]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory.c
UBUNTU: Ubuntu-5.11.0-19.20
[mirror_ubuntu-hirsute-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 1;
121 #else
122 2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139 randomize_va_space = 0;
140 return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
152 static int __init init_zero_pfn(void)
153 {
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156 }
157 early_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
174 }
175 }
176 current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
217 {
218 pgtable_t token = pmd_pgtable(*pmd);
219 pmd_clear(pmd);
220 pte_free_tlb(tlb, token, addr);
221 mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
227 {
228 pmd_t *pmd;
229 unsigned long next;
230 unsigned long start;
231
232 start = addr;
233 pmd = pmd_offset(pud, addr);
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
238 free_pte_range(tlb, pmd, addr);
239 } while (pmd++, addr = next, addr != end);
240
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
254 pmd_free_tlb(tlb, pmd, start);
255 mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
261 {
262 pud_t *pud;
263 unsigned long next;
264 unsigned long start;
265
266 start = addr;
267 pud = pud_offset(p4d, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 } while (pud++, addr = next, addr != end);
274
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
289 mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295 {
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
316 }
317 if (end - 1 > ceiling - 1)
318 return;
319
320 p4d = p4d_offset(pgd, start);
321 pgd_clear(pgd);
322 p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326 * This function frees user-level page tables of a process.
327 */
328 void free_pgd_range(struct mmu_gather *tlb,
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
331 {
332 pgd_t *pgd;
333 unsigned long next;
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
360
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
380 tlb_change_page_size(tlb, PAGE_SIZE);
381 pgd = pgd_offset(tlb->mm, addr);
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 unsigned long floor, unsigned long ceiling)
392 {
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
397 /*
398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
400 */
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403
404 if (is_vm_hugetlb_page(vma)) {
405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 && !is_vm_hugetlb_page(next)) {
413 vma = next;
414 next = vma->vm_next;
415 unlink_anon_vmas(vma);
416 unlink_file_vma(vma);
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
419 floor, next ? next->vm_start : ceiling);
420 }
421 vma = next;
422 }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 spinlock_t *ptl;
428 pgtable_t new = pte_alloc_one(mm);
429 if (!new)
430 return -ENOMEM;
431
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
443 * smp_rmb() barriers in page table walking code.
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447 ptl = pmd_lock(mm, pmd);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 mm_inc_nr_ptes(mm);
450 pmd_populate(mm, pmd, new);
451 new = NULL;
452 }
453 spin_unlock(ptl);
454 if (new)
455 pte_free(mm, new);
456 return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 pte_t *new = pte_alloc_one_kernel(&init_mm);
462 if (!new)
463 return -ENOMEM;
464
465 smp_wmb(); /* See comment in __pte_alloc */
466
467 spin_lock(&init_mm.page_table_lock);
468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
469 pmd_populate_kernel(&init_mm, pmd, new);
470 new = NULL;
471 }
472 spin_unlock(&init_mm.page_table_lock);
473 if (new)
474 pte_free_kernel(&init_mm, new);
475 return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 int i;
486
487 if (current->mm == mm)
488 sync_mm_rss(mm);
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
498 *
499 * The calling function must still handle the error.
500 */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
503 {
504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 if (page)
540 dump_page(page, "bad pte");
541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
548 dump_stack();
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 *
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 *
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
567 *
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
581 *
582 *
583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
593 */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
596 {
597 unsigned long pfn = pte_pfn(pte);
598
599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 if (likely(!pte_special(pte)))
601 goto check_pfn;
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
606 if (is_zero_pfn(pfn))
607 return NULL;
608 if (pte_devmap(pte))
609 return NULL;
610
611 print_bad_pte(vma, addr, pte, NULL);
612 return NULL;
613 }
614
615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
630 }
631
632 if (is_zero_pfn(pfn))
633 return NULL;
634
635 check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /*
642 * NOTE! We still have PageReserved() pages in the page tables.
643 * eg. VDSO mappings can cause them to exist.
644 */
645 out:
646 return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652 {
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
675 if (pmd_devmap(pmd))
676 return NULL;
677 if (is_huge_zero_pmd(pmd))
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686 out:
687 return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
695 */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 unsigned long addr, int *rss)
701 {
702 unsigned long vm_flags = vma->vm_flags;
703 pte_t pte = *src_pte;
704 struct page *page;
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
723 rss[mm_counter(page)]++;
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 set_pte_at(dst_mm, addr, dst_pte, pte);
772 return 0;
773 }
774
775 /*
776 * Copy a present and normal page if necessary.
777 *
778 * NOTE! The usual case is that this doesn't need to do
779 * anything, and can just return a positive value. That
780 * will let the caller know that it can just increase
781 * the page refcount and re-use the pte the traditional
782 * way.
783 *
784 * But _if_ we need to copy it because it needs to be
785 * pinned in the parent (and the child should get its own
786 * copy rather than just a reference to the same page),
787 * we'll do that here and return zero to let the caller
788 * know we're done.
789 *
790 * And if we need a pre-allocated page but don't yet have
791 * one, return a negative error to let the preallocation
792 * code know so that it can do so outside the page table
793 * lock.
794 */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 struct page **prealloc, pte_t pte, struct page *page)
799 {
800 struct mm_struct *src_mm = src_vma->vm_mm;
801 struct page *new_page;
802
803 if (!is_cow_mapping(src_vma->vm_flags))
804 return 1;
805
806 /*
807 * What we want to do is to check whether this page may
808 * have been pinned by the parent process. If so,
809 * instead of wrprotect the pte on both sides, we copy
810 * the page immediately so that we'll always guarantee
811 * the pinned page won't be randomly replaced in the
812 * future.
813 *
814 * The page pinning checks are just "has this mm ever
815 * seen pinning", along with the (inexact) check of
816 * the page count. That might give false positives for
817 * for pinning, but it will work correctly.
818 */
819 if (likely(!atomic_read(&src_mm->has_pinned)))
820 return 1;
821 if (likely(!page_maybe_dma_pinned(page)))
822 return 1;
823
824 new_page = *prealloc;
825 if (!new_page)
826 return -EAGAIN;
827
828 /*
829 * We have a prealloc page, all good! Take it
830 * over and copy the page & arm it.
831 */
832 *prealloc = NULL;
833 copy_user_highpage(new_page, page, addr, src_vma);
834 __SetPageUptodate(new_page);
835 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 rss[mm_counter(new_page)]++;
838
839 /* All done, just insert the new page copy in the child */
840 pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 return 0;
844 }
845
846 /*
847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
848 * is required to copy this pte.
849 */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 struct page **prealloc)
854 {
855 struct mm_struct *src_mm = src_vma->vm_mm;
856 unsigned long vm_flags = src_vma->vm_flags;
857 pte_t pte = *src_pte;
858 struct page *page;
859
860 page = vm_normal_page(src_vma, addr, pte);
861 if (page) {
862 int retval;
863
864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 addr, rss, prealloc, pte, page);
866 if (retval <= 0)
867 return retval;
868
869 get_page(page);
870 page_dup_rmap(page, false);
871 rss[mm_counter(page)]++;
872 }
873
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
878 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 ptep_set_wrprotect(src_mm, addr, src_pte);
880 pte = pte_wrprotect(pte);
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
890
891 /*
892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 * does not have the VM_UFFD_WP, which means that the uffd
894 * fork event is not enabled.
895 */
896 if (!(vm_flags & VM_UFFD_WP))
897 pte = pte_clear_uffd_wp(pte);
898
899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906 {
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
916 }
917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919 return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
926 {
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
929 pte_t *orig_src_pte, *orig_dst_pte;
930 pte_t *src_pte, *dst_pte;
931 spinlock_t *src_ptl, *dst_ptl;
932 int progress, ret = 0;
933 int rss[NR_MM_COUNTERS];
934 swp_entry_t entry = (swp_entry_t){0};
935 struct page *prealloc = NULL;
936
937 again:
938 progress = 0;
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
946 src_pte = pte_offset_map(src_pmd, addr);
947 src_ptl = pte_lockptr(src_mm, src_pmd);
948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
951 arch_enter_lazy_mmu_mode();
952
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 break;
963 }
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
971 src_vma, addr, rss);
972 if (entry.val)
973 break;
974 progress += 8;
975 continue;
976 }
977 /* copy_present_pte() will clear `*prealloc' if consumed */
978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 addr, rss, &prealloc);
980 /*
981 * If we need a pre-allocated page for this pte, drop the
982 * locks, allocate, and try again.
983 */
984 if (unlikely(ret == -EAGAIN))
985 break;
986 if (unlikely(prealloc)) {
987 /*
988 * pre-alloc page cannot be reused by next time so as
989 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 * will allocate page according to address). This
991 * could only happen if one pinned pte changed.
992 */
993 put_page(prealloc);
994 prealloc = NULL;
995 }
996 progress += 8;
997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999 arch_leave_lazy_mmu_mode();
1000 spin_unlock(src_ptl);
1001 pte_unmap(orig_src_pte);
1002 add_mm_rss_vec(dst_mm, rss);
1003 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 cond_resched();
1005
1006 if (entry.val) {
1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011 entry.val = 0;
1012 } else if (ret) {
1013 WARN_ON_ONCE(ret != -EAGAIN);
1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 if (!prealloc)
1016 return -ENOMEM;
1017 /* We've captured and resolved the error. Reset, try again. */
1018 ret = 0;
1019 }
1020 if (addr != end)
1021 goto again;
1022 out:
1023 if (unlikely(prealloc))
1024 put_page(prealloc);
1025 return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 unsigned long end)
1032 {
1033 struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 struct mm_struct *src_mm = src_vma->vm_mm;
1035 pmd_t *src_pmd, *dst_pmd;
1036 unsigned long next;
1037
1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 if (!dst_pmd)
1040 return -ENOMEM;
1041 src_pmd = pmd_offset(src_pud, addr);
1042 do {
1043 next = pmd_addr_end(addr, end);
1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 || pmd_devmap(*src_pmd)) {
1046 int err;
1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 err = copy_huge_pmd(dst_mm, src_mm,
1049 dst_pmd, src_pmd, addr, src_vma);
1050 if (err == -ENOMEM)
1051 return -ENOMEM;
1052 if (!err)
1053 continue;
1054 /* fall through */
1055 }
1056 if (pmd_none_or_clear_bad(src_pmd))
1057 continue;
1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 addr, next))
1060 return -ENOMEM;
1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 unsigned long end)
1069 {
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1072 pud_t *src_pud, *dst_pud;
1073 unsigned long next;
1074
1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 if (!dst_pud)
1077 return -ENOMEM;
1078 src_pud = pud_offset(src_p4d, addr);
1079 do {
1080 next = pud_addr_end(addr, end);
1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 int err;
1083
1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 err = copy_huge_pud(dst_mm, src_mm,
1086 dst_pud, src_pud, addr, src_vma);
1087 if (err == -ENOMEM)
1088 return -ENOMEM;
1089 if (!err)
1090 continue;
1091 /* fall through */
1092 }
1093 if (pud_none_or_clear_bad(src_pud))
1094 continue;
1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 addr, next))
1097 return -ENOMEM;
1098 } while (dst_pud++, src_pud++, addr = next, addr != end);
1099 return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 unsigned long end)
1106 {
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 p4d_t *src_p4d, *dst_p4d;
1109 unsigned long next;
1110
1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 if (!dst_p4d)
1113 return -ENOMEM;
1114 src_p4d = p4d_offset(src_pgd, addr);
1115 do {
1116 next = p4d_addr_end(addr, end);
1117 if (p4d_none_or_clear_bad(src_p4d))
1118 continue;
1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 addr, next))
1121 return -ENOMEM;
1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 pgd_t *src_pgd, *dst_pgd;
1130 unsigned long next;
1131 unsigned long addr = src_vma->vm_start;
1132 unsigned long end = src_vma->vm_end;
1133 struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 struct mm_struct *src_mm = src_vma->vm_mm;
1135 struct mmu_notifier_range range;
1136 bool is_cow;
1137 int ret;
1138
1139 /*
1140 * Don't copy ptes where a page fault will fill them correctly.
1141 * Fork becomes much lighter when there are big shared or private
1142 * readonly mappings. The tradeoff is that copy_page_range is more
1143 * efficient than faulting.
1144 */
1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 !src_vma->anon_vma)
1147 return 0;
1148
1149 if (is_vm_hugetlb_page(src_vma))
1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 /*
1154 * We do not free on error cases below as remove_vma
1155 * gets called on error from higher level routine
1156 */
1157 ret = track_pfn_copy(src_vma);
1158 if (ret)
1159 return ret;
1160 }
1161
1162 /*
1163 * We need to invalidate the secondary MMU mappings only when
1164 * there could be a permission downgrade on the ptes of the
1165 * parent mm. And a permission downgrade will only happen if
1166 * is_cow_mapping() returns true.
1167 */
1168 is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170 if (is_cow) {
1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 0, src_vma, src_mm, addr, end);
1173 mmu_notifier_invalidate_range_start(&range);
1174 /*
1175 * Disabling preemption is not needed for the write side, as
1176 * the read side doesn't spin, but goes to the mmap_lock.
1177 *
1178 * Use the raw variant of the seqcount_t write API to avoid
1179 * lockdep complaining about preemptibility.
1180 */
1181 mmap_assert_write_locked(src_mm);
1182 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1183 }
1184
1185 ret = 0;
1186 dst_pgd = pgd_offset(dst_mm, addr);
1187 src_pgd = pgd_offset(src_mm, addr);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 if (pgd_none_or_clear_bad(src_pgd))
1191 continue;
1192 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193 addr, next))) {
1194 ret = -ENOMEM;
1195 break;
1196 }
1197 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1198
1199 if (is_cow) {
1200 raw_write_seqcount_end(&src_mm->write_protect_seq);
1201 mmu_notifier_invalidate_range_end(&range);
1202 }
1203 return ret;
1204 }
1205
1206 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1207 struct vm_area_struct *vma, pmd_t *pmd,
1208 unsigned long addr, unsigned long end,
1209 struct zap_details *details)
1210 {
1211 struct mm_struct *mm = tlb->mm;
1212 int force_flush = 0;
1213 int rss[NR_MM_COUNTERS];
1214 spinlock_t *ptl;
1215 pte_t *start_pte;
1216 pte_t *pte;
1217 swp_entry_t entry;
1218
1219 tlb_change_page_size(tlb, PAGE_SIZE);
1220 again:
1221 init_rss_vec(rss);
1222 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223 pte = start_pte;
1224 flush_tlb_batched_pending(mm);
1225 arch_enter_lazy_mmu_mode();
1226 do {
1227 pte_t ptent = *pte;
1228 if (pte_none(ptent))
1229 continue;
1230
1231 if (need_resched())
1232 break;
1233
1234 if (pte_present(ptent)) {
1235 struct page *page;
1236
1237 page = vm_normal_page(vma, addr, ptent);
1238 if (unlikely(details) && page) {
1239 /*
1240 * unmap_shared_mapping_pages() wants to
1241 * invalidate cache without truncating:
1242 * unmap shared but keep private pages.
1243 */
1244 if (details->check_mapping &&
1245 details->check_mapping != page_rmapping(page))
1246 continue;
1247 }
1248 ptent = ptep_get_and_clear_full(mm, addr, pte,
1249 tlb->fullmm);
1250 tlb_remove_tlb_entry(tlb, pte, addr);
1251 if (unlikely(!page))
1252 continue;
1253
1254 if (!PageAnon(page)) {
1255 if (pte_dirty(ptent)) {
1256 force_flush = 1;
1257 set_page_dirty(page);
1258 }
1259 if (pte_young(ptent) &&
1260 likely(!(vma->vm_flags & VM_SEQ_READ)))
1261 mark_page_accessed(page);
1262 }
1263 rss[mm_counter(page)]--;
1264 page_remove_rmap(page, false);
1265 if (unlikely(page_mapcount(page) < 0))
1266 print_bad_pte(vma, addr, ptent, page);
1267 if (unlikely(__tlb_remove_page(tlb, page))) {
1268 force_flush = 1;
1269 addr += PAGE_SIZE;
1270 break;
1271 }
1272 continue;
1273 }
1274
1275 entry = pte_to_swp_entry(ptent);
1276 if (is_device_private_entry(entry)) {
1277 struct page *page = device_private_entry_to_page(entry);
1278
1279 if (unlikely(details && details->check_mapping)) {
1280 /*
1281 * unmap_shared_mapping_pages() wants to
1282 * invalidate cache without truncating:
1283 * unmap shared but keep private pages.
1284 */
1285 if (details->check_mapping !=
1286 page_rmapping(page))
1287 continue;
1288 }
1289
1290 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291 rss[mm_counter(page)]--;
1292 page_remove_rmap(page, false);
1293 put_page(page);
1294 continue;
1295 }
1296
1297 /* If details->check_mapping, we leave swap entries. */
1298 if (unlikely(details))
1299 continue;
1300
1301 if (!non_swap_entry(entry))
1302 rss[MM_SWAPENTS]--;
1303 else if (is_migration_entry(entry)) {
1304 struct page *page;
1305
1306 page = migration_entry_to_page(entry);
1307 rss[mm_counter(page)]--;
1308 }
1309 if (unlikely(!free_swap_and_cache(entry)))
1310 print_bad_pte(vma, addr, ptent, NULL);
1311 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1312 } while (pte++, addr += PAGE_SIZE, addr != end);
1313
1314 add_mm_rss_vec(mm, rss);
1315 arch_leave_lazy_mmu_mode();
1316
1317 /* Do the actual TLB flush before dropping ptl */
1318 if (force_flush)
1319 tlb_flush_mmu_tlbonly(tlb);
1320 pte_unmap_unlock(start_pte, ptl);
1321
1322 /*
1323 * If we forced a TLB flush (either due to running out of
1324 * batch buffers or because we needed to flush dirty TLB
1325 * entries before releasing the ptl), free the batched
1326 * memory too. Restart if we didn't do everything.
