4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr
;
87 EXPORT_SYMBOL(max_mapnr
);
88 EXPORT_SYMBOL(mem_map
);
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 EXPORT_SYMBOL(high_memory
);
103 * Randomize the address space (stacks, mmaps, brk, etc.).
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
108 int randomize_va_space __read_mostly
=
109 #ifdef CONFIG_COMPAT_BRK
115 static int __init
disable_randmaps(char *s
)
117 randomize_va_space
= 0;
120 __setup("norandmaps", disable_randmaps
);
122 unsigned long zero_pfn __read_mostly
;
123 unsigned long highest_memmap_pfn __read_mostly
;
125 EXPORT_SYMBOL(zero_pfn
);
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130 static int __init
init_zero_pfn(void)
132 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
135 core_initcall(init_zero_pfn
);
138 #if defined(SPLIT_RSS_COUNTING)
140 void sync_mm_rss(struct mm_struct
*mm
)
144 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
145 if (current
->rss_stat
.count
[i
]) {
146 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
147 current
->rss_stat
.count
[i
] = 0;
150 current
->rss_stat
.events
= 0;
153 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
155 struct task_struct
*task
= current
;
157 if (likely(task
->mm
== mm
))
158 task
->rss_stat
.count
[member
] += val
;
160 add_mm_counter(mm
, member
, val
);
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH (64)
167 static void check_sync_rss_stat(struct task_struct
*task
)
169 if (unlikely(task
!= current
))
171 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
172 sync_mm_rss(task
->mm
);
174 #else /* SPLIT_RSS_COUNTING */
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179 static void check_sync_rss_stat(struct task_struct
*task
)
183 #endif /* SPLIT_RSS_COUNTING */
185 #ifdef HAVE_GENERIC_MMU_GATHER
187 static bool tlb_next_batch(struct mmu_gather
*tlb
)
189 struct mmu_gather_batch
*batch
;
193 tlb
->active
= batch
->next
;
197 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
200 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
207 batch
->max
= MAX_GATHER_BATCH
;
209 tlb
->active
->next
= batch
;
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
220 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
224 /* Is it from 0 to ~0? */
225 tlb
->fullmm
= !(start
| (end
+1));
226 tlb
->need_flush_all
= 0;
227 tlb
->local
.next
= NULL
;
229 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
230 tlb
->active
= &tlb
->local
;
231 tlb
->batch_count
= 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238 __tlb_reset_range(tlb
);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
247 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb
);
251 __tlb_reset_range(tlb
);
254 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
256 struct mmu_gather_batch
*batch
;
258 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
259 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
262 tlb
->active
= &tlb
->local
;
265 void tlb_flush_mmu(struct mmu_gather
*tlb
)
267 tlb_flush_mmu_tlbonly(tlb
);
268 tlb_flush_mmu_free(tlb
);
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
277 struct mmu_gather_batch
*batch
, *next
;
281 /* keep the page table cache within bounds */
284 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
286 free_pages((unsigned long)batch
, 0);
288 tlb
->local
.next
= NULL
;
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
296 *returns true if the caller should flush.
298 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
300 struct mmu_gather_batch
*batch
;
302 VM_BUG_ON(!tlb
->end
);
305 tlb
->page_size
= page_size
;
307 if (page_size
!= tlb
->page_size
)
312 if (batch
->nr
== batch
->max
) {
313 if (!tlb_next_batch(tlb
))
317 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
319 batch
->pages
[batch
->nr
++] = page
;
323 #endif /* HAVE_GENERIC_MMU_GATHER */
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 * See the comment near struct mmu_table_batch.
331 static void tlb_remove_table_smp_sync(void *arg
)
333 /* Simply deliver the interrupt */
336 static void tlb_remove_table_one(void *table
)
339 * This isn't an RCU grace period and hence the page-tables cannot be
340 * assumed to be actually RCU-freed.
342 * It is however sufficient for software page-table walkers that rely on
343 * IRQ disabling. See the comment near struct mmu_table_batch.
345 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
346 __tlb_remove_table(table
);
349 static void tlb_remove_table_rcu(struct rcu_head
*head
)
351 struct mmu_table_batch
*batch
;
354 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
356 for (i
= 0; i
< batch
->nr
; i
++)
357 __tlb_remove_table(batch
->tables
[i
]);
359 free_page((unsigned long)batch
);
362 void tlb_table_flush(struct mmu_gather
*tlb
)
364 struct mmu_table_batch
**batch
= &tlb
->batch
;
367 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
372 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
374 struct mmu_table_batch
**batch
= &tlb
->batch
;
377 * When there's less then two users of this mm there cannot be a
378 * concurrent page-table walk.
380 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
381 __tlb_remove_table(table
);
385 if (*batch
== NULL
) {
386 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
387 if (*batch
== NULL
) {
388 tlb_remove_table_one(table
);
393 (*batch
)->tables
[(*batch
)->nr
++] = table
;
394 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
395 tlb_table_flush(tlb
);
398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
404 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
407 pgtable_t token
= pmd_pgtable(*pmd
);
409 pte_free_tlb(tlb
, token
, addr
);
410 atomic_long_dec(&tlb
->mm
->nr_ptes
);
413 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
414 unsigned long addr
, unsigned long end
,
415 unsigned long floor
, unsigned long ceiling
)
422 pmd
= pmd_offset(pud
, addr
);
424 next
= pmd_addr_end(addr
, end
);
425 if (pmd_none_or_clear_bad(pmd
))
427 free_pte_range(tlb
, pmd
, addr
);
428 } while (pmd
++, addr
= next
, addr
!= end
);
438 if (end
- 1 > ceiling
- 1)
441 pmd
= pmd_offset(pud
, start
);
443 pmd_free_tlb(tlb
, pmd
, start
);
444 mm_dec_nr_pmds(tlb
->mm
);
447 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
448 unsigned long addr
, unsigned long end
,
449 unsigned long floor
, unsigned long ceiling
)
456 pud
= pud_offset(pgd
, addr
);
458 next
= pud_addr_end(addr
, end
);
459 if (pud_none_or_clear_bad(pud
))
461 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
462 } while (pud
++, addr
= next
, addr
!= end
);
468 ceiling
&= PGDIR_MASK
;
472 if (end
- 1 > ceiling
- 1)
475 pud
= pud_offset(pgd
, start
);
477 pud_free_tlb(tlb
, pud
, start
);
481 * This function frees user-level page tables of a process.
483 void free_pgd_range(struct mmu_gather
*tlb
,
484 unsigned long addr
, unsigned long end
,
485 unsigned long floor
, unsigned long ceiling
)
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
527 if (end
- 1 > ceiling
- 1)
532 pgd
= pgd_offset(tlb
->mm
, addr
);
534 next
= pgd_addr_end(addr
, end
);
535 if (pgd_none_or_clear_bad(pgd
))
537 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
538 } while (pgd
++, addr
= next
, addr
!= end
);
541 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
542 unsigned long floor
, unsigned long ceiling
)
545 struct vm_area_struct
*next
= vma
->vm_next
;
546 unsigned long addr
= vma
->vm_start
;
549 * Hide vma from rmap and truncate_pagecache before freeing
552 unlink_anon_vmas(vma
);
553 unlink_file_vma(vma
);
555 if (is_vm_hugetlb_page(vma
)) {
556 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
557 floor
, next
? next
->vm_start
: ceiling
);
560 * Optimization: gather nearby vmas into one call down
562 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
563 && !is_vm_hugetlb_page(next
)) {
566 unlink_anon_vmas(vma
);
567 unlink_file_vma(vma
);
569 free_pgd_range(tlb
, addr
, vma
->vm_end
,
570 floor
, next
? next
->vm_start
: ceiling
);
576 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
579 pgtable_t
new = pte_alloc_one(mm
, address
);
584 * Ensure all pte setup (eg. pte page lock and page clearing) are
585 * visible before the pte is made visible to other CPUs by being
586 * put into page tables.
588 * The other side of the story is the pointer chasing in the page
589 * table walking code (when walking the page table without locking;
590 * ie. most of the time). Fortunately, these data accesses consist
591 * of a chain of data-dependent loads, meaning most CPUs (alpha
592 * being the notable exception) will already guarantee loads are
593 * seen in-order. See the alpha page table accessors for the
594 * smp_read_barrier_depends() barriers in page table walking code.
596 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598 ptl
= pmd_lock(mm
, pmd
);
599 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
600 atomic_long_inc(&mm
->nr_ptes
);
601 pmd_populate(mm
, pmd
, new);
610 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
612 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
616 smp_wmb(); /* See comment in __pte_alloc */
618 spin_lock(&init_mm
.page_table_lock
);
619 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
620 pmd_populate_kernel(&init_mm
, pmd
, new);
623 spin_unlock(&init_mm
.page_table_lock
);
625 pte_free_kernel(&init_mm
, new);
629 static inline void init_rss_vec(int *rss
)
631 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
634 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
638 if (current
->mm
== mm
)
640 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
642 add_mm_counter(mm
, i
, rss
[i
]);
646 * This function is called to print an error when a bad pte
647 * is found. For example, we might have a PFN-mapped pte in
648 * a region that doesn't allow it.
650 * The calling function must still handle the error.
652 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
653 pte_t pte
, struct page
*page
)
655 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
656 pud_t
*pud
= pud_offset(pgd
, addr
);
657 pmd_t
*pmd
= pmd_offset(pud
, addr
);
658 struct address_space
*mapping
;
660 static unsigned long resume
;
661 static unsigned long nr_shown
;
662 static unsigned long nr_unshown
;
665 * Allow a burst of 60 reports, then keep quiet for that minute;
666 * or allow a steady drip of one report per second.
668 if (nr_shown
== 60) {
669 if (time_before(jiffies
, resume
)) {
674 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
681 resume
= jiffies
+ 60 * HZ
;
683 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
684 index
= linear_page_index(vma
, addr
);
686 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
688 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
690 dump_page(page
, "bad pte");
691 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
692 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
694 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
696 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
698 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
699 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
700 mapping
? mapping
->a_ops
->readpage
: NULL
);
702 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
706 * vm_normal_page -- This function gets the "struct page" associated with a pte.
708 * "Special" mappings do not wish to be associated with a "struct page" (either
709 * it doesn't exist, or it exists but they don't want to touch it). In this
710 * case, NULL is returned here. "Normal" mappings do have a struct page.
712 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
713 * pte bit, in which case this function is trivial. Secondly, an architecture
714 * may not have a spare pte bit, which requires a more complicated scheme,
717 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
718 * special mapping (even if there are underlying and valid "struct pages").
719 * COWed pages of a VM_PFNMAP are always normal.
721 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
722 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
723 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
724 * mapping will always honor the rule
726 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
728 * And for normal mappings this is false.
730 * This restricts such mappings to be a linear translation from virtual address
731 * to pfn. To get around this restriction, we allow arbitrary mappings so long
732 * as the vma is not a COW mapping; in that case, we know that all ptes are
733 * special (because none can have been COWed).
736 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
738 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
739 * page" backing, however the difference is that _all_ pages with a struct
740 * page (that is, those where pfn_valid is true) are refcounted and considered
741 * normal pages by the VM. The disadvantage is that pages are refcounted
742 * (which can be slower and simply not an option for some PFNMAP users). The
743 * advantage is that we don't have to follow the strict linearity rule of
744 * PFNMAP mappings in order to support COWable mappings.
