]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
vhost: make sure used idx is seen before log in vhost_add_used_n()
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258 #endif
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 /*
335 * If we want tlb_remove_table() to imply TLB invalidates.
336 */
337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338 {
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 /*
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
344 */
345 tlb_flush_mmu_tlbonly(tlb);
346 #endif
347 }
348
349 static void tlb_remove_table_smp_sync(void *arg)
350 {
351 /* Simply deliver the interrupt */
352 }
353
354 static void tlb_remove_table_one(void *table)
355 {
356 /*
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
359 *
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
362 */
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
365 }
366
367 static void tlb_remove_table_rcu(struct rcu_head *head)
368 {
369 struct mmu_table_batch *batch;
370 int i;
371
372 batch = container_of(head, struct mmu_table_batch, rcu);
373
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
376
377 free_page((unsigned long)batch);
378 }
379
380 void tlb_table_flush(struct mmu_gather *tlb)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 if (*batch) {
385 tlb_table_invalidate(tlb);
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
388 }
389 }
390
391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
392 {
393 struct mmu_table_batch **batch = &tlb->batch;
394
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
398 tlb_table_invalidate(tlb);
399 tlb_remove_table_one(table);
400 return;
401 }
402 (*batch)->nr = 0;
403 }
404
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
408 }
409
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
411
412 /* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
416 */
417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
419 {
420 arch_tlb_gather_mmu(tlb, mm, start, end);
421 inc_tlb_flush_pending(tlb->mm);
422 }
423
424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
426 {
427 /*
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
433 */
434 bool force = mm_tlb_flush_nested(tlb->mm);
435
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
438 }
439
440 /*
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
443 */
444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
446 {
447 pgtable_t token = pmd_pgtable(*pmd);
448 pmd_clear(pmd);
449 pte_free_tlb(tlb, token, addr);
450 mm_dec_nr_ptes(tlb->mm);
451 }
452
453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
456 {
457 pmd_t *pmd;
458 unsigned long next;
459 unsigned long start;
460
461 start = addr;
462 pmd = pmd_offset(pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
467 free_pte_range(tlb, pmd, addr);
468 } while (pmd++, addr = next, addr != end);
469
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
477 }
478 if (end - 1 > ceiling - 1)
479 return;
480
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
483 pmd_free_tlb(tlb, pmd, start);
484 mm_dec_nr_pmds(tlb->mm);
485 }
486
487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
490 {
491 pud_t *pud;
492 unsigned long next;
493 unsigned long start;
494
495 start = addr;
496 pud = pud_offset(p4d, addr);
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
503
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
518 mm_dec_nr_puds(tlb->mm);
519 }
520
521 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
522 unsigned long addr, unsigned long end,
523 unsigned long floor, unsigned long ceiling)
524 {
525 p4d_t *p4d;
526 unsigned long next;
527 unsigned long start;
528
529 start = addr;
530 p4d = p4d_offset(pgd, addr);
531 do {
532 next = p4d_addr_end(addr, end);
533 if (p4d_none_or_clear_bad(p4d))
534 continue;
535 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
536 } while (p4d++, addr = next, addr != end);
537
538 start &= PGDIR_MASK;
539 if (start < floor)
540 return;
541 if (ceiling) {
542 ceiling &= PGDIR_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 return;
548
549 p4d = p4d_offset(pgd, start);
550 pgd_clear(pgd);
551 p4d_free_tlb(tlb, p4d, start);
552 }
553
554 /*
555 * This function frees user-level page tables of a process.
556 */
557 void free_pgd_range(struct mmu_gather *tlb,
558 unsigned long addr, unsigned long end,
559 unsigned long floor, unsigned long ceiling)
560 {
561 pgd_t *pgd;
562 unsigned long next;
563
564 /*
565 * The next few lines have given us lots of grief...
566 *
567 * Why are we testing PMD* at this top level? Because often
568 * there will be no work to do at all, and we'd prefer not to
569 * go all the way down to the bottom just to discover that.
570 *
571 * Why all these "- 1"s? Because 0 represents both the bottom
572 * of the address space and the top of it (using -1 for the
573 * top wouldn't help much: the masks would do the wrong thing).
574 * The rule is that addr 0 and floor 0 refer to the bottom of
575 * the address space, but end 0 and ceiling 0 refer to the top
576 * Comparisons need to use "end - 1" and "ceiling - 1" (though
577 * that end 0 case should be mythical).
578 *
579 * Wherever addr is brought up or ceiling brought down, we must
580 * be careful to reject "the opposite 0" before it confuses the
581 * subsequent tests. But what about where end is brought down
582 * by PMD_SIZE below? no, end can't go down to 0 there.
583 *
584 * Whereas we round start (addr) and ceiling down, by different
585 * masks at different levels, in order to test whether a table
586 * now has no other vmas using it, so can be freed, we don't
587 * bother to round floor or end up - the tests don't need that.
588 */
589
590 addr &= PMD_MASK;
591 if (addr < floor) {
592 addr += PMD_SIZE;
593 if (!addr)
594 return;
595 }
596 if (ceiling) {
597 ceiling &= PMD_MASK;
598 if (!ceiling)
599 return;
600 }
601 if (end - 1 > ceiling - 1)
602 end -= PMD_SIZE;
603 if (addr > end - 1)
604 return;
605 /*
606 * We add page table cache pages with PAGE_SIZE,
607 * (see pte_free_tlb()), flush the tlb if we need
608 */
609 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
610 pgd = pgd_offset(tlb->mm, addr);
611 do {
612 next = pgd_addr_end(addr, end);
613 if (pgd_none_or_clear_bad(pgd))
614 continue;
615 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
616 } while (pgd++, addr = next, addr != end);
617 }
618
619 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
620 unsigned long floor, unsigned long ceiling)
621 {
622 while (vma) {
623 struct vm_area_struct *next = vma->vm_next;
624 unsigned long addr = vma->vm_start;
625
626 /*
627 * Hide vma from rmap and truncate_pagecache before freeing
628 * pgtables
629 */
630 unlink_anon_vmas(vma);
631 unlink_file_vma(vma);
632
633 if (is_vm_hugetlb_page(vma)) {
634 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
635 floor, next ? next->vm_start : ceiling);
636 } else {
637 /*
638 * Optimization: gather nearby vmas into one call down
639 */
640 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
641 && !is_vm_hugetlb_page(next)) {
642 vma = next;
643 next = vma->vm_next;
644 unlink_anon_vmas(vma);
645 unlink_file_vma(vma);
646 }
647 free_pgd_range(tlb, addr, vma->vm_end,
648 floor, next ? next->vm_start : ceiling);
649 }
650 vma = next;
651 }
652 }
653
654 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
655 {
656 spinlock_t *ptl;
657 pgtable_t new = pte_alloc_one(mm, address);
658 if (!new)
659 return -ENOMEM;
660
661 /*
662 * Ensure all pte setup (eg. pte page lock and page clearing) are
663 * visible before the pte is made visible to other CPUs by being
664 * put into page tables.
665 *
666 * The other side of the story is the pointer chasing in the page
667 * table walking code (when walking the page table without locking;
668 * ie. most of the time). Fortunately, these data accesses consist
669 * of a chain of data-dependent loads, meaning most CPUs (alpha
670 * being the notable exception) will already guarantee loads are
671 * seen in-order. See the alpha page table accessors for the
672 * smp_read_barrier_depends() barriers in page table walking code.
673 */
674 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675
676 ptl = pmd_lock(mm, pmd);
677 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
678 mm_inc_nr_ptes(mm);
679 pmd_populate(mm, pmd, new);
680 new = NULL;
681 }
682 spin_unlock(ptl);
683 if (new)
684 pte_free(mm, new);
685 return 0;
686 }
687
688 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
689 {
690 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
691 if (!new)
692 return -ENOMEM;
693
694 smp_wmb(); /* See comment in __pte_alloc */
695
696 spin_lock(&init_mm.page_table_lock);
697 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
698 pmd_populate_kernel(&init_mm, pmd, new);
699 new = NULL;
700 }
701 spin_unlock(&init_mm.page_table_lock);
702 if (new)
703 pte_free_kernel(&init_mm, new);
704 return 0;
705 }
706
707 static inline void init_rss_vec(int *rss)
708 {
709 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
710 }
711
712 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
713 {
714 int i;
715
716 if (current->mm == mm)
717 sync_mm_rss(mm);
718 for (i = 0; i < NR_MM_COUNTERS; i++)
719 if (rss[i])
720 add_mm_counter(mm, i, rss[i]);
721 }
722
723 /*
724 * This function is called to print an error when a bad pte
725 * is found. For example, we might have a PFN-mapped pte in
726 * a region that doesn't allow it.
727 *
728 * The calling function must still handle the error.
729 */
730 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
731 pte_t pte, struct page *page)
732 {
733 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
734 p4d_t *p4d = p4d_offset(pgd, addr);
735 pud_t *pud = pud_offset(p4d, addr);
736 pmd_t *pmd = pmd_offset(pud, addr);
737 struct address_space *mapping;
738 pgoff_t index;
739 static unsigned long resume;
740 static unsigned long nr_shown;
741 static unsigned long nr_unshown;
742
743 /*
744 * Allow a burst of 60 reports, then keep quiet for that minute;
745 * or allow a steady drip of one report per second.
746 */
747 if (nr_shown == 60) {
748 if (time_before(jiffies, resume)) {
749 nr_unshown++;
750 return;
751 }
752 if (nr_unshown) {
753 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
754 nr_unshown);
755 nr_unshown = 0;
756 }
757 nr_shown = 0;
758 }
759 if (nr_shown++ == 0)
760 resume = jiffies + 60 * HZ;
761
762 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
763 index = linear_page_index(vma, addr);
764
765 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
766 current->comm,
767 (long long)pte_val(pte), (long long)pmd_val(*pmd));
768 if (page)
769 dump_page(page, "bad pte");
770 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
771 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
772 /*
773 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 */
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
780 dump_stack();
781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 *
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 *
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
799 *
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
813 *
814 *
815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
825 */
826 #ifdef __HAVE_ARCH_PTE_SPECIAL
827 # define HAVE_PTE_SPECIAL 1
828 #else
829 # define HAVE_PTE_SPECIAL 0
830 #endif
831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 pte_t pte, bool with_public_device)
833 {
834 unsigned long pfn = pte_pfn(pte);
835
836 if (HAVE_PTE_SPECIAL) {
837 if (likely(!pte_special(pte)))
838 goto check_pfn;
839 if (vma->vm_ops && vma->vm_ops->find_special_page)
840 return vma->vm_ops->find_special_page(vma, addr);
841 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 return NULL;
843 if (is_zero_pfn(pfn))
844 return NULL;
845
846 /*
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
852 * ...).
853 *
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
857 */
858 if (likely(pfn <= highest_memmap_pfn)) {
859 struct page *page = pfn_to_page(pfn);
860
861 if (is_device_public_page(page)) {
862 if (with_public_device)
863 return page;
864 return NULL;
865 }
866 }
867 print_bad_pte(vma, addr, pte, NULL);
868 return NULL;
869 }
870
871 /* !HAVE_PTE_SPECIAL case follows: */
872
873 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
874 if (vma->vm_flags & VM_MIXEDMAP) {
875 if (!pfn_valid(pfn))
876 return NULL;
877 goto out;
878 } else {
879 unsigned long off;
880 off = (addr - vma->vm_start) >> PAGE_SHIFT;
881 if (pfn == vma->vm_pgoff + off)
882 return NULL;
883 if (!is_cow_mapping(vma->vm_flags))
884 return NULL;
885 }
886 }
887
888 if (is_zero_pfn(pfn))
889 return NULL;
890 check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
895
896 /*
897 * NOTE! We still have PageReserved() pages in the page tables.
898 * eg. VDSO mappings can cause them to exist.
899 */
900 out:
901 return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907 {
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (is_zero_pfn(pfn))
931 return NULL;
932 if (unlikely(pfn > highest_memmap_pfn))
933 return NULL;
934
935 /*
936 * NOTE! We still have PageReserved() pages in the page tables.
937 * eg. VDSO mappings can cause them to exist.
938 */
939 out:
940 return pfn_to_page(pfn);
941 }
942 #endif
943
944 /*
945 * copy one vm_area from one task to the other. Assumes the page tables
946 * already present in the new task to be cleared in the whole range
947 * covered by this vma.
948 */
949
950 static inline unsigned long
951 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
953 unsigned long addr, int *rss)
954 {
955 unsigned long vm_flags = vma->vm_flags;
956 pte_t pte = *src_pte;
957 struct page *page;
958
959 /* pte contains position in swap or file, so copy. */
960 if (unlikely(!pte_present(pte))) {
961 swp_entry_t entry = pte_to_swp_entry(pte);
962
963 if (likely(!non_swap_entry(entry))) {
964 if (swap_duplicate(entry) < 0)
965 return entry.val;
966
967 /* make sure dst_mm is on swapoff's mmlist. */
968 if (unlikely(list_empty(&dst_mm->mmlist))) {
969 spin_lock(&mmlist_lock);
970 if (list_empty(&dst_mm->mmlist))
971 list_add(&dst_mm->mmlist,
972 &src_mm->mmlist);
973 spin_unlock(&mmlist_lock);
974 }
975 rss[MM_SWAPENTS]++;
976 } else if (is_migration_entry(entry)) {
977 page = migration_entry_to_page(entry);
978
979 rss[mm_counter(page)]++;
980
981 if (is_write_migration_entry(entry) &&
982 is_cow_mapping(vm_flags)) {
983 /*
984 * COW mappings require pages in both
985 * parent and child to be set to read.
986 */
987 make_migration_entry_read(&entry);
988 pte = swp_entry_to_pte(entry);
989 if (pte_swp_soft_dirty(*src_pte))
990 pte = pte_swp_mksoft_dirty(pte);
991 set_pte_at(src_mm, addr, src_pte, pte);
992 }
993 } else if (is_device_private_entry(entry)) {
994 page = device_private_entry_to_page(entry);
995
996 /*
997 * Update rss count even for unaddressable pages, as
998 * they should treated just like normal pages in this
999 * respect.
1000 *
1001 * We will likely want to have some new rss counters
1002 * for unaddressable pages, at some point. But for now
1003 * keep things as they are.
1004 */
1005 get_page(page);
1006 rss[mm_counter(page)]++;
1007 page_dup_rmap(page, false);
1008
1009 /*
1010 * We do not preserve soft-dirty information, because so
1011 * far, checkpoint/restore is the only feature that
1012 * requires that. And checkpoint/restore does not work
1013 * when a device driver is involved (you cannot easily
1014 * save and restore device driver state).
1015 */
1016 if (is_write_device_private_entry(entry) &&
1017 is_cow_mapping(vm_flags)) {
1018 make_device_private_entry_read(&entry);
1019 pte = swp_entry_to_pte(entry);
1020 set_pte_at(src_mm, addr, src_pte, pte);
1021 }
1022 }
1023 goto out_set_pte;
1024 }
1025
1026 /*
1027 * If it's a COW mapping, write protect it both
1028 * in the parent and the child
1029 */
1030 if (is_cow_mapping(vm_flags)) {
1031 ptep_set_wrprotect(src_mm, addr, src_pte);
1032 pte = pte_wrprotect(pte);
1033 }
1034
1035 /*
1036 * If it's a shared mapping, mark it clean in
1037 * the child
1038 */
1039 if (vm_flags & VM_SHARED)
1040 pte = pte_mkclean(pte);
1041 pte = pte_mkold(pte);
1042
1043 page = vm_normal_page(vma, addr, pte);
1044 if (page) {
1045 get_page(page);
1046 page_dup_rmap(page, false);
1047 rss[mm_counter(page)]++;
1048 } else if (pte_devmap(pte)) {
1049 page = pte_page(pte);
1050
1051 /*
1052 * Cache coherent device memory behave like regular page and
1053 * not like persistent memory page. For more informations see
1054 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 */
1056 if (is_device_public_page(page)) {
1057 get_page(page);
1058 page_dup_rmap(page, false);
1059 rss[mm_counter(page)]++;
1060 }
1061 }
1062
1063 out_set_pte:
1064 set_pte_at(dst_mm, addr, dst_pte, pte);
1065 return 0;
1066 }
1067
1068 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1069 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1070 unsigned long addr, unsigned long end)
1071 {
1072 pte_t *orig_src_pte, *orig_dst_pte;
1073 pte_t *src_pte, *dst_pte;
1074 spinlock_t *src_ptl, *dst_ptl;
1075 int progress = 0;
1076 int rss[NR_MM_COUNTERS];
1077 swp_entry_t entry = (swp_entry_t){0};
1078
1079 again:
1080 init_rss_vec(rss);
1081
1082 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1083 if (!dst_pte)
1084 return -ENOMEM;
1085 src_pte = pte_offset_map(src_pmd, addr);
1086 src_ptl = pte_lockptr(src_mm, src_pmd);
1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088 orig_src_pte = src_pte;
1089 orig_dst_pte = dst_pte;
1090 arch_enter_lazy_mmu_mode();
1091
1092 do {
1093 /*
1094 * We are holding two locks at this point - either of them
1095 * could generate latencies in another task on another CPU.