1327 */
1328 if (force_flush) {
1329 force_flush = 0;
1330 tlb_flush_mmu(tlb);
1331 }
1332
1333 if (addr != end) {
1334 cond_resched();
1335 goto again;
1336 }
1337
1338 return addr;
1339 }
1340
1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1342 struct vm_area_struct *vma, pud_t *pud,
1343 unsigned long addr, unsigned long end,
1344 struct zap_details *details)
1345 {
1346 pmd_t *pmd;
1347 unsigned long next;
1348
1349 pmd = pmd_offset(pud, addr);
1350 do {
1351 next = pmd_addr_end(addr, end);
1352 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1353 if (next - addr != HPAGE_PMD_SIZE)
1354 __split_huge_pmd(vma, pmd, addr, false, NULL);
1355 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1356 goto next;
1357 /* fall through */
1358 }
1359 /*
1360 * Here there can be other concurrent MADV_DONTNEED or
1361 * trans huge page faults running, and if the pmd is
1362 * none or trans huge it can change under us. This is
1363 * because MADV_DONTNEED holds the mmap_lock in read
1364 * mode.
1365 */
1366 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1367 goto next;
1368 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1369 next:
1370 cond_resched();
1371 } while (pmd++, addr = next, addr != end);
1372
1373 return addr;
1374 }
1375
1376 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1377 struct vm_area_struct *vma, p4d_t *p4d,
1378 unsigned long addr, unsigned long end,
1379 struct zap_details *details)
1380 {
1381 pud_t *pud;
1382 unsigned long next;
1383
1384 pud = pud_offset(p4d, addr);
1385 do {
1386 next = pud_addr_end(addr, end);
1387 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1388 if (next - addr != HPAGE_PUD_SIZE) {
1389 mmap_assert_locked(tlb->mm);
1390 split_huge_pud(vma, pud, addr);
1391 } else if (zap_huge_pud(tlb, vma, pud, addr))
1392 goto next;
1393 /* fall through */
1394 }
1395 if (pud_none_or_clear_bad(pud))
1396 continue;
1397 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1398 next:
1399 cond_resched();
1400 } while (pud++, addr = next, addr != end);
1401
1402 return addr;
1403 }
1404
1405 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1406 struct vm_area_struct *vma, pgd_t *pgd,
1407 unsigned long addr, unsigned long end,
1408 struct zap_details *details)
1409 {
1410 p4d_t *p4d;
1411 unsigned long next;
1412
1413 p4d = p4d_offset(pgd, addr);
1414 do {
1415 next = p4d_addr_end(addr, end);
1416 if (p4d_none_or_clear_bad(p4d))
1417 continue;
1418 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1419 } while (p4d++, addr = next, addr != end);
1420
1421 return addr;
1422 }
1423
1424 void unmap_page_range(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma,
1426 unsigned long addr, unsigned long end,
1427 struct zap_details *details)
1428 {
1429 pgd_t *pgd;
1430 unsigned long next;
1431
1432 BUG_ON(addr >= end);
1433 tlb_start_vma(tlb, vma);
1434 pgd = pgd_offset(vma->vm_mm, addr);
1435 do {
1436 next = pgd_addr_end(addr, end);
1437 if (pgd_none_or_clear_bad(pgd))
1438 continue;
1439 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1440 } while (pgd++, addr = next, addr != end);
1441 tlb_end_vma(tlb, vma);
1442 }
1443
1444
1445 static void unmap_single_vma(struct mmu_gather *tlb,
1446 struct vm_area_struct *vma, unsigned long start_addr,
1447 unsigned long end_addr,
1448 struct zap_details *details)
1449 {
1450 unsigned long start = max(vma->vm_start, start_addr);
1451 unsigned long end;
1452
1453 if (start >= vma->vm_end)
1454 return;
1455 end = min(vma->vm_end, end_addr);
1456 if (end <= vma->vm_start)
1457 return;
1458
1459 if (vma->vm_file)
1460 uprobe_munmap(vma, start, end);
1461
1462 if (unlikely(vma->vm_flags & VM_PFNMAP))
1463 untrack_pfn(vma, 0, 0);
1464
1465 if (start != end) {
1466 if (unlikely(is_vm_hugetlb_page(vma))) {
1467 /*
1468 * It is undesirable to test vma->vm_file as it
1469 * should be non-null for valid hugetlb area.
1470 * However, vm_file will be NULL in the error
1471 * cleanup path of mmap_region. When
1472 * hugetlbfs ->mmap method fails,
1473 * mmap_region() nullifies vma->vm_file
1474 * before calling this function to clean up.
1475 * Since no pte has actually been setup, it is
1476 * safe to do nothing in this case.
1477 */
1478 if (vma->vm_file) {
1479 i_mmap_lock_write(vma->vm_file->f_mapping);
1480 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1481 i_mmap_unlock_write(vma->vm_file->f_mapping);
1482 }
1483 } else
1484 unmap_page_range(tlb, vma, start, end, details);
1485 }
1486 }
1487
1488 /**
1489 * unmap_vmas - unmap a range of memory covered by a list of vma's
1490 * @tlb: address of the caller's struct mmu_gather
1491 * @vma: the starting vma
1492 * @start_addr: virtual address at which to start unmapping
1493 * @end_addr: virtual address at which to end unmapping
1494 *
1495 * Unmap all pages in the vma list.
1496 *
1497 * Only addresses between `start' and `end' will be unmapped.
1498 *
1499 * The VMA list must be sorted in ascending virtual address order.
1500 *
1501 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1502 * range after unmap_vmas() returns. So the only responsibility here is to
1503 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1504 * drops the lock and schedules.
1505 */
1506 void unmap_vmas(struct mmu_gather *tlb,
1507 struct vm_area_struct *vma, unsigned long start_addr,
1508 unsigned long end_addr)
1509 {
1510 struct mmu_notifier_range range;
1511
1512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1513 start_addr, end_addr);
1514 mmu_notifier_invalidate_range_start(&range);
1515 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1516 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1517 mmu_notifier_invalidate_range_end(&range);
1518 }
1519
1520 /**
1521 * zap_page_range - remove user pages in a given range
1522 * @vma: vm_area_struct holding the applicable pages
1523 * @start: starting address of pages to zap
1524 * @size: number of bytes to zap
1525 *
1526 * Caller must protect the VMA list
1527 */
1528 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1529 unsigned long size)
1530 {
1531 struct mmu_notifier_range range;
1532 struct mmu_gather tlb;
1533
1534 lru_add_drain();
1535 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1536 start, start + size);
1537 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1538 update_hiwater_rss(vma->vm_mm);
1539 mmu_notifier_invalidate_range_start(&range);
1540 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1541 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1542 mmu_notifier_invalidate_range_end(&range);
1543 tlb_finish_mmu(&tlb, start, range.end);
1544 }
1545 EXPORT_SYMBOL(zap_page_range);
1546
1547 /**
1548 * zap_page_range_single - remove user pages in a given range
1549 * @vma: vm_area_struct holding the applicable pages
1550 * @address: starting address of pages to zap
1551 * @size: number of bytes to zap
1552 * @details: details of shared cache invalidation
1553 *
1554 * The range must fit into one VMA.
1555 */
1556 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1557 unsigned long size, struct zap_details *details)
1558 {
1559 struct mmu_notifier_range range;
1560 struct mmu_gather tlb;
1561
1562 lru_add_drain();
1563 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1564 address, address + size);
1565 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1566 update_hiwater_rss(vma->vm_mm);
1567 mmu_notifier_invalidate_range_start(&range);
1568 unmap_single_vma(&tlb, vma, address, range.end, details);
1569 mmu_notifier_invalidate_range_end(&range);
1570 tlb_finish_mmu(&tlb, address, range.end);
1571 }
1572
1573 /**
1574 * zap_vma_ptes - remove ptes mapping the vma
1575 * @vma: vm_area_struct holding ptes to be zapped
1576 * @address: starting address of pages to zap
1577 * @size: number of bytes to zap
1578 *
1579 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1580 *
1581 * The entire address range must be fully contained within the vma.
1582 *
1583 */
1584 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1585 unsigned long size)
1586 {
1587 if (address < vma->vm_start || address + size > vma->vm_end ||
1588 !(vma->vm_flags & VM_PFNMAP))
1589 return;
1590
1591 zap_page_range_single(vma, address, size, NULL);
1592 }
1593 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1594
1595 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1596 {
1597 pgd_t *pgd;
1598 p4d_t *p4d;
1599 pud_t *pud;
1600 pmd_t *pmd;
1601
1602 pgd = pgd_offset(mm, addr);
1603 p4d = p4d_alloc(mm, pgd, addr);
1604 if (!p4d)
1605 return NULL;
1606 pud = pud_alloc(mm, p4d, addr);
1607 if (!pud)
1608 return NULL;
1609 pmd = pmd_alloc(mm, pud, addr);
1610 if (!pmd)
1611 return NULL;
1612
1613 VM_BUG_ON(pmd_trans_huge(*pmd));
1614 return pmd;
1615 }
1616
1617 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1618 spinlock_t **ptl)
1619 {
1620 pmd_t *pmd = walk_to_pmd(mm, addr);
1621
1622 if (!pmd)
1623 return NULL;
1624 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1625 }
1626
1627 static int validate_page_before_insert(struct page *page)
1628 {
1629 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1630 return -EINVAL;
1631 flush_dcache_page(page);
1632 return 0;
1633 }
1634
1635 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1636 unsigned long addr, struct page *page, pgprot_t prot)
1637 {
1638 if (!pte_none(*pte))
1639 return -EBUSY;
1640 /* Ok, finally just insert the thing.. */
1641 get_page(page);
1642 inc_mm_counter_fast(mm, mm_counter_file(page));
1643 page_add_file_rmap(page, false);
1644 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1645 return 0;
1646 }
1647
1648 /*
1649 * This is the old fallback for page remapping.
1650 *
1651 * For historical reasons, it only allows reserved pages. Only
1652 * old drivers should use this, and they needed to mark their
1653 * pages reserved for the old functions anyway.
1654 */
1655 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1656 struct page *page, pgprot_t prot)
1657 {
1658 struct mm_struct *mm = vma->vm_mm;
1659 int retval;
1660 pte_t *pte;
1661 spinlock_t *ptl;
1662
1663 retval = validate_page_before_insert(page);
1664 if (retval)
1665 goto out;
1666 retval = -ENOMEM;
1667 pte = get_locked_pte(mm, addr, &ptl);
1668 if (!pte)
1669 goto out;
1670 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1671 pte_unmap_unlock(pte, ptl);
1672 out:
1673 return retval;
1674 }
1675
1676 #ifdef pte_index
1677 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1678 unsigned long addr, struct page *page, pgprot_t prot)
1679 {
1680 int err;
1681
1682 if (!page_count(page))
1683 return -EINVAL;
1684 err = validate_page_before_insert(page);
1685 if (err)
1686 return err;
1687 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1688 }
1689
1690 /* insert_pages() amortizes the cost of spinlock operations
1691 * when inserting pages in a loop. Arch *must* define pte_index.
1692 */
1693 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1694 struct page **pages, unsigned long *num, pgprot_t prot)
1695 {
1696 pmd_t *pmd = NULL;
1697 pte_t *start_pte, *pte;
1698 spinlock_t *pte_lock;
1699 struct mm_struct *const mm = vma->vm_mm;
1700 unsigned long curr_page_idx = 0;
1701 unsigned long remaining_pages_total = *num;
1702 unsigned long pages_to_write_in_pmd;
1703 int ret;
1704 more:
1705 ret = -EFAULT;
1706 pmd = walk_to_pmd(mm, addr);
1707 if (!pmd)
1708 goto out;
1709
1710 pages_to_write_in_pmd = min_t(unsigned long,
1711 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1712
1713 /* Allocate the PTE if necessary; takes PMD lock once only. */
1714 ret = -ENOMEM;
1715 if (pte_alloc(mm, pmd))
1716 goto out;
1717
1718 while (pages_to_write_in_pmd) {
1719 int pte_idx = 0;
1720 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1721
1722 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1723 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1724 int err = insert_page_in_batch_locked(mm, pte,
1725 addr, pages[curr_page_idx], prot);
1726 if (unlikely(err)) {
1727 pte_unmap_unlock(start_pte, pte_lock);
1728 ret = err;
1729 remaining_pages_total -= pte_idx;
1730 goto out;
1731 }
1732 addr += PAGE_SIZE;
1733 ++curr_page_idx;
1734 }
1735 pte_unmap_unlock(start_pte, pte_lock);
1736 pages_to_write_in_pmd -= batch_size;
1737 remaining_pages_total -= batch_size;
1738 }
1739 if (remaining_pages_total)
1740 goto more;
1741 ret = 0;
1742 out:
1743 *num = remaining_pages_total;
1744 return ret;
1745 }
1746 #endif /* ifdef pte_index */
1747
1748 /**
1749 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1750 * @vma: user vma to map to
1751 * @addr: target start user address of these pages
1752 * @pages: source kernel pages
1753 * @num: in: number of pages to map. out: number of pages that were *not*
1754 * mapped. (0 means all pages were successfully mapped).
1755 *
1756 * Preferred over vm_insert_page() when inserting multiple pages.
1757 *
1758 * In case of error, we may have mapped a subset of the provided
1759 * pages. It is the caller's responsibility to account for this case.
1760 *
1761 * The same restrictions apply as in vm_insert_page().
1762 */
1763 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1764 struct page **pages, unsigned long *num)
1765 {
1766 #ifdef pte_index
1767 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1768
1769 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1770 return -EFAULT;
1771 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1772 BUG_ON(mmap_read_trylock(vma->vm_mm));
1773 BUG_ON(vma->vm_flags & VM_PFNMAP);
1774 vma->vm_flags |= VM_MIXEDMAP;
1775 }
1776 /* Defer page refcount checking till we're about to map that page. */
1777 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1778 #else
1779 unsigned long idx = 0, pgcount = *num;
1780 int err = -EINVAL;
1781
1782 for (; idx < pgcount; ++idx) {
1783 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1784 if (err)
1785 break;
1786 }
1787 *num = pgcount - idx;
1788 return err;
1789 #endif /* ifdef pte_index */
1790 }
1791 EXPORT_SYMBOL(vm_insert_pages);
1792
1793 /**
1794 * vm_insert_page - insert single page into user vma
1795 * @vma: user vma to map to
1796 * @addr: target user address of this page
1797 * @page: source kernel page
1798 *
1799 * This allows drivers to insert individual pages they've allocated
1800 * into a user vma.
1801 *
1802 * The page has to be a nice clean _individual_ kernel allocation.
1803 * If you allocate a compound page, you need to have marked it as
1804 * such (__GFP_COMP), or manually just split the page up yourself
1805 * (see split_page()).
1806 *
1807 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1808 * took an arbitrary page protection parameter. This doesn't allow
1809 * that. Your vma protection will have to be set up correctly, which
1810 * means that if you want a shared writable mapping, you'd better
1811 * ask for a shared writable mapping!
1812 *
1813 * The page does not need to be reserved.
1814 *
1815 * Usually this function is called from f_op->mmap() handler
1816 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1817 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1818 * function from other places, for example from page-fault handler.
1819 *
1820 * Return: %0 on success, negative error code otherwise.
1821 */
1822 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1823 struct page *page)
1824 {
1825 if (addr < vma->vm_start || addr >= vma->vm_end)
1826 return -EFAULT;
1827 if (!page_count(page))
1828 return -EINVAL;
1829 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1830 BUG_ON(mmap_read_trylock(vma->vm_mm));
1831 BUG_ON(vma->vm_flags & VM_PFNMAP);
1832 vma->vm_flags |= VM_MIXEDMAP;
1833 }
1834 return insert_page(vma, addr, page, vma->vm_page_prot);
1835 }
1836 EXPORT_SYMBOL(vm_insert_page);
1837
1838 /*
1839 * __vm_map_pages - maps range of kernel pages into user vma
1840 * @vma: user vma to map to
1841 * @pages: pointer to array of source kernel pages
1842 * @num: number of pages in page array
1843 * @offset: user's requested vm_pgoff
1844 *
1845 * This allows drivers to map range of kernel pages into a user vma.
1846 *
1847 * Return: 0 on success and error code otherwise.