747 #ifdef __HAVE_ARCH_PTE_SPECIAL
748 # define HAVE_PTE_SPECIAL 1
750 # define HAVE_PTE_SPECIAL 0
752 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
755 unsigned long pfn
= pte_pfn(pte
);
757 if (HAVE_PTE_SPECIAL
) {
758 if (likely(!pte_special(pte
)))
760 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
761 return vma
->vm_ops
->find_special_page(vma
, addr
);
762 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
764 if (!is_zero_pfn(pfn
))
765 print_bad_pte(vma
, addr
, pte
, NULL
);
769 /* !HAVE_PTE_SPECIAL case follows: */
771 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
772 if (vma
->vm_flags
& VM_MIXEDMAP
) {
778 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
779 if (pfn
== vma
->vm_pgoff
+ off
)
781 if (!is_cow_mapping(vma
->vm_flags
))
786 if (is_zero_pfn(pfn
))
789 if (unlikely(pfn
> highest_memmap_pfn
)) {
790 print_bad_pte(vma
, addr
, pte
, NULL
);
795 * NOTE! We still have PageReserved() pages in the page tables.
796 * eg. VDSO mappings can cause them to exist.
799 return pfn_to_page(pfn
);
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
806 unsigned long pfn
= pmd_pfn(pmd
);
809 * There is no pmd_special() but there may be special pmds, e.g.
810 * in a direct-access (dax) mapping, so let's just replicate the
811 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
813 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
814 if (vma
->vm_flags
& VM_MIXEDMAP
) {
820 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
821 if (pfn
== vma
->vm_pgoff
+ off
)
823 if (!is_cow_mapping(vma
->vm_flags
))
828 if (is_zero_pfn(pfn
))
830 if (unlikely(pfn
> highest_memmap_pfn
))
834 * NOTE! We still have PageReserved() pages in the page tables.
835 * eg. VDSO mappings can cause them to exist.
838 return pfn_to_page(pfn
);
843 * copy one vm_area from one task to the other. Assumes the page tables
844 * already present in the new task to be cleared in the whole range
845 * covered by this vma.
848 static inline unsigned long
849 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
850 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
851 unsigned long addr
, int *rss
)
853 unsigned long vm_flags
= vma
->vm_flags
;
854 pte_t pte
= *src_pte
;
857 /* pte contains position in swap or file, so copy. */
858 if (unlikely(!pte_present(pte
))) {
859 swp_entry_t entry
= pte_to_swp_entry(pte
);
861 if (likely(!non_swap_entry(entry
))) {
862 if (swap_duplicate(entry
) < 0)
865 /* make sure dst_mm is on swapoff's mmlist. */
866 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
867 spin_lock(&mmlist_lock
);
868 if (list_empty(&dst_mm
->mmlist
))
869 list_add(&dst_mm
->mmlist
,
871 spin_unlock(&mmlist_lock
);
874 } else if (is_migration_entry(entry
)) {
875 page
= migration_entry_to_page(entry
);
877 rss
[mm_counter(page
)]++;
879 if (is_write_migration_entry(entry
) &&
880 is_cow_mapping(vm_flags
)) {
882 * COW mappings require pages in both
883 * parent and child to be set to read.
885 make_migration_entry_read(&entry
);
886 pte
= swp_entry_to_pte(entry
);
887 if (pte_swp_soft_dirty(*src_pte
))
888 pte
= pte_swp_mksoft_dirty(pte
);
889 set_pte_at(src_mm
, addr
, src_pte
, pte
);
896 * If it's a COW mapping, write protect it both
897 * in the parent and the child
899 if (is_cow_mapping(vm_flags
)) {
900 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
901 pte
= pte_wrprotect(pte
);
905 * If it's a shared mapping, mark it clean in
908 if (vm_flags
& VM_SHARED
)
909 pte
= pte_mkclean(pte
);
910 pte
= pte_mkold(pte
);
912 page
= vm_normal_page(vma
, addr
, pte
);
915 page_dup_rmap(page
, false);
916 rss
[mm_counter(page
)]++;
920 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
924 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
925 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
926 unsigned long addr
, unsigned long end
)
928 pte_t
*orig_src_pte
, *orig_dst_pte
;
929 pte_t
*src_pte
, *dst_pte
;
930 spinlock_t
*src_ptl
, *dst_ptl
;
932 int rss
[NR_MM_COUNTERS
];
933 swp_entry_t entry
= (swp_entry_t
){0};
938 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
941 src_pte
= pte_offset_map(src_pmd
, addr
);
942 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
943 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
944 orig_src_pte
= src_pte
;
945 orig_dst_pte
= dst_pte
;
946 arch_enter_lazy_mmu_mode();
950 * We are holding two locks at this point - either of them
951 * could generate latencies in another task on another CPU.
953 if (progress
>= 32) {
955 if (need_resched() ||
956 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
959 if (pte_none(*src_pte
)) {
963 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
968 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
970 arch_leave_lazy_mmu_mode();
971 spin_unlock(src_ptl
);
972 pte_unmap(orig_src_pte
);
973 add_mm_rss_vec(dst_mm
, rss
);
974 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
978 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
987 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
988 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
989 unsigned long addr
, unsigned long end
)
991 pmd_t
*src_pmd
, *dst_pmd
;
994 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
997 src_pmd
= pmd_offset(src_pud
, addr
);
999 next
= pmd_addr_end(addr
, end
);
1000 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
1002 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
1003 err
= copy_huge_pmd(dst_mm
, src_mm
,
1004 dst_pmd
, src_pmd
, addr
, vma
);
1011 if (pmd_none_or_clear_bad(src_pmd
))
1013 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1016 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1020 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1021 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1022 unsigned long addr
, unsigned long end
)
1024 pud_t
*src_pud
, *dst_pud
;
1027 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1030 src_pud
= pud_offset(src_pgd
, addr
);
1032 next
= pud_addr_end(addr
, end
);
1033 if (pud_none_or_clear_bad(src_pud
))
1035 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1038 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1042 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1043 struct vm_area_struct
*vma
)
1045 pgd_t
*src_pgd
, *dst_pgd
;
1047 unsigned long addr
= vma
->vm_start
;
1048 unsigned long end
= vma
->vm_end
;
1049 unsigned long mmun_start
; /* For mmu_notifiers */
1050 unsigned long mmun_end
; /* For mmu_notifiers */
1055 * Don't copy ptes where a page fault will fill them correctly.
1056 * Fork becomes much lighter when there are big shared or private
1057 * readonly mappings. The tradeoff is that copy_page_range is more
1058 * efficient than faulting.
1060 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1064 if (is_vm_hugetlb_page(vma
))
1065 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1067 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1069 * We do not free on error cases below as remove_vma
1070 * gets called on error from higher level routine
1072 ret
= track_pfn_copy(vma
);
1078 * We need to invalidate the secondary MMU mappings only when
1079 * there could be a permission downgrade on the ptes of the
1080 * parent mm. And a permission downgrade will only happen if
1081 * is_cow_mapping() returns true.
1083 is_cow
= is_cow_mapping(vma
->vm_flags
);
1087 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1091 dst_pgd
= pgd_offset(dst_mm
, addr
);
1092 src_pgd
= pgd_offset(src_mm
, addr
);
1094 next
= pgd_addr_end(addr
, end
);
1095 if (pgd_none_or_clear_bad(src_pgd
))
1097 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1098 vma
, addr
, next
))) {
1102 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1105 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1109 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1110 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1111 unsigned long addr
, unsigned long end
,
1112 struct zap_details
*details
)
1114 struct mm_struct
*mm
= tlb
->mm
;
1115 int force_flush
= 0;
1116 int rss
[NR_MM_COUNTERS
];
1121 struct page
*pending_page
= NULL
;
1125 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1127 arch_enter_lazy_mmu_mode();
1130 if (pte_none(ptent
)) {
1134 if (pte_present(ptent
)) {
1137 page
= vm_normal_page(vma
, addr
, ptent
);
1138 if (unlikely(details
) && page
) {
1140 * unmap_shared_mapping_pages() wants to
1141 * invalidate cache without truncating:
1142 * unmap shared but keep private pages.
1144 if (details
->check_mapping
&&
1145 details
->check_mapping
!= page_rmapping(page
))
1148 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1150 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1151 if (unlikely(!page
))
1154 if (!PageAnon(page
)) {
1155 if (pte_dirty(ptent
)) {
1157 * oom_reaper cannot tear down dirty
1160 if (unlikely(details
&& details
->ignore_dirty
))
1163 set_page_dirty(page
);
1165 if (pte_young(ptent
) &&
1166 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1167 mark_page_accessed(page
);
1169 rss
[mm_counter(page
)]--;
1170 page_remove_rmap(page
, false);
1171 if (unlikely(page_mapcount(page
) < 0))
1172 print_bad_pte(vma
, addr
, ptent
, page
);
1173 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1175 pending_page
= page
;
1181 /* only check swap_entries if explicitly asked for in details */
1182 if (unlikely(details
&& !details
->check_swap_entries
))
1185 entry
= pte_to_swp_entry(ptent
);
1186 if (!non_swap_entry(entry
))
1188 else if (is_migration_entry(entry
)) {
1191 page
= migration_entry_to_page(entry
);
1192 rss
[mm_counter(page
)]--;
1194 if (unlikely(!free_swap_and_cache(entry
)))
1195 print_bad_pte(vma
, addr
, ptent
, NULL
);
1196 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1197 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1199 add_mm_rss_vec(mm
, rss
);
1200 arch_leave_lazy_mmu_mode();
1202 /* Do the actual TLB flush before dropping ptl */
1204 tlb_flush_mmu_tlbonly(tlb
);
1205 pte_unmap_unlock(start_pte
, ptl
);
1208 * If we forced a TLB flush (either due to running out of
1209 * batch buffers or because we needed to flush dirty TLB
1210 * entries before releasing the ptl), free the batched
1211 * memory too. Restart if we didn't do everything.
