
3308 pgoff_t end_pgoff;
3309 int off, ret = 0;
3310
3311 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3312 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3313
3314 vmf->address = max(address & mask, vmf->vma->vm_start);
3315 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3316 start_pgoff -= off;
3317
3318 /*
3319 * end_pgoff is either end of page table or end of vma
3320 * or fault_around_pages() from start_pgoff, depending what is nearest.
3321 */
3322 end_pgoff = start_pgoff -
3323 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3324 PTRS_PER_PTE - 1;
3325 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3326 start_pgoff + nr_pages - 1);
3327
3328 if (pmd_none(*vmf->pmd)) {
3329 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3330 vmf->address);
3331 if (!vmf->prealloc_pte)
3332 goto out;
3333 smp_wmb(); /* See comment in __pte_alloc() */
3334 }
3335
3336 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3337
3338 /* Huge page is mapped? Page fault is solved */
3339 if (pmd_trans_huge(*vmf->pmd)) {
3340 ret = VM_FAULT_NOPAGE;
3341 goto out;
3342 }
3343
3344 /* ->map_pages() haven't done anything useful. Cold page cache? */
3345 if (!vmf->pte)
3346 goto out;
3347
3348 /* check if the page fault is solved */
3349 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3350 if (!pte_none(*vmf->pte))
3351 ret = VM_FAULT_NOPAGE;
3352 pte_unmap_unlock(vmf->pte, vmf->ptl);
3353 out:
3354 vmf->address = address;
3355 vmf->pte = NULL;
3356 return ret;
3357 }
3358
3359 static int do_read_fault(struct vm_fault *vmf)
3360 {
3361 struct vm_area_struct *vma = vmf->vma;
3362 int ret = 0;
3363
3364 /*
3365 * Let's call ->map_pages() first and use ->fault() as fallback
3366 * if page by the offset is not ready to be mapped (cold cache or
3367 * something).
3368 */
3369 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3370 ret = do_fault_around(vmf);
3371 if (ret)
3372 return ret;
3373 }
3374
3375 ret = __do_fault(vmf);
3376 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3377 return ret;
3378
3379 ret |= finish_fault(vmf);
3380 unlock_page(vmf->page);
3381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3382 put_page(vmf->page);
3383 return ret;
3384 }
3385
3386 static int do_cow_fault(struct vm_fault *vmf)
3387 {
3388 struct vm_area_struct *vma = vmf->vma;
3389 int ret;
3390
3391 if (unlikely(anon_vma_prepare(vma)))
3392 return VM_FAULT_OOM;
3393
3394 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3395 if (!vmf->cow_page)
3396 return VM_FAULT_OOM;
3397
3398 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3399 &vmf->memcg, false)) {
3400 put_page(vmf->cow_page);
3401 return VM_FAULT_OOM;
3402 }
3403
3404 ret = __do_fault(vmf);
3405 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3406 goto uncharge_out;
3407 if (ret & VM_FAULT_DONE_COW)
3408 return ret;
3409
3410 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3411 __SetPageUptodate(vmf->cow_page);
3412
3413 ret |= finish_fault(vmf);
3414 unlock_page(vmf->page);
3415 put_page(vmf->page);
3416 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3417 goto uncharge_out;
3418 return ret;
3419 uncharge_out:
3420 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3421 put_page(vmf->cow_page);
3422 return ret;
3423 }
3424
3425 static int do_shared_fault(struct vm_fault *vmf)
3426 {
3427 struct vm_area_struct *vma = vmf->vma;
3428 int ret, tmp;
3429
3430 ret = __do_fault(vmf);
3431 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432 return ret;
3433
3434 /*
3435 * Check if the backing address space wants to know that the page is
3436 * about to become writable
3437 */
3438 if (vma->vm_ops->page_mkwrite) {
3439 unlock_page(vmf->page);
3440 tmp = do_page_mkwrite(vmf);
3441 if (unlikely(!tmp ||
3442 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3443 put_page(vmf->page);
3444 return tmp;
3445 }
3446 }
3447
3448 ret |= finish_fault(vmf);
3449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3450 VM_FAULT_RETRY))) {
3451 unlock_page(vmf->page);
3452 put_page(vmf->page);
3453 return ret;
3454 }
3455
3456 fault_dirty_shared_page(vma, vmf->page);
3457 return ret;
3458 }
3459
3460 /*
3461 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3462 * but allow concurrent faults).
