]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory.c
mm: convert p[te|md]_mknonnuma and remaining page table manipulations
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232
233 __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 if (!tlb->end)
239 return;
240
241 tlb_flush(tlb);
242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246 __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 struct mmu_gather_batch *batch;
252
253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 free_pages_and_swap_cache(batch->pages, batch->nr);
255 batch->nr = 0;
256 }
257 tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 struct mmu_gather_batch *batch;
295
296 VM_BUG_ON(!tlb->end);
297
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
303 batch = tlb->active;
304 }
305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307 return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315 * See the comment near struct mmu_table_batch.
316 */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325 /*
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
328 *
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
331 */
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 struct mmu_table_batch *batch;
339 int i;
340
341 batch = container_of(head, struct mmu_table_batch, rcu);
342
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
345
346 free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 struct mmu_table_batch **batch = &tlb->batch;
352
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
356 }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 struct mmu_table_batch **batch = &tlb->batch;
362
363 /*
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
366 */
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
370 }
371
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
377 }
378 (*batch)->nr = 0;
379 }
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
390 */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
393 {
394 pgtable_t token = pmd_pgtable(*pmd);
395 pmd_clear(pmd);
396 pte_free_tlb(tlb, token, addr);
397 atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
403 {
404 pmd_t *pmd;
405 unsigned long next;
406 unsigned long start;
407
408 start = addr;
409 pmd = pmd_offset(pud, addr);
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
414 free_pte_range(tlb, pmd, addr);
415 } while (pmd++, addr = next, addr != end);
416
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
424 }
425 if (end - 1 > ceiling - 1)
426 return;
427
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
430 pmd_free_tlb(tlb, pmd, start);
431 mm_dec_nr_pmds(tlb->mm);
432 }
433
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
437 {
438 pud_t *pud;
439 unsigned long next;
440 unsigned long start;
441
442 start = addr;
443 pud = pud_offset(pgd, addr);
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 } while (pud++, addr = next, addr != end);
450
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
458 }
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
464 pud_free_tlb(tlb, pud, start);
465 }
466
467 /*
468 * This function frees user-level page tables of a process.
469 */
470 void free_pgd_range(struct mmu_gather *tlb,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
473 {
474 pgd_t *pgd;
475 unsigned long next;
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
502
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
519 pgd = pgd_offset(tlb->mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 } while (pgd++, addr = next, addr != end);
526 }
527
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 unsigned long floor, unsigned long ceiling)
530 {
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
535 /*
536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
538 */
539 unlink_anon_vmas(vma);
540 unlink_file_vma(vma);
541
542 if (is_vm_hugetlb_page(vma)) {
543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 && !is_vm_hugetlb_page(next)) {
551 vma = next;
552 next = vma->vm_next;
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
559 vma = next;
560 }
561 }
562
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
565 {
566 spinlock_t *ptl;
567 pgtable_t new = pte_alloc_one(mm, address);
568 int wait_split_huge_page;
569 if (!new)
570 return -ENOMEM;
571
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587 ptl = pmd_lock(mm, pmd);
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
600 return 0;
601 }
602
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
609 smp_wmb(); /* See comment in __pte_alloc */
610
611 spin_lock(&init_mm.page_table_lock);
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm, pmd, new);
614 new = NULL;
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
617 spin_unlock(&init_mm.page_table_lock);
618 if (new)
619 pte_free_kernel(&init_mm, new);
620 return 0;
621 }
622
623 static inline void init_rss_vec(int *rss)
624 {
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 int i;
631
632 if (current->mm == mm)
633 sync_mm_rss(mm);
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
637 }
638
639 /*
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
643 *
644 * The calling function must still handle the error.
645 */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
648 {
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685 if (page)
686 dump_page(page, "bad pte");
687 printk(KERN_ALERT
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 if (vma->vm_ops)
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
696 if (vma->vm_file)
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
762 if (!is_zero_pfn(pfn))
763 print_bad_pte(vma, addr, pte, NULL);
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
782 }
783
784 if (is_zero_pfn(pfn))
785 return NULL;
786 check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /*
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
795 */
796 out:
797 return pfn_to_page(pfn);
798 }
799
800 /*
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
804 */
805
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809 unsigned long addr, int *rss)
810 {
811 unsigned long vm_flags = vma->vm_flags;
812 pte_t pte = *src_pte;
813 struct page *page;
814
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte))) {
817 swp_entry_t entry = pte_to_swp_entry(pte);
818
819 if (likely(!non_swap_entry(entry))) {
820 if (swap_duplicate(entry) < 0)
821 return entry.val;
822
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm->mmlist))) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&dst_mm->mmlist))
827 list_add(&dst_mm->mmlist,
828 &src_mm->mmlist);
829 spin_unlock(&mmlist_lock);
830 }
831 rss[MM_SWAPENTS]++;
832 } else if (is_migration_entry(entry)) {
833 page = migration_entry_to_page(entry);
834
835 if (PageAnon(page))
836 rss[MM_ANONPAGES]++;
837 else
838 rss[MM_FILEPAGES]++;
839
840 if (is_write_migration_entry(entry) &&
841 is_cow_mapping(vm_flags)) {
842 /*
843 * COW mappings require pages in both
844 * parent and child to be set to read.
845 */
846 make_migration_entry_read(&entry);
847 pte = swp_entry_to_pte(entry);
848 if (pte_swp_soft_dirty(*src_pte))
849 pte = pte_swp_mksoft_dirty(pte);
850 set_pte_at(src_mm, addr, src_pte, pte);
851 }
852 }
853 goto out_set_pte;
854 }
855
856 /*
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
859 */
860 if (is_cow_mapping(vm_flags)) {
861 ptep_set_wrprotect(src_mm, addr, src_pte);
862 pte = pte_wrprotect(pte);
863 }
864
865 /*
866 * If it's a shared mapping, mark it clean in
867 * the child
868 */
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
872
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
876 page_dup_rmap(page);
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
881 }
882
883 out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
886 }
887
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
891 {
892 pte_t *orig_src_pte, *orig_dst_pte;
893 pte_t *src_pte, *dst_pte;
894 spinlock_t *src_ptl, *dst_ptl;
895 int progress = 0;
896 int rss[NR_MM_COUNTERS];
897 swp_entry_t entry = (swp_entry_t){0};
898
899 again:
900 init_rss_vec(rss);
901
902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 if (!dst_pte)
904 return -ENOMEM;
905 src_pte = pte_offset_map(src_pmd, addr);
906 src_ptl = pte_lockptr(src_mm, src_pmd);
907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
910 arch_enter_lazy_mmu_mode();
911
912 do {
913 /*
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
916 */
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 break;
922 }
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
926 }
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl);
936 pte_unmap(orig_src_pte);
937 add_mm_rss_vec(dst_mm, rss);
938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 cond_resched();
940
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
945 }
946 if (addr != end)
947 goto again;
948 return 0;
949 }
950
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
954 {
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
957
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
974 }
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
982 }
983
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
987 {
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
990
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1004 }
1005
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1008 {
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
1016 int ret;
1017
1018 /*
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1023 */
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025 !vma->anon_vma)
1026 return 0;
1027
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032 /*
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1035 */
1036 ret = track_pfn_copy(vma);
1037 if (ret)
1038 return ret;
1039 }
1040
1041 /*
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1046 */
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
1053
1054 ret = 0;
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1065 }
1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 struct vm_area_struct *vma, pmd_t *pmd,
1075 unsigned long addr, unsigned long end,
1076 struct zap_details *details)
1077 {
1078 struct mm_struct *mm = tlb->mm;
1079 int force_flush = 0;
1080 int rss[NR_MM_COUNTERS];
1081 spinlock_t *ptl;
1082 pte_t *start_pte;
1083 pte_t *pte;
1084 swp_entry_t entry;
1085
1086 again:
1087 init_rss_vec(rss);
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
1090 arch_enter_lazy_mmu_mode();
1091 do {
1092 pte_t ptent = *pte;
1093 if (pte_none(ptent)) {
1094 continue;
1095 }
1096
1097 if (pte_present(ptent)) {
1098 struct page *page;
1099
1100 page = vm_normal_page(vma, addr, ptent);
1101 if (unlikely(details) && page) {
1102 /*
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1106 */
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1110 }
1111 ptent = ptep_get_and_clear_full(mm, addr, pte,
1112 tlb->fullmm);
1113 tlb_remove_tlb_entry(tlb, pte, addr);
1114 if (unlikely(!page))
1115 continue;
1116 if (PageAnon(page))
1117 rss[MM_ANONPAGES]--;
1118 else {
1119 if (pte_dirty(ptent)) {
1120 force_flush = 1;
1121 set_page_dirty(page);
1122 }
1123 if (pte_young(ptent) &&
1124 likely(!(vma->vm_flags & VM_SEQ_READ)))
1125 mark_page_accessed(page);
1126 rss[MM_FILEPAGES]--;
1127 }
1128 page_remove_rmap(page);
1129 if (unlikely(page_mapcount(page) < 0))
1130 print_bad_pte(vma, addr, ptent, page);
1131 if (unlikely(!__tlb_remove_page(tlb, page))) {
1132 force_flush = 1;
1133 addr += PAGE_SIZE;
1134 break;
1135 }
1136 continue;
1137 }
1138 /* If details->check_mapping, we leave swap entries. */
1139 if (unlikely(details))
1140 continue;
1141
1142 entry = pte_to_swp_entry(ptent);
1143 if (!non_swap_entry(entry))
1144 rss[MM_SWAPENTS]--;
1145 else if (is_migration_entry(entry)) {
1146 struct page *page;
1147
1148 page = migration_entry_to_page(entry);
1149
1150 if (PageAnon(page))
1151 rss[MM_ANONPAGES]--;
1152 else
1153 rss[MM_FILEPAGES]--;
1154 }
1155 if (unlikely(!free_swap_and_cache(entry)))
1156 print_bad_pte(vma, addr, ptent, NULL);
1157 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1158 } while (pte++, addr += PAGE_SIZE, addr != end);
1159
1160 add_mm_rss_vec(mm, rss);
1161 arch_leave_lazy_mmu_mode();
1162
1163 /* Do the actual TLB flush before dropping ptl */
1164 if (force_flush)
1165 tlb_flush_mmu_tlbonly(tlb);
1166 pte_unmap_unlock(start_pte, ptl);
1167
1168 /*
1169 * If we forced a TLB flush (either due to running out of
1170 * batch buffers or because we needed to flush dirty TLB
1171 * entries before releasing the ptl), free the batched
1172 * memory too. Restart if we didn't do everything.