1096 */
1097 if (progress >= 32) {
1098 progress = 0;
1099 if (need_resched() ||
1100 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1101 break;
1102 }
1103 if (pte_none(*src_pte)) {
1104 progress++;
1105 continue;
1106 }
1107 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1108 vma, addr, rss);
1109 if (entry.val)
1110 break;
1111 progress += 8;
1112 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1113
1114 arch_leave_lazy_mmu_mode();
1115 spin_unlock(src_ptl);
1116 pte_unmap(orig_src_pte);
1117 add_mm_rss_vec(dst_mm, rss);
1118 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1119 cond_resched();
1120
1121 if (entry.val) {
1122 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1123 return -ENOMEM;
1124 progress = 0;
1125 }
1126 if (addr != end)
1127 goto again;
1128 return 0;
1129 }
1130
1131 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1132 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1133 unsigned long addr, unsigned long end)
1134 {
1135 pmd_t *src_pmd, *dst_pmd;
1136 unsigned long next;
1137
1138 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1139 if (!dst_pmd)
1140 return -ENOMEM;
1141 src_pmd = pmd_offset(src_pud, addr);
1142 do {
1143 next = pmd_addr_end(addr, end);
1144 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1145 || pmd_devmap(*src_pmd)) {
1146 int err;
1147 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1148 err = copy_huge_pmd(dst_mm, src_mm,
1149 dst_pmd, src_pmd, addr, vma);
1150 if (err == -ENOMEM)
1151 return -ENOMEM;
1152 if (!err)
1153 continue;
1154 /* fall through */
1155 }
1156 if (pmd_none_or_clear_bad(src_pmd))
1157 continue;
1158 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1159 vma, addr, next))
1160 return -ENOMEM;
1161 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1162 return 0;
1163 }
1164
1165 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1167 unsigned long addr, unsigned long end)
1168 {
1169 pud_t *src_pud, *dst_pud;
1170 unsigned long next;
1171
1172 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1173 if (!dst_pud)
1174 return -ENOMEM;
1175 src_pud = pud_offset(src_p4d, addr);
1176 do {
1177 next = pud_addr_end(addr, end);
1178 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1179 int err;
1180
1181 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1182 err = copy_huge_pud(dst_mm, src_mm,
1183 dst_pud, src_pud, addr, vma);
1184 if (err == -ENOMEM)
1185 return -ENOMEM;
1186 if (!err)
1187 continue;
1188 /* fall through */
1189 }
1190 if (pud_none_or_clear_bad(src_pud))
1191 continue;
1192 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1193 vma, addr, next))
1194 return -ENOMEM;
1195 } while (dst_pud++, src_pud++, addr = next, addr != end);
1196 return 0;
1197 }
1198
1199 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1200 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1201 unsigned long addr, unsigned long end)
1202 {
1203 p4d_t *src_p4d, *dst_p4d;
1204 unsigned long next;
1205
1206 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1207 if (!dst_p4d)
1208 return -ENOMEM;
1209 src_p4d = p4d_offset(src_pgd, addr);
1210 do {
1211 next = p4d_addr_end(addr, end);
1212 if (p4d_none_or_clear_bad(src_p4d))
1213 continue;
1214 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1215 vma, addr, next))
1216 return -ENOMEM;
1217 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1218 return 0;
1219 }
1220
1221 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1222 struct vm_area_struct *vma)
1223 {
1224 pgd_t *src_pgd, *dst_pgd;
1225 unsigned long next;
1226 unsigned long addr = vma->vm_start;
1227 unsigned long end = vma->vm_end;
1228 unsigned long mmun_start; /* For mmu_notifiers */
1229 unsigned long mmun_end; /* For mmu_notifiers */
1230 bool is_cow;
1231 int ret;
1232
1233 /*
1234 * Don't copy ptes where a page fault will fill them correctly.
1235 * Fork becomes much lighter when there are big shared or private
1236 * readonly mappings. The tradeoff is that copy_page_range is more
1237 * efficient than faulting.
1238 */
1239 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1240 !vma->anon_vma)
1241 return 0;
1242
1243 if (is_vm_hugetlb_page(vma))
1244 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1245
1246 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1247 /*
1248 * We do not free on error cases below as remove_vma
1249 * gets called on error from higher level routine
1250 */
1251 ret = track_pfn_copy(vma);
1252 if (ret)
1253 return ret;
1254 }
1255
1256 /*
1257 * We need to invalidate the secondary MMU mappings only when
1258 * there could be a permission downgrade on the ptes of the
1259 * parent mm. And a permission downgrade will only happen if
1260 * is_cow_mapping() returns true.
1261 */
1262 is_cow = is_cow_mapping(vma->vm_flags);
1263 mmun_start = addr;
1264 mmun_end = end;
1265 if (is_cow)
1266 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1267 mmun_end);
1268
1269 ret = 0;
1270 dst_pgd = pgd_offset(dst_mm, addr);
1271 src_pgd = pgd_offset(src_mm, addr);
1272 do {
1273 next = pgd_addr_end(addr, end);
1274 if (pgd_none_or_clear_bad(src_pgd))
1275 continue;
1276 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1277 vma, addr, next))) {
1278 ret = -ENOMEM;
1279 break;
1280 }
1281 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1282
1283 if (is_cow)
1284 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1285 return ret;
1286 }
1287
1288 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma, pmd_t *pmd,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 struct mm_struct *mm = tlb->mm;
1294 int force_flush = 0;
1295 int rss[NR_MM_COUNTERS];
1296 spinlock_t *ptl;
1297 pte_t *start_pte;
1298 pte_t *pte;
1299 swp_entry_t entry;
1300
1301 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1302 again:
1303 init_rss_vec(rss);
1304 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1305 pte = start_pte;
1306 flush_tlb_batched_pending(mm);
1307 arch_enter_lazy_mmu_mode();
1308 do {
1309 pte_t ptent = *pte;
1310 if (pte_none(ptent))
1311 continue;
1312
1313 if (pte_present(ptent)) {
1314 struct page *page;
1315
1316 page = _vm_normal_page(vma, addr, ptent, true);
1317 if (unlikely(details) && page) {
1318 /*
1319 * unmap_shared_mapping_pages() wants to
1320 * invalidate cache without truncating:
1321 * unmap shared but keep private pages.
1322 */
1323 if (details->check_mapping &&
1324 details->check_mapping != page_rmapping(page))
1325 continue;
1326 }
1327 ptent = ptep_get_and_clear_full(mm, addr, pte,
1328 tlb->fullmm);
1329 tlb_remove_tlb_entry(tlb, pte, addr);
1330 if (unlikely(!page))
1331 continue;
1332
1333 if (!PageAnon(page)) {
1334 if (pte_dirty(ptent)) {
1335 force_flush = 1;
1336 set_page_dirty(page);
1337 }
1338 if (pte_young(ptent) &&
1339 likely(!(vma->vm_flags & VM_SEQ_READ)))
1340 mark_page_accessed(page);
1341 }
1342 rss[mm_counter(page)]--;
1343 page_remove_rmap(page, false);
1344 if (unlikely(page_mapcount(page) < 0))
1345 print_bad_pte(vma, addr, ptent, page);
1346 if (unlikely(__tlb_remove_page(tlb, page))) {
1347 force_flush = 1;
1348 addr += PAGE_SIZE;
1349 break;
1350 }
1351 continue;
1352 }
1353
1354 entry = pte_to_swp_entry(ptent);
1355 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1356 struct page *page = device_private_entry_to_page(entry);
1357
1358 if (unlikely(details && details->check_mapping)) {
1359 /*
1360 * unmap_shared_mapping_pages() wants to
1361 * invalidate cache without truncating:
1362 * unmap shared but keep private pages.
1363 */
1364 if (details->check_mapping !=
1365 page_rmapping(page))
1366 continue;
1367 }
1368
1369 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1370 rss[mm_counter(page)]--;
1371 page_remove_rmap(page, false);
1372 put_page(page);
1373 continue;
1374 }
1375
1376 /* If details->check_mapping, we leave swap entries. */
1377 if (unlikely(details))
1378 continue;
1379
1380 entry = pte_to_swp_entry(ptent);
1381 if (!non_swap_entry(entry))
1382 rss[MM_SWAPENTS]--;
1383 else if (is_migration_entry(entry)) {
1384 struct page *page;
1385
1386 page = migration_entry_to_page(entry);
1387 rss[mm_counter(page)]--;
1388 }
1389 if (unlikely(!free_swap_and_cache(entry)))
1390 print_bad_pte(vma, addr, ptent, NULL);
1391 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1392 } while (pte++, addr += PAGE_SIZE, addr != end);
1393
1394 add_mm_rss_vec(mm, rss);
1395 arch_leave_lazy_mmu_mode();
1396
1397 /* Do the actual TLB flush before dropping ptl */
1398 if (force_flush)
1399 tlb_flush_mmu_tlbonly(tlb);
1400 pte_unmap_unlock(start_pte, ptl);
1401
1402 /*
1403 * If we forced a TLB flush (either due to running out of
1404 * batch buffers or because we needed to flush dirty TLB
1405 * entries before releasing the ptl), free the batched
1406 * memory too. Restart if we didn't do everything.
1407 */
1408 if (force_flush) {
1409 force_flush = 0;
1410 tlb_flush_mmu_free(tlb);
1411 if (addr != end)
1412 goto again;
1413 }
1414
1415 return addr;
1416 }
1417
1418 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1419 struct vm_area_struct *vma, pud_t *pud,
1420 unsigned long addr, unsigned long end,
1421 struct zap_details *details)
1422 {
1423 pmd_t *pmd;
1424 unsigned long next;
1425
1426 pmd = pmd_offset(pud, addr);
1427 do {
1428 next = pmd_addr_end(addr, end);
1429 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1430 if (next - addr != HPAGE_PMD_SIZE)
1431 __split_huge_pmd(vma, pmd, addr, false, NULL);
1432 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1433 goto next;
1434 /* fall through */
1435 }
1436 /*
1437 * Here there can be other concurrent MADV_DONTNEED or
1438 * trans huge page faults running, and if the pmd is
1439 * none or trans huge it can change under us. This is
1440 * because MADV_DONTNEED holds the mmap_sem in read
1441 * mode.
1442 */
1443 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1444 goto next;
1445 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1446 next:
1447 cond_resched();
1448 } while (pmd++, addr = next, addr != end);
1449
1450 return addr;
1451 }
1452
1453 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1454 struct vm_area_struct *vma, p4d_t *p4d,
1455 unsigned long addr, unsigned long end,
1456 struct zap_details *details)
1457 {
1458 pud_t *pud;
1459 unsigned long next;
1460
1461 pud = pud_offset(p4d, addr);
1462 do {
1463 next = pud_addr_end(addr, end);
1464 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1465 if (next - addr != HPAGE_PUD_SIZE) {
1466 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1467 split_huge_pud(vma, pud, addr);
1468 } else if (zap_huge_pud(tlb, vma, pud, addr))
1469 goto next;
1470 /* fall through */
1471 }
1472 if (pud_none_or_clear_bad(pud))
1473 continue;
1474 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1475 next:
1476 cond_resched();
1477 } while (pud++, addr = next, addr != end);
1478
1479 return addr;
1480 }
1481
1482 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1483 struct vm_area_struct *vma, pgd_t *pgd,
1484 unsigned long addr, unsigned long end,
1485 struct zap_details *details)
1486 {
1487 p4d_t *p4d;
1488 unsigned long next;
1489
1490 p4d = p4d_offset(pgd, addr);
1491 do {
1492 next = p4d_addr_end(addr, end);
1493 if (p4d_none_or_clear_bad(p4d))
1494 continue;
1495 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1496 } while (p4d++, addr = next, addr != end);
1497
1498 return addr;
1499 }
1500
1501 void unmap_page_range(struct mmu_gather *tlb,
1502 struct vm_area_struct *vma,
1503 unsigned long addr, unsigned long end,
1504 struct zap_details *details)
1505 {
1506 pgd_t *pgd;
1507 unsigned long next;
1508
1509 BUG_ON(addr >= end);
1510 tlb_start_vma(tlb, vma);
1511 pgd = pgd_offset(vma->vm_mm, addr);
1512 do {
1513 next = pgd_addr_end(addr, end);
1514 if (pgd_none_or_clear_bad(pgd))
1515 continue;
1516 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1517 } while (pgd++, addr = next, addr != end);
1518 tlb_end_vma(tlb, vma);
1519 }
1520
1521
1522 static void unmap_single_vma(struct mmu_gather *tlb,
1523 struct vm_area_struct *vma, unsigned long start_addr,
1524 unsigned long end_addr,
1525 struct zap_details *details)
1526 {
1527 unsigned long start = max(vma->vm_start, start_addr);
1528 unsigned long end;
1529
1530 if (start >= vma->vm_end)
1531 return;
1532 end = min(vma->vm_end, end_addr);
1533 if (end <= vma->vm_start)
1534 return;
1535
1536 if (vma->vm_file)
1537 uprobe_munmap(vma, start, end);
1538
1539 if (unlikely(vma->vm_flags & VM_PFNMAP))
1540 untrack_pfn(vma, 0, 0);
1541
1542 if (start != end) {
1543 if (unlikely(is_vm_hugetlb_page(vma))) {
1544 /*
1545 * It is undesirable to test vma->vm_file as it
1546 * should be non-null for valid hugetlb area.
1547 * However, vm_file will be NULL in the error
1548 * cleanup path of mmap_region. When
1549 * hugetlbfs ->mmap method fails,
1550 * mmap_region() nullifies vma->vm_file
1551 * before calling this function to clean up.
1552 * Since no pte has actually been setup, it is
1553 * safe to do nothing in this case.
1554 */
1555 if (vma->vm_file) {
1556 i_mmap_lock_write(vma->vm_file->f_mapping);
1557 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1558 i_mmap_unlock_write(vma->vm_file->f_mapping);
1559 }
1560 } else
1561 unmap_page_range(tlb, vma, start, end, details);
1562 }
1563 }
1564
1565 /**
1566 * unmap_vmas - unmap a range of memory covered by a list of vma's
1567 * @tlb: address of the caller's struct mmu_gather
1568 * @vma: the starting vma
1569 * @start_addr: virtual address at which to start unmapping
1570 * @end_addr: virtual address at which to end unmapping
1571 *
1572 * Unmap all pages in the vma list.
1573 *
1574 * Only addresses between `start' and `end' will be unmapped.
1575 *
1576 * The VMA list must be sorted in ascending virtual address order.
1577 *
1578 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1579 * range after unmap_vmas() returns. So the only responsibility here is to
1580 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1581 * drops the lock and schedules.