3463 * The mmap_sem may have been released depending on flags and our
3464 * return value. See filemap_fault() and __lock_page_or_retry().
3465 */
3466 static int do_fault(struct vm_fault *vmf)
3467 {
3468 struct vm_area_struct *vma = vmf->vma;
3469 int ret;
3470
3471 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3472 if (!vma->vm_ops->fault)
3473 ret = VM_FAULT_SIGBUS;
3474 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3475 ret = do_read_fault(vmf);
3476 else if (!(vma->vm_flags & VM_SHARED))
3477 ret = do_cow_fault(vmf);
3478 else
3479 ret = do_shared_fault(vmf);
3480
3481 /* preallocated pagetable is unused: free it */
3482 if (vmf->prealloc_pte) {
3483 pte_free(vma->vm_mm, vmf->prealloc_pte);
3484 vmf->prealloc_pte = NULL;
3485 }
3486 return ret;
3487 }
3488
3489 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3490 unsigned long addr, int page_nid,
3491 int *flags)
3492 {
3493 get_page(page);
3494
3495 count_vm_numa_event(NUMA_HINT_FAULTS);
3496 if (page_nid == numa_node_id()) {
3497 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3498 *flags |= TNF_FAULT_LOCAL;
3499 }
3500
3501 return mpol_misplaced(page, vma, addr);
3502 }
3503
3504 static int do_numa_page(struct vm_fault *vmf)
3505 {
3506 struct vm_area_struct *vma = vmf->vma;
3507 struct page *page = NULL;
3508 int page_nid = -1;
3509 int last_cpupid;
3510 int target_nid;
3511 bool migrated = false;
3512 pte_t pte;
3513 bool was_writable = pte_savedwrite(vmf->orig_pte);
3514 int flags = 0;
3515
3516 /*
3517 * The "pte" at this point cannot be used safely without
3518 * validation through pte_unmap_same(). It's of NUMA type but
3519 * the pfn may be screwed if the read is non atomic.
3520 */
3521 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3522 spin_lock(vmf->ptl);
3523 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3524 pte_unmap_unlock(vmf->pte, vmf->ptl);
3525 goto out;
3526 }
3527
3528 /*
3529 * Make it present again, Depending on how arch implementes non
3530 * accessible ptes, some can allow access by kernel mode.
3531 */
3532 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3533 pte = pte_modify(pte, vma->vm_page_prot);
3534 pte = pte_mkyoung(pte);
3535 if (was_writable)
3536 pte = pte_mkwrite(pte);
3537 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3538 update_mmu_cache(vma, vmf->address, vmf->pte);
3539
3540 page = vm_normal_page(vma, vmf->address, pte);
3541 if (!page) {
3542 pte_unmap_unlock(vmf->pte, vmf->ptl);
3543 return 0;
3544 }
3545
3546 /* TODO: handle PTE-mapped THP */
3547 if (PageCompound(page)) {
3548 pte_unmap_unlock(vmf->pte, vmf->ptl);
3549 return 0;
3550 }
3551
3552 /*
3553 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3554 * much anyway since they can be in shared cache state. This misses
3555 * the case where a mapping is writable but the process never writes
3556 * to it but pte_write gets cleared during protection updates and
3557 * pte_dirty has unpredictable behaviour between PTE scan updates,
3558 * background writeback, dirty balancing and application behaviour.