1173 */
1174 if (force_flush) {
1175 force_flush = 0;
1176 tlb_flush_mmu_free(tlb);
1177
1178 if (addr != end)
1179 goto again;
1180 }
1181
1182 return addr;
1183 }
1184
1185 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1186 struct vm_area_struct *vma, pud_t *pud,
1187 unsigned long addr, unsigned long end,
1188 struct zap_details *details)
1189 {
1190 pmd_t *pmd;
1191 unsigned long next;
1192
1193 pmd = pmd_offset(pud, addr);
1194 do {
1195 next = pmd_addr_end(addr, end);
1196 if (pmd_trans_huge(*pmd)) {
1197 if (next - addr != HPAGE_PMD_SIZE) {
1198 #ifdef CONFIG_DEBUG_VM
1199 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201 __func__, addr, end,
1202 vma->vm_start,
1203 vma->vm_end);
1204 BUG();
1205 }
1206 #endif
1207 split_huge_page_pmd(vma, addr, pmd);
1208 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1209 goto next;
1210 /* fall through */
1211 }
1212 /*
1213 * Here there can be other concurrent MADV_DONTNEED or
1214 * trans huge page faults running, and if the pmd is
1215 * none or trans huge it can change under us. This is
1216 * because MADV_DONTNEED holds the mmap_sem in read
1217 * mode.
1218 */
1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 goto next;
1221 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223 cond_resched();
1224 } while (pmd++, addr = next, addr != end);
1225
1226 return addr;
1227 }
1228
1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pgd_t *pgd,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1233 {
1234 pud_t *pud;
1235 unsigned long next;
1236
1237 pud = pud_offset(pgd, addr);
1238 do {
1239 next = pud_addr_end(addr, end);
1240 if (pud_none_or_clear_bad(pud))
1241 continue;
1242 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243 } while (pud++, addr = next, addr != end);
1244
1245 return addr;
1246 }
1247
1248 static void unmap_page_range(struct mmu_gather *tlb,
1249 struct vm_area_struct *vma,
1250 unsigned long addr, unsigned long end,
1251 struct zap_details *details)
1252 {
1253 pgd_t *pgd;
1254 unsigned long next;
1255
1256 if (details && !details->check_mapping)
1257 details = NULL;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1276 {
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 }
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1313 }
1314
1315 /**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1336 {
1337 struct mm_struct *mm = vma->vm_mm;
1338
1339 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1343 }
1344
1345 /**
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1350 * @details: details of shared cache invalidation
1351 *
1352 * Caller must protect the VMA list
1353 */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 unsigned long size, struct zap_details *details)
1356 {
1357 struct mm_struct *mm = vma->vm_mm;
1358 struct mmu_gather tlb;
1359 unsigned long end = start + size;
1360
1361 lru_add_drain();
1362 tlb_gather_mmu(&tlb, mm, start, end);
1363 update_hiwater_rss(mm);
1364 mmu_notifier_invalidate_range_start(mm, start, end);
1365 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1366 unmap_single_vma(&tlb, vma, start, end, details);
1367 mmu_notifier_invalidate_range_end(mm, start, end);
1368 tlb_finish_mmu(&tlb, start, end);
1369 }
1370
1371 /**
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1377 *
1378 * The range must fit into one VMA.
1379 */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 unsigned long size, struct zap_details *details)
1382 {
1383 struct mm_struct *mm = vma->vm_mm;
1384 struct mmu_gather tlb;
1385 unsigned long end = address + size;
1386
1387 lru_add_drain();
1388 tlb_gather_mmu(&tlb, mm, address, end);
1389 update_hiwater_rss(mm);
1390 mmu_notifier_invalidate_range_start(mm, address, end);
1391 unmap_single_vma(&tlb, vma, address, end, details);
1392 mmu_notifier_invalidate_range_end(mm, address, end);
1393 tlb_finish_mmu(&tlb, address, end);
1394 }
1395
1396 /**
1397 * zap_vma_ptes - remove ptes mapping the vma
1398 * @vma: vm_area_struct holding ptes to be zapped
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 *
1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1403 *
1404 * The entire address range must be fully contained within the vma.
1405 *
1406 * Returns 0 if successful.
1407 */
1408 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size)
1410 {
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
1413 return -1;
1414 zap_page_range_single(vma, address, size, NULL);
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1420 spinlock_t **ptl)
1421 {
1422 pgd_t * pgd = pgd_offset(mm, addr);
1423 pud_t * pud = pud_alloc(mm, pgd, addr);
1424 if (pud) {
1425 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1426 if (pmd) {
1427 VM_BUG_ON(pmd_trans_huge(*pmd));
1428 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1429 }
1430 }
1431 return NULL;
1432 }
1433
1434 /*
1435 * This is the old fallback for page remapping.
1436 *
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1440 */
1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442 struct page *page, pgprot_t prot)
1443 {
1444 struct mm_struct *mm = vma->vm_mm;
1445 int retval;
1446 pte_t *pte;
1447 spinlock_t *ptl;
1448
1449 retval = -EINVAL;
1450 if (PageAnon(page))
1451 goto out;
1452 retval = -ENOMEM;
1453 flush_dcache_page(page);
1454 pte = get_locked_pte(mm, addr, &ptl);
1455 if (!pte)
1456 goto out;
1457 retval = -EBUSY;
1458 if (!pte_none(*pte))
1459 goto out_unlock;
1460
1461 /* Ok, finally just insert the thing.. */
1462 get_page(page);
1463 inc_mm_counter_fast(mm, MM_FILEPAGES);
1464 page_add_file_rmap(page);
1465 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466
1467 retval = 0;
1468 pte_unmap_unlock(pte, ptl);
1469 return retval;
1470 out_unlock:
1471 pte_unmap_unlock(pte, ptl);
1472 out:
1473 return retval;
1474 }
1475
1476 /**
1477 * vm_insert_page - insert single page into user vma
1478 * @vma: user vma to map to
1479 * @addr: target user address of this page
1480 * @page: source kernel page
1481 *
1482 * This allows drivers to insert individual pages they've allocated
1483 * into a user vma.
1484 *
1485 * The page has to be a nice clean _individual_ kernel allocation.
1486 * If you allocate a compound page, you need to have marked it as
1487 * such (__GFP_COMP), or manually just split the page up yourself
1488 * (see split_page()).
1489 *
1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491 * took an arbitrary page protection parameter. This doesn't allow
1492 * that. Your vma protection will have to be set up correctly, which
1493 * means that if you want a shared writable mapping, you'd better
1494 * ask for a shared writable mapping!
1495 *
1496 * The page does not need to be reserved.
1497 *
1498 * Usually this function is called from f_op->mmap() handler
1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501 * function from other places, for example from page-fault handler.
1502 */
1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 struct page *page)
1505 {
1506 if (addr < vma->vm_start || addr >= vma->vm_end)
1507 return -EFAULT;
1508 if (!page_count(page))
1509 return -EINVAL;
1510 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512 BUG_ON(vma->vm_flags & VM_PFNMAP);
1513 vma->vm_flags |= VM_MIXEDMAP;
1514 }
1515 return insert_page(vma, addr, page, vma->vm_page_prot);
1516 }
1517 EXPORT_SYMBOL(vm_insert_page);
1518
1519 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520 unsigned long pfn, pgprot_t prot)
1521 {
1522 struct mm_struct *mm = vma->vm_mm;
1523 int retval;
1524 pte_t *pte, entry;
1525 spinlock_t *ptl;
1526
1527 retval = -ENOMEM;
1528 pte = get_locked_pte(mm, addr, &ptl);
1529 if (!pte)
1530 goto out;
1531 retval = -EBUSY;
1532 if (!pte_none(*pte))
1533 goto out_unlock;
1534
1535 /* Ok, finally just insert the thing.. */
1536 entry = pte_mkspecial(pfn_pte(pfn, prot));
1537 set_pte_at(mm, addr, pte, entry);
1538 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1539
1540 retval = 0;
1541 out_unlock:
1542 pte_unmap_unlock(pte, ptl);
1543 out:
1544 return retval;
1545 }
1546
1547 /**
1548 * vm_insert_pfn - insert single pfn into user vma
1549 * @vma: user vma to map to
1550 * @addr: target user address of this page
1551 * @pfn: source kernel pfn
1552 *
1553 * Similar to vm_insert_page, this allows drivers to insert individual pages
1554 * they've allocated into a user vma. Same comments apply.
1555 *
1556 * This function should only be called from a vm_ops->fault handler, and
1557 * in that case the handler should return NULL.
1558 *
1559 * vma cannot be a COW mapping.
1560 *
1561 * As this is called only for pages that do not currently exist, we
1562 * do not need to flush old virtual caches or the TLB.
1563 */
1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565 unsigned long pfn)
1566 {
1567 int ret;
1568 pgprot_t pgprot = vma->vm_page_prot;
1569 /*
1570 * Technically, architectures with pte_special can avoid all these
1571 * restrictions (same for remap_pfn_range). However we would like
1572 * consistency in testing and feature parity among all, so we should
1573 * try to keep these invariants in place for everybody.
1574 */
1575 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577 (VM_PFNMAP|VM_MIXEDMAP));
1578 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1580
1581 if (addr < vma->vm_start || addr >= vma->vm_end)
1582 return -EFAULT;
1583 if (track_pfn_insert(vma, &pgprot, pfn))
1584 return -EINVAL;
1585
1586 ret = insert_pfn(vma, addr, pfn, pgprot);
1587
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(vm_insert_pfn);
1591
1592 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593 unsigned long pfn)
1594 {
1595 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1596
1597 if (addr < vma->vm_start || addr >= vma->vm_end)
1598 return -EFAULT;
1599
1600 /*
1601 * If we don't have pte special, then we have to use the pfn_valid()
1602 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603 * refcount the page if pfn_valid is true (hence insert_page rather
1604 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1605 * without pte special, it would there be refcounted as a normal page.