1582 */
1583 void unmap_vmas(struct mmu_gather *tlb,
1584 struct vm_area_struct *vma, unsigned long start_addr,
1585 unsigned long end_addr)
1586 {
1587 struct mm_struct *mm = vma->vm_mm;
1588
1589 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1590 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1591 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1592 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1593 }
1594
1595 /**
1596 * zap_page_range - remove user pages in a given range
1597 * @vma: vm_area_struct holding the applicable pages
1598 * @start: starting address of pages to zap
1599 * @size: number of bytes to zap
1600 *
1601 * Caller must protect the VMA list
1602 */
1603 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1604 unsigned long size)
1605 {
1606 struct mm_struct *mm = vma->vm_mm;
1607 struct mmu_gather tlb;
1608 unsigned long end = start + size;
1609
1610 lru_add_drain();
1611 tlb_gather_mmu(&tlb, mm, start, end);
1612 update_hiwater_rss(mm);
1613 mmu_notifier_invalidate_range_start(mm, start, end);
1614 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1615 unmap_single_vma(&tlb, vma, start, end, NULL);
1616
1617 /*
1618 * zap_page_range does not specify whether mmap_sem should be
1619 * held for read or write. That allows parallel zap_page_range
1620 * operations to unmap a PTE and defer a flush meaning that
1621 * this call observes pte_none and fails to flush the TLB.
1622 * Rather than adding a complex API, ensure that no stale
1623 * TLB entries exist when this call returns.
1624 */
1625 flush_tlb_range(vma, start, end);
1626 }
1627
1628 mmu_notifier_invalidate_range_end(mm, start, end);
1629 tlb_finish_mmu(&tlb, start, end);
1630 }
1631
1632 /**
1633 * zap_page_range_single - remove user pages in a given range
1634 * @vma: vm_area_struct holding the applicable pages
1635 * @address: starting address of pages to zap
1636 * @size: number of bytes to zap
1637 * @details: details of shared cache invalidation
1638 *
1639 * The range must fit into one VMA.
1640 */
1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1642 unsigned long size, struct zap_details *details)
1643 {
1644 struct mm_struct *mm = vma->vm_mm;
1645 struct mmu_gather tlb;
1646 unsigned long end = address + size;
1647
1648 lru_add_drain();
1649 tlb_gather_mmu(&tlb, mm, address, end);
1650 update_hiwater_rss(mm);
1651 mmu_notifier_invalidate_range_start(mm, address, end);
1652 unmap_single_vma(&tlb, vma, address, end, details);
1653 mmu_notifier_invalidate_range_end(mm, address, end);
1654 tlb_finish_mmu(&tlb, address, end);
1655 }
1656
1657 /**
1658 * zap_vma_ptes - remove ptes mapping the vma
1659 * @vma: vm_area_struct holding ptes to be zapped
1660 * @address: starting address of pages to zap
1661 * @size: number of bytes to zap
1662 *
1663 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664 *
1665 * The entire address range must be fully contained within the vma.
1666 *
1667 * Returns 0 if successful.
1668 */
1669 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670 unsigned long size)
1671 {
1672 if (address < vma->vm_start || address + size > vma->vm_end ||
1673 !(vma->vm_flags & VM_PFNMAP))
1674 return -1;
1675 zap_page_range_single(vma, address, size, NULL);
1676 return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679
1680 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1681 spinlock_t **ptl)
1682 {
1683 pgd_t *pgd;
1684 p4d_t *p4d;
1685 pud_t *pud;
1686 pmd_t *pmd;
1687
1688 pgd = pgd_offset(mm, addr);
1689 p4d = p4d_alloc(mm, pgd, addr);
1690 if (!p4d)
1691 return NULL;
1692 pud = pud_alloc(mm, p4d, addr);
1693 if (!pud)
1694 return NULL;
1695 pmd = pmd_alloc(mm, pud, addr);
1696 if (!pmd)
1697 return NULL;
1698
1699 VM_BUG_ON(pmd_trans_huge(*pmd));
1700 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1701 }
1702
1703 /*
1704 * This is the old fallback for page remapping.
1705 *
1706 * For historical reasons, it only allows reserved pages. Only
1707 * old drivers should use this, and they needed to mark their
1708 * pages reserved for the old functions anyway.
1709 */
1710 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1711 struct page *page, pgprot_t prot)
1712 {
1713 struct mm_struct *mm = vma->vm_mm;
1714 int retval;
1715 pte_t *pte;
1716 spinlock_t *ptl;
1717
1718 retval = -EINVAL;
1719 if (PageAnon(page))
1720 goto out;
1721 retval = -ENOMEM;
1722 flush_dcache_page(page);
1723 pte = get_locked_pte(mm, addr, &ptl);
1724 if (!pte)
1725 goto out;
1726 retval = -EBUSY;
1727 if (!pte_none(*pte))
1728 goto out_unlock;
1729
1730 /* Ok, finally just insert the thing.. */
1731 get_page(page);
1732 inc_mm_counter_fast(mm, mm_counter_file(page));
1733 page_add_file_rmap(page, false);
1734 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735
1736 retval = 0;
1737 pte_unmap_unlock(pte, ptl);
1738 return retval;
1739 out_unlock:
1740 pte_unmap_unlock(pte, ptl);
1741 out:
1742 return retval;
1743 }
1744
1745 /**
1746 * vm_insert_page - insert single page into user vma
1747 * @vma: user vma to map to
1748 * @addr: target user address of this page
1749 * @page: source kernel page
1750 *
1751 * This allows drivers to insert individual pages they've allocated
1752 * into a user vma.
1753 *
1754 * The page has to be a nice clean _individual_ kernel allocation.
1755 * If you allocate a compound page, you need to have marked it as
1756 * such (__GFP_COMP), or manually just split the page up yourself
1757 * (see split_page()).
1758 *
1759 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1760 * took an arbitrary page protection parameter. This doesn't allow
1761 * that. Your vma protection will have to be set up correctly, which
1762 * means that if you want a shared writable mapping, you'd better
1763 * ask for a shared writable mapping!
1764 *
1765 * The page does not need to be reserved.
1766 *
1767 * Usually this function is called from f_op->mmap() handler
1768 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1769 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1770 * function from other places, for example from page-fault handler.
1771 */
1772 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1773 struct page *page)
1774 {
1775 if (addr < vma->vm_start || addr >= vma->vm_end)
1776 return -EFAULT;
1777 if (!page_count(page))
1778 return -EINVAL;
1779 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1780 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1781 BUG_ON(vma->vm_flags & VM_PFNMAP);
1782 vma->vm_flags |= VM_MIXEDMAP;
1783 }
1784 return insert_page(vma, addr, page, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_insert_page);
1787
1788 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1789 pfn_t pfn, pgprot_t prot, bool mkwrite)
1790 {
1791 struct mm_struct *mm = vma->vm_mm;
1792 int retval;
1793 pte_t *pte, entry;
1794 spinlock_t *ptl;
1795
1796 retval = -ENOMEM;
1797 pte = get_locked_pte(mm, addr, &ptl);
1798 if (!pte)
1799 goto out;
1800 retval = -EBUSY;
1801 if (!pte_none(*pte)) {
1802 if (mkwrite) {
1803 /*
1804 * For read faults on private mappings the PFN passed
1805 * in may not match the PFN we have mapped if the
1806 * mapped PFN is a writeable COW page. In the mkwrite
1807 * case we are creating a writable PTE for a shared
1808 * mapping and we expect the PFNs to match.
1809 */
1810 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1811 goto out_unlock;
1812 entry = *pte;
1813 goto out_mkwrite;
1814 } else
1815 goto out_unlock;
1816 }
1817
1818 /* Ok, finally just insert the thing.. */
1819 if (pfn_t_devmap(pfn))
1820 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1821 else
1822 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1823
1824 out_mkwrite:
1825 if (mkwrite) {
1826 entry = pte_mkyoung(entry);
1827 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828 }
1829
1830 set_pte_at(mm, addr, pte, entry);
1831 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1832
1833 retval = 0;
1834 out_unlock:
1835 pte_unmap_unlock(pte, ptl);
1836 out:
1837 return retval;
1838 }
1839
1840 /**
1841 * vm_insert_pfn - insert single pfn into user vma
1842 * @vma: user vma to map to
1843 * @addr: target user address of this page
1844 * @pfn: source kernel pfn
1845 *
1846 * Similar to vm_insert_page, this allows drivers to insert individual pages
1847 * they've allocated into a user vma. Same comments apply.
1848 *
1849 * This function should only be called from a vm_ops->fault handler, and
1850 * in that case the handler should return NULL.
1851 *
1852 * vma cannot be a COW mapping.
1853 *
1854 * As this is called only for pages that do not currently exist, we
1855 * do not need to flush old virtual caches or the TLB.
1856 */
1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1858 unsigned long pfn)
1859 {
1860 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1861 }
1862 EXPORT_SYMBOL(vm_insert_pfn);
1863
1864 /**
1865 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866 * @vma: user vma to map to
1867 * @addr: target user address of this page
1868 * @pfn: source kernel pfn
1869 * @pgprot: pgprot flags for the inserted page
1870 *
1871 * This is exactly like vm_insert_pfn, except that it allows drivers to
1872 * to override pgprot on a per-page basis.
1873 *
1874 * This only makes sense for IO mappings, and it makes no sense for
1875 * cow mappings. In general, using multiple vmas is preferable;
1876 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1877 * impractical.
1878 */
1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1880 unsigned long pfn, pgprot_t pgprot)
1881 {
1882 int ret;
1883 /*
1884 * Technically, architectures with pte_special can avoid all these
1885 * restrictions (same for remap_pfn_range). However we would like
1886 * consistency in testing and feature parity among all, so we should
1887 * try to keep these invariants in place for everybody.
1888 */
1889 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1891 (VM_PFNMAP|VM_MIXEDMAP));
1892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1893 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1894
1895 if (addr < vma->vm_start || addr >= vma->vm_end)
1896 return -EFAULT;
1897
1898 if (!pfn_modify_allowed(pfn, pgprot))
1899 return -EACCES;
1900
1901 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1902
1903 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1904 false);
1905
1906 return ret;
1907 }
1908 EXPORT_SYMBOL(vm_insert_pfn_prot);
1909
1910 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1911 {
1912 /* these checks mirror the abort conditions in vm_normal_page */
1913 if (vma->vm_flags & VM_MIXEDMAP)
1914 return true;
1915 if (pfn_t_devmap(pfn))
1916 return true;
1917 if (pfn_t_special(pfn))
1918 return true;
1919 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1920 return true;
1921 return false;
1922 }
1923
1924 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1925 pfn_t pfn, bool mkwrite)
1926 {
1927 pgprot_t pgprot = vma->vm_page_prot;
1928
1929 BUG_ON(!vm_mixed_ok(vma, pfn));
1930
1931 if (addr < vma->vm_start || addr >= vma->vm_end)
1932 return -EFAULT;
1933
1934 track_pfn_insert(vma, &pgprot, pfn);
1935
1936 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1937 return -EACCES;
1938
1939 /*
1940 * If we don't have pte special, then we have to use the pfn_valid()
1941 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1942 * refcount the page if pfn_valid is true (hence insert_page rather
1943 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1944 * without pte special, it would there be refcounted as a normal page.
1945 */
1946 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1947 struct page *page;
1948
1949 /*
1950 * At this point we are committed to insert_page()
1951 * regardless of whether the caller specified flags that
1952 * result in pfn_t_has_page() == false.
1953 */
1954 page = pfn_to_page(pfn_t_to_pfn(pfn));
1955 return insert_page(vma, addr, page, pgprot);
1956 }
1957 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1958 }
1959
1960 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1961 pfn_t pfn)
1962 {
1963 return __vm_insert_mixed(vma, addr, pfn, false);
1964
1965 }
1966 EXPORT_SYMBOL(vm_insert_mixed);
1967
1968 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1969 pfn_t pfn)
1970 {
1971 return __vm_insert_mixed(vma, addr, pfn, true);
1972 }
1973 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1974
1975 /*
1976 * maps a range of physical memory into the requested pages. the old
1977 * mappings are removed. any references to nonexistent pages results
1978 * in null mappings (currently treated as "copy-on-access")
1979 */
1980 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1981 unsigned long addr, unsigned long end,
1982 unsigned long pfn, pgprot_t prot)
1983 {
1984 pte_t *pte;
1985 spinlock_t *ptl;
1986 int err = 0;
1987
1988 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1989 if (!pte)
1990 return -ENOMEM;
1991 arch_enter_lazy_mmu_mode();
1992 do {
1993 BUG_ON(!pte_none(*pte));
1994 if (!pfn_modify_allowed(pfn, prot)) {
1995 err = -EACCES;
1996 break;
1997 }
1998 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1999 pfn++;
2000 } while (pte++, addr += PAGE_SIZE, addr != end);
2001 arch_leave_lazy_mmu_mode();
2002 pte_unmap_unlock(pte - 1, ptl);
2003 return err;
2004 }
2005
2006 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2007 unsigned long addr, unsigned long end,
2008 unsigned long pfn, pgprot_t prot)
2009 {
2010 pmd_t *pmd;
2011 unsigned long next;
2012 int err;
2013
2014 pfn -= addr >> PAGE_SHIFT;
2015 pmd = pmd_alloc(mm, pud, addr);
2016 if (!pmd)
2017 return -ENOMEM;
2018 VM_BUG_ON(pmd_trans_huge(*pmd));
2019 do {
2020 next = pmd_addr_end(addr, end);
2021 err = remap_pte_range(mm, pmd, addr, next,
2022 pfn + (addr >> PAGE_SHIFT), prot);
2023 if (err)
2024 return err;
2025 } while (pmd++, addr = next, addr != end);
2026 return 0;
2027 }
2028
2029 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2030 unsigned long addr, unsigned long end,
2031 unsigned long pfn, pgprot_t prot)
2032 {
2033 pud_t *pud;
2034 unsigned long next;
2035 int err;
2036
2037 pfn -= addr >> PAGE_SHIFT;
2038 pud = pud_alloc(mm, p4d, addr);
2039 if (!pud)
2040 return -ENOMEM;
2041 do {
2042 next = pud_addr_end(addr, end);
2043 err = remap_pmd_range(mm, pud, addr, next,
2044 pfn + (addr >> PAGE_SHIFT), prot);
2045 if (err)
2046 return err;
2047 } while (pud++, addr = next, addr != end);
2048 return 0;
2049 }
2050
2051 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2052 unsigned long addr, unsigned long end,
2053 unsigned long pfn, pgprot_t prot)
2054 {
2055 p4d_t *p4d;
2056 unsigned long next;
2057 int err;
2058
2059 pfn -= addr >> PAGE_SHIFT;
2060 p4d = p4d_alloc(mm, pgd, addr);
2061 if (!p4d)
2062 return -ENOMEM;
2063 do {
2064 next = p4d_addr_end(addr, end);
2065 err = remap_pud_range(mm, p4d, addr, next,
2066 pfn + (addr >> PAGE_SHIFT), prot);
2067 if (err)
2068 return err;
2069 } while (p4d++, addr = next, addr != end);
2070 return 0;
2071 }
2072
2073 /**
2074 * remap_pfn_range - remap kernel memory to userspace
2075 * @vma: user vma to map to
2076 * @addr: target user address to start at
2077 * @pfn: physical address of kernel memory
2078 * @size: size of map area
2079 * @prot: page protection flags for this mapping
2080 *
2081 * Note: this is only safe if the mm semaphore is held when called.
2082 */
2083 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2084 unsigned long pfn, unsigned long size, pgprot_t prot)
2085 {
2086 pgd_t *pgd;
2087 unsigned long next;
2088 unsigned long end = addr + PAGE_ALIGN(size);
2089 struct mm_struct *mm = vma->vm_mm;
2090 unsigned long remap_pfn = pfn;
2091 int err;
2092
2093 /*
2094 * Physically remapped pages are special. Tell the
2095 * rest of the world about it:
2096 * VM_IO tells people not to look at these pages
2097 * (accesses can have side effects).
2098 * VM_PFNMAP tells the core MM that the base pages are just
2099 * raw PFN mappings, and do not have a "struct page" associated
2100 * with them.
2101 * VM_DONTEXPAND
2102 * Disable vma merging and expanding with mremap().
2103 * VM_DONTDUMP
2104 * Omit vma from core dump, even when VM_IO turned off.
2105 *
2106 * There's a horrible special case to handle copy-on-write
2107 * behaviour that some programs depend on. We mark the "original"
2108 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2109 * See vm_normal_page() for details.