3559 */
3560 if (!pte_write(pte))
3561 flags |= TNF_NO_GROUP;
3562
3563 /*
3564 * Flag if the page is shared between multiple address spaces. This
3565 * is later used when determining whether to group tasks together
3566 */
3567 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3568 flags |= TNF_SHARED;
3569
3570 last_cpupid = page_cpupid_last(page);
3571 page_nid = page_to_nid(page);
3572 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3573 &flags);
3574 pte_unmap_unlock(vmf->pte, vmf->ptl);
3575 if (target_nid == -1) {
3576 put_page(page);
3577 goto out;
3578 }
3579
3580 /* Migrate to the requested node */
3581 migrated = migrate_misplaced_page(page, vma, target_nid);
3582 if (migrated) {
3583 page_nid = target_nid;
3584 flags |= TNF_MIGRATED;
3585 } else
3586 flags |= TNF_MIGRATE_FAIL;
3587
3588 out:
3589 if (page_nid != -1)
3590 task_numa_fault(last_cpupid, page_nid, 1, flags);
3591 return 0;
3592 }
3593
3594 static int create_huge_pmd(struct vm_fault *vmf)
3595 {
3596 if (vma_is_anonymous(vmf->vma))
3597 return do_huge_pmd_anonymous_page(vmf);
3598 if (vmf->vma->vm_ops->huge_fault)
3599 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3600 return VM_FAULT_FALLBACK;
3601 }
3602
3603 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3604 {
3605 if (vma_is_anonymous(vmf->vma))
3606 return do_huge_pmd_wp_page(vmf, orig_pmd);
3607 if (vmf->vma->vm_ops->huge_fault)
3608 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3609
3610 /* COW handled on pte level: split pmd */
3611 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3612 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3613
3614 return VM_FAULT_FALLBACK;
3615 }
3616
3617 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3618 {
3619 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3620 }
3621
3622 static int create_huge_pud(struct vm_fault *vmf)
3623 {
3624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3625 /* No support for anonymous transparent PUD pages yet */
3626 if (vma_is_anonymous(vmf->vma))
3627 return VM_FAULT_FALLBACK;
3628 if (vmf->vma->vm_ops->huge_fault)
3629 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3631 return VM_FAULT_FALLBACK;
3632 }
3633
3634 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3635 {
3636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3637 /* No support for anonymous transparent PUD pages yet */
3638 if (vma_is_anonymous(vmf->vma))
3639 return VM_FAULT_FALLBACK;
3640 if (vmf->vma->vm_ops->huge_fault)
3641 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3643 return VM_FAULT_FALLBACK;
3644 }
3645
3646 /*
3647 * These routines also need to handle stuff like marking pages dirty
3648 * and/or accessed for architectures that don't do it in hardware (most
3649 * RISC architectures). The early dirtying is also good on the i386.
3650 *
3651 * There is also a hook called "update_mmu_cache()" that architectures
3652 * with external mmu caches can use to update those (ie the Sparc or
3653 * PowerPC hashed page tables that act as extended TLBs).
3654 *
3655 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3656 * concurrent faults).
3657 *
3658 * The mmap_sem may have been released depending on flags and our return value.
3659 * See filemap_fault() and __lock_page_or_retry().
3660 */
3661 static int handle_pte_fault(struct vm_fault *vmf)
3662 {
3663 pte_t entry;
3664
3665 if (unlikely(pmd_none(*vmf->pmd))) {
3666 /*
3667 * Leave __pte_alloc() until later: because vm_ops->fault may
3668 * want to allocate huge page, and if we expose page table
3669 * for an instant, it will be difficult to retract from
3670 * concurrent faults and from rmap lookups.
3671 */
3672 vmf->pte = NULL;
3673 } else {
3674 /* See comment in pte_alloc_one_map() */
3675 if (pmd_devmap_trans_unstable(vmf->pmd))
3676 return 0;
3677 /*
3678 * A regular pmd is established and it can't morph into a huge
3679 * pmd from under us anymore at this point because we hold the
3680 * mmap_sem read mode and khugepaged takes it in write mode.
3681 * So now it's safe to run pte_offset_map().
3682 */
3683 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3684 vmf->orig_pte = *vmf->pte;
3685
3686 /*
3687 * some architectures can have larger ptes than wordsize,
3688 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3689 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3690 * atomic accesses. The code below just needs a consistent
3691 * view for the ifs and we later double check anyway with the
3692 * ptl lock held. So here a barrier will do.