1215 tlb_flush_mmu_free(tlb
);
1217 /* remove the page with new size */
1218 __tlb_remove_pte_page(tlb
, pending_page
);
1219 pending_page
= NULL
;
1228 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1229 struct vm_area_struct
*vma
, pud_t
*pud
,
1230 unsigned long addr
, unsigned long end
,
1231 struct zap_details
*details
)
1236 pmd
= pmd_offset(pud
, addr
);
1238 next
= pmd_addr_end(addr
, end
);
1239 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1240 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1241 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1242 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1243 split_huge_pmd(vma
, pmd
, addr
);
1244 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1257 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1260 } while (pmd
++, addr
= next
, addr
!= end
);
1265 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1266 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1267 unsigned long addr
, unsigned long end
,
1268 struct zap_details
*details
)
1273 pud
= pud_offset(pgd
, addr
);
1275 next
= pud_addr_end(addr
, end
);
1276 if (pud_none_or_clear_bad(pud
))
1278 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1279 } while (pud
++, addr
= next
, addr
!= end
);
1284 void unmap_page_range(struct mmu_gather
*tlb
,
1285 struct vm_area_struct
*vma
,
1286 unsigned long addr
, unsigned long end
,
1287 struct zap_details
*details
)
1292 BUG_ON(addr
>= end
);
1293 tlb_start_vma(tlb
, vma
);
1294 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1296 next
= pgd_addr_end(addr
, end
);
1297 if (pgd_none_or_clear_bad(pgd
))
1299 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1300 } while (pgd
++, addr
= next
, addr
!= end
);
1301 tlb_end_vma(tlb
, vma
);
1305 static void unmap_single_vma(struct mmu_gather
*tlb
,
1306 struct vm_area_struct
*vma
, unsigned long start_addr
,
1307 unsigned long end_addr
,
1308 struct zap_details
*details
)
1310 unsigned long start
= max(vma
->vm_start
, start_addr
);
1313 if (start
>= vma
->vm_end
)
1315 end
= min(vma
->vm_end
, end_addr
);
1316 if (end
<= vma
->vm_start
)
1320 uprobe_munmap(vma
, start
, end
);
1322 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1323 untrack_pfn(vma
, 0, 0);
1326 if (unlikely(is_vm_hugetlb_page(vma
))) {
1328 * It is undesirable to test vma->vm_file as it
1329 * should be non-null for valid hugetlb area.
1330 * However, vm_file will be NULL in the error
1331 * cleanup path of mmap_region. When
1332 * hugetlbfs ->mmap method fails,
1333 * mmap_region() nullifies vma->vm_file
1334 * before calling this function to clean up.
1335 * Since no pte has actually been setup, it is
1336 * safe to do nothing in this case.
1339 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1340 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1341 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1344 unmap_page_range(tlb
, vma
, start
, end
, details
);
1349 * unmap_vmas - unmap a range of memory covered by a list of vma's
1350 * @tlb: address of the caller's struct mmu_gather
1351 * @vma: the starting vma
1352 * @start_addr: virtual address at which to start unmapping
1353 * @end_addr: virtual address at which to end unmapping
1355 * Unmap all pages in the vma list.
1357 * Only addresses between `start' and `end' will be unmapped.
1359 * The VMA list must be sorted in ascending virtual address order.
1361 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1362 * range after unmap_vmas() returns. So the only responsibility here is to
1363 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1364 * drops the lock and schedules.
1366 void unmap_vmas(struct mmu_gather
*tlb
,
1367 struct vm_area_struct
*vma
, unsigned long start_addr
,
1368 unsigned long end_addr
)
1370 struct mm_struct
*mm
= vma
->vm_mm
;
1372 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1373 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1374 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1375 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1379 * zap_page_range - remove user pages in a given range
1380 * @vma: vm_area_struct holding the applicable pages
1381 * @start: starting address of pages to zap
1382 * @size: number of bytes to zap
1383 * @details: details of shared cache invalidation
1385 * Caller must protect the VMA list
1387 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1388 unsigned long size
, struct zap_details
*details
)
1390 struct mm_struct
*mm
= vma
->vm_mm
;
1391 struct mmu_gather tlb
;
1392 unsigned long end
= start
+ size
;
1395 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1396 update_hiwater_rss(mm
);
1397 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1398 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1399 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1400 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1401 tlb_finish_mmu(&tlb
, start
, end
);
1405 * zap_page_range_single - remove user pages in a given range
1406 * @vma: vm_area_struct holding the applicable pages
1407 * @address: starting address of pages to zap
1408 * @size: number of bytes to zap
1409 * @details: details of shared cache invalidation
1411 * The range must fit into one VMA.
1413 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1414 unsigned long size
, struct zap_details
*details
)
1416 struct mm_struct
*mm
= vma
->vm_mm
;
1417 struct mmu_gather tlb
;
1418 unsigned long end
= address
+ size
;
1421 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1422 update_hiwater_rss(mm
);
1423 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1424 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1425 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1426 tlb_finish_mmu(&tlb
, address
, end
);
1430 * zap_vma_ptes - remove ptes mapping the vma
1431 * @vma: vm_area_struct holding ptes to be zapped
1432 * @address: starting address of pages to zap
1433 * @size: number of bytes to zap
1435 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1437 * The entire address range must be fully contained within the vma.
1439 * Returns 0 if successful.
1441 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1444 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1445 !(vma
->vm_flags
& VM_PFNMAP
))
1447 zap_page_range_single(vma
, address
, size
, NULL
);
1450 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1452 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1455 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1456 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1458 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1460 VM_BUG_ON(pmd_trans_huge(*pmd
));
1461 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1468 * This is the old fallback for page remapping.
1470 * For historical reasons, it only allows reserved pages. Only
1471 * old drivers should use this, and they needed to mark their
1472 * pages reserved for the old functions anyway.
1474 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1475 struct page
*page
, pgprot_t prot
)
1477 struct mm_struct
*mm
= vma
->vm_mm
;
1486 flush_dcache_page(page
);
1487 pte
= get_locked_pte(mm
, addr
, &ptl
);
1491 if (!pte_none(*pte
))
1494 /* Ok, finally just insert the thing.. */
1496 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1497 page_add_file_rmap(page
, false);
1498 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1501 pte_unmap_unlock(pte
, ptl
);
1504 pte_unmap_unlock(pte
, ptl
);
1510 * vm_insert_page - insert single page into user vma
1511 * @vma: user vma to map to
1512 * @addr: target user address of this page
1513 * @page: source kernel page
1515 * This allows drivers to insert individual pages they've allocated
1518 * The page has to be a nice clean _individual_ kernel allocation.
1519 * If you allocate a compound page, you need to have marked it as
1520 * such (__GFP_COMP), or manually just split the page up yourself
1521 * (see split_page()).
1523 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1524 * took an arbitrary page protection parameter. This doesn't allow
1525 * that. Your vma protection will have to be set up correctly, which
1526 * means that if you want a shared writable mapping, you'd better
1527 * ask for a shared writable mapping!
1529 * The page does not need to be reserved.
1531 * Usually this function is called from f_op->mmap() handler
1532 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1533 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1534 * function from other places, for example from page-fault handler.
1536 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1539 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1541 if (!page_count(page
))
1543 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1544 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1545 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1546 vma
->vm_flags
|= VM_MIXEDMAP
;
1548 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1550 EXPORT_SYMBOL(vm_insert_page
);
1552 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1553 pfn_t pfn
, pgprot_t prot
)
1555 struct mm_struct
*mm
= vma
->vm_mm
;
1561 pte
= get_locked_pte(mm
, addr
, &ptl
);
1565 if (!pte_none(*pte
))
1568 /* Ok, finally just insert the thing.. */
1569 if (pfn_t_devmap(pfn
))
1570 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1572 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1573 set_pte_at(mm
, addr
, pte
, entry
);
1574 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1578 pte_unmap_unlock(pte
, ptl
);
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
1590 * they've allocated into a user vma. Same comments apply.
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
1595 * vma cannot be a COW mapping.
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
1600 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1603 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1605 EXPORT_SYMBOL(vm_insert_pfn
);
1608 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1609 * @vma: user vma to map to
1610 * @addr: target user address of this page
1611 * @pfn: source kernel pfn
1612 * @pgprot: pgprot flags for the inserted page
1614 * This is exactly like vm_insert_pfn, except that it allows drivers to
1615 * to override pgprot on a per-page basis.
1617 * This only makes sense for IO mappings, and it makes no sense for
1618 * cow mappings. In general, using multiple vmas is preferable;
1619 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1622 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1623 unsigned long pfn
, pgprot_t pgprot
)
1627 * Technically, architectures with pte_special can avoid all these
1628 * restrictions (same for remap_pfn_range). However we would like
1629 * consistency in testing and feature parity among all, so we should
1630 * try to keep these invariants in place for everybody.
1632 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1633 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1634 (VM_PFNMAP
|VM_MIXEDMAP
));
1635 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1636 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1638 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1640 if (track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
)))
1643 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1647 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1649 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1652 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1654 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1658 * If we don't have pte special, then we have to use the pfn_valid()
1659 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660 * refcount the page if pfn_valid is true (hence insert_page rather
1661 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1662 * without pte special, it would there be refcounted as a normal page.
1664 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1668 * At this point we are committed to insert_page()
1669 * regardless of whether the caller specified flags that
1670 * result in pfn_t_has_page() == false.
1672 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1673 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1675 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1677 EXPORT_SYMBOL(vm_insert_mixed
);
1680 * maps a range of physical memory into the requested pages. the old
1681 * mappings are removed. any references to nonexistent pages results
1682 * in null mappings (currently treated as "copy-on-access")
1684 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1685 unsigned long addr
, unsigned long end
,
1686 unsigned long pfn
, pgprot_t prot
)
1691 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1694 arch_enter_lazy_mmu_mode();
1696 BUG_ON(!pte_none(*pte
));
1697 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1699 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1700 arch_leave_lazy_mmu_mode();
1701 pte_unmap_unlock(pte
- 1, ptl
);
1705 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1706 unsigned long addr
, unsigned long end
,
1707 unsigned long pfn
, pgprot_t prot
)
1712 pfn
-= addr
>> PAGE_SHIFT
;
1713 pmd
= pmd_alloc(mm
, pud
, addr
);
1716 VM_BUG_ON(pmd_trans_huge(*pmd
));
1718 next
= pmd_addr_end(addr
, end
);
1719 if (remap_pte_range(mm
, pmd
, addr
, next
,
1720 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1722 } while (pmd
++, addr
= next
, addr
!= end
);
1726 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1727 unsigned long addr
, unsigned long end
,
1728 unsigned long pfn
, pgprot_t prot
)
1733 pfn
-= addr
>> PAGE_SHIFT
;
1734 pud
= pud_alloc(mm
, pgd
, addr
);
1738 next
= pud_addr_end(addr
, end
);
1739 if (remap_pmd_range(mm
, pud
, addr
, next
,
1740 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1742 } while (pud
++, addr
= next
, addr
!= end
);
1747 * remap_pfn_range - remap kernel memory to userspace
1748 * @vma: user vma to map to
1749 * @addr: target user address to start at
1750 * @pfn: physical address of kernel memory
1751 * @size: size of map area
1752 * @prot: page protection flags for this mapping
1754 * Note: this is only safe if the mm semaphore is held when called.
1756 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1757 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1761 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1762 struct mm_struct
*mm
= vma
->vm_mm
;
1763 unsigned long remap_pfn
= pfn
;
1767 * Physically remapped pages are special. Tell the
1768 * rest of the world about it:
1769 * VM_IO tells people not to look at these pages
1770 * (accesses can have side effects).
1771 * VM_PFNMAP tells the core MM that the base pages are just
1772 * raw PFN mappings, and do not have a "struct page" associated
1775 * Disable vma merging and expanding with mremap().
1777 * Omit vma from core dump, even when VM_IO turned off.
1779 * There's a horrible special case to handle copy-on-write
1780 * behaviour that some programs depend on. We mark the "original"
1781 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1782 * See vm_normal_page() for details.