2110 */
2111 if (is_cow_mapping(vma->vm_flags)) {
2112 if (addr != vma->vm_start || end != vma->vm_end)
2113 return -EINVAL;
2114 vma->vm_pgoff = pfn;
2115 }
2116
2117 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2118 if (err)
2119 return -EINVAL;
2120
2121 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2122
2123 BUG_ON(addr >= end);
2124 pfn -= addr >> PAGE_SHIFT;
2125 pgd = pgd_offset(mm, addr);
2126 flush_cache_range(vma, addr, end);
2127 do {
2128 next = pgd_addr_end(addr, end);
2129 err = remap_p4d_range(mm, pgd, addr, next,
2130 pfn + (addr >> PAGE_SHIFT), prot);
2131 if (err)
2132 break;
2133 } while (pgd++, addr = next, addr != end);
2134
2135 if (err)
2136 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2137
2138 return err;
2139 }
2140 EXPORT_SYMBOL(remap_pfn_range);
2141
2142 /**
2143 * vm_iomap_memory - remap memory to userspace
2144 * @vma: user vma to map to
2145 * @start: start of area
2146 * @len: size of area
2147 *
2148 * This is a simplified io_remap_pfn_range() for common driver use. The
2149 * driver just needs to give us the physical memory range to be mapped,
2150 * we'll figure out the rest from the vma information.
2151 *
2152 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2153 * whatever write-combining details or similar.
2154 */
2155 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2156 {
2157 unsigned long vm_len, pfn, pages;
2158
2159 /* Check that the physical memory area passed in looks valid */
2160 if (start + len < start)
2161 return -EINVAL;
2162 /*
2163 * You *really* shouldn't map things that aren't page-aligned,
2164 * but we've historically allowed it because IO memory might
2165 * just have smaller alignment.
2166 */
2167 len += start & ~PAGE_MASK;
2168 pfn = start >> PAGE_SHIFT;
2169 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2170 if (pfn + pages < pfn)
2171 return -EINVAL;
2172
2173 /* We start the mapping 'vm_pgoff' pages into the area */
2174 if (vma->vm_pgoff > pages)
2175 return -EINVAL;
2176 pfn += vma->vm_pgoff;
2177 pages -= vma->vm_pgoff;
2178
2179 /* Can we fit all of the mapping? */
2180 vm_len = vma->vm_end - vma->vm_start;
2181 if (vm_len >> PAGE_SHIFT > pages)
2182 return -EINVAL;
2183
2184 /* Ok, let it rip */
2185 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2186 }
2187 EXPORT_SYMBOL(vm_iomap_memory);
2188
2189 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2190 unsigned long addr, unsigned long end,
2191 pte_fn_t fn, void *data)
2192 {
2193 pte_t *pte;
2194 int err;
2195 pgtable_t token;
2196 spinlock_t *uninitialized_var(ptl);
2197
2198 pte = (mm == &init_mm) ?
2199 pte_alloc_kernel(pmd, addr) :
2200 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2201 if (!pte)
2202 return -ENOMEM;
2203
2204 BUG_ON(pmd_huge(*pmd));
2205
2206 arch_enter_lazy_mmu_mode();
2207
2208 token = pmd_pgtable(*pmd);
2209
2210 do {
2211 err = fn(pte++, token, addr, data);
2212 if (err)
2213 break;
2214 } while (addr += PAGE_SIZE, addr != end);
2215
2216 arch_leave_lazy_mmu_mode();
2217
2218 if (mm != &init_mm)
2219 pte_unmap_unlock(pte-1, ptl);
2220 return err;
2221 }
2222
2223 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2224 unsigned long addr, unsigned long end,
2225 pte_fn_t fn, void *data)
2226 {
2227 pmd_t *pmd;
2228 unsigned long next;
2229 int err;
2230
2231 BUG_ON(pud_huge(*pud));
2232
2233 pmd = pmd_alloc(mm, pud, addr);
2234 if (!pmd)
2235 return -ENOMEM;
2236 do {
2237 next = pmd_addr_end(addr, end);
2238 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2239 if (err)
2240 break;
2241 } while (pmd++, addr = next, addr != end);
2242 return err;
2243 }
2244
2245 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2246 unsigned long addr, unsigned long end,
2247 pte_fn_t fn, void *data)
2248 {
2249 pud_t *pud;
2250 unsigned long next;
2251 int err;
2252
2253 pud = pud_alloc(mm, p4d, addr);
2254 if (!pud)
2255 return -ENOMEM;
2256 do {
2257 next = pud_addr_end(addr, end);
2258 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2259 if (err)
2260 break;
2261 } while (pud++, addr = next, addr != end);
2262 return err;
2263 }
2264
2265 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2266 unsigned long addr, unsigned long end,
2267 pte_fn_t fn, void *data)
2268 {
2269 p4d_t *p4d;
2270 unsigned long next;
2271 int err;
2272
2273 p4d = p4d_alloc(mm, pgd, addr);
2274 if (!p4d)
2275 return -ENOMEM;
2276 do {
2277 next = p4d_addr_end(addr, end);
2278 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2279 if (err)
2280 break;
2281 } while (p4d++, addr = next, addr != end);
2282 return err;
2283 }
2284
2285 /*
2286 * Scan a region of virtual memory, filling in page tables as necessary
2287 * and calling a provided function on each leaf page table.
2288 */
2289 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2290 unsigned long size, pte_fn_t fn, void *data)
2291 {
2292 pgd_t *pgd;
2293 unsigned long next;
2294 unsigned long end = addr + size;
2295 int err;
2296
2297 if (WARN_ON(addr >= end))
2298 return -EINVAL;
2299
2300 pgd = pgd_offset(mm, addr);
2301 do {
2302 next = pgd_addr_end(addr, end);
2303 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2304 if (err)
2305 break;
2306 } while (pgd++, addr = next, addr != end);
2307
2308 return err;
2309 }
2310 EXPORT_SYMBOL_GPL(apply_to_page_range);
2311
2312 /*
2313 * handle_pte_fault chooses page fault handler according to an entry which was
2314 * read non-atomically. Before making any commitment, on those architectures
2315 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2316 * parts, do_swap_page must check under lock before unmapping the pte and
2317 * proceeding (but do_wp_page is only called after already making such a check;
2318 * and do_anonymous_page can safely check later on).
2319 */
2320 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2321 pte_t *page_table, pte_t orig_pte)
2322 {
2323 int same = 1;
2324 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2325 if (sizeof(pte_t) > sizeof(unsigned long)) {
2326 spinlock_t *ptl = pte_lockptr(mm, pmd);
2327 spin_lock(ptl);
2328 same = pte_same(*page_table, orig_pte);
2329 spin_unlock(ptl);
2330 }
2331 #endif
2332 pte_unmap(page_table);
2333 return same;
2334 }
2335
2336 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2337 {
2338 debug_dma_assert_idle(src);
2339
2340 /*
2341 * If the source page was a PFN mapping, we don't have
2342 * a "struct page" for it. We do a best-effort copy by
2343 * just copying from the original user address. If that
2344 * fails, we just zero-fill it. Live with it.
2345 */
2346 if (unlikely(!src)) {
2347 void *kaddr = kmap_atomic(dst);
2348 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2349
2350 /*
2351 * This really shouldn't fail, because the page is there
2352 * in the page tables. But it might just be unreadable,
2353 * in which case we just give up and fill the result with
2354 * zeroes.
2355 */
2356 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2357 clear_page(kaddr);
2358 kunmap_atomic(kaddr);
2359 flush_dcache_page(dst);
2360 } else
2361 copy_user_highpage(dst, src, va, vma);
2362 }
2363
2364 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2365 {
2366 struct file *vm_file = vma->vm_file;
2367
2368 if (vm_file)
2369 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2370
2371 /*
2372 * Special mappings (e.g. VDSO) do not have any file so fake
2373 * a default GFP_KERNEL for them.
2374 */
2375 return GFP_KERNEL;
2376 }
2377
2378 /*
2379 * Notify the address space that the page is about to become writable so that
2380 * it can prohibit this or wait for the page to get into an appropriate state.
2381 *
2382 * We do this without the lock held, so that it can sleep if it needs to.
2383 */
2384 static int do_page_mkwrite(struct vm_fault *vmf)
2385 {
2386 int ret;
2387 struct page *page = vmf->page;
2388 unsigned int old_flags = vmf->flags;
2389
2390 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2391
2392 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2393 /* Restore original flags so that caller is not surprised */
2394 vmf->flags = old_flags;
2395 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2396 return ret;
2397 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2398 lock_page(page);
2399 if (!page->mapping) {
2400 unlock_page(page);
2401 return 0; /* retry */
2402 }
2403 ret |= VM_FAULT_LOCKED;
2404 } else
2405 VM_BUG_ON_PAGE(!PageLocked(page), page);
2406 return ret;
2407 }
2408
2409 /*
2410 * Handle dirtying of a page in shared file mapping on a write fault.
2411 *
2412 * The function expects the page to be locked and unlocks it.
2413 */
2414 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2415 struct page *page)
2416 {
2417 struct address_space *mapping;
2418 bool dirtied;
2419 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2420
2421 dirtied = set_page_dirty(page);
2422 VM_BUG_ON_PAGE(PageAnon(page), page);
2423 /*
2424 * Take a local copy of the address_space - page.mapping may be zeroed
2425 * by truncate after unlock_page(). The address_space itself remains
2426 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2427 * release semantics to prevent the compiler from undoing this copying.
2428 */
2429 mapping = page_rmapping(page);
2430 unlock_page(page);
2431
2432 if ((dirtied || page_mkwrite) && mapping) {
2433 /*
2434 * Some device drivers do not set page.mapping
2435 * but still dirty their pages
2436 */
2437 balance_dirty_pages_ratelimited(mapping);
2438 }
2439
2440 if (!page_mkwrite)
2441 file_update_time(vma->vm_file);
2442 }
2443
2444 /*
2445 * Handle write page faults for pages that can be reused in the current vma
2446 *
2447 * This can happen either due to the mapping being with the VM_SHARED flag,
2448 * or due to us being the last reference standing to the page. In either
2449 * case, all we need to do here is to mark the page as writable and update
2450 * any related book-keeping.
2451 */
2452 static inline void wp_page_reuse(struct vm_fault *vmf)
2453 __releases(vmf->ptl)
2454 {
2455 struct vm_area_struct *vma = vmf->vma;
2456 struct page *page = vmf->page;
2457 pte_t entry;
2458 /*
2459 * Clear the pages cpupid information as the existing
2460 * information potentially belongs to a now completely
2461 * unrelated process.
2462 */
2463 if (page)
2464 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2465
2466 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2467 entry = pte_mkyoung(vmf->orig_pte);
2468 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2469 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2470 update_mmu_cache(vma, vmf->address, vmf->pte);
2471 pte_unmap_unlock(vmf->pte, vmf->ptl);
2472 }
2473
2474 /*
2475 * Handle the case of a page which we actually need to copy to a new page.
2476 *
2477 * Called with mmap_sem locked and the old page referenced, but
2478 * without the ptl held.
2479 *
2480 * High level logic flow:
2481 *
2482 * - Allocate a page, copy the content of the old page to the new one.
2483 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2484 * - Take the PTL. If the pte changed, bail out and release the allocated page
2485 * - If the pte is still the way we remember it, update the page table and all
2486 * relevant references. This includes dropping the reference the page-table
2487 * held to the old page, as well as updating the rmap.
2488 * - In any case, unlock the PTL and drop the reference we took to the old page.
2489 */
2490 static int wp_page_copy(struct vm_fault *vmf)
2491 {
2492 struct vm_area_struct *vma = vmf->vma;
2493 struct mm_struct *mm = vma->vm_mm;
2494 struct page *old_page = vmf->page;
2495 struct page *new_page = NULL;
2496 pte_t entry;
2497 int page_copied = 0;
2498 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2499 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2500 struct mem_cgroup *memcg;
2501
2502 if (unlikely(anon_vma_prepare(vma)))
2503 goto oom;
2504
2505 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2506 new_page = alloc_zeroed_user_highpage_movable(vma,
2507 vmf->address);
2508 if (!new_page)
2509 goto oom;
2510 } else {
2511 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2512 vmf->address);
2513 if (!new_page)
2514 goto oom;
2515 cow_user_page(new_page, old_page, vmf->address, vma);
2516 }
2517
2518 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2519 goto oom_free_new;
2520
2521 __SetPageUptodate(new_page);
2522
2523 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2524
2525 /*
2526 * Re-check the pte - we dropped the lock
2527 */
2528 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2529 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2530 if (old_page) {
2531 if (!PageAnon(old_page)) {
2532 dec_mm_counter_fast(mm,
2533 mm_counter_file(old_page));
2534 inc_mm_counter_fast(mm, MM_ANONPAGES);
2535 }
2536 } else {
2537 inc_mm_counter_fast(mm, MM_ANONPAGES);
2538 }
2539 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2540 entry = mk_pte(new_page, vma->vm_page_prot);
2541 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2542 /*
2543 * Clear the pte entry and flush it first, before updating the
2544 * pte with the new entry. This will avoid a race condition
2545 * seen in the presence of one thread doing SMC and another
2546 * thread doing COW.
2547 */
2548 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2549 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2550 mem_cgroup_commit_charge(new_page, memcg, false, false);
2551 lru_cache_add_active_or_unevictable(new_page, vma);
2552 /*
2553 * We call the notify macro here because, when using secondary
2554 * mmu page tables (such as kvm shadow page tables), we want the
2555 * new page to be mapped directly into the secondary page table.
2556 */
2557 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2558 update_mmu_cache(vma, vmf->address, vmf->pte);
2559 if (old_page) {
2560 /*
2561 * Only after switching the pte to the new page may
2562 * we remove the mapcount here. Otherwise another
2563 * process may come and find the rmap count decremented
2564 * before the pte is switched to the new page, and
2565 * "reuse" the old page writing into it while our pte
2566 * here still points into it and can be read by other
2567 * threads.
2568 *
2569 * The critical issue is to order this
2570 * page_remove_rmap with the ptp_clear_flush above.
2571 * Those stores are ordered by (if nothing else,)
2572 * the barrier present in the atomic_add_negative
2573 * in page_remove_rmap.
2574 *
2575 * Then the TLB flush in ptep_clear_flush ensures that
2576 * no process can access the old page before the
2577 * decremented mapcount is visible. And the old page
2578 * cannot be reused until after the decremented
2579 * mapcount is visible. So transitively, TLBs to
2580 * old page will be flushed before it can be reused.
2581 */
2582 page_remove_rmap(old_page, false);
2583 }
2584
2585 /* Free the old page.. */
2586 new_page = old_page;
2587 page_copied = 1;
2588 } else {
2589 mem_cgroup_cancel_charge(new_page, memcg, false);
2590 }
2591
2592 if (new_page)
2593 put_page(new_page);
2594
2595 pte_unmap_unlock(vmf->pte, vmf->ptl);
2596 /*
2597 * No need to double call mmu_notifier->invalidate_range() callback as
2598 * the above ptep_clear_flush_notify() did already call it.
2599 */
2600 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2601 if (old_page) {
2602 /*
2603 * Don't let another task, with possibly unlocked vma,
2604 * keep the mlocked page.
2605 */
2606 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2607 lock_page(old_page); /* LRU manipulation */
2608 if (PageMlocked(old_page))
2609 munlock_vma_page(old_page);
2610 unlock_page(old_page);
2611 }
2612 put_page(old_page);
2613 }
2614 return page_copied ? VM_FAULT_WRITE : 0;
2615 oom_free_new:
2616 put_page(new_page);
2617 oom:
2618 if (old_page)
2619 put_page(old_page);
2620 return VM_FAULT_OOM;
2621 }
2622
2623 /**
2624 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2625 * writeable once the page is prepared
2626 *
2627 * @vmf: structure describing the fault
2628 *
2629 * This function handles all that is needed to finish a write page fault in a
2630 * shared mapping due to PTE being read-only once the mapped page is prepared.
2631 * It handles locking of PTE and modifying it. The function returns
2632 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2633 * lock.
2634 *
2635 * The function expects the page to be locked or other protection against
2636 * concurrent faults / writeback (such as DAX radix tree locks).
2637 */
2638 int finish_mkwrite_fault(struct vm_fault *vmf)
2639 {
2640 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2641 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2642 &vmf->ptl);
2643 /*
2644 * We might have raced with another page fault while we released the
2645 * pte_offset_map_lock.