3693 */
3694 barrier();
3695 if (pte_none(vmf->orig_pte)) {
3696 pte_unmap(vmf->pte);
3697 vmf->pte = NULL;
3698 }
3699 }
3700
3701 if (!vmf->pte) {
3702 if (vma_is_anonymous(vmf->vma))
3703 return do_anonymous_page(vmf);
3704 else
3705 return do_fault(vmf);
3706 }
3707
3708 if (!pte_present(vmf->orig_pte))
3709 return do_swap_page(vmf);
3710
3711 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3712 return do_numa_page(vmf);
3713
3714 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3715 spin_lock(vmf->ptl);
3716 entry = vmf->orig_pte;
3717 if (unlikely(!pte_same(*vmf->pte, entry)))
3718 goto unlock;
3719 if (vmf->flags & FAULT_FLAG_WRITE) {
3720 if (!pte_write(entry))
3721 return do_wp_page(vmf);
3722 entry = pte_mkdirty(entry);
3723 }
3724 entry = pte_mkyoung(entry);
3725 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3726 vmf->flags & FAULT_FLAG_WRITE)) {
3727 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3728 } else {
3729 /*
3730 * This is needed only for protection faults but the arch code
3731 * is not yet telling us if this is a protection fault or not.
3732 * This still avoids useless tlb flushes for .text page faults
3733 * with threads.
3734 */
3735 if (vmf->flags & FAULT_FLAG_WRITE)
3736 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3737 }
3738 unlock:
3739 pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 return 0;
3741 }
3742
3743 /*
3744 * By the time we get here, we already hold the mm semaphore
3745 *
3746 * The mmap_sem may have been released depending on flags and our
3747 * return value. See filemap_fault() and __lock_page_or_retry().
3748 */
3749 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3750 unsigned int flags)
3751 {
3752 struct vm_fault vmf = {
3753 .vma = vma,
3754 .address = address & PAGE_MASK,
3755 .flags = flags,
3756 .pgoff = linear_page_index(vma, address),
3757 .gfp_mask = __get_fault_gfp_mask(vma),
3758 };
3759 struct mm_struct *mm = vma->vm_mm;
3760 pgd_t *pgd;
3761 p4d_t *p4d;
3762 int ret;
3763
3764 pgd = pgd_offset(mm, address);
3765 p4d = p4d_alloc(mm, pgd, address);
3766 if (!p4d)
3767 return VM_FAULT_OOM;
3768
3769 vmf.pud = pud_alloc(mm, p4d, address);
3770 if (!vmf.pud)
3771 return VM_FAULT_OOM;
3772 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3773 ret = create_huge_pud(&vmf);
3774 if (!(ret & VM_FAULT_FALLBACK))
3775 return ret;
3776 } else {
3777 pud_t orig_pud = *vmf.pud;
3778
3779 barrier();
3780 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3781 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3782
3783 /* NUMA case for anonymous PUDs would go here */
3784
3785 if (dirty && !pud_write(orig_pud)) {
3786 ret = wp_huge_pud(&vmf, orig_pud);
3787 if (!(ret & VM_FAULT_FALLBACK))
3788 return ret;
3789 } else {
3790 huge_pud_set_accessed(&vmf, orig_pud);
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3797 if (!vmf.pmd)
3798 return VM_FAULT_OOM;
3799 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3800 ret = create_huge_pmd(&vmf);
3801 if (!(ret & VM_FAULT_FALLBACK))
3802 return ret;
3803 } else {
3804 pmd_t orig_pmd = *vmf.pmd;
3805
3806 barrier();
3807 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3808 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3809 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3810
3811 if ((vmf.flags & FAULT_FLAG_WRITE) &&
3812 !pmd_write(orig_pmd)) {
3813 ret = wp_huge_pmd(&vmf, orig_pmd);
3814 if (!(ret & VM_FAULT_FALLBACK))
3815 return ret;
3816 } else {
3817 huge_pmd_set_accessed(&vmf, orig_pmd);
3818 return 0;
3819 }
3820 }
3821 }
3822
3823 return handle_pte_fault(&vmf);
3824 }
3825
3826 /*
3827 * By the time we get here, we already hold the mm semaphore
3828 *
3829 * The mmap_sem may have been released depending on flags and our
3830 * return value. See filemap_fault() and __lock_page_or_retry().
3831 */
3832 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3833 unsigned int flags)
3834 {
3835 int ret;
3836
3837 __set_current_state(TASK_RUNNING);
3838
3839 count_vm_event(PGFAULT);
3840 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3841
3842 /* do counter updates before entering really critical section. */
3843 check_sync_rss_stat(current);
3844
3845 /*
3846 * Enable the memcg OOM handling for faults triggered in user
3847 * space. Kernel faults are handled more gracefully.
