]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
platform/x86: hp-wmi: Fix hp_wmi_read_int() reporting error (0x05)
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 1;
120 #else
121 2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150 randomize_va_space = 0;
151 return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
163 static int __init init_zero_pfn(void)
164 {
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172 trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
185 }
186 }
187 current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
228 {
229 pgtable_t token = pmd_pgtable(*pmd);
230 pmd_clear(pmd);
231 pte_free_tlb(tlb, token, addr);
232 mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
238 {
239 pmd_t *pmd;
240 unsigned long next;
241 unsigned long start;
242
243 start = addr;
244 pmd = pmd_offset(pud, addr);
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
249 free_pte_range(tlb, pmd, addr);
250 } while (pmd++, addr = next, addr != end);
251
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
259 }
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
265 pmd_free_tlb(tlb, pmd, start);
266 mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
272 {
273 pud_t *pud;
274 unsigned long next;
275 unsigned long start;
276
277 start = addr;
278 pud = pud_offset(p4d, addr);
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 } while (pud++, addr = next, addr != end);
285
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
300 mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
327 }
328 if (end - 1 > ceiling - 1)
329 return;
330
331 p4d = p4d_offset(pgd, start);
332 pgd_clear(pgd);
333 p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337 * This function frees user-level page tables of a process.
338 */
339 void free_pgd_range(struct mmu_gather *tlb,
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
342 {
343 pgd_t *pgd;
344 unsigned long next;
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
371
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
391 tlb_change_page_size(tlb, PAGE_SIZE);
392 pgd = pgd_offset(tlb->mm, addr);
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 unsigned long floor, unsigned long ceiling)
403 {
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
408 /*
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
411 */
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
414
415 if (is_vm_hugetlb_page(vma)) {
416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 && !is_vm_hugetlb_page(next)) {
424 vma = next;
425 next = vma->vm_next;
426 unlink_anon_vmas(vma);
427 unlink_file_vma(vma);
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
430 floor, next ? next->vm_start : ceiling);
431 }
432 vma = next;
433 }
434 }
435
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 spinlock_t *ptl;
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458 ptl = pmd_lock(mm, pmd);
459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
460 mm_inc_nr_ptes(mm);
461 pmd_populate(mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(ptl);
465 if (new)
466 pte_free(mm, new);
467 return 0;
468 }
469
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 pte_t *new = pte_alloc_one_kernel(&init_mm);
473 if (!new)
474 return -ENOMEM;
475
476 smp_wmb(); /* See comment in __pte_alloc */
477
478 spin_lock(&init_mm.page_table_lock);
479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
480 pmd_populate_kernel(&init_mm, pmd, new);
481 new = NULL;
482 }
483 spin_unlock(&init_mm.page_table_lock);
484 if (new)
485 pte_free_kernel(&init_mm, new);
486 return 0;
487 }
488
489 static inline void init_rss_vec(int *rss)
490 {
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 int i;
497
498 if (current->mm == mm)
499 sync_mm_rss(mm);
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
509 *
510 * The calling function must still handle the error.
511 */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
514 {
515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 if (page)
551 dump_page(page, "bad pte");
552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
559 dump_stack();
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
565 *
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
569 *
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
578 *
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
592 *
593 *
594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
604 */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
607 {
608 unsigned long pfn = pte_pfn(pte);
609
610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611 if (likely(!pte_special(pte)))
612 goto check_pfn;
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
617 if (is_zero_pfn(pfn))
618 return NULL;
619 if (pte_devmap(pte))
620 return NULL;
621
622 print_bad_pte(vma, addr, pte, NULL);
623 return NULL;
624 }
625
626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
641 }
642
643 if (is_zero_pfn(pfn))
644 return NULL;
645
646 check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
651
652 /*
653 * NOTE! We still have PageReserved() pages in the page tables.
654 * eg. VDSO mappings can cause them to exist.
655 */
656 out:
657 return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663 {
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
686 if (pmd_devmap(pmd))
687 return NULL;
688 if (is_huge_zero_pmd(pmd))
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697 out:
698 return pfn_to_page(pfn);
699 }
700 #endif
701
702 static void restore_exclusive_pte(struct vm_area_struct *vma,
703 struct page *page, unsigned long address,
704 pte_t *ptep)
705 {
706 pte_t pte;
707 swp_entry_t entry;
708
709 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710 if (pte_swp_soft_dirty(*ptep))
711 pte = pte_mksoft_dirty(pte);
712
713 entry = pte_to_swp_entry(*ptep);
714 if (pte_swp_uffd_wp(*ptep))
715 pte = pte_mkuffd_wp(pte);
716 else if (is_writable_device_exclusive_entry(entry))
717 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719 set_pte_at(vma->vm_mm, address, ptep, pte);
720
721 /*
722 * No need to take a page reference as one was already
723 * created when the swap entry was made.
724 */
725 if (PageAnon(page))
726 page_add_anon_rmap(page, vma, address, false);
727 else
728 /*
729 * Currently device exclusive access only supports anonymous
730 * memory so the entry shouldn't point to a filebacked page.
731 */
732 WARN_ON_ONCE(!PageAnon(page));
733
734 if (vma->vm_flags & VM_LOCKED)
735 mlock_vma_page(page);
736
737 /*
738 * No need to invalidate - it was non-present before. However
739 * secondary CPUs may have mappings that need invalidating.
740 */
741 update_mmu_cache(vma, address, ptep);
742 }
743
744 /*
745 * Tries to restore an exclusive pte if the page lock can be acquired without
746 * sleeping.
747 */
748 static int
749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 unsigned long addr)
751 {
752 swp_entry_t entry = pte_to_swp_entry(*src_pte);
753 struct page *page = pfn_swap_entry_to_page(entry);
754
755 if (trylock_page(page)) {
756 restore_exclusive_pte(vma, page, addr, src_pte);
757 unlock_page(page);
758 return 0;
759 }
760
761 return -EBUSY;
762 }
763
764 /*
765 * copy one vm_area from one task to the other. Assumes the page tables
766 * already present in the new task to be cleared in the whole range
767 * covered by this vma.
768 */
769
770 static unsigned long
771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774 {
775 unsigned long vm_flags = dst_vma->vm_flags;
776 pte_t pte = *src_pte;
777 struct page *page;
778 swp_entry_t entry = pte_to_swp_entry(pte);
779
780 if (likely(!non_swap_entry(entry))) {
781 if (swap_duplicate(entry) < 0)
782 return -EIO;
783
784 /* make sure dst_mm is on swapoff's mmlist. */
785 if (unlikely(list_empty(&dst_mm->mmlist))) {
786 spin_lock(&mmlist_lock);
787 if (list_empty(&dst_mm->mmlist))
788 list_add(&dst_mm->mmlist,
789 &src_mm->mmlist);
790 spin_unlock(&mmlist_lock);
791 }
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
794 page = pfn_swap_entry_to_page(entry);
795
796 rss[mm_counter(page)]++;
797
798 if (is_writable_migration_entry(entry) &&
799 is_cow_mapping(vm_flags)) {
800 /*
801 * COW mappings require pages in both
802 * parent and child to be set to read.
803 */
804 entry = make_readable_migration_entry(
805 swp_offset(entry));
806 pte = swp_entry_to_pte(entry);
807 if (pte_swp_soft_dirty(*src_pte))
808 pte = pte_swp_mksoft_dirty(pte);
809 if (pte_swp_uffd_wp(*src_pte))
810 pte = pte_swp_mkuffd_wp(pte);
811 set_pte_at(src_mm, addr, src_pte, pte);
812 }
813 } else if (is_device_private_entry(entry)) {
814 page = pfn_swap_entry_to_page(entry);
815
816 /*
817 * Update rss count even for unaddressable pages, as
818 * they should treated just like normal pages in this
819 * respect.
820 *
821 * We will likely want to have some new rss counters
822 * for unaddressable pages, at some point. But for now
823 * keep things as they are.
824 */
825 get_page(page);
826 rss[mm_counter(page)]++;
827 page_dup_rmap(page, false);
828
829 /*
830 * We do not preserve soft-dirty information, because so
831 * far, checkpoint/restore is the only feature that
832 * requires that. And checkpoint/restore does not work
833 * when a device driver is involved (you cannot easily
834 * save and restore device driver state).
835 */
836 if (is_writable_device_private_entry(entry) &&
837 is_cow_mapping(vm_flags)) {
838 entry = make_readable_device_private_entry(
839 swp_offset(entry));
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_uffd_wp(*src_pte))
842 pte = pte_swp_mkuffd_wp(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
844 }
845 } else if (is_device_exclusive_entry(entry)) {
846 /*
847 * Make device exclusive entries present by restoring the
848 * original entry then copying as for a present pte. Device
849 * exclusive entries currently only support private writable
850 * (ie. COW) mappings.
851 */
852 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854 return -EBUSY;
855 return -ENOENT;
856 }
857 if (!userfaultfd_wp(dst_vma))
858 pte = pte_swp_clear_uffd_wp(pte);
859 set_pte_at(dst_mm, addr, dst_pte, pte);
860 return 0;
861 }
862
863 /*
864 * Copy a present and normal page if necessary.
865 *
866 * NOTE! The usual case is that this doesn't need to do
867 * anything, and can just return a positive value. That
868 * will let the caller know that it can just increase
869 * the page refcount and re-use the pte the traditional
870 * way.
871 *
872 * But _if_ we need to copy it because it needs to be
873 * pinned in the parent (and the child should get its own
874 * copy rather than just a reference to the same page),
875 * we'll do that here and return zero to let the caller
876 * know we're done.
877 *
878 * And if we need a pre-allocated page but don't yet have
879 * one, return a negative error to let the preallocation
880 * code know so that it can do so outside the page table
881 * lock.
882 */
883 static inline int
884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886 struct page **prealloc, pte_t pte, struct page *page)
887 {
888 struct page *new_page;
889
890 /*
891 * What we want to do is to check whether this page may
892 * have been pinned by the parent process. If so,
893 * instead of wrprotect the pte on both sides, we copy
894 * the page immediately so that we'll always guarantee
895 * the pinned page won't be randomly replaced in the
896 * future.
897 *
898 * The page pinning checks are just "has this mm ever
899 * seen pinning", along with the (inexact) check of
900 * the page count. That might give false positives for
901 * for pinning, but it will work correctly.
902 */
903 if (likely(!page_needs_cow_for_dma(src_vma, page)))
904 return 1;
905
906 new_page = *prealloc;
907 if (!new_page)
908 return -EAGAIN;
909
910 /*
911 * We have a prealloc page, all good! Take it
912 * over and copy the page & arm it.
913 */
914 *prealloc = NULL;
915 copy_user_highpage(new_page, page, addr, src_vma);
916 __SetPageUptodate(new_page);
917 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919 rss[mm_counter(new_page)]++;
920
921 /* All done, just insert the new page copy in the child */
922 pte = mk_pte(new_page, dst_vma->vm_page_prot);
923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924 if (userfaultfd_pte_wp(dst_vma, *src_pte))
925 /* Uffd-wp needs to be delivered to dest pte as well */
926 pte = pte_wrprotect(pte_mkuffd_wp(pte));
927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928 return 0;
929 }
930
931 /*
932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
933 * is required to copy this pte.
934 */
935 static inline int
936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 struct page **prealloc)
939 {
940 struct mm_struct *src_mm = src_vma->vm_mm;
941 unsigned long vm_flags = src_vma->vm_flags;
942 pte_t pte = *src_pte;
943 struct page *page;
944
945 page = vm_normal_page(src_vma, addr, pte);
946 if (page) {
947 int retval;
948
949 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, pte, page);
951 if (retval <= 0)
952 return retval;
953
954 get_page(page);
955 page_dup_rmap(page, false);
956 rss[mm_counter(page)]++;
957 }
958
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 ptep_set_wrprotect(src_mm, addr, src_pte);
965 pte = pte_wrprotect(pte);
966 }
967
968 /*
969 * If it's a shared mapping, mark it clean in
970 * the child
971 */
972 if (vm_flags & VM_SHARED)
973 pte = pte_mkclean(pte);
974 pte = pte_mkold(pte);
975
976 if (!userfaultfd_wp(dst_vma))
977 pte = pte_clear_uffd_wp(pte);
978
979 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
980 return 0;
981 }
982
983 static inline struct page *
984 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985 unsigned long addr)
986 {
987 struct page *new_page;
988
989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990 if (!new_page)
991 return NULL;
992
993 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994 put_page(new_page);
995 return NULL;
996 }
997 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
998
999 return new_page;
1000 }
1001
1002 static int
1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1006 {
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
1009 pte_t *orig_src_pte, *orig_dst_pte;
1010 pte_t *src_pte, *dst_pte;
1011 spinlock_t *src_ptl, *dst_ptl;
1012 int progress, ret = 0;
1013 int rss[NR_MM_COUNTERS];
1014 swp_entry_t entry = (swp_entry_t){0};
1015 struct page *prealloc = NULL;
1016
1017 again:
1018 progress = 0;
1019 init_rss_vec(rss);
1020
1021 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022 if (!dst_pte) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
1026 src_pte = pte_offset_map(src_pmd, addr);
1027 src_ptl = pte_lockptr(src_mm, src_pmd);
1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029 orig_src_pte = src_pte;
1030 orig_dst_pte = dst_pte;
1031 arch_enter_lazy_mmu_mode();
1032
1033 do {
1034 /*
1035 * We are holding two locks at this point - either of them
1036 * could generate latencies in another task on another CPU.
1037 */
1038 if (progress >= 32) {
1039 progress = 0;
1040 if (need_resched() ||
1041 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042 break;
1043 }
1044 if (pte_none(*src_pte)) {
1045 progress++;
1046 continue;
1047 }
1048 if (unlikely(!pte_present(*src_pte))) {
1049 ret = copy_nonpresent_pte(dst_mm, src_mm,
1050 dst_pte, src_pte,
1051 dst_vma, src_vma,
1052 addr, rss);
1053 if (ret == -EIO) {
1054 entry = pte_to_swp_entry(*src_pte);
1055 break;
1056 } else if (ret == -EBUSY) {
1057 break;
1058 } else if (!ret) {
1059 progress += 8;
1060 continue;
1061 }
1062
1063 /*
1064 * Device exclusive entry restored, continue by copying
1065 * the now present pte.
1066 */
1067 WARN_ON_ONCE(ret != -ENOENT);
1068 }
1069 /* copy_present_pte() will clear `*prealloc' if consumed */
1070 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071 addr, rss, &prealloc);
1072 /*
1073 * If we need a pre-allocated page for this pte, drop the
1074 * locks, allocate, and try again.
1075 */
1076 if (unlikely(ret == -EAGAIN))
1077 break;
1078 if (unlikely(prealloc)) {
1079 /*
1080 * pre-alloc page cannot be reused by next time so as
1081 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082 * will allocate page according to address). This
1083 * could only happen if one pinned pte changed.
1084 */
1085 put_page(prealloc);
1086 prealloc = NULL;
1087 }
1088 progress += 8;
1089 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090
1091 arch_leave_lazy_mmu_mode();
1092 spin_unlock(src_ptl);
1093 pte_unmap(orig_src_pte);
1094 add_mm_rss_vec(dst_mm, rss);
1095 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096 cond_resched();
1097
1098 if (ret == -EIO) {
1099 VM_WARN_ON_ONCE(!entry.val);
1100 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104 entry.val = 0;
1105 } else if (ret == -EBUSY) {
1106 goto out;
1107 } else if (ret == -EAGAIN) {
1108 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109 if (!prealloc)
1110 return -ENOMEM;
1111 } else if (ret) {
1112 VM_WARN_ON_ONCE(1);
1113 }
1114
1115 /* We've captured and resolved the error. Reset, try again. */
1116 ret = 0;
1117
1118 if (addr != end)
1119 goto again;
1120 out:
1121 if (unlikely(prealloc))
1122 put_page(prealloc);
1123 return ret;
1124 }
1125
1126 static inline int
1127 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129 unsigned long end)
1130 {
1131 struct mm_struct *dst_mm = dst_vma->vm_mm;
1132 struct mm_struct *src_mm = src_vma->vm_mm;
1133 pmd_t *src_pmd, *dst_pmd;
1134 unsigned long next;
1135
1136 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137 if (!dst_pmd)
1138 return -ENOMEM;
1139 src_pmd = pmd_offset(src_pud, addr);
1140 do {
1141 next = pmd_addr_end(addr, end);
1142 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143 || pmd_devmap(*src_pmd)) {
1144 int err;
1145 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147 addr, dst_vma, src_vma);
1148 if (err == -ENOMEM)
1149 return -ENOMEM;
1150 if (!err)
1151 continue;
1152 /* fall through */
1153 }
1154 if (pmd_none_or_clear_bad(src_pmd))
1155 continue;
1156 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157 addr, next))
1158 return -ENOMEM;
1159 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160 return 0;
1161 }
1162
1163 static inline int
1164 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166 unsigned long end)
1167 {
1168 struct mm_struct *dst_mm = dst_vma->vm_mm;
1169 struct mm_struct *src_mm = src_vma->vm_mm;
1170 pud_t *src_pud, *dst_pud;
1171 unsigned long next;
1172
1173 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174 if (!dst_pud)
1175 return -ENOMEM;
1176 src_pud = pud_offset(src_p4d, addr);
1177 do {
1178 next = pud_addr_end(addr, end);
1179 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180 int err;
1181
1182 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183 err = copy_huge_pud(dst_mm, src_mm,
1184 dst_pud, src_pud, addr, src_vma);
1185 if (err == -ENOMEM)
1186 return -ENOMEM;
1187 if (!err)
1188 continue;
1189 /* fall through */
1190 }
1191 if (pud_none_or_clear_bad(src_pud))
1192 continue;
1193 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194 addr, next))
1195 return -ENOMEM;
1196 } while (dst_pud++, src_pud++, addr = next, addr != end);
1197 return 0;
1198 }
1199
1200 static inline int
1201 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203 unsigned long end)
1204 {
1205 struct mm_struct *dst_mm = dst_vma->vm_mm;
1206 p4d_t *src_p4d, *dst_p4d;
1207 unsigned long next;
1208
1209 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210 if (!dst_p4d)
1211 return -ENOMEM;
1212 src_p4d = p4d_offset(src_pgd, addr);
1213 do {
1214 next = p4d_addr_end(addr, end);
1215 if (p4d_none_or_clear_bad(src_p4d))
1216 continue;
1217 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218 addr, next))
1219 return -ENOMEM;
1220 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221 return 0;
1222 }
1223
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227 pgd_t *src_pgd, *dst_pgd;
1228 unsigned long next;
1229 unsigned long addr = src_vma->vm_start;
1230 unsigned long end = src_vma->vm_end;
1231 struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 struct mm_struct *src_mm = src_vma->vm_mm;
1233 struct mmu_notifier_range range;
1234 bool is_cow;
1235 int ret;
1236
1237 /*
1238 * Don't copy ptes where a page fault will fill them correctly.
