]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 1;
115 #else
116 2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121 randomize_va_space = 0;
122 return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134 static int __init init_zero_pfn(void)
135 {
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330 * See the comment near struct mmu_table_batch.
331 */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 struct mmu_table_batch **batch = &tlb->batch;
377
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /* tlb_gather_mmu
403 * Called to initialize an (on-stack) mmu_gather structure for page-table
404 * tear-down from @mm. The @fullmm argument is used when @mm is without
405 * users and we're going to destroy the full address space (exit/execve).
406 */
407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 unsigned long start, unsigned long end)
409 {
410 arch_tlb_gather_mmu(tlb, mm, start, end);
411 inc_tlb_flush_pending(tlb->mm);
412 }
413
414 void tlb_finish_mmu(struct mmu_gather *tlb,
415 unsigned long start, unsigned long end)
416 {
417 /*
418 * If there are parallel threads are doing PTE changes on same range
419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 * flush by batching, a thread has stable TLB entry can fail to flush
421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 * forcefully if we detect parallel PTE batching threads.
423 */
424 bool force = mm_tlb_flush_nested(tlb->mm);
425
426 arch_tlb_finish_mmu(tlb, start, end, force);
427 dec_tlb_flush_pending(tlb->mm);
428 }
429
430 /*
431 * Note: this doesn't free the actual pages themselves. That
432 * has been handled earlier when unmapping all the memory regions.
433 */
434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 unsigned long addr)
436 {
437 pgtable_t token = pmd_pgtable(*pmd);
438 pmd_clear(pmd);
439 pte_free_tlb(tlb, token, addr);
440 atomic_long_dec(&tlb->mm->nr_ptes);
441 }
442
443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 unsigned long floor, unsigned long ceiling)
446 {
447 pmd_t *pmd;
448 unsigned long next;
449 unsigned long start;
450
451 start = addr;
452 pmd = pmd_offset(pud, addr);
453 do {
454 next = pmd_addr_end(addr, end);
455 if (pmd_none_or_clear_bad(pmd))
456 continue;
457 free_pte_range(tlb, pmd, addr);
458 } while (pmd++, addr = next, addr != end);
459
460 start &= PUD_MASK;
461 if (start < floor)
462 return;
463 if (ceiling) {
464 ceiling &= PUD_MASK;
465 if (!ceiling)
466 return;
467 }
468 if (end - 1 > ceiling - 1)
469 return;
470
471 pmd = pmd_offset(pud, start);
472 pud_clear(pud);
473 pmd_free_tlb(tlb, pmd, start);
474 mm_dec_nr_pmds(tlb->mm);
475 }
476
477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
478 unsigned long addr, unsigned long end,
479 unsigned long floor, unsigned long ceiling)
480 {
481 pud_t *pud;
482 unsigned long next;
483 unsigned long start;
484
485 start = addr;
486 pud = pud_offset(p4d, addr);
487 do {
488 next = pud_addr_end(addr, end);
489 if (pud_none_or_clear_bad(pud))
490 continue;
491 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
492 } while (pud++, addr = next, addr != end);
493
494 start &= P4D_MASK;
495 if (start < floor)
496 return;
497 if (ceiling) {
498 ceiling &= P4D_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 return;
504
505 pud = pud_offset(p4d, start);
506 p4d_clear(p4d);
507 pud_free_tlb(tlb, pud, start);
508 }
509
510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 unsigned long addr, unsigned long end,
512 unsigned long floor, unsigned long ceiling)
513 {
514 p4d_t *p4d;
515 unsigned long next;
516 unsigned long start;
517
518 start = addr;
519 p4d = p4d_offset(pgd, addr);
520 do {
521 next = p4d_addr_end(addr, end);
522 if (p4d_none_or_clear_bad(p4d))
523 continue;
524 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 } while (p4d++, addr = next, addr != end);
526
527 start &= PGDIR_MASK;
528 if (start < floor)
529 return;
530 if (ceiling) {
531 ceiling &= PGDIR_MASK;
532 if (!ceiling)
533 return;
534 }
535 if (end - 1 > ceiling - 1)
536 return;
537
538 p4d = p4d_offset(pgd, start);
539 pgd_clear(pgd);
540 p4d_free_tlb(tlb, p4d, start);
541 }
542
543 /*
544 * This function frees user-level page tables of a process.
545 */
546 void free_pgd_range(struct mmu_gather *tlb,
547 unsigned long addr, unsigned long end,
548 unsigned long floor, unsigned long ceiling)
549 {
550 pgd_t *pgd;
551 unsigned long next;
552
553 /*
554 * The next few lines have given us lots of grief...
555 *
556 * Why are we testing PMD* at this top level? Because often
557 * there will be no work to do at all, and we'd prefer not to
558 * go all the way down to the bottom just to discover that.
559 *
560 * Why all these "- 1"s? Because 0 represents both the bottom
561 * of the address space and the top of it (using -1 for the
562 * top wouldn't help much: the masks would do the wrong thing).
563 * The rule is that addr 0 and floor 0 refer to the bottom of
564 * the address space, but end 0 and ceiling 0 refer to the top
565 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 * that end 0 case should be mythical).
567 *
568 * Wherever addr is brought up or ceiling brought down, we must
569 * be careful to reject "the opposite 0" before it confuses the
570 * subsequent tests. But what about where end is brought down
571 * by PMD_SIZE below? no, end can't go down to 0 there.
572 *
573 * Whereas we round start (addr) and ceiling down, by different
574 * masks at different levels, in order to test whether a table
575 * now has no other vmas using it, so can be freed, we don't
576 * bother to round floor or end up - the tests don't need that.
577 */
578
579 addr &= PMD_MASK;
580 if (addr < floor) {
581 addr += PMD_SIZE;
582 if (!addr)
583 return;
584 }
585 if (ceiling) {
586 ceiling &= PMD_MASK;
587 if (!ceiling)
588 return;
589 }
590 if (end - 1 > ceiling - 1)
591 end -= PMD_SIZE;
592 if (addr > end - 1)
593 return;
594 /*
595 * We add page table cache pages with PAGE_SIZE,
596 * (see pte_free_tlb()), flush the tlb if we need
597 */
598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
599 pgd = pgd_offset(tlb->mm, addr);
600 do {
601 next = pgd_addr_end(addr, end);
602 if (pgd_none_or_clear_bad(pgd))
603 continue;
604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
605 } while (pgd++, addr = next, addr != end);
606 }
607
608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
609 unsigned long floor, unsigned long ceiling)
610 {
611 while (vma) {
612 struct vm_area_struct *next = vma->vm_next;
613 unsigned long addr = vma->vm_start;
614
615 /*
616 * Hide vma from rmap and truncate_pagecache before freeing
617 * pgtables
618 */
619 unlink_anon_vmas(vma);
620 unlink_file_vma(vma);
621
622 if (is_vm_hugetlb_page(vma)) {
623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
624 floor, next ? next->vm_start : ceiling);
625 } else {
626 /*
627 * Optimization: gather nearby vmas into one call down
628 */
629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
630 && !is_vm_hugetlb_page(next)) {
631 vma = next;
632 next = vma->vm_next;
633 unlink_anon_vmas(vma);
634 unlink_file_vma(vma);
635 }
636 free_pgd_range(tlb, addr, vma->vm_end,
637 floor, next ? next->vm_start : ceiling);
638 }
639 vma = next;
640 }
641 }
642
643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
644 {
645 spinlock_t *ptl;
646 pgtable_t new = pte_alloc_one(mm, address);
647 if (!new)
648 return -ENOMEM;
649
650 /*
651 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 * visible before the pte is made visible to other CPUs by being
653 * put into page tables.
654 *
655 * The other side of the story is the pointer chasing in the page
656 * table walking code (when walking the page table without locking;
657 * ie. most of the time). Fortunately, these data accesses consist
658 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 * being the notable exception) will already guarantee loads are
660 * seen in-order. See the alpha page table accessors for the
661 * smp_read_barrier_depends() barriers in page table walking code.
662 */
663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
665 ptl = pmd_lock(mm, pmd);
666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
667 atomic_long_inc(&mm->nr_ptes);
668 pmd_populate(mm, pmd, new);
669 new = NULL;
670 }
671 spin_unlock(ptl);
672 if (new)
673 pte_free(mm, new);
674 return 0;
675 }
676
677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
678 {
679 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 if (!new)
681 return -ENOMEM;
682
683 smp_wmb(); /* See comment in __pte_alloc */
684
685 spin_lock(&init_mm.page_table_lock);
686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
687 pmd_populate_kernel(&init_mm, pmd, new);
688 new = NULL;
689 }
690 spin_unlock(&init_mm.page_table_lock);
691 if (new)
692 pte_free_kernel(&init_mm, new);
693 return 0;
694 }
695
696 static inline void init_rss_vec(int *rss)
697 {
698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699 }
700
701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
702 {
703 int i;
704
705 if (current->mm == mm)
706 sync_mm_rss(mm);
707 for (i = 0; i < NR_MM_COUNTERS; i++)
708 if (rss[i])
709 add_mm_counter(mm, i, rss[i]);
710 }
711
712 /*
713 * This function is called to print an error when a bad pte
714 * is found. For example, we might have a PFN-mapped pte in
715 * a region that doesn't allow it.
716 *
717 * The calling function must still handle the error.
718 */
719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 pte_t pte, struct page *page)
721 {
722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
723 p4d_t *p4d = p4d_offset(pgd, addr);
724 pud_t *pud = pud_offset(p4d, addr);
725 pmd_t *pmd = pmd_offset(pud, addr);
726 struct address_space *mapping;
727 pgoff_t index;
728 static unsigned long resume;
729 static unsigned long nr_shown;
730 static unsigned long nr_unshown;
731
732 /*
733 * Allow a burst of 60 reports, then keep quiet for that minute;
734 * or allow a steady drip of one report per second.
735 */
736 if (nr_shown == 60) {
737 if (time_before(jiffies, resume)) {
738 nr_unshown++;
739 return;
740 }
741 if (nr_unshown) {
742 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 nr_unshown);
744 nr_unshown = 0;
745 }
746 nr_shown = 0;
747 }
748 if (nr_shown++ == 0)
749 resume = jiffies + 60 * HZ;
750
751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 index = linear_page_index(vma, addr);
753
754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
755 current->comm,
756 (long long)pte_val(pte), (long long)pmd_val(*pmd));
757 if (page)
758 dump_page(page, "bad pte");
759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
761 /*
762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 */
764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 vma->vm_file,
766 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 mapping ? mapping->a_ops->readpage : NULL);
769 dump_stack();
770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
771 }
772
773 /*
774 * vm_normal_page -- This function gets the "struct page" associated with a pte.
775 *
776 * "Special" mappings do not wish to be associated with a "struct page" (either
777 * it doesn't exist, or it exists but they don't want to touch it). In this
778 * case, NULL is returned here. "Normal" mappings do have a struct page.
779 *
780 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781 * pte bit, in which case this function is trivial. Secondly, an architecture
782 * may not have a spare pte bit, which requires a more complicated scheme,
783 * described below.
784 *
785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786 * special mapping (even if there are underlying and valid "struct pages").
787 * COWed pages of a VM_PFNMAP are always normal.
788 *
789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792 * mapping will always honor the rule
793 *
794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795 *
796 * And for normal mappings this is false.
797 *
798 * This restricts such mappings to be a linear translation from virtual address
799 * to pfn. To get around this restriction, we allow arbitrary mappings so long
800 * as the vma is not a COW mapping; in that case, we know that all ptes are
801 * special (because none can have been COWed).
802 *
803 *
804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
805 *
806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807 * page" backing, however the difference is that _all_ pages with a struct
808 * page (that is, those where pfn_valid is true) are refcounted and considered
809 * normal pages by the VM. The disadvantage is that pages are refcounted
810 * (which can be slower and simply not an option for some PFNMAP users). The
811 * advantage is that we don't have to follow the strict linearity rule of
812 * PFNMAP mappings in order to support COWable mappings.
813 *
814 */
815 #ifdef __HAVE_ARCH_PTE_SPECIAL
816 # define HAVE_PTE_SPECIAL 1
817 #else
818 # define HAVE_PTE_SPECIAL 0
819 #endif
820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte)
822 {
823 unsigned long pfn = pte_pfn(pte);
824
825 if (HAVE_PTE_SPECIAL) {
826 if (likely(!pte_special(pte)))
827 goto check_pfn;
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
832 if (!is_zero_pfn(pfn))
833 print_bad_pte(vma, addr, pte, NULL);
834 return NULL;
835 }
836
837 /* !HAVE_PTE_SPECIAL case follows: */
838
839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 if (vma->vm_flags & VM_MIXEDMAP) {
841 if (!pfn_valid(pfn))
842 return NULL;
843 goto out;
844 } else {
845 unsigned long off;
846 off = (addr - vma->vm_start) >> PAGE_SHIFT;
847 if (pfn == vma->vm_pgoff + off)
848 return NULL;
849 if (!is_cow_mapping(vma->vm_flags))
850 return NULL;
851 }
852 }
853
854 if (is_zero_pfn(pfn))
855 return NULL;
856 check_pfn:
857 if (unlikely(pfn > highest_memmap_pfn)) {
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
861
862 /*
863 * NOTE! We still have PageReserved() pages in the page tables.
864 * eg. VDSO mappings can cause them to exist.
865 */
866 out:
867 return pfn_to_page(pfn);
868 }
869
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 pmd_t pmd)
873 {
874 unsigned long pfn = pmd_pfn(pmd);
875
876 /*
877 * There is no pmd_special() but there may be special pmds, e.g.
878 * in a direct-access (dax) mapping, so let's just replicate the
879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 */
881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 if (vma->vm_flags & VM_MIXEDMAP) {
883 if (!pfn_valid(pfn))
884 return NULL;
885 goto out;
886 } else {
887 unsigned long off;
888 off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 if (pfn == vma->vm_pgoff + off)
890 return NULL;
891 if (!is_cow_mapping(vma->vm_flags))
892 return NULL;
893 }
894 }
895
896 if (is_zero_pfn(pfn))
897 return NULL;
898 if (unlikely(pfn > highest_memmap_pfn))
899 return NULL;
900
901 /*
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
904 */
905 out:
906 return pfn_to_page(pfn);
907 }
908 #endif
909
910 /*
911 * copy one vm_area from one task to the other. Assumes the page tables
912 * already present in the new task to be cleared in the whole range
913 * covered by this vma.