3848 */
3849 if (flags & FAULT_FLAG_USER)
3850 mem_cgroup_oom_enable();
3851
3852 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3853 flags & FAULT_FLAG_INSTRUCTION,
3854 flags & FAULT_FLAG_REMOTE))
3855 return VM_FAULT_SIGSEGV;
3856
3857 if (unlikely(is_vm_hugetlb_page(vma)))
3858 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3859 else
3860 ret = __handle_mm_fault(vma, address, flags);
3861
3862 if (flags & FAULT_FLAG_USER) {
3863 mem_cgroup_oom_disable();
3864 /*
3865 * The task may have entered a memcg OOM situation but
3866 * if the allocation error was handled gracefully (no
3867 * VM_FAULT_OOM), there is no need to kill anything.
3868 * Just clean up the OOM state peacefully.
3869 */
3870 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3871 mem_cgroup_oom_synchronize(false);
3872 }
3873
3874 /*
3875 * This mm has been already reaped by the oom reaper and so the
3876 * refault cannot be trusted in general. Anonymous refaults would
3877 * lose data and give a zero page instead e.g. This is especially
3878 * problem for use_mm() because regular tasks will just die and
3879 * the corrupted data will not be visible anywhere while kthread
3880 * will outlive the oom victim and potentially propagate the date
3881 * further.
3882 */
3883 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3884 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3885 ret = VM_FAULT_SIGBUS;
3886
3887 return ret;
3888 }
3889 EXPORT_SYMBOL_GPL(handle_mm_fault);
3890
3891 #ifndef __PAGETABLE_P4D_FOLDED
3892 /*
3893 * Allocate p4d page table.
3894 * We've already handled the fast-path in-line.
3895 */
3896 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3897 {
3898 p4d_t *new = p4d_alloc_one(mm, address);
3899 if (!new)
3900 return -ENOMEM;
3901
3902 smp_wmb(); /* See comment in __pte_alloc */
3903
3904 spin_lock(&mm->page_table_lock);
3905 if (pgd_present(*pgd)) /* Another has populated it */
3906 p4d_free(mm, new);
3907 else
3908 pgd_populate(mm, pgd, new);
3909 spin_unlock(&mm->page_table_lock);
3910 return 0;
3911 }
3912 #endif /* __PAGETABLE_P4D_FOLDED */
3913
3914 #ifndef __PAGETABLE_PUD_FOLDED
3915 /*
3916 * Allocate page upper directory.
3917 * We've already handled the fast-path in-line.
3918 */
3919 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3920 {
3921 pud_t *new = pud_alloc_one(mm, address);
3922 if (!new)
3923 return -ENOMEM;
3924
3925 smp_wmb(); /* See comment in __pte_alloc */
3926
3927 spin_lock(&mm->page_table_lock);
3928 #ifndef __ARCH_HAS_5LEVEL_HACK
3929 if (p4d_present(*p4d)) /* Another has populated it */
3930 pud_free(mm, new);
3931 else
3932 p4d_populate(mm, p4d, new);
3933 #else
3934 if (pgd_present(*p4d)) /* Another has populated it */
3935 pud_free(mm, new);
3936 else
3937 pgd_populate(mm, p4d, new);
3938 #endif /* __ARCH_HAS_5LEVEL_HACK */
3939 spin_unlock(&mm->page_table_lock);
3940 return 0;
3941 }
3942 #endif /* __PAGETABLE_PUD_FOLDED */
3943
3944 #ifndef __PAGETABLE_PMD_FOLDED
3945 /*
3946 * Allocate page middle directory.
3947 * We've already handled the fast-path in-line.