1239 * Fork becomes much lighter when there are big shared or private
1240 * readonly mappings. The tradeoff is that copy_page_range is more
1241 * efficient than faulting.
1242 */
1243 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244 !src_vma->anon_vma)
1245 return 0;
1246
1247 if (is_vm_hugetlb_page(src_vma))
1248 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249
1250 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251 /*
1252 * We do not free on error cases below as remove_vma
1253 * gets called on error from higher level routine
1254 */
1255 ret = track_pfn_copy(src_vma);
1256 if (ret)
1257 return ret;
1258 }
1259
1260 /*
1261 * We need to invalidate the secondary MMU mappings only when
1262 * there could be a permission downgrade on the ptes of the
1263 * parent mm. And a permission downgrade will only happen if
1264 * is_cow_mapping() returns true.
1265 */
1266 is_cow = is_cow_mapping(src_vma->vm_flags);
1267
1268 if (is_cow) {
1269 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270 0, src_vma, src_mm, addr, end);
1271 mmu_notifier_invalidate_range_start(&range);
1272 /*
1273 * Disabling preemption is not needed for the write side, as
1274 * the read side doesn't spin, but goes to the mmap_lock.
1275 *
1276 * Use the raw variant of the seqcount_t write API to avoid
1277 * lockdep complaining about preemptibility.
1278 */
1279 mmap_assert_write_locked(src_mm);
1280 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281 }
1282
1283 ret = 0;
1284 dst_pgd = pgd_offset(dst_mm, addr);
1285 src_pgd = pgd_offset(src_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(src_pgd))
1289 continue;
1290 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291 addr, next))) {
1292 ret = -ENOMEM;
1293 break;
1294 }
1295 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296
1297 if (is_cow) {
1298 raw_write_seqcount_end(&src_mm->write_protect_seq);
1299 mmu_notifier_invalidate_range_end(&range);
1300 }
1301 return ret;
1302 }
1303
1304 /* Whether we should zap all COWed (private) pages too */
1305 static inline bool should_zap_cows(struct zap_details *details)
1306 {
1307 /* By default, zap all pages */
1308 if (!details)
1309 return true;
1310
1311 /* Or, we zap COWed pages only if the caller wants to */
1312 return !details->check_mapping;
1313 }
1314
1315 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1316 struct vm_area_struct *vma, pmd_t *pmd,
1317 unsigned long addr, unsigned long end,
1318 struct zap_details *details)
1319 {
1320 struct mm_struct *mm = tlb->mm;
1321 int force_flush = 0;
1322 int rss[NR_MM_COUNTERS];
1323 spinlock_t *ptl;
1324 pte_t *start_pte;
1325 pte_t *pte;
1326 swp_entry_t entry;
1327
1328 tlb_change_page_size(tlb, PAGE_SIZE);
1329 again:
1330 init_rss_vec(rss);
1331 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1332 pte = start_pte;
1333 flush_tlb_batched_pending(mm);
1334 arch_enter_lazy_mmu_mode();
1335 do {
1336 pte_t ptent = *pte;
1337 if (pte_none(ptent))
1338 continue;
1339
1340 if (need_resched())
1341 break;
1342
1343 if (pte_present(ptent)) {
1344 struct page *page;
1345
1346 page = vm_normal_page(vma, addr, ptent);
1347 if (unlikely(details) && page) {
1348 /*
1349 * unmap_shared_mapping_pages() wants to
1350 * invalidate cache without truncating:
1351 * unmap shared but keep private pages.
1352 */
1353 if (details->check_mapping &&
1354 details->check_mapping != page_rmapping(page))
1355 continue;
1356 }
1357 ptent = ptep_get_and_clear_full(mm, addr, pte,
1358 tlb->fullmm);
1359 tlb_remove_tlb_entry(tlb, pte, addr);
1360 if (unlikely(!page))
1361 continue;
1362
1363 if (!PageAnon(page)) {
1364 if (pte_dirty(ptent)) {
1365 force_flush = 1;
1366 set_page_dirty(page);
1367 }
1368 if (pte_young(ptent) &&
1369 likely(!(vma->vm_flags & VM_SEQ_READ)))
1370 mark_page_accessed(page);
1371 }
1372 rss[mm_counter(page)]--;
1373 page_remove_rmap(page, false);
1374 if (unlikely(page_mapcount(page) < 0))
1375 print_bad_pte(vma, addr, ptent, page);
1376 if (unlikely(__tlb_remove_page(tlb, page))) {
1377 force_flush = 1;
1378 addr += PAGE_SIZE;
1379 break;
1380 }
1381 continue;
1382 }
1383
1384 entry = pte_to_swp_entry(ptent);
1385 if (is_device_private_entry(entry) ||
1386 is_device_exclusive_entry(entry)) {
1387 struct page *page = pfn_swap_entry_to_page(entry);
1388
1389 if (unlikely(details && details->check_mapping)) {
1390 /*
1391 * unmap_shared_mapping_pages() wants to
1392 * invalidate cache without truncating:
1393 * unmap shared but keep private pages.
1394 */
1395 if (details->check_mapping !=
1396 page_rmapping(page))
1397 continue;
1398 }
1399
1400 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1401 rss[mm_counter(page)]--;
1402
1403 if (is_device_private_entry(entry))
1404 page_remove_rmap(page, false);
1405
1406 put_page(page);
1407 continue;
1408 }
1409
1410 if (!non_swap_entry(entry)) {
1411 /* Genuine swap entry, hence a private anon page */
1412 if (!should_zap_cows(details))
1413 continue;
1414 rss[MM_SWAPENTS]--;
1415 } else if (is_migration_entry(entry)) {
1416 struct page *page;
1417
1418 page = pfn_swap_entry_to_page(entry);
1419 if (details && details->check_mapping &&
1420 details->check_mapping != page_rmapping(page))
1421 continue;
1422 rss[mm_counter(page)]--;
1423 }
1424 if (unlikely(!free_swap_and_cache(entry)))
1425 print_bad_pte(vma, addr, ptent, NULL);
1426 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1427 } while (pte++, addr += PAGE_SIZE, addr != end);
1428
1429 add_mm_rss_vec(mm, rss);
1430 arch_leave_lazy_mmu_mode();
1431
1432 /* Do the actual TLB flush before dropping ptl */
1433 if (force_flush)
1434 tlb_flush_mmu_tlbonly(tlb);
1435 pte_unmap_unlock(start_pte, ptl);
1436
1437 /*
1438 * If we forced a TLB flush (either due to running out of
1439 * batch buffers or because we needed to flush dirty TLB
1440 * entries before releasing the ptl), free the batched
1441 * memory too. Restart if we didn't do everything.
1442 */
1443 if (force_flush) {
1444 force_flush = 0;
1445 tlb_flush_mmu(tlb);
1446 }
1447
1448 if (addr != end) {
1449 cond_resched();
1450 goto again;
1451 }
1452
1453 return addr;
1454 }
1455
1456 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1457 struct vm_area_struct *vma, pud_t *pud,
1458 unsigned long addr, unsigned long end,
1459 struct zap_details *details)
1460 {
1461 pmd_t *pmd;
1462 unsigned long next;
1463
1464 pmd = pmd_offset(pud, addr);
1465 do {
1466 next = pmd_addr_end(addr, end);
1467 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1468 if (next - addr != HPAGE_PMD_SIZE)
1469 __split_huge_pmd(vma, pmd, addr, false, NULL);
1470 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1471 goto next;
1472 /* fall through */
1473 } else if (details && details->single_page &&
1474 PageTransCompound(details->single_page) &&
1475 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1476 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1477 /*
1478 * Take and drop THP pmd lock so that we cannot return
1479 * prematurely, while zap_huge_pmd() has cleared *pmd,
1480 * but not yet decremented compound_mapcount().
1481 */
1482 spin_unlock(ptl);
1483 }
1484
1485 /*
1486 * Here there can be other concurrent MADV_DONTNEED or
1487 * trans huge page faults running, and if the pmd is
1488 * none or trans huge it can change under us. This is
1489 * because MADV_DONTNEED holds the mmap_lock in read
1490 * mode.
1491 */
1492 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1493 goto next;
1494 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1495 next:
1496 cond_resched();
1497 } while (pmd++, addr = next, addr != end);
1498
1499 return addr;
1500 }
1501
1502 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1503 struct vm_area_struct *vma, p4d_t *p4d,
1504 unsigned long addr, unsigned long end,
1505 struct zap_details *details)
1506 {
1507 pud_t *pud;
1508 unsigned long next;
1509
1510 pud = pud_offset(p4d, addr);
1511 do {
1512 next = pud_addr_end(addr, end);
1513 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1514 if (next - addr != HPAGE_PUD_SIZE) {
1515 mmap_assert_locked(tlb->mm);
1516 split_huge_pud(vma, pud, addr);
1517 } else if (zap_huge_pud(tlb, vma, pud, addr))
1518 goto next;
1519 /* fall through */
1520 }
1521 if (pud_none_or_clear_bad(pud))
1522 continue;
1523 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1524 next:
1525 cond_resched();
1526 } while (pud++, addr = next, addr != end);
1527
1528 return addr;
1529 }
1530
1531 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1532 struct vm_area_struct *vma, pgd_t *pgd,
1533 unsigned long addr, unsigned long end,
1534 struct zap_details *details)
1535 {
1536 p4d_t *p4d;
1537 unsigned long next;
1538
1539 p4d = p4d_offset(pgd, addr);
1540 do {
1541 next = p4d_addr_end(addr, end);
1542 if (p4d_none_or_clear_bad(p4d))
1543 continue;
1544 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1545 } while (p4d++, addr = next, addr != end);
1546
1547 return addr;
1548 }
1549
1550 void unmap_page_range(struct mmu_gather *tlb,
1551 struct vm_area_struct *vma,
1552 unsigned long addr, unsigned long end,
1553 struct zap_details *details)
1554 {
1555 pgd_t *pgd;
1556 unsigned long next;
1557
1558 BUG_ON(addr >= end);
1559 tlb_start_vma(tlb, vma);
1560 pgd = pgd_offset(vma->vm_mm, addr);
1561 do {
1562 next = pgd_addr_end(addr, end);
1563 if (pgd_none_or_clear_bad(pgd))
1564 continue;
1565 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1566 } while (pgd++, addr = next, addr != end);
1567 tlb_end_vma(tlb, vma);
1568 }
1569
1570
1571 static void unmap_single_vma(struct mmu_gather *tlb,
1572 struct vm_area_struct *vma, unsigned long start_addr,
1573 unsigned long end_addr,
1574 struct zap_details *details)
1575 {
1576 unsigned long start = max(vma->vm_start, start_addr);
1577 unsigned long end;
1578
1579 if (start >= vma->vm_end)
1580 return;
1581 end = min(vma->vm_end, end_addr);
1582 if (end <= vma->vm_start)
1583 return;
1584
1585 if (vma->vm_file)
1586 uprobe_munmap(vma, start, end);
1587
1588 if (unlikely(vma->vm_flags & VM_PFNMAP))
1589 untrack_pfn(vma, 0, 0);
1590
1591 if (start != end) {
1592 if (unlikely(is_vm_hugetlb_page(vma))) {
1593 /*
1594 * It is undesirable to test vma->vm_file as it
1595 * should be non-null for valid hugetlb area.
1596 * However, vm_file will be NULL in the error
1597 * cleanup path of mmap_region. When
1598 * hugetlbfs ->mmap method fails,
1599 * mmap_region() nullifies vma->vm_file
1600 * before calling this function to clean up.
1601 * Since no pte has actually been setup, it is
1602 * safe to do nothing in this case.
1603 */
1604 if (vma->vm_file) {
1605 i_mmap_lock_write(vma->vm_file->f_mapping);
1606 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1607 i_mmap_unlock_write(vma->vm_file->f_mapping);
1608 }
1609 } else
1610 unmap_page_range(tlb, vma, start, end, details);
1611 }
1612 }
1613
1614 /**
1615 * unmap_vmas - unmap a range of memory covered by a list of vma's
1616 * @tlb: address of the caller's struct mmu_gather
1617 * @vma: the starting vma
1618 * @start_addr: virtual address at which to start unmapping
1619 * @end_addr: virtual address at which to end unmapping
1620 *
1621 * Unmap all pages in the vma list.
1622 *
1623 * Only addresses between `start' and `end' will be unmapped.
1624 *
1625 * The VMA list must be sorted in ascending virtual address order.
1626 *
1627 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1628 * range after unmap_vmas() returns. So the only responsibility here is to
1629 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1630 * drops the lock and schedules.
1631 */
1632 void unmap_vmas(struct mmu_gather *tlb,
1633 struct vm_area_struct *vma, unsigned long start_addr,
1634 unsigned long end_addr)
1635 {
1636 struct mmu_notifier_range range;
1637
1638 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1639 start_addr, end_addr);
1640 mmu_notifier_invalidate_range_start(&range);
1641 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1642 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1643 mmu_notifier_invalidate_range_end(&range);
1644 }
1645
1646 /**
1647 * zap_page_range - remove user pages in a given range
1648 * @vma: vm_area_struct holding the applicable pages
1649 * @start: starting address of pages to zap
1650 * @size: number of bytes to zap
1651 *
1652 * Caller must protect the VMA list
1653 */
1654 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1655 unsigned long size)
1656 {
1657 struct mmu_notifier_range range;
1658 struct mmu_gather tlb;
1659
1660 lru_add_drain();
1661 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662 start, start + size);
1663 tlb_gather_mmu(&tlb, vma->vm_mm);
1664 update_hiwater_rss(vma->vm_mm);
1665 mmu_notifier_invalidate_range_start(&range);
1666 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1667 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1668 mmu_notifier_invalidate_range_end(&range);
1669 tlb_finish_mmu(&tlb);
1670 }
1671 EXPORT_SYMBOL(zap_page_range);
1672
1673 /**
1674 * zap_page_range_single - remove user pages in a given range
1675 * @vma: vm_area_struct holding the applicable pages
1676 * @address: starting address of pages to zap
1677 * @size: number of bytes to zap
1678 * @details: details of shared cache invalidation
1679 *
1680 * The range must fit into one VMA.
1681 */
1682 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1683 unsigned long size, struct zap_details *details)
1684 {
1685 struct mmu_notifier_range range;
1686 struct mmu_gather tlb;
1687
1688 lru_add_drain();
1689 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1690 address, address + size);
1691 tlb_gather_mmu(&tlb, vma->vm_mm);
1692 update_hiwater_rss(vma->vm_mm);
1693 mmu_notifier_invalidate_range_start(&range);
1694 unmap_single_vma(&tlb, vma, address, range.end, details);
1695 mmu_notifier_invalidate_range_end(&range);
1696 tlb_finish_mmu(&tlb);
1697 }
1698
1699 /**
1700 * zap_vma_ptes - remove ptes mapping the vma
1701 * @vma: vm_area_struct holding ptes to be zapped
1702 * @address: starting address of pages to zap
1703 * @size: number of bytes to zap
1704 *
1705 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1706 *
1707 * The entire address range must be fully contained within the vma.
1708 *
1709 */
1710 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1711 unsigned long size)
1712 {
1713 if (address < vma->vm_start || address + size > vma->vm_end ||
1714 !(vma->vm_flags & VM_PFNMAP))
1715 return;
1716
1717 zap_page_range_single(vma, address, size, NULL);
1718 }
1719 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1720
1721 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1722 {
1723 pgd_t *pgd;
1724 p4d_t *p4d;
1725 pud_t *pud;
1726 pmd_t *pmd;
1727
1728 pgd = pgd_offset(mm, addr);
1729 p4d = p4d_alloc(mm, pgd, addr);
1730 if (!p4d)
1731 return NULL;
1732 pud = pud_alloc(mm, p4d, addr);
1733 if (!pud)
1734 return NULL;
1735 pmd = pmd_alloc(mm, pud, addr);
1736 if (!pmd)
1737 return NULL;
1738
1739 VM_BUG_ON(pmd_trans_huge(*pmd));
1740 return pmd;
1741 }
1742
1743 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1744 spinlock_t **ptl)
1745 {
1746 pmd_t *pmd = walk_to_pmd(mm, addr);
1747
1748 if (!pmd)
1749 return NULL;
1750 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1751 }
1752
1753 static int validate_page_before_insert(struct page *page)
1754 {
1755 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1756 return -EINVAL;
1757 flush_dcache_page(page);
1758 return 0;
1759 }
1760
1761 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1762 unsigned long addr, struct page *page, pgprot_t prot)
1763 {
1764 if (!pte_none(*pte))
1765 return -EBUSY;
1766 /* Ok, finally just insert the thing.. */
1767 get_page(page);
1768 inc_mm_counter_fast(mm, mm_counter_file(page));
1769 page_add_file_rmap(page, false);
1770 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1771 return 0;
1772 }
1773
1774 /*
1775 * This is the old fallback for page remapping.
1776 *
1777 * For historical reasons, it only allows reserved pages. Only
1778 * old drivers should use this, and they needed to mark their
1779 * pages reserved for the old functions anyway.
1780 */
1781 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1782 struct page *page, pgprot_t prot)
1783 {
1784 struct mm_struct *mm = vma->vm_mm;
1785 int retval;
1786 pte_t *pte;
1787 spinlock_t *ptl;
1788
1789 retval = validate_page_before_insert(page);
1790 if (retval)
1791 goto out;
1792 retval = -ENOMEM;
1793 pte = get_locked_pte(mm, addr, &ptl);
1794 if (!pte)
1795 goto out;
1796 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1797 pte_unmap_unlock(pte, ptl);
1798 out:
1799 return retval;
1800 }
1801
1802 #ifdef pte_index
1803 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1804 unsigned long addr, struct page *page, pgprot_t prot)
1805 {
1806 int err;
1807
1808 if (!page_count(page))
1809 return -EINVAL;
1810 err = validate_page_before_insert(page);
1811 if (err)
1812 return err;
1813 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1814 }
1815
1816 /* insert_pages() amortizes the cost of spinlock operations
1817 * when inserting pages in a loop. Arch *must* define pte_index.