914 */
915
916 static inline unsigned long
917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
919 unsigned long addr, int *rss)
920 {
921 unsigned long vm_flags = vma->vm_flags;
922 pte_t pte = *src_pte;
923 struct page *page;
924
925 /* pte contains position in swap or file, so copy. */
926 if (unlikely(!pte_present(pte))) {
927 swp_entry_t entry = pte_to_swp_entry(pte);
928
929 if (likely(!non_swap_entry(entry))) {
930 if (swap_duplicate(entry) < 0)
931 return entry.val;
932
933 /* make sure dst_mm is on swapoff's mmlist. */
934 if (unlikely(list_empty(&dst_mm->mmlist))) {
935 spin_lock(&mmlist_lock);
936 if (list_empty(&dst_mm->mmlist))
937 list_add(&dst_mm->mmlist,
938 &src_mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 rss[MM_SWAPENTS]++;
942 } else if (is_migration_entry(entry)) {
943 page = migration_entry_to_page(entry);
944
945 rss[mm_counter(page)]++;
946
947 if (is_write_migration_entry(entry) &&
948 is_cow_mapping(vm_flags)) {
949 /*
950 * COW mappings require pages in both
951 * parent and child to be set to read.
952 */
953 make_migration_entry_read(&entry);
954 pte = swp_entry_to_pte(entry);
955 if (pte_swp_soft_dirty(*src_pte))
956 pte = pte_swp_mksoft_dirty(pte);
957 set_pte_at(src_mm, addr, src_pte, pte);
958 }
959 }
960 goto out_set_pte;
961 }
962
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
967 if (is_cow_mapping(vm_flags)) {
968 ptep_set_wrprotect(src_mm, addr, src_pte);
969 pte = pte_wrprotect(pte);
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
979
980 page = vm_normal_page(vma, addr, pte);
981 if (page) {
982 get_page(page);
983 page_dup_rmap(page, false);
984 rss[mm_counter(page)]++;
985 }
986
987 out_set_pte:
988 set_pte_at(dst_mm, addr, dst_pte, pte);
989 return 0;
990 }
991
992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 unsigned long addr, unsigned long end)
995 {
996 pte_t *orig_src_pte, *orig_dst_pte;
997 pte_t *src_pte, *dst_pte;
998 spinlock_t *src_ptl, *dst_ptl;
999 int progress = 0;
1000 int rss[NR_MM_COUNTERS];
1001 swp_entry_t entry = (swp_entry_t){0};
1002
1003 again:
1004 init_rss_vec(rss);
1005
1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1007 if (!dst_pte)
1008 return -ENOMEM;
1009 src_pte = pte_offset_map(src_pmd, addr);
1010 src_ptl = pte_lockptr(src_mm, src_pmd);
1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1012 orig_src_pte = src_pte;
1013 orig_dst_pte = dst_pte;
1014 arch_enter_lazy_mmu_mode();
1015
1016 do {
1017 /*
1018 * We are holding two locks at this point - either of them
1019 * could generate latencies in another task on another CPU.
1020 */
1021 if (progress >= 32) {
1022 progress = 0;
1023 if (need_resched() ||
1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1025 break;
1026 }
1027 if (pte_none(*src_pte)) {
1028 progress++;
1029 continue;
1030 }
1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 vma, addr, rss);
1033 if (entry.val)
1034 break;
1035 progress += 8;
1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1037
1038 arch_leave_lazy_mmu_mode();
1039 spin_unlock(src_ptl);
1040 pte_unmap(orig_src_pte);
1041 add_mm_rss_vec(dst_mm, rss);
1042 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1043 cond_resched();
1044
1045 if (entry.val) {
1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 return -ENOMEM;
1048 progress = 0;
1049 }
1050 if (addr != end)
1051 goto again;
1052 return 0;
1053 }
1054
1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 unsigned long addr, unsigned long end)
1058 {
1059 pmd_t *src_pmd, *dst_pmd;
1060 unsigned long next;
1061
1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 if (!dst_pmd)
1064 return -ENOMEM;
1065 src_pmd = pmd_offset(src_pud, addr);
1066 do {
1067 next = pmd_addr_end(addr, end);
1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1069 int err;
1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1071 err = copy_huge_pmd(dst_mm, src_mm,
1072 dst_pmd, src_pmd, addr, vma);
1073 if (err == -ENOMEM)
1074 return -ENOMEM;
1075 if (!err)
1076 continue;
1077 /* fall through */
1078 }
1079 if (pmd_none_or_clear_bad(src_pmd))
1080 continue;
1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 vma, addr, next))
1083 return -ENOMEM;
1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 return 0;
1086 }
1087
1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1090 unsigned long addr, unsigned long end)
1091 {
1092 pud_t *src_pud, *dst_pud;
1093 unsigned long next;
1094
1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1096 if (!dst_pud)
1097 return -ENOMEM;
1098 src_pud = pud_offset(src_p4d, addr);
1099 do {
1100 next = pud_addr_end(addr, end);
1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 int err;
1103
1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 err = copy_huge_pud(dst_mm, src_mm,
1106 dst_pud, src_pud, addr, vma);
1107 if (err == -ENOMEM)
1108 return -ENOMEM;
1109 if (!err)
1110 continue;
1111 /* fall through */
1112 }
1113 if (pud_none_or_clear_bad(src_pud))
1114 continue;
1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 vma, addr, next))
1117 return -ENOMEM;
1118 } while (dst_pud++, src_pud++, addr = next, addr != end);
1119 return 0;
1120 }
1121
1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125 {
1126 p4d_t *src_p4d, *dst_p4d;
1127 unsigned long next;
1128
1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 if (!dst_p4d)
1131 return -ENOMEM;
1132 src_p4d = p4d_offset(src_pgd, addr);
1133 do {
1134 next = p4d_addr_end(addr, end);
1135 if (p4d_none_or_clear_bad(src_p4d))
1136 continue;
1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 vma, addr, next))
1139 return -ENOMEM;
1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 return 0;
1142 }
1143
1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 struct vm_area_struct *vma)
1146 {
1147 pgd_t *src_pgd, *dst_pgd;
1148 unsigned long next;
1149 unsigned long addr = vma->vm_start;
1150 unsigned long end = vma->vm_end;
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
1153 bool is_cow;
1154 int ret;
1155
1156 /*
1157 * Don't copy ptes where a page fault will fill them correctly.
1158 * Fork becomes much lighter when there are big shared or private
1159 * readonly mappings. The tradeoff is that copy_page_range is more
1160 * efficient than faulting.
1161 */
1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 !vma->anon_vma)
1164 return 0;
1165
1166 if (is_vm_hugetlb_page(vma))
1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1170 /*
1171 * We do not free on error cases below as remove_vma
1172 * gets called on error from higher level routine
1173 */
1174 ret = track_pfn_copy(vma);
1175 if (ret)
1176 return ret;
1177 }
1178
1179 /*
1180 * We need to invalidate the secondary MMU mappings only when
1181 * there could be a permission downgrade on the ptes of the
1182 * parent mm. And a permission downgrade will only happen if
1183 * is_cow_mapping() returns true.
1184 */
1185 is_cow = is_cow_mapping(vma->vm_flags);
1186 mmun_start = addr;
1187 mmun_end = end;
1188 if (is_cow)
1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 mmun_end);
1191
1192 ret = 0;
1193 dst_pgd = pgd_offset(dst_mm, addr);
1194 src_pgd = pgd_offset(src_mm, addr);
1195 do {
1196 next = pgd_addr_end(addr, end);
1197 if (pgd_none_or_clear_bad(src_pgd))
1198 continue;
1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1200 vma, addr, next))) {
1201 ret = -ENOMEM;
1202 break;
1203 }
1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1205
1206 if (is_cow)
1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1208 return ret;
1209 }
1210
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212 struct vm_area_struct *vma, pmd_t *pmd,
1213 unsigned long addr, unsigned long end,
1214 struct zap_details *details)
1215 {
1216 struct mm_struct *mm = tlb->mm;
1217 int force_flush = 0;
1218 int rss[NR_MM_COUNTERS];
1219 spinlock_t *ptl;
1220 pte_t *start_pte;
1221 pte_t *pte;
1222 swp_entry_t entry;
1223
1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1225 again:
1226 init_rss_vec(rss);
1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 pte = start_pte;
1229 flush_tlb_batched_pending(mm);
1230 arch_enter_lazy_mmu_mode();
1231 do {
1232 pte_t ptent = *pte;
1233 if (pte_none(ptent))
1234 continue;
1235
1236 if (pte_present(ptent)) {
1237 struct page *page;
1238
1239 page = vm_normal_page(vma, addr, ptent);
1240 if (unlikely(details) && page) {
1241 /*
1242 * unmap_shared_mapping_pages() wants to
1243 * invalidate cache without truncating:
1244 * unmap shared but keep private pages.
1245 */
1246 if (details->check_mapping &&
1247 details->check_mapping != page_rmapping(page))
1248 continue;
1249 }
1250 ptent = ptep_get_and_clear_full(mm, addr, pte,
1251 tlb->fullmm);
1252 tlb_remove_tlb_entry(tlb, pte, addr);
1253 if (unlikely(!page))
1254 continue;
1255
1256 if (!PageAnon(page)) {
1257 if (pte_dirty(ptent)) {
1258 force_flush = 1;
1259 set_page_dirty(page);
1260 }
1261 if (pte_young(ptent) &&
1262 likely(!(vma->vm_flags & VM_SEQ_READ)))
1263 mark_page_accessed(page);
1264 }
1265 rss[mm_counter(page)]--;
1266 page_remove_rmap(page, false);
1267 if (unlikely(page_mapcount(page) < 0))
1268 print_bad_pte(vma, addr, ptent, page);
1269 if (unlikely(__tlb_remove_page(tlb, page))) {
1270 force_flush = 1;
1271 addr += PAGE_SIZE;
1272 break;
1273 }
1274 continue;
1275 }
1276 /* If details->check_mapping, we leave swap entries. */
1277 if (unlikely(details))
1278 continue;
1279
1280 entry = pte_to_swp_entry(ptent);
1281 if (!non_swap_entry(entry))
1282 rss[MM_SWAPENTS]--;
1283 else if (is_migration_entry(entry)) {
1284 struct page *page;
1285
1286 page = migration_entry_to_page(entry);
1287 rss[mm_counter(page)]--;
1288 }
1289 if (unlikely(!free_swap_and_cache(entry)))
1290 print_bad_pte(vma, addr, ptent, NULL);
1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292 } while (pte++, addr += PAGE_SIZE, addr != end);
1293
1294 add_mm_rss_vec(mm, rss);
1295 arch_leave_lazy_mmu_mode();
1296
1297 /* Do the actual TLB flush before dropping ptl */
1298 if (force_flush)
1299 tlb_flush_mmu_tlbonly(tlb);
1300 pte_unmap_unlock(start_pte, ptl);
1301
1302 /*
1303 * If we forced a TLB flush (either due to running out of
1304 * batch buffers or because we needed to flush dirty TLB
1305 * entries before releasing the ptl), free the batched
1306 * memory too. Restart if we didn't do everything.
1307 */
1308 if (force_flush) {
1309 force_flush = 0;
1310 tlb_flush_mmu_free(tlb);
1311 if (addr != end)
1312 goto again;
1313 }
1314
1315 return addr;
1316 }
1317
1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, pud_t *pud,
1320 unsigned long addr, unsigned long end,
1321 struct zap_details *details)
1322 {
1323 pmd_t *pmd;
1324 unsigned long next;
1325
1326 pmd = pmd_offset(pud, addr);
1327 do {
1328 next = pmd_addr_end(addr, end);
1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1330 if (next - addr != HPAGE_PMD_SIZE) {
1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1333 __split_huge_pmd(vma, pmd, addr, false, NULL);
1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1335 goto next;
1336 /* fall through */
1337 }
1338 /*
1339 * Here there can be other concurrent MADV_DONTNEED or
1340 * trans huge page faults running, and if the pmd is
1341 * none or trans huge it can change under us. This is
1342 * because MADV_DONTNEED holds the mmap_sem in read
1343 * mode.
1344 */
1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 goto next;
1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1348 next:
1349 cond_resched();
1350 } while (pmd++, addr = next, addr != end);
1351
1352 return addr;
1353 }
1354
1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1356 struct vm_area_struct *vma, p4d_t *p4d,
1357 unsigned long addr, unsigned long end,
1358 struct zap_details *details)
1359 {
1360 pud_t *pud;
1361 unsigned long next;
1362
1363 pud = pud_offset(p4d, addr);
1364 do {
1365 next = pud_addr_end(addr, end);
1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 if (next - addr != HPAGE_PUD_SIZE) {
1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 split_huge_pud(vma, pud, addr);
1370 } else if (zap_huge_pud(tlb, vma, pud, addr))
1371 goto next;
1372 /* fall through */
1373 }
1374 if (pud_none_or_clear_bad(pud))
1375 continue;
1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1377 next:
1378 cond_resched();
1379 } while (pud++, addr = next, addr != end);
1380
1381 return addr;
1382 }
1383
1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, pgd_t *pgd,
1386 unsigned long addr, unsigned long end,
1387 struct zap_details *details)
1388 {
1389 p4d_t *p4d;
1390 unsigned long next;
1391
1392 p4d = p4d_offset(pgd, addr);
1393 do {
1394 next = p4d_addr_end(addr, end);
1395 if (p4d_none_or_clear_bad(p4d))
1396 continue;
1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 } while (p4d++, addr = next, addr != end);
1399
1400 return addr;
1401 }
1402
1403 void unmap_page_range(struct mmu_gather *tlb,
1404 struct vm_area_struct *vma,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1407 {
1408 pgd_t *pgd;
1409 unsigned long next;
1410
1411 BUG_ON(addr >= end);
1412 tlb_start_vma(tlb, vma);
1413 pgd = pgd_offset(vma->vm_mm, addr);
1414 do {
1415 next = pgd_addr_end(addr, end);
1416 if (pgd_none_or_clear_bad(pgd))
1417 continue;
1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1419 } while (pgd++, addr = next, addr != end);
1420 tlb_end_vma(tlb, vma);
1421 }
1422
1423
1424 static void unmap_single_vma(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma, unsigned long start_addr,
1426 unsigned long end_addr,
1427 struct zap_details *details)
1428 {
1429 unsigned long start = max(vma->vm_start, start_addr);
1430 unsigned long end;
1431
1432 if (start >= vma->vm_end)
1433 return;
1434 end = min(vma->vm_end, end_addr);
1435 if (end <= vma->vm_start)
1436 return;
1437
1438 if (vma->vm_file)
1439 uprobe_munmap(vma, start, end);
1440
1441 if (unlikely(vma->vm_flags & VM_PFNMAP))
1442 untrack_pfn(vma, 0, 0);
1443
1444 if (start != end) {
1445 if (unlikely(is_vm_hugetlb_page(vma))) {
1446 /*
1447 * It is undesirable to test vma->vm_file as it
1448 * should be non-null for valid hugetlb area.
1449 * However, vm_file will be NULL in the error
1450 * cleanup path of mmap_region. When
1451 * hugetlbfs ->mmap method fails,
1452 * mmap_region() nullifies vma->vm_file
1453 * before calling this function to clean up.
1454 * Since no pte has actually been setup, it is
1455 * safe to do nothing in this case.