3948 */
3949 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3950 {
3951 spinlock_t *ptl;
3952 pmd_t *new = pmd_alloc_one(mm, address);
3953 if (!new)
3954 return -ENOMEM;
3955
3956 smp_wmb(); /* See comment in __pte_alloc */
3957
3958 ptl = pud_lock(mm, pud);
3959 #ifndef __ARCH_HAS_4LEVEL_HACK
3960 if (!pud_present(*pud)) {
3961 mm_inc_nr_pmds(mm);
3962 pud_populate(mm, pud, new);
3963 } else /* Another has populated it */
3964 pmd_free(mm, new);
3965 #else
3966 if (!pgd_present(*pud)) {
3967 mm_inc_nr_pmds(mm);
3968 pgd_populate(mm, pud, new);
3969 } else /* Another has populated it */
3970 pmd_free(mm, new);
3971 #endif /* __ARCH_HAS_4LEVEL_HACK */
3972 spin_unlock(ptl);
3973 return 0;
3974 }
3975 #endif /* __PAGETABLE_PMD_FOLDED */
3976
3977 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3978 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3979 {
3980 pgd_t *pgd;
3981 p4d_t *p4d;
3982 pud_t *pud;
3983 pmd_t *pmd;
3984 pte_t *ptep;
3985
3986 pgd = pgd_offset(mm, address);
3987 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3988 goto out;
3989
3990 p4d = p4d_offset(pgd, address);
3991 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
3992 goto out;
3993
3994 pud = pud_offset(p4d, address);
3995 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3996 goto out;
3997
3998 pmd = pmd_offset(pud, address);
3999 VM_BUG_ON(pmd_trans_huge(*pmd));
4000
4001 if (pmd_huge(*pmd)) {
4002 if (!pmdpp)
4003 goto out;
4004
4005 *ptlp = pmd_lock(mm, pmd);
4006 if (pmd_huge(*pmd)) {
4007 *pmdpp = pmd;
4008 return 0;
4009 }
4010 spin_unlock(*ptlp);
4011 }
4012
4013 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4014 goto out;
4015
4016 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4017 if (!pte_present(*ptep))
4018 goto unlock;
4019 *ptepp = ptep;
4020 return 0;
4021 unlock:
4022 pte_unmap_unlock(ptep, *ptlp);
4023 out:
4024 return -EINVAL;
4025 }
4026
4027 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4028 pte_t **ptepp, spinlock_t **ptlp)
4029 {
4030 int res;
4031
4032 /* (void) is needed to make gcc happy */
4033 (void) __cond_lock(*ptlp,
4034 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4035 ptlp)));
4036 return res;
4037 }
4038
4039 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4040 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4041 {
4042 int res;
4043
4044 /* (void) is needed to make gcc happy */
4045 (void) __cond_lock(*ptlp,
4046 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4047 ptlp)));
4048 return res;
4049 }
4050 EXPORT_SYMBOL(follow_pte_pmd);
4051
4052 /**
4053 * follow_pfn - look up PFN at a user virtual address
4054 * @vma: memory mapping
4055 * @address: user virtual address
4056 * @pfn: location to store found PFN
4057 *
4058 * Only IO mappings and raw PFN mappings are allowed.
4059 *
4060 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4061 */
4062 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4063 unsigned long *pfn)
4064 {
4065 int ret = -EINVAL;
4066 spinlock_t *ptl;
4067 pte_t *ptep;
4068
4069 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4070 return ret;
4071
4072 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4073 if (ret)
4074 return ret;
4075 *pfn = pte_pfn(*ptep);
4076 pte_unmap_unlock(ptep, ptl);
4077 return 0;
4078 }
4079 EXPORT_SYMBOL(follow_pfn);
4080
4081 #ifdef CONFIG_HAVE_IOREMAP_PROT
4082 int follow_phys(struct vm_area_struct *vma,
4083 unsigned long address, unsigned int flags,
4084 unsigned long *prot, resource_size_t *phys)
4085 {
4086 int ret = -EINVAL;
4087 pte_t *ptep, pte;
4088 spinlock_t *ptl;
4089
4090 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4091 goto out;
4092
4093 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4094 goto out;
4095 pte = *ptep;
4096
4097 if ((flags & FOLL_WRITE) && !pte_write(pte))
4098 goto unlock;
4099
4100 *prot = pgprot_val(pte_pgprot(pte));
4101 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4102
4103 ret = 0;
4104 unlock:
4105 pte_unmap_unlock(ptep, ptl);
4106 out:
4107 return ret;
4108 }
4109
4110 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4111 void *buf, int len, int write)
4112 {
4113 resource_size_t phys_addr;
4114 unsigned long prot = 0;
4115 void __iomem *maddr;
4116 int offset = addr & (PAGE_SIZE-1);
4117
4118 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4119 return -EINVAL;
4120
4121 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4122 if (write)
4123 memcpy_toio(maddr + offset, buf, len);
4124 else
4125 memcpy_fromio(buf, maddr + offset, len);
4126 iounmap(maddr);
4127
4128 return len;
4129 }
4130 EXPORT_SYMBOL_GPL(generic_access_phys);
4131 #endif
4132
4133 /*
4134 * Access another process' address space as given in mm. If non-NULL, use the
4135 * given task for page fault accounting.