1818 */
1819 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1820 struct page **pages, unsigned long *num, pgprot_t prot)
1821 {
1822 pmd_t *pmd = NULL;
1823 pte_t *start_pte, *pte;
1824 spinlock_t *pte_lock;
1825 struct mm_struct *const mm = vma->vm_mm;
1826 unsigned long curr_page_idx = 0;
1827 unsigned long remaining_pages_total = *num;
1828 unsigned long pages_to_write_in_pmd;
1829 int ret;
1830 more:
1831 ret = -EFAULT;
1832 pmd = walk_to_pmd(mm, addr);
1833 if (!pmd)
1834 goto out;
1835
1836 pages_to_write_in_pmd = min_t(unsigned long,
1837 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1838
1839 /* Allocate the PTE if necessary; takes PMD lock once only. */
1840 ret = -ENOMEM;
1841 if (pte_alloc(mm, pmd))
1842 goto out;
1843
1844 while (pages_to_write_in_pmd) {
1845 int pte_idx = 0;
1846 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1847
1848 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1849 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1850 int err = insert_page_in_batch_locked(mm, pte,
1851 addr, pages[curr_page_idx], prot);
1852 if (unlikely(err)) {
1853 pte_unmap_unlock(start_pte, pte_lock);
1854 ret = err;
1855 remaining_pages_total -= pte_idx;
1856 goto out;
1857 }
1858 addr += PAGE_SIZE;
1859 ++curr_page_idx;
1860 }
1861 pte_unmap_unlock(start_pte, pte_lock);
1862 pages_to_write_in_pmd -= batch_size;
1863 remaining_pages_total -= batch_size;
1864 }
1865 if (remaining_pages_total)
1866 goto more;
1867 ret = 0;
1868 out:
1869 *num = remaining_pages_total;
1870 return ret;
1871 }
1872 #endif /* ifdef pte_index */
1873
1874 /**
1875 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1876 * @vma: user vma to map to
1877 * @addr: target start user address of these pages
1878 * @pages: source kernel pages
1879 * @num: in: number of pages to map. out: number of pages that were *not*
1880 * mapped. (0 means all pages were successfully mapped).
1881 *
1882 * Preferred over vm_insert_page() when inserting multiple pages.
1883 *
1884 * In case of error, we may have mapped a subset of the provided
1885 * pages. It is the caller's responsibility to account for this case.
1886 *
1887 * The same restrictions apply as in vm_insert_page().
1888 */
1889 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 struct page **pages, unsigned long *num)
1891 {
1892 #ifdef pte_index
1893 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1894
1895 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1896 return -EFAULT;
1897 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1898 BUG_ON(mmap_read_trylock(vma->vm_mm));
1899 BUG_ON(vma->vm_flags & VM_PFNMAP);
1900 vma->vm_flags |= VM_MIXEDMAP;
1901 }
1902 /* Defer page refcount checking till we're about to map that page. */
1903 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1904 #else
1905 unsigned long idx = 0, pgcount = *num;
1906 int err = -EINVAL;
1907
1908 for (; idx < pgcount; ++idx) {
1909 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1910 if (err)
1911 break;
1912 }
1913 *num = pgcount - idx;
1914 return err;
1915 #endif /* ifdef pte_index */
1916 }
1917 EXPORT_SYMBOL(vm_insert_pages);
1918
1919 /**
1920 * vm_insert_page - insert single page into user vma
1921 * @vma: user vma to map to
1922 * @addr: target user address of this page
1923 * @page: source kernel page
1924 *
1925 * This allows drivers to insert individual pages they've allocated
1926 * into a user vma.
1927 *
1928 * The page has to be a nice clean _individual_ kernel allocation.
1929 * If you allocate a compound page, you need to have marked it as
1930 * such (__GFP_COMP), or manually just split the page up yourself
1931 * (see split_page()).
1932 *
1933 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1934 * took an arbitrary page protection parameter. This doesn't allow
1935 * that. Your vma protection will have to be set up correctly, which
1936 * means that if you want a shared writable mapping, you'd better
1937 * ask for a shared writable mapping!
1938 *
1939 * The page does not need to be reserved.
1940 *
1941 * Usually this function is called from f_op->mmap() handler
1942 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1943 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1944 * function from other places, for example from page-fault handler.
1945 *
1946 * Return: %0 on success, negative error code otherwise.
1947 */
1948 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1949 struct page *page)
1950 {
1951 if (addr < vma->vm_start || addr >= vma->vm_end)
1952 return -EFAULT;
1953 if (!page_count(page))
1954 return -EINVAL;
1955 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1956 BUG_ON(mmap_read_trylock(vma->vm_mm));
1957 BUG_ON(vma->vm_flags & VM_PFNMAP);
1958 vma->vm_flags |= VM_MIXEDMAP;
1959 }
1960 return insert_page(vma, addr, page, vma->vm_page_prot);
1961 }
1962 EXPORT_SYMBOL(vm_insert_page);
1963
1964 /*
1965 * __vm_map_pages - maps range of kernel pages into user vma
1966 * @vma: user vma to map to
1967 * @pages: pointer to array of source kernel pages
1968 * @num: number of pages in page array
1969 * @offset: user's requested vm_pgoff
1970 *
1971 * This allows drivers to map range of kernel pages into a user vma.
1972 *
1973 * Return: 0 on success and error code otherwise.
1974 */
1975 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1976 unsigned long num, unsigned long offset)
1977 {
1978 unsigned long count = vma_pages(vma);
1979 unsigned long uaddr = vma->vm_start;
1980 int ret, i;
1981
1982 /* Fail if the user requested offset is beyond the end of the object */
1983 if (offset >= num)
1984 return -ENXIO;
1985
1986 /* Fail if the user requested size exceeds available object size */
1987 if (count > num - offset)
1988 return -ENXIO;
1989
1990 for (i = 0; i < count; i++) {
1991 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1992 if (ret < 0)
1993 return ret;
1994 uaddr += PAGE_SIZE;
1995 }
1996
1997 return 0;
1998 }
1999
2000 /**
2001 * vm_map_pages - maps range of kernel pages starts with non zero offset
2002 * @vma: user vma to map to
2003 * @pages: pointer to array of source kernel pages
2004 * @num: number of pages in page array
2005 *
2006 * Maps an object consisting of @num pages, catering for the user's
2007 * requested vm_pgoff
2008 *
2009 * If we fail to insert any page into the vma, the function will return
2010 * immediately leaving any previously inserted pages present. Callers
2011 * from the mmap handler may immediately return the error as their caller
2012 * will destroy the vma, removing any successfully inserted pages. Other
2013 * callers should make their own arrangements for calling unmap_region().
2014 *
2015 * Context: Process context. Called by mmap handlers.
2016 * Return: 0 on success and error code otherwise.
2017 */
2018 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2019 unsigned long num)
2020 {
2021 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2022 }
2023 EXPORT_SYMBOL(vm_map_pages);
2024
2025 /**
2026 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2027 * @vma: user vma to map to
2028 * @pages: pointer to array of source kernel pages
2029 * @num: number of pages in page array
2030 *
2031 * Similar to vm_map_pages(), except that it explicitly sets the offset
2032 * to 0. This function is intended for the drivers that did not consider
2033 * vm_pgoff.
2034 *
2035 * Context: Process context. Called by mmap handlers.
2036 * Return: 0 on success and error code otherwise.
2037 */
2038 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2039 unsigned long num)
2040 {
2041 return __vm_map_pages(vma, pages, num, 0);
2042 }
2043 EXPORT_SYMBOL(vm_map_pages_zero);
2044
2045 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2046 pfn_t pfn, pgprot_t prot, bool mkwrite)
2047 {
2048 struct mm_struct *mm = vma->vm_mm;
2049 pte_t *pte, entry;
2050 spinlock_t *ptl;
2051
2052 pte = get_locked_pte(mm, addr, &ptl);
2053 if (!pte)
2054 return VM_FAULT_OOM;
2055 if (!pte_none(*pte)) {
2056 if (mkwrite) {
2057 /*
2058 * For read faults on private mappings the PFN passed
2059 * in may not match the PFN we have mapped if the
2060 * mapped PFN is a writeable COW page. In the mkwrite
2061 * case we are creating a writable PTE for a shared
2062 * mapping and we expect the PFNs to match. If they
2063 * don't match, we are likely racing with block
2064 * allocation and mapping invalidation so just skip the
2065 * update.
2066 */
2067 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2068 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2069 goto out_unlock;
2070 }
2071 entry = pte_mkyoung(*pte);
2072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2073 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2074 update_mmu_cache(vma, addr, pte);
2075 }
2076 goto out_unlock;
2077 }
2078
2079 /* Ok, finally just insert the thing.. */
2080 if (pfn_t_devmap(pfn))
2081 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2082 else
2083 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2084
2085 if (mkwrite) {
2086 entry = pte_mkyoung(entry);
2087 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2088 }
2089
2090 set_pte_at(mm, addr, pte, entry);
2091 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2092
2093 out_unlock:
2094 pte_unmap_unlock(pte, ptl);
2095 return VM_FAULT_NOPAGE;
2096 }
2097
2098 /**
2099 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2100 * @vma: user vma to map to
2101 * @addr: target user address of this page
2102 * @pfn: source kernel pfn
2103 * @pgprot: pgprot flags for the inserted page
2104 *
2105 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2106 * to override pgprot on a per-page basis.
2107 *
2108 * This only makes sense for IO mappings, and it makes no sense for
2109 * COW mappings. In general, using multiple vmas is preferable;
2110 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2111 * impractical.
2112 *
2113 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2114 * a value of @pgprot different from that of @vma->vm_page_prot.
2115 *
2116 * Context: Process context. May allocate using %GFP_KERNEL.
2117 * Return: vm_fault_t value.
2118 */
2119 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2120 unsigned long pfn, pgprot_t pgprot)
2121 {
2122 /*
2123 * Technically, architectures with pte_special can avoid all these
2124 * restrictions (same for remap_pfn_range). However we would like
2125 * consistency in testing and feature parity among all, so we should
2126 * try to keep these invariants in place for everybody.
2127 */
2128 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2129 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2130 (VM_PFNMAP|VM_MIXEDMAP));
2131 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2132 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2133
2134 if (addr < vma->vm_start || addr >= vma->vm_end)
2135 return VM_FAULT_SIGBUS;
2136
2137 if (!pfn_modify_allowed(pfn, pgprot))
2138 return VM_FAULT_SIGBUS;
2139
2140 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2141
2142 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2143 false);
2144 }
2145 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2146
2147 /**
2148 * vmf_insert_pfn - insert single pfn into user vma
2149 * @vma: user vma to map to
2150 * @addr: target user address of this page
2151 * @pfn: source kernel pfn
2152 *
2153 * Similar to vm_insert_page, this allows drivers to insert individual pages
2154 * they've allocated into a user vma. Same comments apply.
2155 *
2156 * This function should only be called from a vm_ops->fault handler, and
2157 * in that case the handler should return the result of this function.
2158 *
2159 * vma cannot be a COW mapping.
2160 *
2161 * As this is called only for pages that do not currently exist, we
2162 * do not need to flush old virtual caches or the TLB.
2163 *
2164 * Context: Process context. May allocate using %GFP_KERNEL.
2165 * Return: vm_fault_t value.
2166 */
2167 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2168 unsigned long pfn)
2169 {
2170 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2171 }
2172 EXPORT_SYMBOL(vmf_insert_pfn);
2173
2174 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2175 {
2176 /* these checks mirror the abort conditions in vm_normal_page */
2177 if (vma->vm_flags & VM_MIXEDMAP)
2178 return true;
2179 if (pfn_t_devmap(pfn))
2180 return true;
2181 if (pfn_t_special(pfn))
2182 return true;
2183 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2184 return true;
2185 return false;
2186 }
2187
2188 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2189 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2190 bool mkwrite)
2191 {
2192 int err;
2193
2194 BUG_ON(!vm_mixed_ok(vma, pfn));
2195
2196 if (addr < vma->vm_start || addr >= vma->vm_end)
2197 return VM_FAULT_SIGBUS;
2198
2199 track_pfn_insert(vma, &pgprot, pfn);
2200
2201 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2202 return VM_FAULT_SIGBUS;
2203
2204 /*
2205 * If we don't have pte special, then we have to use the pfn_valid()
2206 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2207 * refcount the page if pfn_valid is true (hence insert_page rather
2208 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2209 * without pte special, it would there be refcounted as a normal page.
2210 */
2211 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2212 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2213 struct page *page;
2214
2215 /*
2216 * At this point we are committed to insert_page()
2217 * regardless of whether the caller specified flags that
2218 * result in pfn_t_has_page() == false.
2219 */
2220 page = pfn_to_page(pfn_t_to_pfn(pfn));
2221 err = insert_page(vma, addr, page, pgprot);
2222 } else {
2223 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2224 }
2225
2226 if (err == -ENOMEM)
2227 return VM_FAULT_OOM;
2228 if (err < 0 && err != -EBUSY)
2229 return VM_FAULT_SIGBUS;
2230
2231 return VM_FAULT_NOPAGE;
2232 }
2233
2234 /**
2235 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2236 * @vma: user vma to map to
2237 * @addr: target user address of this page
2238 * @pfn: source kernel pfn
2239 * @pgprot: pgprot flags for the inserted page
2240 *
2241 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2242 * to override pgprot on a per-page basis.
2243 *
2244 * Typically this function should be used by drivers to set caching- and
2245 * encryption bits different than those of @vma->vm_page_prot, because
2246 * the caching- or encryption mode may not be known at mmap() time.
2247 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2248 * to set caching and encryption bits for those vmas (except for COW pages).
2249 * This is ensured by core vm only modifying these page table entries using
2250 * functions that don't touch caching- or encryption bits, using pte_modify()
2251 * if needed. (See for example mprotect()).
2252 * Also when new page-table entries are created, this is only done using the
2253 * fault() callback, and never using the value of vma->vm_page_prot,
2254 * except for page-table entries that point to anonymous pages as the result
2255 * of COW.
2256 *
2257 * Context: Process context. May allocate using %GFP_KERNEL.
2258 * Return: vm_fault_t value.
2259 */
2260 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2261 pfn_t pfn, pgprot_t pgprot)
2262 {
2263 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2264 }
2265 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2266
2267 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2268 pfn_t pfn)
2269 {
2270 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2271 }
2272 EXPORT_SYMBOL(vmf_insert_mixed);
2273
2274 /*
2275 * If the insertion of PTE failed because someone else already added a
2276 * different entry in the mean time, we treat that as success as we assume
2277 * the same entry was actually inserted.
2278 */
2279 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2280 unsigned long addr, pfn_t pfn)
2281 {
2282 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2283 }
2284 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2285
2286 /*
2287 * maps a range of physical memory into the requested pages. the old
2288 * mappings are removed. any references to nonexistent pages results
2289 * in null mappings (currently treated as "copy-on-access")
2290 */
2291 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2292 unsigned long addr, unsigned long end,
2293 unsigned long pfn, pgprot_t prot)
2294 {
2295 pte_t *pte, *mapped_pte;
2296 spinlock_t *ptl;
2297 int err = 0;
2298
2299 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2300 if (!pte)
2301 return -ENOMEM;
2302 arch_enter_lazy_mmu_mode();
2303 do {
2304 BUG_ON(!pte_none(*pte));
2305 if (!pfn_modify_allowed(pfn, prot)) {
2306 err = -EACCES;
2307 break;
2308 }
2309 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2310 pfn++;
2311 } while (pte++, addr += PAGE_SIZE, addr != end);
2312 arch_leave_lazy_mmu_mode();
2313 pte_unmap_unlock(mapped_pte, ptl);
2314 return err;
2315 }
2316
2317 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2318 unsigned long addr, unsigned long end,
2319 unsigned long pfn, pgprot_t prot)
2320 {
2321 pmd_t *pmd;
2322 unsigned long next;
2323 int err;
2324
2325 pfn -= addr >> PAGE_SHIFT;
2326 pmd = pmd_alloc(mm, pud, addr);
2327 if (!pmd)
2328 return -ENOMEM;
2329 VM_BUG_ON(pmd_trans_huge(*pmd));
2330 do {
2331 next = pmd_addr_end(addr, end);
2332 err = remap_pte_range(mm, pmd, addr, next,
2333 pfn + (addr >> PAGE_SHIFT), prot);
2334 if (err)
2335 return err;
2336 } while (pmd++, addr = next, addr != end);
2337 return 0;
2338 }
2339
2340 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2341 unsigned long addr, unsigned long end,
2342 unsigned long pfn, pgprot_t prot)
2343 {
2344 pud_t *pud;
2345 unsigned long next;
2346 int err;
2347
2348 pfn -= addr >> PAGE_SHIFT;
2349 pud = pud_alloc(mm, p4d, addr);
2350 if (!pud)
2351 return -ENOMEM;
2352 do {
2353 next = pud_addr_end(addr, end);
2354 err = remap_pmd_range(mm, pud, addr, next,
2355 pfn + (addr >> PAGE_SHIFT), prot);
2356 if (err)
2357 return err;
2358 } while (pud++, addr = next, addr != end);
2359 return 0;
2360 }
2361
2362 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2363 unsigned long addr, unsigned long end,
2364 unsigned long pfn, pgprot_t prot)
2365 {
2366 p4d_t *p4d;
2367 unsigned long next;
2368 int err;
2369
2370 pfn -= addr >> PAGE_SHIFT;
2371 p4d = p4d_alloc(mm, pgd, addr);
2372 if (!p4d)
2373 return -ENOMEM;
2374 do {
2375 next = p4d_addr_end(addr, end);
2376 err = remap_pud_range(mm, p4d, addr, next,
2377 pfn + (addr >> PAGE_SHIFT), prot);
2378 if (err)
2379 return err;
2380 } while (p4d++, addr = next, addr != end);
2381 return 0;
2382 }
2383
2384 /*
2385 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2386 * must have pre-validated the caching bits of the pgprot_t.
2387 */
2388 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2389 unsigned long pfn, unsigned long size, pgprot_t prot)
2390 {
2391 pgd_t *pgd;
2392 unsigned long next;
2393 unsigned long end = addr + PAGE_ALIGN(size);
2394 struct mm_struct *mm = vma->vm_mm;
2395 int err;
2396
2397 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2398 return -EINVAL;
2399
2400 /*
2401 * Physically remapped pages are special. Tell the
2402 * rest of the world about it:
2403 * VM_IO tells people not to look at these pages
2404 * (accesses can have side effects).
2405 * VM_PFNMAP tells the core MM that the base pages are just
2406 * raw PFN mappings, and do not have a "struct page" associated
2407 * with them.
2408 * VM_DONTEXPAND
2409 * Disable vma merging and expanding with mremap().
2410 * VM_DONTDUMP
2411 * Omit vma from core dump, even when VM_IO turned off.
2412 *
2413 * There's a horrible special case to handle copy-on-write
2414 * behaviour that some programs depend on. We mark the "original"
2415 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2416 * See vm_normal_page() for details.