1456 */
1457 if (vma->vm_file) {
1458 i_mmap_lock_write(vma->vm_file->f_mapping);
1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1460 i_mmap_unlock_write(vma->vm_file->f_mapping);
1461 }
1462 } else
1463 unmap_page_range(tlb, vma, start, end, details);
1464 }
1465 }
1466
1467 /**
1468 * unmap_vmas - unmap a range of memory covered by a list of vma's
1469 * @tlb: address of the caller's struct mmu_gather
1470 * @vma: the starting vma
1471 * @start_addr: virtual address at which to start unmapping
1472 * @end_addr: virtual address at which to end unmapping
1473 *
1474 * Unmap all pages in the vma list.
1475 *
1476 * Only addresses between `start' and `end' will be unmapped.
1477 *
1478 * The VMA list must be sorted in ascending virtual address order.
1479 *
1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481 * range after unmap_vmas() returns. So the only responsibility here is to
1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483 * drops the lock and schedules.
1484 */
1485 void unmap_vmas(struct mmu_gather *tlb,
1486 struct vm_area_struct *vma, unsigned long start_addr,
1487 unsigned long end_addr)
1488 {
1489 struct mm_struct *mm = vma->vm_mm;
1490
1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1495 }
1496
1497 /**
1498 * zap_page_range - remove user pages in a given range
1499 * @vma: vm_area_struct holding the applicable pages
1500 * @start: starting address of pages to zap
1501 * @size: number of bytes to zap
1502 *
1503 * Caller must protect the VMA list
1504 */
1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1506 unsigned long size)
1507 {
1508 struct mm_struct *mm = vma->vm_mm;
1509 struct mmu_gather tlb;
1510 unsigned long end = start + size;
1511
1512 lru_add_drain();
1513 tlb_gather_mmu(&tlb, mm, start, end);
1514 update_hiwater_rss(mm);
1515 mmu_notifier_invalidate_range_start(mm, start, end);
1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1517 unmap_single_vma(&tlb, vma, start, end, NULL);
1518 mmu_notifier_invalidate_range_end(mm, start, end);
1519 tlb_finish_mmu(&tlb, start, end);
1520 }
1521
1522 /**
1523 * zap_page_range_single - remove user pages in a given range
1524 * @vma: vm_area_struct holding the applicable pages
1525 * @address: starting address of pages to zap
1526 * @size: number of bytes to zap
1527 * @details: details of shared cache invalidation
1528 *
1529 * The range must fit into one VMA.
1530 */
1531 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1532 unsigned long size, struct zap_details *details)
1533 {
1534 struct mm_struct *mm = vma->vm_mm;
1535 struct mmu_gather tlb;
1536 unsigned long end = address + size;
1537
1538 lru_add_drain();
1539 tlb_gather_mmu(&tlb, mm, address, end);
1540 update_hiwater_rss(mm);
1541 mmu_notifier_invalidate_range_start(mm, address, end);
1542 unmap_single_vma(&tlb, vma, address, end, details);
1543 mmu_notifier_invalidate_range_end(mm, address, end);
1544 tlb_finish_mmu(&tlb, address, end);
1545 }
1546
1547 /**
1548 * zap_vma_ptes - remove ptes mapping the vma
1549 * @vma: vm_area_struct holding ptes to be zapped
1550 * @address: starting address of pages to zap
1551 * @size: number of bytes to zap
1552 *
1553 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554 *
1555 * The entire address range must be fully contained within the vma.
1556 *
1557 * Returns 0 if successful.
1558 */
1559 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560 unsigned long size)
1561 {
1562 if (address < vma->vm_start || address + size > vma->vm_end ||
1563 !(vma->vm_flags & VM_PFNMAP))
1564 return -1;
1565 zap_page_range_single(vma, address, size, NULL);
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569
1570 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1571 spinlock_t **ptl)
1572 {
1573 pgd_t *pgd;
1574 p4d_t *p4d;
1575 pud_t *pud;
1576 pmd_t *pmd;
1577
1578 pgd = pgd_offset(mm, addr);
1579 p4d = p4d_alloc(mm, pgd, addr);
1580 if (!p4d)
1581 return NULL;
1582 pud = pud_alloc(mm, p4d, addr);
1583 if (!pud)
1584 return NULL;
1585 pmd = pmd_alloc(mm, pud, addr);
1586 if (!pmd)
1587 return NULL;
1588
1589 VM_BUG_ON(pmd_trans_huge(*pmd));
1590 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1591 }
1592
1593 /*
1594 * This is the old fallback for page remapping.
1595 *
1596 * For historical reasons, it only allows reserved pages. Only
1597 * old drivers should use this, and they needed to mark their
1598 * pages reserved for the old functions anyway.
1599 */
1600 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601 struct page *page, pgprot_t prot)
1602 {
1603 struct mm_struct *mm = vma->vm_mm;
1604 int retval;
1605 pte_t *pte;
1606 spinlock_t *ptl;
1607
1608 retval = -EINVAL;
1609 if (PageAnon(page))
1610 goto out;
1611 retval = -ENOMEM;
1612 flush_dcache_page(page);
1613 pte = get_locked_pte(mm, addr, &ptl);
1614 if (!pte)
1615 goto out;
1616 retval = -EBUSY;
1617 if (!pte_none(*pte))
1618 goto out_unlock;
1619
1620 /* Ok, finally just insert the thing.. */
1621 get_page(page);
1622 inc_mm_counter_fast(mm, mm_counter_file(page));
1623 page_add_file_rmap(page, false);
1624 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625
1626 retval = 0;
1627 pte_unmap_unlock(pte, ptl);
1628 return retval;
1629 out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631 out:
1632 return retval;
1633 }
1634
1635 /**
1636 * vm_insert_page - insert single page into user vma
1637 * @vma: user vma to map to
1638 * @addr: target user address of this page
1639 * @page: source kernel page
1640 *
1641 * This allows drivers to insert individual pages they've allocated
1642 * into a user vma.
1643 *
1644 * The page has to be a nice clean _individual_ kernel allocation.
1645 * If you allocate a compound page, you need to have marked it as
1646 * such (__GFP_COMP), or manually just split the page up yourself
1647 * (see split_page()).
1648 *
1649 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650 * took an arbitrary page protection parameter. This doesn't allow
1651 * that. Your vma protection will have to be set up correctly, which
1652 * means that if you want a shared writable mapping, you'd better
1653 * ask for a shared writable mapping!
1654 *
1655 * The page does not need to be reserved.
1656 *
1657 * Usually this function is called from f_op->mmap() handler
1658 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660 * function from other places, for example from page-fault handler.
1661 */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
1664 {
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
1669 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 vma->vm_flags |= VM_MIXEDMAP;
1673 }
1674 return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677
1678 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1679 pfn_t pfn, pgprot_t prot)
1680 {
1681 struct mm_struct *mm = vma->vm_mm;
1682 int retval;
1683 pte_t *pte, entry;
1684 spinlock_t *ptl;
1685
1686 retval = -ENOMEM;
1687 pte = get_locked_pte(mm, addr, &ptl);
1688 if (!pte)
1689 goto out;
1690 retval = -EBUSY;
1691 if (!pte_none(*pte))
1692 goto out_unlock;
1693
1694 /* Ok, finally just insert the thing.. */
1695 if (pfn_t_devmap(pfn))
1696 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1697 else
1698 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1699 set_pte_at(mm, addr, pte, entry);
1700 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1701
1702 retval = 0;
1703 out_unlock:
1704 pte_unmap_unlock(pte, ptl);
1705 out:
1706 return retval;
1707 }
1708
1709 /**
1710 * vm_insert_pfn - insert single pfn into user vma
1711 * @vma: user vma to map to
1712 * @addr: target user address of this page
1713 * @pfn: source kernel pfn
1714 *
1715 * Similar to vm_insert_page, this allows drivers to insert individual pages
1716 * they've allocated into a user vma. Same comments apply.
1717 *
1718 * This function should only be called from a vm_ops->fault handler, and
1719 * in that case the handler should return NULL.
1720 *
1721 * vma cannot be a COW mapping.
1722 *
1723 * As this is called only for pages that do not currently exist, we
1724 * do not need to flush old virtual caches or the TLB.
1725 */
1726 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1727 unsigned long pfn)
1728 {
1729 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1730 }
1731 EXPORT_SYMBOL(vm_insert_pfn);
1732
1733 /**
1734 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1735 * @vma: user vma to map to
1736 * @addr: target user address of this page
1737 * @pfn: source kernel pfn
1738 * @pgprot: pgprot flags for the inserted page
1739 *
1740 * This is exactly like vm_insert_pfn, except that it allows drivers to
1741 * to override pgprot on a per-page basis.
1742 *
1743 * This only makes sense for IO mappings, and it makes no sense for
1744 * cow mappings. In general, using multiple vmas is preferable;
1745 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1746 * impractical.
1747 */
1748 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1749 unsigned long pfn, pgprot_t pgprot)
1750 {
1751 int ret;
1752 /*
1753 * Technically, architectures with pte_special can avoid all these
1754 * restrictions (same for remap_pfn_range). However we would like
1755 * consistency in testing and feature parity among all, so we should
1756 * try to keep these invariants in place for everybody.
1757 */
1758 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1759 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1760 (VM_PFNMAP|VM_MIXEDMAP));
1761 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1762 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1763
1764 if (addr < vma->vm_start || addr >= vma->vm_end)
1765 return -EFAULT;
1766
1767 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1768
1769 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1770
1771 return ret;
1772 }
1773 EXPORT_SYMBOL(vm_insert_pfn_prot);
1774
1775 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1776 pfn_t pfn)
1777 {
1778 pgprot_t pgprot = vma->vm_page_prot;
1779
1780 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1781
1782 if (addr < vma->vm_start || addr >= vma->vm_end)
1783 return -EFAULT;
1784
1785 track_pfn_insert(vma, &pgprot, pfn);
1786
1787 /*
1788 * If we don't have pte special, then we have to use the pfn_valid()
1789 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1790 * refcount the page if pfn_valid is true (hence insert_page rather
1791 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1792 * without pte special, it would there be refcounted as a normal page.
1793 */
1794 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1795 struct page *page;
1796
1797 /*
1798 * At this point we are committed to insert_page()
1799 * regardless of whether the caller specified flags that
1800 * result in pfn_t_has_page() == false.
1801 */
1802 page = pfn_to_page(pfn_t_to_pfn(pfn));
1803 return insert_page(vma, addr, page, pgprot);
1804 }
1805 return insert_pfn(vma, addr, pfn, pgprot);
1806 }
1807 EXPORT_SYMBOL(vm_insert_mixed);
1808
1809 /*
1810 * maps a range of physical memory into the requested pages. the old
1811 * mappings are removed. any references to nonexistent pages results
1812 * in null mappings (currently treated as "copy-on-access")
1813 */
1814 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815 unsigned long addr, unsigned long end,
1816 unsigned long pfn, pgprot_t prot)
1817 {
1818 pte_t *pte;
1819 spinlock_t *ptl;
1820
1821 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1822 if (!pte)
1823 return -ENOMEM;
1824 arch_enter_lazy_mmu_mode();
1825 do {
1826 BUG_ON(!pte_none(*pte));
1827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828 pfn++;
1829 } while (pte++, addr += PAGE_SIZE, addr != end);
1830 arch_leave_lazy_mmu_mode();
1831 pte_unmap_unlock(pte - 1, ptl);
1832 return 0;
1833 }
1834
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836 unsigned long addr, unsigned long end,
1837 unsigned long pfn, pgprot_t prot)
1838 {
1839 pmd_t *pmd;
1840 unsigned long next;
1841
1842 pfn -= addr >> PAGE_SHIFT;
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 VM_BUG_ON(pmd_trans_huge(*pmd));
1847 do {
1848 next = pmd_addr_end(addr, end);
1849 if (remap_pte_range(mm, pmd, addr, next,
1850 pfn + (addr >> PAGE_SHIFT), prot))
1851 return -ENOMEM;
1852 } while (pmd++, addr = next, addr != end);
1853 return 0;
1854 }
1855
1856 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1857 unsigned long addr, unsigned long end,
1858 unsigned long pfn, pgprot_t prot)
1859 {
1860 pud_t *pud;
1861 unsigned long next;
1862
1863 pfn -= addr >> PAGE_SHIFT;
1864 pud = pud_alloc(mm, p4d, addr);
1865 if (!pud)
1866 return -ENOMEM;
1867 do {
1868 next = pud_addr_end(addr, end);
1869 if (remap_pmd_range(mm, pud, addr, next,
1870 pfn + (addr >> PAGE_SHIFT), prot))
1871 return -ENOMEM;
1872 } while (pud++, addr = next, addr != end);
1873 return 0;
1874 }
1875
1876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1877 unsigned long addr, unsigned long end,
1878 unsigned long pfn, pgprot_t prot)
1879 {
1880 p4d_t *p4d;
1881 unsigned long next;
1882
1883 pfn -= addr >> PAGE_SHIFT;
1884 p4d = p4d_alloc(mm, pgd, addr);
1885 if (!p4d)
1886 return -ENOMEM;
1887 do {
1888 next = p4d_addr_end(addr, end);
1889 if (remap_pud_range(mm, p4d, addr, next,
1890 pfn + (addr >> PAGE_SHIFT), prot))
1891 return -ENOMEM;
1892 } while (p4d++, addr = next, addr != end);
1893 return 0;
1894 }
1895
1896 /**
1897 * remap_pfn_range - remap kernel memory to userspace
1898 * @vma: user vma to map to
1899 * @addr: target user address to start at
1900 * @pfn: physical address of kernel memory
1901 * @size: size of map area
1902 * @prot: page protection flags for this mapping
1903 *
1904 * Note: this is only safe if the mm semaphore is held when called.
1905 */
1906 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1907 unsigned long pfn, unsigned long size, pgprot_t prot)
1908 {
1909 pgd_t *pgd;
1910 unsigned long next;
1911 unsigned long end = addr + PAGE_ALIGN(size);
1912 struct mm_struct *mm = vma->vm_mm;
1913 unsigned long remap_pfn = pfn;
1914 int err;
1915
1916 /*
1917 * Physically remapped pages are special. Tell the
1918 * rest of the world about it:
1919 * VM_IO tells people not to look at these pages
1920 * (accesses can have side effects).
1921 * VM_PFNMAP tells the core MM that the base pages are just
1922 * raw PFN mappings, and do not have a "struct page" associated
1923 * with them.
1924 * VM_DONTEXPAND
1925 * Disable vma merging and expanding with mremap().
1926 * VM_DONTDUMP
1927 * Omit vma from core dump, even when VM_IO turned off.
1928 *
1929 * There's a horrible special case to handle copy-on-write
1930 * behaviour that some programs depend on. We mark the "original"
1931 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1932 * See vm_normal_page() for details.