2646 */
2647 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2648 pte_unmap_unlock(vmf->pte, vmf->ptl);
2649 return VM_FAULT_NOPAGE;
2650 }
2651 wp_page_reuse(vmf);
2652 return 0;
2653 }
2654
2655 /*
2656 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2657 * mapping
2658 */
2659 static int wp_pfn_shared(struct vm_fault *vmf)
2660 {
2661 struct vm_area_struct *vma = vmf->vma;
2662
2663 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2664 int ret;
2665
2666 pte_unmap_unlock(vmf->pte, vmf->ptl);
2667 vmf->flags |= FAULT_FLAG_MKWRITE;
2668 ret = vma->vm_ops->pfn_mkwrite(vmf);
2669 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2670 return ret;
2671 return finish_mkwrite_fault(vmf);
2672 }
2673 wp_page_reuse(vmf);
2674 return VM_FAULT_WRITE;
2675 }
2676
2677 static int wp_page_shared(struct vm_fault *vmf)
2678 __releases(vmf->ptl)
2679 {
2680 struct vm_area_struct *vma = vmf->vma;
2681
2682 get_page(vmf->page);
2683
2684 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2685 int tmp;
2686
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 tmp = do_page_mkwrite(vmf);
2689 if (unlikely(!tmp || (tmp &
2690 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2691 put_page(vmf->page);
2692 return tmp;
2693 }
2694 tmp = finish_mkwrite_fault(vmf);
2695 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2696 unlock_page(vmf->page);
2697 put_page(vmf->page);
2698 return tmp;
2699 }
2700 } else {
2701 wp_page_reuse(vmf);
2702 lock_page(vmf->page);
2703 }
2704 fault_dirty_shared_page(vma, vmf->page);
2705 put_page(vmf->page);
2706
2707 return VM_FAULT_WRITE;
2708 }
2709
2710 /*
2711 * This routine handles present pages, when users try to write
2712 * to a shared page. It is done by copying the page to a new address
2713 * and decrementing the shared-page counter for the old page.
2714 *
2715 * Note that this routine assumes that the protection checks have been
2716 * done by the caller (the low-level page fault routine in most cases).
2717 * Thus we can safely just mark it writable once we've done any necessary
2718 * COW.
2719 *
2720 * We also mark the page dirty at this point even though the page will
2721 * change only once the write actually happens. This avoids a few races,
2722 * and potentially makes it more efficient.
2723 *
2724 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2725 * but allow concurrent faults), with pte both mapped and locked.
2726 * We return with mmap_sem still held, but pte unmapped and unlocked.
2727 */
2728 static int do_wp_page(struct vm_fault *vmf)
2729 __releases(vmf->ptl)
2730 {
2731 struct vm_area_struct *vma = vmf->vma;
2732
2733 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2734 if (!vmf->page) {
2735 /*
2736 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2737 * VM_PFNMAP VMA.
2738 *
2739 * We should not cow pages in a shared writeable mapping.
2740 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2741 */
2742 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2743 (VM_WRITE|VM_SHARED))
2744 return wp_pfn_shared(vmf);
2745
2746 pte_unmap_unlock(vmf->pte, vmf->ptl);
2747 return wp_page_copy(vmf);
2748 }
2749
2750 /*
2751 * Take out anonymous pages first, anonymous shared vmas are
2752 * not dirty accountable.
2753 */
2754 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2755 int total_map_swapcount;
2756 if (!trylock_page(vmf->page)) {
2757 get_page(vmf->page);
2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 lock_page(vmf->page);
2760 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2761 vmf->address, &vmf->ptl);
2762 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2763 unlock_page(vmf->page);
2764 pte_unmap_unlock(vmf->pte, vmf->ptl);
2765 put_page(vmf->page);
2766 return 0;
2767 }
2768 put_page(vmf->page);
2769 }
2770 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2771 if (total_map_swapcount == 1) {
2772 /*
2773 * The page is all ours. Move it to
2774 * our anon_vma so the rmap code will
2775 * not search our parent or siblings.
2776 * Protected against the rmap code by
2777 * the page lock.
2778 */
2779 page_move_anon_rmap(vmf->page, vma);
2780 }
2781 unlock_page(vmf->page);
2782 wp_page_reuse(vmf);
2783 return VM_FAULT_WRITE;
2784 }
2785 unlock_page(vmf->page);
2786 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2787 (VM_WRITE|VM_SHARED))) {
2788 return wp_page_shared(vmf);
2789 }
2790
2791 /*
2792 * Ok, we need to copy. Oh, well..
2793 */
2794 get_page(vmf->page);
2795
2796 pte_unmap_unlock(vmf->pte, vmf->ptl);
2797 return wp_page_copy(vmf);
2798 }
2799
2800 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2801 unsigned long start_addr, unsigned long end_addr,
2802 struct zap_details *details)
2803 {
2804 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2805 }
2806
2807 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2808 struct zap_details *details)
2809 {
2810 struct vm_area_struct *vma;
2811 pgoff_t vba, vea, zba, zea;
2812
2813 vma_interval_tree_foreach(vma, root,
2814 details->first_index, details->last_index) {
2815
2816 vba = vma->vm_pgoff;
2817 vea = vba + vma_pages(vma) - 1;
2818 zba = details->first_index;
2819 if (zba < vba)
2820 zba = vba;
2821 zea = details->last_index;
2822 if (zea > vea)
2823 zea = vea;
2824
2825 unmap_mapping_range_vma(vma,
2826 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2827 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2828 details);
2829 }
2830 }
2831
2832 /**
2833 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2834 * address_space corresponding to the specified page range in the underlying
2835 * file.
2836 *
2837 * @mapping: the address space containing mmaps to be unmapped.
2838 * @holebegin: byte in first page to unmap, relative to the start of
2839 * the underlying file. This will be rounded down to a PAGE_SIZE
2840 * boundary. Note that this is different from truncate_pagecache(), which
2841 * must keep the partial page. In contrast, we must get rid of
2842 * partial pages.
2843 * @holelen: size of prospective hole in bytes. This will be rounded
2844 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2845 * end of the file.
2846 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2847 * but 0 when invalidating pagecache, don't throw away private data.
2848 */
2849 void unmap_mapping_range(struct address_space *mapping,
2850 loff_t const holebegin, loff_t const holelen, int even_cows)
2851 {
2852 struct zap_details details = { };
2853 pgoff_t hba = holebegin >> PAGE_SHIFT;
2854 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2855
2856 /* Check for overflow. */
2857 if (sizeof(holelen) > sizeof(hlen)) {
2858 long long holeend =
2859 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2860 if (holeend & ~(long long)ULONG_MAX)
2861 hlen = ULONG_MAX - hba + 1;
2862 }
2863
2864 details.check_mapping = even_cows ? NULL : mapping;
2865 details.first_index = hba;
2866 details.last_index = hba + hlen - 1;
2867 if (details.last_index < details.first_index)
2868 details.last_index = ULONG_MAX;
2869
2870 i_mmap_lock_write(mapping);
2871 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2872 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2873 i_mmap_unlock_write(mapping);
2874 }
2875 EXPORT_SYMBOL(unmap_mapping_range);
2876
2877 /*
2878 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2879 * but allow concurrent faults), and pte mapped but not yet locked.
2880 * We return with pte unmapped and unlocked.
2881 *
2882 * We return with the mmap_sem locked or unlocked in the same cases
2883 * as does filemap_fault().
2884 */
2885 int do_swap_page(struct vm_fault *vmf)
2886 {
2887 struct vm_area_struct *vma = vmf->vma;
2888 struct page *page = NULL, *swapcache = NULL;
2889 struct mem_cgroup *memcg;
2890 struct vma_swap_readahead swap_ra;
2891 swp_entry_t entry;
2892 pte_t pte;
2893 int locked;
2894 int exclusive = 0;
2895 int ret = 0;
2896 bool vma_readahead = swap_use_vma_readahead();
2897
2898 if (vma_readahead) {
2899 page = swap_readahead_detect(vmf, &swap_ra);
2900 swapcache = page;
2901 }
2902
2903 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2904 if (page)
2905 put_page(page);
2906 goto out;
2907 }
2908
2909 entry = pte_to_swp_entry(vmf->orig_pte);
2910 if (unlikely(non_swap_entry(entry))) {
2911 if (is_migration_entry(entry)) {
2912 migration_entry_wait(vma->vm_mm, vmf->pmd,
2913 vmf->address);
2914 } else if (is_device_private_entry(entry)) {
2915 /*
2916 * For un-addressable device memory we call the pgmap
2917 * fault handler callback. The callback must migrate
2918 * the page back to some CPU accessible page.
2919 */
2920 ret = device_private_entry_fault(vma, vmf->address, entry,
2921 vmf->flags, vmf->pmd);
2922 } else if (is_hwpoison_entry(entry)) {
2923 ret = VM_FAULT_HWPOISON;
2924 } else {
2925 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2926 ret = VM_FAULT_SIGBUS;
2927 }
2928 goto out;
2929 }
2930
2931
2932 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2933 if (!page) {
2934 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2935 vmf->address);
2936 swapcache = page;
2937 }
2938
2939 if (!page) {
2940 struct swap_info_struct *si = swp_swap_info(entry);
2941
2942 if (si->flags & SWP_SYNCHRONOUS_IO &&
2943 __swap_count(si, entry) == 1) {
2944 /* skip swapcache */
2945 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2946 if (page) {
2947 __SetPageLocked(page);
2948 __SetPageSwapBacked(page);
2949 set_page_private(page, entry.val);
2950 lru_cache_add_anon(page);
2951 swap_readpage(page, true);
2952 }
2953 } else {
2954 if (vma_readahead)
2955 page = do_swap_page_readahead(entry,
2956 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2957 else
2958 page = swapin_readahead(entry,
2959 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2960 swapcache = page;
2961 }
2962
2963 if (!page) {
2964 /*
2965 * Back out if somebody else faulted in this pte
2966 * while we released the pte lock.
2967 */
2968 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2969 vmf->address, &vmf->ptl);
2970 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2971 ret = VM_FAULT_OOM;
2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973 goto unlock;
2974 }
2975
2976 /* Had to read the page from swap area: Major fault */
2977 ret = VM_FAULT_MAJOR;
2978 count_vm_event(PGMAJFAULT);
2979 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2980 } else if (PageHWPoison(page)) {
2981 /*
2982 * hwpoisoned dirty swapcache pages are kept for killing
2983 * owner processes (which may be unknown at hwpoison time)
2984 */
2985 ret = VM_FAULT_HWPOISON;
2986 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2987 swapcache = page;
2988 goto out_release;
2989 }
2990
2991 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2992
2993 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2994 if (!locked) {
2995 ret |= VM_FAULT_RETRY;
2996 goto out_release;
2997 }
2998
2999 /*
3000 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3001 * release the swapcache from under us. The page pin, and pte_same
3002 * test below, are not enough to exclude that. Even if it is still
3003 * swapcache, we need to check that the page's swap has not changed.
3004 */
3005 if (unlikely((!PageSwapCache(page) ||
3006 page_private(page) != entry.val)) && swapcache)
3007 goto out_page;
3008
3009 page = ksm_might_need_to_copy(page, vma, vmf->address);
3010 if (unlikely(!page)) {
3011 ret = VM_FAULT_OOM;
3012 page = swapcache;
3013 goto out_page;
3014 }
3015
3016 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3017 &memcg, false)) {
3018 ret = VM_FAULT_OOM;
3019 goto out_page;
3020 }
3021
3022 /*
3023 * Back out if somebody else already faulted in this pte.
3024 */
3025 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3026 &vmf->ptl);
3027 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3028 goto out_nomap;
3029
3030 if (unlikely(!PageUptodate(page))) {
3031 ret = VM_FAULT_SIGBUS;
3032 goto out_nomap;
3033 }
3034
3035 /*
3036 * The page isn't present yet, go ahead with the fault.
3037 *
3038 * Be careful about the sequence of operations here.
3039 * To get its accounting right, reuse_swap_page() must be called
3040 * while the page is counted on swap but not yet in mapcount i.e.
3041 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3042 * must be called after the swap_free(), or it will never succeed.
3043 */
3044
3045 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3046 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3047 pte = mk_pte(page, vma->vm_page_prot);
3048 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3049 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3050 vmf->flags &= ~FAULT_FLAG_WRITE;
3051 ret |= VM_FAULT_WRITE;
3052 exclusive = RMAP_EXCLUSIVE;
3053 }
3054 flush_icache_page(vma, page);
3055 if (pte_swp_soft_dirty(vmf->orig_pte))
3056 pte = pte_mksoft_dirty(pte);
3057 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3058 vmf->orig_pte = pte;
3059
3060 /* ksm created a completely new copy */
3061 if (unlikely(page != swapcache && swapcache)) {
3062 page_add_new_anon_rmap(page, vma, vmf->address, false);
3063 mem_cgroup_commit_charge(page, memcg, false, false);
3064 lru_cache_add_active_or_unevictable(page, vma);
3065 } else {
3066 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3067 mem_cgroup_commit_charge(page, memcg, true, false);
3068 activate_page(page);
3069 }
3070
3071 swap_free(entry);
3072 if (mem_cgroup_swap_full(page) ||
3073 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3074 try_to_free_swap(page);
3075 unlock_page(page);
3076 if (page != swapcache && swapcache) {
3077 /*
3078 * Hold the lock to avoid the swap entry to be reused
3079 * until we take the PT lock for the pte_same() check
3080 * (to avoid false positives from pte_same). For
3081 * further safety release the lock after the swap_free
3082 * so that the swap count won't change under a
3083 * parallel locked swapcache.
3084 */
3085 unlock_page(swapcache);
3086 put_page(swapcache);
3087 }
3088
3089 if (vmf->flags & FAULT_FLAG_WRITE) {
3090 ret |= do_wp_page(vmf);
3091 if (ret & VM_FAULT_ERROR)
3092 ret &= VM_FAULT_ERROR;
3093 goto out;
3094 }
3095
3096 /* No need to invalidate - it was non-present before */
3097 update_mmu_cache(vma, vmf->address, vmf->pte);
3098 unlock:
3099 pte_unmap_unlock(vmf->pte, vmf->ptl);
3100 out:
3101 return ret;
3102 out_nomap:
3103 mem_cgroup_cancel_charge(page, memcg, false);
3104 pte_unmap_unlock(vmf->pte, vmf->ptl);
3105 out_page:
3106 unlock_page(page);
3107 out_release:
3108 put_page(page);
3109 if (page != swapcache && swapcache) {
3110 unlock_page(swapcache);
3111 put_page(swapcache);
3112 }
3113 return ret;
3114 }
3115
3116 /*
3117 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3118 * but allow concurrent faults), and pte mapped but not yet locked.
3119 * We return with mmap_sem still held, but pte unmapped and unlocked.
3120 */
3121 static int do_anonymous_page(struct vm_fault *vmf)
3122 {
3123 struct vm_area_struct *vma = vmf->vma;
3124 struct mem_cgroup *memcg;
3125 struct page *page;
3126 int ret = 0;
3127 pte_t entry;
3128
3129 /* File mapping without ->vm_ops ? */
3130 if (vma->vm_flags & VM_SHARED)
3131 return VM_FAULT_SIGBUS;
3132
3133 /*
3134 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3135 * pte_offset_map() on pmds where a huge pmd might be created
3136 * from a different thread.
3137 *
3138 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3139 * parallel threads are excluded by other means.
3140 *
3141 * Here we only have down_read(mmap_sem).