2417 */
2418 if (is_cow_mapping(vma->vm_flags)) {
2419 if (addr != vma->vm_start || end != vma->vm_end)
2420 return -EINVAL;
2421 vma->vm_pgoff = pfn;
2422 }
2423
2424 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2425
2426 BUG_ON(addr >= end);
2427 pfn -= addr >> PAGE_SHIFT;
2428 pgd = pgd_offset(mm, addr);
2429 flush_cache_range(vma, addr, end);
2430 do {
2431 next = pgd_addr_end(addr, end);
2432 err = remap_p4d_range(mm, pgd, addr, next,
2433 pfn + (addr >> PAGE_SHIFT), prot);
2434 if (err)
2435 return err;
2436 } while (pgd++, addr = next, addr != end);
2437
2438 return 0;
2439 }
2440
2441 /**
2442 * remap_pfn_range - remap kernel memory to userspace
2443 * @vma: user vma to map to
2444 * @addr: target page aligned user address to start at
2445 * @pfn: page frame number of kernel physical memory address
2446 * @size: size of mapping area
2447 * @prot: page protection flags for this mapping
2448 *
2449 * Note: this is only safe if the mm semaphore is held when called.
2450 *
2451 * Return: %0 on success, negative error code otherwise.
2452 */
2453 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2454 unsigned long pfn, unsigned long size, pgprot_t prot)
2455 {
2456 int err;
2457
2458 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2459 if (err)
2460 return -EINVAL;
2461
2462 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2463 if (err)
2464 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2465 return err;
2466 }
2467 EXPORT_SYMBOL(remap_pfn_range);
2468
2469 /**
2470 * vm_iomap_memory - remap memory to userspace
2471 * @vma: user vma to map to
2472 * @start: start of the physical memory to be mapped
2473 * @len: size of area
2474 *
2475 * This is a simplified io_remap_pfn_range() for common driver use. The
2476 * driver just needs to give us the physical memory range to be mapped,
2477 * we'll figure out the rest from the vma information.
2478 *
2479 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2480 * whatever write-combining details or similar.
2481 *
2482 * Return: %0 on success, negative error code otherwise.
2483 */
2484 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2485 {
2486 unsigned long vm_len, pfn, pages;
2487
2488 /* Check that the physical memory area passed in looks valid */
2489 if (start + len < start)
2490 return -EINVAL;
2491 /*
2492 * You *really* shouldn't map things that aren't page-aligned,
2493 * but we've historically allowed it because IO memory might
2494 * just have smaller alignment.
2495 */
2496 len += start & ~PAGE_MASK;
2497 pfn = start >> PAGE_SHIFT;
2498 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2499 if (pfn + pages < pfn)
2500 return -EINVAL;
2501
2502 /* We start the mapping 'vm_pgoff' pages into the area */
2503 if (vma->vm_pgoff > pages)
2504 return -EINVAL;
2505 pfn += vma->vm_pgoff;
2506 pages -= vma->vm_pgoff;
2507
2508 /* Can we fit all of the mapping? */
2509 vm_len = vma->vm_end - vma->vm_start;
2510 if (vm_len >> PAGE_SHIFT > pages)
2511 return -EINVAL;
2512
2513 /* Ok, let it rip */
2514 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2515 }
2516 EXPORT_SYMBOL(vm_iomap_memory);
2517
2518 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2519 unsigned long addr, unsigned long end,
2520 pte_fn_t fn, void *data, bool create,
2521 pgtbl_mod_mask *mask)
2522 {
2523 pte_t *pte, *mapped_pte;
2524 int err = 0;
2525 spinlock_t *ptl;
2526
2527 if (create) {
2528 mapped_pte = pte = (mm == &init_mm) ?
2529 pte_alloc_kernel_track(pmd, addr, mask) :
2530 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2531 if (!pte)
2532 return -ENOMEM;
2533 } else {
2534 mapped_pte = pte = (mm == &init_mm) ?
2535 pte_offset_kernel(pmd, addr) :
2536 pte_offset_map_lock(mm, pmd, addr, &ptl);
2537 }
2538
2539 BUG_ON(pmd_huge(*pmd));
2540
2541 arch_enter_lazy_mmu_mode();
2542
2543 if (fn) {
2544 do {
2545 if (create || !pte_none(*pte)) {
2546 err = fn(pte++, addr, data);
2547 if (err)
2548 break;
2549 }
2550 } while (addr += PAGE_SIZE, addr != end);
2551 }
2552 *mask |= PGTBL_PTE_MODIFIED;
2553
2554 arch_leave_lazy_mmu_mode();
2555
2556 if (mm != &init_mm)
2557 pte_unmap_unlock(mapped_pte, ptl);
2558 return err;
2559 }
2560
2561 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2562 unsigned long addr, unsigned long end,
2563 pte_fn_t fn, void *data, bool create,
2564 pgtbl_mod_mask *mask)
2565 {
2566 pmd_t *pmd;
2567 unsigned long next;
2568 int err = 0;
2569
2570 BUG_ON(pud_huge(*pud));
2571
2572 if (create) {
2573 pmd = pmd_alloc_track(mm, pud, addr, mask);
2574 if (!pmd)
2575 return -ENOMEM;
2576 } else {
2577 pmd = pmd_offset(pud, addr);
2578 }
2579 do {
2580 next = pmd_addr_end(addr, end);
2581 if (pmd_none(*pmd) && !create)
2582 continue;
2583 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2584 return -EINVAL;
2585 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2586 if (!create)
2587 continue;
2588 pmd_clear_bad(pmd);
2589 }
2590 err = apply_to_pte_range(mm, pmd, addr, next,
2591 fn, data, create, mask);
2592 if (err)
2593 break;
2594 } while (pmd++, addr = next, addr != end);
2595
2596 return err;
2597 }
2598
2599 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2600 unsigned long addr, unsigned long end,
2601 pte_fn_t fn, void *data, bool create,
2602 pgtbl_mod_mask *mask)
2603 {
2604 pud_t *pud;
2605 unsigned long next;
2606 int err = 0;
2607
2608 if (create) {
2609 pud = pud_alloc_track(mm, p4d, addr, mask);
2610 if (!pud)
2611 return -ENOMEM;
2612 } else {
2613 pud = pud_offset(p4d, addr);
2614 }
2615 do {
2616 next = pud_addr_end(addr, end);
2617 if (pud_none(*pud) && !create)
2618 continue;
2619 if (WARN_ON_ONCE(pud_leaf(*pud)))
2620 return -EINVAL;
2621 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2622 if (!create)
2623 continue;
2624 pud_clear_bad(pud);
2625 }
2626 err = apply_to_pmd_range(mm, pud, addr, next,
2627 fn, data, create, mask);
2628 if (err)
2629 break;
2630 } while (pud++, addr = next, addr != end);
2631
2632 return err;
2633 }
2634
2635 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2636 unsigned long addr, unsigned long end,
2637 pte_fn_t fn, void *data, bool create,
2638 pgtbl_mod_mask *mask)
2639 {
2640 p4d_t *p4d;
2641 unsigned long next;
2642 int err = 0;
2643
2644 if (create) {
2645 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2646 if (!p4d)
2647 return -ENOMEM;
2648 } else {
2649 p4d = p4d_offset(pgd, addr);
2650 }
2651 do {
2652 next = p4d_addr_end(addr, end);
2653 if (p4d_none(*p4d) && !create)
2654 continue;
2655 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2656 return -EINVAL;
2657 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2658 if (!create)
2659 continue;
2660 p4d_clear_bad(p4d);
2661 }
2662 err = apply_to_pud_range(mm, p4d, addr, next,
2663 fn, data, create, mask);
2664 if (err)
2665 break;
2666 } while (p4d++, addr = next, addr != end);
2667
2668 return err;
2669 }
2670
2671 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2672 unsigned long size, pte_fn_t fn,
2673 void *data, bool create)
2674 {
2675 pgd_t *pgd;
2676 unsigned long start = addr, next;
2677 unsigned long end = addr + size;
2678 pgtbl_mod_mask mask = 0;
2679 int err = 0;
2680
2681 if (WARN_ON(addr >= end))
2682 return -EINVAL;
2683
2684 pgd = pgd_offset(mm, addr);
2685 do {
2686 next = pgd_addr_end(addr, end);
2687 if (pgd_none(*pgd) && !create)
2688 continue;
2689 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2690 return -EINVAL;
2691 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2692 if (!create)
2693 continue;
2694 pgd_clear_bad(pgd);
2695 }
2696 err = apply_to_p4d_range(mm, pgd, addr, next,
2697 fn, data, create, &mask);
2698 if (err)
2699 break;
2700 } while (pgd++, addr = next, addr != end);
2701
2702 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2703 arch_sync_kernel_mappings(start, start + size);
2704
2705 return err;
2706 }
2707
2708 /*
2709 * Scan a region of virtual memory, filling in page tables as necessary
2710 * and calling a provided function on each leaf page table.
2711 */
2712 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2713 unsigned long size, pte_fn_t fn, void *data)
2714 {
2715 return __apply_to_page_range(mm, addr, size, fn, data, true);
2716 }
2717 EXPORT_SYMBOL_GPL(apply_to_page_range);
2718
2719 /*
2720 * Scan a region of virtual memory, calling a provided function on
2721 * each leaf page table where it exists.
2722 *
2723 * Unlike apply_to_page_range, this does _not_ fill in page tables
2724 * where they are absent.
2725 */
2726 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2727 unsigned long size, pte_fn_t fn, void *data)
2728 {
2729 return __apply_to_page_range(mm, addr, size, fn, data, false);
2730 }
2731 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2732
2733 /*
2734 * handle_pte_fault chooses page fault handler according to an entry which was
2735 * read non-atomically. Before making any commitment, on those architectures
2736 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2737 * parts, do_swap_page must check under lock before unmapping the pte and
2738 * proceeding (but do_wp_page is only called after already making such a check;
2739 * and do_anonymous_page can safely check later on).
2740 */
2741 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2742 pte_t *page_table, pte_t orig_pte)
2743 {
2744 int same = 1;
2745 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2746 if (sizeof(pte_t) > sizeof(unsigned long)) {
2747 spinlock_t *ptl = pte_lockptr(mm, pmd);
2748 spin_lock(ptl);
2749 same = pte_same(*page_table, orig_pte);
2750 spin_unlock(ptl);
2751 }
2752 #endif
2753 pte_unmap(page_table);
2754 return same;
2755 }
2756
2757 static inline bool cow_user_page(struct page *dst, struct page *src,
2758 struct vm_fault *vmf)
2759 {
2760 bool ret;
2761 void *kaddr;
2762 void __user *uaddr;
2763 bool locked = false;
2764 struct vm_area_struct *vma = vmf->vma;
2765 struct mm_struct *mm = vma->vm_mm;
2766 unsigned long addr = vmf->address;
2767
2768 if (likely(src)) {
2769 copy_user_highpage(dst, src, addr, vma);
2770 return true;
2771 }
2772
2773 /*
2774 * If the source page was a PFN mapping, we don't have
2775 * a "struct page" for it. We do a best-effort copy by
2776 * just copying from the original user address. If that
2777 * fails, we just zero-fill it. Live with it.
2778 */
2779 kaddr = kmap_atomic(dst);
2780 uaddr = (void __user *)(addr & PAGE_MASK);
2781
2782 /*
2783 * On architectures with software "accessed" bits, we would
2784 * take a double page fault, so mark it accessed here.
2785 */
2786 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2787 pte_t entry;
2788
2789 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2790 locked = true;
2791 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2792 /*
2793 * Other thread has already handled the fault
2794 * and update local tlb only
2795 */
2796 update_mmu_tlb(vma, addr, vmf->pte);
2797 ret = false;
2798 goto pte_unlock;
2799 }
2800
2801 entry = pte_mkyoung(vmf->orig_pte);
2802 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2803 update_mmu_cache(vma, addr, vmf->pte);
2804 }
2805
2806 /*
2807 * This really shouldn't fail, because the page is there
2808 * in the page tables. But it might just be unreadable,
2809 * in which case we just give up and fill the result with
2810 * zeroes.
2811 */
2812 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2813 if (locked)
2814 goto warn;
2815
2816 /* Re-validate under PTL if the page is still mapped */
2817 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2818 locked = true;
2819 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2820 /* The PTE changed under us, update local tlb */
2821 update_mmu_tlb(vma, addr, vmf->pte);
2822 ret = false;
2823 goto pte_unlock;
2824 }
2825
2826 /*
2827 * The same page can be mapped back since last copy attempt.
2828 * Try to copy again under PTL.
2829 */
2830 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2831 /*
2832 * Give a warn in case there can be some obscure
2833 * use-case
2834 */
2835 warn:
2836 WARN_ON_ONCE(1);
2837 clear_page(kaddr);
2838 }
2839 }
2840
2841 ret = true;
2842
2843 pte_unlock:
2844 if (locked)
2845 pte_unmap_unlock(vmf->pte, vmf->ptl);
2846 kunmap_atomic(kaddr);
2847 flush_dcache_page(dst);
2848
2849 return ret;
2850 }
2851
2852 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2853 {
2854 struct file *vm_file = vma->vm_file;
2855
2856 if (vm_file)
2857 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2858
2859 /*
2860 * Special mappings (e.g. VDSO) do not have any file so fake
2861 * a default GFP_KERNEL for them.
2862 */
2863 return GFP_KERNEL;
2864 }
2865
2866 /*
2867 * Notify the address space that the page is about to become writable so that
2868 * it can prohibit this or wait for the page to get into an appropriate state.
2869 *
2870 * We do this without the lock held, so that it can sleep if it needs to.
2871 */
2872 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2873 {
2874 vm_fault_t ret;
2875 struct page *page = vmf->page;
2876 unsigned int old_flags = vmf->flags;
2877
2878 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2879
2880 if (vmf->vma->vm_file &&
2881 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2882 return VM_FAULT_SIGBUS;
2883
2884 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2885 /* Restore original flags so that caller is not surprised */
2886 vmf->flags = old_flags;
2887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2888 return ret;
2889 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2890 lock_page(page);
2891 if (!page->mapping) {
2892 unlock_page(page);
2893 return 0; /* retry */
2894 }
2895 ret |= VM_FAULT_LOCKED;
2896 } else
2897 VM_BUG_ON_PAGE(!PageLocked(page), page);
2898 return ret;
2899 }
2900
2901 /*
2902 * Handle dirtying of a page in shared file mapping on a write fault.
2903 *
2904 * The function expects the page to be locked and unlocks it.
2905 */
2906 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2907 {
2908 struct vm_area_struct *vma = vmf->vma;
2909 struct address_space *mapping;
2910 struct page *page = vmf->page;
2911 bool dirtied;
2912 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2913
2914 dirtied = set_page_dirty(page);
2915 VM_BUG_ON_PAGE(PageAnon(page), page);
2916 /*
2917 * Take a local copy of the address_space - page.mapping may be zeroed
2918 * by truncate after unlock_page(). The address_space itself remains
2919 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2920 * release semantics to prevent the compiler from undoing this copying.
2921 */
2922 mapping = page_rmapping(page);
2923 unlock_page(page);
2924
2925 if (!page_mkwrite)
2926 file_update_time(vma->vm_file);
2927
2928 /*
2929 * Throttle page dirtying rate down to writeback speed.
2930 *
2931 * mapping may be NULL here because some device drivers do not
2932 * set page.mapping but still dirty their pages
2933 *
2934 * Drop the mmap_lock before waiting on IO, if we can. The file
2935 * is pinning the mapping, as per above.
2936 */
2937 if ((dirtied || page_mkwrite) && mapping) {
2938 struct file *fpin;
2939
2940 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2941 balance_dirty_pages_ratelimited(mapping);
2942 if (fpin) {
2943 fput(fpin);
2944 return VM_FAULT_RETRY;
2945 }
2946 }
2947
2948 return 0;
2949 }
2950
2951 /*
2952 * Handle write page faults for pages that can be reused in the current vma
2953 *
2954 * This can happen either due to the mapping being with the VM_SHARED flag,
2955 * or due to us being the last reference standing to the page. In either
2956 * case, all we need to do here is to mark the page as writable and update
2957 * any related book-keeping.
2958 */
2959 static inline void wp_page_reuse(struct vm_fault *vmf)
2960 __releases(vmf->ptl)
2961 {
2962 struct vm_area_struct *vma = vmf->vma;
2963 struct page *page = vmf->page;
2964 pte_t entry;
2965 /*
2966 * Clear the pages cpupid information as the existing
2967 * information potentially belongs to a now completely
2968 * unrelated process.
2969 */
2970 if (page)
2971 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2972
2973 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2974 entry = pte_mkyoung(vmf->orig_pte);
2975 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2976 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2977 update_mmu_cache(vma, vmf->address, vmf->pte);
2978 pte_unmap_unlock(vmf->pte, vmf->ptl);
2979 count_vm_event(PGREUSE);
2980 }
2981
2982 /*
2983 * Handle the case of a page which we actually need to copy to a new page.
2984 *
2985 * Called with mmap_lock locked and the old page referenced, but
2986 * without the ptl held.
2987 *
2988 * High level logic flow:
2989 *
2990 * - Allocate a page, copy the content of the old page to the new one.
2991 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2992 * - Take the PTL. If the pte changed, bail out and release the allocated page
2993 * - If the pte is still the way we remember it, update the page table and all
2994 * relevant references. This includes dropping the reference the page-table
2995 * held to the old page, as well as updating the rmap.
2996 * - In any case, unlock the PTL and drop the reference we took to the old page.
2997 */
2998 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2999 {
3000 struct vm_area_struct *vma = vmf->vma;
3001 struct mm_struct *mm = vma->vm_mm;
3002 struct page *old_page = vmf->page;
3003 struct page *new_page = NULL;
3004 pte_t entry;
3005 int page_copied = 0;
3006 struct mmu_notifier_range range;
3007
3008 if (unlikely(anon_vma_prepare(vma)))
3009 goto oom;
3010
3011 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3012 new_page = alloc_zeroed_user_highpage_movable(vma,
3013 vmf->address);
3014 if (!new_page)
3015 goto oom;
3016 } else {
3017 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3018 vmf->address);
3019 if (!new_page)
3020 goto oom;
3021
3022 if (!cow_user_page(new_page, old_page, vmf)) {
3023 /*
3024 * COW failed, if the fault was solved by other,
3025 * it's fine. If not, userspace would re-fault on
3026 * the same address and we will handle the fault
3027 * from the second attempt.
3028 */
3029 put_page(new_page);
3030 if (old_page)
3031 put_page(old_page);
3032 return 0;
3033 }
3034 }
3035
3036 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3037 goto oom_free_new;
3038 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3039
3040 __SetPageUptodate(new_page);
3041
3042 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3043 vmf->address & PAGE_MASK,
3044 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3045 mmu_notifier_invalidate_range_start(&range);
3046
3047 /*
3048 * Re-check the pte - we dropped the lock
3049 */
3050 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3051 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3052 if (old_page) {
3053 if (!PageAnon(old_page)) {
3054 dec_mm_counter_fast(mm,
3055 mm_counter_file(old_page));
3056 inc_mm_counter_fast(mm, MM_ANONPAGES);
3057 }
3058 } else {
3059 inc_mm_counter_fast(mm, MM_ANONPAGES);
3060 }
3061 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3062 entry = mk_pte(new_page, vma->vm_page_prot);
3063 entry = pte_sw_mkyoung(entry);
3064 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3065
3066 /*
3067 * Clear the pte entry and flush it first, before updating the
3068 * pte with the new entry, to keep TLBs on different CPUs in
3069 * sync. This code used to set the new PTE then flush TLBs, but
3070 * that left a window where the new PTE could be loaded into
3071 * some TLBs while the old PTE remains in others.