1784 if (is_cow_mapping(vma
->vm_flags
)) {
1785 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1787 vma
->vm_pgoff
= pfn
;
1790 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1794 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1796 BUG_ON(addr
>= end
);
1797 pfn
-= addr
>> PAGE_SHIFT
;
1798 pgd
= pgd_offset(mm
, addr
);
1799 flush_cache_range(vma
, addr
, end
);
1801 next
= pgd_addr_end(addr
, end
);
1802 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1803 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1806 } while (pgd
++, addr
= next
, addr
!= end
);
1809 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1813 EXPORT_SYMBOL(remap_pfn_range
);
1816 * vm_iomap_memory - remap memory to userspace
1817 * @vma: user vma to map to
1818 * @start: start of area
1819 * @len: size of area
1821 * This is a simplified io_remap_pfn_range() for common driver use. The
1822 * driver just needs to give us the physical memory range to be mapped,
1823 * we'll figure out the rest from the vma information.
1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826 * whatever write-combining details or similar.
1828 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1830 unsigned long vm_len
, pfn
, pages
;
1832 /* Check that the physical memory area passed in looks valid */
1833 if (start
+ len
< start
)
1836 * You *really* shouldn't map things that aren't page-aligned,
1837 * but we've historically allowed it because IO memory might
1838 * just have smaller alignment.
1840 len
+= start
& ~PAGE_MASK
;
1841 pfn
= start
>> PAGE_SHIFT
;
1842 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1843 if (pfn
+ pages
< pfn
)
1846 /* We start the mapping 'vm_pgoff' pages into the area */
1847 if (vma
->vm_pgoff
> pages
)
1849 pfn
+= vma
->vm_pgoff
;
1850 pages
-= vma
->vm_pgoff
;
1852 /* Can we fit all of the mapping? */
1853 vm_len
= vma
->vm_end
- vma
->vm_start
;
1854 if (vm_len
>> PAGE_SHIFT
> pages
)
1857 /* Ok, let it rip */
1858 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1860 EXPORT_SYMBOL(vm_iomap_memory
);
1862 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1863 unsigned long addr
, unsigned long end
,
1864 pte_fn_t fn
, void *data
)
1869 spinlock_t
*uninitialized_var(ptl
);
1871 pte
= (mm
== &init_mm
) ?
1872 pte_alloc_kernel(pmd
, addr
) :
1873 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1877 BUG_ON(pmd_huge(*pmd
));
1879 arch_enter_lazy_mmu_mode();
1881 token
= pmd_pgtable(*pmd
);
1884 err
= fn(pte
++, token
, addr
, data
);
1887 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1889 arch_leave_lazy_mmu_mode();
1892 pte_unmap_unlock(pte
-1, ptl
);
1896 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1897 unsigned long addr
, unsigned long end
,
1898 pte_fn_t fn
, void *data
)
1904 BUG_ON(pud_huge(*pud
));
1906 pmd
= pmd_alloc(mm
, pud
, addr
);
1910 next
= pmd_addr_end(addr
, end
);
1911 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1914 } while (pmd
++, addr
= next
, addr
!= end
);
1918 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1919 unsigned long addr
, unsigned long end
,
1920 pte_fn_t fn
, void *data
)
1926 pud
= pud_alloc(mm
, pgd
, addr
);
1930 next
= pud_addr_end(addr
, end
);
1931 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1934 } while (pud
++, addr
= next
, addr
!= end
);
1939 * Scan a region of virtual memory, filling in page tables as necessary
1940 * and calling a provided function on each leaf page table.
1942 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1943 unsigned long size
, pte_fn_t fn
, void *data
)
1947 unsigned long end
= addr
+ size
;
1950 if (WARN_ON(addr
>= end
))
1953 pgd
= pgd_offset(mm
, addr
);
1955 next
= pgd_addr_end(addr
, end
);
1956 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1959 } while (pgd
++, addr
= next
, addr
!= end
);
1963 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1966 * handle_pte_fault chooses page fault handler according to an entry which was
1967 * read non-atomically. Before making any commitment, on those architectures
1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969 * parts, do_swap_page must check under lock before unmapping the pte and
1970 * proceeding (but do_wp_page is only called after already making such a check;
1971 * and do_anonymous_page can safely check later on).
1973 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1974 pte_t
*page_table
, pte_t orig_pte
)
1977 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1979 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1981 same
= pte_same(*page_table
, orig_pte
);
1985 pte_unmap(page_table
);
1989 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1991 debug_dma_assert_idle(src
);
1994 * If the source page was a PFN mapping, we don't have
1995 * a "struct page" for it. We do a best-effort copy by
1996 * just copying from the original user address. If that
1997 * fails, we just zero-fill it. Live with it.
1999 if (unlikely(!src
)) {
2000 void *kaddr
= kmap_atomic(dst
);
2001 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2004 * This really shouldn't fail, because the page is there
2005 * in the page tables. But it might just be unreadable,
2006 * in which case we just give up and fill the result with
2009 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2011 kunmap_atomic(kaddr
);
2012 flush_dcache_page(dst
);
2014 copy_user_highpage(dst
, src
, va
, vma
);
2017 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2019 struct file
*vm_file
= vma
->vm_file
;
2022 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2025 * Special mappings (e.g. VDSO) do not have any file so fake
2026 * a default GFP_KERNEL for them.
2032 * Notify the address space that the page is about to become writable so that
2033 * it can prohibit this or wait for the page to get into an appropriate state.
2035 * We do this without the lock held, so that it can sleep if it needs to.
2037 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2038 unsigned long address
)
2040 struct vm_fault vmf
;
2043 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2044 vmf
.pgoff
= page
->index
;
2045 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2046 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2048 vmf
.cow_page
= NULL
;
2050 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2051 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2053 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2055 if (!page
->mapping
) {
2057 return 0; /* retry */
2059 ret
|= VM_FAULT_LOCKED
;
2061 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2066 * Handle write page faults for pages that can be reused in the current vma
2068 * This can happen either due to the mapping being with the VM_SHARED flag,
2069 * or due to us being the last reference standing to the page. In either
2070 * case, all we need to do here is to mark the page as writable and update
2071 * any related book-keeping.
2073 static inline int wp_page_reuse(struct fault_env
*fe
, pte_t orig_pte
,
2074 struct page
*page
, int page_mkwrite
, int dirty_shared
)
2077 struct vm_area_struct
*vma
= fe
->vma
;
2080 * Clear the pages cpupid information as the existing
2081 * information potentially belongs to a now completely
2082 * unrelated process.
2085 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2087 flush_cache_page(vma
, fe
->address
, pte_pfn(orig_pte
));
2088 entry
= pte_mkyoung(orig_pte
);
2089 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2090 if (ptep_set_access_flags(vma
, fe
->address
, fe
->pte
, entry
, 1))
2091 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2092 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2095 struct address_space
*mapping
;
2101 dirtied
= set_page_dirty(page
);
2102 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2103 mapping
= page
->mapping
;
2107 if ((dirtied
|| page_mkwrite
) && mapping
) {
2109 * Some device drivers do not set page.mapping
2110 * but still dirty their pages
2112 balance_dirty_pages_ratelimited(mapping
);
2116 file_update_time(vma
->vm_file
);
2119 return VM_FAULT_WRITE
;
2123 * Handle the case of a page which we actually need to copy to a new page.
2125 * Called with mmap_sem locked and the old page referenced, but
2126 * without the ptl held.
2128 * High level logic flow:
2130 * - Allocate a page, copy the content of the old page to the new one.
2131 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2132 * - Take the PTL. If the pte changed, bail out and release the allocated page
2133 * - If the pte is still the way we remember it, update the page table and all
2134 * relevant references. This includes dropping the reference the page-table
2135 * held to the old page, as well as updating the rmap.
2136 * - In any case, unlock the PTL and drop the reference we took to the old page.
2138 static int wp_page_copy(struct fault_env
*fe
, pte_t orig_pte
,
2139 struct page
*old_page
)
2141 struct vm_area_struct
*vma
= fe
->vma
;
2142 struct mm_struct
*mm
= vma
->vm_mm
;
2143 struct page
*new_page
= NULL
;
2145 int page_copied
= 0;
2146 const unsigned long mmun_start
= fe
->address
& PAGE_MASK
;
2147 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2148 struct mem_cgroup
*memcg
;
2150 if (unlikely(anon_vma_prepare(vma
)))
2153 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2154 new_page
= alloc_zeroed_user_highpage_movable(vma
, fe
->address
);
2158 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2162 cow_user_page(new_page
, old_page
, fe
->address
, vma
);
2165 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2168 __SetPageUptodate(new_page
);
2170 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2173 * Re-check the pte - we dropped the lock
2175 fe
->pte
= pte_offset_map_lock(mm
, fe
->pmd
, fe
->address
, &fe
->ptl
);
2176 if (likely(pte_same(*fe
->pte
, orig_pte
))) {
2178 if (!PageAnon(old_page
)) {
2179 dec_mm_counter_fast(mm
,
2180 mm_counter_file(old_page
));
2181 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2184 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2186 flush_cache_page(vma
, fe
->address
, pte_pfn(orig_pte
));
2187 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2188 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2190 * Clear the pte entry and flush it first, before updating the
2191 * pte with the new entry. This will avoid a race condition
2192 * seen in the presence of one thread doing SMC and another
2195 ptep_clear_flush_notify(vma
, fe
->address
, fe
->pte
);
2196 page_add_new_anon_rmap(new_page
, vma
, fe
->address
, false);
2197 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2198 lru_cache_add_active_or_unevictable(new_page
, vma
);
2200 * We call the notify macro here because, when using secondary
2201 * mmu page tables (such as kvm shadow page tables), we want the
2202 * new page to be mapped directly into the secondary page table.
2204 set_pte_at_notify(mm
, fe
->address
, fe
->pte
, entry
);
2205 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2208 * Only after switching the pte to the new page may
2209 * we remove the mapcount here. Otherwise another
2210 * process may come and find the rmap count decremented
2211 * before the pte is switched to the new page, and
2212 * "reuse" the old page writing into it while our pte
2213 * here still points into it and can be read by other
2216 * The critical issue is to order this
2217 * page_remove_rmap with the ptp_clear_flush above.
2218 * Those stores are ordered by (if nothing else,)
2219 * the barrier present in the atomic_add_negative
2220 * in page_remove_rmap.
2222 * Then the TLB flush in ptep_clear_flush ensures that
2223 * no process can access the old page before the
2224 * decremented mapcount is visible. And the old page
2225 * cannot be reused until after the decremented
2226 * mapcount is visible. So transitively, TLBs to
2227 * old page will be flushed before it can be reused.
2229 page_remove_rmap(old_page
, false);
2232 /* Free the old page.. */
2233 new_page
= old_page
;
2236 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2242 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2243 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2246 * Don't let another task, with possibly unlocked vma,
2247 * keep the mlocked page.
2249 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2250 lock_page(old_page
); /* LRU manipulation */
2251 if (PageMlocked(old_page
))
2252 munlock_vma_page(old_page
);
2253 unlock_page(old_page
);
2257 return page_copied
? VM_FAULT_WRITE
: 0;
2263 return VM_FAULT_OOM
;
2267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2270 static int wp_pfn_shared(struct fault_env
*fe
, pte_t orig_pte
)
2272 struct vm_area_struct
*vma
= fe
->vma
;
2274 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2275 struct vm_fault vmf
= {
2277 .pgoff
= linear_page_index(vma
, fe
->address
),
2279 (void __user
*)(fe
->address
& PAGE_MASK
),
2280 .flags
= FAULT_FLAG_WRITE
| FAULT_FLAG_MKWRITE
,
2284 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2285 ret
= vma
->vm_ops
->pfn_mkwrite(vma
, &vmf
);
2286 if (ret
& VM_FAULT_ERROR
)
2288 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2291 * We might have raced with another page fault while we
2292 * released the pte_offset_map_lock.