1606 */
1607 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608 struct page *page;
1609
1610 page = pfn_to_page(pfn);
1611 return insert_page(vma, addr, page, vma->vm_page_prot);
1612 }
1613 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1614 }
1615 EXPORT_SYMBOL(vm_insert_mixed);
1616
1617 /*
1618 * maps a range of physical memory into the requested pages. the old
1619 * mappings are removed. any references to nonexistent pages results
1620 * in null mappings (currently treated as "copy-on-access")
1621 */
1622 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623 unsigned long addr, unsigned long end,
1624 unsigned long pfn, pgprot_t prot)
1625 {
1626 pte_t *pte;
1627 spinlock_t *ptl;
1628
1629 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1630 if (!pte)
1631 return -ENOMEM;
1632 arch_enter_lazy_mmu_mode();
1633 do {
1634 BUG_ON(!pte_none(*pte));
1635 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1636 pfn++;
1637 } while (pte++, addr += PAGE_SIZE, addr != end);
1638 arch_leave_lazy_mmu_mode();
1639 pte_unmap_unlock(pte - 1, ptl);
1640 return 0;
1641 }
1642
1643 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644 unsigned long addr, unsigned long end,
1645 unsigned long pfn, pgprot_t prot)
1646 {
1647 pmd_t *pmd;
1648 unsigned long next;
1649
1650 pfn -= addr >> PAGE_SHIFT;
1651 pmd = pmd_alloc(mm, pud, addr);
1652 if (!pmd)
1653 return -ENOMEM;
1654 VM_BUG_ON(pmd_trans_huge(*pmd));
1655 do {
1656 next = pmd_addr_end(addr, end);
1657 if (remap_pte_range(mm, pmd, addr, next,
1658 pfn + (addr >> PAGE_SHIFT), prot))
1659 return -ENOMEM;
1660 } while (pmd++, addr = next, addr != end);
1661 return 0;
1662 }
1663
1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665 unsigned long addr, unsigned long end,
1666 unsigned long pfn, pgprot_t prot)
1667 {
1668 pud_t *pud;
1669 unsigned long next;
1670
1671 pfn -= addr >> PAGE_SHIFT;
1672 pud = pud_alloc(mm, pgd, addr);
1673 if (!pud)
1674 return -ENOMEM;
1675 do {
1676 next = pud_addr_end(addr, end);
1677 if (remap_pmd_range(mm, pud, addr, next,
1678 pfn + (addr >> PAGE_SHIFT), prot))
1679 return -ENOMEM;
1680 } while (pud++, addr = next, addr != end);
1681 return 0;
1682 }
1683
1684 /**
1685 * remap_pfn_range - remap kernel memory to userspace
1686 * @vma: user vma to map to
1687 * @addr: target user address to start at
1688 * @pfn: physical address of kernel memory
1689 * @size: size of map area
1690 * @prot: page protection flags for this mapping
1691 *
1692 * Note: this is only safe if the mm semaphore is held when called.
1693 */
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn, unsigned long size, pgprot_t prot)
1696 {
1697 pgd_t *pgd;
1698 unsigned long next;
1699 unsigned long end = addr + PAGE_ALIGN(size);
1700 struct mm_struct *mm = vma->vm_mm;
1701 int err;
1702
1703 /*
1704 * Physically remapped pages are special. Tell the
1705 * rest of the world about it:
1706 * VM_IO tells people not to look at these pages
1707 * (accesses can have side effects).
1708 * VM_PFNMAP tells the core MM that the base pages are just
1709 * raw PFN mappings, and do not have a "struct page" associated
1710 * with them.
1711 * VM_DONTEXPAND
1712 * Disable vma merging and expanding with mremap().
1713 * VM_DONTDUMP
1714 * Omit vma from core dump, even when VM_IO turned off.
1715 *
1716 * There's a horrible special case to handle copy-on-write
1717 * behaviour that some programs depend on. We mark the "original"
1718 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719 * See vm_normal_page() for details.
1720 */
1721 if (is_cow_mapping(vma->vm_flags)) {
1722 if (addr != vma->vm_start || end != vma->vm_end)
1723 return -EINVAL;
1724 vma->vm_pgoff = pfn;
1725 }
1726
1727 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728 if (err)
1729 return -EINVAL;
1730
1731 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1732
1733 BUG_ON(addr >= end);
1734 pfn -= addr >> PAGE_SHIFT;
1735 pgd = pgd_offset(mm, addr);
1736 flush_cache_range(vma, addr, end);
1737 do {
1738 next = pgd_addr_end(addr, end);
1739 err = remap_pud_range(mm, pgd, addr, next,
1740 pfn + (addr >> PAGE_SHIFT), prot);
1741 if (err)
1742 break;
1743 } while (pgd++, addr = next, addr != end);
1744
1745 if (err)
1746 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1747
1748 return err;
1749 }
1750 EXPORT_SYMBOL(remap_pfn_range);
1751
1752 /**
1753 * vm_iomap_memory - remap memory to userspace
1754 * @vma: user vma to map to
1755 * @start: start of area
1756 * @len: size of area
1757 *
1758 * This is a simplified io_remap_pfn_range() for common driver use. The
1759 * driver just needs to give us the physical memory range to be mapped,
1760 * we'll figure out the rest from the vma information.
1761 *
1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763 * whatever write-combining details or similar.
1764 */
1765 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1766 {
1767 unsigned long vm_len, pfn, pages;
1768
1769 /* Check that the physical memory area passed in looks valid */
1770 if (start + len < start)
1771 return -EINVAL;
1772 /*
1773 * You *really* shouldn't map things that aren't page-aligned,
1774 * but we've historically allowed it because IO memory might
1775 * just have smaller alignment.
1776 */
1777 len += start & ~PAGE_MASK;
1778 pfn = start >> PAGE_SHIFT;
1779 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780 if (pfn + pages < pfn)
1781 return -EINVAL;
1782
1783 /* We start the mapping 'vm_pgoff' pages into the area */
1784 if (vma->vm_pgoff > pages)
1785 return -EINVAL;
1786 pfn += vma->vm_pgoff;
1787 pages -= vma->vm_pgoff;
1788
1789 /* Can we fit all of the mapping? */
1790 vm_len = vma->vm_end - vma->vm_start;
1791 if (vm_len >> PAGE_SHIFT > pages)
1792 return -EINVAL;
1793
1794 /* Ok, let it rip */
1795 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1796 }
1797 EXPORT_SYMBOL(vm_iomap_memory);
1798
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 pte_fn_t fn, void *data)
1802 {
1803 pte_t *pte;
1804 int err;
1805 pgtable_t token;
1806 spinlock_t *uninitialized_var(ptl);
1807
1808 pte = (mm == &init_mm) ?
1809 pte_alloc_kernel(pmd, addr) :
1810 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 if (!pte)
1812 return -ENOMEM;
1813
1814 BUG_ON(pmd_huge(*pmd));
1815
1816 arch_enter_lazy_mmu_mode();
1817
1818 token = pmd_pgtable(*pmd);
1819
1820 do {
1821 err = fn(pte++, token, addr, data);
1822 if (err)
1823 break;
1824 } while (addr += PAGE_SIZE, addr != end);
1825
1826 arch_leave_lazy_mmu_mode();
1827
1828 if (mm != &init_mm)
1829 pte_unmap_unlock(pte-1, ptl);
1830 return err;
1831 }
1832
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1836 {
1837 pmd_t *pmd;
1838 unsigned long next;
1839 int err;
1840
1841 BUG_ON(pud_huge(*pud));
1842
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 if (err)
1850 break;
1851 } while (pmd++, addr = next, addr != end);
1852 return err;
1853 }
1854
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1858 {
1859 pud_t *pud;
1860 unsigned long next;
1861 int err;
1862
1863 pud = pud_alloc(mm, pgd, addr);
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pud++, addr = next, addr != end);
1872 return err;
1873 }
1874
1875 /*
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1878 */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 unsigned long size, pte_fn_t fn, void *data)
1881 {
1882 pgd_t *pgd;
1883 unsigned long next;
1884 unsigned long end = addr + size;
1885 int err;
1886
1887 BUG_ON(addr >= end);
1888 pgd = pgd_offset(mm, addr);
1889 do {
1890 next = pgd_addr_end(addr, end);
1891 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892 if (err)
1893 break;
1894 } while (pgd++, addr = next, addr != end);
1895
1896 return err;
1897 }
1898 EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
1900 /*
1901 * handle_pte_fault chooses page fault handler according to an entry which was
1902 * read non-atomically. Before making any commitment, on those architectures
1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904 * parts, do_swap_page must check under lock before unmapping the pte and
1905 * proceeding (but do_wp_page is only called after already making such a check;
1906 * and do_anonymous_page can safely check later on).
1907 */
1908 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1909 pte_t *page_table, pte_t orig_pte)
1910 {
1911 int same = 1;
1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913 if (sizeof(pte_t) > sizeof(unsigned long)) {
1914 spinlock_t *ptl = pte_lockptr(mm, pmd);
1915 spin_lock(ptl);
1916 same = pte_same(*page_table, orig_pte);
1917 spin_unlock(ptl);
1918 }
1919 #endif
1920 pte_unmap(page_table);
1921 return same;
1922 }
1923
1924 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1925 {
1926 debug_dma_assert_idle(src);
1927
1928 /*
1929 * If the source page was a PFN mapping, we don't have
1930 * a "struct page" for it. We do a best-effort copy by
1931 * just copying from the original user address. If that
1932 * fails, we just zero-fill it. Live with it.
1933 */
1934 if (unlikely(!src)) {
1935 void *kaddr = kmap_atomic(dst);
1936 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1937
1938 /*
1939 * This really shouldn't fail, because the page is there
1940 * in the page tables. But it might just be unreadable,
1941 * in which case we just give up and fill the result with
1942 * zeroes.
1943 */
1944 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1945 clear_page(kaddr);
1946 kunmap_atomic(kaddr);
1947 flush_dcache_page(dst);
1948 } else
1949 copy_user_highpage(dst, src, va, vma);
1950 }
1951
1952 /*
1953 * Notify the address space that the page is about to become writable so that
1954 * it can prohibit this or wait for the page to get into an appropriate state.
1955 *
1956 * We do this without the lock held, so that it can sleep if it needs to.
1957 */
1958 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959 unsigned long address)
1960 {
1961 struct vm_fault vmf;
1962 int ret;
1963
1964 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965 vmf.pgoff = page->index;
1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967 vmf.page = page;
1968
1969 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971 return ret;
1972 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973 lock_page(page);
1974 if (!page->mapping) {
1975 unlock_page(page);
1976 return 0; /* retry */
1977 }
1978 ret |= VM_FAULT_LOCKED;
1979 } else
1980 VM_BUG_ON_PAGE(!PageLocked(page), page);
1981 return ret;
1982 }
1983
1984 /*
1985 * This routine handles present pages, when users try to write
1986 * to a shared page. It is done by copying the page to a new address
1987 * and decrementing the shared-page counter for the old page.
1988 *
1989 * Note that this routine assumes that the protection checks have been
1990 * done by the caller (the low-level page fault routine in most cases).
1991 * Thus we can safely just mark it writable once we've done any necessary
1992 * COW.
1993 *
1994 * We also mark the page dirty at this point even though the page will
1995 * change only once the write actually happens. This avoids a few races,
1996 * and potentially makes it more efficient.
1997 *
1998 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1999 * but allow concurrent faults), with pte both mapped and locked.
2000 * We return with mmap_sem still held, but pte unmapped and unlocked.
2001 */
2002 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2003 unsigned long address, pte_t *page_table, pmd_t *pmd,
2004 spinlock_t *ptl, pte_t orig_pte)
2005 __releases(ptl)
2006 {
2007 struct page *old_page, *new_page = NULL;
2008 pte_t entry;
2009 int ret = 0;
2010 int page_mkwrite = 0;
2011 bool dirty_shared = false;
2012 unsigned long mmun_start = 0; /* For mmu_notifiers */
2013 unsigned long mmun_end = 0; /* For mmu_notifiers */
2014 struct mem_cgroup *memcg;
2015
2016 old_page = vm_normal_page(vma, address, orig_pte);
2017 if (!old_page) {
2018 /*
2019 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2020 * VM_PFNMAP VMA.