1933 */
1934 if (is_cow_mapping(vma->vm_flags)) {
1935 if (addr != vma->vm_start || end != vma->vm_end)
1936 return -EINVAL;
1937 vma->vm_pgoff = pfn;
1938 }
1939
1940 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1941 if (err)
1942 return -EINVAL;
1943
1944 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1945
1946 BUG_ON(addr >= end);
1947 pfn -= addr >> PAGE_SHIFT;
1948 pgd = pgd_offset(mm, addr);
1949 flush_cache_range(vma, addr, end);
1950 do {
1951 next = pgd_addr_end(addr, end);
1952 err = remap_p4d_range(mm, pgd, addr, next,
1953 pfn + (addr >> PAGE_SHIFT), prot);
1954 if (err)
1955 break;
1956 } while (pgd++, addr = next, addr != end);
1957
1958 if (err)
1959 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1960
1961 return err;
1962 }
1963 EXPORT_SYMBOL(remap_pfn_range);
1964
1965 /**
1966 * vm_iomap_memory - remap memory to userspace
1967 * @vma: user vma to map to
1968 * @start: start of area
1969 * @len: size of area
1970 *
1971 * This is a simplified io_remap_pfn_range() for common driver use. The
1972 * driver just needs to give us the physical memory range to be mapped,
1973 * we'll figure out the rest from the vma information.
1974 *
1975 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1976 * whatever write-combining details or similar.
1977 */
1978 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1979 {
1980 unsigned long vm_len, pfn, pages;
1981
1982 /* Check that the physical memory area passed in looks valid */
1983 if (start + len < start)
1984 return -EINVAL;
1985 /*
1986 * You *really* shouldn't map things that aren't page-aligned,
1987 * but we've historically allowed it because IO memory might
1988 * just have smaller alignment.
1989 */
1990 len += start & ~PAGE_MASK;
1991 pfn = start >> PAGE_SHIFT;
1992 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1993 if (pfn + pages < pfn)
1994 return -EINVAL;
1995
1996 /* We start the mapping 'vm_pgoff' pages into the area */
1997 if (vma->vm_pgoff > pages)
1998 return -EINVAL;
1999 pfn += vma->vm_pgoff;
2000 pages -= vma->vm_pgoff;
2001
2002 /* Can we fit all of the mapping? */
2003 vm_len = vma->vm_end - vma->vm_start;
2004 if (vm_len >> PAGE_SHIFT > pages)
2005 return -EINVAL;
2006
2007 /* Ok, let it rip */
2008 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2009 }
2010 EXPORT_SYMBOL(vm_iomap_memory);
2011
2012 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2013 unsigned long addr, unsigned long end,
2014 pte_fn_t fn, void *data)
2015 {
2016 pte_t *pte;
2017 int err;
2018 pgtable_t token;
2019 spinlock_t *uninitialized_var(ptl);
2020
2021 pte = (mm == &init_mm) ?
2022 pte_alloc_kernel(pmd, addr) :
2023 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2024 if (!pte)
2025 return -ENOMEM;
2026
2027 BUG_ON(pmd_huge(*pmd));
2028
2029 arch_enter_lazy_mmu_mode();
2030
2031 token = pmd_pgtable(*pmd);
2032
2033 do {
2034 err = fn(pte++, token, addr, data);
2035 if (err)
2036 break;
2037 } while (addr += PAGE_SIZE, addr != end);
2038
2039 arch_leave_lazy_mmu_mode();
2040
2041 if (mm != &init_mm)
2042 pte_unmap_unlock(pte-1, ptl);
2043 return err;
2044 }
2045
2046 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2047 unsigned long addr, unsigned long end,
2048 pte_fn_t fn, void *data)
2049 {
2050 pmd_t *pmd;
2051 unsigned long next;
2052 int err;
2053
2054 BUG_ON(pud_huge(*pud));
2055
2056 pmd = pmd_alloc(mm, pud, addr);
2057 if (!pmd)
2058 return -ENOMEM;
2059 do {
2060 next = pmd_addr_end(addr, end);
2061 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2062 if (err)
2063 break;
2064 } while (pmd++, addr = next, addr != end);
2065 return err;
2066 }
2067
2068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2069 unsigned long addr, unsigned long end,
2070 pte_fn_t fn, void *data)
2071 {
2072 pud_t *pud;
2073 unsigned long next;
2074 int err;
2075
2076 pud = pud_alloc(mm, p4d, addr);
2077 if (!pud)
2078 return -ENOMEM;
2079 do {
2080 next = pud_addr_end(addr, end);
2081 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2082 if (err)
2083 break;
2084 } while (pud++, addr = next, addr != end);
2085 return err;
2086 }
2087
2088 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2089 unsigned long addr, unsigned long end,
2090 pte_fn_t fn, void *data)
2091 {
2092 p4d_t *p4d;
2093 unsigned long next;
2094 int err;
2095
2096 p4d = p4d_alloc(mm, pgd, addr);
2097 if (!p4d)
2098 return -ENOMEM;
2099 do {
2100 next = p4d_addr_end(addr, end);
2101 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2102 if (err)
2103 break;
2104 } while (p4d++, addr = next, addr != end);
2105 return err;
2106 }
2107
2108 /*
2109 * Scan a region of virtual memory, filling in page tables as necessary
2110 * and calling a provided function on each leaf page table.
2111 */
2112 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2113 unsigned long size, pte_fn_t fn, void *data)
2114 {
2115 pgd_t *pgd;
2116 unsigned long next;
2117 unsigned long end = addr + size;
2118 int err;
2119
2120 if (WARN_ON(addr >= end))
2121 return -EINVAL;
2122
2123 pgd = pgd_offset(mm, addr);
2124 do {
2125 next = pgd_addr_end(addr, end);
2126 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2127 if (err)
2128 break;
2129 } while (pgd++, addr = next, addr != end);
2130
2131 return err;
2132 }
2133 EXPORT_SYMBOL_GPL(apply_to_page_range);
2134
2135 /*
2136 * handle_pte_fault chooses page fault handler according to an entry which was
2137 * read non-atomically. Before making any commitment, on those architectures
2138 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2139 * parts, do_swap_page must check under lock before unmapping the pte and
2140 * proceeding (but do_wp_page is only called after already making such a check;
2141 * and do_anonymous_page can safely check later on).
2142 */
2143 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2144 pte_t *page_table, pte_t orig_pte)
2145 {
2146 int same = 1;
2147 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2148 if (sizeof(pte_t) > sizeof(unsigned long)) {
2149 spinlock_t *ptl = pte_lockptr(mm, pmd);
2150 spin_lock(ptl);
2151 same = pte_same(*page_table, orig_pte);
2152 spin_unlock(ptl);
2153 }
2154 #endif
2155 pte_unmap(page_table);
2156 return same;
2157 }
2158
2159 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2160 {
2161 debug_dma_assert_idle(src);
2162
2163 /*
2164 * If the source page was a PFN mapping, we don't have
2165 * a "struct page" for it. We do a best-effort copy by
2166 * just copying from the original user address. If that
2167 * fails, we just zero-fill it. Live with it.
2168 */
2169 if (unlikely(!src)) {
2170 void *kaddr = kmap_atomic(dst);
2171 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2172
2173 /*
2174 * This really shouldn't fail, because the page is there
2175 * in the page tables. But it might just be unreadable,
2176 * in which case we just give up and fill the result with
2177 * zeroes.
2178 */
2179 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2180 clear_page(kaddr);
2181 kunmap_atomic(kaddr);
2182 flush_dcache_page(dst);
2183 } else
2184 copy_user_highpage(dst, src, va, vma);
2185 }
2186
2187 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2188 {
2189 struct file *vm_file = vma->vm_file;
2190
2191 if (vm_file)
2192 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2193
2194 /*
2195 * Special mappings (e.g. VDSO) do not have any file so fake
2196 * a default GFP_KERNEL for them.
2197 */
2198 return GFP_KERNEL;
2199 }
2200
2201 /*
2202 * Notify the address space that the page is about to become writable so that
2203 * it can prohibit this or wait for the page to get into an appropriate state.
2204 *
2205 * We do this without the lock held, so that it can sleep if it needs to.
2206 */
2207 static int do_page_mkwrite(struct vm_fault *vmf)
2208 {
2209 int ret;
2210 struct page *page = vmf->page;
2211 unsigned int old_flags = vmf->flags;
2212
2213 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2214
2215 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2216 /* Restore original flags so that caller is not surprised */
2217 vmf->flags = old_flags;
2218 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2219 return ret;
2220 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2221 lock_page(page);
2222 if (!page->mapping) {
2223 unlock_page(page);
2224 return 0; /* retry */
2225 }
2226 ret |= VM_FAULT_LOCKED;
2227 } else
2228 VM_BUG_ON_PAGE(!PageLocked(page), page);
2229 return ret;
2230 }
2231
2232 /*
2233 * Handle dirtying of a page in shared file mapping on a write fault.
2234 *
2235 * The function expects the page to be locked and unlocks it.
2236 */
2237 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2238 struct page *page)
2239 {
2240 struct address_space *mapping;
2241 bool dirtied;
2242 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2243
2244 dirtied = set_page_dirty(page);
2245 VM_BUG_ON_PAGE(PageAnon(page), page);
2246 /*
2247 * Take a local copy of the address_space - page.mapping may be zeroed
2248 * by truncate after unlock_page(). The address_space itself remains
2249 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2250 * release semantics to prevent the compiler from undoing this copying.
2251 */
2252 mapping = page_rmapping(page);
2253 unlock_page(page);
2254
2255 if ((dirtied || page_mkwrite) && mapping) {
2256 /*
2257 * Some device drivers do not set page.mapping
2258 * but still dirty their pages
2259 */
2260 balance_dirty_pages_ratelimited(mapping);
2261 }
2262
2263 if (!page_mkwrite)
2264 file_update_time(vma->vm_file);
2265 }
2266
2267 /*
2268 * Handle write page faults for pages that can be reused in the current vma
2269 *
2270 * This can happen either due to the mapping being with the VM_SHARED flag,
2271 * or due to us being the last reference standing to the page. In either
2272 * case, all we need to do here is to mark the page as writable and update
2273 * any related book-keeping.
2274 */
2275 static inline void wp_page_reuse(struct vm_fault *vmf)
2276 __releases(vmf->ptl)
2277 {
2278 struct vm_area_struct *vma = vmf->vma;
2279 struct page *page = vmf->page;
2280 pte_t entry;
2281 /*
2282 * Clear the pages cpupid information as the existing
2283 * information potentially belongs to a now completely
2284 * unrelated process.
2285 */
2286 if (page)
2287 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2288
2289 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2290 entry = pte_mkyoung(vmf->orig_pte);
2291 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2292 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2293 update_mmu_cache(vma, vmf->address, vmf->pte);
2294 pte_unmap_unlock(vmf->pte, vmf->ptl);
2295 }
2296
2297 /*
2298 * Handle the case of a page which we actually need to copy to a new page.
2299 *
2300 * Called with mmap_sem locked and the old page referenced, but
2301 * without the ptl held.
2302 *
2303 * High level logic flow:
2304 *
2305 * - Allocate a page, copy the content of the old page to the new one.
2306 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2307 * - Take the PTL. If the pte changed, bail out and release the allocated page
2308 * - If the pte is still the way we remember it, update the page table and all
2309 * relevant references. This includes dropping the reference the page-table
2310 * held to the old page, as well as updating the rmap.
2311 * - In any case, unlock the PTL and drop the reference we took to the old page.
2312 */
2313 static int wp_page_copy(struct vm_fault *vmf)
2314 {
2315 struct vm_area_struct *vma = vmf->vma;
2316 struct mm_struct *mm = vma->vm_mm;
2317 struct page *old_page = vmf->page;
2318 struct page *new_page = NULL;
2319 pte_t entry;
2320 int page_copied = 0;
2321 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2322 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2323 struct mem_cgroup *memcg;
2324
2325 if (unlikely(anon_vma_prepare(vma)))
2326 goto oom;
2327
2328 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2329 new_page = alloc_zeroed_user_highpage_movable(vma,
2330 vmf->address);
2331 if (!new_page)
2332 goto oom;
2333 } else {
2334 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2335 vmf->address);
2336 if (!new_page)
2337 goto oom;
2338 cow_user_page(new_page, old_page, vmf->address, vma);
2339 }
2340
2341 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2342 goto oom_free_new;
2343
2344 __SetPageUptodate(new_page);
2345
2346 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2347
2348 /*
2349 * Re-check the pte - we dropped the lock
2350 */
2351 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2352 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2353 if (old_page) {
2354 if (!PageAnon(old_page)) {
2355 dec_mm_counter_fast(mm,
2356 mm_counter_file(old_page));
2357 inc_mm_counter_fast(mm, MM_ANONPAGES);
2358 }
2359 } else {
2360 inc_mm_counter_fast(mm, MM_ANONPAGES);
2361 }
2362 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2363 entry = mk_pte(new_page, vma->vm_page_prot);
2364 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2365 /*
2366 * Clear the pte entry and flush it first, before updating the
2367 * pte with the new entry. This will avoid a race condition
2368 * seen in the presence of one thread doing SMC and another
2369 * thread doing COW.
2370 */
2371 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2372 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2373 mem_cgroup_commit_charge(new_page, memcg, false, false);
2374 lru_cache_add_active_or_unevictable(new_page, vma);
2375 /*
2376 * We call the notify macro here because, when using secondary
2377 * mmu page tables (such as kvm shadow page tables), we want the
2378 * new page to be mapped directly into the secondary page table.
2379 */
2380 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2381 update_mmu_cache(vma, vmf->address, vmf->pte);
2382 if (old_page) {
2383 /*
2384 * Only after switching the pte to the new page may
2385 * we remove the mapcount here. Otherwise another
2386 * process may come and find the rmap count decremented
2387 * before the pte is switched to the new page, and
2388 * "reuse" the old page writing into it while our pte
2389 * here still points into it and can be read by other
2390 * threads.
2391 *
2392 * The critical issue is to order this
2393 * page_remove_rmap with the ptp_clear_flush above.
2394 * Those stores are ordered by (if nothing else,)
2395 * the barrier present in the atomic_add_negative
2396 * in page_remove_rmap.
2397 *
2398 * Then the TLB flush in ptep_clear_flush ensures that
2399 * no process can access the old page before the
2400 * decremented mapcount is visible. And the old page
2401 * cannot be reused until after the decremented
2402 * mapcount is visible. So transitively, TLBs to
2403 * old page will be flushed before it can be reused.
2404 */
2405 page_remove_rmap(old_page, false);
2406 }
2407
2408 /* Free the old page.. */
2409 new_page = old_page;
2410 page_copied = 1;
2411 } else {
2412 mem_cgroup_cancel_charge(new_page, memcg, false);
2413 }
2414
2415 if (new_page)
2416 put_page(new_page);
2417
2418 pte_unmap_unlock(vmf->pte, vmf->ptl);
2419 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2420 if (old_page) {
2421 /*
2422 * Don't let another task, with possibly unlocked vma,
2423 * keep the mlocked page.