3142 */
3143 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3144 return VM_FAULT_OOM;
3145
3146 /* See the comment in pte_alloc_one_map() */
3147 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3148 return 0;
3149
3150 /* Use the zero-page for reads */
3151 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3152 !mm_forbids_zeropage(vma->vm_mm)) {
3153 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3154 vma->vm_page_prot));
3155 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3156 vmf->address, &vmf->ptl);
3157 if (!pte_none(*vmf->pte))
3158 goto unlock;
3159 ret = check_stable_address_space(vma->vm_mm);
3160 if (ret)
3161 goto unlock;
3162 /* Deliver the page fault to userland, check inside PT lock */
3163 if (userfaultfd_missing(vma)) {
3164 pte_unmap_unlock(vmf->pte, vmf->ptl);
3165 return handle_userfault(vmf, VM_UFFD_MISSING);
3166 }
3167 goto setpte;
3168 }
3169
3170 /* Allocate our own private page. */
3171 if (unlikely(anon_vma_prepare(vma)))
3172 goto oom;
3173 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3174 if (!page)
3175 goto oom;
3176
3177 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3178 goto oom_free_page;
3179
3180 /*
3181 * The memory barrier inside __SetPageUptodate makes sure that
3182 * preceeding stores to the page contents become visible before
3183 * the set_pte_at() write.
3184 */
3185 __SetPageUptodate(page);
3186
3187 entry = mk_pte(page, vma->vm_page_prot);
3188 if (vma->vm_flags & VM_WRITE)
3189 entry = pte_mkwrite(pte_mkdirty(entry));
3190
3191 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3192 &vmf->ptl);
3193 if (!pte_none(*vmf->pte))
3194 goto release;
3195
3196 ret = check_stable_address_space(vma->vm_mm);
3197 if (ret)
3198 goto release;
3199
3200 /* Deliver the page fault to userland, check inside PT lock */
3201 if (userfaultfd_missing(vma)) {
3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 mem_cgroup_cancel_charge(page, memcg, false);
3204 put_page(page);
3205 return handle_userfault(vmf, VM_UFFD_MISSING);
3206 }
3207
3208 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3209 page_add_new_anon_rmap(page, vma, vmf->address, false);
3210 mem_cgroup_commit_charge(page, memcg, false, false);
3211 lru_cache_add_active_or_unevictable(page, vma);
3212 setpte:
3213 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3214
3215 /* No need to invalidate - it was non-present before */
3216 update_mmu_cache(vma, vmf->address, vmf->pte);
3217 unlock:
3218 pte_unmap_unlock(vmf->pte, vmf->ptl);
3219 return ret;
3220 release:
3221 mem_cgroup_cancel_charge(page, memcg, false);
3222 put_page(page);
3223 goto unlock;
3224 oom_free_page:
3225 put_page(page);
3226 oom:
3227 return VM_FAULT_OOM;
3228 }
3229
3230 /*
3231 * The mmap_sem must have been held on entry, and may have been
3232 * released depending on flags and vma->vm_ops->fault() return value.
3233 * See filemap_fault() and __lock_page_retry().
3234 */
3235 static int __do_fault(struct vm_fault *vmf)
3236 {
3237 struct vm_area_struct *vma = vmf->vma;
3238 int ret;
3239
3240 ret = vma->vm_ops->fault(vmf);
3241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242 VM_FAULT_DONE_COW)))
3243 return ret;
3244
3245 if (unlikely(PageHWPoison(vmf->page))) {
3246 if (ret & VM_FAULT_LOCKED)
3247 unlock_page(vmf->page);
3248 put_page(vmf->page);
3249 vmf->page = NULL;
3250 return VM_FAULT_HWPOISON;
3251 }
3252
3253 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254 lock_page(vmf->page);
3255 else
3256 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3257
3258 return ret;
3259 }
3260
3261 /*
3262 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3266 */
3267 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3268 {
3269 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3270 }
3271
3272 static int pte_alloc_one_map(struct vm_fault *vmf)
3273 {
3274 struct vm_area_struct *vma = vmf->vma;
3275
3276 if (!pmd_none(*vmf->pmd))
3277 goto map_pte;
3278 if (vmf->prealloc_pte) {
3279 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280 if (unlikely(!pmd_none(*vmf->pmd))) {
3281 spin_unlock(vmf->ptl);
3282 goto map_pte;
3283 }
3284
3285 mm_inc_nr_ptes(vma->vm_mm);
3286 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287 spin_unlock(vmf->ptl);
3288 vmf->prealloc_pte = NULL;
3289 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3290 return VM_FAULT_OOM;
3291 }
3292 map_pte:
3293 /*
3294 * If a huge pmd materialized under us just retry later. Use
3295 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298 * running immediately after a huge pmd fault in a different thread of
3299 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300 * All we have to ensure is that it is a regular pmd that we can walk
3301 * with pte_offset_map() and we can do that through an atomic read in
3302 * C, which is what pmd_trans_unstable() provides.
3303 */
3304 if (pmd_devmap_trans_unstable(vmf->pmd))
3305 return VM_FAULT_NOPAGE;
3306
3307 /*
3308 * At this point we know that our vmf->pmd points to a page of ptes
3309 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3311 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312 * be valid and we will re-check to make sure the vmf->pte isn't
3313 * pte_none() under vmf->ptl protection when we return to
3314 * alloc_set_pte().
3315 */
3316 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317 &vmf->ptl);
3318 return 0;
3319 }
3320
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3322
3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3325 unsigned long haddr)
3326 {
3327 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3328 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3329 return false;
3330 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3331 return false;
3332 return true;
3333 }
3334
3335 static void deposit_prealloc_pte(struct vm_fault *vmf)
3336 {
3337 struct vm_area_struct *vma = vmf->vma;
3338
3339 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3340 /*
3341 * We are going to consume the prealloc table,
3342 * count that as nr_ptes.
3343 */
3344 mm_inc_nr_ptes(vma->vm_mm);
3345 vmf->prealloc_pte = NULL;
3346 }
3347
3348 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3349 {
3350 struct vm_area_struct *vma = vmf->vma;
3351 bool write = vmf->flags & FAULT_FLAG_WRITE;
3352 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3353 pmd_t entry;
3354 int i, ret;
3355
3356 if (!transhuge_vma_suitable(vma, haddr))
3357 return VM_FAULT_FALLBACK;
3358
3359 ret = VM_FAULT_FALLBACK;
3360 page = compound_head(page);
3361
3362 /*
3363 * Archs like ppc64 need additonal space to store information
3364 * related to pte entry. Use the preallocated table for that.
3365 */
3366 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3367 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3368 if (!vmf->prealloc_pte)
3369 return VM_FAULT_OOM;
3370 smp_wmb(); /* See comment in __pte_alloc() */
3371 }
3372
3373 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3374 if (unlikely(!pmd_none(*vmf->pmd)))
3375 goto out;
3376
3377 for (i = 0; i < HPAGE_PMD_NR; i++)
3378 flush_icache_page(vma, page + i);
3379
3380 entry = mk_huge_pmd(page, vma->vm_page_prot);
3381 if (write)
3382 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3383
3384 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3385 page_add_file_rmap(page, true);
3386 /*
3387 * deposit and withdraw with pmd lock held
3388 */
3389 if (arch_needs_pgtable_deposit())
3390 deposit_prealloc_pte(vmf);
3391
3392 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3393
3394 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3395
3396 /* fault is handled */
3397 ret = 0;
3398 count_vm_event(THP_FILE_MAPPED);
3399 out:
3400 spin_unlock(vmf->ptl);
3401 return ret;
3402 }
3403 #else
3404 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3405 {
3406 BUILD_BUG();
3407 return 0;
3408 }
3409 #endif
3410
3411 /**
3412 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3413 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3414 *
3415 * @vmf: fault environment
3416 * @memcg: memcg to charge page (only for private mappings)
3417 * @page: page to map
3418 *
3419 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3420 * return.
3421 *
3422 * Target users are page handler itself and implementations of
3423 * vm_ops->map_pages.
3424 */
3425 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3426 struct page *page)
3427 {
3428 struct vm_area_struct *vma = vmf->vma;
3429 bool write = vmf->flags & FAULT_FLAG_WRITE;
3430 pte_t entry;
3431 int ret;
3432
3433 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3434 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3435 /* THP on COW? */
3436 VM_BUG_ON_PAGE(memcg, page);
3437
3438 ret = do_set_pmd(vmf, page);
3439 if (ret != VM_FAULT_FALLBACK)
3440 return ret;
3441 }
3442
3443 if (!vmf->pte) {
3444 ret = pte_alloc_one_map(vmf);
3445 if (ret)
3446 return ret;
3447 }
3448
3449 /* Re-check under ptl */
3450 if (unlikely(!pte_none(*vmf->pte)))
3451 return VM_FAULT_NOPAGE;
3452
3453 flush_icache_page(vma, page);
3454 entry = mk_pte(page, vma->vm_page_prot);
3455 if (write)
3456 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3457 /* copy-on-write page */
3458 if (write && !(vma->vm_flags & VM_SHARED)) {
3459 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3460 page_add_new_anon_rmap(page, vma, vmf->address, false);
3461 mem_cgroup_commit_charge(page, memcg, false, false);
3462 lru_cache_add_active_or_unevictable(page, vma);
3463 } else {
3464 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3465 page_add_file_rmap(page, false);
3466 }
3467 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3468
3469 /* no need to invalidate: a not-present page won't be cached */
3470 update_mmu_cache(vma, vmf->address, vmf->pte);
3471
3472 return 0;
3473 }
3474
3475
3476 /**
3477 * finish_fault - finish page fault once we have prepared the page to fault
3478 *
3479 * @vmf: structure describing the fault
3480 *
3481 * This function handles all that is needed to finish a page fault once the
3482 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3483 * given page, adds reverse page mapping, handles memcg charges and LRU
3484 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3485 * error.
3486 *
3487 * The function expects the page to be locked and on success it consumes a
3488 * reference of a page being mapped (for the PTE which maps it).
3489 */
3490 int finish_fault(struct vm_fault *vmf)
3491 {
3492 struct page *page;
3493 int ret = 0;
3494
3495 /* Did we COW the page? */
3496 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3497 !(vmf->vma->vm_flags & VM_SHARED))
3498 page = vmf->cow_page;
3499 else
3500 page = vmf->page;
3501
3502 /*
3503 * check even for read faults because we might have lost our CoWed
3504 * page
3505 */
3506 if (!(vmf->vma->vm_flags & VM_SHARED))
3507 ret = check_stable_address_space(vmf->vma->vm_mm);
3508 if (!ret)
3509 ret = alloc_set_pte(vmf, vmf->memcg, page);
3510 if (vmf->pte)
3511 pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 return ret;
3513 }
3514
3515 static unsigned long fault_around_bytes __read_mostly =
3516 rounddown_pow_of_two(65536);
3517
3518 #ifdef CONFIG_DEBUG_FS
3519 static int fault_around_bytes_get(void *data, u64 *val)
3520 {
3521 *val = fault_around_bytes;
3522 return 0;
3523 }
3524
3525 /*
3526 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3527 * rounded down to nearest page order. It's what do_fault_around() expects to
3528 * see.
3529 */
3530 static int fault_around_bytes_set(void *data, u64 val)
3531 {
3532 if (val / PAGE_SIZE > PTRS_PER_PTE)
3533 return -EINVAL;
3534 if (val > PAGE_SIZE)
3535 fault_around_bytes = rounddown_pow_of_two(val);
3536 else
3537 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538 return 0;
3539 }
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3542
3543 static int __init fault_around_debugfs(void)
3544 {
3545 void *ret;
3546
3547 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548 &fault_around_bytes_fops);
3549 if (!ret)
3550 pr_warn("Failed to create fault_around_bytes in debugfs");
3551 return 0;
3552 }
3553 late_initcall(fault_around_debugfs);
3554 #endif
3555
3556 /*
3557 * do_fault_around() tries to map few pages around the fault address. The hope
3558 * is that the pages will be needed soon and this will lower the number of
3559 * faults to handle.
3560 *
3561 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562 * not ready to be mapped: not up-to-date, locked, etc.
3563 *
3564 * This function is called with the page table lock taken. In the split ptlock
3565 * case the page table lock only protects only those entries which belong to
3566 * the page table corresponding to the fault address.
3567 *
3568 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569 * only once.
3570 *
3571 * fault_around_pages() defines how many pages we'll try to map.
3572 * do_fault_around() expects it to return a power of two less than or equal to
3573 * PTRS_PER_PTE.
3574 *
3575 * The virtual address of the area that we map is naturally aligned to the
3576 * fault_around_pages() value (and therefore to page order). This way it's
3577 * easier to guarantee that we don't cross page table boundaries.
3578 */
3579 static int do_fault_around(struct vm_fault *vmf)
3580 {
3581 unsigned long address = vmf->address, nr_pages, mask;
3582 pgoff_t start_pgoff = vmf->pgoff;
3583 pgoff_t end_pgoff;
3584 int off, ret = 0;
3585
3586 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3587 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3588
3589 vmf->address = max(address & mask, vmf->vma->vm_start);
3590 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3591 start_pgoff -= off;
3592
3593 /*
3594 * end_pgoff is either end of page table or end of vma
3595 * or fault_around_pages() from start_pgoff, depending what is nearest.
3596 */
3597 end_pgoff = start_pgoff -
3598 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3599 PTRS_PER_PTE - 1;
3600 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3601 start_pgoff + nr_pages - 1);
3602
3603 if (pmd_none(*vmf->pmd)) {
3604 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3605 vmf->address);
3606 if (!vmf->prealloc_pte)
3607 goto out;
3608 smp_wmb(); /* See comment in __pte_alloc() */
3609 }
3610
3611 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3612
3613 /* Huge page is mapped? Page fault is solved */
3614 if (pmd_trans_huge(*vmf->pmd)) {
3615 ret = VM_FAULT_NOPAGE;
3616 goto out;
3617 }
3618
3619 /* ->map_pages() haven't done anything useful. Cold page cache? */
3620 if (!vmf->pte)
3621 goto out;
3622
3623 /* check if the page fault is solved */
3624 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3625 if (!pte_none(*vmf->pte))
3626 ret = VM_FAULT_NOPAGE;
3627 pte_unmap_unlock(vmf->pte, vmf->ptl);
3628 out:
3629 vmf->address = address;
3630 vmf->pte = NULL;
3631 return ret;
3632 }
3633
3634 static int do_read_fault(struct vm_fault *vmf)
3635 {
3636 struct vm_area_struct *vma = vmf->vma;
3637 int ret = 0;
3638
3639 /*
3640 * Let's call ->map_pages() first and use ->fault() as fallback
3641 * if page by the offset is not ready to be mapped (cold cache or
3642 * something).
3643 */
3644 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3645 ret = do_fault_around(vmf);
3646 if (ret)
3647 return ret;
3648 }
3649
3650 ret = __do_fault(vmf);
3651 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3652 return ret;
3653
3654 ret |= finish_fault(vmf);
3655 unlock_page(vmf->page);
3656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3657 put_page(vmf->page);
3658 return ret;
3659 }
3660
3661 static int do_cow_fault(struct vm_fault *vmf)
3662 {
3663 struct vm_area_struct *vma = vmf->vma;
3664 int ret;
3665
3666 if (unlikely(anon_vma_prepare(vma)))
3667 return VM_FAULT_OOM;
3668
3669 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3670 if (!vmf->cow_page)
3671 return VM_FAULT_OOM;
3672
3673 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3674 &vmf->memcg, false)) {
3675 put_page(vmf->cow_page);
3676 return VM_FAULT_OOM;
3677 }
3678
3679 ret = __do_fault(vmf);
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 goto uncharge_out;
3682 if (ret & VM_FAULT_DONE_COW)
3683 return ret;
3684
3685 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3686 __SetPageUptodate(vmf->cow_page);
3687
3688 ret |= finish_fault(vmf);
3689 unlock_page(vmf->page);
3690 put_page(vmf->page);
3691 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3692 goto uncharge_out;
3693 return ret;
3694 uncharge_out:
3695 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3696 put_page(vmf->cow_page);
3697 return ret;
3698 }
3699
3700 static int do_shared_fault(struct vm_fault *vmf)
3701 {
3702 struct vm_area_struct *vma = vmf->vma;
3703 int ret, tmp;
3704
3705 ret = __do_fault(vmf);
3706 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3707 return ret;
3708
3709 /*
3710 * Check if the backing address space wants to know that the page is
3711 * about to become writable
3712 */
3713 if (vma->vm_ops->page_mkwrite) {
3714 unlock_page(vmf->page);
3715 tmp = do_page_mkwrite(vmf);
3716 if (unlikely(!tmp ||
3717 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3718 put_page(vmf->page);
3719 return tmp;
3720 }
3721 }
3722
3723 ret |= finish_fault(vmf);
3724 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3725 VM_FAULT_RETRY))) {
3726 unlock_page(vmf->page);
3727 put_page(vmf->page);
3728 return ret;
3729 }
3730
3731 fault_dirty_shared_page(vma, vmf->page);
3732 return ret;
3733 }
3734
3735 /*
3736 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3737 * but allow concurrent faults).