2294 if (!pte_same(*fe
->pte
, orig_pte
)) {
2295 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2299 return wp_page_reuse(fe
, orig_pte
, NULL
, 0, 0);
2302 static int wp_page_shared(struct fault_env
*fe
, pte_t orig_pte
,
2303 struct page
*old_page
)
2306 struct vm_area_struct
*vma
= fe
->vma
;
2307 int page_mkwrite
= 0;
2311 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2314 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2315 tmp
= do_page_mkwrite(vma
, old_page
, fe
->address
);
2316 if (unlikely(!tmp
|| (tmp
&
2317 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2322 * Since we dropped the lock we need to revalidate
2323 * the PTE as someone else may have changed it. If
2324 * they did, we just return, as we can count on the
2325 * MMU to tell us if they didn't also make it writable.
2327 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2329 if (!pte_same(*fe
->pte
, orig_pte
)) {
2330 unlock_page(old_page
);
2331 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2338 return wp_page_reuse(fe
, orig_pte
, old_page
, page_mkwrite
, 1);
2342 * This routine handles present pages, when users try to write
2343 * to a shared page. It is done by copying the page to a new address
2344 * and decrementing the shared-page counter for the old page.
2346 * Note that this routine assumes that the protection checks have been
2347 * done by the caller (the low-level page fault routine in most cases).
2348 * Thus we can safely just mark it writable once we've done any necessary
2351 * We also mark the page dirty at this point even though the page will
2352 * change only once the write actually happens. This avoids a few races,
2353 * and potentially makes it more efficient.
2355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356 * but allow concurrent faults), with pte both mapped and locked.
2357 * We return with mmap_sem still held, but pte unmapped and unlocked.
2359 static int do_wp_page(struct fault_env
*fe
, pte_t orig_pte
)
2362 struct vm_area_struct
*vma
= fe
->vma
;
2363 struct page
*old_page
;
2365 old_page
= vm_normal_page(vma
, fe
->address
, orig_pte
);
2368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2371 * We should not cow pages in a shared writeable mapping.
2372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2374 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2375 (VM_WRITE
|VM_SHARED
))
2376 return wp_pfn_shared(fe
, orig_pte
);
2378 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2379 return wp_page_copy(fe
, orig_pte
, old_page
);
2383 * Take out anonymous pages first, anonymous shared vmas are
2384 * not dirty accountable.
2386 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2388 if (!trylock_page(old_page
)) {
2390 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2391 lock_page(old_page
);
2392 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
,
2393 fe
->address
, &fe
->ptl
);
2394 if (!pte_same(*fe
->pte
, orig_pte
)) {
2395 unlock_page(old_page
);
2396 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2402 if (reuse_swap_page(old_page
, &total_mapcount
)) {
2403 if (total_mapcount
== 1) {
2405 * The page is all ours. Move it to
2406 * our anon_vma so the rmap code will
2407 * not search our parent or siblings.
2408 * Protected against the rmap code by
2411 page_move_anon_rmap(old_page
, vma
);
2413 unlock_page(old_page
);
2414 return wp_page_reuse(fe
, orig_pte
, old_page
, 0, 0);
2416 unlock_page(old_page
);
2417 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2418 (VM_WRITE
|VM_SHARED
))) {
2419 return wp_page_shared(fe
, orig_pte
, old_page
);
2423 * Ok, we need to copy. Oh, well..
2427 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2428 return wp_page_copy(fe
, orig_pte
, old_page
);
2431 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2432 unsigned long start_addr
, unsigned long end_addr
,
2433 struct zap_details
*details
)
2435 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2438 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2439 struct zap_details
*details
)
2441 struct vm_area_struct
*vma
;
2442 pgoff_t vba
, vea
, zba
, zea
;
2444 vma_interval_tree_foreach(vma
, root
,
2445 details
->first_index
, details
->last_index
) {
2447 vba
= vma
->vm_pgoff
;
2448 vea
= vba
+ vma_pages(vma
) - 1;
2449 zba
= details
->first_index
;
2452 zea
= details
->last_index
;
2456 unmap_mapping_range_vma(vma
,
2457 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2458 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2464 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2465 * address_space corresponding to the specified page range in the underlying
2468 * @mapping: the address space containing mmaps to be unmapped.
2469 * @holebegin: byte in first page to unmap, relative to the start of
2470 * the underlying file. This will be rounded down to a PAGE_SIZE
2471 * boundary. Note that this is different from truncate_pagecache(), which
2472 * must keep the partial page. In contrast, we must get rid of
2474 * @holelen: size of prospective hole in bytes. This will be rounded
2475 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2477 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2478 * but 0 when invalidating pagecache, don't throw away private data.
2480 void unmap_mapping_range(struct address_space
*mapping
,
2481 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2483 struct zap_details details
= { };
2484 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2485 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2487 /* Check for overflow. */
2488 if (sizeof(holelen
) > sizeof(hlen
)) {
2490 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2491 if (holeend
& ~(long long)ULONG_MAX
)
2492 hlen
= ULONG_MAX
- hba
+ 1;
2495 details
.check_mapping
= even_cows
? NULL
: mapping
;
2496 details
.first_index
= hba
;
2497 details
.last_index
= hba
+ hlen
- 1;
2498 if (details
.last_index
< details
.first_index
)
2499 details
.last_index
= ULONG_MAX
;
2501 i_mmap_lock_write(mapping
);
2502 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2503 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2504 i_mmap_unlock_write(mapping
);
2506 EXPORT_SYMBOL(unmap_mapping_range
);
2509 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2510 * but allow concurrent faults), and pte mapped but not yet locked.
2511 * We return with pte unmapped and unlocked.
2513 * We return with the mmap_sem locked or unlocked in the same cases
2514 * as does filemap_fault().
2516 int do_swap_page(struct fault_env
*fe
, pte_t orig_pte
)
2518 struct vm_area_struct
*vma
= fe
->vma
;
2519 struct page
*page
, *swapcache
;
2520 struct mem_cgroup
*memcg
;
2527 if (!pte_unmap_same(vma
->vm_mm
, fe
->pmd
, fe
->pte
, orig_pte
))
2530 entry
= pte_to_swp_entry(orig_pte
);
2531 if (unlikely(non_swap_entry(entry
))) {
2532 if (is_migration_entry(entry
)) {
2533 migration_entry_wait(vma
->vm_mm
, fe
->pmd
, fe
->address
);
2534 } else if (is_hwpoison_entry(entry
)) {
2535 ret
= VM_FAULT_HWPOISON
;
2537 print_bad_pte(vma
, fe
->address
, orig_pte
, NULL
);
2538 ret
= VM_FAULT_SIGBUS
;
2542 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2543 page
= lookup_swap_cache(entry
);
2545 page
= swapin_readahead(entry
,
2546 GFP_HIGHUSER_MOVABLE
, vma
, fe
->address
);
2549 * Back out if somebody else faulted in this pte
2550 * while we released the pte lock.
2552 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
,
2553 fe
->address
, &fe
->ptl
);
2554 if (likely(pte_same(*fe
->pte
, orig_pte
)))
2556 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2560 /* Had to read the page from swap area: Major fault */
2561 ret
= VM_FAULT_MAJOR
;
2562 count_vm_event(PGMAJFAULT
);
2563 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2564 } else if (PageHWPoison(page
)) {
2566 * hwpoisoned dirty swapcache pages are kept for killing
2567 * owner processes (which may be unknown at hwpoison time)
2569 ret
= VM_FAULT_HWPOISON
;
2570 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2576 locked
= lock_page_or_retry(page
, vma
->vm_mm
, fe
->flags
);
2578 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2580 ret
|= VM_FAULT_RETRY
;
2585 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2586 * release the swapcache from under us. The page pin, and pte_same
2587 * test below, are not enough to exclude that. Even if it is still
2588 * swapcache, we need to check that the page's swap has not changed.
2590 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2593 page
= ksm_might_need_to_copy(page
, vma
, fe
->address
);
2594 if (unlikely(!page
)) {
2600 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2607 * Back out if somebody else already faulted in this pte.
2609 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2611 if (unlikely(!pte_same(*fe
->pte
, orig_pte
)))
2614 if (unlikely(!PageUptodate(page
))) {
2615 ret
= VM_FAULT_SIGBUS
;
2620 * The page isn't present yet, go ahead with the fault.
2622 * Be careful about the sequence of operations here.
2623 * To get its accounting right, reuse_swap_page() must be called
2624 * while the page is counted on swap but not yet in mapcount i.e.
2625 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2626 * must be called after the swap_free(), or it will never succeed.
2629 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2630 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2631 pte
= mk_pte(page
, vma
->vm_page_prot
);
2632 if ((fe
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2633 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2634 fe
->flags
&= ~FAULT_FLAG_WRITE
;
2635 ret
|= VM_FAULT_WRITE
;
2636 exclusive
= RMAP_EXCLUSIVE
;
2638 flush_icache_page(vma
, page
);
2639 if (pte_swp_soft_dirty(orig_pte
))
2640 pte
= pte_mksoft_dirty(pte
);
2641 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, pte
);
2642 if (page
== swapcache
) {
2643 do_page_add_anon_rmap(page
, vma
, fe
->address
, exclusive
);
2644 mem_cgroup_commit_charge(page
, memcg
, true, false);
2645 activate_page(page
);
2646 } else { /* ksm created a completely new copy */
2647 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
2648 mem_cgroup_commit_charge(page
, memcg
, false, false);
2649 lru_cache_add_active_or_unevictable(page
, vma
);
2653 if (mem_cgroup_swap_full(page
) ||
2654 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2655 try_to_free_swap(page
);
2657 if (page
!= swapcache
) {
2659 * Hold the lock to avoid the swap entry to be reused
2660 * until we take the PT lock for the pte_same() check
2661 * (to avoid false positives from pte_same). For
2662 * further safety release the lock after the swap_free
2663 * so that the swap count won't change under a
2664 * parallel locked swapcache.
2666 unlock_page(swapcache
);
2667 put_page(swapcache
);
2670 if (fe
->flags
& FAULT_FLAG_WRITE
) {
2671 ret
|= do_wp_page(fe
, pte
);
2672 if (ret
& VM_FAULT_ERROR
)
2673 ret
&= VM_FAULT_ERROR
;
2677 /* No need to invalidate - it was non-present before */
2678 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2680 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2684 mem_cgroup_cancel_charge(page
, memcg
, false);
2685 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2690 if (page
!= swapcache
) {
2691 unlock_page(swapcache
);
2692 put_page(swapcache
);
2698 * This is like a special single-page "expand_{down|up}wards()",
2699 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2700 * doesn't hit another vma.
2702 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2704 address
&= PAGE_MASK
;
2705 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2706 struct vm_area_struct
*prev
= vma
->vm_prev
;
2709 * Is there a mapping abutting this one below?
2711 * That's only ok if it's the same stack mapping
2712 * that has gotten split..