2424 */
2425 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2426 lock_page(old_page); /* LRU manipulation */
2427 if (PageMlocked(old_page))
2428 munlock_vma_page(old_page);
2429 unlock_page(old_page);
2430 }
2431 put_page(old_page);
2432 }
2433 return page_copied ? VM_FAULT_WRITE : 0;
2434 oom_free_new:
2435 put_page(new_page);
2436 oom:
2437 if (old_page)
2438 put_page(old_page);
2439 return VM_FAULT_OOM;
2440 }
2441
2442 /**
2443 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2444 * writeable once the page is prepared
2445 *
2446 * @vmf: structure describing the fault
2447 *
2448 * This function handles all that is needed to finish a write page fault in a
2449 * shared mapping due to PTE being read-only once the mapped page is prepared.
2450 * It handles locking of PTE and modifying it. The function returns
2451 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2452 * lock.
2453 *
2454 * The function expects the page to be locked or other protection against
2455 * concurrent faults / writeback (such as DAX radix tree locks).
2456 */
2457 int finish_mkwrite_fault(struct vm_fault *vmf)
2458 {
2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 &vmf->ptl);
2462 /*
2463 * We might have raced with another page fault while we released the
2464 * pte_offset_map_lock.
2465 */
2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 return VM_FAULT_NOPAGE;
2469 }
2470 wp_page_reuse(vmf);
2471 return 0;
2472 }
2473
2474 /*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478 static int wp_pfn_shared(struct vm_fault *vmf)
2479 {
2480 struct vm_area_struct *vma = vmf->vma;
2481
2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483 int ret;
2484
2485 pte_unmap_unlock(vmf->pte, vmf->ptl);
2486 vmf->flags |= FAULT_FLAG_MKWRITE;
2487 ret = vma->vm_ops->pfn_mkwrite(vmf);
2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489 return ret;
2490 return finish_mkwrite_fault(vmf);
2491 }
2492 wp_page_reuse(vmf);
2493 return VM_FAULT_WRITE;
2494 }
2495
2496 static int wp_page_shared(struct vm_fault *vmf)
2497 __releases(vmf->ptl)
2498 {
2499 struct vm_area_struct *vma = vmf->vma;
2500
2501 get_page(vmf->page);
2502
2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504 int tmp;
2505
2506 pte_unmap_unlock(vmf->pte, vmf->ptl);
2507 tmp = do_page_mkwrite(vmf);
2508 if (unlikely(!tmp || (tmp &
2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510 put_page(vmf->page);
2511 return tmp;
2512 }
2513 tmp = finish_mkwrite_fault(vmf);
2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515 unlock_page(vmf->page);
2516 put_page(vmf->page);
2517 return tmp;
2518 }
2519 } else {
2520 wp_page_reuse(vmf);
2521 lock_page(vmf->page);
2522 }
2523 fault_dirty_shared_page(vma, vmf->page);
2524 put_page(vmf->page);
2525
2526 return VM_FAULT_WRITE;
2527 }
2528
2529 /*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547 static int do_wp_page(struct vm_fault *vmf)
2548 __releases(vmf->ptl)
2549 {
2550 struct vm_area_struct *vma = vmf->vma;
2551
2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 if (!vmf->page) {
2554 /*
2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 * VM_PFNMAP VMA.
2557 *
2558 * We should not cow pages in a shared writeable mapping.
2559 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560 */
2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 (VM_WRITE|VM_SHARED))
2563 return wp_pfn_shared(vmf);
2564
2565 pte_unmap_unlock(vmf->pte, vmf->ptl);
2566 return wp_page_copy(vmf);
2567 }
2568
2569 /*
2570 * Take out anonymous pages first, anonymous shared vmas are
2571 * not dirty accountable.
2572 */
2573 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2574 int total_mapcount;
2575 if (!trylock_page(vmf->page)) {
2576 get_page(vmf->page);
2577 pte_unmap_unlock(vmf->pte, vmf->ptl);
2578 lock_page(vmf->page);
2579 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2580 vmf->address, &vmf->ptl);
2581 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2582 unlock_page(vmf->page);
2583 pte_unmap_unlock(vmf->pte, vmf->ptl);
2584 put_page(vmf->page);
2585 return 0;
2586 }
2587 put_page(vmf->page);
2588 }
2589 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2590 if (total_mapcount == 1) {
2591 /*
2592 * The page is all ours. Move it to
2593 * our anon_vma so the rmap code will
2594 * not search our parent or siblings.
2595 * Protected against the rmap code by
2596 * the page lock.
2597 */
2598 page_move_anon_rmap(vmf->page, vma);
2599 }
2600 unlock_page(vmf->page);
2601 wp_page_reuse(vmf);
2602 return VM_FAULT_WRITE;
2603 }
2604 unlock_page(vmf->page);
2605 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2606 (VM_WRITE|VM_SHARED))) {
2607 return wp_page_shared(vmf);
2608 }
2609
2610 /*
2611 * Ok, we need to copy. Oh, well..
2612 */
2613 get_page(vmf->page);
2614
2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 return wp_page_copy(vmf);
2617 }
2618
2619 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2620 unsigned long start_addr, unsigned long end_addr,
2621 struct zap_details *details)
2622 {
2623 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2624 }
2625
2626 static inline void unmap_mapping_range_tree(struct rb_root *root,
2627 struct zap_details *details)
2628 {
2629 struct vm_area_struct *vma;
2630 pgoff_t vba, vea, zba, zea;
2631
2632 vma_interval_tree_foreach(vma, root,
2633 details->first_index, details->last_index) {
2634
2635 vba = vma->vm_pgoff;
2636 vea = vba + vma_pages(vma) - 1;
2637 zba = details->first_index;
2638 if (zba < vba)
2639 zba = vba;
2640 zea = details->last_index;
2641 if (zea > vea)
2642 zea = vea;
2643
2644 unmap_mapping_range_vma(vma,
2645 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2646 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2647 details);
2648 }
2649 }
2650
2651 /**
2652 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2653 * address_space corresponding to the specified page range in the underlying
2654 * file.
2655 *
2656 * @mapping: the address space containing mmaps to be unmapped.
2657 * @holebegin: byte in first page to unmap, relative to the start of
2658 * the underlying file. This will be rounded down to a PAGE_SIZE
2659 * boundary. Note that this is different from truncate_pagecache(), which
2660 * must keep the partial page. In contrast, we must get rid of
2661 * partial pages.
2662 * @holelen: size of prospective hole in bytes. This will be rounded
2663 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2664 * end of the file.
2665 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2666 * but 0 when invalidating pagecache, don't throw away private data.
2667 */
2668 void unmap_mapping_range(struct address_space *mapping,
2669 loff_t const holebegin, loff_t const holelen, int even_cows)
2670 {
2671 struct zap_details details = { };
2672 pgoff_t hba = holebegin >> PAGE_SHIFT;
2673 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2674
2675 /* Check for overflow. */
2676 if (sizeof(holelen) > sizeof(hlen)) {
2677 long long holeend =
2678 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679 if (holeend & ~(long long)ULONG_MAX)
2680 hlen = ULONG_MAX - hba + 1;
2681 }
2682
2683 details.check_mapping = even_cows ? NULL : mapping;
2684 details.first_index = hba;
2685 details.last_index = hba + hlen - 1;
2686 if (details.last_index < details.first_index)
2687 details.last_index = ULONG_MAX;
2688
2689 i_mmap_lock_write(mapping);
2690 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2691 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2692 i_mmap_unlock_write(mapping);
2693 }
2694 EXPORT_SYMBOL(unmap_mapping_range);
2695
2696 /*
2697 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698 * but allow concurrent faults), and pte mapped but not yet locked.
2699 * We return with pte unmapped and unlocked.
2700 *
2701 * We return with the mmap_sem locked or unlocked in the same cases
2702 * as does filemap_fault().
2703 */
2704 int do_swap_page(struct vm_fault *vmf)
2705 {
2706 struct vm_area_struct *vma = vmf->vma;
2707 struct page *page, *swapcache;
2708 struct mem_cgroup *memcg;
2709 swp_entry_t entry;
2710 pte_t pte;
2711 int locked;
2712 int exclusive = 0;
2713 int ret = 0;
2714
2715 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2716 goto out;
2717
2718 entry = pte_to_swp_entry(vmf->orig_pte);
2719 if (unlikely(non_swap_entry(entry))) {
2720 if (is_migration_entry(entry)) {
2721 migration_entry_wait(vma->vm_mm, vmf->pmd,
2722 vmf->address);
2723 } else if (is_hwpoison_entry(entry)) {
2724 ret = VM_FAULT_HWPOISON;
2725 } else {
2726 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2727 ret = VM_FAULT_SIGBUS;
2728 }
2729 goto out;
2730 }
2731 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2732 page = lookup_swap_cache(entry);
2733 if (!page) {
2734 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2735 vmf->address);
2736 if (!page) {
2737 /*
2738 * Back out if somebody else faulted in this pte
2739 * while we released the pte lock.
2740 */
2741 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2742 vmf->address, &vmf->ptl);
2743 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2744 ret = VM_FAULT_OOM;
2745 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2746 goto unlock;
2747 }
2748
2749 /* Had to read the page from swap area: Major fault */
2750 ret = VM_FAULT_MAJOR;
2751 count_vm_event(PGMAJFAULT);
2752 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2753 } else if (PageHWPoison(page)) {
2754 /*
2755 * hwpoisoned dirty swapcache pages are kept for killing
2756 * owner processes (which may be unknown at hwpoison time)
2757 */
2758 ret = VM_FAULT_HWPOISON;
2759 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2760 swapcache = page;
2761 goto out_release;
2762 }
2763
2764 swapcache = page;
2765 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2766
2767 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2768 if (!locked) {
2769 ret |= VM_FAULT_RETRY;
2770 goto out_release;
2771 }
2772
2773 /*
2774 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2775 * release the swapcache from under us. The page pin, and pte_same
2776 * test below, are not enough to exclude that. Even if it is still
2777 * swapcache, we need to check that the page's swap has not changed.
2778 */
2779 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2780 goto out_page;
2781
2782 page = ksm_might_need_to_copy(page, vma, vmf->address);
2783 if (unlikely(!page)) {
2784 ret = VM_FAULT_OOM;
2785 page = swapcache;
2786 goto out_page;
2787 }
2788
2789 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2790 &memcg, false)) {
2791 ret = VM_FAULT_OOM;
2792 goto out_page;
2793 }
2794
2795 /*
2796 * Back out if somebody else already faulted in this pte.
2797 */
2798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2799 &vmf->ptl);
2800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2801 goto out_nomap;
2802
2803 if (unlikely(!PageUptodate(page))) {
2804 ret = VM_FAULT_SIGBUS;
2805 goto out_nomap;
2806 }
2807
2808 /*
2809 * The page isn't present yet, go ahead with the fault.
2810 *
2811 * Be careful about the sequence of operations here.
2812 * To get its accounting right, reuse_swap_page() must be called
2813 * while the page is counted on swap but not yet in mapcount i.e.
2814 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2815 * must be called after the swap_free(), or it will never succeed.
2816 */
2817
2818 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2819 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2820 pte = mk_pte(page, vma->vm_page_prot);
2821 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2822 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2823 vmf->flags &= ~FAULT_FLAG_WRITE;
2824 ret |= VM_FAULT_WRITE;
2825 exclusive = RMAP_EXCLUSIVE;
2826 }
2827 flush_icache_page(vma, page);
2828 if (pte_swp_soft_dirty(vmf->orig_pte))
2829 pte = pte_mksoft_dirty(pte);
2830 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2831 vmf->orig_pte = pte;
2832 if (page == swapcache) {
2833 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2834 mem_cgroup_commit_charge(page, memcg, true, false);
2835 activate_page(page);
2836 } else { /* ksm created a completely new copy */
2837 page_add_new_anon_rmap(page, vma, vmf->address, false);
2838 mem_cgroup_commit_charge(page, memcg, false, false);
2839 lru_cache_add_active_or_unevictable(page, vma);
2840 }
2841
2842 swap_free(entry);
2843 if (mem_cgroup_swap_full(page) ||
2844 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2845 try_to_free_swap(page);
2846 unlock_page(page);
2847 if (page != swapcache) {
2848 /*
2849 * Hold the lock to avoid the swap entry to be reused
2850 * until we take the PT lock for the pte_same() check
2851 * (to avoid false positives from pte_same). For
2852 * further safety release the lock after the swap_free
2853 * so that the swap count won't change under a
2854 * parallel locked swapcache.
2855 */
2856 unlock_page(swapcache);
2857 put_page(swapcache);
2858 }
2859
2860 if (vmf->flags & FAULT_FLAG_WRITE) {
2861 ret |= do_wp_page(vmf);
2862 if (ret & VM_FAULT_ERROR)
2863 ret &= VM_FAULT_ERROR;
2864 goto out;
2865 }
2866
2867 /* No need to invalidate - it was non-present before */
2868 update_mmu_cache(vma, vmf->address, vmf->pte);
2869 unlock:
2870 pte_unmap_unlock(vmf->pte, vmf->ptl);
2871 out:
2872 return ret;
2873 out_nomap:
2874 mem_cgroup_cancel_charge(page, memcg, false);
2875 pte_unmap_unlock(vmf->pte, vmf->ptl);
2876 out_page:
2877 unlock_page(page);
2878 out_release:
2879 put_page(page);
2880 if (page != swapcache) {
2881 unlock_page(swapcache);
2882 put_page(swapcache);
2883 }
2884 return ret;
2885 }
2886
2887 /*
2888 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2889 * but allow concurrent faults), and pte mapped but not yet locked.
2890 * We return with mmap_sem still held, but pte unmapped and unlocked.
2891 */
2892 static int do_anonymous_page(struct vm_fault *vmf)
2893 {
2894 struct vm_area_struct *vma = vmf->vma;
2895 struct mem_cgroup *memcg;
2896 struct page *page;
2897 int ret = 0;
2898 pte_t entry;
2899
2900 /* File mapping without ->vm_ops ? */
2901 if (vma->vm_flags & VM_SHARED)
2902 return VM_FAULT_SIGBUS;
2903
2904 /*
2905 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2906 * pte_offset_map() on pmds where a huge pmd might be created
2907 * from a different thread.
2908 *
2909 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2910 * parallel threads are excluded by other means.
2911 *
2912 * Here we only have down_read(mmap_sem).
2913 */
2914 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2915 return VM_FAULT_OOM;
2916
2917 /* See the comment in pte_alloc_one_map() */
2918 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2919 return 0;
2920
2921 /* Use the zero-page for reads */
2922 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2923 !mm_forbids_zeropage(vma->vm_mm)) {
2924 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2925 vma->vm_page_prot));
2926 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2927 vmf->address, &vmf->ptl);
2928 if (!pte_none(*vmf->pte))
2929 goto unlock;
2930 ret = check_stable_address_space(vma->vm_mm);
2931 if (ret)
2932 goto unlock;
2933 /* Deliver the page fault to userland, check inside PT lock */
2934 if (userfaultfd_missing(vma)) {
2935 pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 return handle_userfault(vmf, VM_UFFD_MISSING);
2937 }
2938 goto setpte;
2939 }
2940
2941 /* Allocate our own private page. */
2942 if (unlikely(anon_vma_prepare(vma)))
2943 goto oom;
2944 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2945 if (!page)
2946 goto oom;
2947
2948 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2949 goto oom_free_page;
2950
2951 /*
2952 * The memory barrier inside __SetPageUptodate makes sure that
2953 * preceeding stores to the page contents become visible before
2954 * the set_pte_at() write.