3738 * The mmap_sem may have been released depending on flags and our
3739 * return value. See filemap_fault() and __lock_page_or_retry().
3740 */
3741 static int do_fault(struct vm_fault *vmf)
3742 {
3743 struct vm_area_struct *vma = vmf->vma;
3744 int ret;
3745
3746 /*
3747 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3748 */
3749 if (!vma->vm_ops->fault) {
3750 /*
3751 * If we find a migration pmd entry or a none pmd entry, which
3752 * should never happen, return SIGBUS
3753 */
3754 if (unlikely(!pmd_present(*vmf->pmd)))
3755 ret = VM_FAULT_SIGBUS;
3756 else {
3757 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3758 vmf->pmd,
3759 vmf->address,
3760 &vmf->ptl);
3761 /*
3762 * Make sure this is not a temporary clearing of pte
3763 * by holding ptl and checking again. A R/M/W update
3764 * of pte involves: take ptl, clearing the pte so that
3765 * we don't have concurrent modification by hardware
3766 * followed by an update.
3767 */
3768 if (unlikely(pte_none(*vmf->pte)))
3769 ret = VM_FAULT_SIGBUS;
3770 else
3771 ret = VM_FAULT_NOPAGE;
3772
3773 pte_unmap_unlock(vmf->pte, vmf->ptl);
3774 }
3775 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3776 ret = do_read_fault(vmf);
3777 else if (!(vma->vm_flags & VM_SHARED))
3778 ret = do_cow_fault(vmf);
3779 else
3780 ret = do_shared_fault(vmf);
3781
3782 /* preallocated pagetable is unused: free it */
3783 if (vmf->prealloc_pte) {
3784 pte_free(vma->vm_mm, vmf->prealloc_pte);
3785 vmf->prealloc_pte = NULL;
3786 }
3787 return ret;
3788 }
3789
3790 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3791 unsigned long addr, int page_nid,
3792 int *flags)
3793 {
3794 get_page(page);
3795
3796 count_vm_numa_event(NUMA_HINT_FAULTS);
3797 if (page_nid == numa_node_id()) {
3798 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3799 *flags |= TNF_FAULT_LOCAL;
3800 }
3801
3802 return mpol_misplaced(page, vma, addr);
3803 }
3804
3805 static int do_numa_page(struct vm_fault *vmf)
3806 {
3807 struct vm_area_struct *vma = vmf->vma;
3808 struct page *page = NULL;
3809 int page_nid = -1;
3810 int last_cpupid;
3811 int target_nid;
3812 bool migrated = false;
3813 pte_t pte;
3814 bool was_writable = pte_savedwrite(vmf->orig_pte);
3815 int flags = 0;
3816
3817 /*
3818 * The "pte" at this point cannot be used safely without
3819 * validation through pte_unmap_same(). It's of NUMA type but
3820 * the pfn may be screwed if the read is non atomic.
3821 */
3822 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3823 spin_lock(vmf->ptl);
3824 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 goto out;
3827 }
3828
3829 /*
3830 * Make it present again, Depending on how arch implementes non
3831 * accessible ptes, some can allow access by kernel mode.
3832 */
3833 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3834 pte = pte_modify(pte, vma->vm_page_prot);
3835 pte = pte_mkyoung(pte);
3836 if (was_writable)
3837 pte = pte_mkwrite(pte);
3838 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3839 update_mmu_cache(vma, vmf->address, vmf->pte);
3840
3841 page = vm_normal_page(vma, vmf->address, pte);
3842 if (!page) {
3843 pte_unmap_unlock(vmf->pte, vmf->ptl);
3844 return 0;
3845 }
3846
3847 /* TODO: handle PTE-mapped THP */
3848 if (PageCompound(page)) {
3849 pte_unmap_unlock(vmf->pte, vmf->ptl);
3850 return 0;
3851 }
3852
3853 /*
3854 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3855 * much anyway since they can be in shared cache state. This misses
3856 * the case where a mapping is writable but the process never writes
3857 * to it but pte_write gets cleared during protection updates and
3858 * pte_dirty has unpredictable behaviour between PTE scan updates,
3859 * background writeback, dirty balancing and application behaviour.
3860 */
3861 if (!pte_write(pte))
3862 flags |= TNF_NO_GROUP;
3863
3864 /*
3865 * Flag if the page is shared between multiple address spaces. This
3866 * is later used when determining whether to group tasks together
3867 */
3868 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3869 flags |= TNF_SHARED;
3870
3871 last_cpupid = page_cpupid_last(page);
3872 page_nid = page_to_nid(page);
3873 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3874 &flags);
3875 pte_unmap_unlock(vmf->pte, vmf->ptl);
3876 if (target_nid == -1) {
3877 put_page(page);
3878 goto out;
3879 }
3880
3881 /* Migrate to the requested node */
3882 migrated = migrate_misplaced_page(page, vma, target_nid);
3883 if (migrated) {
3884 page_nid = target_nid;
3885 flags |= TNF_MIGRATED;
3886 } else
3887 flags |= TNF_MIGRATE_FAIL;
3888
3889 out:
3890 if (page_nid != -1)
3891 task_numa_fault(last_cpupid, page_nid, 1, flags);
3892 return 0;
3893 }
3894
3895 static inline int create_huge_pmd(struct vm_fault *vmf)
3896 {
3897 if (vma_is_anonymous(vmf->vma))
3898 return do_huge_pmd_anonymous_page(vmf);
3899 if (vmf->vma->vm_ops->huge_fault)
3900 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3901 return VM_FAULT_FALLBACK;
3902 }
3903
3904 /* `inline' is required to avoid gcc 4.1.2 build error */
3905 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3906 {
3907 if (vma_is_anonymous(vmf->vma))
3908 return do_huge_pmd_wp_page(vmf, orig_pmd);
3909 if (vmf->vma->vm_ops->huge_fault)
3910 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3911
3912 /* COW handled on pte level: split pmd */
3913 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3914 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3915
3916 return VM_FAULT_FALLBACK;
3917 }
3918
3919 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3920 {
3921 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3922 }
3923
3924 static int create_huge_pud(struct vm_fault *vmf)
3925 {
3926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3927 /* No support for anonymous transparent PUD pages yet */
3928 if (vma_is_anonymous(vmf->vma))
3929 return VM_FAULT_FALLBACK;
3930 if (vmf->vma->vm_ops->huge_fault)
3931 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3932 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3933 return VM_FAULT_FALLBACK;
3934 }
3935
3936 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3937 {
3938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3939 /* No support for anonymous transparent PUD pages yet */
3940 if (vma_is_anonymous(vmf->vma))
3941 return VM_FAULT_FALLBACK;
3942 if (vmf->vma->vm_ops->huge_fault)
3943 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3944 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3945 return VM_FAULT_FALLBACK;
3946 }
3947
3948 /*
3949 * These routines also need to handle stuff like marking pages dirty
3950 * and/or accessed for architectures that don't do it in hardware (most
3951 * RISC architectures). The early dirtying is also good on the i386.
3952 *
3953 * There is also a hook called "update_mmu_cache()" that architectures
3954 * with external mmu caches can use to update those (ie the Sparc or
3955 * PowerPC hashed page tables that act as extended TLBs).
3956 *
3957 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3958 * concurrent faults).
3959 *
3960 * The mmap_sem may have been released depending on flags and our return value.
3961 * See filemap_fault() and __lock_page_or_retry().
3962 */
3963 static int handle_pte_fault(struct vm_fault *vmf)
3964 {
3965 pte_t entry;
3966
3967 if (unlikely(pmd_none(*vmf->pmd))) {
3968 /*
3969 * Leave __pte_alloc() until later: because vm_ops->fault may
3970 * want to allocate huge page, and if we expose page table
3971 * for an instant, it will be difficult to retract from
3972 * concurrent faults and from rmap lookups.
3973 */
3974 vmf->pte = NULL;
3975 } else {
3976 /* See comment in pte_alloc_one_map() */
3977 if (pmd_devmap_trans_unstable(vmf->pmd))
3978 return 0;
3979 /*
3980 * A regular pmd is established and it can't morph into a huge
3981 * pmd from under us anymore at this point because we hold the
3982 * mmap_sem read mode and khugepaged takes it in write mode.
3983 * So now it's safe to run pte_offset_map().
3984 */
3985 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3986 vmf->orig_pte = *vmf->pte;
3987
3988 /*
3989 * some architectures can have larger ptes than wordsize,
3990 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3991 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3992 * accesses. The code below just needs a consistent view
3993 * for the ifs and we later double check anyway with the
3994 * ptl lock held. So here a barrier will do.
3995 */
3996 barrier();
3997 if (pte_none(vmf->orig_pte)) {
3998 pte_unmap(vmf->pte);
3999 vmf->pte = NULL;
4000 }
4001 }
4002
4003 if (!vmf->pte) {
4004 if (vma_is_anonymous(vmf->vma))
4005 return do_anonymous_page(vmf);
4006 else
4007 return do_fault(vmf);
4008 }
4009
4010 if (!pte_present(vmf->orig_pte))
4011 return do_swap_page(vmf);
4012
4013 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4014 return do_numa_page(vmf);
4015
4016 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4017 spin_lock(vmf->ptl);
4018 entry = vmf->orig_pte;
4019 if (unlikely(!pte_same(*vmf->pte, entry)))
4020 goto unlock;
4021 if (vmf->flags & FAULT_FLAG_WRITE) {
4022 if (!pte_write(entry))
4023 return do_wp_page(vmf);
4024 entry = pte_mkdirty(entry);
4025 }
4026 entry = pte_mkyoung(entry);
4027 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4028 vmf->flags & FAULT_FLAG_WRITE)) {
4029 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4030 } else {
4031 /*
4032 * This is needed only for protection faults but the arch code
4033 * is not yet telling us if this is a protection fault or not.
4034 * This still avoids useless tlb flushes for .text page faults
4035 * with threads.
4036 */
4037 if (vmf->flags & FAULT_FLAG_WRITE)
4038 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4039 }
4040 unlock:
4041 pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 return 0;
4043 }
4044
4045 /*
4046 * By the time we get here, we already hold the mm semaphore
4047 *
4048 * The mmap_sem may have been released depending on flags and our
4049 * return value. See filemap_fault() and __lock_page_or_retry().
4050 */
4051 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4052 unsigned int flags)
4053 {
4054 struct vm_fault vmf = {
4055 .vma = vma,
4056 .address = address & PAGE_MASK,
4057 .flags = flags,
4058 .pgoff = linear_page_index(vma, address),
4059 .gfp_mask = __get_fault_gfp_mask(vma),
4060 };
4061 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4062 struct mm_struct *mm = vma->vm_mm;
4063 pgd_t *pgd;
4064 p4d_t *p4d;
4065 int ret;
4066
4067 pgd = pgd_offset(mm, address);
4068 p4d = p4d_alloc(mm, pgd, address);
4069 if (!p4d)
4070 return VM_FAULT_OOM;
4071
4072 vmf.pud = pud_alloc(mm, p4d, address);
4073 if (!vmf.pud)
4074 return VM_FAULT_OOM;
4075 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4076 ret = create_huge_pud(&vmf);
4077 if (!(ret & VM_FAULT_FALLBACK))
4078 return ret;
4079 } else {
4080 pud_t orig_pud = *vmf.pud;
4081
4082 barrier();
4083 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4084
4085 /* NUMA case for anonymous PUDs would go here */
4086
4087 if (dirty && !pud_write(orig_pud)) {
4088 ret = wp_huge_pud(&vmf, orig_pud);
4089 if (!(ret & VM_FAULT_FALLBACK))
4090 return ret;
4091 } else {
4092 huge_pud_set_accessed(&vmf, orig_pud);
4093 return 0;
4094 }
4095 }
4096 }
4097
4098 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4099 if (!vmf.pmd)
4100 return VM_FAULT_OOM;
4101 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4102 ret = create_huge_pmd(&vmf);
4103 if (!(ret & VM_FAULT_FALLBACK))
4104 return ret;
4105 } else {
4106 pmd_t orig_pmd = *vmf.pmd;
4107
4108 barrier();
4109 if (unlikely(is_swap_pmd(orig_pmd))) {
4110 VM_BUG_ON(thp_migration_supported() &&
4111 !is_pmd_migration_entry(orig_pmd));
4112 if (is_pmd_migration_entry(orig_pmd))
4113 pmd_migration_entry_wait(mm, vmf.pmd);
4114 return 0;
4115 }
4116 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4117 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4118 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4119
4120 if (dirty && !pmd_write(orig_pmd)) {
4121 ret = wp_huge_pmd(&vmf, orig_pmd);
4122 if (!(ret & VM_FAULT_FALLBACK))
4123 return ret;
4124 } else {
4125 huge_pmd_set_accessed(&vmf, orig_pmd);
4126 return 0;
4127 }
4128 }
4129 }
4130
4131 return handle_pte_fault(&vmf);
4132 }
4133
4134 /*
4135 * By the time we get here, we already hold the mm semaphore
4136 *
4137 * The mmap_sem may have been released depending on flags and our
4138 * return value. See filemap_fault() and __lock_page_or_retry().
4139 */
4140 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4141 unsigned int flags)
4142 {
4143 int ret;
4144
4145 __set_current_state(TASK_RUNNING);
4146
4147 count_vm_event(PGFAULT);
4148 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4149
4150 /* do counter updates before entering really critical section. */
4151 check_sync_rss_stat(current);
4152
4153 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4154 flags & FAULT_FLAG_INSTRUCTION,
4155 flags & FAULT_FLAG_REMOTE))
4156 return VM_FAULT_SIGSEGV;
4157
4158 /*
4159 * Enable the memcg OOM handling for faults triggered in user
4160 * space. Kernel faults are handled more gracefully.
4161 */
4162 if (flags & FAULT_FLAG_USER)
4163 mem_cgroup_oom_enable();
4164
4165 if (unlikely(is_vm_hugetlb_page(vma)))
4166 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4167 else
4168 ret = __handle_mm_fault(vma, address, flags);
4169
4170 if (flags & FAULT_FLAG_USER) {
4171 mem_cgroup_oom_disable();
4172 /*
4173 * The task may have entered a memcg OOM situation but
4174 * if the allocation error was handled gracefully (no
4175 * VM_FAULT_OOM), there is no need to kill anything.
4176 * Just clean up the OOM state peacefully.
4177 */
4178 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4179 mem_cgroup_oom_synchronize(false);
4180 }
4181
4182 return ret;
4183 }
4184 EXPORT_SYMBOL_GPL(handle_mm_fault);
4185
4186 #ifndef __PAGETABLE_P4D_FOLDED
4187 /*
4188 * Allocate p4d page table.
4189 * We've already handled the fast-path in-line.
4190 */
4191 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4192 {
4193 p4d_t *new = p4d_alloc_one(mm, address);
4194 if (!new)
4195 return -ENOMEM;
4196
4197 smp_wmb(); /* See comment in __pte_alloc */
4198
4199 spin_lock(&mm->page_table_lock);
4200 if (pgd_present(*pgd)) /* Another has populated it */
4201 p4d_free(mm, new);
4202 else
4203 pgd_populate(mm, pgd, new);
4204 spin_unlock(&mm->page_table_lock);
4205 return 0;
4206 }
4207 #endif /* __PAGETABLE_P4D_FOLDED */
4208
4209 #ifndef __PAGETABLE_PUD_FOLDED
4210 /*
4211 * Allocate page upper directory.
4212 * We've already handled the fast-path in-line.