3072 */
3073 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3074 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3075 lru_cache_add_inactive_or_unevictable(new_page, vma);
3076 /*
3077 * We call the notify macro here because, when using secondary
3078 * mmu page tables (such as kvm shadow page tables), we want the
3079 * new page to be mapped directly into the secondary page table.
3080 */
3081 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3082 update_mmu_cache(vma, vmf->address, vmf->pte);
3083 if (old_page) {
3084 /*
3085 * Only after switching the pte to the new page may
3086 * we remove the mapcount here. Otherwise another
3087 * process may come and find the rmap count decremented
3088 * before the pte is switched to the new page, and
3089 * "reuse" the old page writing into it while our pte
3090 * here still points into it and can be read by other
3091 * threads.
3092 *
3093 * The critical issue is to order this
3094 * page_remove_rmap with the ptp_clear_flush above.
3095 * Those stores are ordered by (if nothing else,)
3096 * the barrier present in the atomic_add_negative
3097 * in page_remove_rmap.
3098 *
3099 * Then the TLB flush in ptep_clear_flush ensures that
3100 * no process can access the old page before the
3101 * decremented mapcount is visible. And the old page
3102 * cannot be reused until after the decremented
3103 * mapcount is visible. So transitively, TLBs to
3104 * old page will be flushed before it can be reused.
3105 */
3106 page_remove_rmap(old_page, false);
3107 }
3108
3109 /* Free the old page.. */
3110 new_page = old_page;
3111 page_copied = 1;
3112 } else {
3113 update_mmu_tlb(vma, vmf->address, vmf->pte);
3114 }
3115
3116 if (new_page)
3117 put_page(new_page);
3118
3119 pte_unmap_unlock(vmf->pte, vmf->ptl);
3120 /*
3121 * No need to double call mmu_notifier->invalidate_range() callback as
3122 * the above ptep_clear_flush_notify() did already call it.
3123 */
3124 mmu_notifier_invalidate_range_only_end(&range);
3125 if (old_page) {
3126 /*
3127 * Don't let another task, with possibly unlocked vma,
3128 * keep the mlocked page.
3129 */
3130 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3131 lock_page(old_page); /* LRU manipulation */
3132 if (PageMlocked(old_page))
3133 munlock_vma_page(old_page);
3134 unlock_page(old_page);
3135 }
3136 if (page_copied)
3137 free_swap_cache(old_page);
3138 put_page(old_page);
3139 }
3140 return page_copied ? VM_FAULT_WRITE : 0;
3141 oom_free_new:
3142 put_page(new_page);
3143 oom:
3144 if (old_page)
3145 put_page(old_page);
3146 return VM_FAULT_OOM;
3147 }
3148
3149 /**
3150 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3151 * writeable once the page is prepared
3152 *
3153 * @vmf: structure describing the fault
3154 *
3155 * This function handles all that is needed to finish a write page fault in a
3156 * shared mapping due to PTE being read-only once the mapped page is prepared.
3157 * It handles locking of PTE and modifying it.
3158 *
3159 * The function expects the page to be locked or other protection against
3160 * concurrent faults / writeback (such as DAX radix tree locks).
3161 *
3162 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3163 * we acquired PTE lock.
3164 */
3165 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3166 {
3167 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3168 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3169 &vmf->ptl);
3170 /*
3171 * We might have raced with another page fault while we released the
3172 * pte_offset_map_lock.
3173 */
3174 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3175 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3176 pte_unmap_unlock(vmf->pte, vmf->ptl);
3177 return VM_FAULT_NOPAGE;
3178 }
3179 wp_page_reuse(vmf);
3180 return 0;
3181 }
3182
3183 /*
3184 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3185 * mapping
3186 */
3187 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3188 {
3189 struct vm_area_struct *vma = vmf->vma;
3190
3191 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3192 vm_fault_t ret;
3193
3194 pte_unmap_unlock(vmf->pte, vmf->ptl);
3195 vmf->flags |= FAULT_FLAG_MKWRITE;
3196 ret = vma->vm_ops->pfn_mkwrite(vmf);
3197 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3198 return ret;
3199 return finish_mkwrite_fault(vmf);
3200 }
3201 wp_page_reuse(vmf);
3202 return VM_FAULT_WRITE;
3203 }
3204
3205 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3206 __releases(vmf->ptl)
3207 {
3208 struct vm_area_struct *vma = vmf->vma;
3209 vm_fault_t ret = VM_FAULT_WRITE;
3210
3211 get_page(vmf->page);
3212
3213 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3214 vm_fault_t tmp;
3215
3216 pte_unmap_unlock(vmf->pte, vmf->ptl);
3217 tmp = do_page_mkwrite(vmf);
3218 if (unlikely(!tmp || (tmp &
3219 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3220 put_page(vmf->page);
3221 return tmp;
3222 }
3223 tmp = finish_mkwrite_fault(vmf);
3224 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3225 unlock_page(vmf->page);
3226 put_page(vmf->page);
3227 return tmp;
3228 }
3229 } else {
3230 wp_page_reuse(vmf);
3231 lock_page(vmf->page);
3232 }
3233 ret |= fault_dirty_shared_page(vmf);
3234 put_page(vmf->page);
3235
3236 return ret;
3237 }
3238
3239 /*
3240 * This routine handles present pages, when users try to write
3241 * to a shared page. It is done by copying the page to a new address
3242 * and decrementing the shared-page counter for the old page.
3243 *
3244 * Note that this routine assumes that the protection checks have been
3245 * done by the caller (the low-level page fault routine in most cases).
3246 * Thus we can safely just mark it writable once we've done any necessary
3247 * COW.
3248 *
3249 * We also mark the page dirty at this point even though the page will
3250 * change only once the write actually happens. This avoids a few races,
3251 * and potentially makes it more efficient.
3252 *
3253 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3254 * but allow concurrent faults), with pte both mapped and locked.
3255 * We return with mmap_lock still held, but pte unmapped and unlocked.
3256 */
3257 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3258 __releases(vmf->ptl)
3259 {
3260 struct vm_area_struct *vma = vmf->vma;
3261
3262 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3263 pte_unmap_unlock(vmf->pte, vmf->ptl);
3264 return handle_userfault(vmf, VM_UFFD_WP);
3265 }
3266
3267 /*
3268 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3269 * is flushed in this case before copying.
3270 */
3271 if (unlikely(userfaultfd_wp(vmf->vma) &&
3272 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3273 flush_tlb_page(vmf->vma, vmf->address);
3274
3275 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3276 if (!vmf->page) {
3277 /*
3278 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3279 * VM_PFNMAP VMA.
3280 *
3281 * We should not cow pages in a shared writeable mapping.
3282 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3283 */
3284 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3285 (VM_WRITE|VM_SHARED))
3286 return wp_pfn_shared(vmf);
3287
3288 pte_unmap_unlock(vmf->pte, vmf->ptl);
3289 return wp_page_copy(vmf);
3290 }
3291
3292 /*
3293 * Take out anonymous pages first, anonymous shared vmas are
3294 * not dirty accountable.
3295 */
3296 if (PageAnon(vmf->page)) {
3297 struct page *page = vmf->page;
3298
3299 /* PageKsm() doesn't necessarily raise the page refcount */
3300 if (PageKsm(page) || page_count(page) != 1)
3301 goto copy;
3302 if (!trylock_page(page))
3303 goto copy;
3304 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3305 unlock_page(page);
3306 goto copy;
3307 }
3308 /*
3309 * Ok, we've got the only map reference, and the only
3310 * page count reference, and the page is locked,
3311 * it's dark out, and we're wearing sunglasses. Hit it.
3312 */
3313 unlock_page(page);
3314 wp_page_reuse(vmf);
3315 return VM_FAULT_WRITE;
3316 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3317 (VM_WRITE|VM_SHARED))) {
3318 return wp_page_shared(vmf);
3319 }
3320 copy:
3321 /*
3322 * Ok, we need to copy. Oh, well..
3323 */
3324 get_page(vmf->page);
3325
3326 pte_unmap_unlock(vmf->pte, vmf->ptl);
3327 return wp_page_copy(vmf);
3328 }
3329
3330 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3331 unsigned long start_addr, unsigned long end_addr,
3332 struct zap_details *details)
3333 {
3334 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3335 }
3336
3337 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3338 struct zap_details *details)
3339 {
3340 struct vm_area_struct *vma;
3341 pgoff_t vba, vea, zba, zea;
3342
3343 vma_interval_tree_foreach(vma, root,
3344 details->first_index, details->last_index) {
3345
3346 vba = vma->vm_pgoff;
3347 vea = vba + vma_pages(vma) - 1;
3348 zba = details->first_index;
3349 if (zba < vba)
3350 zba = vba;
3351 zea = details->last_index;
3352 if (zea > vea)
3353 zea = vea;
3354
3355 unmap_mapping_range_vma(vma,
3356 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3357 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3358 details);
3359 }
3360 }
3361
3362 /**
3363 * unmap_mapping_page() - Unmap single page from processes.
3364 * @page: The locked page to be unmapped.
3365 *
3366 * Unmap this page from any userspace process which still has it mmaped.
3367 * Typically, for efficiency, the range of nearby pages has already been
3368 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3369 * truncation or invalidation holds the lock on a page, it may find that
3370 * the page has been remapped again: and then uses unmap_mapping_page()
3371 * to unmap it finally.
3372 */
3373 void unmap_mapping_page(struct page *page)
3374 {
3375 struct address_space *mapping = page->mapping;
3376 struct zap_details details = { };
3377
3378 VM_BUG_ON(!PageLocked(page));
3379 VM_BUG_ON(PageTail(page));
3380
3381 details.check_mapping = mapping;
3382 details.first_index = page->index;
3383 details.last_index = page->index + thp_nr_pages(page) - 1;
3384 details.single_page = page;
3385
3386 i_mmap_lock_write(mapping);
3387 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3388 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3389 i_mmap_unlock_write(mapping);
3390 }
3391
3392 /**
3393 * unmap_mapping_pages() - Unmap pages from processes.
3394 * @mapping: The address space containing pages to be unmapped.
3395 * @start: Index of first page to be unmapped.
3396 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3397 * @even_cows: Whether to unmap even private COWed pages.
3398 *
3399 * Unmap the pages in this address space from any userspace process which
3400 * has them mmaped. Generally, you want to remove COWed pages as well when
3401 * a file is being truncated, but not when invalidating pages from the page
3402 * cache.
3403 */
3404 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3405 pgoff_t nr, bool even_cows)
3406 {
3407 struct zap_details details = { };
3408
3409 details.check_mapping = even_cows ? NULL : mapping;
3410 details.first_index = start;
3411 details.last_index = start + nr - 1;
3412 if (details.last_index < details.first_index)
3413 details.last_index = ULONG_MAX;
3414
3415 i_mmap_lock_write(mapping);
3416 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3417 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3418 i_mmap_unlock_write(mapping);
3419 }
3420 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3421
3422 /**
3423 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3424 * address_space corresponding to the specified byte range in the underlying
3425 * file.
3426 *
3427 * @mapping: the address space containing mmaps to be unmapped.
3428 * @holebegin: byte in first page to unmap, relative to the start of
3429 * the underlying file. This will be rounded down to a PAGE_SIZE
3430 * boundary. Note that this is different from truncate_pagecache(), which
3431 * must keep the partial page. In contrast, we must get rid of
3432 * partial pages.
3433 * @holelen: size of prospective hole in bytes. This will be rounded
3434 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3435 * end of the file.
3436 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3437 * but 0 when invalidating pagecache, don't throw away private data.
3438 */
3439 void unmap_mapping_range(struct address_space *mapping,
3440 loff_t const holebegin, loff_t const holelen, int even_cows)
3441 {
3442 pgoff_t hba = holebegin >> PAGE_SHIFT;
3443 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3444
3445 /* Check for overflow. */
3446 if (sizeof(holelen) > sizeof(hlen)) {
3447 long long holeend =
3448 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3449 if (holeend & ~(long long)ULONG_MAX)
3450 hlen = ULONG_MAX - hba + 1;
3451 }
3452
3453 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3454 }
3455 EXPORT_SYMBOL(unmap_mapping_range);
3456
3457 /*
3458 * Restore a potential device exclusive pte to a working pte entry
3459 */
3460 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3461 {
3462 struct page *page = vmf->page;
3463 struct vm_area_struct *vma = vmf->vma;
3464 struct mmu_notifier_range range;
3465
3466 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3467 return VM_FAULT_RETRY;
3468 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3469 vma->vm_mm, vmf->address & PAGE_MASK,
3470 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3471 mmu_notifier_invalidate_range_start(&range);
3472
3473 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3474 &vmf->ptl);
3475 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3476 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3477
3478 pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 unlock_page(page);
3480
3481 mmu_notifier_invalidate_range_end(&range);
3482 return 0;
3483 }
3484
3485 /*
3486 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3487 * but allow concurrent faults), and pte mapped but not yet locked.
3488 * We return with pte unmapped and unlocked.
3489 *
3490 * We return with the mmap_lock locked or unlocked in the same cases
3491 * as does filemap_fault().
3492 */
3493 vm_fault_t do_swap_page(struct vm_fault *vmf)
3494 {
3495 struct vm_area_struct *vma = vmf->vma;
3496 struct page *page = NULL, *swapcache;
3497 struct swap_info_struct *si = NULL;
3498 swp_entry_t entry;
3499 pte_t pte;
3500 int locked;
3501 int exclusive = 0;
3502 vm_fault_t ret = 0;
3503 void *shadow = NULL;
3504
3505 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3506 goto out;
3507
3508 entry = pte_to_swp_entry(vmf->orig_pte);
3509 if (unlikely(non_swap_entry(entry))) {
3510 if (is_migration_entry(entry)) {
3511 migration_entry_wait(vma->vm_mm, vmf->pmd,
3512 vmf->address);
3513 } else if (is_device_exclusive_entry(entry)) {
3514 vmf->page = pfn_swap_entry_to_page(entry);
3515 ret = remove_device_exclusive_entry(vmf);
3516 } else if (is_device_private_entry(entry)) {
3517 vmf->page = pfn_swap_entry_to_page(entry);
3518 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3519 } else if (is_hwpoison_entry(entry)) {
3520 ret = VM_FAULT_HWPOISON;
3521 } else {
3522 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3523 ret = VM_FAULT_SIGBUS;
3524 }
3525 goto out;
3526 }
3527
3528 /* Prevent swapoff from happening to us. */
3529 si = get_swap_device(entry);
3530 if (unlikely(!si))
3531 goto out;
3532
3533 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3534 page = lookup_swap_cache(entry, vma, vmf->address);
3535 swapcache = page;
3536
3537 if (!page) {
3538 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3539 __swap_count(entry) == 1) {
3540 /* skip swapcache */
3541 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3542 vmf->address);
3543 if (page) {
3544 __SetPageLocked(page);
3545 __SetPageSwapBacked(page);
3546
3547 if (mem_cgroup_swapin_charge_page(page,
3548 vma->vm_mm, GFP_KERNEL, entry)) {
3549 ret = VM_FAULT_OOM;
3550 goto out_page;
3551 }
3552 mem_cgroup_swapin_uncharge_swap(entry);
3553
3554 shadow = get_shadow_from_swap_cache(entry);
3555 if (shadow)
3556 workingset_refault(page, shadow);
3557
3558 lru_cache_add(page);
3559
3560 /* To provide entry to swap_readpage() */
3561 set_page_private(page, entry.val);
3562 swap_readpage(page, true);
3563 set_page_private(page, 0);
3564 }
3565 } else {
3566 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3567 vmf);
3568 swapcache = page;
3569 }
3570
3571 if (!page) {
3572 /*
3573 * Back out if somebody else faulted in this pte
3574 * while we released the pte lock.
3575 */
3576 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3577 vmf->address, &vmf->ptl);
3578 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3579 ret = VM_FAULT_OOM;
3580 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3581 goto unlock;
3582 }
3583
3584 /* Had to read the page from swap area: Major fault */
3585 ret = VM_FAULT_MAJOR;
3586 count_vm_event(PGMAJFAULT);
3587 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3588 } else if (PageHWPoison(page)) {
3589 /*
3590 * hwpoisoned dirty swapcache pages are kept for killing
3591 * owner processes (which may be unknown at hwpoison time)
3592 */
3593 ret = VM_FAULT_HWPOISON;
3594 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3595 goto out_release;
3596 }
3597
3598 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3599
3600 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3601 if (!locked) {
3602 ret |= VM_FAULT_RETRY;
3603 goto out_release;
3604 }
3605
3606 /*
3607 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3608 * release the swapcache from under us. The page pin, and pte_same
3609 * test below, are not enough to exclude that. Even if it is still
3610 * swapcache, we need to check that the page's swap has not changed.
3611 */
3612 if (unlikely((!PageSwapCache(page) ||
3613 page_private(page) != entry.val)) && swapcache)
3614 goto out_page;
3615
3616 page = ksm_might_need_to_copy(page, vma, vmf->address);
3617 if (unlikely(!page)) {
3618 ret = VM_FAULT_OOM;
3619 page = swapcache;
3620 goto out_page;
3621 }
3622
3623 cgroup_throttle_swaprate(page, GFP_KERNEL);
3624
3625 /*
3626 * Back out if somebody else already faulted in this pte.
3627 */
3628 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3629 &vmf->ptl);
3630 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3631 goto out_nomap;
3632
3633 if (unlikely(!PageUptodate(page))) {
3634 ret = VM_FAULT_SIGBUS;
3635 goto out_nomap;
3636 }
3637
3638 /*
3639 * The page isn't present yet, go ahead with the fault.
3640 *
3641 * Be careful about the sequence of operations here.
3642 * To get its accounting right, reuse_swap_page() must be called
3643 * while the page is counted on swap but not yet in mapcount i.e.
3644 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3645 * must be called after the swap_free(), or it will never succeed.