2955 */
2956 __SetPageUptodate(page);
2957
2958 entry = mk_pte(page, vma->vm_page_prot);
2959 if (vma->vm_flags & VM_WRITE)
2960 entry = pte_mkwrite(pte_mkdirty(entry));
2961
2962 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2963 &vmf->ptl);
2964 if (!pte_none(*vmf->pte))
2965 goto release;
2966
2967 ret = check_stable_address_space(vma->vm_mm);
2968 if (ret)
2969 goto release;
2970
2971 /* Deliver the page fault to userland, check inside PT lock */
2972 if (userfaultfd_missing(vma)) {
2973 pte_unmap_unlock(vmf->pte, vmf->ptl);
2974 mem_cgroup_cancel_charge(page, memcg, false);
2975 put_page(page);
2976 return handle_userfault(vmf, VM_UFFD_MISSING);
2977 }
2978
2979 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2980 page_add_new_anon_rmap(page, vma, vmf->address, false);
2981 mem_cgroup_commit_charge(page, memcg, false, false);
2982 lru_cache_add_active_or_unevictable(page, vma);
2983 setpte:
2984 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2985
2986 /* No need to invalidate - it was non-present before */
2987 update_mmu_cache(vma, vmf->address, vmf->pte);
2988 unlock:
2989 pte_unmap_unlock(vmf->pte, vmf->ptl);
2990 return ret;
2991 release:
2992 mem_cgroup_cancel_charge(page, memcg, false);
2993 put_page(page);
2994 goto unlock;
2995 oom_free_page:
2996 put_page(page);
2997 oom:
2998 return VM_FAULT_OOM;
2999 }
3000
3001 /*
3002 * The mmap_sem must have been held on entry, and may have been
3003 * released depending on flags and vma->vm_ops->fault() return value.
3004 * See filemap_fault() and __lock_page_retry().
3005 */
3006 static int __do_fault(struct vm_fault *vmf)
3007 {
3008 struct vm_area_struct *vma = vmf->vma;
3009 int ret;
3010
3011 ret = vma->vm_ops->fault(vmf);
3012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3013 VM_FAULT_DONE_COW)))
3014 return ret;
3015
3016 if (unlikely(PageHWPoison(vmf->page))) {
3017 if (ret & VM_FAULT_LOCKED)
3018 unlock_page(vmf->page);
3019 put_page(vmf->page);
3020 vmf->page = NULL;
3021 return VM_FAULT_HWPOISON;
3022 }
3023
3024 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3025 lock_page(vmf->page);
3026 else
3027 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3028
3029 return ret;
3030 }
3031
3032 /*
3033 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3034 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3035 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3036 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3037 */
3038 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3039 {
3040 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3041 }
3042
3043 static int pte_alloc_one_map(struct vm_fault *vmf)
3044 {
3045 struct vm_area_struct *vma = vmf->vma;
3046
3047 if (!pmd_none(*vmf->pmd))
3048 goto map_pte;
3049 if (vmf->prealloc_pte) {
3050 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3051 if (unlikely(!pmd_none(*vmf->pmd))) {
3052 spin_unlock(vmf->ptl);
3053 goto map_pte;
3054 }
3055
3056 atomic_long_inc(&vma->vm_mm->nr_ptes);
3057 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3058 spin_unlock(vmf->ptl);
3059 vmf->prealloc_pte = NULL;
3060 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3061 return VM_FAULT_OOM;
3062 }
3063 map_pte:
3064 /*
3065 * If a huge pmd materialized under us just retry later. Use
3066 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3067 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3068 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3069 * running immediately after a huge pmd fault in a different thread of
3070 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3071 * All we have to ensure is that it is a regular pmd that we can walk
3072 * with pte_offset_map() and we can do that through an atomic read in
3073 * C, which is what pmd_trans_unstable() provides.
3074 */
3075 if (pmd_devmap_trans_unstable(vmf->pmd))
3076 return VM_FAULT_NOPAGE;
3077
3078 /*
3079 * At this point we know that our vmf->pmd points to a page of ptes
3080 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3081 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3082 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3083 * be valid and we will re-check to make sure the vmf->pte isn't
3084 * pte_none() under vmf->ptl protection when we return to
3085 * alloc_set_pte().
3086 */
3087 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3088 &vmf->ptl);
3089 return 0;
3090 }
3091
3092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3093
3094 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3095 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3096 unsigned long haddr)
3097 {
3098 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3099 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3100 return false;
3101 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3102 return false;
3103 return true;
3104 }
3105
3106 static void deposit_prealloc_pte(struct vm_fault *vmf)
3107 {
3108 struct vm_area_struct *vma = vmf->vma;
3109
3110 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3111 /*
3112 * We are going to consume the prealloc table,
3113 * count that as nr_ptes.
3114 */
3115 atomic_long_inc(&vma->vm_mm->nr_ptes);
3116 vmf->prealloc_pte = NULL;
3117 }
3118
3119 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3120 {
3121 struct vm_area_struct *vma = vmf->vma;
3122 bool write = vmf->flags & FAULT_FLAG_WRITE;
3123 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3124 pmd_t entry;
3125 int i, ret;
3126
3127 if (!transhuge_vma_suitable(vma, haddr))
3128 return VM_FAULT_FALLBACK;
3129
3130 ret = VM_FAULT_FALLBACK;
3131 page = compound_head(page);
3132
3133 /*
3134 * Archs like ppc64 need additonal space to store information
3135 * related to pte entry. Use the preallocated table for that.
3136 */
3137 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3138 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3139 if (!vmf->prealloc_pte)
3140 return VM_FAULT_OOM;
3141 smp_wmb(); /* See comment in __pte_alloc() */
3142 }
3143
3144 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3145 if (unlikely(!pmd_none(*vmf->pmd)))
3146 goto out;
3147
3148 for (i = 0; i < HPAGE_PMD_NR; i++)
3149 flush_icache_page(vma, page + i);
3150
3151 entry = mk_huge_pmd(page, vma->vm_page_prot);
3152 if (write)
3153 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3154
3155 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3156 page_add_file_rmap(page, true);
3157 /*
3158 * deposit and withdraw with pmd lock held
3159 */
3160 if (arch_needs_pgtable_deposit())
3161 deposit_prealloc_pte(vmf);
3162
3163 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3164
3165 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3166
3167 /* fault is handled */
3168 ret = 0;
3169 count_vm_event(THP_FILE_MAPPED);
3170 out:
3171 spin_unlock(vmf->ptl);
3172 return ret;
3173 }
3174 #else
3175 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3176 {
3177 BUILD_BUG();
3178 return 0;
3179 }
3180 #endif
3181
3182 /**
3183 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3184 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3185 *
3186 * @vmf: fault environment
3187 * @memcg: memcg to charge page (only for private mappings)
3188 * @page: page to map
3189 *
3190 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3191 * return.
3192 *
3193 * Target users are page handler itself and implementations of
3194 * vm_ops->map_pages.
3195 */
3196 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3197 struct page *page)
3198 {
3199 struct vm_area_struct *vma = vmf->vma;
3200 bool write = vmf->flags & FAULT_FLAG_WRITE;
3201 pte_t entry;
3202 int ret;
3203
3204 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3205 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3206 /* THP on COW? */
3207 VM_BUG_ON_PAGE(memcg, page);
3208
3209 ret = do_set_pmd(vmf, page);
3210 if (ret != VM_FAULT_FALLBACK)
3211 return ret;
3212 }
3213
3214 if (!vmf->pte) {
3215 ret = pte_alloc_one_map(vmf);
3216 if (ret)
3217 return ret;
3218 }
3219
3220 /* Re-check under ptl */
3221 if (unlikely(!pte_none(*vmf->pte)))
3222 return VM_FAULT_NOPAGE;
3223
3224 flush_icache_page(vma, page);
3225 entry = mk_pte(page, vma->vm_page_prot);
3226 if (write)
3227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3228 /* copy-on-write page */
3229 if (write && !(vma->vm_flags & VM_SHARED)) {
3230 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3231 page_add_new_anon_rmap(page, vma, vmf->address, false);
3232 mem_cgroup_commit_charge(page, memcg, false, false);
3233 lru_cache_add_active_or_unevictable(page, vma);
3234 } else {
3235 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3236 page_add_file_rmap(page, false);
3237 }
3238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3239
3240 /* no need to invalidate: a not-present page won't be cached */
3241 update_mmu_cache(vma, vmf->address, vmf->pte);
3242
3243 return 0;
3244 }
3245
3246
3247 /**
3248 * finish_fault - finish page fault once we have prepared the page to fault
3249 *
3250 * @vmf: structure describing the fault
3251 *
3252 * This function handles all that is needed to finish a page fault once the
3253 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3254 * given page, adds reverse page mapping, handles memcg charges and LRU
3255 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3256 * error.
3257 *
3258 * The function expects the page to be locked and on success it consumes a
3259 * reference of a page being mapped (for the PTE which maps it).
3260 */
3261 int finish_fault(struct vm_fault *vmf)
3262 {
3263 struct page *page;
3264 int ret = 0;
3265
3266 /* Did we COW the page? */
3267 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3268 !(vmf->vma->vm_flags & VM_SHARED))
3269 page = vmf->cow_page;
3270 else
3271 page = vmf->page;
3272
3273 /*
3274 * check even for read faults because we might have lost our CoWed
3275 * page
3276 */
3277 if (!(vmf->vma->vm_flags & VM_SHARED))
3278 ret = check_stable_address_space(vmf->vma->vm_mm);
3279 if (!ret)
3280 ret = alloc_set_pte(vmf, vmf->memcg, page);
3281 if (vmf->pte)
3282 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 return ret;
3284 }
3285
3286 static unsigned long fault_around_bytes __read_mostly =
3287 rounddown_pow_of_two(65536);
3288
3289 #ifdef CONFIG_DEBUG_FS
3290 static int fault_around_bytes_get(void *data, u64 *val)
3291 {
3292 *val = fault_around_bytes;
3293 return 0;
3294 }
3295
3296 /*
3297 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3298 * rounded down to nearest page order. It's what do_fault_around() expects to
3299 * see.
3300 */
3301 static int fault_around_bytes_set(void *data, u64 val)
3302 {
3303 if (val / PAGE_SIZE > PTRS_PER_PTE)
3304 return -EINVAL;
3305 if (val > PAGE_SIZE)
3306 fault_around_bytes = rounddown_pow_of_two(val);
3307 else
3308 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3309 return 0;
3310 }
3311 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3312 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3313
3314 static int __init fault_around_debugfs(void)
3315 {
3316 void *ret;
3317
3318 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3319 &fault_around_bytes_fops);
3320 if (!ret)
3321 pr_warn("Failed to create fault_around_bytes in debugfs");
3322 return 0;
3323 }
3324 late_initcall(fault_around_debugfs);
3325 #endif
3326
3327 /*
3328 * do_fault_around() tries to map few pages around the fault address. The hope
3329 * is that the pages will be needed soon and this will lower the number of
3330 * faults to handle.
3331 *
3332 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3333 * not ready to be mapped: not up-to-date, locked, etc.
3334 *
3335 * This function is called with the page table lock taken. In the split ptlock
3336 * case the page table lock only protects only those entries which belong to
3337 * the page table corresponding to the fault address.
3338 *
3339 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3340 * only once.
3341 *
3342 * fault_around_pages() defines how many pages we'll try to map.
3343 * do_fault_around() expects it to return a power of two less than or equal to
3344 * PTRS_PER_PTE.
3345 *
3346 * The virtual address of the area that we map is naturally aligned to the
3347 * fault_around_pages() value (and therefore to page order). This way it's
3348 * easier to guarantee that we don't cross page table boundaries.
3349 */
3350 static int do_fault_around(struct vm_fault *vmf)
3351 {
3352 unsigned long address = vmf->address, nr_pages, mask;
3353 pgoff_t start_pgoff = vmf->pgoff;
3354 pgoff_t end_pgoff;
3355 int off, ret = 0;
3356
3357 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3358 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3359
3360 vmf->address = max(address & mask, vmf->vma->vm_start);
3361 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3362 start_pgoff -= off;
3363
3364 /*
3365 * end_pgoff is either end of page table or end of vma
3366 * or fault_around_pages() from start_pgoff, depending what is nearest.
3367 */
3368 end_pgoff = start_pgoff -
3369 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3370 PTRS_PER_PTE - 1;
3371 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3372 start_pgoff + nr_pages - 1);
3373
3374 if (pmd_none(*vmf->pmd)) {
3375 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3376 vmf->address);
3377 if (!vmf->prealloc_pte)
3378 goto out;
3379 smp_wmb(); /* See comment in __pte_alloc() */
3380 }
3381
3382 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3383
3384 /* Huge page is mapped? Page fault is solved */
3385 if (pmd_trans_huge(*vmf->pmd)) {
3386 ret = VM_FAULT_NOPAGE;
3387 goto out;
3388 }
3389
3390 /* ->map_pages() haven't done anything useful. Cold page cache? */
3391 if (!vmf->pte)
3392 goto out;
3393
3394 /* check if the page fault is solved */
3395 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3396 if (!pte_none(*vmf->pte))
3397 ret = VM_FAULT_NOPAGE;
3398 pte_unmap_unlock(vmf->pte, vmf->ptl);
3399 out:
3400 vmf->address = address;
3401 vmf->pte = NULL;
3402 return ret;
3403 }
3404
3405 static int do_read_fault(struct vm_fault *vmf)
3406 {
3407 struct vm_area_struct *vma = vmf->vma;
3408 int ret = 0;
3409
3410 /*
3411 * Let's call ->map_pages() first and use ->fault() as fallback
3412 * if page by the offset is not ready to be mapped (cold cache or
3413 * something).