1848 */
1849 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1850 unsigned long num, unsigned long offset)
1851 {
1852 unsigned long count = vma_pages(vma);
1853 unsigned long uaddr = vma->vm_start;
1854 int ret, i;
1855
1856 /* Fail if the user requested offset is beyond the end of the object */
1857 if (offset >= num)
1858 return -ENXIO;
1859
1860 /* Fail if the user requested size exceeds available object size */
1861 if (count > num - offset)
1862 return -ENXIO;
1863
1864 for (i = 0; i < count; i++) {
1865 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1866 if (ret < 0)
1867 return ret;
1868 uaddr += PAGE_SIZE;
1869 }
1870
1871 return 0;
1872 }
1873
1874 /**
1875 * vm_map_pages - maps range of kernel pages starts with non zero offset
1876 * @vma: user vma to map to
1877 * @pages: pointer to array of source kernel pages
1878 * @num: number of pages in page array
1879 *
1880 * Maps an object consisting of @num pages, catering for the user's
1881 * requested vm_pgoff
1882 *
1883 * If we fail to insert any page into the vma, the function will return
1884 * immediately leaving any previously inserted pages present. Callers
1885 * from the mmap handler may immediately return the error as their caller
1886 * will destroy the vma, removing any successfully inserted pages. Other
1887 * callers should make their own arrangements for calling unmap_region().
1888 *
1889 * Context: Process context. Called by mmap handlers.
1890 * Return: 0 on success and error code otherwise.
1891 */
1892 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1893 unsigned long num)
1894 {
1895 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1896 }
1897 EXPORT_SYMBOL(vm_map_pages);
1898
1899 /**
1900 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1901 * @vma: user vma to map to
1902 * @pages: pointer to array of source kernel pages
1903 * @num: number of pages in page array
1904 *
1905 * Similar to vm_map_pages(), except that it explicitly sets the offset
1906 * to 0. This function is intended for the drivers that did not consider
1907 * vm_pgoff.
1908 *
1909 * Context: Process context. Called by mmap handlers.
1910 * Return: 0 on success and error code otherwise.
1911 */
1912 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1913 unsigned long num)
1914 {
1915 return __vm_map_pages(vma, pages, num, 0);
1916 }
1917 EXPORT_SYMBOL(vm_map_pages_zero);
1918
1919 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1920 pfn_t pfn, pgprot_t prot, bool mkwrite)
1921 {
1922 struct mm_struct *mm = vma->vm_mm;
1923 pte_t *pte, entry;
1924 spinlock_t *ptl;
1925
1926 pte = get_locked_pte(mm, addr, &ptl);
1927 if (!pte)
1928 return VM_FAULT_OOM;
1929 if (!pte_none(*pte)) {
1930 if (mkwrite) {
1931 /*
1932 * For read faults on private mappings the PFN passed
1933 * in may not match the PFN we have mapped if the
1934 * mapped PFN is a writeable COW page. In the mkwrite
1935 * case we are creating a writable PTE for a shared
1936 * mapping and we expect the PFNs to match. If they
1937 * don't match, we are likely racing with block
1938 * allocation and mapping invalidation so just skip the
1939 * update.
1940 */
1941 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1942 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1943 goto out_unlock;
1944 }
1945 entry = pte_mkyoung(*pte);
1946 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1947 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1948 update_mmu_cache(vma, addr, pte);
1949 }
1950 goto out_unlock;
1951 }
1952
1953 /* Ok, finally just insert the thing.. */
1954 if (pfn_t_devmap(pfn))
1955 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1956 else
1957 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1958
1959 if (mkwrite) {
1960 entry = pte_mkyoung(entry);
1961 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1962 }
1963
1964 set_pte_at(mm, addr, pte, entry);
1965 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1966
1967 out_unlock:
1968 pte_unmap_unlock(pte, ptl);
1969 return VM_FAULT_NOPAGE;
1970 }
1971
1972 /**
1973 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1974 * @vma: user vma to map to
1975 * @addr: target user address of this page
1976 * @pfn: source kernel pfn
1977 * @pgprot: pgprot flags for the inserted page
1978 *
1979 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1980 * to override pgprot on a per-page basis.
1981 *
1982 * This only makes sense for IO mappings, and it makes no sense for
1983 * COW mappings. In general, using multiple vmas is preferable;
1984 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1985 * impractical.
1986 *
1987 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1988 * a value of @pgprot different from that of @vma->vm_page_prot.
1989 *
1990 * Context: Process context. May allocate using %GFP_KERNEL.
1991 * Return: vm_fault_t value.
1992 */
1993 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1994 unsigned long pfn, pgprot_t pgprot)
1995 {
1996 /*
1997 * Technically, architectures with pte_special can avoid all these
1998 * restrictions (same for remap_pfn_range). However we would like
1999 * consistency in testing and feature parity among all, so we should
2000 * try to keep these invariants in place for everybody.
2001 */
2002 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2003 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2004 (VM_PFNMAP|VM_MIXEDMAP));
2005 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2006 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2007
2008 if (addr < vma->vm_start || addr >= vma->vm_end)
2009 return VM_FAULT_SIGBUS;
2010
2011 if (!pfn_modify_allowed(pfn, pgprot))
2012 return VM_FAULT_SIGBUS;
2013
2014 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2015
2016 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2017 false);
2018 }
2019 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2020
2021 /**
2022 * vmf_insert_pfn - insert single pfn into user vma
2023 * @vma: user vma to map to
2024 * @addr: target user address of this page
2025 * @pfn: source kernel pfn
2026 *
2027 * Similar to vm_insert_page, this allows drivers to insert individual pages
2028 * they've allocated into a user vma. Same comments apply.
2029 *
2030 * This function should only be called from a vm_ops->fault handler, and
2031 * in that case the handler should return the result of this function.
2032 *
2033 * vma cannot be a COW mapping.
2034 *
2035 * As this is called only for pages that do not currently exist, we
2036 * do not need to flush old virtual caches or the TLB.
2037 *
2038 * Context: Process context. May allocate using %GFP_KERNEL.
2039 * Return: vm_fault_t value.
2040 */
2041 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2042 unsigned long pfn)
2043 {
2044 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2045 }
2046 EXPORT_SYMBOL(vmf_insert_pfn);
2047
2048 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2049 {
2050 /* these checks mirror the abort conditions in vm_normal_page */
2051 if (vma->vm_flags & VM_MIXEDMAP)
2052 return true;
2053 if (pfn_t_devmap(pfn))
2054 return true;
2055 if (pfn_t_special(pfn))
2056 return true;
2057 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2058 return true;
2059 return false;
2060 }
2061
2062 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2063 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2064 bool mkwrite)
2065 {
2066 int err;
2067
2068 BUG_ON(!vm_mixed_ok(vma, pfn));
2069
2070 if (addr < vma->vm_start || addr >= vma->vm_end)
2071 return VM_FAULT_SIGBUS;
2072
2073 track_pfn_insert(vma, &pgprot, pfn);
2074
2075 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2076 return VM_FAULT_SIGBUS;
2077
2078 /*
2079 * If we don't have pte special, then we have to use the pfn_valid()
2080 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2081 * refcount the page if pfn_valid is true (hence insert_page rather
2082 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2083 * without pte special, it would there be refcounted as a normal page.
2084 */
2085 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2086 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2087 struct page *page;
2088
2089 /*
2090 * At this point we are committed to insert_page()
2091 * regardless of whether the caller specified flags that
2092 * result in pfn_t_has_page() == false.
2093 */
2094 page = pfn_to_page(pfn_t_to_pfn(pfn));
2095 err = insert_page(vma, addr, page, pgprot);
2096 } else {
2097 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2098 }
2099
2100 if (err == -ENOMEM)
2101 return VM_FAULT_OOM;
2102 if (err < 0 && err != -EBUSY)
2103 return VM_FAULT_SIGBUS;
2104
2105 return VM_FAULT_NOPAGE;
2106 }
2107
2108 /**
2109 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2110 * @vma: user vma to map to
2111 * @addr: target user address of this page
2112 * @pfn: source kernel pfn
2113 * @pgprot: pgprot flags for the inserted page
2114 *
2115 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2116 * to override pgprot on a per-page basis.
2117 *
2118 * Typically this function should be used by drivers to set caching- and
2119 * encryption bits different than those of @vma->vm_page_prot, because
2120 * the caching- or encryption mode may not be known at mmap() time.
2121 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2122 * to set caching and encryption bits for those vmas (except for COW pages).
2123 * This is ensured by core vm only modifying these page table entries using
2124 * functions that don't touch caching- or encryption bits, using pte_modify()
2125 * if needed. (See for example mprotect()).
2126 * Also when new page-table entries are created, this is only done using the
2127 * fault() callback, and never using the value of vma->vm_page_prot,
2128 * except for page-table entries that point to anonymous pages as the result
2129 * of COW.
2130 *
2131 * Context: Process context. May allocate using %GFP_KERNEL.
2132 * Return: vm_fault_t value.
2133 */
2134 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2135 pfn_t pfn, pgprot_t pgprot)
2136 {
2137 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2138 }
2139 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2140
2141 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2142 pfn_t pfn)
2143 {
2144 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed);
2147
2148 /*
2149 * If the insertion of PTE failed because someone else already added a
2150 * different entry in the mean time, we treat that as success as we assume
2151 * the same entry was actually inserted.
2152 */
2153 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2154 unsigned long addr, pfn_t pfn)
2155 {
2156 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2157 }
2158 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2159
2160 /*
2161 * maps a range of physical memory into the requested pages. the old
2162 * mappings are removed. any references to nonexistent pages results
2163 * in null mappings (currently treated as "copy-on-access")
2164 */
2165 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2166 unsigned long addr, unsigned long end,
2167 unsigned long pfn, pgprot_t prot)
2168 {
2169 pte_t *pte, *mapped_pte;
2170 spinlock_t *ptl;
2171 int err = 0;
2172
2173 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2174 if (!pte)
2175 return -ENOMEM;
2176 arch_enter_lazy_mmu_mode();
2177 do {
2178 BUG_ON(!pte_none(*pte));
2179 if (!pfn_modify_allowed(pfn, prot)) {
2180 err = -EACCES;
2181 break;
2182 }
2183 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2184 pfn++;
2185 } while (pte++, addr += PAGE_SIZE, addr != end);
2186 arch_leave_lazy_mmu_mode();
2187 pte_unmap_unlock(mapped_pte, ptl);
2188 return err;
2189 }
2190
2191 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2192 unsigned long addr, unsigned long end,
2193 unsigned long pfn, pgprot_t prot)
2194 {
2195 pmd_t *pmd;
2196 unsigned long next;
2197 int err;
2198
2199 pfn -= addr >> PAGE_SHIFT;
2200 pmd = pmd_alloc(mm, pud, addr);
2201 if (!pmd)
2202 return -ENOMEM;
2203 VM_BUG_ON(pmd_trans_huge(*pmd));
2204 do {
2205 next = pmd_addr_end(addr, end);
2206 err = remap_pte_range(mm, pmd, addr, next,
2207 pfn + (addr >> PAGE_SHIFT), prot);
2208 if (err)
2209 return err;
2210 } while (pmd++, addr = next, addr != end);
2211 return 0;
2212 }
2213
2214 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2215 unsigned long addr, unsigned long end,
2216 unsigned long pfn, pgprot_t prot)
2217 {
2218 pud_t *pud;
2219 unsigned long next;
2220 int err;
2221
2222 pfn -= addr >> PAGE_SHIFT;
2223 pud = pud_alloc(mm, p4d, addr);
2224 if (!pud)
2225 return -ENOMEM;
2226 do {
2227 next = pud_addr_end(addr, end);
2228 err = remap_pmd_range(mm, pud, addr, next,
2229 pfn + (addr >> PAGE_SHIFT), prot);
2230 if (err)
2231 return err;
2232 } while (pud++, addr = next, addr != end);
2233 return 0;
2234 }
2235
2236 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2237 unsigned long addr, unsigned long end,
2238 unsigned long pfn, pgprot_t prot)
2239 {
2240 p4d_t *p4d;
2241 unsigned long next;
2242 int err;
2243
2244 pfn -= addr >> PAGE_SHIFT;
2245 p4d = p4d_alloc(mm, pgd, addr);
2246 if (!p4d)
2247 return -ENOMEM;
2248 do {
2249 next = p4d_addr_end(addr, end);
2250 err = remap_pud_range(mm, p4d, addr, next,
2251 pfn + (addr >> PAGE_SHIFT), prot);
2252 if (err)
2253 return err;
2254 } while (p4d++, addr = next, addr != end);
2255 return 0;
2256 }
2257
2258 /**
2259 * remap_pfn_range - remap kernel memory to userspace
2260 * @vma: user vma to map to
2261 * @addr: target page aligned user address to start at
2262 * @pfn: page frame number of kernel physical memory address
2263 * @size: size of mapping area
2264 * @prot: page protection flags for this mapping
2265 *
2266 * Note: this is only safe if the mm semaphore is held when called.
2267 *
2268 * Return: %0 on success, negative error code otherwise.
2269 */
2270 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2271 unsigned long pfn, unsigned long size, pgprot_t prot)
2272 {
2273 pgd_t *pgd;
2274 unsigned long next;
2275 unsigned long end = addr + PAGE_ALIGN(size);
2276 struct mm_struct *mm = vma->vm_mm;
2277 unsigned long remap_pfn = pfn;
2278 int err;
2279
2280 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2281 return -EINVAL;
2282
2283 /*
2284 * Physically remapped pages are special. Tell the
2285 * rest of the world about it:
2286 * VM_IO tells people not to look at these pages
2287 * (accesses can have side effects).
2288 * VM_PFNMAP tells the core MM that the base pages are just
2289 * raw PFN mappings, and do not have a "struct page" associated
2290 * with them.
2291 * VM_DONTEXPAND
2292 * Disable vma merging and expanding with mremap().
2293 * VM_DONTDUMP
2294 * Omit vma from core dump, even when VM_IO turned off.
2295 *
2296 * There's a horrible special case to handle copy-on-write
2297 * behaviour that some programs depend on. We mark the "original"
2298 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2299 * See vm_normal_page() for details.
2300 */
2301 if (is_cow_mapping(vma->vm_flags)) {
2302 if (addr != vma->vm_start || end != vma->vm_end)
2303 return -EINVAL;
2304 vma->vm_pgoff = pfn;
2305 }
2306
2307 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2308 if (err)
2309 return -EINVAL;
2310
2311 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2312
2313 BUG_ON(addr >= end);
2314 pfn -= addr >> PAGE_SHIFT;
2315 pgd = pgd_offset(mm, addr);
2316 flush_cache_range(vma, addr, end);
2317 do {
2318 next = pgd_addr_end(addr, end);
2319 err = remap_p4d_range(mm, pgd, addr, next,
2320 pfn + (addr >> PAGE_SHIFT), prot);
2321 if (err)
2322 break;
2323 } while (pgd++, addr = next, addr != end);
2324
2325 if (err)
2326 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2327
2328 return err;
2329 }
2330 EXPORT_SYMBOL(remap_pfn_range);
2331
2332 /**
2333 * vm_iomap_memory - remap memory to userspace
2334 * @vma: user vma to map to
2335 * @start: start of the physical memory to be mapped
2336 * @len: size of area
2337 *
2338 * This is a simplified io_remap_pfn_range() for common driver use. The
2339 * driver just needs to give us the physical memory range to be mapped,
2340 * we'll figure out the rest from the vma information.
2341 *
2342 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2343 * whatever write-combining details or similar.
2344 *
2345 * Return: %0 on success, negative error code otherwise.
2346 */
2347 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2348 {
2349 unsigned long vm_len, pfn, pages;
2350
2351 /* Check that the physical memory area passed in looks valid */
2352 if (start + len < start)
2353 return -EINVAL;
2354 /*
2355 * You *really* shouldn't map things that aren't page-aligned,
2356 * but we've historically allowed it because IO memory might
2357 * just have smaller alignment.
2358 */
2359 len += start & ~PAGE_MASK;
2360 pfn = start >> PAGE_SHIFT;
2361 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2362 if (pfn + pages < pfn)
2363 return -EINVAL;
2364
2365 /* We start the mapping 'vm_pgoff' pages into the area */
2366 if (vma->vm_pgoff > pages)
2367 return -EINVAL;
2368 pfn += vma->vm_pgoff;
2369 pages -= vma->vm_pgoff;
2370
2371 /* Can we fit all of the mapping? */
2372 vm_len = vma->vm_end - vma->vm_start;
2373 if (vm_len >> PAGE_SHIFT > pages)
2374 return -EINVAL;
2375
2376 /* Ok, let it rip */
2377 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2378 }
2379 EXPORT_SYMBOL(vm_iomap_memory);
2380
2381 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2382 unsigned long addr, unsigned long end,
2383 pte_fn_t fn, void *data, bool create,
2384 pgtbl_mod_mask *mask)
2385 {
2386 pte_t *pte;
2387 int err = 0;
2388 spinlock_t *ptl;
2389
2390 if (create) {
2391 pte = (mm == &init_mm) ?
2392 pte_alloc_kernel_track(pmd, addr, mask) :
2393 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2394 if (!pte)
2395 return -ENOMEM;
2396 } else {
2397 pte = (mm == &init_mm) ?