3646 */
3647
3648 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3649 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3650 pte = mk_pte(page, vma->vm_page_prot);
3651 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3652 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3653 vmf->flags &= ~FAULT_FLAG_WRITE;
3654 ret |= VM_FAULT_WRITE;
3655 exclusive = RMAP_EXCLUSIVE;
3656 }
3657 flush_icache_page(vma, page);
3658 if (pte_swp_soft_dirty(vmf->orig_pte))
3659 pte = pte_mksoft_dirty(pte);
3660 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3661 pte = pte_mkuffd_wp(pte);
3662 pte = pte_wrprotect(pte);
3663 }
3664 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3665 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3666 vmf->orig_pte = pte;
3667
3668 /* ksm created a completely new copy */
3669 if (unlikely(page != swapcache && swapcache)) {
3670 page_add_new_anon_rmap(page, vma, vmf->address, false);
3671 lru_cache_add_inactive_or_unevictable(page, vma);
3672 } else {
3673 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3674 }
3675
3676 swap_free(entry);
3677 if (mem_cgroup_swap_full(page) ||
3678 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3679 try_to_free_swap(page);
3680 unlock_page(page);
3681 if (page != swapcache && swapcache) {
3682 /*
3683 * Hold the lock to avoid the swap entry to be reused
3684 * until we take the PT lock for the pte_same() check
3685 * (to avoid false positives from pte_same). For
3686 * further safety release the lock after the swap_free
3687 * so that the swap count won't change under a
3688 * parallel locked swapcache.
3689 */
3690 unlock_page(swapcache);
3691 put_page(swapcache);
3692 }
3693
3694 if (vmf->flags & FAULT_FLAG_WRITE) {
3695 ret |= do_wp_page(vmf);
3696 if (ret & VM_FAULT_ERROR)
3697 ret &= VM_FAULT_ERROR;
3698 goto out;
3699 }
3700
3701 /* No need to invalidate - it was non-present before */
3702 update_mmu_cache(vma, vmf->address, vmf->pte);
3703 unlock:
3704 pte_unmap_unlock(vmf->pte, vmf->ptl);
3705 out:
3706 if (si)
3707 put_swap_device(si);
3708 return ret;
3709 out_nomap:
3710 pte_unmap_unlock(vmf->pte, vmf->ptl);
3711 out_page:
3712 unlock_page(page);
3713 out_release:
3714 put_page(page);
3715 if (page != swapcache && swapcache) {
3716 unlock_page(swapcache);
3717 put_page(swapcache);
3718 }
3719 if (si)
3720 put_swap_device(si);
3721 return ret;
3722 }
3723
3724 /*
3725 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3726 * but allow concurrent faults), and pte mapped but not yet locked.
3727 * We return with mmap_lock still held, but pte unmapped and unlocked.
3728 */
3729 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3730 {
3731 struct vm_area_struct *vma = vmf->vma;
3732 struct page *page;
3733 vm_fault_t ret = 0;
3734 pte_t entry;
3735
3736 /* File mapping without ->vm_ops ? */
3737 if (vma->vm_flags & VM_SHARED)
3738 return VM_FAULT_SIGBUS;
3739
3740 /*
3741 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3742 * pte_offset_map() on pmds where a huge pmd might be created
3743 * from a different thread.
3744 *
3745 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3746 * parallel threads are excluded by other means.
3747 *
3748 * Here we only have mmap_read_lock(mm).
3749 */
3750 if (pte_alloc(vma->vm_mm, vmf->pmd))
3751 return VM_FAULT_OOM;
3752
3753 /* See comment in handle_pte_fault() */
3754 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3755 return 0;
3756
3757 /* Use the zero-page for reads */
3758 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3759 !mm_forbids_zeropage(vma->vm_mm)) {
3760 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3761 vma->vm_page_prot));
3762 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3763 vmf->address, &vmf->ptl);
3764 if (!pte_none(*vmf->pte)) {
3765 update_mmu_tlb(vma, vmf->address, vmf->pte);
3766 goto unlock;
3767 }
3768 ret = check_stable_address_space(vma->vm_mm);
3769 if (ret)
3770 goto unlock;
3771 /* Deliver the page fault to userland, check inside PT lock */
3772 if (userfaultfd_missing(vma)) {
3773 pte_unmap_unlock(vmf->pte, vmf->ptl);
3774 return handle_userfault(vmf, VM_UFFD_MISSING);
3775 }
3776 goto setpte;
3777 }
3778
3779 /* Allocate our own private page. */
3780 if (unlikely(anon_vma_prepare(vma)))
3781 goto oom;
3782 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3783 if (!page)
3784 goto oom;
3785
3786 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3787 goto oom_free_page;
3788 cgroup_throttle_swaprate(page, GFP_KERNEL);
3789
3790 /*
3791 * The memory barrier inside __SetPageUptodate makes sure that
3792 * preceding stores to the page contents become visible before
3793 * the set_pte_at() write.
3794 */
3795 __SetPageUptodate(page);
3796
3797 entry = mk_pte(page, vma->vm_page_prot);
3798 entry = pte_sw_mkyoung(entry);
3799 if (vma->vm_flags & VM_WRITE)
3800 entry = pte_mkwrite(pte_mkdirty(entry));
3801
3802 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3803 &vmf->ptl);
3804 if (!pte_none(*vmf->pte)) {
3805 update_mmu_cache(vma, vmf->address, vmf->pte);
3806 goto release;
3807 }
3808
3809 ret = check_stable_address_space(vma->vm_mm);
3810 if (ret)
3811 goto release;
3812
3813 /* Deliver the page fault to userland, check inside PT lock */
3814 if (userfaultfd_missing(vma)) {
3815 pte_unmap_unlock(vmf->pte, vmf->ptl);
3816 put_page(page);
3817 return handle_userfault(vmf, VM_UFFD_MISSING);
3818 }
3819
3820 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3821 page_add_new_anon_rmap(page, vma, vmf->address, false);
3822 lru_cache_add_inactive_or_unevictable(page, vma);
3823 setpte:
3824 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3825
3826 /* No need to invalidate - it was non-present before */
3827 update_mmu_cache(vma, vmf->address, vmf->pte);
3828 unlock:
3829 pte_unmap_unlock(vmf->pte, vmf->ptl);
3830 return ret;
3831 release:
3832 put_page(page);
3833 goto unlock;
3834 oom_free_page:
3835 put_page(page);
3836 oom:
3837 return VM_FAULT_OOM;
3838 }
3839
3840 /*
3841 * The mmap_lock must have been held on entry, and may have been
3842 * released depending on flags and vma->vm_ops->fault() return value.
3843 * See filemap_fault() and __lock_page_retry().
3844 */
3845 static vm_fault_t __do_fault(struct vm_fault *vmf)
3846 {
3847 struct vm_area_struct *vma = vmf->vma;
3848 vm_fault_t ret;
3849
3850 /*
3851 * Preallocate pte before we take page_lock because this might lead to
3852 * deadlocks for memcg reclaim which waits for pages under writeback:
3853 * lock_page(A)
3854 * SetPageWriteback(A)
3855 * unlock_page(A)
3856 * lock_page(B)
3857 * lock_page(B)
3858 * pte_alloc_one
3859 * shrink_page_list
3860 * wait_on_page_writeback(A)
3861 * SetPageWriteback(B)
3862 * unlock_page(B)
3863 * # flush A, B to clear the writeback
3864 */
3865 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3866 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3867 if (!vmf->prealloc_pte)
3868 return VM_FAULT_OOM;
3869 smp_wmb(); /* See comment in __pte_alloc() */
3870 }
3871
3872 ret = vma->vm_ops->fault(vmf);
3873 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3874 VM_FAULT_DONE_COW)))
3875 return ret;
3876
3877 if (unlikely(PageHWPoison(vmf->page))) {
3878 struct page *page = vmf->page;
3879 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3880 if (ret & VM_FAULT_LOCKED) {
3881 if (page_mapped(page))
3882 unmap_mapping_pages(page_mapping(page),
3883 page->index, 1, false);
3884 /* Retry if a clean page was removed from the cache. */
3885 if (invalidate_inode_page(page))
3886 poisonret = VM_FAULT_NOPAGE;
3887 unlock_page(page);
3888 }
3889 put_page(page);
3890 vmf->page = NULL;
3891 return poisonret;
3892 }
3893
3894 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3895 lock_page(vmf->page);
3896 else
3897 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3898
3899 return ret;
3900 }
3901
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 static void deposit_prealloc_pte(struct vm_fault *vmf)
3904 {
3905 struct vm_area_struct *vma = vmf->vma;
3906
3907 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3908 /*
3909 * We are going to consume the prealloc table,
3910 * count that as nr_ptes.
3911 */
3912 mm_inc_nr_ptes(vma->vm_mm);
3913 vmf->prealloc_pte = NULL;
3914 }
3915
3916 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3917 {
3918 struct vm_area_struct *vma = vmf->vma;
3919 bool write = vmf->flags & FAULT_FLAG_WRITE;
3920 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3921 pmd_t entry;
3922 int i;
3923 vm_fault_t ret = VM_FAULT_FALLBACK;
3924
3925 if (!transhuge_vma_suitable(vma, haddr))
3926 return ret;
3927
3928 page = compound_head(page);
3929 if (compound_order(page) != HPAGE_PMD_ORDER)
3930 return ret;
3931
3932 /*
3933 * Just backoff if any subpage of a THP is corrupted otherwise
3934 * the corrupted page may mapped by PMD silently to escape the
3935 * check. This kind of THP just can be PTE mapped. Access to
3936 * the corrupted subpage should trigger SIGBUS as expected.
3937 */
3938 if (unlikely(PageHasHWPoisoned(page)))
3939 return ret;
3940
3941 /*
3942 * Archs like ppc64 need additional space to store information
3943 * related to pte entry. Use the preallocated table for that.
3944 */
3945 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3946 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3947 if (!vmf->prealloc_pte)
3948 return VM_FAULT_OOM;
3949 smp_wmb(); /* See comment in __pte_alloc() */
3950 }
3951
3952 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3953 if (unlikely(!pmd_none(*vmf->pmd)))
3954 goto out;
3955
3956 for (i = 0; i < HPAGE_PMD_NR; i++)
3957 flush_icache_page(vma, page + i);
3958
3959 entry = mk_huge_pmd(page, vma->vm_page_prot);
3960 if (write)
3961 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3962
3963 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3964 page_add_file_rmap(page, true);
3965 /*
3966 * deposit and withdraw with pmd lock held
3967 */
3968 if (arch_needs_pgtable_deposit())
3969 deposit_prealloc_pte(vmf);
3970
3971 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3972
3973 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3974
3975 /* fault is handled */
3976 ret = 0;
3977 count_vm_event(THP_FILE_MAPPED);
3978 out:
3979 spin_unlock(vmf->ptl);
3980 return ret;
3981 }
3982 #else
3983 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3984 {
3985 return VM_FAULT_FALLBACK;
3986 }
3987 #endif
3988
3989 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3990 {
3991 struct vm_area_struct *vma = vmf->vma;
3992 bool write = vmf->flags & FAULT_FLAG_WRITE;
3993 bool prefault = vmf->address != addr;
3994 pte_t entry;
3995
3996 flush_icache_page(vma, page);
3997 entry = mk_pte(page, vma->vm_page_prot);
3998
3999 if (prefault && arch_wants_old_prefaulted_pte())
4000 entry = pte_mkold(entry);
4001 else
4002 entry = pte_sw_mkyoung(entry);
4003
4004 if (write)
4005 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4006 /* copy-on-write page */
4007 if (write && !(vma->vm_flags & VM_SHARED)) {
4008 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4009 page_add_new_anon_rmap(page, vma, addr, false);
4010 lru_cache_add_inactive_or_unevictable(page, vma);
4011 } else {
4012 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4013 page_add_file_rmap(page, false);
4014 }
4015 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4016 }
4017
4018 /**
4019 * finish_fault - finish page fault once we have prepared the page to fault
4020 *
4021 * @vmf: structure describing the fault
4022 *
4023 * This function handles all that is needed to finish a page fault once the
4024 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4025 * given page, adds reverse page mapping, handles memcg charges and LRU
4026 * addition.
4027 *
4028 * The function expects the page to be locked and on success it consumes a
4029 * reference of a page being mapped (for the PTE which maps it).
4030 *
4031 * Return: %0 on success, %VM_FAULT_ code in case of error.
4032 */
4033 vm_fault_t finish_fault(struct vm_fault *vmf)
4034 {
4035 struct vm_area_struct *vma = vmf->vma;
4036 struct page *page;
4037 vm_fault_t ret;
4038
4039 /* Did we COW the page? */
4040 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4041 page = vmf->cow_page;
4042 else
4043 page = vmf->page;
4044
4045 /*
4046 * check even for read faults because we might have lost our CoWed
4047 * page
4048 */
4049 if (!(vma->vm_flags & VM_SHARED)) {
4050 ret = check_stable_address_space(vma->vm_mm);
4051 if (ret)
4052 return ret;
4053 }
4054
4055 if (pmd_none(*vmf->pmd)) {
4056 if (PageTransCompound(page)) {
4057 ret = do_set_pmd(vmf, page);
4058 if (ret != VM_FAULT_FALLBACK)
4059 return ret;
4060 }
4061
4062 if (vmf->prealloc_pte) {
4063 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4064 if (likely(pmd_none(*vmf->pmd))) {
4065 mm_inc_nr_ptes(vma->vm_mm);
4066 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4067 vmf->prealloc_pte = NULL;
4068 }
4069 spin_unlock(vmf->ptl);
4070 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4071 return VM_FAULT_OOM;
4072 }
4073 }
4074
4075 /* See comment in handle_pte_fault() */
4076 if (pmd_devmap_trans_unstable(vmf->pmd))
4077 return 0;
4078
4079 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4080 vmf->address, &vmf->ptl);
4081 ret = 0;
4082 /* Re-check under ptl */
4083 if (likely(pte_none(*vmf->pte)))
4084 do_set_pte(vmf, page, vmf->address);
4085 else
4086 ret = VM_FAULT_NOPAGE;
4087
4088 update_mmu_tlb(vma, vmf->address, vmf->pte);
4089 pte_unmap_unlock(vmf->pte, vmf->ptl);
4090 return ret;
4091 }
4092
4093 static unsigned long fault_around_bytes __read_mostly =
4094 rounddown_pow_of_two(65536);
4095
4096 #ifdef CONFIG_DEBUG_FS
4097 static int fault_around_bytes_get(void *data, u64 *val)
4098 {
4099 *val = fault_around_bytes;
4100 return 0;
4101 }
4102
4103 /*
4104 * fault_around_bytes must be rounded down to the nearest page order as it's
4105 * what do_fault_around() expects to see.
4106 */
4107 static int fault_around_bytes_set(void *data, u64 val)
4108 {
4109 if (val / PAGE_SIZE > PTRS_PER_PTE)
4110 return -EINVAL;
4111 if (val > PAGE_SIZE)
4112 fault_around_bytes = rounddown_pow_of_two(val);
4113 else
4114 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4115 return 0;
4116 }
4117 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4118 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4119
4120 static int __init fault_around_debugfs(void)
4121 {
4122 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4123 &fault_around_bytes_fops);
4124 return 0;
4125 }
4126 late_initcall(fault_around_debugfs);
4127 #endif
4128
4129 /*
4130 * do_fault_around() tries to map few pages around the fault address. The hope
4131 * is that the pages will be needed soon and this will lower the number of
4132 * faults to handle.
4133 *
4134 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4135 * not ready to be mapped: not up-to-date, locked, etc.
4136 *
4137 * This function is called with the page table lock taken. In the split ptlock
4138 * case the page table lock only protects only those entries which belong to
4139 * the page table corresponding to the fault address.
4140 *
4141 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4142 * only once.
4143 *
4144 * fault_around_bytes defines how many bytes we'll try to map.
4145 * do_fault_around() expects it to be set to a power of two less than or equal
4146 * to PTRS_PER_PTE.
4147 *
4148 * The virtual address of the area that we map is naturally aligned to
4149 * fault_around_bytes rounded down to the machine page size
4150 * (and therefore to page order). This way it's easier to guarantee
4151 * that we don't cross page table boundaries.
4152 */
4153 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4154 {
4155 unsigned long address = vmf->address, nr_pages, mask;
4156 pgoff_t start_pgoff = vmf->pgoff;
4157 pgoff_t end_pgoff;
4158 int off;
4159
4160 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4161 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4162
4163 address = max(address & mask, vmf->vma->vm_start);
4164 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4165 start_pgoff -= off;
4166
4167 /*
4168 * end_pgoff is either the end of the page table, the end of
4169 * the vma or nr_pages from start_pgoff, depending what is nearest.
4170 */
4171 end_pgoff = start_pgoff -
4172 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4173 PTRS_PER_PTE - 1;
4174 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4175 start_pgoff + nr_pages - 1);
4176
4177 if (pmd_none(*vmf->pmd)) {
4178 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4179 if (!vmf->prealloc_pte)
4180 return VM_FAULT_OOM;
4181 smp_wmb(); /* See comment in __pte_alloc() */
4182 }
4183
4184 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4185 }
4186
4187 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4188 {
4189 struct vm_area_struct *vma = vmf->vma;
4190 vm_fault_t ret = 0;
4191
4192 /*
4193 * Let's call ->map_pages() first and use ->fault() as fallback
4194 * if page by the offset is not ready to be mapped (cold cache or
4195 * something).
4196 */
4197 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4198 if (likely(!userfaultfd_minor(vmf->vma))) {
4199 ret = do_fault_around(vmf);
4200 if (ret)
4201 return ret;
4202 }
4203 }
4204
4205 ret = __do_fault(vmf);
4206 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4207 return ret;
4208
4209 ret |= finish_fault(vmf);
4210 unlock_page(vmf->page);
4211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4212 put_page(vmf->page);
4213 return ret;
4214 }
4215
4216 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4217 {
4218 struct vm_area_struct *vma = vmf->vma;
4219 vm_fault_t ret;
4220
4221 if (unlikely(anon_vma_prepare(vma)))
4222 return VM_FAULT_OOM;
4223
4224 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4225 if (!vmf->cow_page)
4226 return VM_FAULT_OOM;
4227
4228 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4229 put_page(vmf->cow_page);
4230 return VM_FAULT_OOM;
4231 }
4232 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4233
4234 ret = __do_fault(vmf);
4235 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4236 goto uncharge_out;
4237 if (ret & VM_FAULT_DONE_COW)
4238 return ret;
4239
4240 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4241 __SetPageUptodate(vmf->cow_page);
4242
4243 ret |= finish_fault(vmf);
4244 unlock_page(vmf->page);
4245 put_page(vmf->page);
4246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4247 goto uncharge_out;
4248 return ret;
4249 uncharge_out:
4250 put_page(vmf->cow_page);
4251 return ret;
4252 }
4253
4254 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4255 {
4256 struct vm_area_struct *vma = vmf->vma;
4257 vm_fault_t ret, tmp;
4258
4259 ret = __do_fault(vmf);
4260 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4261 return ret;
4262
4263 /*
4264 * Check if the backing address space wants to know that the page is
4265 * about to become writable
4266 */
4267 if (vma->vm_ops->page_mkwrite) {
4268 unlock_page(vmf->page);
4269 tmp = do_page_mkwrite(vmf);
4270 if (unlikely(!tmp ||
4271 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4272 put_page(vmf->page);
4273 return tmp;
4274 }
4275 }
4276
4277 ret |= finish_fault(vmf);
4278 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4279 VM_FAULT_RETRY))) {
4280 unlock_page(vmf->page);
4281 put_page(vmf->page);
4282 return ret;
4283 }
4284
4285 ret |= fault_dirty_shared_page(vmf);
4286 return ret;
4287 }
4288
4289 /*
4290 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4291 * but allow concurrent faults).