3414 */
3415 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3416 ret = do_fault_around(vmf);
3417 if (ret)
3418 return ret;
3419 }
3420
3421 ret = __do_fault(vmf);
3422 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3423 return ret;
3424
3425 ret |= finish_fault(vmf);
3426 unlock_page(vmf->page);
3427 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3428 put_page(vmf->page);
3429 return ret;
3430 }
3431
3432 static int do_cow_fault(struct vm_fault *vmf)
3433 {
3434 struct vm_area_struct *vma = vmf->vma;
3435 int ret;
3436
3437 if (unlikely(anon_vma_prepare(vma)))
3438 return VM_FAULT_OOM;
3439
3440 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3441 if (!vmf->cow_page)
3442 return VM_FAULT_OOM;
3443
3444 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3445 &vmf->memcg, false)) {
3446 put_page(vmf->cow_page);
3447 return VM_FAULT_OOM;
3448 }
3449
3450 ret = __do_fault(vmf);
3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3452 goto uncharge_out;
3453 if (ret & VM_FAULT_DONE_COW)
3454 return ret;
3455
3456 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3457 __SetPageUptodate(vmf->cow_page);
3458
3459 ret |= finish_fault(vmf);
3460 unlock_page(vmf->page);
3461 put_page(vmf->page);
3462 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3463 goto uncharge_out;
3464 return ret;
3465 uncharge_out:
3466 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3467 put_page(vmf->cow_page);
3468 return ret;
3469 }
3470
3471 static int do_shared_fault(struct vm_fault *vmf)
3472 {
3473 struct vm_area_struct *vma = vmf->vma;
3474 int ret, tmp;
3475
3476 ret = __do_fault(vmf);
3477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3478 return ret;
3479
3480 /*
3481 * Check if the backing address space wants to know that the page is
3482 * about to become writable
3483 */
3484 if (vma->vm_ops->page_mkwrite) {
3485 unlock_page(vmf->page);
3486 tmp = do_page_mkwrite(vmf);
3487 if (unlikely(!tmp ||
3488 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3489 put_page(vmf->page);
3490 return tmp;
3491 }
3492 }
3493
3494 ret |= finish_fault(vmf);
3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3496 VM_FAULT_RETRY))) {
3497 unlock_page(vmf->page);
3498 put_page(vmf->page);
3499 return ret;
3500 }
3501
3502 fault_dirty_shared_page(vma, vmf->page);
3503 return ret;
3504 }
3505
3506 /*
3507 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3508 * but allow concurrent faults).
3509 * The mmap_sem may have been released depending on flags and our
3510 * return value. See filemap_fault() and __lock_page_or_retry().
3511 */
3512 static int do_fault(struct vm_fault *vmf)
3513 {
3514 struct vm_area_struct *vma = vmf->vma;
3515 int ret;
3516
3517 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3518 if (!vma->vm_ops->fault)
3519 ret = VM_FAULT_SIGBUS;
3520 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3521 ret = do_read_fault(vmf);
3522 else if (!(vma->vm_flags & VM_SHARED))
3523 ret = do_cow_fault(vmf);
3524 else
3525 ret = do_shared_fault(vmf);
3526
3527 /* preallocated pagetable is unused: free it */
3528 if (vmf->prealloc_pte) {
3529 pte_free(vma->vm_mm, vmf->prealloc_pte);
3530 vmf->prealloc_pte = NULL;
3531 }
3532 return ret;
3533 }
3534
3535 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3536 unsigned long addr, int page_nid,
3537 int *flags)
3538 {
3539 get_page(page);
3540
3541 count_vm_numa_event(NUMA_HINT_FAULTS);
3542 if (page_nid == numa_node_id()) {
3543 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3544 *flags |= TNF_FAULT_LOCAL;
3545 }
3546
3547 return mpol_misplaced(page, vma, addr);
3548 }
3549
3550 static int do_numa_page(struct vm_fault *vmf)
3551 {
3552 struct vm_area_struct *vma = vmf->vma;
3553 struct page *page = NULL;
3554 int page_nid = -1;
3555 int last_cpupid;
3556 int target_nid;
3557 bool migrated = false;
3558 pte_t pte;
3559 bool was_writable = pte_savedwrite(vmf->orig_pte);
3560 int flags = 0;
3561
3562 /*
3563 * The "pte" at this point cannot be used safely without
3564 * validation through pte_unmap_same(). It's of NUMA type but
3565 * the pfn may be screwed if the read is non atomic.
3566 */
3567 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3568 spin_lock(vmf->ptl);
3569 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3570 pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 goto out;
3572 }
3573
3574 /*
3575 * Make it present again, Depending on how arch implementes non
3576 * accessible ptes, some can allow access by kernel mode.
3577 */
3578 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3579 pte = pte_modify(pte, vma->vm_page_prot);
3580 pte = pte_mkyoung(pte);
3581 if (was_writable)
3582 pte = pte_mkwrite(pte);
3583 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3584 update_mmu_cache(vma, vmf->address, vmf->pte);
3585
3586 page = vm_normal_page(vma, vmf->address, pte);
3587 if (!page) {
3588 pte_unmap_unlock(vmf->pte, vmf->ptl);
3589 return 0;
3590 }
3591
3592 /* TODO: handle PTE-mapped THP */
3593 if (PageCompound(page)) {
3594 pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 return 0;
3596 }
3597
3598 /*
3599 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3600 * much anyway since they can be in shared cache state. This misses
3601 * the case where a mapping is writable but the process never writes
3602 * to it but pte_write gets cleared during protection updates and
3603 * pte_dirty has unpredictable behaviour between PTE scan updates,
3604 * background writeback, dirty balancing and application behaviour.
3605 */
3606 if (!pte_write(pte))
3607 flags |= TNF_NO_GROUP;
3608
3609 /*
3610 * Flag if the page is shared between multiple address spaces. This
3611 * is later used when determining whether to group tasks together
3612 */
3613 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3614 flags |= TNF_SHARED;
3615
3616 last_cpupid = page_cpupid_last(page);
3617 page_nid = page_to_nid(page);
3618 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3619 &flags);
3620 pte_unmap_unlock(vmf->pte, vmf->ptl);
3621 if (target_nid == -1) {
3622 put_page(page);
3623 goto out;
3624 }
3625
3626 /* Migrate to the requested node */
3627 migrated = migrate_misplaced_page(page, vma, target_nid);
3628 if (migrated) {
3629 page_nid = target_nid;
3630 flags |= TNF_MIGRATED;
3631 } else
3632 flags |= TNF_MIGRATE_FAIL;
3633
3634 out:
3635 if (page_nid != -1)
3636 task_numa_fault(last_cpupid, page_nid, 1, flags);
3637 return 0;
3638 }
3639
3640 static inline int create_huge_pmd(struct vm_fault *vmf)
3641 {
3642 if (vma_is_anonymous(vmf->vma))
3643 return do_huge_pmd_anonymous_page(vmf);
3644 if (vmf->vma->vm_ops->huge_fault)
3645 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3646 return VM_FAULT_FALLBACK;
3647 }
3648
3649 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3650 {
3651 if (vma_is_anonymous(vmf->vma))
3652 return do_huge_pmd_wp_page(vmf, orig_pmd);
3653 if (vmf->vma->vm_ops->huge_fault)
3654 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3655
3656 /* COW handled on pte level: split pmd */
3657 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3658 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3659
3660 return VM_FAULT_FALLBACK;
3661 }
3662
3663 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3664 {
3665 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3666 }
3667
3668 static int create_huge_pud(struct vm_fault *vmf)
3669 {
3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3671 /* No support for anonymous transparent PUD pages yet */
3672 if (vma_is_anonymous(vmf->vma))
3673 return VM_FAULT_FALLBACK;
3674 if (vmf->vma->vm_ops->huge_fault)
3675 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3677 return VM_FAULT_FALLBACK;
3678 }
3679
3680 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3681 {
3682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3683 /* No support for anonymous transparent PUD pages yet */
3684 if (vma_is_anonymous(vmf->vma))
3685 return VM_FAULT_FALLBACK;
3686 if (vmf->vma->vm_ops->huge_fault)
3687 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3688 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3689 return VM_FAULT_FALLBACK;
3690 }
3691
3692 /*
3693 * These routines also need to handle stuff like marking pages dirty
3694 * and/or accessed for architectures that don't do it in hardware (most
3695 * RISC architectures). The early dirtying is also good on the i386.
3696 *
3697 * There is also a hook called "update_mmu_cache()" that architectures
3698 * with external mmu caches can use to update those (ie the Sparc or
3699 * PowerPC hashed page tables that act as extended TLBs).
3700 *
3701 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3702 * concurrent faults).
3703 *
3704 * The mmap_sem may have been released depending on flags and our return value.
3705 * See filemap_fault() and __lock_page_or_retry().
3706 */
3707 static int handle_pte_fault(struct vm_fault *vmf)
3708 {
3709 pte_t entry;
3710
3711 if (unlikely(pmd_none(*vmf->pmd))) {
3712 /*
3713 * Leave __pte_alloc() until later: because vm_ops->fault may
3714 * want to allocate huge page, and if we expose page table
3715 * for an instant, it will be difficult to retract from
3716 * concurrent faults and from rmap lookups.
3717 */
3718 vmf->pte = NULL;
3719 } else {
3720 /* See comment in pte_alloc_one_map() */
3721 if (pmd_devmap_trans_unstable(vmf->pmd))
3722 return 0;
3723 /*
3724 * A regular pmd is established and it can't morph into a huge
3725 * pmd from under us anymore at this point because we hold the
3726 * mmap_sem read mode and khugepaged takes it in write mode.
3727 * So now it's safe to run pte_offset_map().
3728 */
3729 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3730 vmf->orig_pte = *vmf->pte;
3731
3732 /*
3733 * some architectures can have larger ptes than wordsize,
3734 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3735 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3736 * atomic accesses. The code below just needs a consistent
3737 * view for the ifs and we later double check anyway with the
3738 * ptl lock held. So here a barrier will do.
3739 */
3740 barrier();
3741 if (pte_none(vmf->orig_pte)) {
3742 pte_unmap(vmf->pte);
3743 vmf->pte = NULL;
3744 }
3745 }
3746
3747 if (!vmf->pte) {
3748 if (vma_is_anonymous(vmf->vma))
3749 return do_anonymous_page(vmf);
3750 else
3751 return do_fault(vmf);
3752 }
3753
3754 if (!pte_present(vmf->orig_pte))
3755 return do_swap_page(vmf);
3756
3757 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3758 return do_numa_page(vmf);
3759
3760 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3761 spin_lock(vmf->ptl);
3762 entry = vmf->orig_pte;
3763 if (unlikely(!pte_same(*vmf->pte, entry)))
3764 goto unlock;
3765 if (vmf->flags & FAULT_FLAG_WRITE) {
3766 if (!pte_write(entry))
3767 return do_wp_page(vmf);
3768 entry = pte_mkdirty(entry);
3769 }
3770 entry = pte_mkyoung(entry);
3771 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3772 vmf->flags & FAULT_FLAG_WRITE)) {
3773 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3774 } else {
3775 /*
3776 * This is needed only for protection faults but the arch code
3777 * is not yet telling us if this is a protection fault or not.
3778 * This still avoids useless tlb flushes for .text page faults
3779 * with threads.
3780 */
3781 if (vmf->flags & FAULT_FLAG_WRITE)
3782 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3783 }
3784 unlock:
3785 pte_unmap_unlock(vmf->pte, vmf->ptl);
3786 return 0;
3787 }
3788
3789 /*
3790 * By the time we get here, we already hold the mm semaphore
3791 *
3792 * The mmap_sem may have been released depending on flags and our
3793 * return value. See filemap_fault() and __lock_page_or_retry().
3794 */
3795 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3796 unsigned int flags)
3797 {
3798 struct vm_fault vmf = {
3799 .vma = vma,
3800 .address = address & PAGE_MASK,
3801 .flags = flags,
3802 .pgoff = linear_page_index(vma, address),
3803 .gfp_mask = __get_fault_gfp_mask(vma),
3804 };
3805 struct mm_struct *mm = vma->vm_mm;
3806 pgd_t *pgd;
3807 p4d_t *p4d;
3808 int ret;
3809
3810 pgd = pgd_offset(mm, address);
3811 p4d = p4d_alloc(mm, pgd, address);
3812 if (!p4d)
3813 return VM_FAULT_OOM;
3814
3815 vmf.pud = pud_alloc(mm, p4d, address);
3816 if (!vmf.pud)
3817 return VM_FAULT_OOM;
3818 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3819 ret = create_huge_pud(&vmf);
3820 if (!(ret & VM_FAULT_FALLBACK))
3821 return ret;
3822 } else {
3823 pud_t orig_pud = *vmf.pud;
3824
3825 barrier();
3826 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3827 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3828
3829 /* NUMA case for anonymous PUDs would go here */
3830
3831 if (dirty && !pud_write(orig_pud)) {
3832 ret = wp_huge_pud(&vmf, orig_pud);
3833 if (!(ret & VM_FAULT_FALLBACK))
3834 return ret;
3835 } else {
3836 huge_pud_set_accessed(&vmf, orig_pud);
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3843 if (!vmf.pmd)
3844 return VM_FAULT_OOM;
3845 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3846 ret = create_huge_pmd(&vmf);
3847 if (!(ret & VM_FAULT_FALLBACK))
3848 return ret;
3849 } else {
3850 pmd_t orig_pmd = *vmf.pmd;
3851
3852 barrier();
3853 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3854 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3855 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3856
3857 if ((vmf.flags & FAULT_FLAG_WRITE) &&
3858 !pmd_write(orig_pmd)) {
3859 ret = wp_huge_pmd(&vmf, orig_pmd);
3860 if (!(ret & VM_FAULT_FALLBACK))
3861 return ret;
3862 } else {
3863 huge_pmd_set_accessed(&vmf, orig_pmd);
3864 return 0;
3865 }
3866 }
3867 }
3868
3869 return handle_pte_fault(&vmf);
3870 }
3871
3872 /*
3873 * By the time we get here, we already hold the mm semaphore
3874 *
3875 * The mmap_sem may have been released depending on flags and our
3876 * return value. See filemap_fault() and __lock_page_or_retry().
3877 */
3878 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3879 unsigned int flags)
3880 {
3881 int ret;
3882
3883 __set_current_state(TASK_RUNNING);
3884
3885 count_vm_event(PGFAULT);
3886 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3887
3888 /* do counter updates before entering really critical section. */
3889 check_sync_rss_stat(current);
3890
3891 /*
3892 * Enable the memcg OOM handling for faults triggered in user
3893 * space. Kernel faults are handled more gracefully.
3894 */
3895 if (flags & FAULT_FLAG_USER)
3896 mem_cgroup_oom_enable();
3897
3898 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3899 flags & FAULT_FLAG_INSTRUCTION,
3900 flags & FAULT_FLAG_REMOTE))
3901 return VM_FAULT_SIGSEGV;
3902
3903 if (unlikely(is_vm_hugetlb_page(vma)))
3904 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3905 else
3906 ret = __handle_mm_fault(vma, address, flags);
3907
3908 if (flags & FAULT_FLAG_USER) {
3909 mem_cgroup_oom_disable();
3910 /*
3911 * The task may have entered a memcg OOM situation but
3912 * if the allocation error was handled gracefully (no
3913 * VM_FAULT_OOM), there is no need to kill anything.
3914 * Just clean up the OOM state peacefully.
3915 */
3916 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3917 mem_cgroup_oom_synchronize(false);
3918 }
3919
3920 return ret;
3921 }
3922 EXPORT_SYMBOL_GPL(handle_mm_fault);
3923
3924 #ifndef __PAGETABLE_P4D_FOLDED
3925 /*
3926 * Allocate p4d page table.
3927 * We've already handled the fast-path in-line.