2021 *
2022 * We should not cow pages in a shared writeable mapping.
2023 * Just mark the pages writable as we can't do any dirty
2024 * accounting on raw pfn maps.
2025 */
2026 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2027 (VM_WRITE|VM_SHARED))
2028 goto reuse;
2029 goto gotten;
2030 }
2031
2032 /*
2033 * Take out anonymous pages first, anonymous shared vmas are
2034 * not dirty accountable.
2035 */
2036 if (PageAnon(old_page) && !PageKsm(old_page)) {
2037 if (!trylock_page(old_page)) {
2038 page_cache_get(old_page);
2039 pte_unmap_unlock(page_table, ptl);
2040 lock_page(old_page);
2041 page_table = pte_offset_map_lock(mm, pmd, address,
2042 &ptl);
2043 if (!pte_same(*page_table, orig_pte)) {
2044 unlock_page(old_page);
2045 goto unlock;
2046 }
2047 page_cache_release(old_page);
2048 }
2049 if (reuse_swap_page(old_page)) {
2050 /*
2051 * The page is all ours. Move it to our anon_vma so
2052 * the rmap code will not search our parent or siblings.
2053 * Protected against the rmap code by the page lock.
2054 */
2055 page_move_anon_rmap(old_page, vma, address);
2056 unlock_page(old_page);
2057 goto reuse;
2058 }
2059 unlock_page(old_page);
2060 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2061 (VM_WRITE|VM_SHARED))) {
2062 page_cache_get(old_page);
2063 /*
2064 * Only catch write-faults on shared writable pages,
2065 * read-only shared pages can get COWed by
2066 * get_user_pages(.write=1, .force=1).
2067 */
2068 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2069 int tmp;
2070
2071 pte_unmap_unlock(page_table, ptl);
2072 tmp = do_page_mkwrite(vma, old_page, address);
2073 if (unlikely(!tmp || (tmp &
2074 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2075 page_cache_release(old_page);
2076 return tmp;
2077 }
2078 /*
2079 * Since we dropped the lock we need to revalidate
2080 * the PTE as someone else may have changed it. If
2081 * they did, we just return, as we can count on the
2082 * MMU to tell us if they didn't also make it writable.
2083 */
2084 page_table = pte_offset_map_lock(mm, pmd, address,
2085 &ptl);
2086 if (!pte_same(*page_table, orig_pte)) {
2087 unlock_page(old_page);
2088 goto unlock;
2089 }
2090 page_mkwrite = 1;
2091 }
2092
2093 dirty_shared = true;
2094
2095 reuse:
2096 /*
2097 * Clear the pages cpupid information as the existing
2098 * information potentially belongs to a now completely
2099 * unrelated process.
2100 */
2101 if (old_page)
2102 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2103
2104 flush_cache_page(vma, address, pte_pfn(orig_pte));
2105 entry = pte_mkyoung(orig_pte);
2106 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2108 update_mmu_cache(vma, address, page_table);
2109 pte_unmap_unlock(page_table, ptl);
2110 ret |= VM_FAULT_WRITE;
2111
2112 if (dirty_shared) {
2113 struct address_space *mapping;
2114 int dirtied;
2115
2116 if (!page_mkwrite)
2117 lock_page(old_page);
2118
2119 dirtied = set_page_dirty(old_page);
2120 VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
2121 mapping = old_page->mapping;
2122 unlock_page(old_page);
2123 page_cache_release(old_page);
2124
2125 if ((dirtied || page_mkwrite) && mapping) {
2126 /*
2127 * Some device drivers do not set page.mapping
2128 * but still dirty their pages
2129 */
2130 balance_dirty_pages_ratelimited(mapping);
2131 }
2132
2133 if (!page_mkwrite)
2134 file_update_time(vma->vm_file);
2135 }
2136
2137 return ret;
2138 }
2139
2140 /*
2141 * Ok, we need to copy. Oh, well..
2142 */
2143 page_cache_get(old_page);
2144 gotten:
2145 pte_unmap_unlock(page_table, ptl);
2146
2147 if (unlikely(anon_vma_prepare(vma)))
2148 goto oom;
2149
2150 if (is_zero_pfn(pte_pfn(orig_pte))) {
2151 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2152 if (!new_page)
2153 goto oom;
2154 } else {
2155 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2156 if (!new_page)
2157 goto oom;
2158 cow_user_page(new_page, old_page, address, vma);
2159 }
2160 __SetPageUptodate(new_page);
2161
2162 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2163 goto oom_free_new;
2164
2165 mmun_start = address & PAGE_MASK;
2166 mmun_end = mmun_start + PAGE_SIZE;
2167 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2168
2169 /*
2170 * Re-check the pte - we dropped the lock
2171 */
2172 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2173 if (likely(pte_same(*page_table, orig_pte))) {
2174 if (old_page) {
2175 if (!PageAnon(old_page)) {
2176 dec_mm_counter_fast(mm, MM_FILEPAGES);
2177 inc_mm_counter_fast(mm, MM_ANONPAGES);
2178 }
2179 } else
2180 inc_mm_counter_fast(mm, MM_ANONPAGES);
2181 flush_cache_page(vma, address, pte_pfn(orig_pte));
2182 entry = mk_pte(new_page, vma->vm_page_prot);
2183 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2184 /*
2185 * Clear the pte entry and flush it first, before updating the
2186 * pte with the new entry. This will avoid a race condition
2187 * seen in the presence of one thread doing SMC and another
2188 * thread doing COW.
2189 */
2190 ptep_clear_flush_notify(vma, address, page_table);
2191 page_add_new_anon_rmap(new_page, vma, address);
2192 mem_cgroup_commit_charge(new_page, memcg, false);
2193 lru_cache_add_active_or_unevictable(new_page, vma);
2194 /*
2195 * We call the notify macro here because, when using secondary
2196 * mmu page tables (such as kvm shadow page tables), we want the
2197 * new page to be mapped directly into the secondary page table.
2198 */
2199 set_pte_at_notify(mm, address, page_table, entry);
2200 update_mmu_cache(vma, address, page_table);
2201 if (old_page) {
2202 /*
2203 * Only after switching the pte to the new page may
2204 * we remove the mapcount here. Otherwise another
2205 * process may come and find the rmap count decremented
2206 * before the pte is switched to the new page, and
2207 * "reuse" the old page writing into it while our pte
2208 * here still points into it and can be read by other
2209 * threads.
2210 *
2211 * The critical issue is to order this
2212 * page_remove_rmap with the ptp_clear_flush above.
2213 * Those stores are ordered by (if nothing else,)
2214 * the barrier present in the atomic_add_negative
2215 * in page_remove_rmap.
2216 *
2217 * Then the TLB flush in ptep_clear_flush ensures that
2218 * no process can access the old page before the
2219 * decremented mapcount is visible. And the old page
2220 * cannot be reused until after the decremented
2221 * mapcount is visible. So transitively, TLBs to
2222 * old page will be flushed before it can be reused.
2223 */
2224 page_remove_rmap(old_page);
2225 }
2226
2227 /* Free the old page.. */
2228 new_page = old_page;
2229 ret |= VM_FAULT_WRITE;
2230 } else
2231 mem_cgroup_cancel_charge(new_page, memcg);
2232
2233 if (new_page)
2234 page_cache_release(new_page);
2235 unlock:
2236 pte_unmap_unlock(page_table, ptl);
2237 if (mmun_end > mmun_start)
2238 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2239 if (old_page) {
2240 /*
2241 * Don't let another task, with possibly unlocked vma,
2242 * keep the mlocked page.
2243 */
2244 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2245 lock_page(old_page); /* LRU manipulation */
2246 munlock_vma_page(old_page);
2247 unlock_page(old_page);
2248 }
2249 page_cache_release(old_page);
2250 }
2251 return ret;
2252 oom_free_new:
2253 page_cache_release(new_page);
2254 oom:
2255 if (old_page)
2256 page_cache_release(old_page);
2257 return VM_FAULT_OOM;
2258 }
2259
2260 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2261 unsigned long start_addr, unsigned long end_addr,
2262 struct zap_details *details)
2263 {
2264 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2265 }
2266
2267 static inline void unmap_mapping_range_tree(struct rb_root *root,
2268 struct zap_details *details)
2269 {
2270 struct vm_area_struct *vma;
2271 pgoff_t vba, vea, zba, zea;
2272
2273 vma_interval_tree_foreach(vma, root,
2274 details->first_index, details->last_index) {
2275
2276 vba = vma->vm_pgoff;
2277 vea = vba + vma_pages(vma) - 1;
2278 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2279 zba = details->first_index;
2280 if (zba < vba)
2281 zba = vba;
2282 zea = details->last_index;
2283 if (zea > vea)
2284 zea = vea;
2285
2286 unmap_mapping_range_vma(vma,
2287 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2288 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2289 details);
2290 }
2291 }
2292
2293 /**
2294 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2295 * address_space corresponding to the specified page range in the underlying
2296 * file.
2297 *
2298 * @mapping: the address space containing mmaps to be unmapped.
2299 * @holebegin: byte in first page to unmap, relative to the start of
2300 * the underlying file. This will be rounded down to a PAGE_SIZE
2301 * boundary. Note that this is different from truncate_pagecache(), which
2302 * must keep the partial page. In contrast, we must get rid of
2303 * partial pages.
2304 * @holelen: size of prospective hole in bytes. This will be rounded
2305 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2306 * end of the file.
2307 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2308 * but 0 when invalidating pagecache, don't throw away private data.
2309 */
2310 void unmap_mapping_range(struct address_space *mapping,
2311 loff_t const holebegin, loff_t const holelen, int even_cows)
2312 {
2313 struct zap_details details;
2314 pgoff_t hba = holebegin >> PAGE_SHIFT;
2315 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2316
2317 /* Check for overflow. */
2318 if (sizeof(holelen) > sizeof(hlen)) {
2319 long long holeend =
2320 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2321 if (holeend & ~(long long)ULONG_MAX)
2322 hlen = ULONG_MAX - hba + 1;
2323 }
2324
2325 details.check_mapping = even_cows? NULL: mapping;
2326 details.first_index = hba;
2327 details.last_index = hba + hlen - 1;
2328 if (details.last_index < details.first_index)
2329 details.last_index = ULONG_MAX;
2330
2331
2332 i_mmap_lock_write(mapping);
2333 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2334 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2335 i_mmap_unlock_write(mapping);
2336 }
2337 EXPORT_SYMBOL(unmap_mapping_range);
2338
2339 /*
2340 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2341 * but allow concurrent faults), and pte mapped but not yet locked.