4292 * The mmap_lock may have been released depending on flags and our
4293 * return value. See filemap_fault() and __lock_page_or_retry().
4294 * If mmap_lock is released, vma may become invalid (for example
4295 * by other thread calling munmap()).
4296 */
4297 static vm_fault_t do_fault(struct vm_fault *vmf)
4298 {
4299 struct vm_area_struct *vma = vmf->vma;
4300 struct mm_struct *vm_mm = vma->vm_mm;
4301 vm_fault_t ret;
4302
4303 /*
4304 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4305 */
4306 if (!vma->vm_ops->fault) {
4307 /*
4308 * If we find a migration pmd entry or a none pmd entry, which
4309 * should never happen, return SIGBUS
4310 */
4311 if (unlikely(!pmd_present(*vmf->pmd)))
4312 ret = VM_FAULT_SIGBUS;
4313 else {
4314 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4315 vmf->pmd,
4316 vmf->address,
4317 &vmf->ptl);
4318 /*
4319 * Make sure this is not a temporary clearing of pte
4320 * by holding ptl and checking again. A R/M/W update
4321 * of pte involves: take ptl, clearing the pte so that
4322 * we don't have concurrent modification by hardware
4323 * followed by an update.
4324 */
4325 if (unlikely(pte_none(*vmf->pte)))
4326 ret = VM_FAULT_SIGBUS;
4327 else
4328 ret = VM_FAULT_NOPAGE;
4329
4330 pte_unmap_unlock(vmf->pte, vmf->ptl);
4331 }
4332 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4333 ret = do_read_fault(vmf);
4334 else if (!(vma->vm_flags & VM_SHARED))
4335 ret = do_cow_fault(vmf);
4336 else
4337 ret = do_shared_fault(vmf);
4338
4339 /* preallocated pagetable is unused: free it */
4340 if (vmf->prealloc_pte) {
4341 pte_free(vm_mm, vmf->prealloc_pte);
4342 vmf->prealloc_pte = NULL;
4343 }
4344 return ret;
4345 }
4346
4347 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4348 unsigned long addr, int page_nid, int *flags)
4349 {
4350 get_page(page);
4351
4352 count_vm_numa_event(NUMA_HINT_FAULTS);
4353 if (page_nid == numa_node_id()) {
4354 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4355 *flags |= TNF_FAULT_LOCAL;
4356 }
4357
4358 return mpol_misplaced(page, vma, addr);
4359 }
4360
4361 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4362 {
4363 struct vm_area_struct *vma = vmf->vma;
4364 struct page *page = NULL;
4365 int page_nid = NUMA_NO_NODE;
4366 int last_cpupid;
4367 int target_nid;
4368 pte_t pte, old_pte;
4369 bool was_writable = pte_savedwrite(vmf->orig_pte);
4370 int flags = 0;
4371
4372 /*
4373 * The "pte" at this point cannot be used safely without
4374 * validation through pte_unmap_same(). It's of NUMA type but
4375 * the pfn may be screwed if the read is non atomic.
4376 */
4377 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4378 spin_lock(vmf->ptl);
4379 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4380 pte_unmap_unlock(vmf->pte, vmf->ptl);
4381 goto out;
4382 }
4383
4384 /* Get the normal PTE */
4385 old_pte = ptep_get(vmf->pte);
4386 pte = pte_modify(old_pte, vma->vm_page_prot);
4387
4388 page = vm_normal_page(vma, vmf->address, pte);
4389 if (!page)
4390 goto out_map;
4391
4392 /* TODO: handle PTE-mapped THP */
4393 if (PageCompound(page))
4394 goto out_map;
4395
4396 /*
4397 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4398 * much anyway since they can be in shared cache state. This misses
4399 * the case where a mapping is writable but the process never writes
4400 * to it but pte_write gets cleared during protection updates and
4401 * pte_dirty has unpredictable behaviour between PTE scan updates,
4402 * background writeback, dirty balancing and application behaviour.
4403 */
4404 if (!was_writable)
4405 flags |= TNF_NO_GROUP;
4406
4407 /*
4408 * Flag if the page is shared between multiple address spaces. This
4409 * is later used when determining whether to group tasks together
4410 */
4411 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4412 flags |= TNF_SHARED;
4413
4414 last_cpupid = page_cpupid_last(page);
4415 page_nid = page_to_nid(page);
4416 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4417 &flags);
4418 if (target_nid == NUMA_NO_NODE) {
4419 put_page(page);
4420 goto out_map;
4421 }
4422 pte_unmap_unlock(vmf->pte, vmf->ptl);
4423
4424 /* Migrate to the requested node */
4425 if (migrate_misplaced_page(page, vma, target_nid)) {
4426 page_nid = target_nid;
4427 flags |= TNF_MIGRATED;
4428 } else {
4429 flags |= TNF_MIGRATE_FAIL;
4430 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4431 spin_lock(vmf->ptl);
4432 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4433 pte_unmap_unlock(vmf->pte, vmf->ptl);
4434 goto out;
4435 }
4436 goto out_map;
4437 }
4438
4439 out:
4440 if (page_nid != NUMA_NO_NODE)
4441 task_numa_fault(last_cpupid, page_nid, 1, flags);
4442 return 0;
4443 out_map:
4444 /*
4445 * Make it present again, depending on how arch implements
4446 * non-accessible ptes, some can allow access by kernel mode.
4447 */
4448 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4449 pte = pte_modify(old_pte, vma->vm_page_prot);
4450 pte = pte_mkyoung(pte);
4451 if (was_writable)
4452 pte = pte_mkwrite(pte);
4453 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4454 update_mmu_cache(vma, vmf->address, vmf->pte);
4455 pte_unmap_unlock(vmf->pte, vmf->ptl);
4456 goto out;
4457 }
4458
4459 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4460 {
4461 if (vma_is_anonymous(vmf->vma))
4462 return do_huge_pmd_anonymous_page(vmf);
4463 if (vmf->vma->vm_ops->huge_fault)
4464 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4465 return VM_FAULT_FALLBACK;
4466 }
4467
4468 /* `inline' is required to avoid gcc 4.1.2 build error */
4469 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4470 {
4471 if (vma_is_anonymous(vmf->vma)) {
4472 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4473 return handle_userfault(vmf, VM_UFFD_WP);
4474 return do_huge_pmd_wp_page(vmf);
4475 }
4476 if (vmf->vma->vm_ops->huge_fault) {
4477 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4478
4479 if (!(ret & VM_FAULT_FALLBACK))
4480 return ret;
4481 }
4482
4483 /* COW or write-notify handled on pte level: split pmd. */
4484 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4485
4486 return VM_FAULT_FALLBACK;
4487 }
4488
4489 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4490 {
4491 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4492 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4493 /* No support for anonymous transparent PUD pages yet */
4494 if (vma_is_anonymous(vmf->vma))
4495 goto split;
4496 if (vmf->vma->vm_ops->huge_fault) {
4497 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4498
4499 if (!(ret & VM_FAULT_FALLBACK))
4500 return ret;
4501 }
4502 split:
4503 /* COW or write-notify not handled on PUD level: split pud.*/
4504 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4505 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4506 return VM_FAULT_FALLBACK;
4507 }
4508
4509 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4510 {
4511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4512 /* No support for anonymous transparent PUD pages yet */
4513 if (vma_is_anonymous(vmf->vma))
4514 return VM_FAULT_FALLBACK;
4515 if (vmf->vma->vm_ops->huge_fault)
4516 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4518 return VM_FAULT_FALLBACK;
4519 }
4520
4521 /*
4522 * These routines also need to handle stuff like marking pages dirty
4523 * and/or accessed for architectures that don't do it in hardware (most
4524 * RISC architectures). The early dirtying is also good on the i386.
4525 *
4526 * There is also a hook called "update_mmu_cache()" that architectures
4527 * with external mmu caches can use to update those (ie the Sparc or
4528 * PowerPC hashed page tables that act as extended TLBs).
4529 *
4530 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4531 * concurrent faults).
4532 *
4533 * The mmap_lock may have been released depending on flags and our return value.
4534 * See filemap_fault() and __lock_page_or_retry().
4535 */
4536 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4537 {
4538 pte_t entry;
4539
4540 if (unlikely(pmd_none(*vmf->pmd))) {
4541 /*
4542 * Leave __pte_alloc() until later: because vm_ops->fault may
4543 * want to allocate huge page, and if we expose page table
4544 * for an instant, it will be difficult to retract from
4545 * concurrent faults and from rmap lookups.
4546 */
4547 vmf->pte = NULL;
4548 } else {
4549 /*
4550 * If a huge pmd materialized under us just retry later. Use
4551 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4552 * of pmd_trans_huge() to ensure the pmd didn't become
4553 * pmd_trans_huge under us and then back to pmd_none, as a
4554 * result of MADV_DONTNEED running immediately after a huge pmd
4555 * fault in a different thread of this mm, in turn leading to a
4556 * misleading pmd_trans_huge() retval. All we have to ensure is
4557 * that it is a regular pmd that we can walk with
4558 * pte_offset_map() and we can do that through an atomic read
4559 * in C, which is what pmd_trans_unstable() provides.
4560 */
4561 if (pmd_devmap_trans_unstable(vmf->pmd))
4562 return 0;
4563 /*
4564 * A regular pmd is established and it can't morph into a huge
4565 * pmd from under us anymore at this point because we hold the
4566 * mmap_lock read mode and khugepaged takes it in write mode.
4567 * So now it's safe to run pte_offset_map().
4568 */
4569 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4570 vmf->orig_pte = *vmf->pte;
4571
4572 /*
4573 * some architectures can have larger ptes than wordsize,
4574 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4575 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4576 * accesses. The code below just needs a consistent view
4577 * for the ifs and we later double check anyway with the
4578 * ptl lock held. So here a barrier will do.
4579 */
4580 barrier();
4581 if (pte_none(vmf->orig_pte)) {
4582 pte_unmap(vmf->pte);
4583 vmf->pte = NULL;
4584 }
4585 }
4586
4587 if (!vmf->pte) {
4588 if (vma_is_anonymous(vmf->vma))
4589 return do_anonymous_page(vmf);
4590 else
4591 return do_fault(vmf);
4592 }
4593
4594 if (!pte_present(vmf->orig_pte))
4595 return do_swap_page(vmf);
4596
4597 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4598 return do_numa_page(vmf);
4599
4600 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4601 spin_lock(vmf->ptl);
4602 entry = vmf->orig_pte;
4603 if (unlikely(!pte_same(*vmf->pte, entry))) {
4604 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4605 goto unlock;
4606 }
4607 if (vmf->flags & FAULT_FLAG_WRITE) {
4608 if (!pte_write(entry))
4609 return do_wp_page(vmf);
4610 entry = pte_mkdirty(entry);
4611 }
4612 entry = pte_mkyoung(entry);
4613 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4614 vmf->flags & FAULT_FLAG_WRITE)) {
4615 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4616 } else {
4617 /* Skip spurious TLB flush for retried page fault */
4618 if (vmf->flags & FAULT_FLAG_TRIED)
4619 goto unlock;
4620 /*
4621 * This is needed only for protection faults but the arch code
4622 * is not yet telling us if this is a protection fault or not.
4623 * This still avoids useless tlb flushes for .text page faults
4624 * with threads.
4625 */
4626 if (vmf->flags & FAULT_FLAG_WRITE)
4627 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4628 }
4629 unlock:
4630 pte_unmap_unlock(vmf->pte, vmf->ptl);
4631 return 0;
4632 }
4633
4634 /*
4635 * By the time we get here, we already hold the mm semaphore
4636 *
4637 * The mmap_lock may have been released depending on flags and our
4638 * return value. See filemap_fault() and __lock_page_or_retry().
4639 */
4640 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4641 unsigned long address, unsigned int flags)
4642 {
4643 struct vm_fault vmf = {
4644 .vma = vma,
4645 .address = address & PAGE_MASK,
4646 .flags = flags,
4647 .pgoff = linear_page_index(vma, address),
4648 .gfp_mask = __get_fault_gfp_mask(vma),
4649 };
4650 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4651 struct mm_struct *mm = vma->vm_mm;
4652 pgd_t *pgd;
4653 p4d_t *p4d;
4654 vm_fault_t ret;
4655
4656 pgd = pgd_offset(mm, address);
4657 p4d = p4d_alloc(mm, pgd, address);
4658 if (!p4d)
4659 return VM_FAULT_OOM;
4660
4661 vmf.pud = pud_alloc(mm, p4d, address);
4662 if (!vmf.pud)
4663 return VM_FAULT_OOM;
4664 retry_pud:
4665 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4666 ret = create_huge_pud(&vmf);
4667 if (!(ret & VM_FAULT_FALLBACK))
4668 return ret;
4669 } else {
4670 pud_t orig_pud = *vmf.pud;
4671
4672 barrier();
4673 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4674
4675 /* NUMA case for anonymous PUDs would go here */
4676
4677 if (dirty && !pud_write(orig_pud)) {
4678 ret = wp_huge_pud(&vmf, orig_pud);
4679 if (!(ret & VM_FAULT_FALLBACK))
4680 return ret;
4681 } else {
4682 huge_pud_set_accessed(&vmf, orig_pud);
4683 return 0;
4684 }
4685 }
4686 }
4687
4688 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4689 if (!vmf.pmd)
4690 return VM_FAULT_OOM;
4691
4692 /* Huge pud page fault raced with pmd_alloc? */
4693 if (pud_trans_unstable(vmf.pud))
4694 goto retry_pud;
4695
4696 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4697 ret = create_huge_pmd(&vmf);
4698 if (!(ret & VM_FAULT_FALLBACK))
4699 return ret;
4700 } else {
4701 vmf.orig_pmd = *vmf.pmd;
4702
4703 barrier();
4704 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4705 VM_BUG_ON(thp_migration_supported() &&
4706 !is_pmd_migration_entry(vmf.orig_pmd));
4707 if (is_pmd_migration_entry(vmf.orig_pmd))
4708 pmd_migration_entry_wait(mm, vmf.pmd);
4709 return 0;
4710 }
4711 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4712 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4713 return do_huge_pmd_numa_page(&vmf);
4714
4715 if (dirty && !pmd_write(vmf.orig_pmd)) {
4716 ret = wp_huge_pmd(&vmf);
4717 if (!(ret & VM_FAULT_FALLBACK))
4718 return ret;
4719 } else {
4720 huge_pmd_set_accessed(&vmf);
4721 return 0;
4722 }
4723 }
4724 }
4725
4726 return handle_pte_fault(&vmf);
4727 }
4728
4729 /**
4730 * mm_account_fault - Do page fault accounting
4731 *
4732 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4733 * of perf event counters, but we'll still do the per-task accounting to
4734 * the task who triggered this page fault.
4735 * @address: the faulted address.
4736 * @flags: the fault flags.
4737 * @ret: the fault retcode.
4738 *
4739 * This will take care of most of the page fault accounting. Meanwhile, it
4740 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4741 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4742 * still be in per-arch page fault handlers at the entry of page fault.
4743 */
4744 static inline void mm_account_fault(struct pt_regs *regs,
4745 unsigned long address, unsigned int flags,
4746 vm_fault_t ret)
4747 {
4748 bool major;
4749
4750 /*
4751 * We don't do accounting for some specific faults:
4752 *
4753 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4754 * includes arch_vma_access_permitted() failing before reaching here.
4755 * So this is not a "this many hardware page faults" counter. We
4756 * should use the hw profiling for that.
4757 *
4758 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4759 * once they're completed.
4760 */
4761 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4762 return;
4763
4764 /*
4765 * We define the fault as a major fault when the final successful fault
4766 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4767 * handle it immediately previously).
4768 */
4769 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4770
4771 if (major)
4772 current->maj_flt++;
4773 else
4774 current->min_flt++;
4775
4776 /*
4777 * If the fault is done for GUP, regs will be NULL. We only do the
4778 * accounting for the per thread fault counters who triggered the
4779 * fault, and we skip the perf event updates.
4780 */
4781 if (!regs)
4782 return;
4783
4784 if (major)
4785 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4786 else
4787 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4788 }
4789
4790 /*
4791 * By the time we get here, we already hold the mm semaphore
4792 *
4793 * The mmap_lock may have been released depending on flags and our
4794 * return value. See filemap_fault() and __lock_page_or_retry().
4795 */
4796 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4797 unsigned int flags, struct pt_regs *regs)
4798 {
4799 vm_fault_t ret;
4800
4801 __set_current_state(TASK_RUNNING);
4802
4803 count_vm_event(PGFAULT);
4804 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4805
4806 /* do counter updates before entering really critical section. */
4807 check_sync_rss_stat(current);
4808
4809 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4810 flags & FAULT_FLAG_INSTRUCTION,
4811 flags & FAULT_FLAG_REMOTE))
4812 return VM_FAULT_SIGSEGV;
4813
4814 /*
4815 * Enable the memcg OOM handling for faults triggered in user
4816 * space. Kernel faults are handled more gracefully.
4817 */
4818 if (flags & FAULT_FLAG_USER)
4819 mem_cgroup_enter_user_fault();
4820
4821 if (unlikely(is_vm_hugetlb_page(vma)))
4822 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4823 else
4824 ret = __handle_mm_fault(vma, address, flags);
4825
4826 if (flags & FAULT_FLAG_USER) {
4827 mem_cgroup_exit_user_fault();
4828 /*
4829 * The task may have entered a memcg OOM situation but
4830 * if the allocation error was handled gracefully (no
4831 * VM_FAULT_OOM), there is no need to kill anything.
4832 * Just clean up the OOM state peacefully.
4833 */
4834 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4835 mem_cgroup_oom_synchronize(false);
4836 }
4837
4838 mm_account_fault(regs, address, flags, ret);
4839
4840 return ret;
4841 }
4842 EXPORT_SYMBOL_GPL(handle_mm_fault);
4843
4844 #ifndef __PAGETABLE_P4D_FOLDED
4845 /*
4846 * Allocate p4d page table.
4847 * We've already handled the fast-path in-line.