2398 pte_offset_kernel(pmd, addr) :
2399 pte_offset_map_lock(mm, pmd, addr, &ptl);
2400 }
2401
2402 BUG_ON(pmd_huge(*pmd));
2403
2404 arch_enter_lazy_mmu_mode();
2405
2406 if (fn) {
2407 do {
2408 if (create || !pte_none(*pte)) {
2409 err = fn(pte++, addr, data);
2410 if (err)
2411 break;
2412 }
2413 } while (addr += PAGE_SIZE, addr != end);
2414 }
2415 *mask |= PGTBL_PTE_MODIFIED;
2416
2417 arch_leave_lazy_mmu_mode();
2418
2419 if (mm != &init_mm)
2420 pte_unmap_unlock(pte-1, ptl);
2421 return err;
2422 }
2423
2424 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2425 unsigned long addr, unsigned long end,
2426 pte_fn_t fn, void *data, bool create,
2427 pgtbl_mod_mask *mask)
2428 {
2429 pmd_t *pmd;
2430 unsigned long next;
2431 int err = 0;
2432
2433 BUG_ON(pud_huge(*pud));
2434
2435 if (create) {
2436 pmd = pmd_alloc_track(mm, pud, addr, mask);
2437 if (!pmd)
2438 return -ENOMEM;
2439 } else {
2440 pmd = pmd_offset(pud, addr);
2441 }
2442 do {
2443 next = pmd_addr_end(addr, end);
2444 if (create || !pmd_none_or_clear_bad(pmd)) {
2445 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2446 create, mask);
2447 if (err)
2448 break;
2449 }
2450 } while (pmd++, addr = next, addr != end);
2451 return err;
2452 }
2453
2454 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2455 unsigned long addr, unsigned long end,
2456 pte_fn_t fn, void *data, bool create,
2457 pgtbl_mod_mask *mask)
2458 {
2459 pud_t *pud;
2460 unsigned long next;
2461 int err = 0;
2462
2463 if (create) {
2464 pud = pud_alloc_track(mm, p4d, addr, mask);
2465 if (!pud)
2466 return -ENOMEM;
2467 } else {
2468 pud = pud_offset(p4d, addr);
2469 }
2470 do {
2471 next = pud_addr_end(addr, end);
2472 if (create || !pud_none_or_clear_bad(pud)) {
2473 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2474 create, mask);
2475 if (err)
2476 break;
2477 }
2478 } while (pud++, addr = next, addr != end);
2479 return err;
2480 }
2481
2482 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2483 unsigned long addr, unsigned long end,
2484 pte_fn_t fn, void *data, bool create,
2485 pgtbl_mod_mask *mask)
2486 {
2487 p4d_t *p4d;
2488 unsigned long next;
2489 int err = 0;
2490
2491 if (create) {
2492 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2493 if (!p4d)
2494 return -ENOMEM;
2495 } else {
2496 p4d = p4d_offset(pgd, addr);
2497 }
2498 do {
2499 next = p4d_addr_end(addr, end);
2500 if (create || !p4d_none_or_clear_bad(p4d)) {
2501 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2502 create, mask);
2503 if (err)
2504 break;
2505 }
2506 } while (p4d++, addr = next, addr != end);
2507 return err;
2508 }
2509
2510 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2511 unsigned long size, pte_fn_t fn,
2512 void *data, bool create)
2513 {
2514 pgd_t *pgd;
2515 unsigned long start = addr, next;
2516 unsigned long end = addr + size;
2517 pgtbl_mod_mask mask = 0;
2518 int err = 0;
2519
2520 if (WARN_ON(addr >= end))
2521 return -EINVAL;
2522
2523 pgd = pgd_offset(mm, addr);
2524 do {
2525 next = pgd_addr_end(addr, end);
2526 if (!create && pgd_none_or_clear_bad(pgd))
2527 continue;
2528 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2529 if (err)
2530 break;
2531 } while (pgd++, addr = next, addr != end);
2532
2533 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2534 arch_sync_kernel_mappings(start, start + size);
2535
2536 return err;
2537 }
2538
2539 /*
2540 * Scan a region of virtual memory, filling in page tables as necessary
2541 * and calling a provided function on each leaf page table.
2542 */
2543 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2544 unsigned long size, pte_fn_t fn, void *data)
2545 {
2546 return __apply_to_page_range(mm, addr, size, fn, data, true);
2547 }
2548 EXPORT_SYMBOL_GPL(apply_to_page_range);
2549
2550 /*
2551 * Scan a region of virtual memory, calling a provided function on
2552 * each leaf page table where it exists.
2553 *
2554 * Unlike apply_to_page_range, this does _not_ fill in page tables
2555 * where they are absent.
2556 */
2557 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2558 unsigned long size, pte_fn_t fn, void *data)
2559 {
2560 return __apply_to_page_range(mm, addr, size, fn, data, false);
2561 }
2562 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2563
2564 /*
2565 * handle_pte_fault chooses page fault handler according to an entry which was
2566 * read non-atomically. Before making any commitment, on those architectures
2567 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2568 * parts, do_swap_page must check under lock before unmapping the pte and
2569 * proceeding (but do_wp_page is only called after already making such a check;
2570 * and do_anonymous_page can safely check later on).
2571 */
2572 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2573 pte_t *page_table, pte_t orig_pte)
2574 {
2575 int same = 1;
2576 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2577 if (sizeof(pte_t) > sizeof(unsigned long)) {
2578 spinlock_t *ptl = pte_lockptr(mm, pmd);
2579 spin_lock(ptl);
2580 same = pte_same(*page_table, orig_pte);
2581 spin_unlock(ptl);
2582 }
2583 #endif
2584 pte_unmap(page_table);
2585 return same;
2586 }
2587
2588 static inline bool cow_user_page(struct page *dst, struct page *src,
2589 struct vm_fault *vmf)
2590 {
2591 bool ret;
2592 void *kaddr;
2593 void __user *uaddr;
2594 bool locked = false;
2595 struct vm_area_struct *vma = vmf->vma;
2596 struct mm_struct *mm = vma->vm_mm;
2597 unsigned long addr = vmf->address;
2598
2599 if (likely(src)) {
2600 copy_user_highpage(dst, src, addr, vma);
2601 return true;
2602 }
2603
2604 /*
2605 * If the source page was a PFN mapping, we don't have
2606 * a "struct page" for it. We do a best-effort copy by
2607 * just copying from the original user address. If that
2608 * fails, we just zero-fill it. Live with it.
2609 */
2610 kaddr = kmap_atomic(dst);
2611 uaddr = (void __user *)(addr & PAGE_MASK);
2612
2613 /*
2614 * On architectures with software "accessed" bits, we would
2615 * take a double page fault, so mark it accessed here.
2616 */
2617 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2618 pte_t entry;
2619
2620 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2621 locked = true;
2622 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2623 /*
2624 * Other thread has already handled the fault
2625 * and update local tlb only
2626 */
2627 update_mmu_tlb(vma, addr, vmf->pte);
2628 ret = false;
2629 goto pte_unlock;
2630 }
2631
2632 entry = pte_mkyoung(vmf->orig_pte);
2633 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2634 update_mmu_cache(vma, addr, vmf->pte);
2635 }
2636
2637 /*
2638 * This really shouldn't fail, because the page is there
2639 * in the page tables. But it might just be unreadable,
2640 * in which case we just give up and fill the result with
2641 * zeroes.
2642 */
2643 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2644 if (locked)
2645 goto warn;
2646
2647 /* Re-validate under PTL if the page is still mapped */
2648 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2649 locked = true;
2650 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2651 /* The PTE changed under us, update local tlb */
2652 update_mmu_tlb(vma, addr, vmf->pte);
2653 ret = false;
2654 goto pte_unlock;
2655 }
2656
2657 /*
2658 * The same page can be mapped back since last copy attempt.
2659 * Try to copy again under PTL.
2660 */
2661 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2662 /*
2663 * Give a warn in case there can be some obscure
2664 * use-case
2665 */
2666 warn:
2667 WARN_ON_ONCE(1);
2668 clear_page(kaddr);
2669 }
2670 }
2671
2672 ret = true;
2673
2674 pte_unlock:
2675 if (locked)
2676 pte_unmap_unlock(vmf->pte, vmf->ptl);
2677 kunmap_atomic(kaddr);
2678 flush_dcache_page(dst);
2679
2680 return ret;
2681 }
2682
2683 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2684 {
2685 struct file *vm_file = vma->vm_file;
2686
2687 if (vm_file)
2688 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2689
2690 /*
2691 * Special mappings (e.g. VDSO) do not have any file so fake
2692 * a default GFP_KERNEL for them.
2693 */
2694 return GFP_KERNEL;
2695 }
2696
2697 /*
2698 * Notify the address space that the page is about to become writable so that
2699 * it can prohibit this or wait for the page to get into an appropriate state.
2700 *
2701 * We do this without the lock held, so that it can sleep if it needs to.
2702 */
2703 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2704 {
2705 vm_fault_t ret;
2706 struct page *page = vmf->page;
2707 unsigned int old_flags = vmf->flags;
2708
2709 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2710
2711 if (vmf->vma->vm_file &&
2712 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2713 return VM_FAULT_SIGBUS;
2714
2715 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2716 /* Restore original flags so that caller is not surprised */
2717 vmf->flags = old_flags;
2718 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2719 return ret;
2720 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2721 lock_page(page);
2722 if (!page->mapping) {
2723 unlock_page(page);
2724 return 0; /* retry */
2725 }
2726 ret |= VM_FAULT_LOCKED;
2727 } else
2728 VM_BUG_ON_PAGE(!PageLocked(page), page);
2729 return ret;
2730 }
2731
2732 /*
2733 * Handle dirtying of a page in shared file mapping on a write fault.
2734 *
2735 * The function expects the page to be locked and unlocks it.
2736 */
2737 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2738 {
2739 struct vm_area_struct *vma = vmf->vma;
2740 struct address_space *mapping;
2741 struct page *page = vmf->page;
2742 bool dirtied;
2743 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2744
2745 dirtied = set_page_dirty(page);
2746 VM_BUG_ON_PAGE(PageAnon(page), page);
2747 /*
2748 * Take a local copy of the address_space - page.mapping may be zeroed
2749 * by truncate after unlock_page(). The address_space itself remains
2750 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2751 * release semantics to prevent the compiler from undoing this copying.
2752 */
2753 mapping = page_rmapping(page);
2754 unlock_page(page);
2755
2756 if (!page_mkwrite)
2757 file_update_time(vma->vm_file);
2758
2759 /*
2760 * Throttle page dirtying rate down to writeback speed.
2761 *
2762 * mapping may be NULL here because some device drivers do not
2763 * set page.mapping but still dirty their pages
2764 *
2765 * Drop the mmap_lock before waiting on IO, if we can. The file
2766 * is pinning the mapping, as per above.
2767 */
2768 if ((dirtied || page_mkwrite) && mapping) {
2769 struct file *fpin;
2770
2771 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2772 balance_dirty_pages_ratelimited(mapping);
2773 if (fpin) {
2774 fput(fpin);
2775 return VM_FAULT_RETRY;
2776 }
2777 }
2778
2779 return 0;
2780 }
2781
2782 /*
2783 * Handle write page faults for pages that can be reused in the current vma
2784 *
2785 * This can happen either due to the mapping being with the VM_SHARED flag,
2786 * or due to us being the last reference standing to the page. In either
2787 * case, all we need to do here is to mark the page as writable and update
2788 * any related book-keeping.
2789 */
2790 static inline void wp_page_reuse(struct vm_fault *vmf)
2791 __releases(vmf->ptl)
2792 {
2793 struct vm_area_struct *vma = vmf->vma;
2794 struct page *page = vmf->page;
2795 pte_t entry;
2796 /*
2797 * Clear the pages cpupid information as the existing
2798 * information potentially belongs to a now completely
2799 * unrelated process.
2800 */
2801 if (page)
2802 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2803
2804 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2805 entry = pte_mkyoung(vmf->orig_pte);
2806 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2807 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2808 update_mmu_cache(vma, vmf->address, vmf->pte);
2809 pte_unmap_unlock(vmf->pte, vmf->ptl);
2810 count_vm_event(PGREUSE);
2811 }
2812
2813 /*
2814 * Handle the case of a page which we actually need to copy to a new page.
2815 *
2816 * Called with mmap_lock locked and the old page referenced, but
2817 * without the ptl held.
2818 *
2819 * High level logic flow:
2820 *
2821 * - Allocate a page, copy the content of the old page to the new one.
2822 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2823 * - Take the PTL. If the pte changed, bail out and release the allocated page
2824 * - If the pte is still the way we remember it, update the page table and all
2825 * relevant references. This includes dropping the reference the page-table
2826 * held to the old page, as well as updating the rmap.
2827 * - In any case, unlock the PTL and drop the reference we took to the old page.
2828 */
2829 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2830 {
2831 struct vm_area_struct *vma = vmf->vma;
2832 struct mm_struct *mm = vma->vm_mm;
2833 struct page *old_page = vmf->page;
2834 struct page *new_page = NULL;
2835 pte_t entry;
2836 int page_copied = 0;
2837 struct mmu_notifier_range range;
2838
2839 if (unlikely(anon_vma_prepare(vma)))
2840 goto oom;
2841
2842 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2843 new_page = alloc_zeroed_user_highpage_movable(vma,
2844 vmf->address);
2845 if (!new_page)
2846 goto oom;
2847 } else {
2848 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2849 vmf->address);
2850 if (!new_page)
2851 goto oom;
2852
2853 if (!cow_user_page(new_page, old_page, vmf)) {
2854 /*
2855 * COW failed, if the fault was solved by other,
2856 * it's fine. If not, userspace would re-fault on
2857 * the same address and we will handle the fault
2858 * from the second attempt.
2859 */
2860 put_page(new_page);
2861 if (old_page)
2862 put_page(old_page);
2863 return 0;
2864 }
2865 }
2866
2867 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2868 goto oom_free_new;
2869 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2870
2871 __SetPageUptodate(new_page);
2872
2873 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2874 vmf->address & PAGE_MASK,
2875 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2876 mmu_notifier_invalidate_range_start(&range);
2877
2878 /*
2879 * Re-check the pte - we dropped the lock
2880 */
2881 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2882 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2883 if (old_page) {
2884 if (!PageAnon(old_page)) {
2885 dec_mm_counter_fast(mm,
2886 mm_counter_file(old_page));
2887 inc_mm_counter_fast(mm, MM_ANONPAGES);
2888 }
2889 } else {
2890 inc_mm_counter_fast(mm, MM_ANONPAGES);
2891 }
2892 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2893 entry = mk_pte(new_page, vma->vm_page_prot);
2894 entry = pte_sw_mkyoung(entry);
2895 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2896
2897 /*
2898 * Clear the pte entry and flush it first, before updating the
2899 * pte with the new entry, to keep TLBs on different CPUs in
2900 * sync. This code used to set the new PTE then flush TLBs, but
2901 * that left a window where the new PTE could be loaded into
2902 * some TLBs while the old PTE remains in others.
2903 */
2904 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2905 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2906 lru_cache_add_inactive_or_unevictable(new_page, vma);
2907 /*
2908 * We call the notify macro here because, when using secondary
2909 * mmu page tables (such as kvm shadow page tables), we want the
2910 * new page to be mapped directly into the secondary page table.
2911 */
2912 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2913 update_mmu_cache(vma, vmf->address, vmf->pte);
2914 if (old_page) {
2915 /*
2916 * Only after switching the pte to the new page may
2917 * we remove the mapcount here. Otherwise another
2918 * process may come and find the rmap count decremented
2919 * before the pte is switched to the new page, and
2920 * "reuse" the old page writing into it while our pte
2921 * here still points into it and can be read by other
2922 * threads.
2923 *
2924 * The critical issue is to order this
2925 * page_remove_rmap with the ptp_clear_flush above.
2926 * Those stores are ordered by (if nothing else,)
2927 * the barrier present in the atomic_add_negative
2928 * in page_remove_rmap.
2929 *
2930 * Then the TLB flush in ptep_clear_flush ensures that
2931 * no process can access the old page before the
2932 * decremented mapcount is visible. And the old page
2933 * cannot be reused until after the decremented
2934 * mapcount is visible. So transitively, TLBs to
2935 * old page will be flushed before it can be reused.
2936 */
2937 page_remove_rmap(old_page, false);
2938 }
2939
2940 /* Free the old page.. */
2941 new_page = old_page;
2942 page_copied = 1;
2943 } else {
2944 update_mmu_tlb(vma, vmf->address, vmf->pte);
2945 }
2946
2947 if (new_page)
2948 put_page(new_page);
2949
2950 pte_unmap_unlock(vmf->pte, vmf->ptl);
2951 /*
2952 * No need to double call mmu_notifier->invalidate_range() callback as
2953 * the above ptep_clear_flush_notify() did already call it.
2954 */
2955 mmu_notifier_invalidate_range_only_end(&range);
2956 if (old_page) {
2957 /*
2958 * Don't let another task, with possibly unlocked vma,
2959 * keep the mlocked page.
2960 */
2961 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2962 lock_page(old_page); /* LRU manipulation */
2963 if (PageMlocked(old_page))
2964 munlock_vma_page(old_page);
2965 unlock_page(old_page);
2966 }
2967 put_page(old_page);
2968 }
2969 return page_copied ? VM_FAULT_WRITE : 0;
2970 oom_free_new:
2971 put_page(new_page);
2972 oom:
2973 if (old_page)
2974 put_page(old_page);
2975 return VM_FAULT_OOM;
2976 }
2977
2978 /**
2979 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2980 * writeable once the page is prepared
2981 *
2982 * @vmf: structure describing the fault
2983 *
2984 * This function handles all that is needed to finish a write page fault in a
2985 * shared mapping due to PTE being read-only once the mapped page is prepared.