2342 * We return with pte unmapped and unlocked.
2343 *
2344 * We return with the mmap_sem locked or unlocked in the same cases
2345 * as does filemap_fault().
2346 */
2347 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2348 unsigned long address, pte_t *page_table, pmd_t *pmd,
2349 unsigned int flags, pte_t orig_pte)
2350 {
2351 spinlock_t *ptl;
2352 struct page *page, *swapcache;
2353 struct mem_cgroup *memcg;
2354 swp_entry_t entry;
2355 pte_t pte;
2356 int locked;
2357 int exclusive = 0;
2358 int ret = 0;
2359
2360 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2361 goto out;
2362
2363 entry = pte_to_swp_entry(orig_pte);
2364 if (unlikely(non_swap_entry(entry))) {
2365 if (is_migration_entry(entry)) {
2366 migration_entry_wait(mm, pmd, address);
2367 } else if (is_hwpoison_entry(entry)) {
2368 ret = VM_FAULT_HWPOISON;
2369 } else {
2370 print_bad_pte(vma, address, orig_pte, NULL);
2371 ret = VM_FAULT_SIGBUS;
2372 }
2373 goto out;
2374 }
2375 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2376 page = lookup_swap_cache(entry);
2377 if (!page) {
2378 page = swapin_readahead(entry,
2379 GFP_HIGHUSER_MOVABLE, vma, address);
2380 if (!page) {
2381 /*
2382 * Back out if somebody else faulted in this pte
2383 * while we released the pte lock.
2384 */
2385 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2386 if (likely(pte_same(*page_table, orig_pte)))
2387 ret = VM_FAULT_OOM;
2388 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2389 goto unlock;
2390 }
2391
2392 /* Had to read the page from swap area: Major fault */
2393 ret = VM_FAULT_MAJOR;
2394 count_vm_event(PGMAJFAULT);
2395 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2396 } else if (PageHWPoison(page)) {
2397 /*
2398 * hwpoisoned dirty swapcache pages are kept for killing
2399 * owner processes (which may be unknown at hwpoison time)
2400 */
2401 ret = VM_FAULT_HWPOISON;
2402 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2403 swapcache = page;
2404 goto out_release;
2405 }
2406
2407 swapcache = page;
2408 locked = lock_page_or_retry(page, mm, flags);
2409
2410 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2411 if (!locked) {
2412 ret |= VM_FAULT_RETRY;
2413 goto out_release;
2414 }
2415
2416 /*
2417 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2418 * release the swapcache from under us. The page pin, and pte_same
2419 * test below, are not enough to exclude that. Even if it is still
2420 * swapcache, we need to check that the page's swap has not changed.
2421 */
2422 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2423 goto out_page;
2424
2425 page = ksm_might_need_to_copy(page, vma, address);
2426 if (unlikely(!page)) {
2427 ret = VM_FAULT_OOM;
2428 page = swapcache;
2429 goto out_page;
2430 }
2431
2432 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2433 ret = VM_FAULT_OOM;
2434 goto out_page;
2435 }
2436
2437 /*
2438 * Back out if somebody else already faulted in this pte.
2439 */
2440 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2441 if (unlikely(!pte_same(*page_table, orig_pte)))
2442 goto out_nomap;
2443
2444 if (unlikely(!PageUptodate(page))) {
2445 ret = VM_FAULT_SIGBUS;
2446 goto out_nomap;
2447 }
2448
2449 /*
2450 * The page isn't present yet, go ahead with the fault.
2451 *
2452 * Be careful about the sequence of operations here.
2453 * To get its accounting right, reuse_swap_page() must be called
2454 * while the page is counted on swap but not yet in mapcount i.e.
2455 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2456 * must be called after the swap_free(), or it will never succeed.
2457 */
2458
2459 inc_mm_counter_fast(mm, MM_ANONPAGES);
2460 dec_mm_counter_fast(mm, MM_SWAPENTS);
2461 pte = mk_pte(page, vma->vm_page_prot);
2462 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2463 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2464 flags &= ~FAULT_FLAG_WRITE;
2465 ret |= VM_FAULT_WRITE;
2466 exclusive = 1;
2467 }
2468 flush_icache_page(vma, page);
2469 if (pte_swp_soft_dirty(orig_pte))
2470 pte = pte_mksoft_dirty(pte);
2471 set_pte_at(mm, address, page_table, pte);
2472 if (page == swapcache) {
2473 do_page_add_anon_rmap(page, vma, address, exclusive);
2474 mem_cgroup_commit_charge(page, memcg, true);
2475 } else { /* ksm created a completely new copy */
2476 page_add_new_anon_rmap(page, vma, address);
2477 mem_cgroup_commit_charge(page, memcg, false);
2478 lru_cache_add_active_or_unevictable(page, vma);
2479 }
2480
2481 swap_free(entry);
2482 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2483 try_to_free_swap(page);
2484 unlock_page(page);
2485 if (page != swapcache) {
2486 /*
2487 * Hold the lock to avoid the swap entry to be reused
2488 * until we take the PT lock for the pte_same() check
2489 * (to avoid false positives from pte_same). For
2490 * further safety release the lock after the swap_free
2491 * so that the swap count won't change under a
2492 * parallel locked swapcache.
2493 */
2494 unlock_page(swapcache);
2495 page_cache_release(swapcache);
2496 }
2497
2498 if (flags & FAULT_FLAG_WRITE) {
2499 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2500 if (ret & VM_FAULT_ERROR)
2501 ret &= VM_FAULT_ERROR;
2502 goto out;
2503 }
2504
2505 /* No need to invalidate - it was non-present before */
2506 update_mmu_cache(vma, address, page_table);
2507 unlock:
2508 pte_unmap_unlock(page_table, ptl);
2509 out:
2510 return ret;
2511 out_nomap:
2512 mem_cgroup_cancel_charge(page, memcg);
2513 pte_unmap_unlock(page_table, ptl);
2514 out_page:
2515 unlock_page(page);
2516 out_release:
2517 page_cache_release(page);
2518 if (page != swapcache) {
2519 unlock_page(swapcache);
2520 page_cache_release(swapcache);
2521 }
2522 return ret;
2523 }
2524
2525 /*
2526 * This is like a special single-page "expand_{down|up}wards()",
2527 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2528 * doesn't hit another vma.
2529 */
2530 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2531 {
2532 address &= PAGE_MASK;
2533 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2534 struct vm_area_struct *prev = vma->vm_prev;
2535
2536 /*
2537 * Is there a mapping abutting this one below?
2538 *
2539 * That's only ok if it's the same stack mapping
2540 * that has gotten split..
2541 */
2542 if (prev && prev->vm_end == address)
2543 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2544
2545 return expand_downwards(vma, address - PAGE_SIZE);
2546 }
2547 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2548 struct vm_area_struct *next = vma->vm_next;
2549
2550 /* As VM_GROWSDOWN but s/below/above/ */
2551 if (next && next->vm_start == address + PAGE_SIZE)
2552 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2553
2554 return expand_upwards(vma, address + PAGE_SIZE);
2555 }
2556 return 0;
2557 }
2558
2559 /*
2560 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2561 * but allow concurrent faults), and pte mapped but not yet locked.
2562 * We return with mmap_sem still held, but pte unmapped and unlocked.
2563 */
2564 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2565 unsigned long address, pte_t *page_table, pmd_t *pmd,
2566 unsigned int flags)
2567 {
2568 struct mem_cgroup *memcg;
2569 struct page *page;
2570 spinlock_t *ptl;
2571 pte_t entry;
2572
2573 pte_unmap(page_table);
2574
2575 /* Check if we need to add a guard page to the stack */
2576 if (check_stack_guard_page(vma, address) < 0)
2577 return VM_FAULT_SIGSEGV;
2578
2579 /* Use the zero-page for reads */
2580 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2581 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2582 vma->vm_page_prot));
2583 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2584 if (!pte_none(*page_table))
2585 goto unlock;
2586 goto setpte;
2587 }
2588
2589 /* Allocate our own private page. */
2590 if (unlikely(anon_vma_prepare(vma)))
2591 goto oom;
2592 page = alloc_zeroed_user_highpage_movable(vma, address);
2593 if (!page)
2594 goto oom;
2595 /*
2596 * The memory barrier inside __SetPageUptodate makes sure that
2597 * preceeding stores to the page contents become visible before
2598 * the set_pte_at() write.
2599 */
2600 __SetPageUptodate(page);
2601
2602 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2603 goto oom_free_page;
2604
2605 entry = mk_pte(page, vma->vm_page_prot);
2606 if (vma->vm_flags & VM_WRITE)
2607 entry = pte_mkwrite(pte_mkdirty(entry));
2608
2609 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2610 if (!pte_none(*page_table))
2611 goto release;
2612
2613 inc_mm_counter_fast(mm, MM_ANONPAGES);
2614 page_add_new_anon_rmap(page, vma, address);
2615 mem_cgroup_commit_charge(page, memcg, false);
2616 lru_cache_add_active_or_unevictable(page, vma);
2617 setpte:
2618 set_pte_at(mm, address, page_table, entry);
2619
2620 /* No need to invalidate - it was non-present before */
2621 update_mmu_cache(vma, address, page_table);
2622 unlock:
2623 pte_unmap_unlock(page_table, ptl);
2624 return 0;
2625 release:
2626 mem_cgroup_cancel_charge(page, memcg);
2627 page_cache_release(page);
2628 goto unlock;
2629 oom_free_page:
2630 page_cache_release(page);
2631 oom:
2632 return VM_FAULT_OOM;
2633 }
2634
2635 /*
2636 * The mmap_sem must have been held on entry, and may have been
2637 * released depending on flags and vma->vm_ops->fault() return value.
2638 * See filemap_fault() and __lock_page_retry().
2639 */
2640 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2641 pgoff_t pgoff, unsigned int flags, struct page **page)
2642 {
2643 struct vm_fault vmf;
2644 int ret;
2645
2646 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647 vmf.pgoff = pgoff;
2648 vmf.flags = flags;
2649 vmf.page = NULL;
2650
2651 ret = vma->vm_ops->fault(vma, &vmf);
2652 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2653 return ret;
2654
2655 if (unlikely(PageHWPoison(vmf.page))) {
2656 if (ret & VM_FAULT_LOCKED)
2657 unlock_page(vmf.page);
2658 page_cache_release(vmf.page);
2659 return VM_FAULT_HWPOISON;
2660 }
2661
2662 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2663 lock_page(vmf.page);
2664 else
2665 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2666
2667 *page = vmf.page;
2668 return ret;
2669 }
2670
2671 /**
2672 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2673 *
2674 * @vma: virtual memory area
2675 * @address: user virtual address
2676 * @page: page to map
2677 * @pte: pointer to target page table entry
2678 * @write: true, if new entry is writable
2679 * @anon: true, if it's anonymous page
2680 *
2681 * Caller must hold page table lock relevant for @pte.