4136 */
4137 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4138 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4139 {
4140 struct vm_area_struct *vma;
4141 void *old_buf = buf;
4142 int write = gup_flags & FOLL_WRITE;
4143
4144 down_read(&mm->mmap_sem);
4145 /* ignore errors, just check how much was successfully transferred */
4146 while (len) {
4147 int bytes, ret, offset;
4148 void *maddr;
4149 struct page *page = NULL;
4150
4151 ret = get_user_pages_remote(tsk, mm, addr, 1,
4152 gup_flags, &page, &vma, NULL);
4153 if (ret <= 0) {
4154 #ifndef CONFIG_HAVE_IOREMAP_PROT
4155 break;
4156 #else
4157 /*
4158 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4159 * we can access using slightly different code.
4160 */
4161 vma = find_vma(mm, addr);
4162 if (!vma || vma->vm_start > addr)
4163 break;
4164 if (vma->vm_ops && vma->vm_ops->access)
4165 ret = vma->vm_ops->access(vma, addr, buf,
4166 len, write);
4167 if (ret <= 0)
4168 break;
4169 bytes = ret;
4170 #endif
4171 } else {
4172 bytes = len;
4173 offset = addr & (PAGE_SIZE-1);
4174 if (bytes > PAGE_SIZE-offset)
4175 bytes = PAGE_SIZE-offset;
4176
4177 maddr = kmap(page);
4178 if (write) {
4179 copy_to_user_page(vma, page, addr,
4180 maddr + offset, buf, bytes);
4181 set_page_dirty_lock(page);
4182 } else {
4183 copy_from_user_page(vma, page, addr,
4184 buf, maddr + offset, bytes);
4185 }
4186 kunmap(page);
4187 put_page(page);
4188 }
4189 len -= bytes;
4190 buf += bytes;
4191 addr += bytes;
4192 }
4193 up_read(&mm->mmap_sem);
4194
4195 return buf - old_buf;
4196 }
4197
4198 /**
4199 * access_remote_vm - access another process' address space
4200 * @mm: the mm_struct of the target address space
4201 * @addr: start address to access
4202 * @buf: source or destination buffer
4203 * @len: number of bytes to transfer
4204 * @gup_flags: flags modifying lookup behaviour
4205 *
4206 * The caller must hold a reference on @mm.
4207 */
4208 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4209 void *buf, int len, unsigned int gup_flags)
4210 {
4211 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4212 }
4213
4214 /*
4215 * Access another process' address space.
4216 * Source/target buffer must be kernel space,
4217 * Do not walk the page table directly, use get_user_pages
4218 */
4219 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4220 void *buf, int len, unsigned int gup_flags)
4221 {
4222 struct mm_struct *mm;
4223 int ret;
4224
4225 mm = get_task_mm(tsk);
4226 if (!mm)
4227 return 0;
4228
4229 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4230
4231 mmput(mm);
4232
4233 return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(access_process_vm);
4236
4237 /*
4238 * Print the name of a VMA.
4239 */
4240 void print_vma_addr(char *prefix, unsigned long ip)
4241 {
4242 struct mm_struct *mm = current->mm;
4243 struct vm_area_struct *vma;
4244
4245 /*
4246 * Do not print if we are in atomic
4247 * contexts (in exception stacks, etc.):
4248 */
4249 if (preempt_count())
4250 return;
4251
4252 down_read(&mm->mmap_sem);
4253 vma = find_vma(mm, ip);
4254 if (vma && vma->vm_file) {
4255 struct file *f = vma->vm_file;
4256 char *buf = (char *)__get_free_page(GFP_KERNEL);
4257 if (buf) {
4258 char *p;
4259
4260 p = file_path(f, buf, PAGE_SIZE);
4261 if (IS_ERR(p))
4262 p = "?";
4263 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4264 vma->vm_start,
4265 vma->vm_end - vma->vm_start);
4266 free_page((unsigned long)buf);
4267 }
4268 }
4269 up_read(&mm->mmap_sem);
4270 }
4271
4272 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4273 void __might_fault(const char *file, int line)
4274 {
4275 /*
4276 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4277 * holding the mmap_sem, this is safe because kernel memory doesn't
4278 * get paged out, therefore we'll never actually fault, and the
4279 * below annotations will generate false positives.