2986 * It handles locking of PTE and modifying it.
2987 *
2988 * The function expects the page to be locked or other protection against
2989 * concurrent faults / writeback (such as DAX radix tree locks).
2990 *
2991 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2992 * we acquired PTE lock.
2993 */
2994 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2995 {
2996 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2997 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2998 &vmf->ptl);
2999 /*
3000 * We might have raced with another page fault while we released the
3001 * pte_offset_map_lock.
3002 */
3003 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3004 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3005 pte_unmap_unlock(vmf->pte, vmf->ptl);
3006 return VM_FAULT_NOPAGE;
3007 }
3008 wp_page_reuse(vmf);
3009 return 0;
3010 }
3011
3012 /*
3013 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3014 * mapping
3015 */
3016 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3017 {
3018 struct vm_area_struct *vma = vmf->vma;
3019
3020 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3021 vm_fault_t ret;
3022
3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 vmf->flags |= FAULT_FLAG_MKWRITE;
3025 ret = vma->vm_ops->pfn_mkwrite(vmf);
3026 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3027 return ret;
3028 return finish_mkwrite_fault(vmf);
3029 }
3030 wp_page_reuse(vmf);
3031 return VM_FAULT_WRITE;
3032 }
3033
3034 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3035 __releases(vmf->ptl)
3036 {
3037 struct vm_area_struct *vma = vmf->vma;
3038 vm_fault_t ret = VM_FAULT_WRITE;
3039
3040 get_page(vmf->page);
3041
3042 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3043 vm_fault_t tmp;
3044
3045 pte_unmap_unlock(vmf->pte, vmf->ptl);
3046 tmp = do_page_mkwrite(vmf);
3047 if (unlikely(!tmp || (tmp &
3048 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3049 put_page(vmf->page);
3050 return tmp;
3051 }
3052 tmp = finish_mkwrite_fault(vmf);
3053 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3054 unlock_page(vmf->page);
3055 put_page(vmf->page);
3056 return tmp;
3057 }
3058 } else {
3059 wp_page_reuse(vmf);
3060 lock_page(vmf->page);
3061 }
3062 ret |= fault_dirty_shared_page(vmf);
3063 put_page(vmf->page);
3064
3065 return ret;
3066 }
3067
3068 /*
3069 * This routine handles present pages, when users try to write
3070 * to a shared page. It is done by copying the page to a new address
3071 * and decrementing the shared-page counter for the old page.
3072 *
3073 * Note that this routine assumes that the protection checks have been
3074 * done by the caller (the low-level page fault routine in most cases).
3075 * Thus we can safely just mark it writable once we've done any necessary
3076 * COW.
3077 *
3078 * We also mark the page dirty at this point even though the page will
3079 * change only once the write actually happens. This avoids a few races,
3080 * and potentially makes it more efficient.
3081 *
3082 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3083 * but allow concurrent faults), with pte both mapped and locked.
3084 * We return with mmap_lock still held, but pte unmapped and unlocked.
3085 */
3086 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3087 __releases(vmf->ptl)
3088 {
3089 struct vm_area_struct *vma = vmf->vma;
3090
3091 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3092 pte_unmap_unlock(vmf->pte, vmf->ptl);
3093 return handle_userfault(vmf, VM_UFFD_WP);
3094 }
3095
3096 /*
3097 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3098 * is flushed in this case before copying.
3099 */
3100 if (unlikely(userfaultfd_wp(vmf->vma) &&
3101 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3102 flush_tlb_page(vmf->vma, vmf->address);
3103
3104 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3105 if (!vmf->page) {
3106 /*
3107 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3108 * VM_PFNMAP VMA.
3109 *
3110 * We should not cow pages in a shared writeable mapping.
3111 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3112 */
3113 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3114 (VM_WRITE|VM_SHARED))
3115 return wp_pfn_shared(vmf);
3116
3117 pte_unmap_unlock(vmf->pte, vmf->ptl);
3118 return wp_page_copy(vmf);
3119 }
3120
3121 /*
3122 * Take out anonymous pages first, anonymous shared vmas are
3123 * not dirty accountable.
3124 */
3125 if (PageAnon(vmf->page)) {
3126 struct page *page = vmf->page;
3127
3128 /* PageKsm() doesn't necessarily raise the page refcount */
3129 if (PageKsm(page) || page_count(page) != 1)
3130 goto copy;
3131 if (!trylock_page(page))
3132 goto copy;
3133 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3134 unlock_page(page);
3135 goto copy;
3136 }
3137 /*
3138 * Ok, we've got the only map reference, and the only
3139 * page count reference, and the page is locked,
3140 * it's dark out, and we're wearing sunglasses. Hit it.
3141 */
3142 unlock_page(page);
3143 wp_page_reuse(vmf);
3144 return VM_FAULT_WRITE;
3145 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3146 (VM_WRITE|VM_SHARED))) {
3147 return wp_page_shared(vmf);
3148 }
3149 copy:
3150 /*
3151 * Ok, we need to copy. Oh, well..
3152 */
3153 get_page(vmf->page);
3154
3155 pte_unmap_unlock(vmf->pte, vmf->ptl);
3156 return wp_page_copy(vmf);
3157 }
3158
3159 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3160 unsigned long start_addr, unsigned long end_addr,
3161 struct zap_details *details)
3162 {
3163 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3164 }
3165
3166 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3167 struct zap_details *details)
3168 {
3169 struct vm_area_struct *vma;
3170 pgoff_t vba, vea, zba, zea;
3171
3172 vma_interval_tree_foreach(vma, root,
3173 details->first_index, details->last_index) {
3174
3175 vba = vma->vm_pgoff;
3176 vea = vba + vma_pages(vma) - 1;
3177 zba = details->first_index;
3178 if (zba < vba)
3179 zba = vba;
3180 zea = details->last_index;
3181 if (zea > vea)
3182 zea = vea;
3183
3184 unmap_mapping_range_vma(vma,
3185 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3186 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3187 details);
3188 }
3189 }
3190
3191 /**
3192 * unmap_mapping_pages() - Unmap pages from processes.
3193 * @mapping: The address space containing pages to be unmapped.
3194 * @start: Index of first page to be unmapped.
3195 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3196 * @even_cows: Whether to unmap even private COWed pages.
3197 *
3198 * Unmap the pages in this address space from any userspace process which
3199 * has them mmaped. Generally, you want to remove COWed pages as well when
3200 * a file is being truncated, but not when invalidating pages from the page
3201 * cache.
3202 */
3203 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3204 pgoff_t nr, bool even_cows)
3205 {
3206 struct zap_details details = { };
3207
3208 details.check_mapping = even_cows ? NULL : mapping;
3209 details.first_index = start;
3210 details.last_index = start + nr - 1;
3211 if (details.last_index < details.first_index)
3212 details.last_index = ULONG_MAX;
3213
3214 i_mmap_lock_write(mapping);
3215 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3216 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3217 i_mmap_unlock_write(mapping);
3218 }
3219
3220 /**
3221 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3222 * address_space corresponding to the specified byte range in the underlying
3223 * file.
3224 *
3225 * @mapping: the address space containing mmaps to be unmapped.
3226 * @holebegin: byte in first page to unmap, relative to the start of
3227 * the underlying file. This will be rounded down to a PAGE_SIZE
3228 * boundary. Note that this is different from truncate_pagecache(), which
3229 * must keep the partial page. In contrast, we must get rid of
3230 * partial pages.
3231 * @holelen: size of prospective hole in bytes. This will be rounded
3232 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3233 * end of the file.
3234 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3235 * but 0 when invalidating pagecache, don't throw away private data.
3236 */
3237 void unmap_mapping_range(struct address_space *mapping,
3238 loff_t const holebegin, loff_t const holelen, int even_cows)
3239 {
3240 pgoff_t hba = holebegin >> PAGE_SHIFT;
3241 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3242
3243 /* Check for overflow. */
3244 if (sizeof(holelen) > sizeof(hlen)) {
3245 long long holeend =
3246 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3247 if (holeend & ~(long long)ULONG_MAX)
3248 hlen = ULONG_MAX - hba + 1;
3249 }
3250
3251 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3252 }
3253 EXPORT_SYMBOL(unmap_mapping_range);
3254
3255 /*
3256 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3257 * but allow concurrent faults), and pte mapped but not yet locked.
3258 * We return with pte unmapped and unlocked.
3259 *
3260 * We return with the mmap_lock locked or unlocked in the same cases
3261 * as does filemap_fault().
3262 */
3263 vm_fault_t do_swap_page(struct vm_fault *vmf)
3264 {
3265 struct vm_area_struct *vma = vmf->vma;
3266 struct page *page = NULL, *swapcache;
3267 swp_entry_t entry;
3268 pte_t pte;
3269 int locked;
3270 int exclusive = 0;
3271 vm_fault_t ret = 0;
3272 void *shadow = NULL;
3273
3274 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3275 goto out;
3276
3277 entry = pte_to_swp_entry(vmf->orig_pte);
3278 if (unlikely(non_swap_entry(entry))) {
3279 if (is_migration_entry(entry)) {
3280 migration_entry_wait(vma->vm_mm, vmf->pmd,
3281 vmf->address);
3282 } else if (is_device_private_entry(entry)) {
3283 vmf->page = device_private_entry_to_page(entry);
3284 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3285 } else if (is_hwpoison_entry(entry)) {
3286 ret = VM_FAULT_HWPOISON;
3287 } else {
3288 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3289 ret = VM_FAULT_SIGBUS;
3290 }
3291 goto out;
3292 }
3293
3294
3295 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3296 page = lookup_swap_cache(entry, vma, vmf->address);
3297 swapcache = page;
3298
3299 if (!page) {
3300 struct swap_info_struct *si = swp_swap_info(entry);
3301
3302 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3303 __swap_count(entry) == 1) {
3304 /* skip swapcache */
3305 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3306 vmf->address);
3307 if (page) {
3308 int err;
3309
3310 __SetPageLocked(page);
3311 __SetPageSwapBacked(page);
3312 set_page_private(page, entry.val);
3313
3314 /* Tell memcg to use swap ownership records */
3315 SetPageSwapCache(page);
3316 err = mem_cgroup_charge(page, vma->vm_mm,
3317 GFP_KERNEL);
3318 ClearPageSwapCache(page);
3319 if (err) {
3320 ret = VM_FAULT_OOM;
3321 goto out_page;
3322 }
3323
3324 shadow = get_shadow_from_swap_cache(entry);
3325 if (shadow)
3326 workingset_refault(page, shadow);
3327
3328 lru_cache_add(page);
3329 swap_readpage(page, true);
3330 }
3331 } else {
3332 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3333 vmf);
3334 swapcache = page;
3335 }
3336
3337 if (!page) {
3338 /*
3339 * Back out if somebody else faulted in this pte
3340 * while we released the pte lock.
3341 */
3342 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3343 vmf->address, &vmf->ptl);
3344 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3345 ret = VM_FAULT_OOM;
3346 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3347 goto unlock;
3348 }
3349
3350 /* Had to read the page from swap area: Major fault */
3351 ret = VM_FAULT_MAJOR;
3352 count_vm_event(PGMAJFAULT);
3353 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3354 } else if (PageHWPoison(page)) {
3355 /*
3356 * hwpoisoned dirty swapcache pages are kept for killing
3357 * owner processes (which may be unknown at hwpoison time)
3358 */
3359 ret = VM_FAULT_HWPOISON;
3360 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3361 goto out_release;
3362 }
3363
3364 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3365
3366 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3367 if (!locked) {
3368 ret |= VM_FAULT_RETRY;
3369 goto out_release;
3370 }
3371
3372 /*
3373 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3374 * release the swapcache from under us. The page pin, and pte_same
3375 * test below, are not enough to exclude that. Even if it is still
3376 * swapcache, we need to check that the page's swap has not changed.
3377 */
3378 if (unlikely((!PageSwapCache(page) ||
3379 page_private(page) != entry.val)) && swapcache)
3380 goto out_page;
3381
3382 page = ksm_might_need_to_copy(page, vma, vmf->address);
3383 if (unlikely(!page)) {
3384 ret = VM_FAULT_OOM;
3385 page = swapcache;
3386 goto out_page;
3387 }
3388
3389 cgroup_throttle_swaprate(page, GFP_KERNEL);
3390
3391 /*
3392 * Back out if somebody else already faulted in this pte.
3393 */
3394 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3395 &vmf->ptl);
3396 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3397 goto out_nomap;
3398
3399 if (unlikely(!PageUptodate(page))) {
3400 ret = VM_FAULT_SIGBUS;
3401 goto out_nomap;
3402 }
3403
3404 /*
3405 * The page isn't present yet, go ahead with the fault.
3406 *
3407 * Be careful about the sequence of operations here.
3408 * To get its accounting right, reuse_swap_page() must be called
3409 * while the page is counted on swap but not yet in mapcount i.e.
3410 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3411 * must be called after the swap_free(), or it will never succeed.
3412 */
3413
3414 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3415 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3416 pte = mk_pte(page, vma->vm_page_prot);
3417 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3418 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3419 vmf->flags &= ~FAULT_FLAG_WRITE;
3420 ret |= VM_FAULT_WRITE;
3421 exclusive = RMAP_EXCLUSIVE;
3422 }
3423 flush_icache_page(vma, page);
3424 if (pte_swp_soft_dirty(vmf->orig_pte))
3425 pte = pte_mksoft_dirty(pte);
3426 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3427 pte = pte_mkuffd_wp(pte);
3428 pte = pte_wrprotect(pte);
3429 }
3430 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3431 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3432 vmf->orig_pte = pte;
3433
3434 /* ksm created a completely new copy */
3435 if (unlikely(page != swapcache && swapcache)) {
3436 page_add_new_anon_rmap(page, vma, vmf->address, false);
3437 lru_cache_add_inactive_or_unevictable(page, vma);
3438 } else {
3439 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3440 }
3441
3442 swap_free(entry);
3443 if (mem_cgroup_swap_full(page) ||
3444 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3445 try_to_free_swap(page);
3446 unlock_page(page);
3447 if (page != swapcache && swapcache) {
3448 /*
3449 * Hold the lock to avoid the swap entry to be reused
3450 * until we take the PT lock for the pte_same() check
3451 * (to avoid false positives from pte_same). For
3452 * further safety release the lock after the swap_free
3453 * so that the swap count won't change under a
3454 * parallel locked swapcache.
3455 */
3456 unlock_page(swapcache);
3457 put_page(swapcache);
3458 }
3459
3460 if (vmf->flags & FAULT_FLAG_WRITE) {
3461 ret |= do_wp_page(vmf);
3462 if (ret & VM_FAULT_ERROR)
3463 ret &= VM_FAULT_ERROR;
3464 goto out;
3465 }
3466
3467 /* No need to invalidate - it was non-present before */
3468 update_mmu_cache(vma, vmf->address, vmf->pte);
3469 unlock:
3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
3471 out:
3472 return ret;
3473 out_nomap:
3474 pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 out_page:
3476 unlock_page(page);
3477 out_release:
3478 put_page(page);
3479 if (page != swapcache && swapcache) {
3480 unlock_page(swapcache);
3481 put_page(swapcache);
3482 }
3483 return ret;
3484 }
3485
3486 /*
3487 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3488 * but allow concurrent faults), and pte mapped but not yet locked.
3489 * We return with mmap_lock still held, but pte unmapped and unlocked.
3490 */
3491 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3492 {
3493 struct vm_area_struct *vma = vmf->vma;
3494 struct page *page;
3495 vm_fault_t ret = 0;
3496 pte_t entry;
3497
3498 /* File mapping without ->vm_ops ? */
3499 if (vma->vm_flags & VM_SHARED)
3500 return VM_FAULT_SIGBUS;
3501
3502 /*
3503 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3504 * pte_offset_map() on pmds where a huge pmd might be created
3505 * from a different thread.
3506 *
3507 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3508 * parallel threads are excluded by other means.
3509 *
3510 * Here we only have mmap_read_lock(mm).
3511 */
3512 if (pte_alloc(vma->vm_mm, vmf->pmd))
3513 return VM_FAULT_OOM;
3514
3515 /* See the comment in pte_alloc_one_map() */
3516 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3517 return 0;
3518
3519 /* Use the zero-page for reads */
3520 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3521 !mm_forbids_zeropage(vma->vm_mm)) {
3522 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3523 vma->vm_page_prot));
3524 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3525 vmf->address, &vmf->ptl);
3526 if (!pte_none(*vmf->pte)) {
3527 update_mmu_tlb(vma, vmf->address, vmf->pte);
3528 goto unlock;
3529 }
3530 ret = check_stable_address_space(vma->vm_mm);
3531 if (ret)
3532 goto unlock;
3533 /* Deliver the page fault to userland, check inside PT lock */
3534 if (userfaultfd_missing(vma)) {
3535 pte_unmap_unlock(vmf->pte, vmf->ptl);
3536 return handle_userfault(vmf, VM_UFFD_MISSING);
3537 }
3538 goto setpte;
3539 }
3540
3541 /* Allocate our own private page. */
3542 if (unlikely(anon_vma_prepare(vma)))
3543 goto oom;
3544 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3545 if (!page)
3546 goto oom;
3547
3548 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3549 goto oom_free_page;
3550 cgroup_throttle_swaprate(page, GFP_KERNEL);
3551
3552 /*
3553 * The memory barrier inside __SetPageUptodate makes sure that
3554 * preceding stores to the page contents become visible before
3555 * the set_pte_at() write.