4848 */
4849 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4850 {
4851 p4d_t *new = p4d_alloc_one(mm, address);
4852 if (!new)
4853 return -ENOMEM;
4854
4855 smp_wmb(); /* See comment in __pte_alloc */
4856
4857 spin_lock(&mm->page_table_lock);
4858 if (pgd_present(*pgd)) /* Another has populated it */
4859 p4d_free(mm, new);
4860 else
4861 pgd_populate(mm, pgd, new);
4862 spin_unlock(&mm->page_table_lock);
4863 return 0;
4864 }
4865 #endif /* __PAGETABLE_P4D_FOLDED */
4866
4867 #ifndef __PAGETABLE_PUD_FOLDED
4868 /*
4869 * Allocate page upper directory.
4870 * We've already handled the fast-path in-line.
4871 */
4872 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4873 {
4874 pud_t *new = pud_alloc_one(mm, address);
4875 if (!new)
4876 return -ENOMEM;
4877
4878 smp_wmb(); /* See comment in __pte_alloc */
4879
4880 spin_lock(&mm->page_table_lock);
4881 if (!p4d_present(*p4d)) {
4882 mm_inc_nr_puds(mm);
4883 p4d_populate(mm, p4d, new);
4884 } else /* Another has populated it */
4885 pud_free(mm, new);
4886 spin_unlock(&mm->page_table_lock);
4887 return 0;
4888 }
4889 #endif /* __PAGETABLE_PUD_FOLDED */
4890
4891 #ifndef __PAGETABLE_PMD_FOLDED
4892 /*
4893 * Allocate page middle directory.
4894 * We've already handled the fast-path in-line.
4895 */
4896 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4897 {
4898 spinlock_t *ptl;
4899 pmd_t *new = pmd_alloc_one(mm, address);
4900 if (!new)
4901 return -ENOMEM;
4902
4903 smp_wmb(); /* See comment in __pte_alloc */
4904
4905 ptl = pud_lock(mm, pud);
4906 if (!pud_present(*pud)) {
4907 mm_inc_nr_pmds(mm);
4908 pud_populate(mm, pud, new);
4909 } else /* Another has populated it */
4910 pmd_free(mm, new);
4911 spin_unlock(ptl);
4912 return 0;
4913 }
4914 #endif /* __PAGETABLE_PMD_FOLDED */
4915
4916 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4917 struct mmu_notifier_range *range, pte_t **ptepp,
4918 pmd_t **pmdpp, spinlock_t **ptlp)
4919 {
4920 pgd_t *pgd;
4921 p4d_t *p4d;
4922 pud_t *pud;
4923 pmd_t *pmd;
4924 pte_t *ptep;
4925
4926 pgd = pgd_offset(mm, address);
4927 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4928 goto out;
4929
4930 p4d = p4d_offset(pgd, address);
4931 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4932 goto out;
4933
4934 pud = pud_offset(p4d, address);
4935 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4936 goto out;
4937
4938 pmd = pmd_offset(pud, address);
4939 VM_BUG_ON(pmd_trans_huge(*pmd));
4940
4941 if (pmd_huge(*pmd)) {
4942 if (!pmdpp)
4943 goto out;
4944
4945 if (range) {
4946 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4947 NULL, mm, address & PMD_MASK,
4948 (address & PMD_MASK) + PMD_SIZE);
4949 mmu_notifier_invalidate_range_start(range);
4950 }
4951 *ptlp = pmd_lock(mm, pmd);
4952 if (pmd_huge(*pmd)) {
4953 *pmdpp = pmd;
4954 return 0;
4955 }
4956 spin_unlock(*ptlp);
4957 if (range)
4958 mmu_notifier_invalidate_range_end(range);
4959 }
4960
4961 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4962 goto out;
4963
4964 if (range) {
4965 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4966 address & PAGE_MASK,
4967 (address & PAGE_MASK) + PAGE_SIZE);
4968 mmu_notifier_invalidate_range_start(range);
4969 }
4970 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4971 if (!pte_present(*ptep))
4972 goto unlock;
4973 *ptepp = ptep;
4974 return 0;
4975 unlock:
4976 pte_unmap_unlock(ptep, *ptlp);
4977 if (range)
4978 mmu_notifier_invalidate_range_end(range);
4979 out:
4980 return -EINVAL;
4981 }
4982
4983 /**
4984 * follow_pte - look up PTE at a user virtual address
4985 * @mm: the mm_struct of the target address space
4986 * @address: user virtual address
4987 * @ptepp: location to store found PTE
4988 * @ptlp: location to store the lock for the PTE
4989 *
4990 * On a successful return, the pointer to the PTE is stored in @ptepp;
4991 * the corresponding lock is taken and its location is stored in @ptlp.
4992 * The contents of the PTE are only stable until @ptlp is released;
4993 * any further use, if any, must be protected against invalidation
4994 * with MMU notifiers.
4995 *
4996 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4997 * should be taken for read.
4998 *
4999 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5000 * it is not a good general-purpose API.
5001 *
5002 * Return: zero on success, -ve otherwise.
5003 */
5004 int follow_pte(struct mm_struct *mm, unsigned long address,
5005 pte_t **ptepp, spinlock_t **ptlp)
5006 {
5007 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5008 }
5009 EXPORT_SYMBOL_GPL(follow_pte);
5010
5011 /**
5012 * follow_pfn - look up PFN at a user virtual address
5013 * @vma: memory mapping
5014 * @address: user virtual address
5015 * @pfn: location to store found PFN
5016 *
5017 * Only IO mappings and raw PFN mappings are allowed.
5018 *
5019 * This function does not allow the caller to read the permissions
5020 * of the PTE. Do not use it.
5021 *
5022 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5023 */
5024 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5025 unsigned long *pfn)
5026 {
5027 int ret = -EINVAL;
5028 spinlock_t *ptl;
5029 pte_t *ptep;
5030
5031 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5032 return ret;
5033
5034 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5035 if (ret)
5036 return ret;
5037 *pfn = pte_pfn(*ptep);
5038 pte_unmap_unlock(ptep, ptl);
5039 return 0;
5040 }
5041 EXPORT_SYMBOL(follow_pfn);
5042
5043 #ifdef CONFIG_HAVE_IOREMAP_PROT
5044 int follow_phys(struct vm_area_struct *vma,
5045 unsigned long address, unsigned int flags,
5046 unsigned long *prot, resource_size_t *phys)
5047 {
5048 int ret = -EINVAL;
5049 pte_t *ptep, pte;
5050 spinlock_t *ptl;
5051
5052 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5053 goto out;
5054
5055 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5056 goto out;
5057 pte = *ptep;
5058
5059 if ((flags & FOLL_WRITE) && !pte_write(pte))
5060 goto unlock;
5061
5062 *prot = pgprot_val(pte_pgprot(pte));
5063 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5064
5065 ret = 0;
5066 unlock:
5067 pte_unmap_unlock(ptep, ptl);
5068 out:
5069 return ret;
5070 }
5071
5072 /**
5073 * generic_access_phys - generic implementation for iomem mmap access
5074 * @vma: the vma to access
5075 * @addr: userspace address, not relative offset within @vma
5076 * @buf: buffer to read/write
5077 * @len: length of transfer
5078 * @write: set to FOLL_WRITE when writing, otherwise reading
5079 *
5080 * This is a generic implementation for &vm_operations_struct.access for an
5081 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5082 * not page based.
5083 */
5084 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5085 void *buf, int len, int write)
5086 {
5087 resource_size_t phys_addr;
5088 unsigned long prot = 0;
5089 void __iomem *maddr;
5090 pte_t *ptep, pte;
5091 spinlock_t *ptl;
5092 int offset = offset_in_page(addr);
5093 int ret = -EINVAL;
5094
5095 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5096 return -EINVAL;
5097
5098 retry:
5099 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5100 return -EINVAL;
5101 pte = *ptep;
5102 pte_unmap_unlock(ptep, ptl);
5103
5104 prot = pgprot_val(pte_pgprot(pte));
5105 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5106
5107 if ((write & FOLL_WRITE) && !pte_write(pte))
5108 return -EINVAL;
5109
5110 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5111 if (!maddr)
5112 return -ENOMEM;
5113
5114 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5115 goto out_unmap;
5116
5117 if (!pte_same(pte, *ptep)) {
5118 pte_unmap_unlock(ptep, ptl);
5119 iounmap(maddr);
5120
5121 goto retry;
5122 }
5123
5124 if (write)
5125 memcpy_toio(maddr + offset, buf, len);
5126 else
5127 memcpy_fromio(buf, maddr + offset, len);
5128 ret = len;
5129 pte_unmap_unlock(ptep, ptl);
5130 out_unmap:
5131 iounmap(maddr);
5132
5133 return ret;
5134 }
5135 EXPORT_SYMBOL_GPL(generic_access_phys);
5136 #endif
5137
5138 /*
5139 * Access another process' address space as given in mm.
5140 */
5141 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5142 int len, unsigned int gup_flags)
5143 {
5144 struct vm_area_struct *vma;
5145 void *old_buf = buf;
5146 int write = gup_flags & FOLL_WRITE;
5147
5148 if (mmap_read_lock_killable(mm))
5149 return 0;
5150
5151 /* ignore errors, just check how much was successfully transferred */
5152 while (len) {
5153 int bytes, ret, offset;
5154 void *maddr;
5155 struct page *page = NULL;
5156
5157 ret = get_user_pages_remote(mm, addr, 1,
5158 gup_flags, &page, &vma, NULL);
5159 if (ret <= 0) {
5160 #ifndef CONFIG_HAVE_IOREMAP_PROT
5161 break;
5162 #else
5163 /*
5164 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5165 * we can access using slightly different code.
5166 */
5167 vma = vma_lookup(mm, addr);
5168 if (!vma)
5169 break;
5170 if (vma->vm_ops && vma->vm_ops->access)
5171 ret = vma->vm_ops->access(vma, addr, buf,
5172 len, write);
5173 if (ret <= 0)
5174 break;
5175 bytes = ret;
5176 #endif
5177 } else {
5178 bytes = len;
5179 offset = addr & (PAGE_SIZE-1);
5180 if (bytes > PAGE_SIZE-offset)
5181 bytes = PAGE_SIZE-offset;
5182
5183 maddr = kmap(page);
5184 if (write) {
5185 copy_to_user_page(vma, page, addr,
5186 maddr + offset, buf, bytes);
5187 set_page_dirty_lock(page);
5188 } else {
5189 copy_from_user_page(vma, page, addr,
5190 buf, maddr + offset, bytes);
5191 }
5192 kunmap(page);
5193 put_page(page);
5194 }
5195 len -= bytes;
5196 buf += bytes;
5197 addr += bytes;
5198 }
5199 mmap_read_unlock(mm);
5200
5201 return buf - old_buf;
5202 }
5203
5204 /**
5205 * access_remote_vm - access another process' address space
5206 * @mm: the mm_struct of the target address space
5207 * @addr: start address to access
5208 * @buf: source or destination buffer
5209 * @len: number of bytes to transfer
5210 * @gup_flags: flags modifying lookup behaviour
5211 *
5212 * The caller must hold a reference on @mm.
5213 *
5214 * Return: number of bytes copied from source to destination.
5215 */
5216 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5217 void *buf, int len, unsigned int gup_flags)
5218 {
5219 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5220 }
5221
5222 /*
5223 * Access another process' address space.
5224 * Source/target buffer must be kernel space,
5225 * Do not walk the page table directly, use get_user_pages
5226 */
5227 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5228 void *buf, int len, unsigned int gup_flags)
5229 {
5230 struct mm_struct *mm;
5231 int ret;
5232
5233 mm = get_task_mm(tsk);
5234 if (!mm)
5235 return 0;
5236
5237 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5238
5239 mmput(mm);
5240
5241 return ret;
5242 }
5243 EXPORT_SYMBOL_GPL(access_process_vm);
5244
5245 /*
5246 * Print the name of a VMA.
5247 */
5248 void print_vma_addr(char *prefix, unsigned long ip)
5249 {
5250 struct mm_struct *mm = current->mm;
5251 struct vm_area_struct *vma;
5252
5253 /*
5254 * we might be running from an atomic context so we cannot sleep
5255 */
5256 if (!mmap_read_trylock(mm))
5257 return;
5258
5259 vma = find_vma(mm, ip);
5260 if (vma && vma->vm_file) {
5261 struct file *f = vma->vm_file;
5262 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5263 if (buf) {
5264 char *p;
5265
5266 p = file_path(f, buf, PAGE_SIZE);
5267 if (IS_ERR(p))
5268 p = "?";
5269 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5270 vma->vm_start,
5271 vma->vm_end - vma->vm_start);
5272 free_page((unsigned long)buf);
5273 }
5274 }
5275 mmap_read_unlock(mm);
5276 }
5277
5278 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5279 void __might_fault(const char *file, int line)
5280 {
5281 /*
5282 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5283 * holding the mmap_lock, this is safe because kernel memory doesn't
5284 * get paged out, therefore we'll never actually fault, and the
5285 * below annotations will generate false positives.
5286 */
5287 if (uaccess_kernel())
5288 return;
5289 if (pagefault_disabled())
5290 return;
5291 __might_sleep(file, line, 0);
5292 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5293 if (current->mm)
5294 might_lock_read(&current->mm->mmap_lock);
5295 #endif
5296 }
5297 EXPORT_SYMBOL(__might_fault);
5298 #endif
5299
5300 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5301 /*
5302 * Process all subpages of the specified huge page with the specified
5303 * operation. The target subpage will be processed last to keep its
5304 * cache lines hot.
5305 */
5306 static inline void process_huge_page(
5307 unsigned long addr_hint, unsigned int pages_per_huge_page,
5308 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5309 void *arg)
5310 {
5311 int i, n, base, l;
5312 unsigned long addr = addr_hint &
5313 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5314
5315 /* Process target subpage last to keep its cache lines hot */
5316 might_sleep();
5317 n = (addr_hint - addr) / PAGE_SIZE;
5318 if (2 * n <= pages_per_huge_page) {
5319 /* If target subpage in first half of huge page */
5320 base = 0;
5321 l = n;
5322 /* Process subpages at the end of huge page */
5323 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5324 cond_resched();
5325 process_subpage(addr + i * PAGE_SIZE, i, arg);
5326 }
5327 } else {
5328 /* If target subpage in second half of huge page */
5329 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5330 l = pages_per_huge_page - n;
5331 /* Process subpages at the begin of huge page */
5332 for (i = 0; i < base; i++) {
5333 cond_resched();
5334 process_subpage(addr + i * PAGE_SIZE, i, arg);
5335 }
5336 }
5337 /*
5338 * Process remaining subpages in left-right-left-right pattern
5339 * towards the target subpage
5340 */
5341 for (i = 0; i < l; i++) {
5342 int left_idx = base + i;
5343 int right_idx = base + 2 * l - 1 - i;
5344
5345 cond_resched();
5346 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5347 cond_resched();
5348 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5349 }
5350 }
5351
5352 static void clear_gigantic_page(struct page *page,
5353 unsigned long addr,
5354 unsigned int pages_per_huge_page)
5355 {
5356 int i;
5357 struct page *p = page;
5358
5359 might_sleep();
5360 for (i = 0; i < pages_per_huge_page;
5361 i++, p = mem_map_next(p, page, i)) {
5362 cond_resched();
5363 clear_user_highpage(p, addr + i * PAGE_SIZE);
5364 }
5365 }
5366
5367 static void clear_subpage(unsigned long addr, int idx, void *arg)
5368 {
5369 struct page *page = arg;
5370
5371 clear_user_highpage(page + idx, addr);
5372 }
5373
5374 void clear_huge_page(struct page *page,
5375 unsigned long addr_hint, unsigned int pages_per_huge_page)
5376 {
5377 unsigned long addr = addr_hint &
5378 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5379
5380 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5381 clear_gigantic_page(page, addr, pages_per_huge_page);
5382 return;
5383 }
5384
5385 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5386 }
5387
5388 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5389 unsigned long addr,
5390 struct vm_area_struct *vma,
5391 unsigned int pages_per_huge_page)
5392 {
5393 int i;
5394 struct page *dst_base = dst;
5395 struct page *src_base = src;
5396
5397 for (i = 0; i < pages_per_huge_page; ) {
5398 cond_resched();
5399 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5400
5401 i++;
5402 dst = mem_map_next(dst, dst_base, i);
5403 src = mem_map_next(src, src_base, i);
5404 }
5405 }
5406
5407 struct copy_subpage_arg {
5408 struct page *dst;
5409 struct page *src;
5410 struct vm_area_struct *vma;
5411 };
5412
5413 static void copy_subpage(unsigned long addr, int idx, void *arg)
5414 {
5415 struct copy_subpage_arg *copy_arg = arg;
5416
5417 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5418 addr, copy_arg->vma);
5419 }
5420
5421 void copy_user_huge_page(struct page *dst, struct page *src,
5422 unsigned long addr_hint, struct vm_area_struct *vma,
5423 unsigned int pages_per_huge_page)
5424 {
5425 unsigned long addr = addr_hint &
5426 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5427 struct copy_subpage_arg arg = {
5428 .dst = dst,
5429 .src = src,
5430 .vma = vma,
5431 };
5432
5433 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5434 copy_user_gigantic_page(dst, src, addr, vma,
5435 pages_per_huge_page);
5436 return;
5437 }
5438
5439 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5440 }
5441
5442 long copy_huge_page_from_user(struct page *dst_page,
5443 const void __user *usr_src,
5444 unsigned int pages_per_huge_page,
5445 bool allow_pagefault)
5446 {
5447 void *src = (void *)usr_src;
5448 void *page_kaddr;
5449 unsigned long i, rc = 0;
5450 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5451 struct page *subpage = dst_page;
5452
5453 for (i = 0; i < pages_per_huge_page;
5454 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5455 if (allow_pagefault)
5456 page_kaddr = kmap(subpage);
5457 else
5458 page_kaddr = kmap_atomic(subpage);
5459 rc = copy_from_user(page_kaddr,
5460 (const void __user *)(src + i * PAGE_SIZE),
5461 PAGE_SIZE);
5462 if (allow_pagefault)
5463 kunmap(subpage);
5464 else
5465 kunmap_atomic(page_kaddr);
5466
5467 ret_val -= (PAGE_SIZE - rc);
5468 if (rc)
5469 break;
5470
5471 cond_resched();
5472 }
5473 return ret_val;
5474 }
5475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5476
5477 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5478
5479 static struct kmem_cache *page_ptl_cachep;
5480
5481 void __init ptlock_cache_init(void)
5482 {
5483 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5484 SLAB_PANIC, NULL);
5485 }
5486
5487 bool ptlock_alloc(struct page *page)
5488 {
5489 spinlock_t *ptl;
5490
5491 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5492 if (!ptl)
5493 return false;
5494 page->ptl = ptl;
5495 return true;
5496 }
5497
5498 void ptlock_free(struct page *page)
5499 {
5500 kmem_cache_free(page_ptl_cachep, page->ptl);
5501 }
5502 #endif