4280 */
4281 if (uaccess_kernel())
4282 return;
4283 if (pagefault_disabled())
4284 return;
4285 __might_sleep(file, line, 0);
4286 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4287 if (current->mm)
4288 might_lock_read(&current->mm->mmap_sem);
4289 #endif
4290 }
4291 EXPORT_SYMBOL(__might_fault);
4292 #endif
4293
4294 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4295 static void clear_gigantic_page(struct page *page,
4296 unsigned long addr,
4297 unsigned int pages_per_huge_page)
4298 {
4299 int i;
4300 struct page *p = page;
4301
4302 might_sleep();
4303 for (i = 0; i < pages_per_huge_page;
4304 i++, p = mem_map_next(p, page, i)) {
4305 cond_resched();
4306 clear_user_highpage(p, addr + i * PAGE_SIZE);
4307 }
4308 }
4309 void clear_huge_page(struct page *page,
4310 unsigned long addr, unsigned int pages_per_huge_page)
4311 {
4312 int i;
4313
4314 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4315 clear_gigantic_page(page, addr, pages_per_huge_page);
4316 return;
4317 }
4318
4319 might_sleep();
4320 for (i = 0; i < pages_per_huge_page; i++) {
4321 cond_resched();
4322 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4323 }
4324 }
4325
4326 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4327 unsigned long addr,
4328 struct vm_area_struct *vma,
4329 unsigned int pages_per_huge_page)
4330 {
4331 int i;
4332 struct page *dst_base = dst;
4333 struct page *src_base = src;
4334
4335 for (i = 0; i < pages_per_huge_page; ) {
4336 cond_resched();
4337 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4338
4339 i++;
4340 dst = mem_map_next(dst, dst_base, i);
4341 src = mem_map_next(src, src_base, i);
4342 }
4343 }
4344
4345 void copy_user_huge_page(struct page *dst, struct page *src,
4346 unsigned long addr, struct vm_area_struct *vma,
4347 unsigned int pages_per_huge_page)
4348 {
4349 int i;
4350
4351 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4352 copy_user_gigantic_page(dst, src, addr, vma,
4353 pages_per_huge_page);
4354 return;
4355 }
4356
4357 might_sleep();
4358 for (i = 0; i < pages_per_huge_page; i++) {
4359 cond_resched();
4360 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4361 }
4362 }
4363
4364 long copy_huge_page_from_user(struct page *dst_page,
4365 const void __user *usr_src,
4366 unsigned int pages_per_huge_page,
4367 bool allow_pagefault)
4368 {
4369 void *src = (void *)usr_src;
4370 void *page_kaddr;
4371 unsigned long i, rc = 0;
4372 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4373
4374 for (i = 0; i < pages_per_huge_page; i++) {
4375 if (allow_pagefault)
4376 page_kaddr = kmap(dst_page + i);
4377 else
4378 page_kaddr = kmap_atomic(dst_page + i);
4379 rc = copy_from_user(page_kaddr,
4380 (const void __user *)(src + i * PAGE_SIZE),
4381 PAGE_SIZE);
4382 if (allow_pagefault)
4383 kunmap(dst_page + i);
4384 else
4385 kunmap_atomic(page_kaddr);
4386
4387 ret_val -= (PAGE_SIZE - rc);
4388 if (rc)
4389 break;
4390
4391 cond_resched();
4392 }
4393 return ret_val;
4394 }
4395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4396
4397 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4398
4399 static struct kmem_cache *page_ptl_cachep;
4400
4401 void __init ptlock_cache_init(void)
4402 {
4403 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4404 SLAB_PANIC, NULL);
4405 }
4406
4407 bool ptlock_alloc(struct page *page)
4408 {
4409 spinlock_t *ptl;
4410
4411 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4412 if (!ptl)
4413 return false;
4414 page->ptl = ptl;
4415 return true;
4416 }
4417
4418 void ptlock_free(struct page *page)
4419 {
4420 kmem_cache_free(page_ptl_cachep, page->ptl);
4421 }
4422 #endif