2682 *
2683 * Target users are page handler itself and implementations of
2684 * vm_ops->map_pages.
2685 */
2686 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2687 struct page *page, pte_t *pte, bool write, bool anon)
2688 {
2689 pte_t entry;
2690
2691 flush_icache_page(vma, page);
2692 entry = mk_pte(page, vma->vm_page_prot);
2693 if (write)
2694 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2695 if (anon) {
2696 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2697 page_add_new_anon_rmap(page, vma, address);
2698 } else {
2699 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2700 page_add_file_rmap(page);
2701 }
2702 set_pte_at(vma->vm_mm, address, pte, entry);
2703
2704 /* no need to invalidate: a not-present page won't be cached */
2705 update_mmu_cache(vma, address, pte);
2706 }
2707
2708 static unsigned long fault_around_bytes __read_mostly =
2709 rounddown_pow_of_two(65536);
2710
2711 #ifdef CONFIG_DEBUG_FS
2712 static int fault_around_bytes_get(void *data, u64 *val)
2713 {
2714 *val = fault_around_bytes;
2715 return 0;
2716 }
2717
2718 /*
2719 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2720 * rounded down to nearest page order. It's what do_fault_around() expects to
2721 * see.
2722 */
2723 static int fault_around_bytes_set(void *data, u64 val)
2724 {
2725 if (val / PAGE_SIZE > PTRS_PER_PTE)
2726 return -EINVAL;
2727 if (val > PAGE_SIZE)
2728 fault_around_bytes = rounddown_pow_of_two(val);
2729 else
2730 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2731 return 0;
2732 }
2733 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2734 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2735
2736 static int __init fault_around_debugfs(void)
2737 {
2738 void *ret;
2739
2740 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2741 &fault_around_bytes_fops);
2742 if (!ret)
2743 pr_warn("Failed to create fault_around_bytes in debugfs");
2744 return 0;
2745 }
2746 late_initcall(fault_around_debugfs);
2747 #endif
2748
2749 /*
2750 * do_fault_around() tries to map few pages around the fault address. The hope
2751 * is that the pages will be needed soon and this will lower the number of
2752 * faults to handle.
2753 *
2754 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2755 * not ready to be mapped: not up-to-date, locked, etc.
2756 *
2757 * This function is called with the page table lock taken. In the split ptlock
2758 * case the page table lock only protects only those entries which belong to
2759 * the page table corresponding to the fault address.
2760 *
2761 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2762 * only once.
2763 *
2764 * fault_around_pages() defines how many pages we'll try to map.
2765 * do_fault_around() expects it to return a power of two less than or equal to
2766 * PTRS_PER_PTE.
2767 *
2768 * The virtual address of the area that we map is naturally aligned to the
2769 * fault_around_pages() value (and therefore to page order). This way it's
2770 * easier to guarantee that we don't cross page table boundaries.
2771 */
2772 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2773 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2774 {
2775 unsigned long start_addr, nr_pages, mask;
2776 pgoff_t max_pgoff;
2777 struct vm_fault vmf;
2778 int off;
2779
2780 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2781 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2782
2783 start_addr = max(address & mask, vma->vm_start);
2784 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2785 pte -= off;
2786 pgoff -= off;
2787
2788 /*
2789 * max_pgoff is either end of page table or end of vma
2790 * or fault_around_pages() from pgoff, depending what is nearest.
2791 */
2792 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2793 PTRS_PER_PTE - 1;
2794 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2795 pgoff + nr_pages - 1);
2796
2797 /* Check if it makes any sense to call ->map_pages */
2798 while (!pte_none(*pte)) {
2799 if (++pgoff > max_pgoff)
2800 return;
2801 start_addr += PAGE_SIZE;
2802 if (start_addr >= vma->vm_end)
2803 return;
2804 pte++;
2805 }
2806
2807 vmf.virtual_address = (void __user *) start_addr;
2808 vmf.pte = pte;
2809 vmf.pgoff = pgoff;
2810 vmf.max_pgoff = max_pgoff;
2811 vmf.flags = flags;
2812 vma->vm_ops->map_pages(vma, &vmf);
2813 }
2814
2815 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2816 unsigned long address, pmd_t *pmd,
2817 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2818 {
2819 struct page *fault_page;
2820 spinlock_t *ptl;
2821 pte_t *pte;
2822 int ret = 0;
2823
2824 /*
2825 * Let's call ->map_pages() first and use ->fault() as fallback
2826 * if page by the offset is not ready to be mapped (cold cache or
2827 * something).
2828 */
2829 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2830 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2831 do_fault_around(vma, address, pte, pgoff, flags);
2832 if (!pte_same(*pte, orig_pte))
2833 goto unlock_out;
2834 pte_unmap_unlock(pte, ptl);
2835 }
2836
2837 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2838 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2839 return ret;
2840
2841 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2842 if (unlikely(!pte_same(*pte, orig_pte))) {
2843 pte_unmap_unlock(pte, ptl);
2844 unlock_page(fault_page);
2845 page_cache_release(fault_page);
2846 return ret;
2847 }
2848 do_set_pte(vma, address, fault_page, pte, false, false);
2849 unlock_page(fault_page);
2850 unlock_out:
2851 pte_unmap_unlock(pte, ptl);
2852 return ret;
2853 }
2854
2855 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2856 unsigned long address, pmd_t *pmd,
2857 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2858 {
2859 struct page *fault_page, *new_page;
2860 struct mem_cgroup *memcg;
2861 spinlock_t *ptl;
2862 pte_t *pte;
2863 int ret;
2864
2865 if (unlikely(anon_vma_prepare(vma)))
2866 return VM_FAULT_OOM;
2867
2868 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2869 if (!new_page)
2870 return VM_FAULT_OOM;
2871
2872 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2873 page_cache_release(new_page);
2874 return VM_FAULT_OOM;
2875 }
2876
2877 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2878 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2879 goto uncharge_out;
2880
2881 copy_user_highpage(new_page, fault_page, address, vma);
2882 __SetPageUptodate(new_page);
2883
2884 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2885 if (unlikely(!pte_same(*pte, orig_pte))) {
2886 pte_unmap_unlock(pte, ptl);
2887 unlock_page(fault_page);
2888 page_cache_release(fault_page);
2889 goto uncharge_out;
2890 }
2891 do_set_pte(vma, address, new_page, pte, true, true);
2892 mem_cgroup_commit_charge(new_page, memcg, false);
2893 lru_cache_add_active_or_unevictable(new_page, vma);
2894 pte_unmap_unlock(pte, ptl);
2895 unlock_page(fault_page);
2896 page_cache_release(fault_page);
2897 return ret;
2898 uncharge_out:
2899 mem_cgroup_cancel_charge(new_page, memcg);
2900 page_cache_release(new_page);
2901 return ret;
2902 }
2903
2904 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905 unsigned long address, pmd_t *pmd,
2906 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2907 {
2908 struct page *fault_page;
2909 struct address_space *mapping;
2910 spinlock_t *ptl;
2911 pte_t *pte;
2912 int dirtied = 0;
2913 int ret, tmp;
2914
2915 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2916 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2917 return ret;
2918
2919 /*
2920 * Check if the backing address space wants to know that the page is
2921 * about to become writable
2922 */
2923 if (vma->vm_ops->page_mkwrite) {
2924 unlock_page(fault_page);
2925 tmp = do_page_mkwrite(vma, fault_page, address);
2926 if (unlikely(!tmp ||
2927 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2928 page_cache_release(fault_page);
2929 return tmp;
2930 }
2931 }
2932
2933 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2934 if (unlikely(!pte_same(*pte, orig_pte))) {
2935 pte_unmap_unlock(pte, ptl);
2936 unlock_page(fault_page);
2937 page_cache_release(fault_page);
2938 return ret;
2939 }
2940 do_set_pte(vma, address, fault_page, pte, true, false);
2941 pte_unmap_unlock(pte, ptl);
2942
2943 if (set_page_dirty(fault_page))
2944 dirtied = 1;
2945 /*
2946 * Take a local copy of the address_space - page.mapping may be zeroed
2947 * by truncate after unlock_page(). The address_space itself remains
2948 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2949 * release semantics to prevent the compiler from undoing this copying.
2950 */
2951 mapping = fault_page->mapping;
2952 unlock_page(fault_page);
2953 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2954 /*
2955 * Some device drivers do not set page.mapping but still
2956 * dirty their pages
2957 */
2958 balance_dirty_pages_ratelimited(mapping);
2959 }
2960
2961 if (!vma->vm_ops->page_mkwrite)
2962 file_update_time(vma->vm_file);
2963
2964 return ret;
2965 }
2966
2967 /*
2968 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2969 * but allow concurrent faults).
2970 * The mmap_sem may have been released depending on flags and our
2971 * return value. See filemap_fault() and __lock_page_or_retry().
2972 */
2973 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2974 unsigned long address, pte_t *page_table, pmd_t *pmd,
2975 unsigned int flags, pte_t orig_pte)
2976 {
2977 pgoff_t pgoff = (((address & PAGE_MASK)
2978 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2979
2980 pte_unmap(page_table);
2981 if (!(flags & FAULT_FLAG_WRITE))
2982 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
2983 orig_pte);
2984 if (!(vma->vm_flags & VM_SHARED))
2985 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
2986 orig_pte);
2987 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2988 }
2989
2990 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
2991 unsigned long addr, int page_nid,
2992 int *flags)
2993 {
2994 get_page(page);
2995
2996 count_vm_numa_event(NUMA_HINT_FAULTS);
2997 if (page_nid == numa_node_id()) {
2998 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
2999 *flags |= TNF_FAULT_LOCAL;
3000 }
3001
3002 return mpol_misplaced(page, vma, addr);
3003 }
3004
3005 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3006 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3007 {
3008 struct page *page = NULL;
3009 spinlock_t *ptl;
3010 int page_nid = -1;
3011 int last_cpupid;
3012 int target_nid;
3013 bool migrated = false;
3014 int flags = 0;
3015
3016 /*
3017 * The "pte" at this point cannot be used safely without
3018 * validation through pte_unmap_same(). It's of NUMA type but
3019 * the pfn may be screwed if the read is non atomic.
3020 *
3021 * We can safely just do a "set_pte_at()", because the old
3022 * page table entry is not accessible, so there would be no
3023 * concurrent hardware modifications to the PTE.