2714 if (prev
&& prev
->vm_end
== address
)
2715 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2717 return expand_downwards(vma
, address
- PAGE_SIZE
);
2719 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2720 struct vm_area_struct
*next
= vma
->vm_next
;
2722 /* As VM_GROWSDOWN but s/below/above/ */
2723 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2724 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2726 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2732 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2733 * but allow concurrent faults), and pte mapped but not yet locked.
2734 * We return with mmap_sem still held, but pte unmapped and unlocked.
2736 static int do_anonymous_page(struct fault_env
*fe
)
2738 struct vm_area_struct
*vma
= fe
->vma
;
2739 struct mem_cgroup
*memcg
;
2743 /* File mapping without ->vm_ops ? */
2744 if (vma
->vm_flags
& VM_SHARED
)
2745 return VM_FAULT_SIGBUS
;
2747 /* Check if we need to add a guard page to the stack */
2748 if (check_stack_guard_page(vma
, fe
->address
) < 0)
2749 return VM_FAULT_SIGSEGV
;
2752 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2753 * pte_offset_map() on pmds where a huge pmd might be created
2754 * from a different thread.
2756 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2757 * parallel threads are excluded by other means.
2759 * Here we only have down_read(mmap_sem).
2761 if (pte_alloc(vma
->vm_mm
, fe
->pmd
, fe
->address
))
2762 return VM_FAULT_OOM
;
2764 /* See the comment in pte_alloc_one_map() */
2765 if (unlikely(pmd_trans_unstable(fe
->pmd
)))
2768 /* Use the zero-page for reads */
2769 if (!(fe
->flags
& FAULT_FLAG_WRITE
) &&
2770 !mm_forbids_zeropage(vma
->vm_mm
)) {
2771 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(fe
->address
),
2772 vma
->vm_page_prot
));
2773 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2775 if (!pte_none(*fe
->pte
))
2777 /* Deliver the page fault to userland, check inside PT lock */
2778 if (userfaultfd_missing(vma
)) {
2779 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2780 return handle_userfault(fe
, VM_UFFD_MISSING
);
2785 /* Allocate our own private page. */
2786 if (unlikely(anon_vma_prepare(vma
)))
2788 page
= alloc_zeroed_user_highpage_movable(vma
, fe
->address
);
2792 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2796 * The memory barrier inside __SetPageUptodate makes sure that
2797 * preceeding stores to the page contents become visible before
2798 * the set_pte_at() write.
2800 __SetPageUptodate(page
);
2802 entry
= mk_pte(page
, vma
->vm_page_prot
);
2803 if (vma
->vm_flags
& VM_WRITE
)
2804 entry
= pte_mkwrite(pte_mkdirty(entry
));
2806 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2808 if (!pte_none(*fe
->pte
))
2811 /* Deliver the page fault to userland, check inside PT lock */
2812 if (userfaultfd_missing(vma
)) {
2813 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2814 mem_cgroup_cancel_charge(page
, memcg
, false);
2816 return handle_userfault(fe
, VM_UFFD_MISSING
);
2819 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2820 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
2821 mem_cgroup_commit_charge(page
, memcg
, false, false);
2822 lru_cache_add_active_or_unevictable(page
, vma
);
2824 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, entry
);
2826 /* No need to invalidate - it was non-present before */
2827 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2829 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2832 mem_cgroup_cancel_charge(page
, memcg
, false);
2838 return VM_FAULT_OOM
;
2842 * The mmap_sem must have been held on entry, and may have been
2843 * released depending on flags and vma->vm_ops->fault() return value.
2844 * See filemap_fault() and __lock_page_retry().
2846 static int __do_fault(struct fault_env
*fe
, pgoff_t pgoff
,
2847 struct page
*cow_page
, struct page
**page
, void **entry
)
2849 struct vm_area_struct
*vma
= fe
->vma
;
2850 struct vm_fault vmf
;
2853 vmf
.virtual_address
= (void __user
*)(fe
->address
& PAGE_MASK
);
2855 vmf
.flags
= fe
->flags
;
2857 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2858 vmf
.cow_page
= cow_page
;
2860 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2861 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2863 if (ret
& VM_FAULT_DAX_LOCKED
) {
2868 if (unlikely(PageHWPoison(vmf
.page
))) {
2869 if (ret
& VM_FAULT_LOCKED
)
2870 unlock_page(vmf
.page
);
2872 return VM_FAULT_HWPOISON
;
2875 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2876 lock_page(vmf
.page
);
2878 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2884 static int pte_alloc_one_map(struct fault_env
*fe
)
2886 struct vm_area_struct
*vma
= fe
->vma
;
2888 if (!pmd_none(*fe
->pmd
))
2890 if (fe
->prealloc_pte
) {
2891 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
2892 if (unlikely(!pmd_none(*fe
->pmd
))) {
2893 spin_unlock(fe
->ptl
);
2897 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2898 pmd_populate(vma
->vm_mm
, fe
->pmd
, fe
->prealloc_pte
);
2899 spin_unlock(fe
->ptl
);
2900 fe
->prealloc_pte
= 0;
2901 } else if (unlikely(pte_alloc(vma
->vm_mm
, fe
->pmd
, fe
->address
))) {
2902 return VM_FAULT_OOM
;
2906 * If a huge pmd materialized under us just retry later. Use
2907 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2908 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2909 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2910 * in a different thread of this mm, in turn leading to a misleading
2911 * pmd_trans_huge() retval. All we have to ensure is that it is a
2912 * regular pmd that we can walk with pte_offset_map() and we can do that
2913 * through an atomic read in C, which is what pmd_trans_unstable()
2916 if (pmd_trans_unstable(fe
->pmd
) || pmd_devmap(*fe
->pmd
))
2917 return VM_FAULT_NOPAGE
;
2919 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2924 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2926 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2927 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
2928 unsigned long haddr
)
2930 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
2931 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
2933 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
2938 static int do_set_pmd(struct fault_env
*fe
, struct page
*page
)
2940 struct vm_area_struct
*vma
= fe
->vma
;
2941 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
2942 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
2946 if (!transhuge_vma_suitable(vma
, haddr
))
2947 return VM_FAULT_FALLBACK
;
2949 ret
= VM_FAULT_FALLBACK
;
2950 page
= compound_head(page
);
2952 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
2953 if (unlikely(!pmd_none(*fe
->pmd
)))
2956 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2957 flush_icache_page(vma
, page
+ i
);
2959 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
2961 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2963 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
2964 page_add_file_rmap(page
, true);
2966 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
2968 update_mmu_cache_pmd(vma
, haddr
, fe
->pmd
);
2970 /* fault is handled */
2972 count_vm_event(THP_FILE_MAPPED
);
2974 spin_unlock(fe
->ptl
);
2978 static int do_set_pmd(struct fault_env
*fe
, struct page
*page
)
2986 * alloc_set_pte - setup new PTE entry for given page and add reverse page
2987 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
2989 * @fe: fault environment
2990 * @memcg: memcg to charge page (only for private mappings)
2991 * @page: page to map
2993 * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
2995 * Target users are page handler itself and implementations of
2996 * vm_ops->map_pages.
2998 int alloc_set_pte(struct fault_env
*fe
, struct mem_cgroup
*memcg
,
3001 struct vm_area_struct
*vma
= fe
->vma
;
3002 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
3006 if (pmd_none(*fe
->pmd
) && PageTransCompound(page
) &&
3007 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3009 VM_BUG_ON_PAGE(memcg
, page
);
3011 ret
= do_set_pmd(fe
, page
);
3012 if (ret
!= VM_FAULT_FALLBACK
)
3017 ret
= pte_alloc_one_map(fe
);
3022 /* Re-check under ptl */
3023 if (unlikely(!pte_none(*fe
->pte
)))
3024 return VM_FAULT_NOPAGE
;
3026 flush_icache_page(vma
, page
);
3027 entry
= mk_pte(page
, vma
->vm_page_prot
);
3029 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3030 /* copy-on-write page */
3031 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3032 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3033 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
3034 mem_cgroup_commit_charge(page
, memcg
, false, false);
3035 lru_cache_add_active_or_unevictable(page
, vma
);
3037 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3038 page_add_file_rmap(page
, false);
3040 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, entry
);
3042 /* no need to invalidate: a not-present page won't be cached */
3043 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
3048 static unsigned long fault_around_bytes __read_mostly
=
3049 rounddown_pow_of_two(65536);
3051 #ifdef CONFIG_DEBUG_FS
3052 static int fault_around_bytes_get(void *data
, u64
*val
)
3054 *val
= fault_around_bytes
;
3059 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3060 * rounded down to nearest page order. It's what do_fault_around() expects to
3063 static int fault_around_bytes_set(void *data
, u64 val
)
3065 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3067 if (val
> PAGE_SIZE
)
3068 fault_around_bytes
= rounddown_pow_of_two(val
);
3070 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3073 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
3074 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3076 static int __init
fault_around_debugfs(void)
3080 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
3081 &fault_around_bytes_fops
);
3083 pr_warn("Failed to create fault_around_bytes in debugfs");
3086 late_initcall(fault_around_debugfs
);
3090 * do_fault_around() tries to map few pages around the fault address. The hope
3091 * is that the pages will be needed soon and this will lower the number of
3094 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3095 * not ready to be mapped: not up-to-date, locked, etc.
3097 * This function is called with the page table lock taken. In the split ptlock
3098 * case the page table lock only protects only those entries which belong to
3099 * the page table corresponding to the fault address.
3101 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3104 * fault_around_pages() defines how many pages we'll try to map.
3105 * do_fault_around() expects it to return a power of two less than or equal to
3108 * The virtual address of the area that we map is naturally aligned to the
3109 * fault_around_pages() value (and therefore to page order). This way it's
3110 * easier to guarantee that we don't cross page table boundaries.
3112 static int do_fault_around(struct fault_env
*fe
, pgoff_t start_pgoff
)
3114 unsigned long address
= fe
->address
, nr_pages
, mask
;
3118 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3119 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3121 fe
->address
= max(address
& mask
, fe
->vma
->vm_start
);
3122 off
= ((address
- fe
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3126 * end_pgoff is either end of page table or end of vma
3127 * or fault_around_pages() from start_pgoff, depending what is nearest.