3556 */
3557 __SetPageUptodate(page);
3558
3559 entry = mk_pte(page, vma->vm_page_prot);
3560 entry = pte_sw_mkyoung(entry);
3561 if (vma->vm_flags & VM_WRITE)
3562 entry = pte_mkwrite(pte_mkdirty(entry));
3563
3564 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3565 &vmf->ptl);
3566 if (!pte_none(*vmf->pte)) {
3567 update_mmu_cache(vma, vmf->address, vmf->pte);
3568 goto release;
3569 }
3570
3571 ret = check_stable_address_space(vma->vm_mm);
3572 if (ret)
3573 goto release;
3574
3575 /* Deliver the page fault to userland, check inside PT lock */
3576 if (userfaultfd_missing(vma)) {
3577 pte_unmap_unlock(vmf->pte, vmf->ptl);
3578 put_page(page);
3579 return handle_userfault(vmf, VM_UFFD_MISSING);
3580 }
3581
3582 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3583 page_add_new_anon_rmap(page, vma, vmf->address, false);
3584 lru_cache_add_inactive_or_unevictable(page, vma);
3585 setpte:
3586 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3587
3588 /* No need to invalidate - it was non-present before */
3589 update_mmu_cache(vma, vmf->address, vmf->pte);
3590 unlock:
3591 pte_unmap_unlock(vmf->pte, vmf->ptl);
3592 return ret;
3593 release:
3594 put_page(page);
3595 goto unlock;
3596 oom_free_page:
3597 put_page(page);
3598 oom:
3599 return VM_FAULT_OOM;
3600 }
3601
3602 /*
3603 * The mmap_lock must have been held on entry, and may have been
3604 * released depending on flags and vma->vm_ops->fault() return value.
3605 * See filemap_fault() and __lock_page_retry().
3606 */
3607 static vm_fault_t __do_fault(struct vm_fault *vmf)
3608 {
3609 struct vm_area_struct *vma = vmf->vma;
3610 vm_fault_t ret;
3611
3612 /*
3613 * Preallocate pte before we take page_lock because this might lead to
3614 * deadlocks for memcg reclaim which waits for pages under writeback:
3615 * lock_page(A)
3616 * SetPageWriteback(A)
3617 * unlock_page(A)
3618 * lock_page(B)
3619 * lock_page(B)
3620 * pte_alloc_one
3621 * shrink_page_list
3622 * wait_on_page_writeback(A)
3623 * SetPageWriteback(B)
3624 * unlock_page(B)
3625 * # flush A, B to clear the writeback
3626 */
3627 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3628 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3629 if (!vmf->prealloc_pte)
3630 return VM_FAULT_OOM;
3631 smp_wmb(); /* See comment in __pte_alloc() */
3632 }
3633
3634 ret = vma->vm_ops->fault(vmf);
3635 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3636 VM_FAULT_DONE_COW)))
3637 return ret;
3638
3639 if (unlikely(PageHWPoison(vmf->page))) {
3640 if (ret & VM_FAULT_LOCKED)
3641 unlock_page(vmf->page);
3642 put_page(vmf->page);
3643 vmf->page = NULL;
3644 return VM_FAULT_HWPOISON;
3645 }
3646
3647 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3648 lock_page(vmf->page);
3649 else
3650 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3651
3652 return ret;
3653 }
3654
3655 /*
3656 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3657 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3658 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3659 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3660 */
3661 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3662 {
3663 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3664 }
3665
3666 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3667 {
3668 struct vm_area_struct *vma = vmf->vma;
3669
3670 if (!pmd_none(*vmf->pmd))
3671 goto map_pte;
3672 if (vmf->prealloc_pte) {
3673 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3674 if (unlikely(!pmd_none(*vmf->pmd))) {
3675 spin_unlock(vmf->ptl);
3676 goto map_pte;
3677 }
3678
3679 mm_inc_nr_ptes(vma->vm_mm);
3680 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3681 spin_unlock(vmf->ptl);
3682 vmf->prealloc_pte = NULL;
3683 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3684 return VM_FAULT_OOM;
3685 }
3686 map_pte:
3687 /*
3688 * If a huge pmd materialized under us just retry later. Use
3689 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3690 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3691 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3692 * running immediately after a huge pmd fault in a different thread of
3693 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3694 * All we have to ensure is that it is a regular pmd that we can walk
3695 * with pte_offset_map() and we can do that through an atomic read in
3696 * C, which is what pmd_trans_unstable() provides.
3697 */
3698 if (pmd_devmap_trans_unstable(vmf->pmd))
3699 return VM_FAULT_NOPAGE;
3700
3701 /*
3702 * At this point we know that our vmf->pmd points to a page of ptes
3703 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3704 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3705 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3706 * be valid and we will re-check to make sure the vmf->pte isn't
3707 * pte_none() under vmf->ptl protection when we return to
3708 * alloc_set_pte().
3709 */
3710 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3711 &vmf->ptl);
3712 return 0;
3713 }
3714
3715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3716 static void deposit_prealloc_pte(struct vm_fault *vmf)
3717 {
3718 struct vm_area_struct *vma = vmf->vma;
3719
3720 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3721 /*
3722 * We are going to consume the prealloc table,
3723 * count that as nr_ptes.
3724 */
3725 mm_inc_nr_ptes(vma->vm_mm);
3726 vmf->prealloc_pte = NULL;
3727 }
3728
3729 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3730 {
3731 struct vm_area_struct *vma = vmf->vma;
3732 bool write = vmf->flags & FAULT_FLAG_WRITE;
3733 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3734 pmd_t entry;
3735 int i;
3736 vm_fault_t ret = VM_FAULT_FALLBACK;
3737
3738 if (!transhuge_vma_suitable(vma, haddr))
3739 return ret;
3740
3741 page = compound_head(page);
3742 if (compound_order(page) != HPAGE_PMD_ORDER)
3743 return ret;
3744
3745 /*
3746 * Archs like ppc64 need additonal space to store information
3747 * related to pte entry. Use the preallocated table for that.
3748 */
3749 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3750 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3751 if (!vmf->prealloc_pte)
3752 return VM_FAULT_OOM;
3753 smp_wmb(); /* See comment in __pte_alloc() */
3754 }
3755
3756 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3757 if (unlikely(!pmd_none(*vmf->pmd)))
3758 goto out;
3759
3760 for (i = 0; i < HPAGE_PMD_NR; i++)
3761 flush_icache_page(vma, page + i);
3762
3763 entry = mk_huge_pmd(page, vma->vm_page_prot);
3764 if (write)
3765 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3766
3767 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3768 page_add_file_rmap(page, true);
3769 /*
3770 * deposit and withdraw with pmd lock held
3771 */
3772 if (arch_needs_pgtable_deposit())
3773 deposit_prealloc_pte(vmf);
3774
3775 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3776
3777 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3778
3779 /* fault is handled */
3780 ret = 0;
3781 count_vm_event(THP_FILE_MAPPED);
3782 out:
3783 spin_unlock(vmf->ptl);
3784 return ret;
3785 }
3786 #else
3787 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3788 {
3789 BUILD_BUG();
3790 return 0;
3791 }
3792 #endif
3793
3794 /**
3795 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3796 * mapping. If needed, the function allocates page table or use pre-allocated.
3797 *
3798 * @vmf: fault environment
3799 * @page: page to map
3800 *
3801 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3802 * return.
3803 *
3804 * Target users are page handler itself and implementations of
3805 * vm_ops->map_pages.
3806 *
3807 * Return: %0 on success, %VM_FAULT_ code in case of error.
3808 */
3809 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3810 {
3811 struct vm_area_struct *vma = vmf->vma;
3812 bool write = vmf->flags & FAULT_FLAG_WRITE;
3813 pte_t entry;
3814 vm_fault_t ret;
3815
3816 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3817 ret = do_set_pmd(vmf, page);
3818 if (ret != VM_FAULT_FALLBACK)
3819 return ret;
3820 }
3821
3822 if (!vmf->pte) {
3823 ret = pte_alloc_one_map(vmf);
3824 if (ret)
3825 return ret;
3826 }
3827
3828 /* Re-check under ptl */
3829 if (unlikely(!pte_none(*vmf->pte))) {
3830 update_mmu_tlb(vma, vmf->address, vmf->pte);
3831 return VM_FAULT_NOPAGE;
3832 }
3833
3834 flush_icache_page(vma, page);
3835 entry = mk_pte(page, vma->vm_page_prot);
3836 entry = pte_sw_mkyoung(entry);
3837 if (write)
3838 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3839 /* copy-on-write page */
3840 if (write && !(vma->vm_flags & VM_SHARED)) {
3841 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3842 page_add_new_anon_rmap(page, vma, vmf->address, false);
3843 lru_cache_add_inactive_or_unevictable(page, vma);
3844 } else {
3845 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3846 page_add_file_rmap(page, false);
3847 }
3848 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3849
3850 /* no need to invalidate: a not-present page won't be cached */
3851 update_mmu_cache(vma, vmf->address, vmf->pte);
3852
3853 return 0;
3854 }
3855
3856
3857 /**
3858 * finish_fault - finish page fault once we have prepared the page to fault
3859 *
3860 * @vmf: structure describing the fault
3861 *
3862 * This function handles all that is needed to finish a page fault once the
3863 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3864 * given page, adds reverse page mapping, handles memcg charges and LRU
3865 * addition.
3866 *
3867 * The function expects the page to be locked and on success it consumes a
3868 * reference of a page being mapped (for the PTE which maps it).
3869 *
3870 * Return: %0 on success, %VM_FAULT_ code in case of error.
3871 */
3872 vm_fault_t finish_fault(struct vm_fault *vmf)
3873 {
3874 struct page *page;
3875 vm_fault_t ret = 0;
3876
3877 /* Did we COW the page? */
3878 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3879 !(vmf->vma->vm_flags & VM_SHARED))
3880 page = vmf->cow_page;
3881 else
3882 page = vmf->page;
3883
3884 /*
3885 * check even for read faults because we might have lost our CoWed
3886 * page
3887 */
3888 if (!(vmf->vma->vm_flags & VM_SHARED))
3889 ret = check_stable_address_space(vmf->vma->vm_mm);
3890 if (!ret)
3891 ret = alloc_set_pte(vmf, page);
3892 if (vmf->pte)
3893 pte_unmap_unlock(vmf->pte, vmf->ptl);
3894 return ret;
3895 }
3896
3897 static unsigned long fault_around_bytes __read_mostly =
3898 rounddown_pow_of_two(65536);
3899
3900 #ifdef CONFIG_DEBUG_FS
3901 static int fault_around_bytes_get(void *data, u64 *val)
3902 {
3903 *val = fault_around_bytes;
3904 return 0;
3905 }
3906
3907 /*
3908 * fault_around_bytes must be rounded down to the nearest page order as it's
3909 * what do_fault_around() expects to see.
3910 */
3911 static int fault_around_bytes_set(void *data, u64 val)
3912 {
3913 if (val / PAGE_SIZE > PTRS_PER_PTE)
3914 return -EINVAL;
3915 if (val > PAGE_SIZE)
3916 fault_around_bytes = rounddown_pow_of_two(val);
3917 else
3918 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3919 return 0;
3920 }
3921 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3922 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3923
3924 static int __init fault_around_debugfs(void)
3925 {
3926 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3927 &fault_around_bytes_fops);
3928 return 0;
3929 }
3930 late_initcall(fault_around_debugfs);
3931 #endif
3932
3933 /*
3934 * do_fault_around() tries to map few pages around the fault address. The hope
3935 * is that the pages will be needed soon and this will lower the number of
3936 * faults to handle.
3937 *
3938 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3939 * not ready to be mapped: not up-to-date, locked, etc.
3940 *
3941 * This function is called with the page table lock taken. In the split ptlock
3942 * case the page table lock only protects only those entries which belong to
3943 * the page table corresponding to the fault address.
3944 *
3945 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3946 * only once.
3947 *
3948 * fault_around_bytes defines how many bytes we'll try to map.
3949 * do_fault_around() expects it to be set to a power of two less than or equal
3950 * to PTRS_PER_PTE.
3951 *
3952 * The virtual address of the area that we map is naturally aligned to
3953 * fault_around_bytes rounded down to the machine page size
3954 * (and therefore to page order). This way it's easier to guarantee
3955 * that we don't cross page table boundaries.
3956 */
3957 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3958 {
3959 unsigned long address = vmf->address, nr_pages, mask;
3960 pgoff_t start_pgoff = vmf->pgoff;
3961 pgoff_t end_pgoff;
3962 int off;
3963 vm_fault_t ret = 0;
3964
3965 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3966 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3967
3968 vmf->address = max(address & mask, vmf->vma->vm_start);
3969 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3970 start_pgoff -= off;
3971
3972 /*
3973 * end_pgoff is either the end of the page table, the end of
3974 * the vma or nr_pages from start_pgoff, depending what is nearest.
3975 */
3976 end_pgoff = start_pgoff -
3977 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3978 PTRS_PER_PTE - 1;
3979 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3980 start_pgoff + nr_pages - 1);
3981
3982 if (pmd_none(*vmf->pmd)) {
3983 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3984 if (!vmf->prealloc_pte)
3985 goto out;
3986 smp_wmb(); /* See comment in __pte_alloc() */
3987 }
3988
3989 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3990
3991 /* Huge page is mapped? Page fault is solved */
3992 if (pmd_trans_huge(*vmf->pmd)) {
3993 ret = VM_FAULT_NOPAGE;
3994 goto out;
3995 }
3996
3997 /* ->map_pages() haven't done anything useful. Cold page cache? */
3998 if (!vmf->pte)
3999 goto out;
4000
4001 /* check if the page fault is solved */
4002 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4003 if (!pte_none(*vmf->pte))
4004 ret = VM_FAULT_NOPAGE;
4005 pte_unmap_unlock(vmf->pte, vmf->ptl);
4006 out:
4007 vmf->address = address;
4008 vmf->pte = NULL;
4009 return ret;
4010 }
4011
4012 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4013 {
4014 struct vm_area_struct *vma = vmf->vma;
4015 vm_fault_t ret = 0;
4016
4017 /*
4018 * Let's call ->map_pages() first and use ->fault() as fallback
4019 * if page by the offset is not ready to be mapped (cold cache or
4020 * something).
4021 */
4022 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4023 ret = do_fault_around(vmf);
4024 if (ret)
4025 return ret;
4026 }
4027
4028 ret = __do_fault(vmf);
4029 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4030 return ret;
4031
4032 ret |= finish_fault(vmf);
4033 unlock_page(vmf->page);
4034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035 put_page(vmf->page);
4036 return ret;
4037 }
4038
4039 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4040 {
4041 struct vm_area_struct *vma = vmf->vma;
4042 vm_fault_t ret;
4043
4044 if (unlikely(anon_vma_prepare(vma)))
4045 return VM_FAULT_OOM;
4046
4047 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4048 if (!vmf->cow_page)
4049 return VM_FAULT_OOM;
4050
4051 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4052 put_page(vmf->cow_page);
4053 return VM_FAULT_OOM;
4054 }
4055 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4056
4057 ret = __do_fault(vmf);
4058 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4059 goto uncharge_out;
4060 if (ret & VM_FAULT_DONE_COW)
4061 return ret;
4062
4063 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4064 __SetPageUptodate(vmf->cow_page);
4065
4066 ret |= finish_fault(vmf);
4067 unlock_page(vmf->page);
4068 put_page(vmf->page);
4069 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4070 goto uncharge_out;
4071 return ret;
4072 uncharge_out:
4073 put_page(vmf->cow_page);
4074 return ret;
4075 }
4076
4077 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4078 {
4079 struct vm_area_struct *vma = vmf->vma;
4080 vm_fault_t ret, tmp;
4081
4082 ret = __do_fault(vmf);
4083 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4084 return ret;
4085
4086 /*
4087 * Check if the backing address space wants to know that the page is
4088 * about to become writable
4089 */
4090 if (vma->vm_ops->page_mkwrite) {
4091 unlock_page(vmf->page);
4092 tmp = do_page_mkwrite(vmf);
4093 if (unlikely(!tmp ||
4094 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4095 put_page(vmf->page);
4096 return tmp;
4097 }
4098 }
4099
4100 ret |= finish_fault(vmf);
4101 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4102 VM_FAULT_RETRY))) {
4103 unlock_page(vmf->page);
4104 put_page(vmf->page);
4105 return ret;
4106 }
4107
4108 ret |= fault_dirty_shared_page(vmf);
4109 return ret;
4110 }
4111
4112 /*
4113 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4114 * but allow concurrent faults).
4115 * The mmap_lock may have been released depending on flags and our
4116 * return value. See filemap_fault() and __lock_page_or_retry().
4117 * If mmap_lock is released, vma may become invalid (for example
4118 * by other thread calling munmap()).