3024 */
3025 ptl = pte_lockptr(mm, pmd);
3026 spin_lock(ptl);
3027 if (unlikely(!pte_same(*ptep, pte))) {
3028 pte_unmap_unlock(ptep, ptl);
3029 goto out;
3030 }
3031
3032 /* Make it present again */
3033 pte = pte_modify(pte, vma->vm_page_prot);
3034 pte = pte_mkyoung(pte);
3035 set_pte_at(mm, addr, ptep, pte);
3036 update_mmu_cache(vma, addr, ptep);
3037
3038 page = vm_normal_page(vma, addr, pte);
3039 if (!page) {
3040 pte_unmap_unlock(ptep, ptl);
3041 return 0;
3042 }
3043 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3044
3045 /*
3046 * Avoid grouping on DSO/COW pages in specific and RO pages
3047 * in general, RO pages shouldn't hurt as much anyway since
3048 * they can be in shared cache state.
3049 */
3050 if (!pte_write(pte))
3051 flags |= TNF_NO_GROUP;
3052
3053 /*
3054 * Flag if the page is shared between multiple address spaces. This
3055 * is later used when determining whether to group tasks together
3056 */
3057 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3058 flags |= TNF_SHARED;
3059
3060 last_cpupid = page_cpupid_last(page);
3061 page_nid = page_to_nid(page);
3062 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3063 pte_unmap_unlock(ptep, ptl);
3064 if (target_nid == -1) {
3065 put_page(page);
3066 goto out;
3067 }
3068
3069 /* Migrate to the requested node */
3070 migrated = migrate_misplaced_page(page, vma, target_nid);
3071 if (migrated) {
3072 page_nid = target_nid;
3073 flags |= TNF_MIGRATED;
3074 }
3075
3076 out:
3077 if (page_nid != -1)
3078 task_numa_fault(last_cpupid, page_nid, 1, flags);
3079 return 0;
3080 }
3081
3082 /*
3083 * These routines also need to handle stuff like marking pages dirty
3084 * and/or accessed for architectures that don't do it in hardware (most
3085 * RISC architectures). The early dirtying is also good on the i386.
3086 *
3087 * There is also a hook called "update_mmu_cache()" that architectures
3088 * with external mmu caches can use to update those (ie the Sparc or
3089 * PowerPC hashed page tables that act as extended TLBs).
3090 *
3091 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3092 * but allow concurrent faults), and pte mapped but not yet locked.
3093 * We return with pte unmapped and unlocked.
3094 *
3095 * The mmap_sem may have been released depending on flags and our
3096 * return value. See filemap_fault() and __lock_page_or_retry().
3097 */
3098 static int handle_pte_fault(struct mm_struct *mm,
3099 struct vm_area_struct *vma, unsigned long address,
3100 pte_t *pte, pmd_t *pmd, unsigned int flags)
3101 {
3102 pte_t entry;
3103 spinlock_t *ptl;
3104
3105 /*
3106 * some architectures can have larger ptes than wordsize,
3107 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3108 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3109 * The code below just needs a consistent view for the ifs and
3110 * we later double check anyway with the ptl lock held. So here
3111 * a barrier will do.
3112 */
3113 entry = *pte;
3114 barrier();
3115 if (!pte_present(entry)) {
3116 if (pte_none(entry)) {
3117 if (vma->vm_ops) {
3118 if (likely(vma->vm_ops->fault))
3119 return do_fault(mm, vma, address, pte,
3120 pmd, flags, entry);
3121 }
3122 return do_anonymous_page(mm, vma, address,
3123 pte, pmd, flags);
3124 }
3125 return do_swap_page(mm, vma, address,
3126 pte, pmd, flags, entry);
3127 }
3128
3129 if (pte_protnone(entry))
3130 return do_numa_page(mm, vma, address, entry, pte, pmd);
3131
3132 ptl = pte_lockptr(mm, pmd);
3133 spin_lock(ptl);
3134 if (unlikely(!pte_same(*pte, entry)))
3135 goto unlock;
3136 if (flags & FAULT_FLAG_WRITE) {
3137 if (!pte_write(entry))
3138 return do_wp_page(mm, vma, address,
3139 pte, pmd, ptl, entry);
3140 entry = pte_mkdirty(entry);
3141 }
3142 entry = pte_mkyoung(entry);
3143 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3144 update_mmu_cache(vma, address, pte);
3145 } else {
3146 /*
3147 * This is needed only for protection faults but the arch code
3148 * is not yet telling us if this is a protection fault or not.
3149 * This still avoids useless tlb flushes for .text page faults
3150 * with threads.
3151 */
3152 if (flags & FAULT_FLAG_WRITE)
3153 flush_tlb_fix_spurious_fault(vma, address);
3154 }
3155 unlock:
3156 pte_unmap_unlock(pte, ptl);
3157 return 0;
3158 }
3159
3160 /*
3161 * By the time we get here, we already hold the mm semaphore
3162 *
3163 * The mmap_sem may have been released depending on flags and our
3164 * return value. See filemap_fault() and __lock_page_or_retry().
3165 */
3166 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3167 unsigned long address, unsigned int flags)
3168 {
3169 pgd_t *pgd;
3170 pud_t *pud;
3171 pmd_t *pmd;
3172 pte_t *pte;
3173
3174 if (unlikely(is_vm_hugetlb_page(vma)))
3175 return hugetlb_fault(mm, vma, address, flags);
3176
3177 pgd = pgd_offset(mm, address);
3178 pud = pud_alloc(mm, pgd, address);
3179 if (!pud)
3180 return VM_FAULT_OOM;
3181 pmd = pmd_alloc(mm, pud, address);
3182 if (!pmd)
3183 return VM_FAULT_OOM;
3184 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3185 int ret = VM_FAULT_FALLBACK;
3186 if (!vma->vm_ops)
3187 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3188 pmd, flags);
3189 if (!(ret & VM_FAULT_FALLBACK))
3190 return ret;
3191 } else {
3192 pmd_t orig_pmd = *pmd;
3193 int ret;
3194
3195 barrier();
3196 if (pmd_trans_huge(orig_pmd)) {
3197 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3198
3199 /*
3200 * If the pmd is splitting, return and retry the
3201 * the fault. Alternative: wait until the split
3202 * is done, and goto retry.
3203 */
3204 if (pmd_trans_splitting(orig_pmd))
3205 return 0;
3206
3207 if (pmd_protnone(orig_pmd))
3208 return do_huge_pmd_numa_page(mm, vma, address,
3209 orig_pmd, pmd);
3210
3211 if (dirty && !pmd_write(orig_pmd)) {
3212 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3213 orig_pmd);
3214 if (!(ret & VM_FAULT_FALLBACK))
3215 return ret;
3216 } else {
3217 huge_pmd_set_accessed(mm, vma, address, pmd,
3218 orig_pmd, dirty);
3219 return 0;
3220 }
3221 }
3222 }
3223
3224 /*
3225 * Use __pte_alloc instead of pte_alloc_map, because we can't
3226 * run pte_offset_map on the pmd, if an huge pmd could
3227 * materialize from under us from a different thread.
3228 */
3229 if (unlikely(pmd_none(*pmd)) &&
3230 unlikely(__pte_alloc(mm, vma, pmd, address)))
3231 return VM_FAULT_OOM;
3232 /* if an huge pmd materialized from under us just retry later */
3233 if (unlikely(pmd_trans_huge(*pmd)))
3234 return 0;
3235 /*
3236 * A regular pmd is established and it can't morph into a huge pmd
3237 * from under us anymore at this point because we hold the mmap_sem
3238 * read mode and khugepaged takes it in write mode. So now it's
3239 * safe to run pte_offset_map().
3240 */
3241 pte = pte_offset_map(pmd, address);
3242
3243 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3244 }
3245
3246 /*
3247 * By the time we get here, we already hold the mm semaphore
3248 *
3249 * The mmap_sem may have been released depending on flags and our
3250 * return value. See filemap_fault() and __lock_page_or_retry().
3251 */
3252 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3253 unsigned long address, unsigned int flags)
3254 {
3255 int ret;
3256
3257 __set_current_state(TASK_RUNNING);
3258
3259 count_vm_event(PGFAULT);
3260 mem_cgroup_count_vm_event(mm, PGFAULT);
3261
3262 /* do counter updates before entering really critical section. */
3263 check_sync_rss_stat(current);
3264
3265 /*
3266 * Enable the memcg OOM handling for faults triggered in user
3267 * space. Kernel faults are handled more gracefully.
3268 */
3269 if (flags & FAULT_FLAG_USER)
3270 mem_cgroup_oom_enable();
3271
3272 ret = __handle_mm_fault(mm, vma, address, flags);
3273
3274 if (flags & FAULT_FLAG_USER) {
3275 mem_cgroup_oom_disable();
3276 /*
3277 * The task may have entered a memcg OOM situation but
3278 * if the allocation error was handled gracefully (no
3279 * VM_FAULT_OOM), there is no need to kill anything.
3280 * Just clean up the OOM state peacefully.
3281 */
3282 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3283 mem_cgroup_oom_synchronize(false);
3284 }
3285
3286 return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(handle_mm_fault);
3289
3290 #ifndef __PAGETABLE_PUD_FOLDED
3291 /*
3292 * Allocate page upper directory.
3293 * We've already handled the fast-path in-line.
3294 */
3295 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3296 {
3297 pud_t *new = pud_alloc_one(mm, address);
3298 if (!new)
3299 return -ENOMEM;
3300
3301 smp_wmb(); /* See comment in __pte_alloc */
3302
3303 spin_lock(&mm->page_table_lock);
3304 if (pgd_present(*pgd)) /* Another has populated it */
3305 pud_free(mm, new);
3306 else
3307 pgd_populate(mm, pgd, new);
3308 spin_unlock(&mm->page_table_lock);
3309 return 0;
3310 }
3311 #endif /* __PAGETABLE_PUD_FOLDED */
3312
3313 #ifndef __PAGETABLE_PMD_FOLDED
3314 /*
3315 * Allocate page middle directory.
3316 * We've already handled the fast-path in-line.