3129 end_pgoff
= start_pgoff
-
3130 ((fe
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3132 end_pgoff
= min3(end_pgoff
, vma_pages(fe
->vma
) + fe
->vma
->vm_pgoff
- 1,
3133 start_pgoff
+ nr_pages
- 1);
3135 if (pmd_none(*fe
->pmd
)) {
3136 fe
->prealloc_pte
= pte_alloc_one(fe
->vma
->vm_mm
, fe
->address
);
3137 if (!fe
->prealloc_pte
)
3139 smp_wmb(); /* See comment in __pte_alloc() */
3142 fe
->vma
->vm_ops
->map_pages(fe
, start_pgoff
, end_pgoff
);
3144 /* preallocated pagetable is unused: free it */
3145 if (fe
->prealloc_pte
) {
3146 pte_free(fe
->vma
->vm_mm
, fe
->prealloc_pte
);
3147 fe
->prealloc_pte
= 0;
3149 /* Huge page is mapped? Page fault is solved */
3150 if (pmd_trans_huge(*fe
->pmd
)) {
3151 ret
= VM_FAULT_NOPAGE
;
3155 /* ->map_pages() haven't done anything useful. Cold page cache? */
3159 /* check if the page fault is solved */
3160 fe
->pte
-= (fe
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3161 if (!pte_none(*fe
->pte
))
3162 ret
= VM_FAULT_NOPAGE
;
3163 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3165 fe
->address
= address
;
3170 static int do_read_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3172 struct vm_area_struct
*vma
= fe
->vma
;
3173 struct page
*fault_page
;
3177 * Let's call ->map_pages() first and use ->fault() as fallback
3178 * if page by the offset is not ready to be mapped (cold cache or
3181 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3182 ret
= do_fault_around(fe
, pgoff
);
3187 ret
= __do_fault(fe
, pgoff
, NULL
, &fault_page
, NULL
);
3188 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3191 ret
|= alloc_set_pte(fe
, NULL
, fault_page
);
3193 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3194 unlock_page(fault_page
);
3195 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3196 put_page(fault_page
);
3200 static int do_cow_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3202 struct vm_area_struct
*vma
= fe
->vma
;
3203 struct page
*fault_page
, *new_page
;
3205 struct mem_cgroup
*memcg
;
3208 if (unlikely(anon_vma_prepare(vma
)))
3209 return VM_FAULT_OOM
;
3211 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, fe
->address
);
3213 return VM_FAULT_OOM
;
3215 if (mem_cgroup_try_charge(new_page
, vma
->vm_mm
, GFP_KERNEL
,
3218 return VM_FAULT_OOM
;
3221 ret
= __do_fault(fe
, pgoff
, new_page
, &fault_page
, &fault_entry
);
3222 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3225 if (!(ret
& VM_FAULT_DAX_LOCKED
))
3226 copy_user_highpage(new_page
, fault_page
, fe
->address
, vma
);
3227 __SetPageUptodate(new_page
);
3229 ret
|= alloc_set_pte(fe
, memcg
, new_page
);
3231 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3232 if (!(ret
& VM_FAULT_DAX_LOCKED
)) {
3233 unlock_page(fault_page
);
3234 put_page(fault_page
);
3236 dax_unlock_mapping_entry(vma
->vm_file
->f_mapping
, pgoff
);
3238 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3242 mem_cgroup_cancel_charge(new_page
, memcg
, false);
3247 static int do_shared_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3249 struct vm_area_struct
*vma
= fe
->vma
;
3250 struct page
*fault_page
;
3251 struct address_space
*mapping
;
3255 ret
= __do_fault(fe
, pgoff
, NULL
, &fault_page
, NULL
);
3256 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3260 * Check if the backing address space wants to know that the page is
3261 * about to become writable
3263 if (vma
->vm_ops
->page_mkwrite
) {
3264 unlock_page(fault_page
);
3265 tmp
= do_page_mkwrite(vma
, fault_page
, fe
->address
);
3266 if (unlikely(!tmp
||
3267 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3268 put_page(fault_page
);
3273 ret
|= alloc_set_pte(fe
, NULL
, fault_page
);
3275 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3276 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3278 unlock_page(fault_page
);
3279 put_page(fault_page
);
3283 if (set_page_dirty(fault_page
))
3286 * Take a local copy of the address_space - page.mapping may be zeroed
3287 * by truncate after unlock_page(). The address_space itself remains
3288 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3289 * release semantics to prevent the compiler from undoing this copying.
3291 mapping
= page_rmapping(fault_page
);
3292 unlock_page(fault_page
);
3293 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3295 * Some device drivers do not set page.mapping but still
3298 balance_dirty_pages_ratelimited(mapping
);
3301 if (!vma
->vm_ops
->page_mkwrite
)
3302 file_update_time(vma
->vm_file
);
3308 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3309 * but allow concurrent faults).
3310 * The mmap_sem may have been released depending on flags and our
3311 * return value. See filemap_fault() and __lock_page_or_retry().
3313 static int do_fault(struct fault_env
*fe
)
3315 struct vm_area_struct
*vma
= fe
->vma
;
3316 pgoff_t pgoff
= linear_page_index(vma
, fe
->address
);
3318 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3319 if (!vma
->vm_ops
->fault
)
3320 return VM_FAULT_SIGBUS
;
3321 if (!(fe
->flags
& FAULT_FLAG_WRITE
))
3322 return do_read_fault(fe
, pgoff
);
3323 if (!(vma
->vm_flags
& VM_SHARED
))
3324 return do_cow_fault(fe
, pgoff
);
3325 return do_shared_fault(fe
, pgoff
);
3328 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3329 unsigned long addr
, int page_nid
,
3334 count_vm_numa_event(NUMA_HINT_FAULTS
);
3335 if (page_nid
== numa_node_id()) {
3336 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3337 *flags
|= TNF_FAULT_LOCAL
;
3340 return mpol_misplaced(page
, vma
, addr
);
3343 static int do_numa_page(struct fault_env
*fe
, pte_t pte
)
3345 struct vm_area_struct
*vma
= fe
->vma
;
3346 struct page
*page
= NULL
;
3350 bool migrated
= false;
3351 bool was_writable
= pte_write(pte
);
3355 * The "pte" at this point cannot be used safely without
3356 * validation through pte_unmap_same(). It's of NUMA type but
3357 * the pfn may be screwed if the read is non atomic.
3359 * We can safely just do a "set_pte_at()", because the old
3360 * page table entry is not accessible, so there would be no
3361 * concurrent hardware modifications to the PTE.
3363 fe
->ptl
= pte_lockptr(vma
->vm_mm
, fe
->pmd
);
3365 if (unlikely(!pte_same(*fe
->pte
, pte
))) {
3366 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3370 /* Make it present again */
3371 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3372 pte
= pte_mkyoung(pte
);
3374 pte
= pte_mkwrite(pte
);
3375 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, pte
);
3376 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
3378 page
= vm_normal_page(vma
, fe
->address
, pte
);
3380 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3384 /* TODO: handle PTE-mapped THP */
3385 if (PageCompound(page
)) {
3386 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3391 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3392 * much anyway since they can be in shared cache state. This misses
3393 * the case where a mapping is writable but the process never writes
3394 * to it but pte_write gets cleared during protection updates and
3395 * pte_dirty has unpredictable behaviour between PTE scan updates,
3396 * background writeback, dirty balancing and application behaviour.
3398 if (!pte_write(pte
))
3399 flags
|= TNF_NO_GROUP
;
3402 * Flag if the page is shared between multiple address spaces. This
3403 * is later used when determining whether to group tasks together
3405 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3406 flags
|= TNF_SHARED
;
3408 last_cpupid
= page_cpupid_last(page
);
3409 page_nid
= page_to_nid(page
);
3410 target_nid
= numa_migrate_prep(page
, vma
, fe
->address
, page_nid
,
3412 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3413 if (target_nid
== -1) {
3418 /* Migrate to the requested node */
3419 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3421 page_nid
= target_nid
;
3422 flags
|= TNF_MIGRATED
;
3424 flags
|= TNF_MIGRATE_FAIL
;
3428 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3432 static int create_huge_pmd(struct fault_env
*fe
)
3434 struct vm_area_struct
*vma
= fe
->vma
;
3435 if (vma_is_anonymous(vma
))
3436 return do_huge_pmd_anonymous_page(fe
);
3437 if (vma
->vm_ops
->pmd_fault
)
3438 return vma
->vm_ops
->pmd_fault(vma
, fe
->address
, fe
->pmd
,
3440 return VM_FAULT_FALLBACK
;
3443 static int wp_huge_pmd(struct fault_env
*fe
, pmd_t orig_pmd
)
3445 if (vma_is_anonymous(fe
->vma
))
3446 return do_huge_pmd_wp_page(fe
, orig_pmd
);
3447 if (fe
->vma
->vm_ops
->pmd_fault
)
3448 return fe
->vma
->vm_ops
->pmd_fault(fe
->vma
, fe
->address
, fe
->pmd
,
3451 /* COW handled on pte level: split pmd */
3452 VM_BUG_ON_VMA(fe
->vma
->vm_flags
& VM_SHARED
, fe
->vma
);
3453 split_huge_pmd(fe
->vma
, fe
->pmd
, fe
->address
);
3455 return VM_FAULT_FALLBACK
;
3458 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3460 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3464 * These routines also need to handle stuff like marking pages dirty
3465 * and/or accessed for architectures that don't do it in hardware (most
3466 * RISC architectures). The early dirtying is also good on the i386.
3468 * There is also a hook called "update_mmu_cache()" that architectures
3469 * with external mmu caches can use to update those (ie the Sparc or
3470 * PowerPC hashed page tables that act as extended TLBs).
3472 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3473 * concurrent faults).
3475 * The mmap_sem may have been released depending on flags and our return value.
3476 * See filemap_fault() and __lock_page_or_retry().
3478 static int handle_pte_fault(struct fault_env
*fe
)
3482 if (unlikely(pmd_none(*fe
->pmd
))) {
3484 * Leave __pte_alloc() until later: because vm_ops->fault may
3485 * want to allocate huge page, and if we expose page table
3486 * for an instant, it will be difficult to retract from
3487 * concurrent faults and from rmap lookups.
3491 /* See comment in pte_alloc_one_map() */
3492 if (pmd_trans_unstable(fe
->pmd
) || pmd_devmap(*fe
->pmd
))
3495 * A regular pmd is established and it can't morph into a huge
3496 * pmd from under us anymore at this point because we hold the
3497 * mmap_sem read mode and khugepaged takes it in write mode.
3498 * So now it's safe to run pte_offset_map().
3500 fe
->pte
= pte_offset_map(fe
->pmd
, fe
->address
);
3505 * some architectures can have larger ptes than wordsize,
3506 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3507 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3508 * atomic accesses. The code below just needs a consistent
3509 * view for the ifs and we later double check anyway with the
3510 * ptl lock held. So here a barrier will do.
3513 if (pte_none(entry
)) {
3520 if (vma_is_anonymous(fe
->vma
))
3521 return do_anonymous_page(fe
);
3523 return do_fault(fe
);
3526 if (!pte_present(entry
))
3527 return do_swap_page(fe
, entry
);
3529 if (pte_protnone(entry
) && vma_is_accessible(fe
->vma
))
3530 return do_numa_page(fe
, entry
);
3532 fe
->ptl
= pte_lockptr(fe
->vma
->vm_mm
, fe
->pmd
);
3534 if (unlikely(!pte_same(*fe
->pte
, entry
)))
3536 if (fe
->flags
& FAULT_FLAG_WRITE
) {
3537 if (!pte_write(entry
))
3538 return do_wp_page(fe
, entry
);
3539 entry
= pte_mkdirty(entry
);
3541 entry
= pte_mkyoung(entry
);
3542 if (ptep_set_access_flags(fe
->vma
, fe
->address
, fe
->pte
, entry
,
3543 fe
->flags
& FAULT_FLAG_WRITE
)) {
3544 update_mmu_cache(fe
->vma
, fe
->address
, fe
->pte
);
3547 * This is needed only for protection faults but the arch code
3548 * is not yet telling us if this is a protection fault or not.