4213 */
4214 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4215 {
4216 pud_t *new = pud_alloc_one(mm, address);
4217 if (!new)
4218 return -ENOMEM;
4219
4220 smp_wmb(); /* See comment in __pte_alloc */
4221
4222 spin_lock(&mm->page_table_lock);
4223 #ifndef __ARCH_HAS_5LEVEL_HACK
4224 if (!p4d_present(*p4d)) {
4225 mm_inc_nr_puds(mm);
4226 p4d_populate(mm, p4d, new);
4227 } else /* Another has populated it */
4228 pud_free(mm, new);
4229 #else
4230 if (!pgd_present(*p4d)) {
4231 mm_inc_nr_puds(mm);
4232 pgd_populate(mm, p4d, new);
4233 } else /* Another has populated it */
4234 pud_free(mm, new);
4235 #endif /* __ARCH_HAS_5LEVEL_HACK */
4236 spin_unlock(&mm->page_table_lock);
4237 return 0;
4238 }
4239 #endif /* __PAGETABLE_PUD_FOLDED */
4240
4241 #ifndef __PAGETABLE_PMD_FOLDED
4242 /*
4243 * Allocate page middle directory.
4244 * We've already handled the fast-path in-line.
4245 */
4246 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4247 {
4248 spinlock_t *ptl;
4249 pmd_t *new = pmd_alloc_one(mm, address);
4250 if (!new)
4251 return -ENOMEM;
4252
4253 smp_wmb(); /* See comment in __pte_alloc */
4254
4255 ptl = pud_lock(mm, pud);
4256 #ifndef __ARCH_HAS_4LEVEL_HACK
4257 if (!pud_present(*pud)) {
4258 mm_inc_nr_pmds(mm);
4259 pud_populate(mm, pud, new);
4260 } else /* Another has populated it */
4261 pmd_free(mm, new);
4262 #else
4263 if (!pgd_present(*pud)) {
4264 mm_inc_nr_pmds(mm);
4265 pgd_populate(mm, pud, new);
4266 } else /* Another has populated it */
4267 pmd_free(mm, new);
4268 #endif /* __ARCH_HAS_4LEVEL_HACK */
4269 spin_unlock(ptl);
4270 return 0;
4271 }
4272 #endif /* __PAGETABLE_PMD_FOLDED */
4273
4274 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4275 unsigned long *start, unsigned long *end,
4276 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4277 {
4278 pgd_t *pgd;
4279 p4d_t *p4d;
4280 pud_t *pud;
4281 pmd_t *pmd;
4282 pte_t *ptep;
4283
4284 pgd = pgd_offset(mm, address);
4285 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4286 goto out;
4287
4288 p4d = p4d_offset(pgd, address);
4289 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4290 goto out;
4291
4292 pud = pud_offset(p4d, address);
4293 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4294 goto out;
4295
4296 pmd = pmd_offset(pud, address);
4297 VM_BUG_ON(pmd_trans_huge(*pmd));
4298
4299 if (pmd_huge(*pmd)) {
4300 if (!pmdpp)
4301 goto out;
4302
4303 if (start && end) {
4304 *start = address & PMD_MASK;
4305 *end = *start + PMD_SIZE;
4306 mmu_notifier_invalidate_range_start(mm, *start, *end);
4307 }
4308 *ptlp = pmd_lock(mm, pmd);
4309 if (pmd_huge(*pmd)) {
4310 *pmdpp = pmd;
4311 return 0;
4312 }
4313 spin_unlock(*ptlp);
4314 if (start && end)
4315 mmu_notifier_invalidate_range_end(mm, *start, *end);
4316 }
4317
4318 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4319 goto out;
4320
4321 if (start && end) {
4322 *start = address & PAGE_MASK;
4323 *end = *start + PAGE_SIZE;
4324 mmu_notifier_invalidate_range_start(mm, *start, *end);
4325 }
4326 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4327 if (!pte_present(*ptep))
4328 goto unlock;
4329 *ptepp = ptep;
4330 return 0;
4331 unlock:
4332 pte_unmap_unlock(ptep, *ptlp);
4333 if (start && end)
4334 mmu_notifier_invalidate_range_end(mm, *start, *end);
4335 out:
4336 return -EINVAL;
4337 }
4338
4339 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4340 pte_t **ptepp, spinlock_t **ptlp)
4341 {
4342 int res;
4343
4344 /* (void) is needed to make gcc happy */
4345 (void) __cond_lock(*ptlp,
4346 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4347 ptepp, NULL, ptlp)));
4348 return res;
4349 }
4350
4351 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4352 unsigned long *start, unsigned long *end,
4353 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4354 {
4355 int res;
4356
4357 /* (void) is needed to make gcc happy */
4358 (void) __cond_lock(*ptlp,
4359 !(res = __follow_pte_pmd(mm, address, start, end,
4360 ptepp, pmdpp, ptlp)));
4361 return res;
4362 }
4363 EXPORT_SYMBOL(follow_pte_pmd);
4364
4365 /**
4366 * follow_pfn - look up PFN at a user virtual address
4367 * @vma: memory mapping
4368 * @address: user virtual address
4369 * @pfn: location to store found PFN
4370 *
4371 * Only IO mappings and raw PFN mappings are allowed.
4372 *
4373 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4374 */
4375 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4376 unsigned long *pfn)
4377 {
4378 int ret = -EINVAL;
4379 spinlock_t *ptl;
4380 pte_t *ptep;
4381
4382 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4383 return ret;
4384
4385 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4386 if (ret)
4387 return ret;
4388 *pfn = pte_pfn(*ptep);
4389 pte_unmap_unlock(ptep, ptl);
4390 return 0;
4391 }
4392 EXPORT_SYMBOL(follow_pfn);
4393
4394 #ifdef CONFIG_HAVE_IOREMAP_PROT
4395 int follow_phys(struct vm_area_struct *vma,
4396 unsigned long address, unsigned int flags,
4397 unsigned long *prot, resource_size_t *phys)
4398 {
4399 int ret = -EINVAL;
4400 pte_t *ptep, pte;
4401 spinlock_t *ptl;
4402
4403 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4404 goto out;
4405
4406 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4407 goto out;
4408 pte = *ptep;
4409
4410 if ((flags & FOLL_WRITE) && !pte_write(pte))
4411 goto unlock;
4412
4413 *prot = pgprot_val(pte_pgprot(pte));
4414 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4415
4416 ret = 0;
4417 unlock:
4418 pte_unmap_unlock(ptep, ptl);
4419 out:
4420 return ret;
4421 }
4422
4423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4424 void *buf, int len, int write)
4425 {
4426 resource_size_t phys_addr;
4427 unsigned long prot = 0;
4428 void __iomem *maddr;
4429 int offset = addr & (PAGE_SIZE-1);
4430
4431 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4432 return -EINVAL;
4433
4434 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4435 if (!maddr)
4436 return -ENOMEM;
4437
4438 if (write)
4439 memcpy_toio(maddr + offset, buf, len);
4440 else
4441 memcpy_fromio(buf, maddr + offset, len);
4442 iounmap(maddr);
4443
4444 return len;
4445 }
4446 EXPORT_SYMBOL_GPL(generic_access_phys);
4447 #endif
4448
4449 /*
4450 * Access another process' address space as given in mm. If non-NULL, use the
4451 * given task for page fault accounting.
4452 */
4453 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4454 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4455 {
4456 struct vm_area_struct *vma;
4457 void *old_buf = buf;
4458 int write = gup_flags & FOLL_WRITE;
4459
4460 down_read(&mm->mmap_sem);
4461 /* ignore errors, just check how much was successfully transferred */
4462 while (len) {
4463 int bytes, ret, offset;
4464 void *maddr;
4465 struct page *page = NULL;
4466
4467 ret = get_user_pages_remote(tsk, mm, addr, 1,
4468 gup_flags, &page, &vma, NULL);
4469 if (ret <= 0) {
4470 #ifndef CONFIG_HAVE_IOREMAP_PROT
4471 break;
4472 #else
4473 /*
4474 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4475 * we can access using slightly different code.
4476 */
4477 vma = find_vma(mm, addr);
4478 if (!vma || vma->vm_start > addr)
4479 break;
4480 if (vma->vm_ops && vma->vm_ops->access)
4481 ret = vma->vm_ops->access(vma, addr, buf,
4482 len, write);
4483 if (ret <= 0)
4484 break;
4485 bytes = ret;
4486 #endif
4487 } else {
4488 bytes = len;
4489 offset = addr & (PAGE_SIZE-1);
4490 if (bytes > PAGE_SIZE-offset)
4491 bytes = PAGE_SIZE-offset;
4492
4493 maddr = kmap(page);
4494 if (write) {
4495 copy_to_user_page(vma, page, addr,
4496 maddr + offset, buf, bytes);
4497 set_page_dirty_lock(page);
4498 } else {
4499 copy_from_user_page(vma, page, addr,
4500 buf, maddr + offset, bytes);
4501 }
4502 kunmap(page);
4503 put_page(page);
4504 }
4505 len -= bytes;
4506 buf += bytes;
4507 addr += bytes;
4508 }
4509 up_read(&mm->mmap_sem);
4510
4511 return buf - old_buf;
4512 }
4513
4514 /**
4515 * access_remote_vm - access another process' address space
4516 * @mm: the mm_struct of the target address space
4517 * @addr: start address to access
4518 * @buf: source or destination buffer
4519 * @len: number of bytes to transfer
4520 * @gup_flags: flags modifying lookup behaviour
4521 *
4522 * The caller must hold a reference on @mm.
4523 */
4524 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4525 void *buf, int len, unsigned int gup_flags)
4526 {
4527 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4528 }
4529
4530 /*
4531 * Access another process' address space.
4532 * Source/target buffer must be kernel space,
4533 * Do not walk the page table directly, use get_user_pages
4534 */
4535 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4536 void *buf, int len, unsigned int gup_flags)
4537 {
4538 struct mm_struct *mm;
4539 int ret;
4540
4541 mm = get_task_mm(tsk);
4542 if (!mm)
4543 return 0;
4544
4545 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4546
4547 mmput(mm);
4548
4549 return ret;
4550 }
4551 EXPORT_SYMBOL_GPL(access_process_vm);
4552
4553 /*
4554 * Print the name of a VMA.
4555 */
4556 void print_vma_addr(char *prefix, unsigned long ip)
4557 {
4558 struct mm_struct *mm = current->mm;
4559 struct vm_area_struct *vma;
4560
4561 /*
4562 * we might be running from an atomic context so we cannot sleep
4563 */
4564 if (!down_read_trylock(&mm->mmap_sem))
4565 return;
4566
4567 vma = find_vma(mm, ip);
4568 if (vma && vma->vm_file) {
4569 struct file *f = vma->vm_file;
4570 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4571 if (buf) {
4572 char *p;
4573
4574 p = file_path(f, buf, PAGE_SIZE);
4575 if (IS_ERR(p))
4576 p = "?";
4577 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4578 vma->vm_start,
4579 vma->vm_end - vma->vm_start);
4580 free_page((unsigned long)buf);
4581 }
4582 }
4583 up_read(&mm->mmap_sem);
4584 }
4585
4586 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4587 void __might_fault(const char *file, int line)
4588 {
4589 /*
4590 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4591 * holding the mmap_sem, this is safe because kernel memory doesn't
4592 * get paged out, therefore we'll never actually fault, and the
4593 * below annotations will generate false positives.
4594 */
4595 if (uaccess_kernel())
4596 return;
4597 if (pagefault_disabled())
4598 return;
4599 __might_sleep(file, line, 0);
4600 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4601 if (current->mm)
4602 might_lock_read(&current->mm->mmap_sem);
4603 #endif
4604 }
4605 EXPORT_SYMBOL(__might_fault);
4606 #endif
4607
4608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4609 static void clear_gigantic_page(struct page *page,
4610 unsigned long addr,
4611 unsigned int pages_per_huge_page)
4612 {
4613 int i;
4614 struct page *p = page;
4615
4616 might_sleep();
4617 for (i = 0; i < pages_per_huge_page;
4618 i++, p = mem_map_next(p, page, i)) {
4619 cond_resched();
4620 clear_user_highpage(p, addr + i * PAGE_SIZE);
4621 }
4622 }
4623 void clear_huge_page(struct page *page,
4624 unsigned long addr_hint, unsigned int pages_per_huge_page)
4625 {
4626 int i, n, base, l;
4627 unsigned long addr = addr_hint &
4628 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4629
4630 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4631 clear_gigantic_page(page, addr, pages_per_huge_page);
4632 return;
4633 }
4634
4635 /* Clear sub-page to access last to keep its cache lines hot */
4636 might_sleep();
4637 n = (addr_hint - addr) / PAGE_SIZE;
4638 if (2 * n <= pages_per_huge_page) {
4639 /* If sub-page to access in first half of huge page */
4640 base = 0;
4641 l = n;
4642 /* Clear sub-pages at the end of huge page */
4643 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4644 cond_resched();
4645 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4646 }
4647 } else {
4648 /* If sub-page to access in second half of huge page */
4649 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4650 l = pages_per_huge_page - n;
4651 /* Clear sub-pages at the begin of huge page */
4652 for (i = 0; i < base; i++) {
4653 cond_resched();
4654 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4655 }
4656 }
4657 /*
4658 * Clear remaining sub-pages in left-right-left-right pattern
4659 * towards the sub-page to access
4660 */
4661 for (i = 0; i < l; i++) {
4662 int left_idx = base + i;
4663 int right_idx = base + 2 * l - 1 - i;
4664
4665 cond_resched();
4666 clear_user_highpage(page + left_idx,
4667 addr + left_idx * PAGE_SIZE);
4668 cond_resched();
4669 clear_user_highpage(page + right_idx,
4670 addr + right_idx * PAGE_SIZE);
4671 }
4672 }
4673
4674 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4675 unsigned long addr,
4676 struct vm_area_struct *vma,
4677 unsigned int pages_per_huge_page)
4678 {
4679 int i;
4680 struct page *dst_base = dst;
4681 struct page *src_base = src;
4682
4683 for (i = 0; i < pages_per_huge_page; ) {
4684 cond_resched();
4685 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4686
4687 i++;
4688 dst = mem_map_next(dst, dst_base, i);
4689 src = mem_map_next(src, src_base, i);
4690 }
4691 }
4692
4693 void copy_user_huge_page(struct page *dst, struct page *src,
4694 unsigned long addr, struct vm_area_struct *vma,
4695 unsigned int pages_per_huge_page)
4696 {
4697 int i;
4698
4699 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4700 copy_user_gigantic_page(dst, src, addr, vma,
4701 pages_per_huge_page);
4702 return;
4703 }
4704
4705 might_sleep();
4706 for (i = 0; i < pages_per_huge_page; i++) {
4707 cond_resched();
4708 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4709 }
4710 }
4711
4712 long copy_huge_page_from_user(struct page *dst_page,
4713 const void __user *usr_src,
4714 unsigned int pages_per_huge_page,
4715 bool allow_pagefault)
4716 {
4717 void *src = (void *)usr_src;
4718 void *page_kaddr;
4719 unsigned long i, rc = 0;
4720 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4721
4722 for (i = 0; i < pages_per_huge_page; i++) {
4723 if (allow_pagefault)
4724 page_kaddr = kmap(dst_page + i);
4725 else
4726 page_kaddr = kmap_atomic(dst_page + i);
4727 rc = copy_from_user(page_kaddr,
4728 (const void __user *)(src + i * PAGE_SIZE),
4729 PAGE_SIZE);
4730 if (allow_pagefault)
4731 kunmap(dst_page + i);
4732 else
4733 kunmap_atomic(page_kaddr);
4734
4735 ret_val -= (PAGE_SIZE - rc);
4736 if (rc)
4737 break;
4738
4739 cond_resched();
4740 }
4741 return ret_val;
4742 }
4743 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4744
4745 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4746
4747 static struct kmem_cache *page_ptl_cachep;
4748
4749 void __init ptlock_cache_init(void)
4750 {
4751 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4752 SLAB_PANIC, NULL);
4753 }
4754
4755 bool ptlock_alloc(struct page *page)
4756 {
4757 spinlock_t *ptl;
4758
4759 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4760 if (!ptl)
4761 return false;
4762 page->ptl = ptl;
4763 return true;
4764 }
4765
4766 void ptlock_free(struct page *page)
4767 {
4768 kmem_cache_free(page_ptl_cachep, page->ptl);
4769 }
4770 #endif