4119 */
4120 static vm_fault_t do_fault(struct vm_fault *vmf)
4121 {
4122 struct vm_area_struct *vma = vmf->vma;
4123 struct mm_struct *vm_mm = vma->vm_mm;
4124 vm_fault_t ret;
4125
4126 /*
4127 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4128 */
4129 if (!vma->vm_ops->fault) {
4130 /*
4131 * If we find a migration pmd entry or a none pmd entry, which
4132 * should never happen, return SIGBUS
4133 */
4134 if (unlikely(!pmd_present(*vmf->pmd)))
4135 ret = VM_FAULT_SIGBUS;
4136 else {
4137 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4138 vmf->pmd,
4139 vmf->address,
4140 &vmf->ptl);
4141 /*
4142 * Make sure this is not a temporary clearing of pte
4143 * by holding ptl and checking again. A R/M/W update
4144 * of pte involves: take ptl, clearing the pte so that
4145 * we don't have concurrent modification by hardware
4146 * followed by an update.
4147 */
4148 if (unlikely(pte_none(*vmf->pte)))
4149 ret = VM_FAULT_SIGBUS;
4150 else
4151 ret = VM_FAULT_NOPAGE;
4152
4153 pte_unmap_unlock(vmf->pte, vmf->ptl);
4154 }
4155 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4156 ret = do_read_fault(vmf);
4157 else if (!(vma->vm_flags & VM_SHARED))
4158 ret = do_cow_fault(vmf);
4159 else
4160 ret = do_shared_fault(vmf);
4161
4162 /* preallocated pagetable is unused: free it */
4163 if (vmf->prealloc_pte) {
4164 pte_free(vm_mm, vmf->prealloc_pte);
4165 vmf->prealloc_pte = NULL;
4166 }
4167 return ret;
4168 }
4169
4170 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4171 unsigned long addr, int page_nid,
4172 int *flags)
4173 {
4174 get_page(page);
4175
4176 count_vm_numa_event(NUMA_HINT_FAULTS);
4177 if (page_nid == numa_node_id()) {
4178 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4179 *flags |= TNF_FAULT_LOCAL;
4180 }
4181
4182 return mpol_misplaced(page, vma, addr);
4183 }
4184
4185 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4186 {
4187 struct vm_area_struct *vma = vmf->vma;
4188 struct page *page = NULL;
4189 int page_nid = NUMA_NO_NODE;
4190 int last_cpupid;
4191 int target_nid;
4192 bool migrated = false;
4193 pte_t pte, old_pte;
4194 bool was_writable = pte_savedwrite(vmf->orig_pte);
4195 int flags = 0;
4196
4197 /*
4198 * The "pte" at this point cannot be used safely without
4199 * validation through pte_unmap_same(). It's of NUMA type but
4200 * the pfn may be screwed if the read is non atomic.
4201 */
4202 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4203 spin_lock(vmf->ptl);
4204 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4205 pte_unmap_unlock(vmf->pte, vmf->ptl);
4206 goto out;
4207 }
4208
4209 /*
4210 * Make it present again, Depending on how arch implementes non
4211 * accessible ptes, some can allow access by kernel mode.
4212 */
4213 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4214 pte = pte_modify(old_pte, vma->vm_page_prot);
4215 pte = pte_mkyoung(pte);
4216 if (was_writable)
4217 pte = pte_mkwrite(pte);
4218 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4219 update_mmu_cache(vma, vmf->address, vmf->pte);
4220
4221 page = vm_normal_page(vma, vmf->address, pte);
4222 if (!page) {
4223 pte_unmap_unlock(vmf->pte, vmf->ptl);
4224 return 0;
4225 }
4226
4227 /* TODO: handle PTE-mapped THP */
4228 if (PageCompound(page)) {
4229 pte_unmap_unlock(vmf->pte, vmf->ptl);
4230 return 0;
4231 }
4232
4233 /*
4234 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4235 * much anyway since they can be in shared cache state. This misses
4236 * the case where a mapping is writable but the process never writes
4237 * to it but pte_write gets cleared during protection updates and
4238 * pte_dirty has unpredictable behaviour between PTE scan updates,
4239 * background writeback, dirty balancing and application behaviour.
4240 */
4241 if (!pte_write(pte))
4242 flags |= TNF_NO_GROUP;
4243
4244 /*
4245 * Flag if the page is shared between multiple address spaces. This
4246 * is later used when determining whether to group tasks together
4247 */
4248 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4249 flags |= TNF_SHARED;
4250
4251 last_cpupid = page_cpupid_last(page);
4252 page_nid = page_to_nid(page);
4253 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4254 &flags);
4255 pte_unmap_unlock(vmf->pte, vmf->ptl);
4256 if (target_nid == NUMA_NO_NODE) {
4257 put_page(page);
4258 goto out;
4259 }
4260
4261 /* Migrate to the requested node */
4262 migrated = migrate_misplaced_page(page, vma, target_nid);
4263 if (migrated) {
4264 page_nid = target_nid;
4265 flags |= TNF_MIGRATED;
4266 } else
4267 flags |= TNF_MIGRATE_FAIL;
4268
4269 out:
4270 if (page_nid != NUMA_NO_NODE)
4271 task_numa_fault(last_cpupid, page_nid, 1, flags);
4272 return 0;
4273 }
4274
4275 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4276 {
4277 if (vma_is_anonymous(vmf->vma))
4278 return do_huge_pmd_anonymous_page(vmf);
4279 if (vmf->vma->vm_ops->huge_fault)
4280 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4281 return VM_FAULT_FALLBACK;
4282 }
4283
4284 /* `inline' is required to avoid gcc 4.1.2 build error */
4285 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4286 {
4287 if (vma_is_anonymous(vmf->vma)) {
4288 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4289 return handle_userfault(vmf, VM_UFFD_WP);
4290 return do_huge_pmd_wp_page(vmf, orig_pmd);
4291 }
4292 if (vmf->vma->vm_ops->huge_fault) {
4293 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4294
4295 if (!(ret & VM_FAULT_FALLBACK))
4296 return ret;
4297 }
4298
4299 /* COW or write-notify handled on pte level: split pmd. */
4300 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4301
4302 return VM_FAULT_FALLBACK;
4303 }
4304
4305 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4306 {
4307 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4308 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4309 /* No support for anonymous transparent PUD pages yet */
4310 if (vma_is_anonymous(vmf->vma))
4311 goto split;
4312 if (vmf->vma->vm_ops->huge_fault) {
4313 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4314
4315 if (!(ret & VM_FAULT_FALLBACK))
4316 return ret;
4317 }
4318 split:
4319 /* COW or write-notify not handled on PUD level: split pud.*/
4320 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4321 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4322 return VM_FAULT_FALLBACK;
4323 }
4324
4325 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4326 {
4327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4328 /* No support for anonymous transparent PUD pages yet */
4329 if (vma_is_anonymous(vmf->vma))
4330 return VM_FAULT_FALLBACK;
4331 if (vmf->vma->vm_ops->huge_fault)
4332 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4333 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4334 return VM_FAULT_FALLBACK;
4335 }
4336
4337 /*
4338 * These routines also need to handle stuff like marking pages dirty
4339 * and/or accessed for architectures that don't do it in hardware (most
4340 * RISC architectures). The early dirtying is also good on the i386.
4341 *
4342 * There is also a hook called "update_mmu_cache()" that architectures
4343 * with external mmu caches can use to update those (ie the Sparc or
4344 * PowerPC hashed page tables that act as extended TLBs).
4345 *
4346 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4347 * concurrent faults).
4348 *
4349 * The mmap_lock may have been released depending on flags and our return value.
4350 * See filemap_fault() and __lock_page_or_retry().
4351 */
4352 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4353 {
4354 pte_t entry;
4355
4356 if (unlikely(pmd_none(*vmf->pmd))) {
4357 /*
4358 * Leave __pte_alloc() until later: because vm_ops->fault may
4359 * want to allocate huge page, and if we expose page table
4360 * for an instant, it will be difficult to retract from
4361 * concurrent faults and from rmap lookups.
4362 */
4363 vmf->pte = NULL;
4364 } else {
4365 /* See comment in pte_alloc_one_map() */
4366 if (pmd_devmap_trans_unstable(vmf->pmd))
4367 return 0;
4368 /*
4369 * A regular pmd is established and it can't morph into a huge
4370 * pmd from under us anymore at this point because we hold the
4371 * mmap_lock read mode and khugepaged takes it in write mode.
4372 * So now it's safe to run pte_offset_map().
4373 */
4374 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4375 vmf->orig_pte = *vmf->pte;
4376
4377 /*
4378 * some architectures can have larger ptes than wordsize,
4379 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4380 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4381 * accesses. The code below just needs a consistent view
4382 * for the ifs and we later double check anyway with the
4383 * ptl lock held. So here a barrier will do.
4384 */
4385 barrier();
4386 if (pte_none(vmf->orig_pte)) {
4387 pte_unmap(vmf->pte);
4388 vmf->pte = NULL;
4389 }
4390 }
4391
4392 if (!vmf->pte) {
4393 if (vma_is_anonymous(vmf->vma))
4394 return do_anonymous_page(vmf);
4395 else
4396 return do_fault(vmf);
4397 }
4398
4399 if (!pte_present(vmf->orig_pte))
4400 return do_swap_page(vmf);
4401
4402 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4403 return do_numa_page(vmf);
4404
4405 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4406 spin_lock(vmf->ptl);
4407 entry = vmf->orig_pte;
4408 if (unlikely(!pte_same(*vmf->pte, entry))) {
4409 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4410 goto unlock;
4411 }
4412 if (vmf->flags & FAULT_FLAG_WRITE) {
4413 if (!pte_write(entry))
4414 return do_wp_page(vmf);
4415 entry = pte_mkdirty(entry);
4416 }
4417 entry = pte_mkyoung(entry);
4418 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4419 vmf->flags & FAULT_FLAG_WRITE)) {
4420 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4421 } else {
4422 /* Skip spurious TLB flush for retried page fault */
4423 if (vmf->flags & FAULT_FLAG_TRIED)
4424 goto unlock;
4425 /*
4426 * This is needed only for protection faults but the arch code
4427 * is not yet telling us if this is a protection fault or not.
4428 * This still avoids useless tlb flushes for .text page faults
4429 * with threads.
4430 */
4431 if (vmf->flags & FAULT_FLAG_WRITE)
4432 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4433 }
4434 unlock:
4435 pte_unmap_unlock(vmf->pte, vmf->ptl);
4436 return 0;
4437 }
4438
4439 /*
4440 * By the time we get here, we already hold the mm semaphore
4441 *
4442 * The mmap_lock may have been released depending on flags and our
4443 * return value. See filemap_fault() and __lock_page_or_retry().
4444 */
4445 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4446 unsigned long address, unsigned int flags)
4447 {
4448 struct vm_fault vmf = {
4449 .vma = vma,
4450 .address = address & PAGE_MASK,
4451 .flags = flags,
4452 .pgoff = linear_page_index(vma, address),
4453 .gfp_mask = __get_fault_gfp_mask(vma),
4454 };
4455 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4456 struct mm_struct *mm = vma->vm_mm;
4457 pgd_t *pgd;
4458 p4d_t *p4d;
4459 vm_fault_t ret;
4460
4461 pgd = pgd_offset(mm, address);
4462 p4d = p4d_alloc(mm, pgd, address);
4463 if (!p4d)
4464 return VM_FAULT_OOM;
4465
4466 vmf.pud = pud_alloc(mm, p4d, address);
4467 if (!vmf.pud)
4468 return VM_FAULT_OOM;
4469 retry_pud:
4470 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4471 ret = create_huge_pud(&vmf);
4472 if (!(ret & VM_FAULT_FALLBACK))
4473 return ret;
4474 } else {
4475 pud_t orig_pud = *vmf.pud;
4476
4477 barrier();
4478 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4479
4480 /* NUMA case for anonymous PUDs would go here */
4481
4482 if (dirty && !pud_write(orig_pud)) {
4483 ret = wp_huge_pud(&vmf, orig_pud);
4484 if (!(ret & VM_FAULT_FALLBACK))
4485 return ret;
4486 } else {
4487 huge_pud_set_accessed(&vmf, orig_pud);
4488 return 0;
4489 }
4490 }
4491 }
4492
4493 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4494 if (!vmf.pmd)
4495 return VM_FAULT_OOM;
4496
4497 /* Huge pud page fault raced with pmd_alloc? */
4498 if (pud_trans_unstable(vmf.pud))
4499 goto retry_pud;
4500
4501 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4502 ret = create_huge_pmd(&vmf);
4503 if (!(ret & VM_FAULT_FALLBACK))
4504 return ret;
4505 } else {
4506 pmd_t orig_pmd = *vmf.pmd;
4507
4508 barrier();
4509 if (unlikely(is_swap_pmd(orig_pmd))) {
4510 VM_BUG_ON(thp_migration_supported() &&
4511 !is_pmd_migration_entry(orig_pmd));
4512 if (is_pmd_migration_entry(orig_pmd))
4513 pmd_migration_entry_wait(mm, vmf.pmd);
4514 return 0;
4515 }
4516 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4517 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4518 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4519
4520 if (dirty && !pmd_write(orig_pmd)) {
4521 ret = wp_huge_pmd(&vmf, orig_pmd);
4522 if (!(ret & VM_FAULT_FALLBACK))
4523 return ret;
4524 } else {
4525 huge_pmd_set_accessed(&vmf, orig_pmd);
4526 return 0;
4527 }
4528 }
4529 }
4530
4531 return handle_pte_fault(&vmf);
4532 }
4533
4534 /**
4535 * mm_account_fault - Do page fault accountings
4536 *
4537 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4538 * of perf event counters, but we'll still do the per-task accounting to
4539 * the task who triggered this page fault.
4540 * @address: the faulted address.
4541 * @flags: the fault flags.
4542 * @ret: the fault retcode.
4543 *
4544 * This will take care of most of the page fault accountings. Meanwhile, it
4545 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4546 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4547 * still be in per-arch page fault handlers at the entry of page fault.
4548 */
4549 static inline void mm_account_fault(struct pt_regs *regs,
4550 unsigned long address, unsigned int flags,
4551 vm_fault_t ret)
4552 {
4553 bool major;
4554
4555 /*
4556 * We don't do accounting for some specific faults:
4557 *
4558 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4559 * includes arch_vma_access_permitted() failing before reaching here.
4560 * So this is not a "this many hardware page faults" counter. We
4561 * should use the hw profiling for that.
4562 *
4563 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4564 * once they're completed.
4565 */
4566 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4567 return;
4568
4569 /*
4570 * We define the fault as a major fault when the final successful fault
4571 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4572 * handle it immediately previously).
4573 */
4574 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4575
4576 if (major)
4577 current->maj_flt++;
4578 else
4579 current->min_flt++;
4580
4581 /*
4582 * If the fault is done for GUP, regs will be NULL. We only do the
4583 * accounting for the per thread fault counters who triggered the
4584 * fault, and we skip the perf event updates.
4585 */
4586 if (!regs)
4587 return;
4588
4589 if (major)
4590 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4591 else
4592 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4593 }
4594
4595 /*
4596 * By the time we get here, we already hold the mm semaphore
4597 *
4598 * The mmap_lock may have been released depending on flags and our
4599 * return value. See filemap_fault() and __lock_page_or_retry().
4600 */
4601 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4602 unsigned int flags, struct pt_regs *regs)
4603 {
4604 vm_fault_t ret;
4605
4606 __set_current_state(TASK_RUNNING);
4607
4608 count_vm_event(PGFAULT);
4609 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4610
4611 /* do counter updates before entering really critical section. */
4612 check_sync_rss_stat(current);
4613
4614 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4615 flags & FAULT_FLAG_INSTRUCTION,
4616 flags & FAULT_FLAG_REMOTE))
4617 return VM_FAULT_SIGSEGV;
4618
4619 /*
4620 * Enable the memcg OOM handling for faults triggered in user
4621 * space. Kernel faults are handled more gracefully.
4622 */
4623 if (flags & FAULT_FLAG_USER)
4624 mem_cgroup_enter_user_fault();
4625
4626 if (unlikely(is_vm_hugetlb_page(vma)))
4627 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4628 else
4629 ret = __handle_mm_fault(vma, address, flags);
4630
4631 if (flags & FAULT_FLAG_USER) {
4632 mem_cgroup_exit_user_fault();
4633 /*
4634 * The task may have entered a memcg OOM situation but
4635 * if the allocation error was handled gracefully (no
4636 * VM_FAULT_OOM), there is no need to kill anything.
4637 * Just clean up the OOM state peacefully.
4638 */
4639 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4640 mem_cgroup_oom_synchronize(false);
4641 }
4642
4643 mm_account_fault(regs, address, flags, ret);
4644
4645 return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(handle_mm_fault);
4648
4649 #ifndef __PAGETABLE_P4D_FOLDED
4650 /*
4651 * Allocate p4d page table.
4652 * We've already handled the fast-path in-line.
4653 */
4654 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4655 {
4656 p4d_t *new = p4d_alloc_one(mm, address);
4657 if (!new)
4658 return -ENOMEM;
4659
4660 smp_wmb(); /* See comment in __pte_alloc */
4661
4662 spin_lock(&mm->page_table_lock);
4663 if (pgd_present(*pgd)) /* Another has populated it */
4664 p4d_free(mm, new);
4665 else
4666 pgd_populate(mm, pgd, new);
4667 spin_unlock(&mm->page_table_lock);
4668 return 0;
4669 }
4670 #endif /* __PAGETABLE_P4D_FOLDED */
4671
4672 #ifndef __PAGETABLE_PUD_FOLDED
4673 /*
4674 * Allocate page upper directory.