3549 * This still avoids useless tlb flushes for .text page faults
3552 if (fe
->flags
& FAULT_FLAG_WRITE
)
3553 flush_tlb_fix_spurious_fault(fe
->vma
, fe
->address
);
3556 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3561 * By the time we get here, we already hold the mm semaphore
3563 * The mmap_sem may have been released depending on flags and our
3564 * return value. See filemap_fault() and __lock_page_or_retry().
3566 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3569 struct fault_env fe
= {
3574 struct mm_struct
*mm
= vma
->vm_mm
;
3578 pgd
= pgd_offset(mm
, address
);
3579 pud
= pud_alloc(mm
, pgd
, address
);
3581 return VM_FAULT_OOM
;
3582 fe
.pmd
= pmd_alloc(mm
, pud
, address
);
3584 return VM_FAULT_OOM
;
3585 if (pmd_none(*fe
.pmd
) && transparent_hugepage_enabled(vma
)) {
3586 int ret
= create_huge_pmd(&fe
);
3587 if (!(ret
& VM_FAULT_FALLBACK
))
3590 pmd_t orig_pmd
= *fe
.pmd
;
3594 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3595 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3596 return do_huge_pmd_numa_page(&fe
, orig_pmd
);
3598 if ((fe
.flags
& FAULT_FLAG_WRITE
) &&
3599 !pmd_write(orig_pmd
)) {
3600 ret
= wp_huge_pmd(&fe
, orig_pmd
);
3601 if (!(ret
& VM_FAULT_FALLBACK
))
3604 huge_pmd_set_accessed(&fe
, orig_pmd
);
3610 return handle_pte_fault(&fe
);
3614 * By the time we get here, we already hold the mm semaphore
3616 * The mmap_sem may have been released depending on flags and our
3617 * return value. See filemap_fault() and __lock_page_or_retry().
3619 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3624 __set_current_state(TASK_RUNNING
);
3626 count_vm_event(PGFAULT
);
3627 mem_cgroup_count_vm_event(vma
->vm_mm
, PGFAULT
);
3629 /* do counter updates before entering really critical section. */
3630 check_sync_rss_stat(current
);
3633 * Enable the memcg OOM handling for faults triggered in user
3634 * space. Kernel faults are handled more gracefully.
3636 if (flags
& FAULT_FLAG_USER
)
3637 mem_cgroup_oom_enable();
3639 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3640 flags
& FAULT_FLAG_INSTRUCTION
,
3641 flags
& FAULT_FLAG_REMOTE
))
3642 return VM_FAULT_SIGSEGV
;
3644 if (unlikely(is_vm_hugetlb_page(vma
)))
3645 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3647 ret
= __handle_mm_fault(vma
, address
, flags
);
3649 if (flags
& FAULT_FLAG_USER
) {
3650 mem_cgroup_oom_disable();
3652 * The task may have entered a memcg OOM situation but
3653 * if the allocation error was handled gracefully (no
3654 * VM_FAULT_OOM), there is no need to kill anything.
3655 * Just clean up the OOM state peacefully.
3657 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3658 mem_cgroup_oom_synchronize(false);
3663 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3665 #ifndef __PAGETABLE_PUD_FOLDED
3667 * Allocate page upper directory.
3668 * We've already handled the fast-path in-line.
3670 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3672 pud_t
*new = pud_alloc_one(mm
, address
);
3676 smp_wmb(); /* See comment in __pte_alloc */
3678 spin_lock(&mm
->page_table_lock
);
3679 if (pgd_present(*pgd
)) /* Another has populated it */
3682 pgd_populate(mm
, pgd
, new);
3683 spin_unlock(&mm
->page_table_lock
);
3686 #endif /* __PAGETABLE_PUD_FOLDED */
3688 #ifndef __PAGETABLE_PMD_FOLDED
3690 * Allocate page middle directory.
3691 * We've already handled the fast-path in-line.
3693 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3695 pmd_t
*new = pmd_alloc_one(mm
, address
);
3699 smp_wmb(); /* See comment in __pte_alloc */
3701 spin_lock(&mm
->page_table_lock
);
3702 #ifndef __ARCH_HAS_4LEVEL_HACK
3703 if (!pud_present(*pud
)) {
3705 pud_populate(mm
, pud
, new);
3706 } else /* Another has populated it */
3709 if (!pgd_present(*pud
)) {
3711 pgd_populate(mm
, pud
, new);
3712 } else /* Another has populated it */
3714 #endif /* __ARCH_HAS_4LEVEL_HACK */
3715 spin_unlock(&mm
->page_table_lock
);
3718 #endif /* __PAGETABLE_PMD_FOLDED */
3720 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3721 pte_t
**ptepp
, spinlock_t
**ptlp
)
3728 pgd
= pgd_offset(mm
, address
);
3729 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3732 pud
= pud_offset(pgd
, address
);
3733 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3736 pmd
= pmd_offset(pud
, address
);
3737 VM_BUG_ON(pmd_trans_huge(*pmd
));
3738 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3741 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3745 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3748 if (!pte_present(*ptep
))
3753 pte_unmap_unlock(ptep
, *ptlp
);
3758 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3759 pte_t
**ptepp
, spinlock_t
**ptlp
)
3763 /* (void) is needed to make gcc happy */
3764 (void) __cond_lock(*ptlp
,
3765 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3770 * follow_pfn - look up PFN at a user virtual address
3771 * @vma: memory mapping
3772 * @address: user virtual address
3773 * @pfn: location to store found PFN
3775 * Only IO mappings and raw PFN mappings are allowed.
3777 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3779 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3786 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3789 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3792 *pfn
= pte_pfn(*ptep
);
3793 pte_unmap_unlock(ptep
, ptl
);
3796 EXPORT_SYMBOL(follow_pfn
);
3798 #ifdef CONFIG_HAVE_IOREMAP_PROT
3799 int follow_phys(struct vm_area_struct
*vma
,
3800 unsigned long address
, unsigned int flags
,
3801 unsigned long *prot
, resource_size_t
*phys
)
3807 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3810 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3814 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3817 *prot
= pgprot_val(pte_pgprot(pte
));
3818 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3822 pte_unmap_unlock(ptep
, ptl
);
3827 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3828 void *buf
, int len
, int write
)
3830 resource_size_t phys_addr
;
3831 unsigned long prot
= 0;
3832 void __iomem
*maddr
;
3833 int offset
= addr
& (PAGE_SIZE
-1);
3835 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3838 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3840 memcpy_toio(maddr
+ offset
, buf
, len
);
3842 memcpy_fromio(buf
, maddr
+ offset
, len
);
3847 EXPORT_SYMBOL_GPL(generic_access_phys
);
3851 * Access another process' address space as given in mm. If non-NULL, use the
3852 * given task for page fault accounting.
3854 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3855 unsigned long addr
, void *buf
, int len
, int write
)
3857 struct vm_area_struct
*vma
;
3858 void *old_buf
= buf
;
3860 down_read(&mm
->mmap_sem
);
3861 /* ignore errors, just check how much was successfully transferred */
3863 int bytes
, ret
, offset
;
3865 struct page
*page
= NULL
;
3867 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
3868 write
, 1, &page
, &vma
);
3870 #ifndef CONFIG_HAVE_IOREMAP_PROT
3874 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3875 * we can access using slightly different code.
3877 vma
= find_vma(mm
, addr
);
3878 if (!vma
|| vma
->vm_start
> addr
)
3880 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3881 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3889 offset
= addr
& (PAGE_SIZE
-1);
3890 if (bytes
> PAGE_SIZE
-offset
)
3891 bytes
= PAGE_SIZE
-offset
;
3895 copy_to_user_page(vma
, page
, addr
,
3896 maddr
+ offset
, buf
, bytes
);
3897 set_page_dirty_lock(page
);
3899 copy_from_user_page(vma
, page
, addr
,
3900 buf
, maddr
+ offset
, bytes
);
3909 up_read(&mm
->mmap_sem
);
3911 return buf
- old_buf
;
3915 * access_remote_vm - access another process' address space
3916 * @mm: the mm_struct of the target address space
3917 * @addr: start address to access
3918 * @buf: source or destination buffer
3919 * @len: number of bytes to transfer
3920 * @write: whether the access is a write
3922 * The caller must hold a reference on @mm.
3924 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3925 void *buf
, int len
, int write
)
3927 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3931 * Access another process' address space.
3932 * Source/target buffer must be kernel space,
3933 * Do not walk the page table directly, use get_user_pages
3935 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3936 void *buf
, int len
, int write
)
3938 struct mm_struct
*mm
;
3941 mm
= get_task_mm(tsk
);
3945 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3952 * Print the name of a VMA.
3954 void print_vma_addr(char *prefix
, unsigned long ip
)
3956 struct mm_struct
*mm
= current
->mm
;
3957 struct vm_area_struct
*vma
;
3960 * Do not print if we are in atomic
3961 * contexts (in exception stacks, etc.):
3963 if (preempt_count())
3966 down_read(&mm
->mmap_sem
);
3967 vma
= find_vma(mm
, ip
);
3968 if (vma
&& vma
->vm_file
) {
3969 struct file
*f
= vma
->vm_file
;
3970 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3974 p
= file_path(f
, buf
, PAGE_SIZE
);
3977 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3979 vma
->vm_end
- vma
->vm_start
);
3980 free_page((unsigned long)buf
);
3983 up_read(&mm
->mmap_sem
);
3986 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3987 void __might_fault(const char *file
, int line
)
3990 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3991 * holding the mmap_sem, this is safe because kernel memory doesn't
3992 * get paged out, therefore we'll never actually fault, and the
3993 * below annotations will generate false positives.
3995 if (segment_eq(get_fs(), KERNEL_DS
))
3997 if (pagefault_disabled())
3999 __might_sleep(file
, line
, 0);
4000 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4002 might_lock_read(¤t
->mm
->mmap_sem
);
4005 EXPORT_SYMBOL(__might_fault
);
4008 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4009 static void clear_gigantic_page(struct page
*page
,
4011 unsigned int pages_per_huge_page
)
4014 struct page
*p
= page
;
4017 for (i
= 0; i
< pages_per_huge_page
;
4018 i
++, p
= mem_map_next(p
, page
, i
)) {
4020 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4023 void clear_huge_page(struct page
*page
,
4024 unsigned long addr
, unsigned int pages_per_huge_page
)
4028 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4029 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4034 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4036 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4040 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4042 struct vm_area_struct
*vma
,
4043 unsigned int pages_per_huge_page
)
4046 struct page
*dst_base
= dst
;
4047 struct page
*src_base
= src
;
4049 for (i
= 0; i
< pages_per_huge_page
; ) {
4051 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4054 dst
= mem_map_next(dst
, dst_base
, i
);
4055 src
= mem_map_next(src
, src_base
, i
);
4059 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4060 unsigned long addr
, struct vm_area_struct
*vma
,
4061 unsigned int pages_per_huge_page
)
4065 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4066 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4067 pages_per_huge_page
);
4072 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4074 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4079 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4081 static struct kmem_cache
*page_ptl_cachep
;
4083 void __init
ptlock_cache_init(void)
4085 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4089 bool ptlock_alloc(struct page
*page
)
4093 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4100 void ptlock_free(struct page
*page
)
4102 kmem_cache_free(page_ptl_cachep
, page
->ptl
);