3317 */
3318 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3319 {
3320 pmd_t *new = pmd_alloc_one(mm, address);
3321 if (!new)
3322 return -ENOMEM;
3323
3324 smp_wmb(); /* See comment in __pte_alloc */
3325
3326 spin_lock(&mm->page_table_lock);
3327 #ifndef __ARCH_HAS_4LEVEL_HACK
3328 if (!pud_present(*pud)) {
3329 mm_inc_nr_pmds(mm);
3330 pud_populate(mm, pud, new);
3331 } else /* Another has populated it */
3332 pmd_free(mm, new);
3333 #else
3334 if (!pgd_present(*pud)) {
3335 mm_inc_nr_pmds(mm);
3336 pgd_populate(mm, pud, new);
3337 } else /* Another has populated it */
3338 pmd_free(mm, new);
3339 #endif /* __ARCH_HAS_4LEVEL_HACK */
3340 spin_unlock(&mm->page_table_lock);
3341 return 0;
3342 }
3343 #endif /* __PAGETABLE_PMD_FOLDED */
3344
3345 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3346 pte_t **ptepp, spinlock_t **ptlp)
3347 {
3348 pgd_t *pgd;
3349 pud_t *pud;
3350 pmd_t *pmd;
3351 pte_t *ptep;
3352
3353 pgd = pgd_offset(mm, address);
3354 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3355 goto out;
3356
3357 pud = pud_offset(pgd, address);
3358 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3359 goto out;
3360
3361 pmd = pmd_offset(pud, address);
3362 VM_BUG_ON(pmd_trans_huge(*pmd));
3363 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3364 goto out;
3365
3366 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3367 if (pmd_huge(*pmd))
3368 goto out;
3369
3370 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3371 if (!ptep)
3372 goto out;
3373 if (!pte_present(*ptep))
3374 goto unlock;
3375 *ptepp = ptep;
3376 return 0;
3377 unlock:
3378 pte_unmap_unlock(ptep, *ptlp);
3379 out:
3380 return -EINVAL;
3381 }
3382
3383 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3384 pte_t **ptepp, spinlock_t **ptlp)
3385 {
3386 int res;
3387
3388 /* (void) is needed to make gcc happy */
3389 (void) __cond_lock(*ptlp,
3390 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3391 return res;
3392 }
3393
3394 /**
3395 * follow_pfn - look up PFN at a user virtual address
3396 * @vma: memory mapping
3397 * @address: user virtual address
3398 * @pfn: location to store found PFN
3399 *
3400 * Only IO mappings and raw PFN mappings are allowed.
3401 *
3402 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3403 */
3404 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3405 unsigned long *pfn)
3406 {
3407 int ret = -EINVAL;
3408 spinlock_t *ptl;
3409 pte_t *ptep;
3410
3411 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3412 return ret;
3413
3414 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3415 if (ret)
3416 return ret;
3417 *pfn = pte_pfn(*ptep);
3418 pte_unmap_unlock(ptep, ptl);
3419 return 0;
3420 }
3421 EXPORT_SYMBOL(follow_pfn);
3422
3423 #ifdef CONFIG_HAVE_IOREMAP_PROT
3424 int follow_phys(struct vm_area_struct *vma,
3425 unsigned long address, unsigned int flags,
3426 unsigned long *prot, resource_size_t *phys)
3427 {
3428 int ret = -EINVAL;
3429 pte_t *ptep, pte;
3430 spinlock_t *ptl;
3431
3432 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3433 goto out;
3434
3435 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3436 goto out;
3437 pte = *ptep;
3438
3439 if ((flags & FOLL_WRITE) && !pte_write(pte))
3440 goto unlock;
3441
3442 *prot = pgprot_val(pte_pgprot(pte));
3443 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3444
3445 ret = 0;
3446 unlock:
3447 pte_unmap_unlock(ptep, ptl);
3448 out:
3449 return ret;
3450 }
3451
3452 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3453 void *buf, int len, int write)
3454 {
3455 resource_size_t phys_addr;
3456 unsigned long prot = 0;
3457 void __iomem *maddr;
3458 int offset = addr & (PAGE_SIZE-1);
3459
3460 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3461 return -EINVAL;
3462
3463 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3464 if (write)
3465 memcpy_toio(maddr + offset, buf, len);
3466 else
3467 memcpy_fromio(buf, maddr + offset, len);
3468 iounmap(maddr);
3469
3470 return len;
3471 }
3472 EXPORT_SYMBOL_GPL(generic_access_phys);
3473 #endif
3474
3475 /*
3476 * Access another process' address space as given in mm. If non-NULL, use the
3477 * given task for page fault accounting.
3478 */
3479 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3480 unsigned long addr, void *buf, int len, int write)
3481 {
3482 struct vm_area_struct *vma;
3483 void *old_buf = buf;
3484
3485 down_read(&mm->mmap_sem);
3486 /* ignore errors, just check how much was successfully transferred */
3487 while (len) {
3488 int bytes, ret, offset;
3489 void *maddr;
3490 struct page *page = NULL;
3491
3492 ret = get_user_pages(tsk, mm, addr, 1,
3493 write, 1, &page, &vma);
3494 if (ret <= 0) {
3495 #ifndef CONFIG_HAVE_IOREMAP_PROT
3496 break;
3497 #else
3498 /*
3499 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3500 * we can access using slightly different code.
3501 */
3502 vma = find_vma(mm, addr);
3503 if (!vma || vma->vm_start > addr)
3504 break;
3505 if (vma->vm_ops && vma->vm_ops->access)
3506 ret = vma->vm_ops->access(vma, addr, buf,
3507 len, write);
3508 if (ret <= 0)
3509 break;
3510 bytes = ret;
3511 #endif
3512 } else {
3513 bytes = len;
3514 offset = addr & (PAGE_SIZE-1);
3515 if (bytes > PAGE_SIZE-offset)
3516 bytes = PAGE_SIZE-offset;
3517
3518 maddr = kmap(page);
3519 if (write) {
3520 copy_to_user_page(vma, page, addr,
3521 maddr + offset, buf, bytes);
3522 set_page_dirty_lock(page);
3523 } else {
3524 copy_from_user_page(vma, page, addr,
3525 buf, maddr + offset, bytes);
3526 }
3527 kunmap(page);
3528 page_cache_release(page);
3529 }
3530 len -= bytes;
3531 buf += bytes;
3532 addr += bytes;
3533 }
3534 up_read(&mm->mmap_sem);
3535
3536 return buf - old_buf;
3537 }
3538
3539 /**
3540 * access_remote_vm - access another process' address space
3541 * @mm: the mm_struct of the target address space
3542 * @addr: start address to access
3543 * @buf: source or destination buffer
3544 * @len: number of bytes to transfer
3545 * @write: whether the access is a write
3546 *
3547 * The caller must hold a reference on @mm.
3548 */
3549 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3550 void *buf, int len, int write)
3551 {
3552 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3553 }
3554
3555 /*
3556 * Access another process' address space.
3557 * Source/target buffer must be kernel space,
3558 * Do not walk the page table directly, use get_user_pages
3559 */
3560 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3561 void *buf, int len, int write)
3562 {
3563 struct mm_struct *mm;
3564 int ret;
3565
3566 mm = get_task_mm(tsk);
3567 if (!mm)
3568 return 0;
3569
3570 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3571 mmput(mm);
3572
3573 return ret;
3574 }
3575
3576 /*
3577 * Print the name of a VMA.
3578 */
3579 void print_vma_addr(char *prefix, unsigned long ip)
3580 {
3581 struct mm_struct *mm = current->mm;
3582 struct vm_area_struct *vma;
3583
3584 /*
3585 * Do not print if we are in atomic
3586 * contexts (in exception stacks, etc.):
3587 */
3588 if (preempt_count())
3589 return;
3590
3591 down_read(&mm->mmap_sem);
3592 vma = find_vma(mm, ip);
3593 if (vma && vma->vm_file) {
3594 struct file *f = vma->vm_file;
3595 char *buf = (char *)__get_free_page(GFP_KERNEL);
3596 if (buf) {
3597 char *p;
3598
3599 p = d_path(&f->f_path, buf, PAGE_SIZE);
3600 if (IS_ERR(p))
3601 p = "?";
3602 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3603 vma->vm_start,
3604 vma->vm_end - vma->vm_start);
3605 free_page((unsigned long)buf);
3606 }
3607 }
3608 up_read(&mm->mmap_sem);
3609 }
3610
3611 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3612 void might_fault(void)
3613 {
3614 /*
3615 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3616 * holding the mmap_sem, this is safe because kernel memory doesn't
3617 * get paged out, therefore we'll never actually fault, and the
3618 * below annotations will generate false positives.
3619 */
3620 if (segment_eq(get_fs(), KERNEL_DS))
3621 return;
3622
3623 /*
3624 * it would be nicer only to annotate paths which are not under
3625 * pagefault_disable, however that requires a larger audit and
3626 * providing helpers like get_user_atomic.
3627 */
3628 if (in_atomic())
3629 return;
3630
3631 __might_sleep(__FILE__, __LINE__, 0);
3632
3633 if (current->mm)
3634 might_lock_read(&current->mm->mmap_sem);
3635 }
3636 EXPORT_SYMBOL(might_fault);
3637 #endif
3638
3639 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3640 static void clear_gigantic_page(struct page *page,
3641 unsigned long addr,
3642 unsigned int pages_per_huge_page)
3643 {
3644 int i;
3645 struct page *p = page;
3646
3647 might_sleep();
3648 for (i = 0; i < pages_per_huge_page;
3649 i++, p = mem_map_next(p, page, i)) {
3650 cond_resched();
3651 clear_user_highpage(p, addr + i * PAGE_SIZE);
3652 }
3653 }
3654 void clear_huge_page(struct page *page,
3655 unsigned long addr, unsigned int pages_per_huge_page)
3656 {
3657 int i;
3658
3659 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3660 clear_gigantic_page(page, addr, pages_per_huge_page);
3661 return;
3662 }
3663
3664 might_sleep();
3665 for (i = 0; i < pages_per_huge_page; i++) {
3666 cond_resched();
3667 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3668 }
3669 }
3670
3671 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3672 unsigned long addr,
3673 struct vm_area_struct *vma,
3674 unsigned int pages_per_huge_page)
3675 {
3676 int i;
3677 struct page *dst_base = dst;
3678 struct page *src_base = src;
3679
3680 for (i = 0; i < pages_per_huge_page; ) {
3681 cond_resched();
3682 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3683
3684 i++;
3685 dst = mem_map_next(dst, dst_base, i);
3686 src = mem_map_next(src, src_base, i);
3687 }
3688 }
3689
3690 void copy_user_huge_page(struct page *dst, struct page *src,
3691 unsigned long addr, struct vm_area_struct *vma,
3692 unsigned int pages_per_huge_page)
3693 {
3694 int i;
3695
3696 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3697 copy_user_gigantic_page(dst, src, addr, vma,
3698 pages_per_huge_page);
3699 return;
3700 }
3701
3702 might_sleep();
3703 for (i = 0; i < pages_per_huge_page; i++) {
3704 cond_resched();
3705 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3706 }
3707 }
3708 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3709
3710 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3711
3712 static struct kmem_cache *page_ptl_cachep;
3713
3714 void __init ptlock_cache_init(void)
3715 {
3716 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3717 SLAB_PANIC, NULL);
3718 }
3719
3720 bool ptlock_alloc(struct page *page)
3721 {
3722 spinlock_t *ptl;
3723
3724 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3725 if (!ptl)
3726 return false;
3727 page->ptl = ptl;
3728 return true;
3729 }
3730
3731 void ptlock_free(struct page *page)
3732 {
3733 kmem_cache_free(page_ptl_cachep, page->ptl);
3734 }
3735 #endif