4675 * We've already handled the fast-path in-line.
4676 */
4677 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4678 {
4679 pud_t *new = pud_alloc_one(mm, address);
4680 if (!new)
4681 return -ENOMEM;
4682
4683 smp_wmb(); /* See comment in __pte_alloc */
4684
4685 spin_lock(&mm->page_table_lock);
4686 if (!p4d_present(*p4d)) {
4687 mm_inc_nr_puds(mm);
4688 p4d_populate(mm, p4d, new);
4689 } else /* Another has populated it */
4690 pud_free(mm, new);
4691 spin_unlock(&mm->page_table_lock);
4692 return 0;
4693 }
4694 #endif /* __PAGETABLE_PUD_FOLDED */
4695
4696 #ifndef __PAGETABLE_PMD_FOLDED
4697 /*
4698 * Allocate page middle directory.
4699 * We've already handled the fast-path in-line.
4700 */
4701 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4702 {
4703 spinlock_t *ptl;
4704 pmd_t *new = pmd_alloc_one(mm, address);
4705 if (!new)
4706 return -ENOMEM;
4707
4708 smp_wmb(); /* See comment in __pte_alloc */
4709
4710 ptl = pud_lock(mm, pud);
4711 if (!pud_present(*pud)) {
4712 mm_inc_nr_pmds(mm);
4713 pud_populate(mm, pud, new);
4714 } else /* Another has populated it */
4715 pmd_free(mm, new);
4716 spin_unlock(ptl);
4717 return 0;
4718 }
4719 #endif /* __PAGETABLE_PMD_FOLDED */
4720
4721 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4722 struct mmu_notifier_range *range, pte_t **ptepp,
4723 pmd_t **pmdpp, spinlock_t **ptlp)
4724 {
4725 pgd_t *pgd;
4726 p4d_t *p4d;
4727 pud_t *pud;
4728 pmd_t *pmd;
4729 pte_t *ptep;
4730
4731 pgd = pgd_offset(mm, address);
4732 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4733 goto out;
4734
4735 p4d = p4d_offset(pgd, address);
4736 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4737 goto out;
4738
4739 pud = pud_offset(p4d, address);
4740 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4741 goto out;
4742
4743 pmd = pmd_offset(pud, address);
4744 VM_BUG_ON(pmd_trans_huge(*pmd));
4745
4746 if (pmd_huge(*pmd)) {
4747 if (!pmdpp)
4748 goto out;
4749
4750 if (range) {
4751 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4752 NULL, mm, address & PMD_MASK,
4753 (address & PMD_MASK) + PMD_SIZE);
4754 mmu_notifier_invalidate_range_start(range);
4755 }
4756 *ptlp = pmd_lock(mm, pmd);
4757 if (pmd_huge(*pmd)) {
4758 *pmdpp = pmd;
4759 return 0;
4760 }
4761 spin_unlock(*ptlp);
4762 if (range)
4763 mmu_notifier_invalidate_range_end(range);
4764 }
4765
4766 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4767 goto out;
4768
4769 if (range) {
4770 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4771 address & PAGE_MASK,
4772 (address & PAGE_MASK) + PAGE_SIZE);
4773 mmu_notifier_invalidate_range_start(range);
4774 }
4775 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4776 if (!pte_present(*ptep))
4777 goto unlock;
4778 *ptepp = ptep;
4779 return 0;
4780 unlock:
4781 pte_unmap_unlock(ptep, *ptlp);
4782 if (range)
4783 mmu_notifier_invalidate_range_end(range);
4784 out:
4785 return -EINVAL;
4786 }
4787
4788 /**
4789 * follow_pte - look up PTE at a user virtual address
4790 * @mm: the mm_struct of the target address space
4791 * @address: user virtual address
4792 * @ptepp: location to store found PTE
4793 * @ptlp: location to store the lock for the PTE
4794 *
4795 * On a successful return, the pointer to the PTE is stored in @ptepp;
4796 * the corresponding lock is taken and its location is stored in @ptlp.
4797 * The contents of the PTE are only stable until @ptlp is released;
4798 * any further use, if any, must be protected against invalidation
4799 * with MMU notifiers.
4800 *
4801 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4802 * should be taken for read.
4803 *
4804 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4805 * it is not a good general-purpose API.
4806 *
4807 * Return: zero on success, -ve otherwise.
4808 */
4809 int follow_pte(struct mm_struct *mm, unsigned long address,
4810 pte_t **ptepp, spinlock_t **ptlp)
4811 {
4812 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4813 }
4814 EXPORT_SYMBOL_GPL(follow_pte);
4815
4816 /**
4817 * follow_pfn - look up PFN at a user virtual address
4818 * @vma: memory mapping
4819 * @address: user virtual address
4820 * @pfn: location to store found PFN
4821 *
4822 * Only IO mappings and raw PFN mappings are allowed.
4823 *
4824 * This function does not allow the caller to read the permissions
4825 * of the PTE. Do not use it.
4826 *
4827 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4828 */
4829 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4830 unsigned long *pfn)
4831 {
4832 int ret = -EINVAL;
4833 spinlock_t *ptl;
4834 pte_t *ptep;
4835
4836 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4837 return ret;
4838
4839 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4840 if (ret)
4841 return ret;
4842 *pfn = pte_pfn(*ptep);
4843 pte_unmap_unlock(ptep, ptl);
4844 return 0;
4845 }
4846 EXPORT_SYMBOL(follow_pfn);
4847
4848 #ifdef CONFIG_HAVE_IOREMAP_PROT
4849 int follow_phys(struct vm_area_struct *vma,
4850 unsigned long address, unsigned int flags,
4851 unsigned long *prot, resource_size_t *phys)
4852 {
4853 int ret = -EINVAL;
4854 pte_t *ptep, pte;
4855 spinlock_t *ptl;
4856
4857 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4858 goto out;
4859
4860 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4861 goto out;
4862 pte = *ptep;
4863
4864 if ((flags & FOLL_WRITE) && !pte_write(pte))
4865 goto unlock;
4866
4867 *prot = pgprot_val(pte_pgprot(pte));
4868 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4869
4870 ret = 0;
4871 unlock:
4872 pte_unmap_unlock(ptep, ptl);
4873 out:
4874 return ret;
4875 }
4876
4877 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4878 void *buf, int len, int write)
4879 {
4880 resource_size_t phys_addr;
4881 unsigned long prot = 0;
4882 void __iomem *maddr;
4883 int offset = addr & (PAGE_SIZE-1);
4884
4885 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4886 return -EINVAL;
4887
4888 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4889 if (!maddr)
4890 return -ENOMEM;
4891
4892 if (write)
4893 memcpy_toio(maddr + offset, buf, len);
4894 else
4895 memcpy_fromio(buf, maddr + offset, len);
4896 iounmap(maddr);
4897
4898 return len;
4899 }
4900 EXPORT_SYMBOL_GPL(generic_access_phys);
4901 #endif
4902
4903 /*
4904 * Access another process' address space as given in mm.
4905 */
4906 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4907 int len, unsigned int gup_flags)
4908 {
4909 struct vm_area_struct *vma;
4910 void *old_buf = buf;
4911 int write = gup_flags & FOLL_WRITE;
4912
4913 if (mmap_read_lock_killable(mm))
4914 return 0;
4915
4916 /* ignore errors, just check how much was successfully transferred */
4917 while (len) {
4918 int bytes, ret, offset;
4919 void *maddr;
4920 struct page *page = NULL;
4921
4922 ret = get_user_pages_remote(mm, addr, 1,
4923 gup_flags, &page, &vma, NULL);
4924 if (ret <= 0) {
4925 #ifndef CONFIG_HAVE_IOREMAP_PROT
4926 break;
4927 #else
4928 /*
4929 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4930 * we can access using slightly different code.
4931 */
4932 vma = find_vma(mm, addr);
4933 if (!vma || vma->vm_start > addr)
4934 break;
4935 if (vma->vm_ops && vma->vm_ops->access)
4936 ret = vma->vm_ops->access(vma, addr, buf,
4937 len, write);
4938 if (ret <= 0)
4939 break;
4940 bytes = ret;
4941 #endif
4942 } else {
4943 bytes = len;
4944 offset = addr & (PAGE_SIZE-1);
4945 if (bytes > PAGE_SIZE-offset)
4946 bytes = PAGE_SIZE-offset;
4947
4948 maddr = kmap(page);
4949 if (write) {
4950 copy_to_user_page(vma, page, addr,
4951 maddr + offset, buf, bytes);
4952 set_page_dirty_lock(page);
4953 } else {
4954 copy_from_user_page(vma, page, addr,
4955 buf, maddr + offset, bytes);
4956 }
4957 kunmap(page);
4958 put_page(page);
4959 }
4960 len -= bytes;
4961 buf += bytes;
4962 addr += bytes;
4963 }
4964 mmap_read_unlock(mm);
4965
4966 return buf - old_buf;
4967 }
4968
4969 /**
4970 * access_remote_vm - access another process' address space
4971 * @mm: the mm_struct of the target address space
4972 * @addr: start address to access
4973 * @buf: source or destination buffer
4974 * @len: number of bytes to transfer
4975 * @gup_flags: flags modifying lookup behaviour
4976 *
4977 * The caller must hold a reference on @mm.
4978 *
4979 * Return: number of bytes copied from source to destination.
4980 */
4981 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4982 void *buf, int len, unsigned int gup_flags)
4983 {
4984 return __access_remote_vm(mm, addr, buf, len, gup_flags);
4985 }
4986
4987 /*
4988 * Access another process' address space.
4989 * Source/target buffer must be kernel space,
4990 * Do not walk the page table directly, use get_user_pages
4991 */
4992 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4993 void *buf, int len, unsigned int gup_flags)
4994 {
4995 struct mm_struct *mm;
4996 int ret;
4997
4998 mm = get_task_mm(tsk);
4999 if (!mm)
5000 return 0;
5001
5002 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5003
5004 mmput(mm);
5005
5006 return ret;
5007 }
5008 EXPORT_SYMBOL_GPL(access_process_vm);
5009
5010 /*
5011 * Print the name of a VMA.
5012 */
5013 void print_vma_addr(char *prefix, unsigned long ip)
5014 {
5015 struct mm_struct *mm = current->mm;
5016 struct vm_area_struct *vma;
5017
5018 /*
5019 * we might be running from an atomic context so we cannot sleep
5020 */
5021 if (!mmap_read_trylock(mm))
5022 return;
5023
5024 vma = find_vma(mm, ip);
5025 if (vma && vma->vm_file) {
5026 struct file *f = vma->vm_file;
5027 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5028 if (buf) {
5029 char *p;
5030
5031 p = file_path(f, buf, PAGE_SIZE);
5032 if (IS_ERR(p))
5033 p = "?";
5034 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5035 vma->vm_start,
5036 vma->vm_end - vma->vm_start);
5037 free_page((unsigned long)buf);
5038 }
5039 }
5040 mmap_read_unlock(mm);
5041 }
5042
5043 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5044 void __might_fault(const char *file, int line)
5045 {
5046 /*
5047 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5048 * holding the mmap_lock, this is safe because kernel memory doesn't
5049 * get paged out, therefore we'll never actually fault, and the
5050 * below annotations will generate false positives.
5051 */
5052 if (uaccess_kernel())
5053 return;
5054 if (pagefault_disabled())
5055 return;
5056 __might_sleep(file, line, 0);
5057 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5058 if (current->mm)
5059 might_lock_read(&current->mm->mmap_lock);
5060 #endif
5061 }
5062 EXPORT_SYMBOL(__might_fault);
5063 #endif
5064
5065 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5066 /*
5067 * Process all subpages of the specified huge page with the specified
5068 * operation. The target subpage will be processed last to keep its
5069 * cache lines hot.
5070 */
5071 static inline void process_huge_page(
5072 unsigned long addr_hint, unsigned int pages_per_huge_page,
5073 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5074 void *arg)
5075 {
5076 int i, n, base, l;
5077 unsigned long addr = addr_hint &
5078 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5079
5080 /* Process target subpage last to keep its cache lines hot */
5081 might_sleep();
5082 n = (addr_hint - addr) / PAGE_SIZE;
5083 if (2 * n <= pages_per_huge_page) {
5084 /* If target subpage in first half of huge page */
5085 base = 0;
5086 l = n;
5087 /* Process subpages at the end of huge page */
5088 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5089 cond_resched();
5090 process_subpage(addr + i * PAGE_SIZE, i, arg);
5091 }
5092 } else {
5093 /* If target subpage in second half of huge page */
5094 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5095 l = pages_per_huge_page - n;
5096 /* Process subpages at the begin of huge page */
5097 for (i = 0; i < base; i++) {
5098 cond_resched();
5099 process_subpage(addr + i * PAGE_SIZE, i, arg);
5100 }
5101 }
5102 /*
5103 * Process remaining subpages in left-right-left-right pattern
5104 * towards the target subpage
5105 */
5106 for (i = 0; i < l; i++) {
5107 int left_idx = base + i;
5108 int right_idx = base + 2 * l - 1 - i;
5109
5110 cond_resched();
5111 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5112 cond_resched();
5113 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5114 }
5115 }
5116
5117 static void clear_gigantic_page(struct page *page,
5118 unsigned long addr,
5119 unsigned int pages_per_huge_page)
5120 {
5121 int i;
5122 struct page *p = page;
5123
5124 might_sleep();
5125 for (i = 0; i < pages_per_huge_page;
5126 i++, p = mem_map_next(p, page, i)) {
5127 cond_resched();
5128 clear_user_highpage(p, addr + i * PAGE_SIZE);
5129 }
5130 }
5131
5132 static void clear_subpage(unsigned long addr, int idx, void *arg)
5133 {
5134 struct page *page = arg;
5135
5136 clear_user_highpage(page + idx, addr);
5137 }
5138
5139 void clear_huge_page(struct page *page,
5140 unsigned long addr_hint, unsigned int pages_per_huge_page)
5141 {
5142 unsigned long addr = addr_hint &
5143 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5144
5145 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5146 clear_gigantic_page(page, addr, pages_per_huge_page);
5147 return;
5148 }
5149
5150 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5151 }
5152
5153 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5154 unsigned long addr,
5155 struct vm_area_struct *vma,
5156 unsigned int pages_per_huge_page)
5157 {
5158 int i;
5159 struct page *dst_base = dst;
5160 struct page *src_base = src;
5161
5162 for (i = 0; i < pages_per_huge_page; ) {
5163 cond_resched();
5164 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5165
5166 i++;
5167 dst = mem_map_next(dst, dst_base, i);
5168 src = mem_map_next(src, src_base, i);
5169 }
5170 }
5171
5172 struct copy_subpage_arg {
5173 struct page *dst;
5174 struct page *src;
5175 struct vm_area_struct *vma;
5176 };
5177
5178 static void copy_subpage(unsigned long addr, int idx, void *arg)
5179 {
5180 struct copy_subpage_arg *copy_arg = arg;
5181
5182 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5183 addr, copy_arg->vma);
5184 }
5185
5186 void copy_user_huge_page(struct page *dst, struct page *src,
5187 unsigned long addr_hint, struct vm_area_struct *vma,
5188 unsigned int pages_per_huge_page)
5189 {
5190 unsigned long addr = addr_hint &
5191 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5192 struct copy_subpage_arg arg = {
5193 .dst = dst,
5194 .src = src,
5195 .vma = vma,
5196 };
5197
5198 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5199 copy_user_gigantic_page(dst, src, addr, vma,
5200 pages_per_huge_page);
5201 return;
5202 }
5203
5204 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5205 }
5206
5207 long copy_huge_page_from_user(struct page *dst_page,
5208 const void __user *usr_src,
5209 unsigned int pages_per_huge_page,
5210 bool allow_pagefault)
5211 {
5212 void *src = (void *)usr_src;
5213 void *page_kaddr;
5214 unsigned long i, rc = 0;
5215 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5216 struct page *subpage = dst_page;
5217
5218 for (i = 0; i < pages_per_huge_page;
5219 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5220 if (allow_pagefault)
5221 page_kaddr = kmap(subpage);
5222 else
5223 page_kaddr = kmap_atomic(subpage);
5224 rc = copy_from_user(page_kaddr,
5225 (const void __user *)(src + i * PAGE_SIZE),
5226 PAGE_SIZE);
5227 if (allow_pagefault)
5228 kunmap(subpage);
5229 else
5230 kunmap_atomic(page_kaddr);
5231
5232 ret_val -= (PAGE_SIZE - rc);
5233 if (rc)
5234 break;
5235
5236 cond_resched();
5237 }
5238 return ret_val;
5239 }
5240 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5241
5242 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5243
5244 static struct kmem_cache *page_ptl_cachep;
5245
5246 void __init ptlock_cache_init(void)
5247 {
5248 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5249 SLAB_PANIC, NULL);
5250 }
5251
5252 bool ptlock_alloc(struct page *page)
5253 {
5254 spinlock_t *ptl;
5255
5256 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5257 if (!ptl)
5258 return false;
5259 page->ptl = ptl;
5260 return true;
5261 }
5262
5263 void ptlock_free(struct page *page)
5264 {
5265 kmem_cache_free(page_ptl_cachep, page->ptl);
5266 }
5267 #endif