3928 */
3929 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3930 {
3931 p4d_t *new = p4d_alloc_one(mm, address);
3932 if (!new)
3933 return -ENOMEM;
3934
3935 smp_wmb(); /* See comment in __pte_alloc */
3936
3937 spin_lock(&mm->page_table_lock);
3938 if (pgd_present(*pgd)) /* Another has populated it */
3939 p4d_free(mm, new);
3940 else
3941 pgd_populate(mm, pgd, new);
3942 spin_unlock(&mm->page_table_lock);
3943 return 0;
3944 }
3945 #endif /* __PAGETABLE_P4D_FOLDED */
3946
3947 #ifndef __PAGETABLE_PUD_FOLDED
3948 /*
3949 * Allocate page upper directory.
3950 * We've already handled the fast-path in-line.
3951 */
3952 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3953 {
3954 pud_t *new = pud_alloc_one(mm, address);
3955 if (!new)
3956 return -ENOMEM;
3957
3958 smp_wmb(); /* See comment in __pte_alloc */
3959
3960 spin_lock(&mm->page_table_lock);
3961 #ifndef __ARCH_HAS_5LEVEL_HACK
3962 if (p4d_present(*p4d)) /* Another has populated it */
3963 pud_free(mm, new);
3964 else
3965 p4d_populate(mm, p4d, new);
3966 #else
3967 if (pgd_present(*p4d)) /* Another has populated it */
3968 pud_free(mm, new);
3969 else
3970 pgd_populate(mm, p4d, new);
3971 #endif /* __ARCH_HAS_5LEVEL_HACK */
3972 spin_unlock(&mm->page_table_lock);
3973 return 0;
3974 }
3975 #endif /* __PAGETABLE_PUD_FOLDED */
3976
3977 #ifndef __PAGETABLE_PMD_FOLDED
3978 /*
3979 * Allocate page middle directory.
3980 * We've already handled the fast-path in-line.
3981 */
3982 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3983 {
3984 spinlock_t *ptl;
3985 pmd_t *new = pmd_alloc_one(mm, address);
3986 if (!new)
3987 return -ENOMEM;
3988
3989 smp_wmb(); /* See comment in __pte_alloc */
3990
3991 ptl = pud_lock(mm, pud);
3992 #ifndef __ARCH_HAS_4LEVEL_HACK
3993 if (!pud_present(*pud)) {
3994 mm_inc_nr_pmds(mm);
3995 pud_populate(mm, pud, new);
3996 } else /* Another has populated it */
3997 pmd_free(mm, new);
3998 #else
3999 if (!pgd_present(*pud)) {
4000 mm_inc_nr_pmds(mm);
4001 pgd_populate(mm, pud, new);
4002 } else /* Another has populated it */
4003 pmd_free(mm, new);
4004 #endif /* __ARCH_HAS_4LEVEL_HACK */
4005 spin_unlock(ptl);
4006 return 0;
4007 }
4008 #endif /* __PAGETABLE_PMD_FOLDED */
4009
4010 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4011 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4012 {
4013 pgd_t *pgd;
4014 p4d_t *p4d;
4015 pud_t *pud;
4016 pmd_t *pmd;
4017 pte_t *ptep;
4018
4019 pgd = pgd_offset(mm, address);
4020 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4021 goto out;
4022
4023 p4d = p4d_offset(pgd, address);
4024 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4025 goto out;
4026
4027 pud = pud_offset(p4d, address);
4028 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029 goto out;
4030
4031 pmd = pmd_offset(pud, address);
4032 VM_BUG_ON(pmd_trans_huge(*pmd));
4033
4034 if (pmd_huge(*pmd)) {
4035 if (!pmdpp)
4036 goto out;
4037
4038 *ptlp = pmd_lock(mm, pmd);
4039 if (pmd_huge(*pmd)) {
4040 *pmdpp = pmd;
4041 return 0;
4042 }
4043 spin_unlock(*ptlp);
4044 }
4045
4046 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4047 goto out;
4048
4049 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4050 if (!pte_present(*ptep))
4051 goto unlock;
4052 *ptepp = ptep;
4053 return 0;
4054 unlock:
4055 pte_unmap_unlock(ptep, *ptlp);
4056 out:
4057 return -EINVAL;
4058 }
4059
4060 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4061 pte_t **ptepp, spinlock_t **ptlp)
4062 {
4063 int res;
4064
4065 /* (void) is needed to make gcc happy */
4066 (void) __cond_lock(*ptlp,
4067 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4068 ptlp)));
4069 return res;
4070 }
4071
4072 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4073 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4074 {
4075 int res;
4076
4077 /* (void) is needed to make gcc happy */
4078 (void) __cond_lock(*ptlp,
4079 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4080 ptlp)));
4081 return res;
4082 }
4083 EXPORT_SYMBOL(follow_pte_pmd);
4084
4085 /**
4086 * follow_pfn - look up PFN at a user virtual address
4087 * @vma: memory mapping
4088 * @address: user virtual address
4089 * @pfn: location to store found PFN
4090 *
4091 * Only IO mappings and raw PFN mappings are allowed.
4092 *
4093 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4094 */
4095 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4096 unsigned long *pfn)
4097 {
4098 int ret = -EINVAL;
4099 spinlock_t *ptl;
4100 pte_t *ptep;
4101
4102 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4103 return ret;
4104
4105 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4106 if (ret)
4107 return ret;
4108 *pfn = pte_pfn(*ptep);
4109 pte_unmap_unlock(ptep, ptl);
4110 return 0;
4111 }
4112 EXPORT_SYMBOL(follow_pfn);
4113
4114 #ifdef CONFIG_HAVE_IOREMAP_PROT
4115 int follow_phys(struct vm_area_struct *vma,
4116 unsigned long address, unsigned int flags,
4117 unsigned long *prot, resource_size_t *phys)
4118 {
4119 int ret = -EINVAL;
4120 pte_t *ptep, pte;
4121 spinlock_t *ptl;
4122
4123 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4124 goto out;
4125
4126 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4127 goto out;
4128 pte = *ptep;
4129
4130 if ((flags & FOLL_WRITE) && !pte_write(pte))
4131 goto unlock;
4132
4133 *prot = pgprot_val(pte_pgprot(pte));
4134 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4135
4136 ret = 0;
4137 unlock:
4138 pte_unmap_unlock(ptep, ptl);
4139 out:
4140 return ret;
4141 }
4142
4143 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4144 void *buf, int len, int write)
4145 {
4146 resource_size_t phys_addr;
4147 unsigned long prot = 0;
4148 void __iomem *maddr;
4149 int offset = addr & (PAGE_SIZE-1);
4150
4151 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4152 return -EINVAL;
4153
4154 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4155 if (write)
4156 memcpy_toio(maddr + offset, buf, len);
4157 else
4158 memcpy_fromio(buf, maddr + offset, len);
4159 iounmap(maddr);
4160
4161 return len;
4162 }
4163 EXPORT_SYMBOL_GPL(generic_access_phys);
4164 #endif
4165
4166 /*
4167 * Access another process' address space as given in mm. If non-NULL, use the
4168 * given task for page fault accounting.
4169 */
4170 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4171 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4172 {
4173 struct vm_area_struct *vma;
4174 void *old_buf = buf;
4175 int write = gup_flags & FOLL_WRITE;
4176
4177 down_read(&mm->mmap_sem);
4178 /* ignore errors, just check how much was successfully transferred */
4179 while (len) {
4180 int bytes, ret, offset;
4181 void *maddr;
4182 struct page *page = NULL;
4183
4184 ret = get_user_pages_remote(tsk, mm, addr, 1,
4185 gup_flags, &page, &vma, NULL);
4186 if (ret <= 0) {
4187 #ifndef CONFIG_HAVE_IOREMAP_PROT
4188 break;
4189 #else
4190 /*
4191 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4192 * we can access using slightly different code.
4193 */
4194 vma = find_vma(mm, addr);
4195 if (!vma || vma->vm_start > addr)
4196 break;
4197 if (vma->vm_ops && vma->vm_ops->access)
4198 ret = vma->vm_ops->access(vma, addr, buf,
4199 len, write);
4200 if (ret <= 0)
4201 break;
4202 bytes = ret;
4203 #endif
4204 } else {
4205 bytes = len;
4206 offset = addr & (PAGE_SIZE-1);
4207 if (bytes > PAGE_SIZE-offset)
4208 bytes = PAGE_SIZE-offset;
4209
4210 maddr = kmap(page);
4211 if (write) {
4212 copy_to_user_page(vma, page, addr,
4213 maddr + offset, buf, bytes);
4214 set_page_dirty_lock(page);
4215 } else {
4216 copy_from_user_page(vma, page, addr,
4217 buf, maddr + offset, bytes);
4218 }
4219 kunmap(page);
4220 put_page(page);
4221 }
4222 len -= bytes;
4223 buf += bytes;
4224 addr += bytes;
4225 }
4226 up_read(&mm->mmap_sem);
4227
4228 return buf - old_buf;
4229 }
4230
4231 /**
4232 * access_remote_vm - access another process' address space
4233 * @mm: the mm_struct of the target address space
4234 * @addr: start address to access
4235 * @buf: source or destination buffer
4236 * @len: number of bytes to transfer
4237 * @gup_flags: flags modifying lookup behaviour
4238 *
4239 * The caller must hold a reference on @mm.
4240 */
4241 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4242 void *buf, int len, unsigned int gup_flags)
4243 {
4244 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4245 }
4246
4247 /*
4248 * Access another process' address space.
4249 * Source/target buffer must be kernel space,
4250 * Do not walk the page table directly, use get_user_pages
4251 */
4252 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4253 void *buf, int len, unsigned int gup_flags)
4254 {
4255 struct mm_struct *mm;
4256 int ret;
4257
4258 mm = get_task_mm(tsk);
4259 if (!mm)
4260 return 0;
4261
4262 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4263
4264 mmput(mm);
4265
4266 return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(access_process_vm);
4269
4270 /*
4271 * Print the name of a VMA.
4272 */
4273 void print_vma_addr(char *prefix, unsigned long ip)
4274 {
4275 struct mm_struct *mm = current->mm;
4276 struct vm_area_struct *vma;
4277
4278 /*
4279 * Do not print if we are in atomic
4280 * contexts (in exception stacks, etc.):
4281 */
4282 if (preempt_count())
4283 return;
4284
4285 down_read(&mm->mmap_sem);
4286 vma = find_vma(mm, ip);
4287 if (vma && vma->vm_file) {
4288 struct file *f = vma->vm_file;
4289 char *buf = (char *)__get_free_page(GFP_KERNEL);
4290 if (buf) {
4291 char *p;
4292
4293 p = file_path(f, buf, PAGE_SIZE);
4294 if (IS_ERR(p))
4295 p = "?";
4296 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4297 vma->vm_start,
4298 vma->vm_end - vma->vm_start);
4299 free_page((unsigned long)buf);
4300 }
4301 }
4302 up_read(&mm->mmap_sem);
4303 }
4304
4305 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4306 void __might_fault(const char *file, int line)
4307 {
4308 /*
4309 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4310 * holding the mmap_sem, this is safe because kernel memory doesn't
4311 * get paged out, therefore we'll never actually fault, and the
4312 * below annotations will generate false positives.
4313 */
4314 if (uaccess_kernel())
4315 return;
4316 if (pagefault_disabled())
4317 return;
4318 __might_sleep(file, line, 0);
4319 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4320 if (current->mm)
4321 might_lock_read(&current->mm->mmap_sem);
4322 #endif
4323 }
4324 EXPORT_SYMBOL(__might_fault);
4325 #endif
4326
4327 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4328 static void clear_gigantic_page(struct page *page,
4329 unsigned long addr,
4330 unsigned int pages_per_huge_page)
4331 {
4332 int i;
4333 struct page *p = page;
4334
4335 might_sleep();
4336 for (i = 0; i < pages_per_huge_page;
4337 i++, p = mem_map_next(p, page, i)) {
4338 cond_resched();
4339 clear_user_highpage(p, addr + i * PAGE_SIZE);
4340 }
4341 }
4342 void clear_huge_page(struct page *page,
4343 unsigned long addr, unsigned int pages_per_huge_page)
4344 {
4345 int i;
4346
4347 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4348 clear_gigantic_page(page, addr, pages_per_huge_page);
4349 return;
4350 }
4351
4352 might_sleep();
4353 for (i = 0; i < pages_per_huge_page; i++) {
4354 cond_resched();
4355 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4356 }
4357 }
4358
4359 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4360 unsigned long addr,
4361 struct vm_area_struct *vma,
4362 unsigned int pages_per_huge_page)
4363 {
4364 int i;
4365 struct page *dst_base = dst;
4366 struct page *src_base = src;
4367
4368 for (i = 0; i < pages_per_huge_page; ) {
4369 cond_resched();
4370 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4371
4372 i++;
4373 dst = mem_map_next(dst, dst_base, i);
4374 src = mem_map_next(src, src_base, i);
4375 }
4376 }
4377
4378 void copy_user_huge_page(struct page *dst, struct page *src,
4379 unsigned long addr, struct vm_area_struct *vma,
4380 unsigned int pages_per_huge_page)
4381 {
4382 int i;
4383
4384 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4385 copy_user_gigantic_page(dst, src, addr, vma,
4386 pages_per_huge_page);
4387 return;
4388 }
4389
4390 might_sleep();
4391 for (i = 0; i < pages_per_huge_page; i++) {
4392 cond_resched();
4393 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4394 }
4395 }
4396
4397 long copy_huge_page_from_user(struct page *dst_page,
4398 const void __user *usr_src,
4399 unsigned int pages_per_huge_page,
4400 bool allow_pagefault)
4401 {
4402 void *src = (void *)usr_src;
4403 void *page_kaddr;
4404 unsigned long i, rc = 0;
4405 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4406
4407 for (i = 0; i < pages_per_huge_page; i++) {
4408 if (allow_pagefault)
4409 page_kaddr = kmap(dst_page + i);
4410 else
4411 page_kaddr = kmap_atomic(dst_page + i);
4412 rc = copy_from_user(page_kaddr,
4413 (const void __user *)(src + i * PAGE_SIZE),
4414 PAGE_SIZE);
4415 if (allow_pagefault)
4416 kunmap(dst_page + i);
4417 else
4418 kunmap_atomic(page_kaddr);
4419
4420 ret_val -= (PAGE_SIZE - rc);
4421 if (rc)
4422 break;
4423
4424 cond_resched();
4425 }
4426 return ret_val;
4427 }
4428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4429
4430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4431
4432 static struct kmem_cache *page_ptl_cachep;
4433
4434 void __init ptlock_cache_init(void)
4435 {
4436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4437 SLAB_PANIC, NULL);
4438 }
4439
4440 bool ptlock_alloc(struct page *page)
4441 {
4442 spinlock_t *ptl;
4443
4444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4445 if (!ptl)
4446 return false;
4447 page->ptl = ptl;
4448 return true;
4449 }
4450
4451 void ptlock_free(struct page *page)
4452 {
4453 kmem_cache_free(page_ptl_cachep, page->ptl);
4454 }
4455 #endif